WorldWideScience

Sample records for cellular mechanisms involved

  1. Cellular and Humoral Mechanisms Involved in the Control of Tuberculosis

    Directory of Open Access Journals (Sweden)

    Joaquin Zuñiga

    2012-01-01

    Full Text Available Mycobacterium tuberculosis (Mtb infection is a major international public health problem. One-third of the world's population is thought to have latent tuberculosis, a condition where individuals are infected by the intracellular bacteria without active disease but are at risk for reactivation, if their immune system fails. Here, we discuss the role of nonspecific inflammatory responses mediated by cytokines and chemokines induced by interaction of innate receptors expressed in macrophages and dendritic cells (DCs. We also review current information regarding the importance of several cytokines including IL-17/IL-23 in the development of protective cellular and antibody-mediated protective responses against Mtb and their influence in containment of the infection. Finally, in this paper, emphasis is placed on the mechanisms of failure of Mtb control, including the immune dysregulation induced by the treatment with biological drugs in different autoimmune diseases. Further functional studies, focused on the mechanisms involved in the early host-Mtb interactions and the interplay between host innate and acquired immunity against Mtb, may be helpful to improve the understanding of protective responses in the lung and in the development of novel therapeutic and prophylactic tools in TB.

  2. Molecular and Cellular Mechanisms Involved in the Trypanosoma cruzi/Host Cell Interplay

    Science.gov (United States)

    Romano, Patricia Silvia; Cueto, Juan Agustín; Casassa, Ana Florencia; Vanrell, María Cristina; Gottlieb, Roberta A.; Colombo, María Isabel

    2013-01-01

    Summary The protozoan parasite Trypanosoma cruzi has a complex bi-ological cycle that involves vertebrate and invertebrate hosts. In mammals, the infective trypomastigote form of this parasite can invade several cell types by exploiting phagocytic-like or non-phagocytic mechanisms depending on the class of cell involved. Morphological studies showed that when trypomastigotes contact macrophages, they induce the formation of plasma membrane protrusions that differ from the canonical phagocytosis that occurs in the case of noninfective epimastigotes. In contrast, when trypomastigotes infect epithelial or muscle cells, the cell surface is minimally modified, suggesting the induction of a different class of process. Lysosomal-dependent or -independent T. cruzi invasion of host cells are two different models that describe the molecular and cellular events activated during parasite entry into nonphagocytic cells. In this context, we have previously shown that induction of autophagy in host cells before infection favors T. cruzi invasion. Furthermore, we demonstrate that autophagosomes and the autophagosomal protein LC3 are recruited to the T. cruzi entry sites and that the newly formed T. cruzi parasitophorous vacuole has characteristics of an autophagolysosome. This review summarizes the current knowledge of the molecular and cellular mechanisms of T. cruzi invasion in nonphagocytic cells. Based on our findings, we propose a new model in which T. cruzi takes advantage of the up-regulation of autophagy during starvation to increase its successful colonization of host cells. PMID:22454195

  3. Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs.

    Science.gov (United States)

    Cunha-Oliveira, Teresa; Rego, Ana Cristina; Oliveira, Catarina R

    2008-06-01

    Substance abuse and addiction are the most costly of all the neuropsychiatric disorders. In the last decades, much progress has been achieved in understanding the effects of the drugs of abuse in the brain. However, efficient treatments that prevent relapse have not been developed. Drug addiction is now considered a brain disease, because the abuse of drugs affects several brain functions. Neurological impairments observed in drug addicts may reflect drug-induced neuronal dysfunction and neurotoxicity. The drugs of abuse directly or indirectly affect neurotransmitter systems, particularly dopaminergic and glutamatergic neurons. This review explores the literature reporting cellular and molecular alterations reflecting the cytotoxicity induced by amphetamines, cocaine and opiates in neuronal systems. The neurotoxic effects of drugs of abuse are often associated with oxidative stress, mitochondrial dysfunction, apoptosis and inhibition of neurogenesis, among other mechanisms. Understanding the mechanisms that underlie brain dysfunction observed in drug-addicted individuals may contribute to improve the treatment of drug addiction, which may have social and economic consequences. PMID:18440072

  4. Kindling-induced learning deficiency and possible cellular and molecular involved mechanisms.

    Science.gov (United States)

    Sherafat, Mohammad Amin; Ronaghi, Abdolaziz; Ahmad-Molaei, Leila; Nejadhoseynian, Mohammad; Ghasemi, Rasoul; Hosseini, Arman; Naderi, Nima; Motamedi, Fereshteh

    2013-06-01

    Hippocampus learning disturbance is a major symptom of patients with seizure, hence hippocampal dysfunction has essential role in worsening the disease. Hippocampal formation includes neurons and myelinated fibers that are necessary for acquisition and consolidation of memory, long-term potentiation and learning activity. The exact mechanism by which seizure can decrease memory and learning activity of hippocampus remains unknown. In the present study, electrical kindling-induced learning deficit in rats was evaluated by Morris water maze (MWM) test. The hippocampus was removed and changes in neurons and myelin sheaths around hippocampal fibers were investigated using histological and immunohistochemical methods. Demyelination was assessed by luxol fast blue staining, and immunohistological staining of myelin-binding protein (MBP). The TUNEL assay was used for evaluation of neuronal apoptosis and the glial fibriliary acetic protein (GFAP) was used for assessment of inflammatory reaction. The results indicated that electrical kindling of hippocampus could induce deficiency in spatial learning and memory as compared to control group. In addition, electrical kindling caused damage to the myelin sheath around hippocampal fibers and produced vast demyelination. Furthermore, an increase in the number of apoptotic cells in hippocampal slices was observed. In addition, inflammatory response was higher in kindled animals as compared to the control group. The results suggested that the decrease in learning and memory in kindled animals is likely due to demyelination and augmentation in apoptosis rate accompanied by inflammatory reaction in hippocampal neurons of kindled rats.

  5. Phenylpyrazole insecticides induce cytotoxicity by altering mechanisms involved in cellular energy supply in the human epithelial cell model Caco-2.

    Science.gov (United States)

    Vidau, Cyril; Brunet, Jean-Luc; Badiou, Alexandra; Belzunces, Luc P

    2009-06-01

    Phenylpyrazoles are relatively new insecticides designed to manage problematic insect resistance and public health hazards encountered with older pesticide families. In vitro cytotoxicity induced by the phenylpyrazole insecticides, Ethiprol and Fipronil, and Fipronil metabolites, sulfone and sulfide, was studied in Caco-2 cells. This cellular model was chosen because it made possible to mimic the primary site of oral exposure to xenobiotics, the intestinal epithelium. Assessment of the barrier function of Caco-2 epithelium was assessed by TEER measurement and showed a major loss of barrier integrity after exposure to Fipronil and its metabolites, but not to Ethiprol. The disruption of the epithelial barrier was attributed to severe ATP depletion independent of cell viability, as revealed by LDH release. The origin of energetic metabolism failure was investigated and revealed a transient enhancement of tetrazolium salt reduction and an increase in lactate production by Caco-2 cells, suggesting an increase in glucose metabolism by pesticides. Cellular symptoms observed in these experiments lead us to hypothesize that phenylpyrazole insecticides interacted with mitochondria.

  6. Cellular mechanisms during vascular development

    OpenAIRE

    Blum, Yannick

    2012-01-01

    The vascular system is an essential organ in vertebrate animals and provides the organism with enough oxygen and nutrients. It is composed of an interconnected network of blood vessels, which form using a number of different morphogenetic mechanisms. Angiogenesis describes the formation of new blood vessels from preexisting vessels. A number of molecular pathways have been shown to be essential during angiogenesis. However, cellular architecture of blood vessels as well as cellular mechanisms...

  7. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes.

    Directory of Open Access Journals (Sweden)

    Mohammad F Saeed

    Full Text Available Zaire ebolavirus (ZEBOV, a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new

  8. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination.

    Science.gov (United States)

    Oracz, Krystyna; El-Maarouf-Bouteau, Hayat; Kranner, Ilse; Bogatek, Renata; Corbineau, Françoise; Bailly, Christophe

    2009-05-01

    The physiological dormancy of sunflower (Helianthus annuus) embryos can be overcome during dry storage (after-ripening) or by applying exogenous ethylene or hydrogen cyanide (HCN) during imbibition. The aim of this work was to provide a comprehensive model, based on oxidative signaling by reactive oxygen species (ROS), for explaining the cellular mode of action of HCN in dormancy alleviation. Beneficial HCN effect on germination of dormant embryos is associated with a marked increase in hydrogen peroxide and superoxide anion generation in the embryonic axes. It is mimicked by the ROS-generating compounds methylviologen and menadione but suppressed by ROS scavengers. This increase results from an inhibition of catalase and superoxide dismutase activities and also involves activation of NADPH oxidase. However, it is not related to lipid reserve degradation or gluconeogenesis and not associated with marked changes in the cellular redox status controlled by the glutathione/glutathione disulfide couple. The expression of genes related to ROS production (NADPHox, POX, AO1, and AO2) and signaling (MAPK6, Ser/ThrPK, CaM, and PTP) is differentially affected by dormancy alleviation either during after-ripening or by HCN treatment, and the effect of cyanide on gene expression is likely to be mediated by ROS. It is also demonstrated that HCN and ROS both activate similarly ERF1, a component of the ethylene signaling pathway. We propose that ROS play a key role in the control of sunflower seed germination and are second messengers of cyanide in seed dormancy release.

  9. Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill cells of the mussel Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Katsumiti, A. [CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country (Spain); Gilliland, D. [EU Commission–Joint Research Centre, Institute of Health and Consumer Protection, NSB Unit, Ispra (Italy); Arostegui, I. [Department of Applied Mathematics, Statistics and Operations Research, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa (Spain); Cajaraville, M.P., E-mail: mirenp.cajaraville@ehu.es [CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country (Spain)

    2014-08-15

    Highlights: • CdS QDs were cytotoxic for mussel hemocytes and gill cells in vitro. • Ionic Cd was the most toxic form, followed by CdS QDs and bulk CdS. • CdS QDs altered oxidative balance and caused DNA damage in mussel cells. • CdS QDs caused a particle-specific immunostimulation on phagocytosis of hemocytes. • Conceptual models for cellular handling and toxicity of CdS QDs are proposed. - Abstract: CdS quantum dots (QDs) show a great promise for treatment and diagnosis of cancer and for targeted drug delivery, due to their size-tunable fluorescence and ease of functionalization for tissue targeting. In spite of their advantages it is important to determine if CdS QDs can exert toxicity on biological systems. In the present work, cytotoxicity of CdS QDs (5 nm) at a wide range of concentrations (0.001–100 mg Cd/L) was screened using neutral red (NR) and thiazolyl blue tetrazolium bromide (MTT) assays in isolated hemocytes and gill cells of mussels (Mytilus galloprovincialis). The mechanisms of action of CdS QDs were assessed at sublethal concentrations (0.31–5 mg Cd/L) in the same cell types through a series of functional in vitro assays: production of reactive oxygen species (ROS), catalase (CAT) activity, DNA damage, lysosomal acid phosphatase (AcP) activity, multixenobiotic resistance (MXR) transport activity, Na-K-ATPase activity (only in gill cells) and phagocytic activity and damage to actin cytoskeleton (only in hemocytes). Exposures to CdS QDs lasted for 24 h and were performed in parallel with exposures to bulk CdS and ionic Cd. Ionic Cd was the most toxic form to both cell types, followed by CdS QDs and bulk CdS. ROS production, DNA damage, AcP activity and MXR transport were significantly increased in both cell types exposed to the 3 forms of Cd. CAT activity increased in hemocytes exposed to the three forms of Cd while in gill cells only in those exposed to ionic Cd. No effects were found on hemocytes cytoskeleton integrity. Effects on

  10. Cellular and molecular mechanisms in kidney fibrosis

    Science.gov (United States)

    Duffield, Jeremy S.

    2014-01-01

    Fibrosis is a characteristic feature of all forms of chronic kidney disease. Deposition of pathological matrix in the interstitial space and within the walls of glomerular capillaries as well as the cellular processes resulting in this deposition are increasingly recognized as important factors amplifying kidney injury and accelerating nephron demise. Recent insights into the cellular and molecular mechanisms of fibrogenesis herald the promise of new therapies to slow kidney disease progression. This review focuses on new findings that enhance understanding of cellular and molecular mechanisms of fibrosis, the characteristics of myofibroblasts, their progenitors, and molecular pathways regulating both fibrogenesis and its resolution. PMID:24892703

  11. Cellular mechanisms that control mistranslation

    DEFF Research Database (Denmark)

    Reynolds, Noah M; Lazazzera, Beth A; Ibba, Michael

    2010-01-01

    Mistranslation broadly encompasses the introduction of errors during any step of protein synthesis, leading to the incorporation of an amino acid that is different from the one encoded by the gene. Recent research has vastly enhanced our understanding of the mechanisms that control mistranslation...... at the molecular level and has led to the discovery that the rates of mistranslation in vivo are not fixed but instead are variable. In this Review we describe the different steps in translation quality control and their variations under different growth conditions and between species though a comparison...

  12. Cellular and molecular mechanisms in kidney fibrosis

    OpenAIRE

    Duffield, Jeremy S.

    2014-01-01

    Fibrosis is a characteristic feature of all forms of chronic kidney disease. Deposition of pathological matrix in the interstitial space and within the walls of glomerular capillaries as well as the cellular processes resulting in this deposition are increasingly recognized as important factors amplifying kidney injury and accelerating nephron demise. Recent insights into the cellular and molecular mechanisms of fibrogenesis herald the promise of new therapies to slow kidney disease progressi...

  13. Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Natalia Muñoz-Durango

    2016-06-01

    Full Text Available Arterial hypertension is a common condition worldwide and an important predictor of several complicated diseases. Arterial hypertension can be triggered by many factors, including physiological, genetic, and lifestyle causes. Specifically, molecules of the renin-angiotensin-aldosterone system not only play important roles in the control of blood pressure, but they are also associated with the genesis of arterial hypertension, thus constituting a need for pharmacological interventions. Chronic high pressure generates mechanical damage along the vascular system, heart, and kidneys, which are the principal organs affected in this condition. In addition to mechanical stress, hypertension-induced oxidative stress, chronic inflammation, and the activation of reparative mechanisms lead to end-organ damage, mainly due to fibrosis. Clinical trials have demonstrated that renin-angiotensin-aldosterone system intervention in hypertensive patients lowers morbidity/mortality and inflammatory marker levels as compared to placebo patients, evidencing that this system controls more than blood pressure. This review emphasizes the detrimental effects that a renin-angiotensin-aldosterone system (RAAS imbalance has on health considerations above and beyond high blood pressure, such as fibrotic end-organ damage.

  14. Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension.

    Science.gov (United States)

    Muñoz-Durango, Natalia; Fuentes, Cristóbal A; Castillo, Andrés E; González-Gómez, Luis Martín; Vecchiola, Andrea; Fardella, Carlos E; Kalergis, Alexis M

    2016-01-01

    Arterial hypertension is a common condition worldwide and an important predictor of several complicated diseases. Arterial hypertension can be triggered by many factors, including physiological, genetic, and lifestyle causes. Specifically, molecules of the renin-angiotensin-aldosterone system not only play important roles in the control of blood pressure, but they are also associated with the genesis of arterial hypertension, thus constituting a need for pharmacological interventions. Chronic high pressure generates mechanical damage along the vascular system, heart, and kidneys, which are the principal organs affected in this condition. In addition to mechanical stress, hypertension-induced oxidative stress, chronic inflammation, and the activation of reparative mechanisms lead to end-organ damage, mainly due to fibrosis. Clinical trials have demonstrated that renin-angiotensin-aldosterone system intervention in hypertensive patients lowers morbidity/mortality and inflammatory marker levels as compared to placebo patients, evidencing that this system controls more than blood pressure. This review emphasizes the detrimental effects that a renin-angiotensin-aldosterone system (RAAS) imbalance has on health considerations above and beyond high blood pressure, such as fibrotic end-organ damage. PMID:27347925

  15. Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension.

    Science.gov (United States)

    Muñoz-Durango, Natalia; Fuentes, Cristóbal A; Castillo, Andrés E; González-Gómez, Luis Martín; Vecchiola, Andrea; Fardella, Carlos E; Kalergis, Alexis M

    2016-06-23

    Arterial hypertension is a common condition worldwide and an important predictor of several complicated diseases. Arterial hypertension can be triggered by many factors, including physiological, genetic, and lifestyle causes. Specifically, molecules of the renin-angiotensin-aldosterone system not only play important roles in the control of blood pressure, but they are also associated with the genesis of arterial hypertension, thus constituting a need for pharmacological interventions. Chronic high pressure generates mechanical damage along the vascular system, heart, and kidneys, which are the principal organs affected in this condition. In addition to mechanical stress, hypertension-induced oxidative stress, chronic inflammation, and the activation of reparative mechanisms lead to end-organ damage, mainly due to fibrosis. Clinical trials have demonstrated that renin-angiotensin-aldosterone system intervention in hypertensive patients lowers morbidity/mortality and inflammatory marker levels as compared to placebo patients, evidencing that this system controls more than blood pressure. This review emphasizes the detrimental effects that a renin-angiotensin-aldosterone system (RAAS) imbalance has on health considerations above and beyond high blood pressure, such as fibrotic end-organ damage.

  16. Cellular and physical mechanisms of branching morphogenesis

    Science.gov (United States)

    Varner, Victor D.; Nelson, Celeste M.

    2014-01-01

    Branching morphogenesis is the developmental program that builds the ramified epithelial trees of various organs, including the airways of the lung, the collecting ducts of the kidney, and the ducts of the mammary and salivary glands. Even though the final geometries of epithelial trees are distinct, the molecular signaling pathways that control branching morphogenesis appear to be conserved across organs and species. However, despite this molecular homology, recent advances in cell lineage analysis and real-time imaging have uncovered surprising differences in the mechanisms that build these diverse tissues. Here, we review these studies and discuss the cellular and physical mechanisms that can contribute to branching morphogenesis. PMID:25005470

  17. Cellular and Molecular Mechanisms of AKI.

    Science.gov (United States)

    Agarwal, Anupam; Dong, Zheng; Harris, Raymond; Murray, Patrick; Parikh, Samir M; Rosner, Mitchell H; Kellum, John A; Ronco, Claudio

    2016-05-01

    In this article, we review the current evidence for the cellular and molecular mechanisms of AKI, focusing on epithelial cell pathobiology and related cell-cell interactions, using ischemic AKI as a model. Highlighted are the clinical relevance of cellular and molecular targets that have been investigated in experimental models of ischemic AKI and how such models might be improved to optimize translation into successful clinical trials. In particular, development of more context-specific animal models with greater relevance to human AKI is urgently needed. Comorbidities that could alter patient susceptibility to AKI, such as underlying diabetes, aging, obesity, cancer, and CKD, should also be considered in developing these models. Finally, harmonization between academia and industry for more clinically relevant preclinical testing of potential therapeutic targets and better translational clinical trial design is also needed to achieve the goal of developing effective interventions for AKI. PMID:26860342

  18. Mechanisms of cellular invasion by intracellular parasites.

    Science.gov (United States)

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  19. Involvement of oxygen reactive species in the cellular response of carcinoma cells to irradiation

    International Nuclear Information System (INIS)

    After a presentation of oxygen reactive species and their sources, the author describes the enzymatic and non-enzymatic anti-oxidative defenses, the physiological roles of oxygen reactive species, the oxidative stress, the water radiolysis, the anti-oxidative enzymes and the effects of ionizing radiations. The author then reports an investigation on the contribution of oxygen reactive species in the cellular response to irradiation, and an investigation on the influence of the breathing chain on the persistence of a radio-induced oxidative stress. He also reports a research on molecular mechanisms involved in the cellular radio-sensitivity

  20. Molecular and cellular mechanisms of adipogenesis

    Directory of Open Access Journals (Sweden)

    Aleksander Dmitrievich Egorov

    2015-03-01

    Full Text Available The main components of metabolic syndrome include insulin resistance, hypertriglyceridemia and arterial hypertension. Obesity is the cause of metabolic syndrome, mainly as a consequence of the endocrine function of adipose tissue. The volume of adipose tissue depends on the size of individual adipocytes and on their number. The number of adipocytes increases as a result of enhanced adipocyte differentiation. The transcriptional cascade that regulates this differentiation has been well studied. The major adipogenic transcription factor peroxisome proliferator-activated receptor gamma is a ligand-activated nuclear receptor with essential roles in adipogenesis. Its ligands are used to treat metabolic syndrome and type 2 diabetes mellitus. The present article describes the basic molecular and cellular mechanisms of adipogenesis and discusses the impact of insulin, glucocorticoids, cyclic adenosine monophosphate-activating agents, nuclear receptors and transcription factors on the process of adipogenesis. New regulatory regions of the genome that are capable of binding multiple transcription factors are described, and the most promising drug targets for the treatment of metabolic syndrome and obesity, including the homeodomain proteins Pbx1 and Prep1, are discussed.

  1. Dynamics and mechanisms of quantum dot nanoparticle cellular uptake

    Directory of Open Access Journals (Sweden)

    Telford William G

    2010-06-01

    Full Text Available Abstract Background The rapid growth of the nanotechnology industry and the wide application of various nanomaterials have raised concerns over their impact on the environment and human health. Yet little is known about the mechanism of cellular uptake and cytotoxicity of nanoparticles. An array of nanomaterials has recently been introduced into cancer research promising for remarkable improvements in diagnosis and treatment of the disease. Among them, quantum dots (QDs distinguish themselves in offering many intrinsic photophysical properties that are desirable for targeted imaging and drug delivery. Results We explored the kinetics and mechanism of cellular uptake of QDs with different surface coatings in two human mammary cells. Using fluorescence microscopy and laser scanning cytometry (LSC, we found that both MCF-7 and MCF-10A cells internalized large amount of QD655-COOH, but the percentage of endocytosing cells is slightly higher in MCF-7 cell line than in MCF-10A cell line. Live cell fluorescent imaging showed that QD cellular uptake increases with time over 40 h of incubation. Staining cells with dyes specific to various intracellular organelles indicated that QDs were localized in lysosomes. Transmission electron microscopy (TEM images suggested a potential pathway for QD cellular uptake mechanism involving three major stages: endocytosis, sequestration in early endosomes, and translocation to later endosomes or lysosomes. No cytotoxicity was observed in cells incubated with 0.8 nM of QDs for a period of 72 h. Conclusions The findings presented here provide information on the mechanism of QD endocytosis that could be exploited to reduce non-specific targeting, thereby improving specific targeting of QDs in cancer diagnosis and treatment applications. These findings are also important in understanding the cytotoxicity of nanomaterials and in emphasizing the importance of strict environmental control of nanoparticles.

  2. Cellular Transport Mechanisms of Cytotoxic Metallodrugs: An Overview beyond Cisplatin

    Directory of Open Access Journals (Sweden)

    Sarah Spreckelmeyer

    2014-09-01

    Full Text Available The field of medicinal inorganic chemistry has grown consistently during the past 50 years; however, metal-containing coordination compounds represent only a minor proportion of drugs currently on the market, indicating that research in this area has not yet been thoroughly realized. Although platinum-based drugs as cancer chemotherapeutic agents have been widely studied, exact knowledge of the mechanisms governing their accumulation in cells is still lacking. However, evidence suggests active uptake and efflux mechanisms are involved; this may be involved also in other experimental metal coordination and organometallic compounds with promising antitumor activities in vitro and in vivo, such as ruthenium and gold compounds. Such knowledge would be necessary to elucidate the balance between activity and toxicity profiles of metal compounds. In this review, we present an overview of the information available on the cellular accumulation of Pt compounds from in vitro, in vivo and clinical studies, as well as a summary of reports on the possible accumulation mechanisms for different families of experimental anticancer metal complexes (e.g., Ru Au and Ir. Finally, we discuss the need for rationalization of the investigational approaches available to study metallodrug cellular transport.

  3. Propagation Mechanism of Cylindrical Cellular Detonation

    Science.gov (United States)

    Han, Wen-Hu; Wang, Cheng; Ning, Jian-Guo

    2012-10-01

    We investigate the evolution of cylindrical cellular detonation with different instabilities. The numerical results show that with decreasing initial temperature, detonation becomes more unstable and the cells of the cylindrical detonation tend to be irregular. For stable detonation, a divergence of cylindrical detonation cells is formed eventually due to detonation instability resulting from a curved detonation front. For mildly unstable detonation, local overdriven detonation occurs. The detonation cell diverges and its size decreases. For highly unstable detonation, locally driven detonation is more obvious and the front is highly wrinkled. As a result, the diverging cylindrical detonation cell becomes highly irregular.

  4. Molecular and cellular mechanisms of pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Todd Nevins W

    2012-07-01

    Full Text Available Abstract Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease.

  5. Cellular and molecular mechanisms underlying muscular dystrophy

    OpenAIRE

    Rahimov, Fedik; Kunkel, Louis M

    2013-01-01

    The muscular dystrophies are a group of heterogeneous genetic diseases characterized by progressive degeneration and weakness of skeletal muscle. Since the discovery of the first muscular dystrophy gene encoding dystrophin, a large number of genes have been identified that are involved in various muscle-wasting and neuromuscular disorders. Human genetic studies complemented by animal model systems have substantially contributed to our understanding of the molecular pathomechanisms underlying ...

  6. The cellular automaton interpretation of quantum mechanics

    CERN Document Server

    't Hooft, Gerard

    2016-01-01

    This book presents the deterministic view of quantum mechanics developed by Nobel Laureate Gerard 't Hooft. Dissatisfied with the uncomfortable gaps in the way conventional quantum mechanics meshes with the classical world, 't Hooft has revived the old hidden variable ideas, but now in a much more systematic way than usual. In this, quantum mechanics is viewed as a tool rather than a theory. The book presents examples of models that are classical in essence, but can be analysed by the use of quantum techniques, and argues that even the Standard Model, together with gravitational interactions, might be viewed as a quantum mechanical approach to analysing a system that could be classical at its core. He shows how this approach, even though it is based on hidden variables, can be plausibly reconciled with Bell's theorem, and how the usual objections voiced against the idea of ‘superdeterminism' can be overcome, at least in principle. This framework elegantly explains - and automatically cures - the problems of...

  7. Material and mechanical factors:new strategy in cellular neurogenesis

    Institute of Scientific and Technical Information of China (English)

    Hillary Stoll; Il Keun Kwon; Jung Yul Lim

    2014-01-01

    Since damaged neural circuits are not generally self-recovered, developing methods to stimulate neurogenesis is critically required. Most studies have examined the effects of soluble pharma-cological factors on the cellular neurogenesis. On the other hand, it is now recognized that the other extracellular factors, including material and mechanical cues, also have a strong potential to induce cellular neurogenesis. This article will review recent data on the material (chemical patterning, micro/nano-topography, carbon nanotube, graphene) and mechanical (static cue from substrate stiffness, dynamic cue from stretch and lfow shear) stimulations of cellular neuro-genesis. These approaches may provide new neural regenerative medicine protocols. Scaffolding material templates capable of triggering cellular neurogenesis can be explored in the presence of neurogenesis-stimulatory mechanical environments, and also with conventional soluble factors, to enhance axonal growth and neural network formation in neural tissue engineering.

  8. Cellular and molecular mechanisms of muscle atrophy

    Directory of Open Access Journals (Sweden)

    Paolo Bonaldo

    2013-01-01

    Full Text Available Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. During muscle atrophy, proteolytic systems are activated, and contractile proteins and organelles are removed, resulting in the shrinkage of muscle fibers. Excessive loss of muscle mass is associated with poor prognosis in several diseases, including myopathies and muscular dystrophies, as well as in systemic disorders such as cancer, diabetes, sepsis and heart failure. Muscle loss also occurs during aging. In this paper, we review the key mechanisms that regulate the turnover of contractile proteins and organelles in muscle tissue, and discuss how impairments in these mechanisms can contribute to muscle atrophy. We also discuss how protein synthesis and degradation are coordinately regulated by signaling pathways that are influenced by mechanical stress, physical activity, and the availability of nutrients and growth factors. Understanding how these pathways regulate muscle mass will provide new therapeutic targets for the prevention and treatment of muscle atrophy in metabolic and neuromuscular diseases.

  9. Cellular and molecular mechanisms of chemical synaptic transmission.

    Science.gov (United States)

    Millhorn, D E; Bayliss, D A; Erickson, J T; Gallman, E A; Szymeczek, C L; Czyzyk-Krzeska, M; Dean, J B

    1989-12-01

    During the last decade much progress has been made in understanding the cellular and molecular mechanisms by which nerve cells communicate with each other and nonneural (e.g., muscle) target tissue. This review is intended to provide the reader with an account of this work. We begin with an historical overview of research on cell-to-cell communication and then discuss recent developments that, in some instances, have led to dramatic changes in the concept of synaptic transmission. For instance, the finding that single neurons often contain multiple messengers (i.e., neurotransmitters) invalidated the long-held theory (i.e., Dale's Law) that individual neurons contain and release one and only one type of neurotransmitter. Moreover, the last decade witnessed the inclusion of an entire group of compounds, the neuropeptides, as messenger molecules. Enormous progress has also been made in elucidating postsynaptic receptor complexes and biochemical intermediaries involved in synaptic transmission. Here the development of recombinant DNA technology has made it possible to clone and determine the molecular structure for a number of receptors. This information has been used to gain insight into how these receptors function either as a ligand-gated channel or as a G protein-linked ligand recognition molecule. Perhaps the most progress made during this era was in understanding the molecular linkage of G protein-linked receptors to intramembranous and cytoplasmic macromolecules involved in signal amplification and transduction. We conclude with a brief discussion of how synaptic transmission leads to immediate alterations in the electrical activity and, in some cases, to a change in phenotype by altering gene expression. These alterations in cellular behavior are believed to be mediated by phosphoproteins, the final biochemical product of signal transduction. PMID:2575357

  10. Cellular uptake of steroid carrier proteins – mechanisms and implications

    OpenAIRE

    Willnow, T E; Nykjaer, A

    2009-01-01

    Abstract Steroid hormones are believed to enter cells solely by free diffusion through the plasma membrane. However, recent studies suggest the existence of cellular uptake pathways for carrier-bound steroids. Similar to the clearance of cholesterol via lipoproteins, these pathways involve the recognition of carrier proteins by endocytic receptors on the surface of target cells, followed by internalization and cellular delivery of the bound sterols. Here, we discuss the emerging co...

  11. Cellular pressure and volume regulation and implications for cell mechanics.

    Science.gov (United States)

    Jiang, Hongyuan; Sun, Sean X

    2013-08-01

    In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death, and migration. Volume and shape regulation also directly impacts the mechanics of cells and tissues. Here, we develop a mathematical model of cellular volume and pressure regulation, incorporating essential elements such as water permeation, mechanosensitive channels, active ion pumps, and active stresses in the cortex. The model can fully explain recent experimental data, and it predicts cellular volume and pressure for several models of cell cortical mechanics. Moreover, we show that when cells are subjected to an externally applied load, such as in an atomic force microscopy indentation experiment, active regulation of volume and pressure leads to a complex cellular response. Instead of the passive mechanics of the cortex, the observed cell stiffness depends on several factors working together. This provides a mathematical explanation of rate-dependent response of cells under force. PMID:23931309

  12. The involvement of XPC protein in the cisplatin DNA damaging treatment-mediated cellular response

    Institute of Scientific and Technical Information of China (English)

    Gan WANG; Alan DOMBKOWSKI; Lynn CHUANG; Xiao Xin S XU

    2004-01-01

    Recognition of DNA damage is a critical step for DNA damage-mediated cellular response. XPC is an important DNA damage recognition protein involved in nucleotide excision repair (NER). We have studied the XPC protein in cisplatin DNA damaging treatment-mediated cellular response. Comparison of the microarray data from both normal and XPCdefective human fibroblasts identified 861 XPC-responsive genes in the cisplatin treatment (with minimum fold change≥1.5).The cell cycle and cell proliferation-related genes are the most affected genes by the XPC defect in the treatment. Many other cellular function genes, especially the DNA repair and signal transduction-related genes, were also affected by the XPC defect in the treatment. To validate the microarray data, the transcription levels of some microarray-identified genes were also determined by an RT-PCR based real time PCR assay. The real time PCR results are consistent with the microarray data for most of the tested genes, indicating the reliability of the microarray data. To further validate the microarray data, the cisplatin treatment-mediated caspase-3 activation was also determined. The Western blot hybridization results indicate that the XPC defect greatly attenuates the cisplatin treatment-mediated Caspase-3 activation. We elucidated the role of p53 protein in the XPC protein DNA damage recognition-mediated signaling process. The XPC defect reduces the cisplatin treatment-mediated p53 response. These results suggest that the XPC protein plays an important role in the cisplatin treatment-mediated cellular response. It may also suggest a possible mechanism of cancer cell drug resistance.

  13. Tissue formation and tissue engineering through host cell recruitment or a potential injectable cell-based biocomposite with replicative potential: Molecular mechanisms controlling cellular senescence and the involvement of controlled transient telomerase activation therapies.

    Science.gov (United States)

    Babizhayev, Mark A; Yegorov, Yegor E

    2015-12-01

    Accumulated data indicate that wound-care products should have a composition equivalent to that of the skin: a combination of particular growth factors and extracellular matrix (ECM) proteins endogenous to the skin, together with viable epithelial cells, fibroblasts, and mesenchymal stem cells (MSCs). Strategies consisting of bioengineered dressings and cell-based products have emerged for widespread clinical use; however, their performance is not optimal because chronic wounds persist as a serious unmet medical need. Telomerase, the ribonucleoprotein complex that adds telomeric repeats to the ends of chromosomes, is responsible for telomere maintenance, and its expression is associated with cell immortalization and, in certain cases, cancerogenesis. Telomerase contains a catalytic subunit, the telomerase reverse transcriptase (hTERT). Introduction of TERT into human cells extends both their lifespan and their telomeres to lengths typical of young cells. The regulation of TERT involves transcriptional and posttranscriptional molecular biology mechanisms. The manipulation, regulation of telomerase is multifactorial in mammalian cells, involving overall telomerase gene expression, post-translational protein-protein interactions, and protein phosphorylation. Reactive oxygen species (ROS) have been implicated in aging, apoptosis, and necrosis of cells in numerous diseases. Upon production of high levels of ROS from exogenous or endogenous generators, the redox balance is perturbed and cells are shifted into a state of oxidative stress, which subsequently leads to modifications of intracellular proteins and membrane lipid peroxidation and to direct DNA damage. When the oxidative stress is severe, survival of the cell is dependent on the repair or replacement of damaged molecules, which can result in induction of apoptosis in the injured with ROS cells. ROS-mediated oxidative stress induces the depletion of hTERT from the nucleus via export through the nuclear pores

  14. Tissue formation and tissue engineering through host cell recruitment or a potential injectable cell-based biocomposite with replicative potential: Molecular mechanisms controlling cellular senescence and the involvement of controlled transient telomerase activation therapies.

    Science.gov (United States)

    Babizhayev, Mark A; Yegorov, Yegor E

    2015-12-01

    Accumulated data indicate that wound-care products should have a composition equivalent to that of the skin: a combination of particular growth factors and extracellular matrix (ECM) proteins endogenous to the skin, together with viable epithelial cells, fibroblasts, and mesenchymal stem cells (MSCs). Strategies consisting of bioengineered dressings and cell-based products have emerged for widespread clinical use; however, their performance is not optimal because chronic wounds persist as a serious unmet medical need. Telomerase, the ribonucleoprotein complex that adds telomeric repeats to the ends of chromosomes, is responsible for telomere maintenance, and its expression is associated with cell immortalization and, in certain cases, cancerogenesis. Telomerase contains a catalytic subunit, the telomerase reverse transcriptase (hTERT). Introduction of TERT into human cells extends both their lifespan and their telomeres to lengths typical of young cells. The regulation of TERT involves transcriptional and posttranscriptional molecular biology mechanisms. The manipulation, regulation of telomerase is multifactorial in mammalian cells, involving overall telomerase gene expression, post-translational protein-protein interactions, and protein phosphorylation. Reactive oxygen species (ROS) have been implicated in aging, apoptosis, and necrosis of cells in numerous diseases. Upon production of high levels of ROS from exogenous or endogenous generators, the redox balance is perturbed and cells are shifted into a state of oxidative stress, which subsequently leads to modifications of intracellular proteins and membrane lipid peroxidation and to direct DNA damage. When the oxidative stress is severe, survival of the cell is dependent on the repair or replacement of damaged molecules, which can result in induction of apoptosis in the injured with ROS cells. ROS-mediated oxidative stress induces the depletion of hTERT from the nucleus via export through the nuclear pores

  15. Viral and cellular determinants involved in hepadnaviral entry

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Hepadnaviridae is a family of hepatotropic DNA viruses that is divided into the genera orthohepadnavirus of mammals and avihepadnavirus of birds. All members of this family can cause acute and chronic hepatic infection, which in the case of human hepatitis B virus (HBV) constitutes a major global health problem. Although our knowledge about the molecular biology of these highly liver-specific viruses has profoundly increased in the last two decades, the mechanisms of attachment and productive entrance into the differentiated host hepatocytes are still enigmatic. The difficulties in studying hepadnaviral entry were primarily caused by the lack of easily accessible in vitro infection systems. Thus, for more than twenty years, differentiated primary hepatocytes from the respective species were the only in vitro models for both orthohepadnaviruses (e.g. HBV) and avihepadnaviruses (e.g. duck hepatitis B virus [DHBV]).Two important discoveries have been made recently regarding HBV: (1) primary hepatocytes from tree-shrews;i.e., Tupaia belangeri, can be substituted for primary human hepatocytes, and (2) a human hepatoma cell line (HepaRG) was established that gains susceptibility for HBV infection upon induction of differentiation in vitro.A number of potential HBV receptor candidates have been described in the past, but none of them have been confirmed to function as a receptor. For DHBV and probably all other avian hepadnaviruses, carboxypeptidase D (CPD) has been shown to be indispensable for infection,although the exact role of this molecule is still under debate. While still restricted to the use of primary duck hepatocytes (PDH), investigations performed with DHBV provided important general concepts on the first steps of hepadnaviral infection. However, with emerging data obtained from the new HBV infection systems, the hope that DHBV utilizes the same mechanism as HBV only partially held true. Nevertheless, both HBV and DHBV in vitro infection systems will help to

  16. Cellular mechanisms underlying the interaction between cannabinoid and opioid system.

    Science.gov (United States)

    Parolaro, D; Rubino, T; Viganò, D; Massi, P; Guidali, C; Realini, N

    2010-04-01

    Recently, the presence of functional interaction between the opioid and cannabinoid system has been shown in various pharmacological responses. Although there is an increasing interest for the feasible therapeutic application of a co-administration of cannabinoids and opioids in some disorders (i.e. to manage pain, to modulate immune system and emotions) and the combined use of the two drugs by drug abusers is becoming largely diffuse, only few papers focused on cellular and molecular mechanisms underlying this interaction. This review updates the biochemical and molecular underpinnings of opioid and cannabinoid interaction, both within the central nervous system and periphery. The most convincing theory for the explanation of this reciprocal interaction involves (i) the release of opioid peptides by cannabinoids or endocannabinoids by opioids, (ii) the existence of a direct receptor-receptor interaction when the receptors are co-expressed in the same cells, and (iii) the interaction of their intracellular pathways. Finally, the cannabinoid/opioid interaction might be different in the brain rewarding networks and in those accounting for other pharmacological effects (antinociception, modulation of emotionality and cognitive behavior), as well as between the central nervous system and periphery. Further insights about the cannabinoid/opioid interaction could pave the way for new and promising therapeutic approaches. PMID:20017730

  17. Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties

    Science.gov (United States)

    Stampfl, J.; Pettermann, H. E.; Liska, R.

    Biological materials (e.g., wood, trabecular bone, marine skeletons) rely heavily on the use of cellular architecture, which provides several advantages. (1) The resulting structures can bear the variety of "real life" load spectra using a minimum of a given bulk material, featuring engineering lightweight design principles. (2) The inside of the structures is accessible to body fluids which deliver the required nutrients. (3) Furthermore, cellular architectures can grow organically by adding or removing individual struts or by changing the shape of the constituting elements. All these facts make the use of cellular architectures a reasonable choice for nature. Using additive manufacturing technologies (AMT), it is now possible to fabricate such structures for applications in engineering and biomedicine. In this chapter, we present methods that allow the 3D computational analysis of the mechanical properties of cellular structures with open porosity. Various different cellular architectures including disorder are studied. In order to quantify the influence of architecture, the apparent density is always kept constant. Furthermore, it is shown that how new advanced photopolymers can be used to tailor the mechanical and functional properties of the fabricated structures.

  18. Cellular Mechanisms of L-arginine Induced Experimental Acute Pancreatitis

    OpenAIRE

    Masood, Omar

    2013-01-01

    AbstractThe University Of ManchesterOmar MasoodMD Thesis 2013Cellular Mechanisms of L-arginine Induced Experimental Acute Pancreatitis. IntroductionImpairment of cytosolic calcium ([Ca2+]i) signaling and in particular calcium overload has emerged as a possible unifying mechanism for precipitating acute pancreatitis (AP.)In the L-arginine (L-arg) experimental model of AP, nitric oxide (NO) has been implicated however the disease progression is largely unaffected by nitric oxide synthase (NOS) ...

  19. Viral and cellular factors involved in Phloem transport of plant viruses.

    Science.gov (United States)

    Hipper, Clémence; Brault, Véronique; Ziegler-Graff, Véronique; Revers, Frédéric

    2013-01-01

    Phloem transport of plant viruses is an essential step in the setting-up of a complete infection of a host plant. After an initial replication step in the first cells, viruses spread from cell-to-cell through mesophyll cells, until they reach the vasculature where they rapidly move to distant sites in order to establish the infection of the whole plant. This last step is referred to as systemic transport, or long-distance movement, and involves virus crossings through several cellular barriers: bundle sheath, vascular parenchyma, and companion cells for virus loading into sieve elements (SE). Viruses are then passively transported within the source-to-sink flow of photoassimilates and are unloaded from SE into sink tissues. However, the molecular mechanisms governing virus long-distance movement are far from being understood. While most viruses seem to move systemically as virus particles, some viruses are transported in SE as viral ribonucleoprotein complexes (RNP). The nature of the cellular and viral factors constituting these RNPs is still poorly known. The topic of this review will mainly focus on the host and viral factors that facilitate or restrict virus long-distance movement. PMID:23745125

  20. Viral and cellular factors involved in phloem transport of plant viruses

    Directory of Open Access Journals (Sweden)

    Clémence eHipper

    2013-05-01

    Full Text Available Phloem transport of plant viruses is an essential step in the setting-up of a complete infection of a host plant. After an initial replication step in the first cells, viruses spread from cell-to-cell through mesophyll cells, until they reach the vasculature where they rapidly move to distant sites in order to establish the infection of the whole plant. This last step is referred to as systemic transport, or long-distance movement, and involves virus crossings through several cellular barriers: bundle sheath, vascular parenchyma and companion cells for virus loading into sieve elements. Viruses are then passively transported within the source-to-sink flow of photoassimilates and are unloaded from sieve elements into sink tissues. However, the molecular mechanisms governing virus long-distance movement are far from being understood. While most viruses seem to move systemically as virus particles, some viruses are transported in sieve elements as viral ribonucleoprotein complexes (RNP. The nature of the cellular and viral factors constituting these RNPs is still poorly known. The topic of this review will mainly focus on the host and viral factors that facilitate or restrict virus long-distance movement.

  1. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration.

    Science.gov (United States)

    Simpkins, Jessica A; Rickel, Kirby E; Madeo, Marianna; Ahlers, Bethany A; Carlisle, Gabriel B; Nelson, Heidi J; Cardillo, Andrew L; Weber, Emily A; Vitiello, Peter F; Pearce, David A; Vitiello, Seasson P

    2016-01-01

    Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling. PMID:27142334

  2. Porosity and Mechanical Strength of an Autoclaved Clayey Cellular Concrete

    Directory of Open Access Journals (Sweden)

    P. O. Guglielmi

    2010-01-01

    Full Text Available This paper investigates the porosity and the mechanical strength of an Autoclaved Clayey Cellular Concrete (ACCC with the binder produced with 75 wt% kaolinite clay and 25 wt% Portland cement. Aluminum powder was used as foaming agent, from 0.2 wt% to 0.8 wt%, producing specimens with different porosities. The results show that the specimens with higher content of aluminum presented pore coalescence, which can explain the lower porosity of these samples. The porosities obtained with the aluminum contents used in the study were high (approximately 80%, what accounts for the low mechanical strength of the investigated cellular concretes (maximum of 0.62 MPa. Nevertheless, comparing the results obtained in this study to the ones for low temperature clayey aerated concrete with similar compositions, it can be observed that autoclaving is effective for increasing the material mechanical strength.

  3. Composite alginate gels for tunable cellular microenvironment mechanics

    Science.gov (United States)

    Khavari, Adele; Nydén, Magnus; Weitz, David A.; Ehrlicher, Allen J.

    2016-01-01

    The mechanics of the cellular microenvironment can be as critical as biochemistry in directing cell behavior. Many commonly utilized materials derived from extra-cellular-matrix create excellent scaffolds for cell growth, however, evaluating the relative mechanical and biochemical effects independently in 3D environments has been difficult in frequently used biopolymer matrices. Here we present 3D sodium alginate hydrogel microenvironments over a physiological range of stiffness (E = 1.85 to 5.29 kPa), with and without RGD binding sites or collagen fibers. We use confocal microscopy to measure the growth of multi-cellular aggregates (MCAs), of increasing metastatic potential in different elastic moduli of hydrogels, with and without binding factors. We find that the hydrogel stiffness regulates the growth and morphology of these cell clusters; MCAs grow larger and faster in the more rigid environments similar to cancerous breast tissue (E = 4–12 kPa) as compared to healthy tissue (E = 0.4–2 kpa). Adding binding factors from collagen and RGD peptides increases growth rates, and change maximum MCA sizes. These findings demonstrate the utility of these independently tunable mechanical/biochemistry gels, and that mechanical confinement in stiffer microenvironments may increase cell proliferation. PMID:27484403

  4. Composite alginate gels for tunable cellular microenvironment mechanics

    Science.gov (United States)

    Khavari, Adele; Nydén, Magnus; Weitz, David A.; Ehrlicher, Allen J.

    2016-08-01

    The mechanics of the cellular microenvironment can be as critical as biochemistry in directing cell behavior. Many commonly utilized materials derived from extra-cellular-matrix create excellent scaffolds for cell growth, however, evaluating the relative mechanical and biochemical effects independently in 3D environments has been difficult in frequently used biopolymer matrices. Here we present 3D sodium alginate hydrogel microenvironments over a physiological range of stiffness (E = 1.85 to 5.29 kPa), with and without RGD binding sites or collagen fibers. We use confocal microscopy to measure the growth of multi-cellular aggregates (MCAs), of increasing metastatic potential in different elastic moduli of hydrogels, with and without binding factors. We find that the hydrogel stiffness regulates the growth and morphology of these cell clusters; MCAs grow larger and faster in the more rigid environments similar to cancerous breast tissue (E = 4–12 kPa) as compared to healthy tissue (E = 0.4–2 kpa). Adding binding factors from collagen and RGD peptides increases growth rates, and change maximum MCA sizes. These findings demonstrate the utility of these independently tunable mechanical/biochemistry gels, and that mechanical confinement in stiffer microenvironments may increase cell proliferation.

  5. Cellular Pressure and Volume Regulation and Implications for Cell Mechanics

    OpenAIRE

    Jiang, Hongyuan; Sun, Sean X.

    2013-01-01

    In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death, and migration. Volume and shape regulation also directly impacts the mechanics of cells and tissues. Here, we develop a mathematical model of cellular volume and pressure regulation, incorporating essential elements such as water permeation, mechanosensitive channels, active ion pumps, and active stresses in the cortex. The model can fully explain recent experimental data, and it pr...

  6. Underlying molecular and cellular mechanisms in childhood irritable bowel syndrome.

    Science.gov (United States)

    Chumpitazi, Bruno P; Shulman, Robert J

    2016-12-01

    Irritable bowel syndrome (IBS) affects a large number of children throughout the world. The symptom expression of IBS is heterogeneous, and several factors which may be interrelated within the IBS biopsychosocial model play a role. These factors include visceral hyperalgesia, intestinal permeability, gut microbiota, psychosocial distress, gut inflammation, bile acids, food intolerance, colonic bacterial fermentation, and genetics. The molecular and cellular mechanisms of these factors are being actively investigated. In this mini-review, we present updates of these mechanisms and, where possible, relate the findings to childhood IBS. Mechanistic elucidation may lead to the identification of biomarkers as well as personalized childhood IBS therapies. PMID:26883355

  7. The nucleotidohydrolases DCTPP1 and dUTPase are involved in the cellular response to decitabine.

    Science.gov (United States)

    Requena, Cristina E; Pérez-Moreno, Guiomar; Horváth, András; Vértessy, Beáta G; Ruiz-Pérez, Luis M; González-Pacanowska, Dolores; Vidal, Antonio E

    2016-09-01

    Decitabine (5-aza-2'-deoxycytidine, aza-dCyd) is an anti-cancer drug used clinically for the treatment of myelodysplastic syndromes and acute myeloid leukaemia that can act as a DNA-demethylating or genotoxic agent in a dose-dependent manner. On the other hand, DCTPP1 (dCTP pyrophosphatase 1) and dUTPase are two 'house-cleaning' nucleotidohydrolases involved in the elimination of non-canonical nucleotides. In the present study, we show that exposure of HeLa cells to decitabine up-regulates the expression of several pyrimidine metabolic enzymes including DCTPP1, dUTPase, dCMP deaminase and thymidylate synthase, thus suggesting their contribution to the cellular response to this anti-cancer nucleoside. We present several lines of evidence supporting that, in addition to the formation of aza-dCTP (5-aza-2'-deoxycytidine-5'-triphosphate), an alternative cytotoxic mechanism for decitabine may involve the formation of aza-dUMP, a potential thymidylate synthase inhibitor. Indeed, dUTPase or DCTPP1 down-regulation enhanced the cytotoxic effect of decitabine producing an accumulation of nucleoside triphosphates containing uracil as well as uracil misincorporation and double-strand breaks in genomic DNA. Moreover, DCTPP1 hydrolyses the triphosphate form of decitabine with similar kinetic efficiency to its natural substrate dCTP and prevents decitabine-induced global DNA demethylation. The data suggest that the nucleotidohydrolases DCTPP1 and dUTPase are factors involved in the mode of action of decitabine with potential value as enzymatic targets to improve decitabine-based chemotherapy.

  8. Cellular studies and interaction mechanisms of extremely low frequency fields

    Science.gov (United States)

    Liburdy, Robert P.

    1995-01-01

    Worldwide interest in the biological effects of ELF (extremely low frequency, electromagnetic fields has grown significantly. Health professionals and government administrators and regulators, scientists and engineers, and, importantly, an increasing number of individuals in the general public are interested in this health issue. The goal of research at the cellular level is to identify cellular responses to ELF fields, to develop a dose threshold for such interactions, and with such information to formulate and test appropriate interaction mechanisms. This review is selective and will discuss the most recent cellular studies directed at these goals which relate to power line, sinusoidal ELF fields. In these studies an interaction site at the cell membrane is by consensus a likely candidate, since changes in ion transport, ligand-receptor events such as antibody binding, and G protein activation have been reported. These changes strongly indicate that signal transduction (ST) can be influenced. Also, ELF fields are reported to influence enzyme activation, gene expression, protein synthesis, and cell proliferation, which are triggered by earlier ST events at the cell membrane. The concept of ELF fields altering early cell membrane events and thereby influencing intracellular cell function via the ST cascade is perhaps the most plausible biological framework currently being investigated for understanding ELF effects on cells. For example, the consequence of an increase due to ELF fields in mitogenesis, the final endpoint of the ST cascade, is an overall increase in the probability of mutagenesis and consequently cancer, according to the Ames epigenetic model of carcinogenesis. Consistent with this epigenetic mechanism and the ST pathway to carcinogenesis is recent evidence that ELF fields can alter breast cancer cell proliferation and can act as a copromoter in vitro. The most important dosimetric question being addressed currently is whether the electric (E) or the

  9. Composition, structure and mechanical properties of several natural cellular materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The stem piths of sunflower, kaoliang and corn are natural cellular materials. In this paper, the contents of the compositions of these piths are determined and their cell shapes and structures are examined through scanning electron microscope (SEM) and optical microscope. Further research is conducted in the effects of the compositions and structures of the piths on the mechanical properties after testing the partial mechanical properties. The results show that the total cellulose, hemicelluloses and lignin content of each sample approaches 75% of the dry mass of its primary cell walls. With the fall of R value, a parameter relative to the contents of the main compositions, the flexibilities of the cellular piths descend while their stresses and rigidities increase. The basic cell shape making up the sunflower pith is approximately a tetrakaidehedron. The stem piths of kaoliang and corn are made up of cells close to hexangular prisms and a few tubular ones which can observably reinforce their mechanical properties in the axial directions.

  10. Identification of the cellular mechanisms undelying the contribution of stress and glucocorticoids to Alzheimer's disease pathology

    OpenAIRE

    Sotiropoulos, Ioannis

    2006-01-01

    Clinical evidence suggests the involvement of stress and glucocorticoids (GC) in the etiopathogenesis of Alzheimer’s disease (AD), a disease marked by severe memory impairments as well as alterations in mood and emotional state. The experiments described in this dissertation represent an attempt to establish the cellular mechanisms through which stress and GC may impact on the development of AD. These studies focused on the hippocampus and prefrontal cortex (PFC), brain areas that are severel...

  11. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma.

    Science.gov (United States)

    Pelaia, Girolamo; Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa; Maselli, Rosario

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments. PMID:25878402

  12. Cellular Mechanisms Underlying Eosinophilic and Neutrophilic Airway Inflammation in Asthma

    Directory of Open Access Journals (Sweden)

    Girolamo Pelaia

    2015-01-01

    Full Text Available Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments.

  13. Mechanism of cellular response to nanoscale aggregates of small molecules

    Science.gov (United States)

    Kuang, Yi

    This dissertation research focused on the illustration of the molecular mechanism of cellular response to nanoscale aggregates formed by small molecules. There are five chapters in this dissertation. Chapter 1 summarizes the current research on the evaluation of cell response (i.e., biocompatibility/cytotoxicity) to small molecular hydrogelators. Chapter 2 describes an interesting phenomenon that supramolecular hydrogelators consisting of N-terminated dipeptides, which exhibit selective inhibitory effects against cancer cells. This study calls for the development of a new approach for identification of protein targets of the hydrogelators. Chapter 3 describes the evaluation of interactions between cytosol proteins of a mammalian cell line and morphologically different nanoscale molecular aggregates formed by small peptidic molecules. Chapter 4 describes the research on the mechanism of a type of molecular aggregates, which cluster short microtubules to prevent the growth of microtubule. This unprecedented mechanism of "self-assembly to interfere with self-organization " contributes to inhibiting growth of cancer cells in several mammalian cell based assays and a xenograft tumor mice model. At the end, Chapter 5 reports a novel supramolecular hydrogelator, which consists of fluorene and the pentapeptide epitope (TIGYG) of potassium ion (K+) channels, to self-assemble in water to form the tunable, hierarchical nanostructures dictated by the concentration of K+. In conclusion, this dissertation research demonstrates a new approach for investigating cellular target and molecular mechanism of self-assembled aggregates formed by small peptide derivatives based hydrogelators, which will make contribution to the development of supramolecular hydrogelators as biomaterials. Moreover, the differential cytotoxicity of molecular aggregates illustrated in this research promises a new direction for developing anti-cancer drug based on interactions between molecular aggregates and

  14. Cardiovascular effects of cocaine: cellular, ionic and molecular mechanisms.

    Science.gov (United States)

    Turillazzi, E; Bello, S; Neri, M; Pomara, C; Riezzo, I; Fineschi, V

    2012-01-01

    Cocaine is a widely abused drug responsible for the majority of deaths ascribed to drug overdose. Many mechanisms have been proposed in order to explain the various cocaine associated cardiovascular complications. Conventionally, cocaine cardiotoxicity has been thought to be mediated indirectly through its sympathomimetic effect, i.e., by inhibiting the reuptake and thus increasing the levels of neuronal catecholamines at work on adrenoceptors. Increased oxidative stress, reactive oxygen species, and cocaine-induced apoptosis in the heart muscle have suggested a new way to understand the cardiotoxic effects of cocaine. More recent studies have led the attention to the interaction of cocaine and some metabolites with cardiac sodium, calcium and potassium channels. The current paper is aimed to investigate the molecular mechanisms of cocaine cardiotoxicity which have a specific clinical and forensic interest. From a clinical point of view the full knowledge of the exact mechanisms by which cocaine exerts cardio - vascular damage is essential to identify potential therapeutic targets and improve novel strategies for cocaine related cardiovascular diseases. From a forensic point of view, it is to be underlined that cocaine use is often associated to sudden death in young, otherwise healthy individuals. While such events are widely reported, the relationship between cardiac morphological alterations and molecular/cellular mechanisms is still controversial. In conclusion, the study of cocaine cardiovascular toxicity needs a strict collaboration between clinicians and pathologists which may be very effective in further dissecting the mechanisms underlying cocaine cardiotoxicity and understanding the cardiac cocaine connection. PMID:22856657

  15. Relationship between cellular response models and biochemical mechanisms

    International Nuclear Information System (INIS)

    In most cellular response experiments, survival reflects the kinetics of a variety of damage and repair processes. Unfortunately, biochemical studies of molecular repair deal with mechanisms which cannot be readily correlated with these kinetic observations. The difference in these approaches sometimes leads to confusion over terms such as potentially-lethal and sublethal damage. These terms were introduced with operation definitions, derived from kinetic studies of cell survival, but some researchers have since attempted to associate them with specific biochemical mechanisms. Consequently, the terms are often used in totally different ways be different investigators. The use of carefully constructed models originating either out of assumptions based on mechanisms, or on kinetics, can be used to design experiments to eliminate some alternative kinetic schemes. In turn, some mechanisms may also be eliminated, resulting in a reduction in the number of mechanisms which must be investigated biochemically. One must take advantage of a wide range of specialized radiation procedures in order to accomplish this. Examples of the use of such specialized experimental designs, which have led to a more detailed understanding of the kinetics of both algal and mammalian cell responses, are discussed

  16. Cellular mechanisms of posterior neural tube morphogenesis in the zebrafish.

    Science.gov (United States)

    Harrington, Michael J; Chalasani, Kavita; Brewster, Rachel

    2010-03-01

    The zebrafish is a well established model system for studying neural development, yet neurulation remains poorly understood in this organism. In particular, the morphogenetic movements that shape the posterior neural tube (PNT) have not been described. Using tools for imaging neural tissue and tracking the behavior of cells in real time, we provide the first comprehensive analysis of the cellular events shaping the PNT. We observe that this tissue is formed in a stepwise manner, beginning with merging of presumptive neural domains in the tailbud (Stage 1); followed by neural convergence and infolding to shape the neural rod (Stage 2); and continued elongation of the PNT, in absence of further convergence (Stage 3). We further demonstrate that cell proliferation plays only a minimal role in PNT elongation. Overall, these mechanisms resemble those previously described in anterior regions, suggesting that, in contrast to amniotes, neurulation is a fairly uniform process in zebrafish.

  17. Cellular mechanism for spontaneous calcium oscillations in astrocytes

    Institute of Scientific and Technical Information of China (English)

    Tong-fei WANG; Chen ZHOU; Ai-hui TANG; Shi-qiang WANG; Zhen CHAI

    2006-01-01

    Aim: To determine the Ca2+ source and cellular mechanisms of spontaneous Ca2+ oscillations in hippocampal astrocytes. Methods: The cultured cells were loaded with Fluo-4 AM, the indicator of intracellular Ca2+, and the dynamic Ca2+ transients were visualized with confocal laser-scanning microscopy. Results: The spontaneous Ca2+ oscillations in astrocytes were observed first in co-cultured hippocampal neurons and astrocytes. These oscillations were not affected by tetrodotoxin (TTX) treatment and kept up in purity cultured astrocytes. The spontaneous Ca2+ oscillations were not impacted after blocking the voltage-gated Ca2+ channels or ethylenediamine tetraacetic acid (EDTA) bathing, indicating that intracellular Ca2+ elevation was not the result of extracellular Ca2+ influx. Furthermore, the correlation between the spontaneous Ca2+ oscillations and the Ca2+ store in endoplasmic reticulum (ER) were investigated with pharmacological experiments. The oscillations were: 1) enhanced when cells were exposed to both low Na+ (70 mmol/L) and high Ca2+ (5 mmol/L) solution, and eliminated completely by 2 μmol/L thapsigargin, a blocker of sarcoplasmic reticulum Ca2+-ATPase; and 2) still robust after the application with either 50 μmol/L ryanodine or 400 μmol/L tetracaine, two specific antagonists of ryanodine receptors, but depressed in a dose-dependent manner by 2-APB, an InsP3 receptors (InsP3R) blocker. Conclusion: InsP3R-induced ER Ca2+ release is an important cellular mechanism for the initiation of spontaneous Ca2+ oscillation in hippocampal astrocytes.

  18. Tensegrity, cellular biophysics, and the mechanics of living systems

    Science.gov (United States)

    Ingber, Donald E.; Wang, Ning; Stamenović, Dimitrije

    2014-01-01

    The recent convergence between physics and biology has led many physicists to enter the fields of cell and developmental biology. One of the most exciting areas of interest has been the emerging field of mechanobiology that centers on how cells control their mechanical properties, and how physical forces regulate cellular biochemical responses, a process that is known as mechanotransduction. In this article, we review the central role that tensegrity (tensional integrity) architecture, which depends on tensile prestress for its mechanical stability, plays in biology. We describe how tensional prestress is a critical governor of cell mechanics and function, and how use of tensegrity by cells contributes to mechanotransduction. Theoretical tensegrity models are also described that predict both quantitative and qualitative behaviors of living cells, and these theoretical descriptions are placed in context of other physical models of the cell. In addition, we describe how tensegrity is used at multiple size scales in the hierarchy of life — from individual molecules to whole living organisms — to both stabilize three-dimensional form and to channel forces from the macroscale to the nanoscale, thereby facilitating mechanochemical conversion at the molecular level. PMID:24695087

  19. Tensegrity, cellular biophysics, and the mechanics of living systems

    Science.gov (United States)

    Ingber, Donald E.; Wang, Ning; Stamenović, Dimitrije

    2014-04-01

    The recent convergence between physics and biology has led many physicists to enter the fields of cell and developmental biology. One of the most exciting areas of interest has been the emerging field of mechanobiology that centers on how cells control their mechanical properties, and how physical forces regulate cellular biochemical responses, a process that is known as mechanotransduction. In this article, we review the central role that tensegrity (tensional integrity) architecture, which depends on tensile prestress for its mechanical stability, plays in biology. We describe how tensional prestress is a critical governor of cell mechanics and function, and how use of tensegrity by cells contributes to mechanotransduction. Theoretical tensegrity models are also described that predict both quantitative and qualitative behaviors of living cells, and these theoretical descriptions are placed in context of other physical models of the cell. In addition, we describe how tensegrity is used at multiple size scales in the hierarchy of life—from individual molecules to whole living organisms—to both stabilize three-dimensional form and to channel forces from the macroscale to the nanoscale, thereby facilitating mechanochemical conversion at the molecular level.

  20. [Regulatory role of mechanical stress response in cellular function: development of new drugs and tissue engineering].

    Science.gov (United States)

    Momose, Kazutaka; Matsuda, Takehisa; Oike, Masahiro; Obara, Kazuo; Laher, Ismail; Sugiura, Seiryo; Ohata, Hisayuki; Nakayama, Koichi

    2003-02-01

    The investigation of mechanotransduction in the cardiovascular system is essentially important for elucidating the cellular and molecular mechanisms involved in not only the maintenance of hemodynamic homeostasis but also etiology of cardiovascular diseases including arteriosclerosis. The present review summarizes the latest research performed by six academic groups, and presented at the 75th Annual Meeting of the Japanese Pharmacological Society. Technology of cellular biomechanics is also required for research and clinical application of a vascular hybrid tissue responding to pulsatile stress. 1) Vascular tissue engineering: Design of pulsatile stress-responsive scaffold and in vivo vascular wall reconstruction (T. Matsuda); 2) Cellular mechanisms of mechanosensitive calcium transients in vascular endothelium (M. Oike et al.); 3) Cross-talk of stimulation with fluid flow and lysophosphatidic acid in vascular endothelial cells (K. Momose et al.); 4) Mechanotransduction of vascular smooth muscles: Rate-dependent stretch-induced protein phosphorylations and contractile activation (K. Obara et al.); 5) Lipid mediators in vascular myogenic tone (I. Laher et al.); and 6) Caldiomyocyte regulates its mechanical output in response to mechanical load (S. Sugiura et al.).

  1. Mitochondrial and cellular mechanisms for managing lipid excess

    Directory of Open Access Journals (Sweden)

    Miguel A Aon

    2014-07-01

    Full Text Available Current scientific debates center on the impact of lipids and mitochondrial function on diverse aspects of human health, nutrition and disease, among them the association of lipotoxicity with the onset of insulin resistance in skeletal muscle, and with heart dysfunction in obesity and diabetes. Mitochondria play a fundamental role in aging and in prevalent acute or chronic diseases. Lipids are main mitochondrial fuels however these molecules can also behave as uncouplers and inhibitors of oxidative phosphorylation. Knowledge about the functional composition of these contradictory effects and their impact on mitochondrial-cellular energetics/redox status is incomplete.Cells store fatty acids (FAs as triacylglycerol and package them into cytoplasmic lipid droplets (LDs. New emerging data shows the LD as a highly dynamic storage pool of FAs that can be used for energy reserve. Lipid excess packaging into LDs can be seen as an adaptive response to fulfilling energy supply without hindering mitochondrial or cellular redox status and keeping low concentration of lipotoxic intermediates.Herein we review the mechanisms of action and utilization of lipids by mitochondria reported in liver, heart and skeletal muscle under relevant physiological situations, e.g. exercise. We report on perilipins, a family of proteins that associate with LDs in response to loading of cells with lipids. Evidence showing that in addition to physical contact, mitochondria and LDs exhibit metabolic interactions is presented and discussed. A hypothetical model of channeled lipid utilization by mitochondria is proposed. Direct delivery and channeled processing of lipids in mitochondria could represent a reliable and efficient way to maintain ROS within levels compatible with signaling while ensuring robust and reliable energy supply.

  2. Molecular and cellular mechanisms of aldosterone producing adenoma development

    Directory of Open Access Journals (Sweden)

    Sheerazed eBoulkroun

    2015-06-01

    Full Text Available Primary aldosteronism (PA is the most common form of secondary hypertension with an estimated prevalence of ~10% in referred patients. PA occurs as a result of a dysregulation of the normal mechanisms controlling adrenal aldosterone production. It is characterized by hypertension with low plasma renin and elevated aldosterone and often associated with hypokalemia. The two major causes of PA are unilateral aldosterone producing adenoma (APA and bilateral adrenal hyperplasia, accounting together for ~95% of cases. In addition to the well-characterized effect of excess mineralocorticoids on blood pressure, high levels of aldosterone also have cardiovascular, renal and metabolic consequences. Hence, long-term consequences of PA include increased risk of coronary artery disease, myocardial infarction, heart failure and atrial fibrillation. Despite recent progress in the management of patients with PA, critical issues related to diagnosis, subtype differentiation and treatment of non-surgically correctable forms still persist. A better understanding of the pathogenic mechanisms of the disease should lead to the identification of more reliable diagnostic and prognostic biomarkers for a more sensitive and specific screening and new therapeutic options. In this review we will summarize our current knowledge on the molecular and cellular mechanisms of APA development. On one hand, we will discuss how various animal models have improved our understanding of the pathophysiology of excess aldosterone production. On the other hand, we will summarize the major advances made during the last few years in the genetics of APA due to transcriptomic studies and whole exome sequencing. The identification of recurrent and somatic mutations in genes coding for ion channels (KCNJ5 and CACNA1D and ATPases (ATP1A1 and ATP2B3 allowed highlighting the central role of calcium signaling in autonomous aldosterone production by the adrenal.

  3. Involvement of the interferon-regulated antiviral proteins PKR and RNase L in reovirus-induced shutoff of cellular translation.

    Science.gov (United States)

    Smith, Jennifer A; Schmechel, Stephen C; Williams, Bryan R G; Silverman, Robert H; Schiff, Leslie A

    2005-02-01

    Cellular translation is inhibited following infection with most strains of reovirus, but the mechanisms responsible for this phenomenon remain to be elucidated. The extent of host shutoff varies in a strain-dependent manner; infection with the majority of strains leads to strong host shutoff, while infection with strain Dearing results in minimal inhibition of cellular translation. A genetic study with reassortant viruses and subsequent biochemical analyses led to the hypothesis that the interferon-induced, double-stranded RNA-activated protein kinase, PKR, is responsible for reovirus-induced host shutoff. To directly determine whether PKR is responsible for reovirus-induced host shutoff, we used a panel of reovirus strains and mouse embryo fibroblasts derived from knockout mice. This approach revealed that PKR contributes to but is not wholly responsible for reovirus-induced host shutoff. Studies with cells lacking RNase L, the endoribonuclease component of the interferon-regulated 2',5'-oligoadenylate synthetase-RNase L system, demonstrated that RNase L also down-regulates cellular protein synthesis in reovirus-infected cells. In many viral systems, PKR and RNase L have well-characterized antiviral functions. An analysis of reovirus replication in cells lacking these molecules indicated that, while they contributed to host shutoff, neither PKR nor RNase L exerted an antiviral effect on reovirus growth. In fact, some strains of reovirus replicated more efficiently in the presence of PKR and RNase L than in their absence. Data presented in this report illustrate that the inhibition of cellular translation following reovirus infection is complex and involves multiple interferon-regulated gene products. In addition, our results suggest that reovirus has evolved effective mechanisms to avoid the actions of the interferon-stimulated antiviral pathways that include PKR and RNase L and may even benefit from their expression.

  4. Cortisol involvement in mechanisms of behavioral inhibition

    NARCIS (Netherlands)

    Tops, Mattie; Boksem, Maarten A. S.

    2011-01-01

    We studied whether baseline cortisol is associated with post-error slowing, a measure that depends upon brain areas involved in behavioral inhibition. Moreover, we studied whether this association holds after controlling for positive associations with behavioral inhibition scores and error-related n

  5. Antidiarrheal efficacy and cellular mechanisms of a Thai herbal remedy.

    Science.gov (United States)

    Tradtrantip, Lukmanee; Ko, Eun-A; Verkman, Alan S

    2014-02-01

    Screening of herbal remedies for Cl(-) channel inhibition identified Krisanaklan, a herbal extract used in Thailand for treatment of diarrhea, as an effective antidiarrheal in mouse models of secretory diarrheas with inhibition activity against three Cl(-) channel targets. Krisanaklan fully inhibited cholera toxin-induced intestinal fluid secretion in a closed-loop mouse model with ∼50% inhibition at a 1 ∶ 50 dilution of the extract. Orally administered Krisanaklan (5 µL/g) prevented rotavirus-induced diarrhea in neonatal mice. Short-circuit current measurements showed full inhibition of cAMP and Ca(2+) agonist-induced Cl(-) conductance in human colonic epithelial T84 cells, with ∼ 50% inhibition at a 1 ∶ 5,000 dilution of the extract. Krisanaklan also strongly inhibited intestinal smooth muscle contraction in an ex vivo preparation. Together with measurements using specific inhibitors, we conclude that the antidiarrheal actions of Krisanaklan include inhibition of luminal CFTR and Ca(2+)-activated Cl(-) channels in enterocytes. HPLC fractionation indicated that the three Cl(-) inhibition actions of Krisanaklan are produced by different components in the herbal extract. Testing of individual herbs comprising Krisanaklan indicated that agarwood and clove extracts as primarily responsible for Cl(-) channel inhibition. The low cost, broad antidiarrheal efficacy, and defined cellular mechanisms of Krisanaklan suggests its potential application for antisecretory therapy of cholera and other enterotoxin-mediated secretory diarrheas in developing countries. PMID:24551253

  6. Antidiarrheal efficacy and cellular mechanisms of a Thai herbal remedy.

    Directory of Open Access Journals (Sweden)

    Lukmanee Tradtrantip

    2014-02-01

    Full Text Available Screening of herbal remedies for Cl(- channel inhibition identified Krisanaklan, a herbal extract used in Thailand for treatment of diarrhea, as an effective antidiarrheal in mouse models of secretory diarrheas with inhibition activity against three Cl(- channel targets. Krisanaklan fully inhibited cholera toxin-induced intestinal fluid secretion in a closed-loop mouse model with ∼50% inhibition at a 1 ∶ 50 dilution of the extract. Orally administered Krisanaklan (5 µL/g prevented rotavirus-induced diarrhea in neonatal mice. Short-circuit current measurements showed full inhibition of cAMP and Ca(2+ agonist-induced Cl(- conductance in human colonic epithelial T84 cells, with ∼ 50% inhibition at a 1 ∶ 5,000 dilution of the extract. Krisanaklan also strongly inhibited intestinal smooth muscle contraction in an ex vivo preparation. Together with measurements using specific inhibitors, we conclude that the antidiarrheal actions of Krisanaklan include inhibition of luminal CFTR and Ca(2+-activated Cl(- channels in enterocytes. HPLC fractionation indicated that the three Cl(- inhibition actions of Krisanaklan are produced by different components in the herbal extract. Testing of individual herbs comprising Krisanaklan indicated that agarwood and clove extracts as primarily responsible for Cl(- channel inhibition. The low cost, broad antidiarrheal efficacy, and defined cellular mechanisms of Krisanaklan suggests its potential application for antisecretory therapy of cholera and other enterotoxin-mediated secretory diarrheas in developing countries.

  7. Viral and cellular factors involved in phloem transport of plant viruses

    OpenAIRE

    Clémence eHipper; Véronique eBrault; Véronique eZiegler-Graff; Frédéric eRevers

    2013-01-01

    Phloem transport of plant viruses is an essential step in the setting-up of a complete infection of a host plant. After an initial replication step in the first cells, viruses spread from cell-to-cell through mesophyll cells, until they reach the vasculature where they rapidly move to distant sites in order to establish the infection of the whole plant. This last step is referred to as systemic transport, or long-distance movement, and involves virus crossings through several cellular barrier...

  8. Involvement of Mechanical Stress in Androgenetic Alopecia

    OpenAIRE

    Tellez-Segura, Rafael

    2015-01-01

    Context: Androgenetic alopecia (AGA) is a frequent disorder characterized by progressive hair miniaturization in a very similar pattern among all affected men. The pathogenesis is related to androgen-inducible overexpression of transforming growth factor β-1 from balding dermal papilla cells, which is involved in epithelial inhibition and perifollicular fibrosis. Recent research shows that hair follicle androgen sensitivity is regulated by Hic-5, an androgen receptor co-activator which may be...

  9. Short-term plasticity in thalamocortical pathways: cellular mechanisms and functional roles.

    Science.gov (United States)

    Castro-Alamancos, M A

    1997-01-01

    Information reaches the neocortex through different types of thalamocortical pathways. These differ in many morphological and physiological properties. One interesting aspect in which thalamocortical pathways differ is in their temporal dynamics, such as their short-term plasticity. Primary pathways display frequency-dependent depression, while secondary pathways display frequency-dependent enhancement. The cellular mechanisms underlying these dynamic responses involve pre- and post-synaptic and circuit properties. They may serve to synchronize, amplify and/or filter neural activity in neocortex depending on behavioral demands, and thus to adapt each pathway to its specific function.

  10. Molecular and Cellular Mechanisms Elucidating Neurocognitive Basis of Functional Impairments Associated with Intellectual Disability in Down Syndrome

    Science.gov (United States)

    Rachidi, Mohammed; Lopes, Carmela

    2010-01-01

    Down syndrome, the most common genetic cause of intellectual disability, is associated with brain disorders due to chromosome 21 gene overdosage. Molecular and cellular mechanisms involved in the neuromorphological alterations and cognitive impairments are reported herein in a global model. Recent advances in Down syndrome research have lead to…

  11. Ethanol-Induced Cerebellar Ataxia: Cellular and Molecular Mechanisms.

    Science.gov (United States)

    Dar, M Saeed

    2015-08-01

    The cerebellum is an important target of ethanol toxicity given that cerebellar ataxia is the most consistent physical manifestation of acute ethanol consumption. Despite the significance of the cerebellum in ethanol-induced cerebellar ataxia (EICA), the cellular and molecular mechanisms underlying EICA are incompletely understood. However, two important findings have shed greater light on this phenomenon. First, ethanol-induced blockade of cerebellar adenosine uptake in rodent models points to a role for adenosinergic A1 modulation of EICA. Second, the consistent observation that intracerebellar administration of nicotine in mice leads to antagonism of EICA provides evidence for a critical role of cerebellar nitric oxide (NO) in EICA reversal. Based on these two important findings, this review discusses the potential molecular events at two key synaptic sites (mossy fiber-granule cell-Golgi cell (MGG synaptic site) and granule cell parallel fiber-Purkinje cell (GPP synaptic site) that lead to EICA. Specifically, ethanol-induced neuronal NOS inhibition at the MGG synaptic site acts as a critical trigger for Golgi cell activation which leads to granule cell deafferentation. Concurrently, ethanol-induced inhibition of adenosine uptake at the GPP synaptic site produces adenosine accumulation which decreases glutamate release and leads to the profound activation of Purkinje cells (PCs). These molecular events at the MGG and GPP synaptic sites are mutually reinforcing and lead to cerebellar dysfunction, decreased excitatory output of deep cerebellar nuclei, and EICA. The critical importance of PCs as the sole output of the cerebellar cortex suggests normalization of PC function could have important therapeutic implications.

  12. Molecular mechanisms involved in intestinal iron absorption

    Institute of Scientific and Technical Information of China (English)

    Paul Sharp; Surjit Kaila Srai

    2007-01-01

    Iron is an essential trace metal in the human diet due to its obligate role in a number of metabolic processes.In the diet, iron is present in a number of different forms, generally described as haem (from haemoglobin and myoglobin in animal tissue) and non-haem iron (including ferric oxides and salts, ferritin and lactoferrin).This review describes the molecular mechanisms that co-ordinate the absorption of iron from the diet and its release into the circulation. While many components of the iron transport pathway have been elucidated, a number of key issues still remain to be resolved. Future work in this area will provide a clearer picture regarding the transcellular flux of iron and its regulation by dietary and humoral factors.

  13. Molecular mechanisms involved in chemoresistance in paediatric acute lymphoblastic leukaemia

    Directory of Open Access Journals (Sweden)

    Stanković Tatjana

    2008-01-01

    Full Text Available Acute lymphoblastic leukaemia (ALL is the most common paediatric cancer. Despite cure rates approaching 80%, resistance to treatment and disease relapse remain a significant clinical problem. Identification of the genes and biological pathways responsible for chemoresistance is therefore crucial for the design of novel therapeutic approaches aiming to improve patient survival. Mutations in the membrane transporter P-glycoprotein genes, genetic variations in drug-metabolising enzymes and defects in apoptotic pathways are mechanisms of chemoresistance common to a wide spectrum of cancers and also play a role in paediatric ALL. In addition, several recent microarray studies have identified transcriptional profiles specifically associated with chemoresistance and pointed to a number of potentially novel therapeutic targets. These microarray studies have shown that genes discriminating between clinically responsive and resistant leukaemias tend to be involved in cellular processes such as regulation of cell cycle, proliferation, and DNA repair. Here we review the outcomes of these microarray studies and also present our own investigations into apoptotic resistance to DNA double strand breaks (DSBs in paediatric ALL. We present stratification of paediatric ALL by the profile of DNA damage response following ionising radiation (IR in vitro. This approach allows classification of ALL tumours at presentation into IR-apoptotic sensitive and IR-apoptotic resistant. Furthermore, apoptotic resistant leukaemias exhibit abnormal response of NFkB pathway following irradiation and inhibition of this pathway can sensitise leukaemic cells to IR-induced DSBs.

  14. Mood disorders in Huntington’s disease: from behavior to cellular and molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Patrick ePla

    2014-04-01

    Full Text Available Huntington’s disease (HD is a neurodegenerative disorder that is best known for its effect on motor control. Mood disturbances such as depression, anxiety, and irritability also have a high prevalence in patients with HD, and often start before the onset of motor symptoms. Various rodent models of HD recapitulate the anxiety/depressive behavior seen in patients. HD is caused by an expanded polyglutamine stretch in the N-terminal part of a 350 kDa protein called huntingtin (HTT. HTT is ubiquitously expressed and is implicated in several cellular functions including control of transcription, vesicular trafficking, ciliogenesis, and mitosis. This review summarizes progress in efforts to understand the cellular and molecular mechanisms underlying behavioral disorders in patients with HD. Dysfunctional HTT affects cellular pathways that are involved in mood disorders or in the response to antidepressants, including BDNF/TrkB and serotonergic signaling. Moreover, HTT affects adult hippocampal neurogenesis, a physiological phenomenon that is implicated in some of the behavioral effects of antidepressants and is linked to the control of anxiety. These findings are consistent with the emerging role of wild-type HTT as a crucial component of neuronal development and physiology. Thus, the pathogenic polyQ expansion in HTT could lead to mood disorders not only by the gain of a new toxic function but also by the perturbation of its normal function.

  15. Genomic interrogation of mechanism(s) underlying cellular responses to toxicants

    International Nuclear Information System (INIS)

    Assessment of the impact of xenobiotic exposure on human health and disease progression is complex. Knowledge of mode(s) of action, including mechanism(s) contributing to toxicity and disease progression, is valuable for evaluating compounds. Toxicogenomics, the subdiscipline which merges genomics with toxicology, holds the promise to contributing significantly toward the goal of elucidating mechanism(s) by studying genome-wide effects of xenobiotics. Global gene expression profiling, revolutionized by microarray technology and a crucial aspect of a toxicogenomic study, allows measuring transcriptional modulation of thousands of genes following exposure to a xenobiotic. We use our results from previous studies on compounds representing two different classes of xenobiotics (barbiturate and peroxisome proliferator) to discuss the application of computational approaches for analyzing microarray data to elucidate mechanism(s) underlying cellular responses to toxicants. In particular, our laboratory demonstrated that chemical-specific patterns of gene expression can be revealed using cDNA microarrays. Transcript profiling provides discrimination between classes of toxicants, as well as, genome-wide insight into mechanism(s) of toxicity and disease progression. Ultimately, the expectation is that novel approaches for predicting xenobiotic toxicity in humans will emerge from such information

  16. A sub-cellular viscoelastic model for cell population mechanics.

    Directory of Open Access Journals (Sweden)

    Yousef Jamali

    Full Text Available Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical and 'in silico' (computational models as an alternate solution. This paper introduces a single-cell-based model representing the cross section of a typical tissue. Each cell in this model is an individual unit containing several sub-cellular elements, such as the elastic plasma membrane, enclosed viscoelastic elements that play the role of cytoskeleton, and the viscoelastic elements of the cell nucleus. The cell membrane is divided into segments where each segment (or point incorporates the cell's interaction and communication with other cells and its environment. The model is capable of simulating how cells cooperate and contribute to the overall structure and function of a particular tissue; it mimics many aspects of cellular behavior such as cell growth, division, apoptosis and polarization. The model allows for investigation of the biomechanical properties of cells, cell-cell interactions, effect of environment on cellular clusters, and how individual cells work together and contribute to the structure and function of a particular tissue. To evaluate the current approach in modeling different topologies of growing tissues in distinct biochemical conditions of the surrounding media, we model several key cellular phenomena, namely monolayer cell culture, effects of adhesion intensity, growth of epithelial cell through interaction with extra-cellular matrix (ECM, effects of a gap in the ECM, tensegrity and tissue morphogenesis and formation of hollow epithelial acini. The proposed computational model enables one to isolate the effects of biomechanical properties of individual cells and the

  17. Identification of human genes involved in cellular responses to ionizing radiation: molecular and cellular studies of gene encoding the p68 helicase in mammalian cells

    International Nuclear Information System (INIS)

    Cells submitted to genotoxic factors -like IR- activate several and important mechanisms such as repair, cell cycle arrest or 'apoptosis' to maintain genetic integrity. So, the damaged cells will induce many and different genes. The human transcriptome analysis by 'SSH' method in a human breast carcinoma cell line MCF7 γ-irradiated versus not irradiated, allowed to identify about one hundred genes. Among of these genes, we have focused our study on a radio-induced gene encoding the p68 helicase. In the conditions of irradiation used, our results show that the kinetic and the regulation of this gene expression differs between the nature of radiations used. Indeed, in γ-irradiated mammalian cells, ATM, a protein kinase activated by DSB and IR, is required to induce quickly P68 gene via the important transcription factor p53 stabilized by IR. In the case of UVC-irradiated cells, the P68 gene induction is late and the intracellular signalling pathway that lead to this induction is independent from the p53 protein. Finally, we show that the p68 protein under-expression is responsible for an increased radiosensitivity of MCF7 cells. Consequently, we can postulate that the p68 protein is involved in cellular responses to radiations to reduce the increased radiosensitivity of cells exposed to γ-rays. (author)

  18. Mediated coalescence: a possible mechanism for tumor cellular heterogeneity

    Science.gov (United States)

    Ambrose, Joseph; Livitz, Michelle; Wessels, Deborah; Kuhl, Spencer; Lusche, Daniel F; Scherer, Amanda; Voss, Edward; Soll, David R

    2015-01-01

    Recently, we demonstrated that tumorigenic cell lines and fresh tumor cells seeded in a 3D Matrigel model, first grow as clonal islands (primary aggregates), then coalesce through the formation and contraction of cellular cables. Non-tumorigenic cell lines and cells from normal tissue form clonal islands, but do not form cables or coalesce. Here we show that as little as 5% tumorigenic cells will actively mediate coalescence between primary aggregates of majority non-tumorigenic or non-cancerous cells, by forming cellular cables between them. We suggest that this newly discovered, specialized characteristic of tumorigenic cells may explain, at least in part, why tumors contain primarily non-tumorigenic cells. PMID:26807328

  19. Synthesis, cellular evaluation, and mechanism of action of piperlongumine analogs

    OpenAIRE

    Adams, Drew J.; Dai, Mingji; Pellegrino, Giovanni; Wagner, Bridget K.; Stern, Andrew M.; Shamji, Alykhan F.; Schreiber, Stuart L.

    2012-01-01

    Piperlongumine is a naturally occurring small molecule recently identified to be toxic selectively to cancer cells in vitro and in vivo. This compound was found to elevate cellular levels of reactive oxygen species (ROS) selectively in cancer cell lines. The synthesis of 80 piperlongumine analogs has revealed structural modifications that retain, enhance, and ablate key piperlongumine-associated effects on cells, including elevation of ROS, cancer cell death, and selectivity for cancer cells ...

  20. Life history evolution and cellular mechanisms associated with increased size in high-altitude Drosophila.

    Science.gov (United States)

    Lack, Justin B; Yassin, Amir; Sprengelmeyer, Quentin D; Johanning, Evan J; David, Jean R; Pool, John E

    2016-08-01

    Understanding the physiological and genetic basis of growth and body size variation has wide-ranging implications, from cancer and metabolic disease to the genetics of complex traits. We examined the evolution of body and wing size in high-altitude Drosophila melanogaster from Ethiopia, flies with larger size than any previously known population. Specifically, we sought to identify life history characteristics and cellular mechanisms that may have facilitated size evolution. We found that the large-bodied Ethiopian flies laid significantly fewer but larger eggs relative to lowland, smaller-bodied Zambian flies. The highland flies were found to achieve larger size in a similar developmental period, potentially aided by a reproductive strategy favoring greater provisioning of fewer offspring. At the cellular level, cell proliferation was a strong contributor to wing size evolution, but both thorax and wing size increases involved important changes in cell size. Nuclear size measurements were consistent with elevated somatic ploidy as an important mechanism of body size evolution. We discuss the significance of these results for the genetic basis of evolutionary changes in body and wing size in Ethiopian D. melanogaster. PMID:27547363

  1. Melatonin and breast cancer: cellular mechanisms, clinical studies and future perspectives

    OpenAIRE

    Grant, Stephen G.; Melan, Melissa A.; Latimer, Jean J.; Witt-Enderby, Paula A.

    2009-01-01

    Recent studies have suggested that the pineal hormone melatonin may protect against breast cancer, and the mechanisms underlying its actions are becoming clearer. Melatonin works through receptors and distinct second messenger pathways to reduce cellular proliferation and to induce cellular differentiation. In addition, independently of receptors melatonin can modulate oestrogen-dependent pathways and reduce free-radical formation, thus preventing mutation and cellular toxicity. The fact that...

  2. Molecular and Cellular Evidence for the Alternative Lengthening of Telomeres (ALT) Mechanism in Chicken

    OpenAIRE

    O'Hare, T.H.; Delany, M. E.

    2011-01-01

    Telomere maintenance is an important genetic mechanism controlling cellular proliferation. Normally, telomeres are maintained by telomerase which is downregulated upon cellular differentiation in most somatic cell lineages. Telomerase activity is upregulated in immortalized cells and cancers to support an infinite lifespan and uncontrolled cell growth; however, some immortalized and transformed cells lack telomerase activity. Telomerase-negative tumors and immortalized cells utilize an altern...

  3. Robust mechanisms of ventral furrow invagination require the combination of cellular shape changes

    International Nuclear Information System (INIS)

    Ventral furrow formation in Drosophila is the first large-scale morphogenetic movement during the life of the embryo, and is driven by co-ordinated changes in the shape of individual epithelial cells within the cellular blastoderm. Although many of the genes involved have been identified, the details of the mechanical processes that convert local changes in gene expression into whole-scale changes in embryonic form remain to be fully understood. Biologists have identified two main cell deformation modes responsible for ventral furrow invagination: constriction of the apical ends of the cells (apical wedging) and deformation along their apical–basal axes (radial lengthening/shortening). In this work, we used a computer 2D finite element model of ventral furrow formation to investigate the ability of different combinations of three plausible elementary active cell shape changes to bring about epithelial invagination: ectodermal apical–basal shortening, mesodermal apical–basal lengthening/shortening and mesodermal apical constriction. We undertook a systems analysis of the biomechanical system, which revealed many different combinations of active forces (invagination mechanisms) were able to generate a ventral furrow. Two important general features were revealed. First that combinations of shape changes are the most robust to environmental and mutational perturbation, in particular those combining ectodermal pushing and mesodermal wedging. Second, that ectodermal pushing plays a big part in all of the robust mechanisms (mesodermal forces alone do not close the furrow), and this provides evidence that it may be an important element in the mechanics of invagination in Drosophila

  4. Effects of Mechanical Properties on Tumor Invasion: Insights from a Cellular Model

    KAUST Repository

    Li, YZ

    2014-08-01

    Understanding the regulating mechanism of tumor invasion is of crucial importance for both fundamental cancer research and clinical applications. Previous in vivo experiments have shown that invasive cancer cells dissociate from the primary tumor and invade into the stroma, forming an irregular invasive morphology. Although cell movements involved in tumor invasion are ultimately driven by mechanical forces of cell-cell interactions and tumor-host interactions, how these mechanical properties affect tumor invasion is still poorly understood. In this study, we use a recently developed two-dimensional cellular model to study the effects of mechanical properties on tumor invasion. We study the effects of cell-cell adhesions as well as the degree of degradation and stiffness of extracellular matrix (ECM). Our simulation results show that cell-cell adhesion relationship must be satisfied for tumor invasion. Increased adhesion to ECM and decreased adhesion among tumor cells result in invasive tumor behaviors. When this invasive behavior occurs, ECM plays an important role for both tumor morphology and the shape of invasive cancer cells. Increased stiffness and stronger degree of degradation of ECM promote tumor invasion, generating more aggressive tumor invasive morphologies. It can also generate irregular shape of invasive cancer cells, protruding towards ECM. The capability of our model suggests it a useful tool to study tumor invasion and might be used to propose optimal treatment in clinical applications.

  5. Mechanobiology and the microcirculation: cellular, nuclear and fluid mechanics

    OpenAIRE

    Dahl, Kris Noel; Kalinowski, Agnieszka; Pekkan, Kerem

    2010-01-01

    Endothelial cells are stimulated by shear stress throughout the vasculature and respond with changes in gene expression and by morphological reorganization. Mechanical sensors of the cell are varied and include cell surface sensors that activate intracellular chemical signaling pathways. Here, possible mechanical sensors of the cell including reorganization of the cytoskeleton and the nucleus are discussed in relation to shear flow. A mutation in the nuclear structural protein lamin A, relate...

  6. Molecular and cellular mechanisms of vomeronasal signaling in mammals

    OpenAIRE

    Cichy, Annika

    2013-01-01

    The mouse vomeronasal organ plays a critical role in chemosensory communication and regulates diverse social and sexual behaviors. However, many physiological mechanisms underlying vomeronasal chemosensory signaling remain elusive. Therefore, the overall aim of my thesis was to gain a deeper understanding of the basic mechanisms that control VNO physiology. Specifically, my research focused on HCN channel-mediated vomeronasal proton-sensing and its potential role in sensory gain control of so...

  7. Predicting bulk mechanical properties of cellularized collagen gels using multiphoton microscopy

    OpenAIRE

    Raub, CB; Putnam, AJ; Tromberg, BJ; George, SC

    2010-01-01

    Cellularized collagen gels are a common model in tissue engineering, but the relationship between the microstructure and bulk mechanical properties is only partially understood. Multiphoton microscopy (MPM) is an ideal non-invasive tool to examine collagen microstructure, cellularity and crosslink content in these gels. In order to identify robust image parameters that characterize microstructural determinants of the bulk elastic modulus, we performed serial MPM and mechanical tests on acellu...

  8. Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications

    Science.gov (United States)

    Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil

    2016-01-01

    The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.

  9. Lipoprotein(a: Cellular Effects and Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Kirsten Riches

    2012-01-01

    Full Text Available Lipoprotein(a (Lp(a is an independent risk factor for the development of cardiovascular disease (CVD. Indeed, individuals with plasma concentrations >20 mg/dL carry a 2-fold increased risk of developing CVD, accounting for ~25% of the population. Circulating levels of Lp(a are remarkably resistant to common lipid lowering therapies, and there are currently no robust treatments available for reduction of Lp(a apart from plasma apheresis, which is costly and labour intensive. The Lp(a molecule is composed of two parts, an LDL/apoB-100 core and a unique glycoprotein, apolipoprotein(a (apo(a, both of which can interact with components of the coagulation cascade, inflammatory pathways, and cells of the blood vessel wall (smooth muscle cells (SMC and endothelial cells (EC. Therefore, it is of key importance to determine the molecular pathways by which Lp(a exerts its influence on the vascular system in order to design therapeutics to target its cellular effects. This paper will summarise the role of Lp(a in modulating cell behaviour in all aspects of the vascular system including platelets, monocytes, SMC, and EC.

  10. Involvement of the iron regulatory protein from Eisenia andrei earthworms in the regulation of cellular iron homeostasis.

    Science.gov (United States)

    Procházková, Petra; Škanta, František; Roubalová, Radka; Šilerová, Marcela; Dvořák, Jiří; Bilej, Martin

    2014-01-01

    Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs) that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs) of the 5'- or 3'-untranslated regions (UTR) of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP). The earthworm IRE site in 5'-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant. PMID:25279857

  11. Involvement of the iron regulatory protein from Eisenia andrei earthworms in the regulation of cellular iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Petra Procházková

    Full Text Available Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs of the 5'- or 3'-untranslated regions (UTR of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP. The earthworm IRE site in 5'-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant.

  12. Cellular uptake mechanism and intracellular fate of hydrophobically modified pullulan nanoparticles

    Directory of Open Access Journals (Sweden)

    Jiang L

    2013-05-01

    Full Text Available Liqin Jiang,1 Xuemin Li,1 Lingrong Liu,1 Qiqing Zhang1,21Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China; 2Research Center of Biomedical Engineering, Xiamen University, Xiamen, People's Republic of ChinaAbstract: The cellular uptake mechanism and intracellular fate of self-assembled nanoparticles (NPs of cholesterol-modified pullulan (CHSP by human hepatocellular carcinoma (HepG2 cells were investigated. Covalent conjugation with fluorescein isothiocyanate (FITC yielded stably labeled CHSP (FITC-CHSP, which was successfully formulated into NPs (mean particle size 63.0 ± 1.9 nm by dialysis. A cytotoxicity assay clearly indicated that the CHSP NPs did not show significant toxicity in HepG2 cells. The effects of NP concentration, incubation time, and temperature on the cellular uptake of the NPs were systematically evaluated by fluorometry, and the results suggested that cellular uptake of the NPs was concentration-, time-, and temperature-dependent. In vitro experiments with endocytic inhibitors revealed that clathrin-mediated endocytosis and macropinocytosis were involved in the internalization of CHSP NPs. The intracellular trafficking study demonstrated that CHSP NPs were entrapped in the lysosomes at 1 hour after incubation; colocalization of NPs with either the Golgi apparatus or the endoplasmic reticula was not observed during the entire course of the study. These results suggested that the CHSP NPs may serve as a versatile carrier for intracellular delivery of therapeutic agents.Keywords: cholesterol-modified pullulan, self-assembled nanoparticles, FITC, endocytosis, intracellular trafficking

  13. Potential cellular receptors involved in hepatitis C virus entry into cells

    Directory of Open Access Journals (Sweden)

    Muellhaupt Beat

    2005-04-01

    Full Text Available Abstract Hepatitis C virus (HCV infects hepatocytes and leads to permanent, severe liver damage. Since the genomic sequence of HCV was determined, progress has been made towards understanding the functions of the HCV-encoded proteins and identifying the cellular receptor(s responsible for adsorption and penetration of the virus particle into the target cells. Several cellular receptors for HCV have been proposed, all of which are associated with lipid and lipoprotein metabolism. This article reviews the cellular receptors for HCV and suggests a general model for HCV entry into cells, in which lipoproteins play a crucial role.

  14. Mechanics of Cellular Adhesion to Artificial Artery Templates

    OpenAIRE

    Knöner, Gregor; Rolfe, Barbara E.; Campbell, Julie H.; Parkin, Simon J.; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina

    2006-01-01

    We are using polymer templates to grow artificial artery grafts in vivo for the replacement of diseased blood vessels. We have previously shown that adhesion of macrophages to the template starts the graft formation. We present a study of the mechanics of macrophage adhesion to these templates on a single cell and single bond level with optical tweezers. For whole cells, in vitro cell adhesion densities decreased significantly from polymer templates polyethylene to silicone to Tygon (167, 135...

  15. Axial level-dependent molecular and cellular mechanisms underlying the genesis of the embryonic neural plate.

    Science.gov (United States)

    Kondoh, Hisato; Takada, Shinji; Takemoto, Tatsuya

    2016-06-01

    The transcription factor gene Sox2, centrally involved in neural primordial regulation, is activated by many enhancers. During the early stages of embryonic development, Sox2 is regulated by the enhancers N2 and N1 in the anterior neural plate (ANP) and posterior neural plate (PNP), respectively. This differential use of the enhancers reflects distinct regulatory mechanisms underlying the genesis of ANP and PNP. The ANP develops directly from the epiblast, triggered by nodal signal inhibition, and via the combined action of TFs SOX2, OTX2, POU3F1, and ZIC2, which promotes the the ANP development and inhibits other cell lineages. In contrast, the PNP is derived from neuromesodermal bipotential axial stem cells that develop into the neural plate when Sox2 is activated by the N1 enhancer, whereas they develop into the paraxial mesoderm when the N1 enhancer is repressed by the action of TBX6. The axial stem cells are maintained by the activity of WNT3a and T (Brachyury). However, at axial levels more anterior to the 8th somites (cervical levels), the development of both the neural plate and somite proceeds in the absence of WNT3a, T, or TBX6. These observations indicate that distinct molecular and cellular mechanisms determine neural plate genesis based on the axial level, and contradict the classical concept of the term "neural induction," which assumes a pan-neural plate mechanism. PMID:27279156

  16. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions.

    Science.gov (United States)

    Wolfe, Annie; Phipps, Kara; Weitao, Tao

    2014-01-01

    DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.

  17. Axial level-dependent molecular and cellular mechanisms underlying the genesis of the embryonic neural plate.

    Science.gov (United States)

    Kondoh, Hisato; Takada, Shinji; Takemoto, Tatsuya

    2016-06-01

    The transcription factor gene Sox2, centrally involved in neural primordial regulation, is activated by many enhancers. During the early stages of embryonic development, Sox2 is regulated by the enhancers N2 and N1 in the anterior neural plate (ANP) and posterior neural plate (PNP), respectively. This differential use of the enhancers reflects distinct regulatory mechanisms underlying the genesis of ANP and PNP. The ANP develops directly from the epiblast, triggered by nodal signal inhibition, and via the combined action of TFs SOX2, OTX2, POU3F1, and ZIC2, which promotes the the ANP development and inhibits other cell lineages. In contrast, the PNP is derived from neuromesodermal bipotential axial stem cells that develop into the neural plate when Sox2 is activated by the N1 enhancer, whereas they develop into the paraxial mesoderm when the N1 enhancer is repressed by the action of TBX6. The axial stem cells are maintained by the activity of WNT3a and T (Brachyury). However, at axial levels more anterior to the 8th somites (cervical levels), the development of both the neural plate and somite proceeds in the absence of WNT3a, T, or TBX6. These observations indicate that distinct molecular and cellular mechanisms determine neural plate genesis based on the axial level, and contradict the classical concept of the term "neural induction," which assumes a pan-neural plate mechanism.

  18. Response differences between Ectocarpus siliculosus populations to copper stress involve cellular exclusion and induction of the phytochelatin biosynthetic pathway.

    Science.gov (United States)

    Roncarati, Francesca; Sáez, Claudio A; Greco, Maria; Gledhill, Martha; Bitonti, Maria B; Brown, Murray T

    2015-02-01

    Some populations of brown seaweed species inhabit metal-polluted environments and can develop tolerance to metal stress, but the mechanisms by which this is accomplished are still to be elucidated. To address this, the responses of two strains of the model brown alga Ectocarpus siliculosus isolated from sites with different histories of metal contamination exposed to total copper (CuT) concentrations ranging between 0 and 2.4 μM for 10 days were investigated. The synthesis of the metal-chelator phytochelatin (PCs) and relative levels of transcripts encoding the enzymes γ-glutamylcysteine synthetase (γ-GCS), glutathione synthase (GS) and phytochelatin synthase (PCS) that participate in the PC biosynthetic pathway were measured, along with the effects on growth, and adsorption and uptake of Cu. Growth of strain LIA, from a pristine site in Scotland, was inhibited to a greater extent, and at lower concentrations, than that of Es524, isolated from a Cu-contaminated site in Chile. Concentrations of intra-cellular Cu were higher and the exchangeable fraction was lower in LIA than Es524, especially at the highest exposure levels. Total glutathione concentrations increased in both strains with Cu exposure, whereas total PCs levels were higher in Es524 than LIA; PC2 and PC3 were detected in Es524 but PC2 only was found in LIA. The greater production and levels of polymerisation of PCs in Es524 can be explained by the up-regulation of genes encoding for key enzymes involved in the synthesis of PCs. In Es524 there was an increase in the transcripts of γ-GCS, GS and PCS, particularly under high Cu exposure, whereas in LIA4 transcripts of γ-GCS1 increased only slightly, γ-GCS2 and GS decreased and PCS did not change. The consequences of higher intra-cellular concentrations of Cu, lower production of PCs, and lower expression of enzymes involved in GSH-PCs synthesis may be contributing to an induced oxidative stress condition in LIA, which explains, at least in part, the

  19. Factors involved in mechanical fatigue degradation of dental resin composites.

    Science.gov (United States)

    Lohbauer, U; Belli, R; Ferracane, J L

    2013-07-01

    The design of clinical trials allows for limited insights into the fatigue processes occurring in resin composites and the factors involved therein. In vitro studies, in contrast, can fundamentally narrow study interests to focus on particular degradation mechanisms and, to date, represent the major contributors to the state of knowledge on the subject. These studies show that microstructural features are important in determining strength and fracture toughness, whereas fatigue resistance is mainly related to the susceptibility of the matrix and the filler/matrix interface to mechanical and chemical degradation. In this review, we focus on fracture mechanisms occurring during fatigue, on the methods used to assess them, and on additional phenomena involved in the degradation of initial mechanical properties of resin composites.

  20. The Molecular Genetics and Cellular Mechanisms Underlying Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Rajiv D. Machado

    2012-01-01

    Full Text Available Pulmonary arterial hypertension (PAH is an incurable disorder clinically characterised by a sustained elevation of mean arterial pressure in the absence of systemic involvement. As the adult circulation is a low pressure, low resistance system, PAH represents a reversal to a foetal state. The small pulmonary arteries of patients exhibit luminal occlusion resultant from the uncontrolled growth of endothelial and smooth muscle cells. This vascular remodelling is comprised of hallmark defects, most notably the plexiform lesion. PAH may be familial in nature but the majority of patients present with spontaneous disease or PAH associated with other complications. In this paper, the molecular genetic basis of the disorder is discussed in detail ranging from the original identification of the major genetic contributant to PAH and moving on to current next-generation technologies that have led to the rapid identification of additional genetic risk factors. The impact of identified mutations on the cell is examined, particularly, the determination of pathways disrupted in disease and critical to pulmonary vascular maintenance. Finally, the application of research in this area to the design and development of novel treatment options for patients is addressed along with the future directions PAH research is progressing towards.

  1. MECANISMOS CELULARES EN RESPUESTA AL ESTRÉS:: SIRTUINAS Cellular mechanisms in response to stress: sirtuin

    Directory of Open Access Journals (Sweden)

    Nancy Paola Echeverri-Ruíz

    2010-07-01

    Full Text Available Desde hace algún tiempo se conoce el papel de la restricción calórica sobre la longevidad y la prevención de enfermedades crónicas, pero hasta hace poco los mecanismos celulares involucrados comienzan a ser elucidados. El estrés celular se podría definir como el estado en el que la célula no presenta las condiciones óptimas de supervivencia, siendo el oxidativo un tipo de estrés en el que se generan radicales libres nocivos para las estructuras celulares. La restricción calórica podría incrementar la resistencia celular a diferentes formas de estrés. Las sirtuinas, proteínas deacetilasas de histonas tipo III, están involucradas en la relación entre balance energético y transcripción génica, permitiendo que la célula responda a la restricción calórica y sobreviva a situaciones de estrés oxidativo. En esta relación las sirtuinas regulan genes de la familia FOXO, cMYC, hTERT, p53, entre otros. La activación o silenciamiento de estos genes es importante en los procesos de apoptosis, reparación y muerte celular.The role of caloric restriction on longevity and prevention of chronic diseases has been known for some time; recently, cellular mechanisms involved are beginning to be elucidated. Cellular stress could be defined as the state in which the cell does not present optimal survival conditions; oxidative stress is a type of stress in which free radicals harmful cell structures. Caloric restriction might increase cellular resistance to various forms of stress. Sirtuins, histone deacetylases type III proteins are involved in the relationship between energy balance and gene transcription, allowing cell to respond to caloric restriction and to survive to oxidative stress. In this relationship, sirtuins regulate FOXO family genes, cMYC, hTERT, p53, among others. Activation or silencing of those genes is important in the process of apoptosis, repair and cell death

  2. Use of Computational Modeling to Evaluate Hypotheses About the Molecular and Cellular Mechanisms of Bystander Effects

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuchao; Conolly, Rory B; Andersen, Melvin E.

    2006-11-21

    This report describes the development of a computational systems biology approach to evaluate the hypotheses of molecular and cellular mechanisms of adaptive response to low dose ionizing radiation. Our concept is that computational models of signaling pathways can be developed and linked to biologically based dose response models to evaluate the underlying molecular mechanisms which lead to adaptive response. For development of quantitatively accurate, predictive models, it will be necessary to describe tissues consisting of multiple cell types where the different types each contribute in their own way to the overall function of the tissue. Such a model will probably need to incorporate not only cell type-specific data but also spatial information on the architecture of the tissue and on intercellular signaling. The scope of the current model was more limited. Data obtained in a number of different biological systems were synthesized to describe a chimeric, “average” population cell. Biochemical signaling pathways involved in sensing of DNA damage and in the activation of cell cycle checkpoint controls and the apoptotic path were also included. As with any computational modeling effort, it was necessary to develop these simplified initial descriptions (models) that can be iteratively refined. This preliminary model is a starting point which, with time, can evolve to a level of refinement where large amounts of detailed biological information are synthesized and a capability for robust predictions of dose- and time-response behaviors is obtained.

  3. Activation Mechanism of LRRK2 and Its Cellular Functions in Parkinson's Disease.

    Science.gov (United States)

    Rosenbusch, Katharina E; Kortholt, Arjan

    2016-01-01

    Human LRRK2 (Leucine-Rich Repeat Kinase 2) has been associated with both familial and idiopathic Parkinson's disease (PD). Although several LRRK2 mediated pathways and interaction partners have been identified, the cellular functions of LRRK2 and LRRK2 mediated progression of PD are still only partially understood. LRRK2 belongs to the group of Roco proteins which are characterized by the presence of a Ras-like G-domain (Roc), a C-terminal of Roc domain (COR), a kinase, and several protein-protein interaction domains. Roco proteins exhibit a complex activation mechanism involving intramolecular signaling, dimerization, and substrate/effector binding. Importantly, PD mutations in LRRK2 have been linked to a decreased GTPase and impaired kinase activity, thus providing putative therapeutic targets. To fully explore these potential targets it will be crucial to understand the function and identify the pathways responsible for LRRK2-linked PD. Here, we review the recent progress in elucidating the complex LRRK2 activation mechanism, describe the accumulating evidence that link LRRK2-mediated PD to mitochondrial dysfunction and aberrant autophagy, and discuss possible ways for therapeutically targeting LRRK2.

  4. Cellular Mechanisms of Calcium-Mediated Triggered Activity

    Science.gov (United States)

    Song, Zhen

    Life-threatening cardiac arrhythmias continue to pose a major health problem. Ventricular fibrillation, which is a complex form of electrical wave turbulence in the lower chambers of the heart, stops the heart from pumping and is the largest cause of natural death in the United States. Atrial fibrillation, a related form of wave turbulence in the upper heart chambers, is in turn the most common arrhythmia diagnosed in clinical practice. Despite extensive research to date, mechanisms of cardiac arrhythmias remain poorly understood. It is well established that both spatial disorder of the refractory period of heart cells and triggered activity (TA) jointly contribute to the initiation and maintenance of arrhythmias. TA broadly refers to the abnormal generation of a single or a sequence of abnormal excitation waves from a small submillimeter region of the heart in the interval of time between two normal waves generated by the heart's natural pacemaker (the sinoatrial node). TA has been widely investigated experimentally and occurs in several pathological conditions where the intracellular concentration of free Ca2+ ions in heart cells becomes elevated. Under such conditions, Ca2+ can be spontaneously released from intracellular stores, thereby driving an electrogenic current that exchanges 3Na+ ions for one Ca2+ ion across the cell membrane. This current in turn depolarizes the membrane of heart cells after a normal excitation. If this calcium-mediated "delayed after depolarization'' (DAD) is sufficiently large, it can generate an action potential. While the arrhythmogenic importance of spontaneous Ca2+ release and DADs is well appreciated, the conditions under which they occur in heart pathologies remain poorly understood. Calcium overload is only one factor among several other factors that can promote DADs, including sympathetic nerve stimulation, different expression levels of membrane ion channels and calcium handling proteins, and different mutations of those

  5. Boolean Modeling of Cellular and Molecular Pathways Involved in Influenza Infection.

    Science.gov (United States)

    Anderson, Christopher S; DeDiego, Marta L; Topham, David J; Thakar, Juilee

    2016-01-01

    Systems virology integrates host-directed approaches with molecular profiling to understand viral pathogenesis. Self-contained statistical approaches that combine expression profiles of genes with the available databases defining the genes involved in the pathways (gene-sets) have allowed characterization of predictive gene-signatures associated with outcome of the influenza virus (IV) infection. However, such enrichment techniques do not take into account interactions among pathways that are responsible for the IV infection pathogenesis. We investigate dendritic cell response to seasonal H1N1 influenza A/New Caledonia/20/1999 (NC) infection and infer the Boolean logic rules underlying the interaction network of ligand induced signaling pathways and transcription factors. The model reveals several novel regulatory modes and provides insights into mechanism of cross talk between NFκB and IRF mediated signaling. Additionally, the logic rule underlying the regulation of IL2 pathway that was predicted by the Boolean model was experimentally validated. Thus, the model developed in this paper integrates pathway analysis tools with the dynamic modeling approaches to reveal the regulation between signaling pathways and transcription factors using genome-wide transcriptional profiles measured upon influenza infection.

  6. Boolean Modeling of Cellular and Molecular Pathways Involved in Influenza Infection

    Science.gov (United States)

    Anderson, Christopher S.; DeDiego, Marta L.; Topham, David J.; Thakar, Juilee

    2016-01-01

    Systems virology integrates host-directed approaches with molecular profiling to understand viral pathogenesis. Self-contained statistical approaches that combine expression profiles of genes with the available databases defining the genes involved in the pathways (gene-sets) have allowed characterization of predictive gene-signatures associated with outcome of the influenza virus (IV) infection. However, such enrichment techniques do not take into account interactions among pathways that are responsible for the IV infection pathogenesis. We investigate dendritic cell response to seasonal H1N1 influenza A/New Caledonia/20/1999 (NC) infection and infer the Boolean logic rules underlying the interaction network of ligand induced signaling pathways and transcription factors. The model reveals several novel regulatory modes and provides insights into mechanism of cross talk between NFκB and IRF mediated signaling. Additionally, the logic rule underlying the regulation of IL2 pathway that was predicted by the Boolean model was experimentally validated. Thus, the model developed in this paper integrates pathway analysis tools with the dynamic modeling approaches to reveal the regulation between signaling pathways and transcription factors using genome-wide transcriptional profiles measured upon influenza infection. PMID:26981147

  7. Boolean Modeling of Cellular and Molecular Pathways Involved in Influenza Infection

    Directory of Open Access Journals (Sweden)

    Christopher S. Anderson

    2016-01-01

    Full Text Available Systems virology integrates host-directed approaches with molecular profiling to understand viral pathogenesis. Self-contained statistical approaches that combine expression profiles of genes with the available databases defining the genes involved in the pathways (gene-sets have allowed characterization of predictive gene-signatures associated with outcome of the influenza virus (IV infection. However, such enrichment techniques do not take into account interactions among pathways that are responsible for the IV infection pathogenesis. We investigate dendritic cell response to seasonal H1N1 influenza A/New Caledonia/20/1999 (NC infection and infer the Boolean logic rules underlying the interaction network of ligand induced signaling pathways and transcription factors. The model reveals several novel regulatory modes and provides insights into mechanism of cross talk between NFκB and IRF mediated signaling. Additionally, the logic rule underlying the regulation of IL2 pathway that was predicted by the Boolean model was experimentally validated. Thus, the model developed in this paper integrates pathway analysis tools with the dynamic modeling approaches to reveal the regulation between signaling pathways and transcription factors using genome-wide transcriptional profiles measured upon influenza infection.

  8. PTH1 receptor is involved in mediating cellular response to long-chain polyunsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Jose Candelario

    Full Text Available The molecular pathways by which long chain polyunsaturated fatty acids (LCPUFA influence skeletal health remain elusive. Both LCPUFA and parathyroid hormone type 1 receptor (PTH1R are known to be involved in bone metabolism while any direct link between the two is yet to be established. Here we report that LCPUFA are capable of direct, PTH1R dependent activation of extracellular ligand-regulated kinases (ERK. From a wide range of fatty acids studied, varying in chain length, saturation, and position of double bonds, eicosapentaenoic (EPA and docosahexaenoic fatty acids (DHA caused the highest ERK phosphorylation. Moreover, EPA potentiated the effect of parathyroid hormone (PTH(1-34 in a superagonistic manner. EPA or DHA dependent ERK phosphorylation was inhibited by the PTH1R antagonist and by knockdown of PTH1R. Inhibition of PTH1R downstream signaling molecules, protein kinases A (PKA and C (PKC, reduced EPA and DHA dependent ERK phosphorylation indicating that fatty acids predominantly activate G-protein pathway and not the β-arrestin pathway. Using picosecond time-resolved fluorescence microscopy and a genetically engineered PTH1R sensor (PTH-CC, we detected conformational responses to EPA similar to those caused by PTH(1-34. PTH1R antagonist blocked the EPA induced conformational response of the PTH-CC. Competitive binding studies using fluorescence anisotropy technique showed that EPA and DHA competitively bind to and alter the affinity of PTH1 receptor to PTH(1-34 leading to a superagonistic response. Finally, we showed that EPA stimulates protein kinase B (Akt phosphorylation in a PTH1R-dependent manner and affects the osteoblast survival pathway, by inhibiting glucocorticoid-induced cell death. Our findings demonstrate for the first time that LCPUFAs, EPA and DHA, can activate PTH1R receptor at nanomolar concentrations and consequently provide a putative molecular mechanism for the action of fatty acids in bone.

  9. Computational up-scaling of anisotropic swelling and mechanical behavior of hierarchical cellular material

    CERN Document Server

    Rafsanjani, Ahmad; Wittel, Falk K; Carmeliet, Jan

    2015-01-01

    The hygro-mechanical behavior of a hierarchical cellular material, i.e. growth rings of softwood is investigated using a two-scale micro-mechanics model based on a computational homogenization technique. The lower scale considers the individual wood cells of varying geometry and dimensions. Honeycomb unit cells with periodic boundary conditions are utilized to calculate the mechanical properties and swelling coefficients of wood cells. Using the cellular scale results, the anisotropy in mechanical and swelling behavior of a growth ring in transverse directions is investigated. Predicted results are found to be comparable to experimental data. It is found that the orthotropic swelling properties of the cell wall in thin-walled earlywood cells produce anisotropic swelling behavior while, in thick latewood cells, this anisotropy vanishes. The proposed approach provides the ability to consider the complex microstructure when predicting the effective mechanical and swelling properties of softwood.

  10. Pathogenic Mechanisms Involved in the Hematological Alterations of Arenavirus-induced Hemorrhagic Fevers

    Directory of Open Access Journals (Sweden)

    Roberto G. Pozner

    2013-01-01

    Full Text Available Viral hemorrhagic fevers (VHFs caused by arenaviruses are acute diseases characterized by fever, headache, general malaise, impaired cellular immunity, eventual neurologic involvement, and hemostatic alterations that may ultimately lead to shock and death. The causes of the bleeding are still poorly understood. However, it is generally accepted that these causes are associated to some degree with impaired hemostasis, endothelial cell dysfunction and low platelet counts or function. In this article, we present the current knowledge about the hematological alterations present in VHF induced by arenaviruses, including new aspects on the underlying pathogenic mechanisms.

  11. Dps from Deinococcus radiodurans: oligomeric forms of Dps1 with distinct cellular functions and Dps2 involved in metal storage.

    Science.gov (United States)

    Santos, Sandra P; Mitchell, Edward P; Franquelim, Henri G; Castanho, Miguel A R B; Abreu, Isabel A; Romão, Célia V

    2015-11-01

    The DNA binding proteins from starved cells from Deinococcus radiodurans, Dps1-DR2263 and Dps2-DRB0092, have a common overall structure of hollow spherical dodecamers. Their involvement in the homeostasis of intracellular metal and DNA protection was addressed. Our results show that DrDps proteins are able to oxidize ferrous to ferric iron by oxygen or hydrogen peroxide. The iron stored inside the hollow sphere cavity is fully released. Furthermore, these proteins are able to store and release manganese, suggesting they can play a role in manganese homeostasis as well. The interaction of DrDps with DNA was also addressed. Even though DrDps1 binds both linear and coiled DNA, DrDps2 preferentially binds to coiled DNA, forming different protein-DNA complexes, as clearly shown by atomic force microscopy. DrDps1 (dimer and dodecamer) and DrDps2 can protect DNA against reactive oxygen species, although the protection occurs at different Fe to protein ratios. The difference between DrDps could be the result of the DrDps1 higher iron oxidation rate in the presence of hydrogen peroxide and its higher affinity to bind DNA than in DrDps2. Using cellular extracts obtained from D. radiodurans cultures, we showed that DrDps1 oligomers observed in in vitro conditions are also present in vivo. This indicates that DrDps1 has a structural dynamic plasticity that allows its oligomeric state to change between dimer, trimer and dodecamer. This in turn suggests the existence of a regulation mechanism that modulates the oligomer equilibrium and is dependent on growth stages and environmental conditions.

  12. Neurophysiological mechanisms involved in language learning in adults

    OpenAIRE

    Rodríguez-Fornells, Antoni; Cunillera, Toni; Mestres-Missé, Anna; de Diego-Balaguer, Ruth

    2009-01-01

    Little is known about the brain mechanisms involved in word learning during infancy and in second language acquisition and about the way these new words become stable representations that sustain language processing. In several studies we have adopted the human simulation perspective, studying the effects of brain-lesions and combining different neuroimaging techniques such as event-related potentials and functional magnetic resonance imaging in order to examine the language learning (LL) pro...

  13. [Motivation and Emotional States: Structural Systemic, Neurochemical, Molecular and Cellular Mechanisms].

    Science.gov (United States)

    Bazyan, A S

    2016-01-01

    The structural, systemic, neurochemical, molecular and cellular mechanisms of organization and coding motivation and emotional states are describe. The GABA and glutamatergic synaptic systems of basal ganglia form a neural network and participate in the implementation of voluntary behavior. Neuropeptides, neurohormones and paracrine neuromodulators involved in the organization of motivation and emotional states, integrated with synaptic systems, controlled by neural networks and organizing goal-directed behavior. Structural centers for united and integrated of information in voluntary and goal-directed behavior are globus pallidus. Substantia nigra pars reticulata switches the information from corticobasal networks to thalamocortical networks, induces global dopaminergic (DA) signal and organize interaction of mesolimbic and nigostriatnoy DA systems controlled by prefrontal and motor cortex. Together with the motor cortex, substantia nigra displays information in the brainstem and spinal cord to implementation of behavior. Motivation states are formed in the interaction of neurohormonal and neuropeptide systems by monoaminergic systems of brain. Emotional states are formed by monoaminergic systems of the mid-brain, where the leading role belongs to the mesolimbic DA system. The emotional and motivation state of the encoded specific epigenetic molecular and chemical pattern of neuron. PMID:27149821

  14. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes.

    Science.gov (United States)

    Shen, Ding-Wu; Pouliot, Lynn M; Hall, Matthew D; Gottesman, Michael M

    2012-07-01

    Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis. PMID:22659329

  15. p120 Catenin Translocation is Involved in Enhancement of Hepatoma Cellular Malignant Features

    Institute of Scientific and Technical Information of China (English)

    Huayi Huang; Chaozan Nong; Weisheng He; Lingxiao Guo; Shaoyun Nong; Lili Pan; Xiliang Zha

    2005-01-01

    OBJECTIVE To investigate the relationship between p120ctn translocation and hepatocellular carcinoma cell malignant features and the relationship between p120ctn and β-catenin translocation in cell signaling.METHODS Human hepatocellular carcinoma cells were over expressed with p120ctn isoform 3A using a DNA transfection method. The effects of transfection and expression of p120ctn and its binding capacity to E-cadherin were examined using immunoprecipitation and immunoblotting methods. P120ctn subcellular localization and its relation with β-catenin were detected using immunofluorescent microscopy. P120ctn phosphorylation was produced by EGF treatment. Cell adhesion, cell migration and cell proliferation were also examined in this study.RESULTS We found that p120ctnexpression was increased after transfection and the binding capacity of p120ctn to E-cadherin was enhanced. Tyrosine phosphorylation of p120ctn increased after transfection and EGF treatment.p120ctn and β-catenin cellular localization displayd a membrane and cytoplasmic expression pattern, but they translocated into the nucleus for relocalization after p120ctn overexpression plus EGF stimulation. Cell adhesion ability was increased and migration ability reduced after transfection without EGF. Following transfection without EGF cellular proliferation was reduced,but increased after EGF treatment.CONCLUSION Our results suggest that p120ctn plays an important role in hepatocellular carcinoma cell adhesion, migration and proliferation. In addition there is a relationship between p120ctn and β-catenin subcellular localization and signaling.

  16. Cellular and molecular mechanisms of repair in acute and chronic wound healing

    OpenAIRE

    Martin, P.; Nunan, R

    2015-01-01

    Summary A considerable understanding of the fundamental cellular and molecular mechanisms underpinning healthy acute wound healing has been gleaned from studying various animal models, and we are now unravelling the mechanisms that lead to chronic wounds and pathological healing including fibrosis. A small cut will normally heal in days through tight orchestration of cell migration and appropriate levels of inflammation, innervation and angiogenesis. Major surgeries may take several weeks to ...

  17. Cellular and molecular mechanisms of osteoporosis: current concepts and future direction treatment

    OpenAIRE

    A. T. Dolzhenko; S. Sagalovsky

    2016-01-01

    The article presents review of literature dedicated to the contemporary view on the cellular-molecular mechanisms of the bone remodeling and pathogenesis of the osteoporosis. The discovery of the cytokine RANKL-RANK-OPG system and significant role of the cathepsin K in process bone remodeling has made progress in understanding the mechanisms development disease and possible to development drugs of the new generation – denosumab, a fully human RANKL monoclonal antibody and inhibitor cathepsin ...

  18. Cellular immunity and pathogen strategies in combative interactions involving Drosophila hosts and their endoparasitic wasps

    Directory of Open Access Journals (Sweden)

    AJ Nappi

    2010-09-01

    Full Text Available Various cellular innate immune responses protect invertebrates from attack by eukaryotic pathogens. In insects, assessments of the factor(s causing, or contributing to, pathogen mortality have long considered as toxic components certain molecules associated with enzyme-mediated melanogenesis. In Drosophila hosts, observations that have prompted additional or alternative considerations are those that document either the survival of certain endoparasitic wasps despite melanotic encapsulation, or the destruction of the parasite with no evidence of this type of host response. Investigations of the production of some reactive intermediates of oxygen and nitrogen during infection provide a basis for proposing that these molecules constitute important elements of the immune arsenal of Drosophila. Studies of the target specificity of virulence factors injected by female wasps during infection that suppress the host immune response will likely facilitate identification of the toxic host molecules, and contribute to a more detailed understanding of the cell-signaling pathways that regulate their synthesis.

  19. Mechanisms Involved in Exercise-Induced Cardioprotection: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Juliana Pereira Borges

    2015-01-01

    Full Text Available Background: Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditioning is still under debate. Objective: To perform a systematic review of the studies that have addressed the mechanisms by which aerobic exercise promotes direct cardioprotection against ischemia and reperfusion injury. Methods: A search was conducted using MEDLINE, Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde, and Scientific Electronic Library Online databases. Data were extracted in a standardized manner by two independent researchers, who were responsible for assessing the methodological quality of the studies. Results: The search retrieved 78 studies; after evaluating the abstracts, 30 studies were excluded. The manuscripts of the remaining 48 studies were completely read and, of these, 20 were excluded. Finally, 28 studies were included in this systematic review. Conclusion: On the basis of the selected studies, the following are potentially involved in the cardioprotective response to exercise: increased heat shock protein production, nitric oxide pathway involvement, increased cardiac antioxidant capacity, improvement in ATP-dependent potassium channel function, and opioid system activation. Despite all the previous investigations, further research is still necessary to obtain more consistent conclusions.

  20. Cell resistance to the Cytolethal Distending Toxin involves an association of DNA repair mechanisms

    Science.gov (United States)

    Bezine, Elisabeth; Malaisé, Yann; Loeuillet, Aurore; Chevalier, Marianne; Boutet-Robinet, Elisa; Salles, Bernard; Mirey, Gladys; Vignard, Julien

    2016-01-01

    The Cytolethal Distending Toxin (CDT), produced by many bacteria, has been associated with various diseases including cancer. CDT induces DNA double-strand breaks (DSBs), leading to cell death or mutagenesis if misrepaired. At low doses of CDT, other DNA lesions precede replication-dependent DSB formation, implying that non-DSB repair mechanisms may contribute to CDT cell resistance. To address this question, we developed a proliferation assay using human cell lines specifically depleted in each of the main DNA repair pathways. Here, we validate the involvement of the two major DSB repair mechanisms, Homologous Recombination and Non Homologous End Joining, in the management of CDT-induced lesions. We show that impairment of single-strand break repair (SSBR), but not nucleotide excision repair, sensitizes cells to CDT, and we explore the interplay of SSBR with the DSB repair mechanisms. Finally, we document the role of the replicative stress response and demonstrate the involvement of the Fanconi Anemia repair pathway in response to CDT. In conclusion, our work indicates that cellular survival to CDT-induced DNA damage involves different repair pathways, in particular SSBR. This reinforces a model where CDT-related genotoxicity primarily involves SSBs rather than DSBs, underlining the importance of cell proliferation during CDT intoxication and pathogenicity. PMID:27775089

  1. Tissue transglutaminase is involved in mechanical load-induced osteogenic differentiation of human ligamentum flavum cells.

    Science.gov (United States)

    Chao, Yuan-Hung; Huang, Shih-Yung; Yang, Ruei-Cheng; Sun, Jui-Sheng

    2016-07-01

    Mechanical load-induced osteogenic differentiation might be the key cellular event in the calcification and ossification of ligamentum flavum. The aim of this study was to investigate the influence of tissue transglutaminase (TGM2) on mechanical load-induced osteogenesis of ligamentum flavum cells. Human ligamentum flavum cells were obtained from 12 patients undergoing lumbar spine surgery. Osteogenic phenotypes of ligamentum flavum cells, such as alkaline phosphatase (ALP), Alizarin red-S stain, and gene expression of osteogenic makers were evaluated following the administration of mechanical load and BMP-2 treatment. The expression of TGM2 was evaluated by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay (ELISA) analysis. Our results showed that mechanical load in combination with BMP-2 enhanced calcium deposition and ALP activity. Mechanical load significantly increased ALP and OC gene expression on day 3, whereas BMP-2 significantly increased ALP, OPN, and Runx2 on day 7. Mechanical load significantly induced TGM2 gene expression and enzyme activity in human ligamentum flavum cells. Exogenous TGM2 increased ALP and OC gene expression; while, inhibited TG activity significantly attenuated mechanical load-induced and TGM2-induced ALP activity. In summary, mechanical load-induced TGM2 expression and enzyme activity is involved in the progression of the calcification of ligamentum flavum.

  2. Determination of the mechanical properties of solid and cellular polymeric dosage forms by diametral compression.

    Science.gov (United States)

    Blaesi, Aron H; Saka, Nannaji

    2016-07-25

    At present, the immediate-release solid dosage forms, such as the oral tablets and capsules, are granular solids. They release drug rapidly and have adequate mechanical properties, but their manufacture is fraught with difficulties inherent in processing particulate matter. Such difficulties, however, could be overcome by liquid-based processing. Therefore, we have recently introduced polymeric cellular (i.e., highly porous) dosage forms prepared from a melt process. Experiments have shown that upon immersion in a dissolution medium, the cellular dosage forms with polyethylene glycol (PEG) as excipient and with predominantly open-cell topology disintegrate by exfoliation, thus enabling rapid drug release. If the volume fraction of voids of the open-cell structures is too large, however, their mechanical strength is adversely affected. At present, the common method for determining the tensile strength of brittle, solid dosage forms (such as select granular forms) is the diametral compression test. In this study, the theory of diametral compression is first refined to demonstrate that the relevant mechanical properties of ductile and cellular solids (i.e., the elastic modulus and the yield strength) can also be extracted from this test. Diametral compression experiments are then conducted on PEG-based solid and cellular dosage forms. It is found that the elastic modulus and yield strength of the open-cell structures are about an order of magnitude smaller than those of the non-porous solids, but still are substantially greater than the stiffness and strength requirements for handling the dosage forms manually. This work thus demonstrates that melt-processed polymeric cellular dosage forms that release drug rapidly can be designed and manufactured to have adequate mechanical properties. PMID:27178343

  3. Determination of the mechanical properties of solid and cellular polymeric dosage forms by diametral compression.

    Science.gov (United States)

    Blaesi, Aron H; Saka, Nannaji

    2016-07-25

    At present, the immediate-release solid dosage forms, such as the oral tablets and capsules, are granular solids. They release drug rapidly and have adequate mechanical properties, but their manufacture is fraught with difficulties inherent in processing particulate matter. Such difficulties, however, could be overcome by liquid-based processing. Therefore, we have recently introduced polymeric cellular (i.e., highly porous) dosage forms prepared from a melt process. Experiments have shown that upon immersion in a dissolution medium, the cellular dosage forms with polyethylene glycol (PEG) as excipient and with predominantly open-cell topology disintegrate by exfoliation, thus enabling rapid drug release. If the volume fraction of voids of the open-cell structures is too large, however, their mechanical strength is adversely affected. At present, the common method for determining the tensile strength of brittle, solid dosage forms (such as select granular forms) is the diametral compression test. In this study, the theory of diametral compression is first refined to demonstrate that the relevant mechanical properties of ductile and cellular solids (i.e., the elastic modulus and the yield strength) can also be extracted from this test. Diametral compression experiments are then conducted on PEG-based solid and cellular dosage forms. It is found that the elastic modulus and yield strength of the open-cell structures are about an order of magnitude smaller than those of the non-porous solids, but still are substantially greater than the stiffness and strength requirements for handling the dosage forms manually. This work thus demonstrates that melt-processed polymeric cellular dosage forms that release drug rapidly can be designed and manufactured to have adequate mechanical properties.

  4. Coupling cellular oscillators: a mechanism that maintains synchrony against developmental noise in the segmentation clock.

    Science.gov (United States)

    Ishimatsu, Kana; Horikawa, Kazuki; Takeda, Hiroyuki

    2007-06-01

    A unique feature of vertebrate segmentation is its strict periodicity, which is governed by the segmentation clock consisting of numerous cellular oscillators. These cellular oscillators, driven by a negative-feedback loop of Hairy transcription factor, are linked through Notch-dependent intercellular coupling and display the synchronous expression of clock genes. Combining our transplantation experiments in zebrafish with mathematical simulations, we review how the cellular oscillators maintain synchrony and form a robust system that is resistant to the effects of developmental noise such as stochastic gene expression and active cell proliferation. The accumulated evidence indicates that the segmentation clock behaves as a "coupled oscillators," a mechanism that also underlies the synchronous flashing seen in fireflies.

  5. Microenvironment is involved in cellular response to hydrostatic pressures during chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Ye, Rui; Hao, Jin; Song, Jinlin; Zhao, Zhihe; Fang, Shanbao; Wang, Yating; Li, Juan

    2014-06-01

    Chondrocytes integrate numerous microenvironmental cues to mount physiologically relevant differentiation responses, and the regulation of mechanical signaling in chondrogenic differentiation is now coming into intensive focus. To facilitate tissue-engineered chondrogenesis by mechanical strategy, a thorough understanding about the interactional roles of chemical factors under mechanical stimuli in regulating chondrogenesis is in great need. Therefore, this study attempts to investigate the interaction of rat MSCs with their microenvironment by imposing dynamic and static hydrostatic pressure through modulating gaseous tension above the culture medium. Under dynamic pressure, chemical parameters (pH, pO2, and pCO2) were kept in homeostasis. In contrast, pH was remarkably reduced due to increased pCO2 under static pressure. MSCs under the dynamically pressured microenvironment exhibited a strong accumulation of GAG within and outside the alginate beads, while cells under the statically pressured environment lost newly synthesized GAG into the medium with a speed higher than its production. In addition, the synergic influence on expression of chondrogenic genes was more persistent under dynamic pressure than that under static pressure. This temporal contrast was similar to that of activation of endogenous TGF-β1. Taken altogether, it indicates that a loading strategy which can keep a homeostatic chemical microenvironment is preferred, since it might sustain the stimulatory effects of mechanical stimuli on chondrogenesis via activation of endogenous TGF-β1.

  6. [Ocular involvement in spondylarthritis--new mechanisms, new therapies].

    Science.gov (United States)

    Itulescu, T C M; Alexandrescu, Cristina; Voinea, Liliana-Mary

    2014-01-01

    Spondyloarthrites (SPA) represent a group of heterogenous rheumatic diseases (ankylosing spondylitis/SA, psoriatic arthritis/PsA, reactive arthritis/ReA, spondyloarthritis in bowel inflammatory diseases/BID, undifferentiated spondyloarthritis/undif SpA) with distinct clinical features and common genetic predisposition (HLA-B27). SpA may also affect other organs, ocular involvement, represented by uveitis and conjunctivitis, being one of the most important extraskeletal manifestations. Pathogenic mechanisms of ocular involment in SpA are not entirely known; nevertheless, the inflammatory process which characterizes the main rheumatic diseases seems to be responsible for this extraskeletal manifestation. SpA treatment targeted at clinical remission has a favourable effect not only on articular but also on ocular involvement. The discovery of new pathogenic mechanisms of both rheumatic and eye disease in SpA have contributed to identification of new pathogenic therapies. The interdisciplinary team work of rheumatologists and ophtalmologists have prove essential for the management of SpA patients with ocular manifestations.

  7. Neurophysiological mechanisms involved in language learning in adults.

    Science.gov (United States)

    Rodríguez-Fornells, Antoni; Cunillera, Toni; Mestres-Missé, Anna; de Diego-Balaguer, Ruth

    2009-12-27

    Little is known about the brain mechanisms involved in word learning during infancy and in second language acquisition and about the way these new words become stable representations that sustain language processing. In several studies we have adopted the human simulation perspective, studying the effects of brain-lesions and combining different neuroimaging techniques such as event-related potentials and functional magnetic resonance imaging in order to examine the language learning (LL) process. In the present article, we review this evidence focusing on how different brain signatures relate to (i) the extraction of words from speech, (ii) the discovery of their embedded grammatical structure, and (iii) how meaning derived from verbal contexts can inform us about the cognitive mechanisms underlying the learning process. We compile these findings and frame them into an integrative neurophysiological model that tries to delineate the major neural networks that might be involved in the initial stages of LL. Finally, we propose that LL simulations can help us to understand natural language processing and how the recovery from language disorders in infants and adults can be accomplished. PMID:19933142

  8. Conformational dissection of a viral intrinsically disordered domain involved in cellular transformation.

    Science.gov (United States)

    Noval, María G; Gallo, Mariana; Perrone, Sebastián; Salvay, Andres G; Chemes, Lucía B; de Prat-Gay, Gonzalo

    2013-01-01

    Intrinsic disorder is abundant in viral genomes and provides conformational plasticity to its protein products. In order to gain insight into its structure-function relationships, we carried out a comprehensive analysis of structural propensities within the intrinsically disordered N-terminal domain from the human papillomavirus type-16 E7 oncoprotein (E7N). Two E7N segments located within the conserved CR1 and CR2 regions present transient α-helix structure. The helix in the CR1 region spans residues L8 to L13 and overlaps with the E2F mimic linear motif. The second helix, located within the highly acidic CR2 region, presents a pH-dependent structural transition. At neutral pH the helix spans residues P17 to N29, which include the retinoblastoma tumor suppressor LxCxE binding motif (residues 21-29), while the acidic CKII-PEST region spanning residues E33 to I38 populates polyproline type II (PII) structure. At pH 5.0, the CR2 helix propagates up to residue I38 at the expense of loss of PII due to charge neutralization of acidic residues. Using truncated forms of HPV-16 E7, we confirmed that pH-induced changes in α-helix content are governed by the intrinsically disordered E7N domain. Interestingly, while at both pH the region encompassing the LxCxE motif adopts α-helical structure, the isolated 21-29 fragment including this stretch is unable to populate an α-helix even at high TFE concentrations. Thus, the E7N domain can populate dynamic but discrete structural ensembles by sampling α-helix-coil-PII-ß-sheet structures. This high plasticity may modulate the exposure of linear binding motifs responsible for its multi-target binding properties, leading to interference with key cell signaling pathways and eventually to cellular transformation by the virus. PMID:24086265

  9. Conformational dissection of a viral intrinsically disordered domain involved in cellular transformation.

    Directory of Open Access Journals (Sweden)

    María G Noval

    Full Text Available Intrinsic disorder is abundant in viral genomes and provides conformational plasticity to its protein products. In order to gain insight into its structure-function relationships, we carried out a comprehensive analysis of structural propensities within the intrinsically disordered N-terminal domain from the human papillomavirus type-16 E7 oncoprotein (E7N. Two E7N segments located within the conserved CR1 and CR2 regions present transient α-helix structure. The helix in the CR1 region spans residues L8 to L13 and overlaps with the E2F mimic linear motif. The second helix, located within the highly acidic CR2 region, presents a pH-dependent structural transition. At neutral pH the helix spans residues P17 to N29, which include the retinoblastoma tumor suppressor LxCxE binding motif (residues 21-29, while the acidic CKII-PEST region spanning residues E33 to I38 populates polyproline type II (PII structure. At pH 5.0, the CR2 helix propagates up to residue I38 at the expense of loss of PII due to charge neutralization of acidic residues. Using truncated forms of HPV-16 E7, we confirmed that pH-induced changes in α-helix content are governed by the intrinsically disordered E7N domain. Interestingly, while at both pH the region encompassing the LxCxE motif adopts α-helical structure, the isolated 21-29 fragment including this stretch is unable to populate an α-helix even at high TFE concentrations. Thus, the E7N domain can populate dynamic but discrete structural ensembles by sampling α-helix-coil-PII-ß-sheet structures. This high plasticity may modulate the exposure of linear binding motifs responsible for its multi-target binding properties, leading to interference with key cell signaling pathways and eventually to cellular transformation by the virus.

  10. Cellular mechanisms of high mobility group 1 (HMGB-1 protein action in the diabetic retinopathy.

    Directory of Open Access Journals (Sweden)

    Andrea Rachelle C Santos

    Full Text Available Diabetic retinopathy is one of the main microvascular complications of diabetes and remains one of the leading causes of blindness worldwide. Recent studies have revealed an important role of inflammatory and proangiogenic high mobility group 1 (HMGB-1 cytokine in diabetic retinopathy. To elucidate cellular mechanisms of HMGB-1 activity in the retina, we performed this study. The histological features of diabetic retinopathy include loss of blood-vessel pericytes and endothelial cells, as well as abnormal new blood vessel growth. To establish the role of HMGB-1 in vulnerability of endothelial cells and pericytes, cultures of these cells, or co-cultures with glial cells, were treated with HMGB-1 and assessed for survival after 24 hours. The expression levels of the cytokines, chemokines, and cell adhesion molecules in glial and endothelial cells were tested by quantitative RT-PCR to evaluate changes in these cells after HMGB-1 treatment. Animal models of neovascularization were also used to study the role of HMGB-1 in the retina. We report that pericyte death is mediated by HMGB-1-induced cytotoxic activity of glial cells, while HMGB-1 can directly mediate death of endothelial cells. We also found that HMGB-1 affects endothelial cell activity. However, we did not observe a difference in the levels of neovascularization between HMGB-1-treated eyes compared to the control eyes, nor in the levels of proangiogenic cytokine VEGF-A expression between glial cells treated with HMGB-1 and control cells. Our data also indicate that HMGB-1 is not involved in retinal neovascularization in the oxygen-induced retinopathy model. Thus, our data suggest that retinal pericyte and endothelial injury and death in diabetic retinopathy may be due to HMGB-1-induced cytotoxic activity of glial cells as well as the direct effect of HMGB-1 on endothelial cells. At the same time, our findings indicate that HMGB-1 plays an insignificant role in retinal and choroidal

  11. Identification of Circular RNAs from the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    Science.gov (United States)

    Darbani, Behrooz; Noeparvar, Shahin; Borg, Søren

    2016-01-01

    RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts. PMID:27375638

  12. Identification of Circular RNAs From the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    Directory of Open Access Journals (Sweden)

    Behrooz eDarbani

    2016-06-01

    Full Text Available RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts.Keywords: circular RNAs, coding and non-coding transcripts, leaves, seeds, transfer cells, micronutrients, mitochondria

  13. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system.

    Science.gov (United States)

    Forger, Nancy G; Strahan, J Alex; Castillo-Ruiz, Alexandra

    2016-01-01

    Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to re-think often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain. PMID:26790970

  14. Wiring olfaction: the cellular and molecular mechanisms that guide the development of synaptic connections from the nose to the cortex

    Directory of Open Access Journals (Sweden)

    Fernando De Castro

    2009-12-01

    Full Text Available Within the central nervous system, the olfactory system fascinates by its developmental and physiological particularities, and is one of the most studied models to understand the mechanisms underlying the guidance of growing axons to their appropriate targets. A constellation of contact-mediated (laminins, CAMs, ephrins, etc. and secreted mechanisms (semaphorins, slits, growth factors, etc. are known to play different roles in the establishment of synaptic interactions between the olfactory epithelium, olfactory bulb (OB and olfactory cortex. Specific mechanisms of this system (including the amazing family of about 1000 different olfactory receptors have been also proposed. In the last years, different reviews have focused in partial sights, specially in the mechanisms involved in the formation of the olfactory nerve, but a detailed review of the mechanisms implicated in the development of the connections among the different olfactory structures (olfactory epithelium, OB, olfactory cortex remains to be written. In the present work, we afford this systematic review: the different cellular and molecular mechanisms which rule the formation of the olfactory nerve, the lateral olfactory tract and the intracortical connections, as well as the few data available regarding the accessory olfactory system. These mechanisms are compared, and the implications of the differences and similarities discussed in this fundamental scenario of ontogeny.

  15. Cellular and Molecular Mechanisms of Novel Therapies to Ameliorate Liver Sinusoidal Dysfunction in Cirrhotic Portal Hypertension

    OpenAIRE

    Marrone, Giusi

    2014-01-01

    Increased intrahepatic vascular resistance (IHVR), mainly due to elevated vascular tone together with the maturation of hepatic fibrosis and the drop of the hepatic endothelial function, is the main factor in the development of portal hypertension (PH) in cirrhosis. This PhD thesis investigates the cellular and molecular mechanisms necessary for the identification of new therapeutic targets and evaluates the possible cross- talk between the hepatic cells in static and physiological conditions...

  16. Optimization of the diabetic nephropathy treatment with attention to the special features of cellular inflammation mechanisms

    OpenAIRE

    Щербань, Тетяна Дмитрівна

    2016-01-01

    Aim. Optimization of the diabetic nephropathy (DN) treatment in association with hypertonic disease (HD) based on the study of neutrophil chain of pathogenic cellular mechanisms of these diseases development and the special features of its clinical course.Materials and methods. There were complexly examined 86 patients with HD associated with DN and 30 patients with isolated HD. The control group was formed by 30 practically healthy persons. The activity of NO-synthases in neutrophils was det...

  17. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding

    OpenAIRE

    Tchoukalova, Yourka D.; Votruba, Susanne B; Tchkonia, Tamara; Giorgadze, Nino; Kirkland, James L.; Jensen, Michael D.

    2010-01-01

    Body fat distribution is an important predictor of the metabolic consequences of obesity, but the cellular mechanisms regulating regional fat accumulation are unknown. We assessed the changes in adipocyte size (photomicrographs) and number in response to overfeeding in upper- and lower-body s.c. fat depots of 28 healthy, normal weight adults (15 men) age 29 ± 2 y. We analyzed how these changes relate to regional fat gain (dual energy X-ray absorptiometry and computed tomography) and baseline ...

  18. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms

    OpenAIRE

    Steiner, Sandro; Bisig, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2016-01-01

    Diesel engine emissions are among the most prevalent anthropogenic pollutants worldwide, and with the growing popularity of diesel-fueled engines in the private transportation sector, they are becoming increasingly widespread in densely populated urban regions. However, a large number of toxicological studies clearly show that diesel engine emissions profoundly affect human health. Thus the interest in the molecular and cellular mechanisms underlying these effects is large, especially c...

  19. Quantum-Mechanical Calculations on Molecular Substructures Involved in Nanosystems

    Directory of Open Access Journals (Sweden)

    Beata Szefler

    2014-09-01

    Full Text Available In this review article, four ideas are discussed: (a aromaticity of fullerenes patched with flowers of 6-and 8-membered rings, optimized at the HF and DFT levels of theory, in terms of HOMA and NICS criteria; (b polybenzene networks, from construction to energetic and vibrational spectra computations; (c quantum-mechanical calculations on the repeat units of various P-type crystal networks and (d construction and stability evaluation, at DFTB level of theory, of some exotic allotropes of diamond D5, involved in hyper-graphenes. The overall conclusion was that several of the yet hypothetical molecular nanostructures herein described are serious candidates to the status of real molecules.

  20. Cellular intrinsic factors involved in the resistance of squamous cell carcinoma to photodynamic therapy.

    Science.gov (United States)

    Gilaberte, Yolanda; Milla, Laura; Salazar, Nerea; Vera-Alvarez, Jesús; Kourani, Omar; Damian, Alejandra; Rivarola, Viviana; Roca, Maria José; Espada, Jesús; González, Salvador; Juarranz, Angeles

    2014-09-01

    Photodynamic therapy (PDT) is widely used to treat non-melanoma skin cancer. However, some patients affected with squamous cell carcinoma (SCC) do not respond adequately to PDT with methyl-δ-aminolevulinic acid (MAL-PDT) and the tumors acquire an infiltrative phenotype and became histologically more aggressive, less differentiated, and more fibroblastic. To search for potential factors implicated in SCC resistance to PDT, we have used the SCC-13 cell line (parental) and resistant SCC-13 cells obtained by repeated MAL-PDT treatments (5th and 10th PDT-resistant generations). Xenografts assays in immunodeficient mice showed that the tumors generated by resistant cells were bigger than those induced by parental cells. Comparative genomic hybridization array (aCGH) showed that the three cell types presented amplicons in 3p12.1 CADM2, 7p11.2 EFGR, and 11q13.3 CCND1 genes. The 5th and 10th PDT-resistant cells showed an amplicon in 5q11.2 MAP3K1, which was not present in parental cells. The changes detected by aCGH on CCND1, EFGR, and MAP3K1 were confirmed in extracts of SCC-13 cells by reverse-transcriptase PCR and by western blot, and by immunohistochemistry in human biopsies from persistent tumors after MAL-PDT. Our data suggest that genomic imbalances related to CCND1, EFGR, and particularly MAP3K1 seem to be involved in the development of the resistance of SCC to PDT.

  1. Cellular and molecular mechanisms of osteoporosis: current concepts and future direction treatment

    Directory of Open Access Journals (Sweden)

    A. T. Dolzhenko

    2016-01-01

    Full Text Available The article presents review of literature dedicated to the contemporary view on the cellular-molecular mechanisms of the bone remodeling and pathogenesis of the osteoporosis. The discovery of the cytokine RANKL-RANK-OPG system and significant role of the cathepsin K in process bone remodeling has made progress in understanding the mechanisms development disease and possible to development drugs of the new generation – denosumab, a fully human RANKL monoclonal antibody and inhibitor cathepsin K odanacatib that inhibits of the bone resorption.

  2. Mechanical models of the cellular cytoskeletal network for the analysis of intracellular mechanical properties and force distributions: a review.

    Science.gov (United States)

    Chen, Ting-Jung; Wu, Chia-Ching; Su, Fong-Chin

    2012-12-01

    The cytoskeleton, which is the major mechanical component of cells, supports the cell body and regulates the cellular motility to assist the cell in performing its biological functions. Several cytoskeletal network models have been proposed to investigate the mechanical properties of cells. This review paper summarizes these models with a focus on the prestressed cable network, the semi-flexible chain network, the open-cell foam, the tensegrity, and the granular models. The components, material parameters, types of connection joints, tension conditions, and the advantages and disadvantages of each model are evaluated from a structural and biological point of view. The underlying mechanisms that are associated with the morphological changes of spreading cells are expected to be simulated using a cytoskeletal model; however, it is still paid less attention most likely due to the lack of a suitable cytoskeletal model that can accurately model the spreading process. In this review article, the established cytoskeletal models are hoped to provide useful information for the development of future cytoskeletal models with different degrees of cell attachment for the study of the mechanical mechanisms underlying the cellular behaviors in response to external stimulations. PMID:23062682

  3. Roles for glycosylation of cell surface receptors involved in cellular immune recognition.

    Science.gov (United States)

    Rudd, P M; Wormald, M R; Stanfield, R L; Huang, M; Mattsson, N; Speir, J A; DiGennaro, J A; Fetrow, J S; Dwek, R A; Wilson, I A

    1999-10-22

    The majority of cell surface receptors involved in antigen recognition by T cells and in the orchestration of the subsequent cell signalling events are glycoproteins. The length of a typical N-linked sugar is comparable with that of an immunoglobulin domain (30 A). Thus, by virtue of their size alone, oligosaccharides may be expected to play a significant role in the functions and properties of the cell surface proteins to which they are attached. A databank of oligosaccharide structures has been constructed from NMR and crystallographic data to aid in the interpretation of crystal structures of glycoproteins. As unambiguous electron density can usually only be assigned to the glycan cores, the remainder of the sugar is then modelled into the crystal lattice by superimposing the appropriate oligosaccharide from the database. This approach provides insights into the roles that glycosylation might play in cell surface receptors, by providing models that delineate potential close packing interactions on the cell surface. It has been proposed that the specific recognition of antigen by T cells results in the formation of an immunological synapse between the T cell and the antigen-presenting cell. The cell adhesion glycoproteins, such as CD2 and CD48, help to form a cell junction, providing a molecular spacer between opposing cells. The oligosaccharides located on the membrane proximal domains of CD2 and CD48 provide a scaffold to orient the binding faces, which leads to increased affinity. In the next step, recruitment of the peptide major histocompatibility complex (pMHC) by the T-cell receptors (TCRs) requires mobility on the membrane surface. The TCR sugars are located such that they could prevent non-specific aggregation. Importantly, the sugars limit the possible geometry and spacing of TCR/MHC clusters which precede cell signalling. We postulate that, in the final stage, the sugars could play a general role in controlling the assembly and stabilisation of the

  4. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching

    Science.gov (United States)

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R.; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  5. [Glycotoxins and cellular dysfunction. A new mechanism for understanding the preventive effects of lifestyle modifications].

    Science.gov (United States)

    Michalsen, A; Bierhaus, A; Nawroth, P P; Dobos, G J

    2006-08-01

    Recently the AGE-RAGE interaction was identified as a potential mechanism underlying chronic and inflammatory diseases like atherosclerosis, diabetes mellitus and kidney disease. Advanced glycation end products (AGEs) are the derivatives of glucose-protein or glucose-lipid reactions and are mainly generated from the diet (depending on intensity of heating, cooking time and oxygenation). Binding of AGEs or other ligands to the AGE receptor (RAGE) results in cellular activation, i.e. increased expression of inflammatory mediators and oxidative stress. Diet-derived AGEs thus induce deleterious effects on tissues and the cardiovascular system. Recent research also found that other lifestyle factors are associated with pronounced inflammatory activation, e.g. psychosocial stress and smoking. In addition, each intake of meals is associated with proinflammatory cellular changes. The AGE-RAGE model and investigations of the underlying cellular mechanisms thus may lead to a better understanding of the health benefits of diets (Mediterranean diet, uncooked vegetarian diets), caloric restriction and intermittent fasting. The clinical impact of low-AGE diets and fasting and the interaction between stress and food intake should be further investigated in controlled trials.

  6. [Glycotoxins and cellular dysfunction. A new mechanism for understanding the preventive effects of lifestyle modifications].

    Science.gov (United States)

    Michalsen, A; Bierhaus, A; Nawroth, P P; Dobos, G J

    2006-08-01

    Recently the AGE-RAGE interaction was identified as a potential mechanism underlying chronic and inflammatory diseases like atherosclerosis, diabetes mellitus and kidney disease. Advanced glycation end products (AGEs) are the derivatives of glucose-protein or glucose-lipid reactions and are mainly generated from the diet (depending on intensity of heating, cooking time and oxygenation). Binding of AGEs or other ligands to the AGE receptor (RAGE) results in cellular activation, i.e. increased expression of inflammatory mediators and oxidative stress. Diet-derived AGEs thus induce deleterious effects on tissues and the cardiovascular system. Recent research also found that other lifestyle factors are associated with pronounced inflammatory activation, e.g. psychosocial stress and smoking. In addition, each intake of meals is associated with proinflammatory cellular changes. The AGE-RAGE model and investigations of the underlying cellular mechanisms thus may lead to a better understanding of the health benefits of diets (Mediterranean diet, uncooked vegetarian diets), caloric restriction and intermittent fasting. The clinical impact of low-AGE diets and fasting and the interaction between stress and food intake should be further investigated in controlled trials. PMID:16897151

  7. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms.

    Science.gov (United States)

    Steiner, Sandro; Bisig, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2016-07-01

    Diesel engine emissions are among the most prevalent anthropogenic pollutants worldwide, and with the growing popularity of diesel-fueled engines in the private transportation sector, they are becoming increasingly widespread in densely populated urban regions. However, a large number of toxicological studies clearly show that diesel engine emissions profoundly affect human health. Thus the interest in the molecular and cellular mechanisms underlying these effects is large, especially concerning the nature of the components of diesel exhaust responsible for the effects and how they could be eliminated from the exhaust. This review describes the fundamental properties of diesel exhaust as well as the human respiratory tract and concludes that adverse health effects of diesel exhaust not only emerge from its chemical composition, but also from the interplay between its physical properties, the physiological and cellular properties, and function of the human respiratory tract. Furthermore, the primary molecular and cellular mechanisms triggered by diesel exhaust exposure, as well as the fundamentals of the methods for toxicological testing of diesel exhaust toxicity, are described. The key aspects of adverse effects induced by diesel exhaust exposure described herein will be important for regulators to support or ban certain technologies or to legitimate incentives for the development of promising new technologies such as catalytic diesel particle filters. PMID:27165416

  8. A cellular model of memory reconsolidation involves reactivation-induced destabilization and restabilization at the sensorimotor synapse in Aplysia.

    Science.gov (United States)

    Lee, Sue-Hyun; Kwak, Chuljung; Shim, Jaehoon; Kim, Jung-Eun; Choi, Sun-Lim; Kim, Hyoung F; Jang, Deok-Jin; Lee, Jin-A; Lee, Kyungmin; Lee, Chi-Hoon; Lee, Young-Don; Miniaci, Maria Concetta; Bailey, Craig H; Kandel, Eric R; Kaang, Bong-Kiun

    2012-08-28

    The memory reconsolidation hypothesis suggests that a memory trace becomes labile after retrieval and needs to be reconsolidated before it can be stabilized. However, it is unclear from earlier studies whether the same synapses involved in encoding the memory trace are those that are destabilized and restabilized after the synaptic reactivation that accompanies memory retrieval, or whether new and different synapses are recruited. To address this issue, we studied a simple nonassociative form of memory, long-term sensitization of the gill- and siphon-withdrawal reflex in Aplysia, and its cellular analog, long-term facilitation at the sensory-to-motor neuron synapse. We found that after memory retrieval, behavioral long-term sensitization in Aplysia becomes labile via ubiquitin/proteasome-dependent protein degradation and is reconsolidated by means of de novo protein synthesis. In parallel, we found that on the cellular level, long-term facilitation at the sensory-to-motor neuron synapse that mediates long-term sensitization is also destabilized by protein degradation and is restabilized by protein synthesis after synaptic reactivation, a procedure that parallels memory retrieval or retraining evident on the behavioral level. These results provide direct evidence that the same synapses that store the long-term memory trace encoded by changes in the strength of synaptic connections critical for sensitization are disrupted and reconstructed after signal retrieval.

  9. Cellular and humoral factors involved in the response of rainbow trout gills to Ichthyophthirius multifiliis infections

    DEFF Research Database (Denmark)

    Olsen, Moonika Marana; Kania, Per Walter; Heinecke, Rasmus Demuth;

    2011-01-01

    injected with PBS and subgroups were treated with the immuno-suppressant hydrocortisone before fish were challenged with live theronts. Significant up-regulations of genes encoding IgM, IgT, C3, SAA, IL-8, IL-22 and IFN-g were induced by immunization and challenge. Hydrocortisone treatment had...... a significant down-regulating effect on genes incoding IgT, IgM, CD4, CD8, IFN-g, IL-8 and IL-22 in all groups. Immunohistochemistry, using monoclonal antibodies to detect cellular markers, demonstrated active involvement of CD8, MHC II, IgT and IgM positive cells in gill tissue. Putative T-cells (CD8 positive...

  10. Patterns and Cellular Mechanisms of Arm Regeneration in Adult Starfish Asterias rollestoni Bell

    Institute of Scientific and Technical Information of China (English)

    FAN Tingjun; FAN Xianyuan; DU Yutang; SUN Wenjie; ZHANG Shaofeng; LI Jiaxin

    2011-01-01

    To understand the mechanisms of starfish regeneration,the arms of adult starfish Asterias rollestoni Bell were amputated and their regeneration pattems and cellular mechanisms were studied.It was found that cells in the outer epidermis and inner parietal peritoneum near the end of the stump began to dedifferentiate 4d after amputation.The dedifferentiated cells in the outer epidermis proliferated,migrated to the wound site and formed a thickened pre-epidermis which would then re-differentiate gradually into mature epidermis.The new parietal peritoneum formed on the coelomic side of wound might be from the curvely elongated parietal peritoneum,resulting from the dedifferentiated and proliferated cells by extension.Afterwards,the proliferated cells made the outer epidermis and inner parietal peritoneum invaginate into the interior dermis and formed blastema-like structures together with induced dedifferentiated dermal cells.Most interestingly,the arm regeneration in A.rollestoni was achieved synchronously by de novo arm-bud formation and growth,and arm-stump elongation.The crucial aspects of arm-bud formation included cell dedifferentiation,proliferation and migration,while those of arm-stump elongation included cell dedifferentiation,proliferation,invagination,and arm-wall-across blastema-like structure formation.The unique pattern and cellular mechanisms of amputated arm regeneration make it easier to understand the rapid regeneration process of adult starfish.This study may lay solid foundations for the research into molecular mechanisms of echinoderm regeneration.

  11. Cell-Penetrating Peptides—Mechanisms of Cellular Uptake and Generation of Delivery Systems

    Directory of Open Access Journals (Sweden)

    Sara Trabulo

    2010-03-01

    Full Text Available The successful clinical application of nucleic acid-based therapeutic strategies has been limited by the poor delivery efficiency achieved by existing vectors. The development of alternative delivery systems for improved biological activity is, therefore, mandatory. Since the seminal observations two decades ago that the Tat protein, and derived peptides, can translocate across biological membranes, cell-penetrating peptides (CPPs have been considered one of the most promising tools to improve non-invasive cellular delivery of therapeutic molecules. Despite extensive research on the use of CPPs for this purpose, the exact mechanisms underlying their cellular uptake and that of peptide conjugates remain controversial. Over the last years, our research group has been focused on the S413-PV cell-penetrating peptide, a prototype of this class of peptides that results from the combination of 13-amino-acid cell penetrating sequence derived from the Dermaseptin S4 peptide with the SV40 large T antigen nuclear localization signal. By performing an extensive biophysical and biochemical characterization of this peptide and its analogs, we have gained important insights into the mechanisms governing the interaction of CPPs with cells and their translocation across biological membranes. More recently, we have started to explore this peptide for the intracellular delivery of nucleic acids (plasmid DNA, siRNA and oligonucleotides. In this review we discuss the current knowledge of the mechanisms responsible for the cellular uptake of cell-penetrating peptides, including the S413-PV peptide, and the potential of peptide-based formulations to mediate nucleic acid delivery.

  12. DMPD: Anti-inflammatory actions of PPAR ligands: new insights on cellular andmolecular mechanisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17981503 Anti-inflammatory actions of PPAR ligands: new insights on cellular andmol...) (.html) (.csml) Show Anti-inflammatory actions of PPAR ligands: new insights on cellular andmolecular mech...anisms. PubmedID 17981503 Title Anti-inflammatory actions of PPAR ligands: new in

  13. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes

    Science.gov (United States)

    Eskhan, Asma Omar

    Atomic force microscopy has been used to quantify the adherence and mechanical properties of an array of L. monocytogenes strains and their surface biopolymers. First, eight L. monocytogenes strains that represented the two major lineages of the species were compared for their adherence and mechanics at cellular and molecular levels. Our results indicated that strains of lineage' II were characterized by higher adhesion and Young's moduli, longer and more rigid surface biopolymers and lower specific and nonspecific forces when compared to lineage' I strains. Additionally, adherence and mechanical properties of eight L. monocytogenes epidemic and environmental strains were probed. Our results pointed to that environmental and epidemic strains representative of a given lineage were similar in their adherence and mechanical properties when investigated at a cellular level. However, when the molecular properties of the strains were considered, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser and more flexible biopolymers compared to environmental strains. Second, the role of environmental pH conditions of growth on the adhesion and mechanics of a pathogenic L. monocytogenes EGDe was investigated. Our results pointed to a transition in the adhesion energies for cells cultured at pH 7. In addition, when the types of molecular forces that govern the adhesion were quantified using Poisson statistical approach and using a new proposed method, specific hydrogen-bond energies dominated the bacterial adhesion process. Such a finding is instrumental to researchers designing methods to control bacterial adhesion. Similarly, bacterial cells underwent a transition in their mechanical properties. We have shown that cells cultured at pH 7 were the most rigid compared to those cultured in lower or higher pH conditions of growth. Due to transitions observed in adherence and mechanics when cells were cultured at pH 7, we hypothesized that

  14. In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals

    International Nuclear Information System (INIS)

    The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [60/62/64Cu(II)ATSM] and [60/62/64Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO2-dependent in vitro cellular uptake and retention of [64Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k1 = 9.8 ± 0.59 x 10-4 s-1 and k2 = 2.9 ± 0.17 x 10-3 s-1), intracellular reduction (k3 = 5.2 ± 0.31 x 10-2 s-1), reoxidation (k4 = 2.2 ± 0.13 mol-1 dm3 s-1) and proton-mediated ligand dissociation (k5 = 9.0 ± 0.54 x 10-5 s-1). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have also been conducted. NADH turnover frequencies are found to be dependent on the structure of the ligand and the results confirm that

  15. MECHANISMS INVOLVED IN MYCORRHIZAL WHEAT PROTECTION AGAINST POWDERY MILDEW.

    Science.gov (United States)

    Mustafa, G; Tisserant, B; Randoux, B; Fontaine, J; Sahraoui, A Lounes-Hadj; Reignault, Ph

    2014-01-01

    In France, the Ecophyto 2018 national action plan will set out to reduce the use of pesticides by 50% by 2018, if possible. To achieve this goal, the use of arbuscular mycorrhizal (AM) fungi could be a potential alternative method allowing the control of crop diseases. The inoculation by AM fungi has been demonstrated to protect plants against soil-borne pathogens, but little is known about their effectiveness against aerial pathogens, such as the biotrophic fungus Blumeria graminis f.sp. tritici (Bgt) causing wheat (Triticum aestivum) powdery mildew. In the present study, wheat plants were grown in pots, under controlled conditions. Using various phosphorus (P) concentrations, the effectiveness of three AM inocula (Rhizophagus irregularis (Ri), Funneliformis mosseae (Fm)) and Solrize, a mixture of Ri and Fm) in Orvantis wheat cultivar, were tested. After 42 days of culture, mycorrhizal (M) and non-mycorrhizal (NM) wheat plants were infected by Bgt. A satisfactory mycorrhizal rate was obtained with the phosphorus concentration P/5 (P corresponding to the dose used in wheat fields in = 62 mg/L). Our work shows, for the first time, (i) a protective effect of AM inoculation against wheat powdery mildew, reaching up to 73% with Fm inocula, and (ii) its ability to induce a systemic resistance in wheat. Thereafter, we investigated mechanisms involved in this protection. Control plants, M plants, infected plants by Bgt, and M-infected plants were compared at: (i) cytological level, our results revealed that papillae and whole-fluorescent cells presence was induced, conversely fungal haustorium formation in epidermal cells was reduced within M plants leaves (ii) enzymatic level-by assessing defense enzyme activities (lipoxygenase, peroxidase) known as defense markers were measured 24, 48, 72 and 96 hours after infection (hai). The importance of these activities in the defense pathways induced in wheat by AM fungi will be discussed. PMID:26080475

  16. The yeast mitogen-activated protein kinase Slt2 is involved in the cellular response to genotoxic stress

    Directory of Open Access Journals (Sweden)

    Soriano-Carot María

    2012-02-01

    Full Text Available Abstract Background The maintenance of genomic integrity is essential for cell viability. Complex signalling pathways (DNA integrity checkpoints mediate the response to genotoxic stresses. Identifying new functions involved in the cellular response to DNA-damage is crucial. The Saccharomyces cerevisiae SLT2 gene encodes a member of the mitogen-activated protein kinase (MAPK cascade whose main function is the maintenance of the cell wall integrity. However, different observations suggest that SLT2 may also have a role related to DNA metabolism. Results This work consisted in a comprehensive study to connect the Slt2 protein to genome integrity maintenance in response to genotoxic stresses. The slt2 mutant strain was hypersensitive to a variety of genotoxic treatments, including incubation with hydroxyurea (HU, methylmetanosulfonate (MMS, phleomycin or UV irradiation. Furthermore, Slt2 was activated by all these treatments, which suggests that Slt2 plays a central role in the cellular response to genotoxic stresses. Activation of Slt2 was not dependent on the DNA integrity checkpoint. For MMS and UV, Slt2 activation required progression through the cell cycle. In contrast, HU also activated Slt2 in nocodazol-arrested cells, which suggests that Slt2 may respond to dNTP pools alterations. However, neither the protein level of the distinct ribonucleotide reductase subunits nor the dNTP pools were affected in a slt2 mutant strain. An analysis of the checkpoint function revealed that Slt2 was not required for either cell cycle arrest or the activation of the Rad53 checkpoint kinase in response to DNA damage. However, slt2 mutant cells showed an elongated bud and partially impaired Swe1 degradation after replicative stress, indicating that Slt2 could contribute, in parallel with Rad53, to bud morphogenesis control after genotoxic stresses. Conclusions Slt2 is activated by several genotoxic treatments and is required to properly cope with DNA damage. Slt

  17. Chronobiology at the cellular and molecular levels: models and mechanisms for circadian timekeeping.

    Science.gov (United States)

    Edmunds, L N

    1983-12-01

    This review considers cellular chronobiology and examines, at least in a superficial way, several classes of models and mechanisms that have been proposed for circadian rhythmicity and some of the experimental approaches that have appeared to be most productive. After a brief discussion of temporal organization and the metabolic, epigenetic, and circadian time domains, the general properties of circadian rhythms are enumerated. A survey of independent oscillations in isolated organs, tissues, and cells is followed by a review of selected circadian rhythms in eukaryotic microorganisms, with particular emphasis placed on the rhythm of cell division in the algal flagellate Euglena as a model system illustrating temporal differentiation. In the ensuing section, experimental approaches to circadian clock mechanisms are considered. The dissection of the clock by the use of chemical inhibitors is illustrated for the rhythm of bioluminescence in the marine dinoflagellate Gonyaulax and for the rhythm of photosynthetic capacity in the unicellular green alga Acetabularia. Alternatively, genetic analysis of circadian oscillators is considered in the green alga Chlamydomonas and in the bread mold Neurospora, both of which have yielded clock mutants and mutants having biochemical lesions that exhibit altered clock properties. On the basis of the evidence generated by these experimental approaches, several classes of biochemical and molecular models for circadian clocks have been proposed. These include strictly molecular models, feedback loop (network) models, transcriptional (tape-reading) models, and membrane models; some of their key elements and predictions are discussed. Finally, a number of general unsolved problems at the cellular level are briefly mentioned: cell cycle interfaces, the evolution of circadian rhythmicity, the possibility of multiple cellular oscillators, chronopharmacology and chronotherapy, and cell-cycle clocks in development and aging. PMID:6229999

  18. Mechanisms of cellular synchronization in the vascular wall. Mechanisms of vasomotion

    DEFF Research Database (Denmark)

    Matchkov, Vladimir

    2010-01-01

    synchronization and depends on channels between the cells called gap junctions. The majority of cardiovascular diseases (e.g. hypertension and atherosclerosis) are associated with defects in intercellular communications or in gap junction regulation. The molecular mechanisms responsible for these defects are un...... that lock the electrically-connected SMCs into phase. Synchronized depolarization induces synchronous calcium influx and thus produces rhythmic contraction of blood vessels. I have demonstrated and characterized a new chloride channel in vascular SMCs, which has properties necessary to coordinate SMCs...... distribution. Based on unique characteristics I have suggested that the cGMP-dependent calcium-activated chloride current can synchronize SMCs in the vascular wall and that bestrophin protein could be the molecular substrate for this current. Bestrophin has been characterized first as a gene in which mutations...

  19. Resveratrol Inhibition of Cellular Respiration: New Paradigm for an Old Mechanism

    Directory of Open Access Journals (Sweden)

    Luis Alberto Madrigal-Perez

    2016-03-01

    Full Text Available Resveratrol (3,4′,5-trihydroxy-trans-stilbene, RSV has emerged as an important molecule in the biomedical area. This is due to its antioxidant and health benefits exerted in mammals. Nonetheless, early studies have also demonstrated its toxic properties toward plant-pathogenic fungi of this phytochemical. Both effects appear to be opposed and caused by different molecular mechanisms. However, the inhibition of cellular respiration is a hypothesis that might explain both toxic and beneficial properties of resveratrol, since this phytochemical: (1 decreases the production of energy of plant-pathogenic organisms, which prevents their proliferation; (2 increases adenosine monophosphate/adenosine diphosphate (AMP/ADP ratio that can lead to AMP protein kinase (AMPK activation, which is related to its health effects, and (3 increases the reactive oxygen species generation by the inhibition of electron transport. This pro-oxidant effect induces expression of antioxidant enzymes as a mechanism to counteract oxidative stress. In this review, evidence is discussed that supports the hypothesis that cellular respiration is the main target of resveratrol.

  20. Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo.

    Science.gov (United States)

    Herwig, Lukas; Blum, Yannick; Krudewig, Alice; Ellertsdottir, Elin; Lenard, Anna; Belting, Heinz-Georg; Affolter, Markus

    2011-11-22

    Although many of the cellular and molecular mechanisms of angiogenesis have been intensely studied [1], little is known about the processes that underlie vascular anastomosis. We have generated transgenic fish lines expressing an EGFP-tagged version of the junctional protein zona occludens 1 (ZO1) to visualize individual cell behaviors that occur during vessel fusion and lumen formation in vivo. These life observations show that endothelial cells (ECs) use two distinct morphogenetic mechanisms, cell membrane invagination and cord hollowing to generate different types of vascular tubes. During initial steps of anastomosis, cell junctions that have formed at the initial site of cell contacts expand into rings, generating a cellular interface of apical membrane compartments, as defined by the localization of the apical marker podocalyxin-2 (Pdxl2). During the cord hollowing process, these apical membrane compartments are brought together via cell rearrangements and extensive junctional remodeling, resulting in lumen coalescence and formation of a multicellular tube. Vessel fusion by membrane invagination occurs adjacent to a preexisting lumen in a proximal to distal direction and is blood-flow dependent. Here, the invaginating inner cell membrane undergoes concomitant apicobasal polarization and the vascular lumen is formed by the extension of a transcellular lumen through the EC, which forms a unicellular or seamless tube. PMID:22079115

  1. The mechanics of cellular compartmentalization as a model for tumor spreading

    Science.gov (United States)

    Fritsch, Anatol; Pawlizak, Steve; Zink, Mareike; Kaes, Josef A.

    2012-02-01

    Based on a recently developed surgical method of Michael H"ockel, which makes use of cellular confinement to compartments in the human body, we study the mechanics of the process of cell segregation. Compartmentalization is a fundamental process of cellular organization and occurs during embryonic development. A simple model system can demonstrate the process of compartmentalization: When two populations of suspended cells are mixed, this mixture will eventually segregate into two phases, whereas mixtures of the same cell type will not. In the 1960s, Malcolm S. Steinberg formulated the so-called differential adhesion hypothesis which explains the segregation in the model system and the process of compartmentalization by differences in surface tension and adhesiveness of the interacting cells. We are interested in to which extend the same physical principles affect tumor growth and spreading between compartments. For our studies, we use healthy and cancerous breast cell lines of different malignancy as well as primary cells from human cervix carcinoma. We apply a set of techniques to study their mechanical properties and interactions. The Optical Stretcher is used for whole cell rheology, while Cell-cell-adhesion forces are directly measured with a modified AFM. In combination with 3D segregation experiments in droplet cultures we try to clarify the role of surface tension in tumor spreading.

  2. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake

    Science.gov (United States)

    Vaijayanthimala, Vairakkannu; Tzeng, Yan-Kai; Chang, Huan-Cheng; Li, Chung-Leung

    2009-10-01

    The labeling of cells with fluorescent nanoparticles is promising for various biomedical applications. The objective of this study is to evaluate the biocompatibility and the mechanism of the cellular uptake of fluorescent nanodiamonds (FNDs) in cancer cells (HeLa) and pre-adipocytes (3T3-L1). With flow cytometry and the use of a battery of metabolic and cytoskeletal inhibitors, we found that the mechanism of the FND uptake in both cells is by energy-dependent clathrin-mediated endocytosis. In addition, the surface charge of FND influences its cellular uptake, as the uptake of poly-L-lysine-coated FNDs is better than that of oxidative-acid-purified FNDs at the same concentration in regular medium with or without serum. We also confirm that the proliferative potential of FND-treated and untreated cells does not exhibit any significant differences when measured at bulk cultures, and more stringently at clonal cell density. Further biocompatibility studies indicate that the in vitro differentiation of 3T3-L1 pre-adipocytes and 489-2 osteoprogenitors is not affected by the FND treatment. Our results show that FNDs are biocompatible and ideal candidates for potential applications in human stem cell research.

  3. The cellular and molecular mechanisms of tissue repair and regeneration as revealed by studies in Xenopus

    Science.gov (United States)

    Li, Jingjing; Zhang, Siwei

    2016-01-01

    Abstract Survival of any living organism critically depends on its ability to repair and regenerate damaged tissues and/or organs during its lifetime following injury, disease, or aging. Various animal models from invertebrates to vertebrates have been used to investigate the molecular and cellular mechanisms of wound healing and tissue regeneration. It is hoped that such studies will form the framework for identifying novel clinical treatments that will improve the healing and regenerative capacity of humans. Amongst these models, Xenopus stands out as a particularly versatile and powerful system. This review summarizes recent findings using this model, which have provided fundamental knowledge of the mechanisms responsible for efficient and perfect tissue repair and regeneration.

  4. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion.

    Science.gov (United States)

    Dando, Samantha J; Mackay-Sim, Alan; Norton, Robert; Currie, Bart J; St John, James A; Ekberg, Jenny A K; Batzloff, Michael; Ulett, Glen C; Beacham, Ifor R

    2014-10-01

    The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.

  5. Two-step mechanism involving active-site conformational changes regulates human telomerase DNA binding.

    Science.gov (United States)

    Tomlinson, Christopher G; Moye, Aaron L; Holien, Jessica K; Parker, Michael W; Cohen, Scott B; Bryan, Tracy M

    2015-01-15

    The ribonucleoprotein enzyme telomerase maintains telomeres and is essential for cellular immortality in most cancers. Insight into the telomerase mechanism can be gained from syndromes such as dyskeratosis congenita, in which mutation of telomerase components manifests in telomere dysfunction. We carried out detailed kinetic and thermodynamic analyses of wild-type telomerase and two disease-associated mutations in the reverse transcriptase domain. Differences in dissociation rates between primers with different 3' ends were independent of DNA affinities, revealing that initial binding of telomerase to telomeric DNA occurs through a previously undescribed two-step mechanism involving enzyme conformational changes. Both mutations affected DNA binding, but through different mechanisms: P704S specifically affected protein conformational changes during DNA binding, whereas R865H showed defects in binding to the 3' region of the DNA. To gain further insight at the structural level, we generated the first homology model of the human telomerase reverse transcriptase domain; the positions of P704S and R865H corroborate their observed mechanistic defects, providing validation for the structural model. Our data reveal the importance of protein interactions with the 3' end of telomeric DNA and the role of protein conformational change in telomerase DNA binding, and highlight naturally occurring disease mutations as a rich source of mechanistic insight. PMID:25365545

  6. Cellular intrinsic mechanism affecting the outcome of AML treated with Ara-C in a syngeneic mouse model.

    Directory of Open Access Journals (Sweden)

    Wenjun Zhao

    Full Text Available The mechanisms underlying acute myeloid leukemia (AML treatment failure are not clear. Here, we established a mouse model of AML by syngeneic transplantation of BXH-2 derived myeloid leukemic cells and developed an efficacious Ara-C-based regimen for treatment of these mice. We proved that leukemic cell load was correlated with survival. We also demonstrated that the susceptibility of leukemia cells to Ara-C could significantly affect the survival. To examine the molecular alterations in cells with different sensitivity, genome-wide expression of the leukemic cells was profiled, revealing that overall 366 and 212 genes became upregulated or downregulated, respectively, in the resistant cells. Many of these genes are involved in the regulation of cell cycle, cellular proliferation, and apoptosis. Some of them were further validated by quantitative PCR. Interestingly, the Ara-C resistant cells retained the sensitivity to ABT-737, an inhibitor of anti-apoptosis proteins, and treatment with ABT-737 prolonged the life span of mice engrafted with resistant cells. These results suggest that leukemic load and intrinsic cellular resistance can affect the outcome of AML treated with Ara-C. Incorporation of apoptosis inhibitors, such as ABT-737, into traditional cytotoxic regimens merits consideration for the treatment of AML in a subset of patients with resistance to Ara-C. This work provided direct in vivo evidence that leukemic load and intrinsic cellular resistance can affect the outcome of AML treated with Ara-C, suggesting that incorporation of apoptosis inhibitors into traditional cytotoxic regimens merits consideration for the treatment of AML in a subset of patients with resistance to Ara-C.

  7. On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures

    Science.gov (United States)

    Karamooz Ravari, M. R.; Nasr Esfahani, S.; Taheri Andani, M.; Kadkhodaei, M.; Ghaei, A.; Karaca, H.; Elahinia, M.

    2016-02-01

    Shape memory alloy (such as NiTi) cellular lattice structures are a new class of advanced materials with many potential applications. The cost of fabrication of these structures however is high. It is therefore necessary to develop modeling methods to predict the functional behavior of these alloys before fabrication. The main aim of the present study is to assess the effects of geometry, microstructural imperfections and material asymmetric response of dense shape memory alloys on the mechanical response of cellular structures. To this end, several cellular and dense NiTi samples are fabricated using a selective laser melting process. Both cellular and dense specimens were tested in compression in order to obtain their stress-strain response. For modeling purposes, a three -dimensional (3D) constitutive model based on microplane theory which is able to describe the material asymmetry was employed. Five finite element models based on unit cell and multi-cell methods were generated to predict the mechanical response of cellular lattices. The results show the considerable effects of the microstructural imperfections on the mechanical response of the cellular lattice structures. The asymmetric material response of the bulk material also affects the mechanical response of the corresponding cellular structure.

  8. Early Passage Dependence of Mesenchymal Stem Cell Mechanics Influences Cellular Invasion and Migration.

    Science.gov (United States)

    Spagnol, Stephen T; Lin, Wei-Chun; Booth, Elizabeth A; Ladoux, Benoit; Lazarus, Hillard M; Dahl, Kris Noel

    2016-07-01

    The cellular structures and mechanical properties of human mesenchymal stem cells (hMSCs) vary significantly during culture and with differentiation. Previously, studies to measure mechanics have provided divergent results using different quantitative parameters and mechanical models of deformation. Here, we examine hMSCs prepared for clinical use and subject them to mechanical testing conducive to the relevant deformability associated with clinical injection procedures. Micropipette aspiration of hMSCs shows deformation as a viscoelastic fluid, with little variation from cell to cell within a population. After two passages, hMSCs deform as viscoelastic solids. Further, for clinical applicability during stem cell migration in vivo, we investigated the ability of hMSCs to invade into micropillar arrays of increasing confinement from 12 to 8 μm spacing between adjacent micropillars. We find that hMSC samples with reduced deformability and cells that are more solid-like with passage are more easily able to enter the micropillar arrays. Increased cell fluidity is an advantage for injection procedures and optimization of cell selection based on mechanical properties may enhance efficacy of injected hMSC populations. However, the ability to invade and migrate within tight interstitial spaces appears to be increased with a more solidified cytoskeleton, likely from increased force generation and contractility. Thus, there may be a balance between optimal injection survival and in situ tissue invasion. PMID:26581348

  9. Inhibitory mechanism of dimercaptopropanesulfonic acid (DMPS) in the cellular biomethylation of arsenic.

    Science.gov (United States)

    Wang, Shuping; Shi, Nan; Geng, Zhirong; Li, Xiangli; Hu, Xin; Wang, Zhilin

    2014-11-01

    Dimercaptopropanesulfonic acid (DMPS) has been approved for the treatment of arsenic poisoning through promoting arsenic excretion and modulating arsenic species. To clarify how DMPS regulates the excretion of arsenic species, we investigated the effects of DMPS on the biomethylation of arsenite (As(3+)) in HepG2 cells. In the experiments, we found that DMPS at low concentrations dramatically decreased the content of arsenic in HepG2 cells and inhibited the cellular methylation of As(3+). Three aspects, the expression of human arsenic (III) methyltransferase (hAS3MT), the accumulation of cellular reactive oxygen species (ROS) and the in vitro enzymatic methylation of arsenic, were considered to explain the reasons for the inhibition of DMPS in arsenic metabolism. The results suggested that DMPS competitively coordinated with As(3+) and monomethylarsonous acid (MMA(3+)) to inhibit the up-regulation of arsenic on the expression of hAS3MT and block arsenic involving in the enzymatic methylation. Moreover, DMPS eliminated arsenic-induced accumulation of ROS, which might contribute to the antidotal effects of DMPS on arsenic posing.

  10. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

    Science.gov (United States)

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho

    2015-06-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. PMID:26106145

  11. Mechanism of cellular uptake and impact of ferucarbotran on macrophage physiology.

    Directory of Open Access Journals (Sweden)

    Chung-Yi Yang

    Full Text Available Superparamagnetic iron oxide (SPIO nanoparticles are contrast agents used for magnetic resonance imaging. Ferucarbotran is a clinically approved SPIO-coated carboxydextran with a diameter of about 45-60 nm. We investigated the mechanism of cellular uptake of Ferucarbotran with a cell model using the murine macrophage cell line Raw 264.7. We observed a dose-dependent uptake of these SPIO particles by spectrophotometer analysis and also a dose-dependent increase in the granularity of the macrophages as determined by flow cytometry. There was a linear correlation between the side scattering mean value and iron content (P<0.001, R(2 = 0. 8048. For evaluation of the endocytotic pathway of these ingested SPIO particles, different inhibitors of the endocytotic pathways were employed. There was a significant decrease of side scattering counts in the cells and a less significant change in signal intensity based on magnetic resonance in the phenylarsine oxide-treated macrophages. After labeling with SPIO particles, the macrophages showed an increase in the production of reactive oxygen species at 2, 24, and 48 h; a decrease in mitochondrial membrane potential at 24 h; and an increase in cell proliferation at 24 h. We concluded that Ferucarbotran was internalized into macrophages via the clathrin-mediated pathway and can change the cellular behavior of these cells after labeling.

  12. A mathematical model of cortical bone remodeling at cellular level under mechanical stimulus

    Institute of Scientific and Technical Information of China (English)

    Qing-Hua Qin; Ya-Nan Wang

    2012-01-01

    A bone cell population dynamics model for cortical bone remodeling under mechanical stimulus is developed in this paper.The external experiments extracted from the literature which have not been used in the creation of the model are used to test the validity of the model.Not only can the model compare reasonably well with these experimental results such as the increase percentage of final values of bone mineral content (BMC) and bone fracture energy (BFE) among different loading schemes (which proves the validity of the model),but also predict the realtime development pattern of BMC and BFE,as well as the dynamics of osteoblasts (OBA),osteoclasts (OCA),nitric oxide (NO) and prostaglandin E2 (PGE2) for each loading scheme,which can hardly be monitored through experiment.In conclusion,the model is the first of its kind that is able to provide an insight into the quantitative mechanism of bone remodeling at cellular level by which bone cells are activated by mechanical stimulus in order to start resorption/formation of bone mass.More importantly,this model has laid a solid foundation based on which future work such as systemic control theory analysis of bone remodeling under mechanical stimulus can be investigated.The to-be identified control mechanism will help to develop effective drugs and combined nonpharmacological therapies to combat bone loss pathologies.Also this deeper understanding of how mechanical forces quantitatively interact with skeletal tissue is essential for the generation of bone tissue for tissue replacement purposes in tissue engineering.

  13. Molecular dissection of the cellular mechanisms involved in nickel hyperaccumulation in plants. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Salt, D.

    1998-06-01

    'Phytoremediation, the use of plants for environmental cleanup of pollutants, including toxic metals, holds the potential to allow the economic restoration of heavy metal and radionuclide contaminated sites. A number of terrestrial plants are known to naturally accumulate high levels of metals in their shoots (1--2% dry weight), and these plants have been termed metal-hyperaccumulators. Clearly, the genetic traits that determine metal-hyperaccumulation offers the potential for the development of practical phytoremediation processes. The long-term objective is to rationally design and generate plants ideally suited for phytoremediation using this unique genetic material. Initially, the strategy will focus on isolating and characterizing the key genetic information needed for expression of the metal-hyperaccumulation phenotype. Recently, histidine has been shown to play a major role in Ni hyperaccumulation. Based on this information the authors propose to investigate, at the molecular level, the role of histidine biosynthesis in Ni hyperaccumulation in Thlaspi goesingense, a Ni hyperaccumulator species.'

  14. Molecular Dissection of The Cellular Mechanisms Involved In Nickel Hyperaccumulation in Plants

    Energy Technology Data Exchange (ETDEWEB)

    David E. Salt

    2002-04-08

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advantage of the remarkable ability of hyperaccumulating plants to concentrate metals from the soil and accumulate them in their harvestable, above-ground tissues. However, to make use of the valuable genetic resources identified in metal hyperaccumulating species, it will be necessary to transfer this material to high biomass rapidly growing crop plants. These plants would then be ideally suited to the phytoremediation process, having the ability to produce large amount of metal-rich plant biomass for rapid harvest and soil cleanup. Although progress is being made in understanding the genetic basis of metal hyperaccumulation a more complete understanding will be necessary before we can take full advantage of the genetic potential of these plants.

  15. Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions.

    Science.gov (United States)

    Dubois, Vanessa; Laurent, Michaël; Boonen, Steven; Vanderschueren, Dirk; Claessens, Frank

    2012-05-01

    Androgens increase both the size and strength of skeletal muscle via diverse mechanisms. The aim of this review is to discuss the different cellular targets of androgens in skeletal muscle as well as the respective androgen actions in these cells leading to changes in proliferation, myogenic differentiation, and protein metabolism. Androgens bind and activate a specific nuclear receptor which will directly affect the transcription of target genes. These genes encode muscle-specific transcription factors, enzymes, structural proteins, as well as microRNAs. In addition, anabolic action of androgens is partly established through crosstalk with other signaling molecules such as Akt, myostatin, IGF-I, and Notch. Finally, androgens may also exert non-genomic effects in muscle by increasing Ca(2+) uptake and modulating kinase activities. In conclusion, the anabolic effect of androgens on skeletal muscle is not only explained by activation of the myocyte androgen receptor but is also the combined result of many genomic and non-genomic actions.

  16. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls

    Science.gov (United States)

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T. V.; Alyethodi, Rafeeque R.; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B.

    2015-12-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly ( P P < 0.01) with HSP70, representing that the change in the expression pattern of these genes is positive and synergistic. These may provide a foundation for understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in cattle.

  17. Cellular origin and developmental mechanisms during the formation of skin melanocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ernfors, Patrik, E-mail: patrik.ernfors@ki.se [Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm (Sweden)

    2010-05-01

    Melanocytes are derived from the neural crest (NC), which are transient multipotent cells arising by delamination from the developing dorsal neural tube. During recent years, signaling systems and molecular mechanisms of melanocyte development have been studied in detail, but the exact diversification of the NC into melanocytes and how they migrate, expand and disperse in the skin have not been fully understood. The recent finding that Schwann cell precursors (SCPs) of the growing nerve represents a stem cell niche from which various cell types, including Schwann cells, endoneural fibroblasts and melanocytes arise has exposed new knowledge on the cellular basis for melanocyte development. This opens for the identification of new factors and reinterpretation of old data on cell fate instructive, proliferative, survival and cell homing factors participating in melanocyte development.

  18. Cellular and molecular mechanisms of HGF/Met in the cardiovascular system.

    Science.gov (United States)

    Gallo, Simona; Sala, Valentina; Gatti, Stefano; Crepaldi, Tiziana

    2015-12-01

    Met tyrosine kinase receptor, also known as c-Met, is the HGF (hepatocyte growth factor) receptor. The HGF/Met pathway has a prominent role in cardiovascular remodelling after tissue injury. The present review provides a synopsis of the cellular and molecular mechanisms underlying the effects of HGF/Met in the heart and blood vessels. In vivo, HGF/Met function is particularly important for the protection of the heart in response to both acute and chronic insults, including ischaemic injury and doxorubicin-induced cardiotoxicity. Accordingly, conditional deletion of Met in cardiomyocytes results in impaired organ defence against oxidative stress. After ischaemic injury, activation of Met provides strong anti-apoptotic stimuli for cardiomyocytes through PI3K (phosphoinositide 3-kinase)/Akt and MAPK (mitogen-activated protein kinase) cascades. Recently, we found that HGF/Met is also important for autophagy regulation in cardiomyocytes via the mTOR (mammalian target of rapamycin) pathway. HGF/Met induces proliferation and migration of endothelial cells through Rac1 (Ras-related C3 botulinum toxin substrate 1) activation. In fibroblasts, HGF/Met antagonizes the actions of TGFβ1 (transforming growth factor β1) and AngII (angiotensin II), thus preventing fibrosis. Moreover, HGF/Met influences the inflammatory response of macrophages and the immune response of dendritic cells, indicating its protective function against atherosclerotic and autoimmune diseases. The HGF/Met axis also plays an important role in regulating self-renewal and myocardial regeneration through the enhancement of cardiac progenitor cells. HGF/Met has beneficial effects against myocardial infarction and endothelial dysfunction: the cellular and molecular mechanisms underlying repair function in the heart and blood vessels are common and include pro-angiogenic, anti-inflammatory and anti-fibrotic actions. Thus administration of HGF or HGF mimetics may represent a promising therapeutic agent for the

  19. Electrospun PCL/Gelatin composite fibrous scaffolds: mechanical properties and cellular responses.

    Science.gov (United States)

    Yao, Ruijuan; He, Jing; Meng, Guolong; Jiang, Bo; Wu, Fang

    2016-06-01

    Electrospinning of hybrid polymer has gained widespread interest by taking advantages of the biological property of the natural polymer and the mechanical property of the synthetic polymer. However, the effect of the blend ratio on the above two properties has been less reported despite the importance to balance these two properties in various tissue engineering applications. To this aim, we investigated the electrospun PCL/Gelatin composite fibrous scaffolds with different blend ratios of 4:1, 2:1, 1:1, 1:2, 1:4, respectively. The morphology of the electrospun samples was observed by SEM and the result showed that the fiber diameter distribution became more uniform with the increase of the gelatin content. The mechanical testing results indicated that the 2:1 PCL/Gelatin sample had both the highest tensile strength of 3.7 MPa and the highest elongation rate of about 90%. Surprisingly, the 2:1 PCL/Gelatin sample also showed the best mesenchymal stem cell responses in terms of attachment, spreading, and cytoskeleton organization. Such correlation might be partly due to the fact that the enhanced mechanical property, an integral part of the physical microenvironment, likely played an important role in regulating the cellular functions. Overall, our results indicated that the PCL/Gelatin sample with the blend ratio of 2:1 was a superior candidate for scaffolds for tissue engineering applications. PMID:27044505

  20. Cellular Mechanism of Inner Ear Genetic Disease, roles of Kv7.1 (KCNQ1) Channel

    Science.gov (United States)

    Mousavi Nik, Atefeh

    Potassium channels are the most diverse and widely distributed membrane protein in all living organisms. They have various roles in the body such as controlling membrane potential, cell volume, and cell migration. Many studies have shown that mutation in these channels is associated with different diseases for example: Hearing Defect, Cardiac Arrhythmia, Episodic Ataxia, Seizure and Neuromyotonia. One of the most important diseases associated with K+ channel mutations is called Jervell and Lange-Nielsen syndrome (JLNS). This disease causes bilateral congenital deafness and the patients also suffer from Long QT and they usually experience syncopal episodes in their life and eventually die as a result of cardiac arrest. The gene KCNQ1 encodes the Kv7.1 voltage gated potassium channel. This channel expresses in apical membrane of marginal cell in stria vasularis of cochlea and secret K+ ion to endolymp to keep the endocochlear potential stable, which is necessary for the inner ear to function properly. Kv7.1 channel also expresses in cardiac myocytes and mutation in this gene is associated with another syndrome called Romano-Ward syndrome (RWS). Although Romano-Ward patients have mutation in KCNQ1, similar to Jervell and Lange-Nielsen patients, they only suffer from cardiac defect, and their hearing is completely normal. Several studies identified that mutations in Kv7.1 gene is associated with JLNS and RWS, but the biophysical and cellular mechanisms of these mutations are still unknown. To determine the cellular mechanisms of JLNS and RWS, and to provide mechanistic insight on the functional outputs of JLNS versus RWS mutations, we generated several mutant forms of the human Kv7.1 ( KCNQ1) clone, using site-directed mutagenesis to define their sub-cellular localization and examined their electrophysiological properties. We identified JLNS and RWS mutations at the S4-S5-linker, the pore loop (P-loop) and the C-terminus of hKv7.1 which have been found to control

  1. Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species

    International Nuclear Information System (INIS)

    Developmental pathologies may result from endogenous or xenobiotic-enhanced formation of reactive oxygen species (ROS), which oxidatively damage cellular macromolecules and/or alter signal transduction. This minireview focuses upon several model drugs (phenytoin, thalidomide, methamphetamine), environmental chemicals (benzo[a]pyrene) and gamma irradiation to examine this hypothesis in vivo and in embryo culture using mouse, rat and rabbit models. Embryonic prostaglandin H synthases (PHSs) and lipoxygenases bioactivate xenobiotics to free radical intermediates that initiate ROS formation, resulting in oxidation of proteins, lipids and DNA. Oxidative DNA damage and embryopathies are reduced in PHS knockout mice, and in mice treated with PHS inhibitors, antioxidative enzymes, antioxidants and free radical trapping agents. Thalidomide causes embryonic DNA oxidation in susceptible (rabbit) but not resistant (mouse) species. Embryopathies are increased in mutant mice deficient in the antioxidative enzyme glucose-6-phosphate dehydrogenase (G6PD), or by glutathione (GSH) depletion, or inhibition of GSH peroxidase or GSH reductase. Inducible nitric oxide synthase knockout mice are partially protected. Inhibition of Ras or NF-kB pathways reduces embryopathies, implicating ROS-mediated signal transduction. Atm and p53 knockout mice deficient in DNA damage response/repair are more susceptible to xenobiotic or radiation embryopathies, suggesting a teratological role for DNA damage, consistent with enhanced susceptibility to methamphetamine in ogg1 knockout mice with deficient repair of oxidative DNA damage. Even endogenous embryonic oxidative stress carries a risk, since untreated G6PD- or ATM-deficient mice have increased embryopathies. Thus, embryonic processes regulating the balance of ROS formation, oxidative DNA damage and repair, and ROS-mediated signal transduction may be important determinants of teratological risk

  2. Cellular mechanisms of alpha herpesvirus egress: live cell fluorescence microscopy of pseudorabies virus exocytosis.

    OpenAIRE

    Hogue, Ian B.; Jens B Bosse; Jiun-Ruey Hu; Thiberge, Stephan Y.; Enquist, Lynn W.

    2014-01-01

    Egress of newly assembled herpesvirus particles from infected cells is a highly dynamic process involving the host secretory pathway working in concert with viral components. To elucidate the location, dynamics, and molecular mechanisms of alpha herpesvirus egress, we developed a live-cell fluorescence microscopy method to visualize the final transport and exocytosis of pseudorabies virus (PRV) particles in non-polarized epithelial cells. This method is based on total internal reflection fluo...

  3. Mechanisms involved in antibody- and complement-mediated allograft rejection

    OpenAIRE

    Wasowska, Barbara A.

    2010-01-01

    Antibody-mediated rejection has become critical clinically because this form of rejection is usually unresponsive to conventional anti-rejection therapy, and therefore, it has been recognized as a major cause of allograft loss. Our group developed experimental animal models of vascularized organ transplantation to study pathogenesis of antibody- and complement-mediated endothelial cell injury leading to graft rejection. In this review, we discuss mechanisms of antibody-mediated graft rejectio...

  4. Orosensory self-stimulation by sucrose involves brain dopaminergic mechanisms.

    Science.gov (United States)

    Schneider, L H

    1989-01-01

    The most convincing body of evidence supporting a role for brain dopaminergic mechanisms in sweet taste reward has been obtained using the sham-feeding rat. In rats prepared with a chronic gastric fistula and tested with the cannula open, intake is a direct function of the palatability of the solution offered as well as of the state of food deprivation. Because essentially none of the ingested fluid passes on to the intestine, negative postingestive feedback is eliminated. Thus, the relative orosensory/hedonic potency of the food determines and sustains the rate of sham intake; long periods of food deprivation are not required. In this way, the sham feeding of sweet solutions may be considered a form of oral self-stimulation behavior and afford a preparation through which the neurochemical and neuranatomical substrates of sweet taste reward may be identified. The results obtained in the series of experiments summarized in this paper clearly indicate that central D-1 and D-2 receptor mechanisms are critical for the orosensory self-stimulation by sucrose in the rat. In conclusion, I suggest that such investigations of the roles of brain dopaminergic mechanisms in the sucrose sham-feeding rat preparation may further our understanding of normal and aberrant attractions to sweet fluids in humans (see Cabanac, Drewnowski, and Halmi, this volume), as an innate, positive affective response of human neonates to sucrose and the sustained positive hedonic ratings for glucose when tasted but not when consumed have demonstrated. PMID:2699194

  5. Cellular mechanisms of tissue fibrosis. 6. Purinergic signaling and response in fibroblasts and tissue fibrosis.

    Science.gov (United States)

    Lu, David; Insel, Paul A

    2014-05-01

    Tissue fibrosis occurs as a result of the dysregulation of extracellular matrix (ECM) synthesis. Tissue fibroblasts, resident cells responsible for the synthesis and turnover of ECM, are regulated via numerous hormonal and mechanical signals. The release of intracellular nucleotides and their resultant autocrine/paracrine signaling have been shown to play key roles in the homeostatic maintenance of tissue remodeling and in fibrotic response post-injury. Extracellular nucleotides signal through P2 nucleotide and P1 adenosine receptors to activate signaling networks that regulate the proliferation and activity of fibroblasts, which, in turn, influence tissue structure and pathologic remodeling. An important component in the signaling and functional responses of fibroblasts to extracellular ATP and adenosine is the expression and activity of ectonucleotideases that attenuate nucleotide-mediated signaling, and thereby integrate P2 receptor- and subsequent adenosine receptor-initiated responses. Results of studies of the mechanisms of cellular nucleotide release and the effects of this autocrine/paracrine signaling axis on fibroblast-to-myofibroblast conversion and the fibrotic phenotype have advanced understanding of tissue remodeling and fibrosis. This review summarizes recent findings related to purinergic signaling in the regulation of fibroblasts and the development of tissue fibrosis in the heart, lungs, liver, and kidney. PMID:24352335

  6. Modeling mechanical behaviors of composites with various ratios of matrixeinclusion properties using movable cellular automaton method

    Institute of Scientific and Technical Information of China (English)

    A.Yu. SMOLIN; E.V. SHILKO; S.V. ASTAFUROV; I.S. KONOVALENKO; S.P. BUYAKOVA; S.G. PSAKHIE

    2015-01-01

    Two classes of composite materials are considered: classical metaleceramic composites with reinforcing hard inclusions as well as hard ceramics matrix with soft gel inclusions. Movable cellular automaton method is used for modeling the mechanical behaviors of such different heterogeneous materials. The method is based on particle approach and may be considered as a kind of discrete element method. The main feature of the method is the use of many-body forces of inter-element interaction within the formalism of simply deformable element approximation. It was shown that the strength of reinforcing particles and the width of particle-binder interphase boundaries had determining influence on the service characteristics of metaleceramic composite. In particular, the increasing of strength of carbide inclusions may lead to significant increase in the strength and ultimate strain of composite material. On the example of porous zirconia ceramics it was shown that the change in the mechanical properties of pore surface leads to the corresponding change in effective elastic modulus and strength limit of the ceramic sample. The less is the pore size, the more is this effect. The increase in the elastic properties of pore surface of ceramics may reduce its fracture energy.

  7. Proton cellular influx as a probable mechanism of variation potential influence on photosynthesis in pea.

    Science.gov (United States)

    Sukhov, Vladimir; Sherstneva, Oksana; Surova, Lyubov; Katicheva, Lyubov; Vodeneev, Vladimir

    2014-11-01

    Electrical signals (action potential and variation potential, VP) caused by environmental stimuli are known to induce various physiological responses in plants, including changes in photosynthesis; however, their functional mechanisms remain unclear. In this study, the influence of VP on photosynthesis in pea (Pisum sativum L.) was investigated and the proton participation in this process analysed. VP, induced by local heating, inactivated photosynthesis and activated respiration, with the initiation of the photosynthetic response connected with inactivation of the photosynthetic dark stage; however, direct VP influence on the light stage was also probable. VP generation was accompanied with pH increases in apoplasts (0.17-0.30 pH unit) and decreases in cytoplasm (0.18-0.60 pH unit), which probably reflected H(+) -ATPase inactivation and H(+) influx during this electrical event. Imitation of H(+) influx using the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) induced a photosynthetic response that was similar with a VP-induced response. Experiments on chloroplast suspensions showed that decreased external pH also induced an analogous response and that its magnitude depended on the magnitude of pH change. Thus, the present results showed that proton cellular influx was the probable mechanism of VP's influence on photosynthesis in pea. Potential means of action for this influence are discussed.

  8. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements.

    Science.gov (United States)

    Liu, Pengfei; Erez, Ayelet; Nagamani, Sandesh C Sreenath; Dhar, Shweta U; Kołodziejska, Katarzyna E; Dharmadhikari, Avinash V; Cooper, M Lance; Wiszniewska, Joanna; Zhang, Feng; Withers, Marjorie A; Bacino, Carlos A; Campos-Acevedo, Luis Daniel; Delgado, Mauricio R; Freedenberg, Debra; Garnica, Adolfo; Grebe, Theresa A; Hernández-Almaguer, Dolores; Immken, LaDonna; Lalani, Seema R; McLean, Scott D; Northrup, Hope; Scaglia, Fernando; Strathearn, Lane; Trapane, Pamela; Kang, Sung-Hae L; Patel, Ankita; Cheung, Sau Wai; Hastings, P J; Stankiewicz, Paweł; Lupski, James R; Bi, Weimin

    2011-09-16

    Complex genomic rearrangements (CGRs) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here, we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated, we observed localization and multiple copy number changes including deletions, duplications, and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism's life cycle.

  9. Reduction of intracellular pH by tenidap. Involvement of cellular anion transporters in the pH change.

    Science.gov (United States)

    McNiff, P; Robinson, R P; Gabel, C A

    1995-10-26

    Tenidap [5-chloro-2,3-dihydro-3-(hydroxy-2-thienylmethylene)-2-oxo-1H- indole-1-carboxamide], a novel antirheumatic agent, produces a rapid and sustained intracellular acidification when applied to cells in culture. To investigate the mechanism by which this change in ionic homeostasis is achieved, the acidification activities of structural analogs of tenidap were determined, and the movements of [14C]tenidap into and out of cells were explored. The acidification activity of tenidap was enhanced by lowering extracellular pH, suggesting that the free acid species was required for this process. Consistent with this requirement, a non-acidic analog of tenidap did not produce a change in intracellular pH (pHi). In contrast, multihalogenated derivatives of tenidap produced greater changes in pHi than did tenidap, and one analog produced a transient acidification from which the cell recovered; this recovery, however, was blocked by an inhibitor of the Na+/H+ antiporter. Fibroblasts incubated with [14C]tenidap achieved within 5 min a level of cell-associated drug that remained constant during longer incubations. Simultaneous addition of the electrogenic ionophore valinomycin or the P-glycoprotein inhibitor 4-(3,4-dihydro-6,7-dimethoxy-2(1H)-isoquinolinyl)-N-[2-(3,4-dimethoxyphe nyl) ethyl]-6,7-dimethoxy-2-quinazolinamine (CP-100,356) caused a time- and concentration-dependent increase in the level of cell-associated [14C]tenidap; other agents tested did not promote this enhanced cellular accumulation. [14C]Tenidap accumulated by fibroblasts in the presence of CP-100,356 subsequently was released when these cells were placed in a tenidap- and CP-100,356-free medium. Importantly, several agents that are known to inhibit anion transport processes, including alpha-cyano-beta-(1-phenylindol-3-yl) acrylate, 5-nitro-2(3-phenylpropylamino)-benzoic acid, and meclofenamic acid, inhibited efflux of [14C]tenidap. In contrast, ethacrynic acid and 4,4'-diisothiocyanatostilbene-2

  10. Kinetics and mechanisms of reactions involving small aromatic reactive intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M.C. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    Small aromatic radicals such as C{sub 6}H{sub 5}, C{sub 6}H{sub 5}O and C{sub 6}H{sub 4} are key prototype species of their homologs. C{sub 6}H{sub 5} and its oxidation product, C{sub 6}H{sub 5}O are believed to be important intermediates which play a pivotal role in hydrocarbon combustion, particularly with regard to soot formation. Despite their fundamental importance, experimental data on the reaction mechanisms and reactivities of these species are very limited. For C{sub 6}H{sub 5}, most kinetic data except its reactions with NO and NO{sub 2}, were obtained by relative rate measurements. For C{sub 6}H{sub 5}O, the authors have earlier measured its fragmentation reaction producing C{sub 5}H{sub 5} + CO in shock waves. For C{sub 6}H{sub 4}, the only rate constant measured in the gas phase is its recombination rate at room temperature. The authors have proposed to investigate systematically the kinetics and mechanisms of this important class of molecules using two parallel laser diagnostic techniques--laser resonance absorption (LRA) and resonance enhanced multiphoton ionization mass spectrometry (REMPI/MS). In the past two years, study has been focused on the development of a new multipass adsorption technique--the {open_quotes}cavity-ring-down{close_quotes} technique for kinetic applications. The preliminary results of this study appear to be quite good and the sensitivity of the technique is at least comparable to that of the laser-induced fluorescence method.

  11. A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia.

    Science.gov (United States)

    Bouquet, Fanny; Ousset, Marielle; Biard, Denis; Fallone, Frédérique; Dauvillier, Stéphanie; Frit, Philippe; Salles, Bernard; Muller, Catherine

    2011-06-01

    DNA-dependent protein kinase (DNA-PK) is involved in DNA double-strand break (DSB) signalling and repair. We report that DNA-PK is activated by mild hypoxia conditions (0.1-1% O₂) as shown by (1) its autophosphorylation on Ser2056, and (2) its mobilisation from a soluble nucleoplasmic compartment to a less extractable nuclear fraction. The recruitment of DNA-PK was not followed by activation and recruitment of the XRCC4-DNA-ligase-IV complex, suggesting that DSBs are not responsible for activation of DNA-PK. To unravel the mechanism of DNA-PK activation, we show that exposure of cells to trichostatin A, a histone deacetylase inhibitor, leads to DNA-PK autophosphorylation and relocalisation to DNA. Histone acetylation (mainly H3K14) is increased in hypoxic cells and treatment with anacardic acid, an inhibitor of histone acetyl transferase, prevented both histone modifications and DNA-PK activation in hypoxic conditions. Importantly, in using either silenced DNA-PK cells or cells exposed to a specific DNA-PK inhibitor (NU7026), we demonstrated that hypoxic DNA-PK activation positively regulates the key transcription factor HIF-1 and one subsequent target gene, GLUT1. Our results show that hypoxia initiates chromatin modification and consequently DNA-PK activation, which positively regulate cellular oxygen-sensing and oxygen-signalling pathways. PMID:21576354

  12. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    Directory of Open Access Journals (Sweden)

    Tambutte Sylvie

    2009-08-01

    Full Text Available Abstract Background Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. Results In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28°C to 32°C over 15 days. A second control set kept at constant temperature (28°C. The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching and the non stressed states (control were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich. Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress

  13. Mechanisms and secondary factors involved in the induction of radiation transformation in vitro

    International Nuclear Information System (INIS)

    The long term of this research program was to gain information concerning the mechanisms that determine the carcinogenic effects of ionizing radiation, particularly high LET radiation exposure. The experimental approach involves parallel studies of the induction of malignant transformation in BALB/3T3 cells and of specific gene mutations in human lymphoblastoid cells. Emphasis was on the biologic effects of internally incorporated Auger electron emitting radionuclides and the initiation of studies to determine the effects of low dose-rate neutron exposure. Auger electron irradiation sever as a model for high LET-type radiation effects and as an experimental tool for studying the effects of radiation at specific sites within the cell. Auger-emitting radiosotopes are commonly used in clinical nuclear medicine, rendering them a potential hazard to human populations. We examined the influence of cellular localization of Auger-emitting radionuclides and the spectrum of energy distribution in DNA on their mutagenic, cytogenetic, and transformational effects. The effects of 125I (an energetic beta emitter) were compared. We studied the induction of cytogenetic changes by 125I exposure of the cell membrane, as well as its potential to promote (enhance) transformation initiated by low dose external x-ray exposure. We will investigate the Relative Biological Effectiveness for mutagenesis and transformation of low doses of fast neutrons delivered continuously at variable low dose-rates. 34 refs., 1 tab

  14. Mechanisms involved in alternariol-induced cell cycle arrest

    International Nuclear Information System (INIS)

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15–30 μM almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 μM) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 μM for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  15. Mechanisms involved in alternariol-induced cell cycle arrest

    Energy Technology Data Exchange (ETDEWEB)

    Solhaug, A., E-mail: Anita.Solhaug@vetinst.no [Norwegian Veterinary Institute, Oslo (Norway); Vines, L.L. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Ivanova, L.; Spilsberg, B. [Norwegian Veterinary Institute, Oslo (Norway); Holme, J.A. [Norwegian Institute of Public Health, Division of Environmental Medicine, Oslo (Norway); Pestka, J. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Collins, A. [University of Oslo, Department of Nutrition, Faculty of Medicine, Oslo (Norway); Eriksen, G.S. [Norwegian Veterinary Institute, Oslo (Norway)

    2012-10-15

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15-30 {mu}M almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 {mu}M) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 {mu}M for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  16. Attenuation of cellular antioxidant defense mechanisms in kidney of rats intoxicated with carbofuran.

    Science.gov (United States)

    Kaur, Bhupindervir; Khera, Alka; Sandhir, Rajat

    2012-10-01

    Carbofuran, an anticholinestrase carbamate, is commonly used as an insecticide. Its toxic effect on kidney is less established. The present study was designed to investigate the effect of carbofuran on kidneys and to understand the mechanism involved in its nephrotoxicity. Male Wistar rats were divided into two groups of eight animals each; control animals received sunflower oil (vehicle) and carbofuran exposed animals were treated with carbofuran (1 mg/kg body weight) orally for 28 days. At the end of the treatment, significant increase was observed in urea and creatinine levels in serum along with the inhibition of acetylcholinesterase, suggesting nephrotoxicity. The antioxidant defense system of animals treated with carbofuran was altered in terms of increased lipid peroxidation, reduced glutathione, and total thiols and decreased activity of antioxidant enzymes (superoxide dismutase and catalase). The results indicate that carbofuran is nephrotoxic and increased oxidative stress appears to be involved in its nephrotoxic effects.

  17. Characterization of Wave Dispersion in Viscoelastic Cellular Assemblies by Doublet Mechanics

    Institute of Scientific and Technical Information of China (English)

    JIN Yan-Fang; XIONG Chun-Yang; FANG Jing; FERRARI Mauro

    2009-01-01

    Using the Voigt model, we analyze wave propagation in viscoelastic granular media with a monatomic lattice, planar simple cubic package and cubical-tetrahedral assembly within the context of doublet mechanics. Microstrains of elongation between the doublet particles are considered in the models. Wave dispersive relations are derived from dynamic equations of the particles involved in the media, and phase velocities and attenuations of the dispersive waves are obtained for the different assemblies. Variations in these dispersion characteristics are analyzed with the changes of cell interval, modulus, and wave frequency. The relations between micro-constants and macro-parameters are presented under the condition of non-scale continuity of the media.

  18. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Michinao [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Iwanaga, Kenjiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Habu, Manabu [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Yoshioka, Izumi [Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan)

    2011-02-25

    Research highlights: {yields} In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. {yields} MG63 cells were incubated with BMP-2 and HA for various time periods. {yields} Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. {yields} HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and

  19. Mechanisms involved in calcium oxalate endocytosis by Madin-Darby canine kidney cells

    Directory of Open Access Journals (Sweden)

    A.H. Campos

    2000-01-01

    Full Text Available Calcium oxalate (CaOx crystals adhere to and are internalized by tubular renal cells and it seems that this interaction is related (positively or negatively to the appearance of urinary calculi. The present study analyzes a series of mechanisms possibly involved in CaOx uptake by Madin-Darby canine kidney (MDCK cells. CaOx crystals were added to MDCK cell cultures and endocytosis was evaluated by polarized light microscopy. This process was inhibited by an increase in intracellular calcium by means of ionomycin (100 nM; N = 6; 43.9% inhibition; P<0.001 or thapsigargin (1 µM; N = 6; 33.3% inhibition; P<0.005 administration, and via blockade of cytoskeleton assembly by the addition of colchicine (10 µM; N = 8; 46.1% inhibition; P<0.001 or cytochalasin B (10 µM; N = 8; 34.2% inhibition; P<0.001. Furthermore, CaOx uptake was reduced when the activity of protein kinase C was inhibited by staurosporine (10 nM; N = 6; 44% inhibition; P<0.01, or that of cyclo-oxygenase by indomethacin (3 µM; N = 12; 17.2% inhibition; P<0.05; however, the uptake was unaffected by modulation of potassium channel activity with glibenclamide (3 µM; N = 6, tetraethylammonium (1 mM; N = 6 or cromakalim (1 µM; N = 6. Taken together, these data indicate that the process of CaOx internalization by renal tubular cells is similar to the endocytosis reported for other systems. These findings may be relevant to cellular phenomena involved in early stages of the formation of renal stones.

  20. Multiple Molecular and Cellular Mechanisms of Action of Lycopene in Cancer Inhibition

    Directory of Open Access Journals (Sweden)

    Cristina Trejo-Solís

    2013-01-01

    Full Text Available Epidemiological studies suggest that including fruits, vegetables, and whole grains in regular dietary intake might prevent and reverse cellular carcinogenesis, reducing the incidence of primary tumours. Bioactive components present in food can simultaneously modulate more than one carcinogenic process, including cancer metabolism, hormonal balance, transcriptional activity, cell-cycle control, apoptosis, inflammation, angiogenesis and metastasis. Some studies have shown an inverse correlation between a diet rich in fruits, vegetables, and carotenoids and a low incidence of different types of cancer. Lycopene, the predominant carotenoid found in tomatoes, exhibits a high antioxidant capacity and has been shown to prevent cancer, as evidenced by clinical trials and studies in cell culture and animal models. In vitro studies have shown that lycopene treatment can selectively arrest cell growth and induce apoptosis in cancer cells without affecting normal cells. In vivo studies have revealed that lycopene treatment inhibits tumour growth in the liver, lung, prostate, breast, and colon. Clinical studies have shown that lycopene protects against prostate cancer. One of the main challenges in cancer prevention is the integration of new molecular findings into clinical practice. Thus, the identification of molecular biomarkers associated with lycopene levels is essential for improving our understanding of the mechanisms underlying its antineoplastic activity.

  1. Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis.

    Science.gov (United States)

    Borow, Kenneth M; Nelson, John R; Mason, R Preston

    2015-09-01

    Residual cardiovascular (CV) risk remains in dyslipidemic patients despite intensive statin therapy, underscoring the need for additional intervention. Eicosapentaenoic acid (EPA), an omega-3 polyunsaturated fatty acid, is incorporated into membrane phospholipids and atherosclerotic plaques and exerts beneficial effects on the pathophysiologic cascade from onset of plaque formation through rupture. Specific salutary actions have been reported relating to endothelial function, oxidative stress, foam cell formation, inflammation, plaque formation/progression, platelet aggregation, thrombus formation, and plaque rupture. EPA also improves atherogenic dyslipidemia characterized by reduction of triglycerides without raising low-density lipoprotein cholesterol. Other beneficial effects of EPA include vasodilation, resulting in blood pressure reductions, as well as improved membrane fluidity. EPA's effects are at least additive to those of statins when given as adjunctive therapy. In this review, we present data supporting the biologic plausibility of EPA as an anti-atherosclerotic agent with potential clinical benefit for prevention of CV events, as well as its cellular effects and molecular mechanisms of action. REDUCE-IT is an ongoing, randomized, controlled study evaluating whether the high-purity ethyl ester of EPA (icosapent ethyl) at 4 g/day combined with statin therapy is superior to statin therapy alone for reducing CV events in high-risk patients with mixed dyslipidemia. The results from this study are expected to clarify the role of EPA as adjunctive therapy to a statin for reduction of residual CV risk.

  2. Novel cellular mechanisms for neuroprotection in ischemic preconditioning: a view from inside organelles

    Directory of Open Access Journals (Sweden)

    Maria Josè eSisalli

    2015-05-01

    Full Text Available Ischemic preconditioning (IPC represents an important adaptation mechanism of CNS, which results in its increased tolerance to the lethal cerebral ischemia. The molecular mechanisms responsible for the induction and maintenance of ischemic tolerance in the brain are complex and not yet completely clarified. In the last ten years great attention has been devoted to unravel the intracellular pathways activated by preconditioning, and responsible for the establishing of the tolerant phenotype. Indeed, recent papers have been published supporting the hypothesis that mitochondria might act as master regulators of preconditioning-triggered endogenous neuroprotection due to their ability to control cytosolic calcium homeostasis. More interestingly, the demonstration that functional alterations in the ability of mitochondria and Endoplasmic Reticulum (ER managing calcium homeostasis during ischemia, opened a new line of research focused to the role played by mitochondria and ER cross-talk in the pathogenesis of cerebral ischemia in order to identify new molecular mechanisms involved in the ischemic tolerance. In line with these findings, and considering that the expression of the three isoforms of the sodium calcium exchanger (NCX, NCX1, NCX2 and NCX3, mainly responsible for the regulation of Ca2+ homeostasis, was reduced during cerebral ischemia, it was investigated whether these proteins, might play a role in neuroprotection induced by ischemic tolerance. In the present review evidence supporting the involvement of ER and mitochondria interaction within the preconditioning paradigm will be provided. In particular, the key role played by NCXs in the regulation of Ca2+-homeostasis at the different subcellular compartments, will be discussed as new molecular mechanism proposed for the establishing of ischemic tolerant phenotype .

  3. Cellular polarization: Interaction between extrinsic bounded noises and the wave-pinning mechanism

    Science.gov (United States)

    de Franciscis, Sebastiano; d'Onofrio, Alberto

    2013-09-01

    Cell polarization (cued or uncued) is a fundamental mechanism in cell biology. As an alternative to the classical Turing bifurcation, it has been proposed that the onset of cell polarity might arise by means of the well-known phenomenon of wave-pinning [Gamba , Proc. Natl. Acad. Sci. USAPNASA60027-842410.1073/pnas.0503974102 102, 16927 (2005)]. A particularly simple and elegant deterministic model of cell polarization based on the wave-pinning mechanism has been proposed by Edelstein-Keshet and coworkers [Biophys. J.BIOJAU0006-349510.1529/biophysj.107.120824 94, 3684 (2008)]. This model consists of a small biomolecular network where an active membrane-bound factor interconverts into its inactive form that freely diffuses in the cell cytosol. However, biomolecular networks do communicate with other networks as well as with the external world. Thus, their dynamics must be considered as perturbed by extrinsic noises. These noises may have both a spatial and a temporal correlation, and in any case they must be bounded to preserve the biological meaningfulness of the perturbed parameters. Here we numerically show that the inclusion of external spatiotemporal bounded parametric perturbations in the above wave-pinning-based model of cellular polarization may sometimes destroy the polarized state. The polarization loss depends on both the extent of temporal and spatial correlations and on the kind of noise employed. For example, an increase of the spatial correlation of the noise induces an increase of the probability of cell polarization. However, if the noise is spatially homogeneous then the polarization is lost in the majority of cases. These phenomena are independent of the type of noise. Conversely, an increase of the temporal autocorrelation of the noise induces an effect that depends on the model of noise.

  4. Phytoplankton calcification as an effective mechanism to alleviate cellular calcium poisoning

    Science.gov (United States)

    Müller, M. N.; Ramos, J. Barcelos e.; Schulz, K. G.; Riebesell, U.; Kaźmierczak, J.; Gallo, F.; Mackinder, L.; Li, Y.; Nesterenko, P. N.; Trull, T. W.; Hallegraeff, G. M.

    2015-11-01

    Marine phytoplankton have developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 μmol L-1 in the presence of seawater Ca2+ concentrations of 10 mmol L-1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, phytoplankton taxonomic groups appear to have evolved different strategies, which may affect their ability to cope with changes in seawater Ca2+ concentrations in their environment on geological timescales. For example, the Cretaceous (145 to 66 Ma), an era known for the high abundance of coccolithophores and the production of enormous calcium carbonate deposits, exhibited seawater calcium concentrations up to 4 times present-day levels. We show that calcifying coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica and Coccolithus braarudii) are able to maintain their relative fitness (in terms of growth rate and photosynthesis) at simulated Cretaceous seawater calcium concentrations, whereas these rates are severely reduced under these conditions in some non-calcareous phytoplankton species (Chaetoceros sp., Ceratoneis closterium and Heterosigma akashiwo). Most notably, this also applies to a non-calcifying strain of E. huxleyi which displays a calcium sensitivity similar to the non-calcareous species. We hypothesize that the process of calcification in coccolithophores provides an efficient mechanism to alleviate cellular calcium poisoning and thereby offered a potential key evolutionary advantage, responsible for the proliferation of coccolithophores during times of high seawater calcium concentrations. The exact function of calcification and the reason behind the highly ornate physical structures of coccoliths remain elusive.

  5. Crystal structure of a murine α-class glutathione S-transferase involved in cellular defense against oxidative stress

    NARCIS (Netherlands)

    Krengel, Ute; Schröter, Klaus-Hasso; Hoier, Helga; Arkema, Anita; Kalk, Kor H.; Zimniak, Piotr; Dijkstra, Bauke W.

    1998-01-01

    Glutathione S-transferases (GSTs) are ubiquitous multifunctional enzymes which play a key role in cellular detoxification. The enzymes protect the cells against toxicants by conjugating them to glutathione. Recently, a novel subgroup of α-class GSTs has been identified with altered substrate specifi

  6. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Cellular and molecular mechanisms of heat stress related to bovine ovarian function.

    Science.gov (United States)

    Roth, Z

    2015-05-01

    In light of the intensive genetic selection for high milk production and the onset of global warming, it seems that the reduced fertility of lactating cows during the summer will worsen in coming years. Although not entirely clear, the mechanism appears to be multifactorial in nature. It includes alterations in follicular development, depression of follicular dominance, and impairment of steroidogenesis and gonadotropin secretion. Heat-induced perturbations in the physiology of the follicle-enclosed oocyte have also been documented, expressed by impaired cleavage rate and reduced developmental competence. With respect to the oocyte, alterations include an increase in PUFA in the membrane, reactive oxygen species, ceramide formation and caspase activity, and induction of apoptosis via the sphingomyelin and/or mitochondrial pathways. New insight into cellular and molecular alterations has revealed that heat induces perturbations in both nuclear and cytoplasmic maturation events, such as resumption of meiosis, metaphase II plate formation, cytoskeleton rearrangement, and translocation of cortical granules. Alterations in mitochondrial distribution (i.e., low proportion of category I mitochondria) and function (i.e., low membrane potential) have recently been reported for oocytes collected during the summer. These were associated with impaired expression of both nuclear (succinate dehydrogenase subunit [SDHD], adenosine triphosphate [ATP] synthase subunit beta [ATP5B]), mitochondrially NADH dehydrogenase subunit 2 (ND2), and mitochondiral (cytochrome c oxidase subunit II [MT-CO2] and cytochrome b [MT-CYB]) genes that are crucial in the mitochondrial respiratory chain. In addition, season-induced alteration in the stored maternal mRNA has been documented, expressed by reduced transcript levels (oocyte maturation factor MOS [C-MOS], growth differentiation factor 9 [GDF9], POU domain class 5 transcription factor 1 [POU5F1], and glyceraldehyde-3-phosphate dehydrogenase

  7. Expression, cellular localization, and involvement of the pentose phosphate pathway enzymes in the regulation of ram sperm capacitation.

    Science.gov (United States)

    Luna, C; Serrano, E; Domingo, J; Casao, A; Pérez-Pé, R; Cebrián-Pérez, J A; Muiño-Blanco, T

    2016-08-01

    Spermatozoa require substantially more ATP than other cells, not only for sustaining sperm motility but also for regulating protein phosphorylation during capacitation. In this study, we have reported for the first time the presence of the two key enzymes of the pentose phosphate pathway (PPP), glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in ovine spermatozoa by indirect immunofluorescence, Western blotting, in-gel activity, and reverse transcription polymerase chain reaction analysis. We found that the activity of both enzymes significantly increased after in vitro capacitation in the presence of high-cAMP levels, with a concomitant increase in protein tyrosine phosphorylation and in the proportion of sperm-capacitated pattern assessed by the chlortetracycline staining. These results suggest that PPP is related with the progress of capacitation and that a relationship between calcium compartmentalization, protein tyrosine phosphorylation and PPP seems to exist. This is the first report that shows a connection between the PPP, cAMP/PKA signaling pathways and sperm capacitation. These findings can be of high-biological importance to improve our knowledge of the biochemical mechanisms involved in the acquisition of mammalian sperm functional competence and, ultimately, fertility.

  8. Dietary administration of scallion extract effectively inhibits colorectal tumor growth: cellular and molecular mechanisms in mice.

    Directory of Open Access Journals (Sweden)

    Palanisamy Arulselvan

    Full Text Available Colorectal cancer is a common malignancy and a leading cause of cancer death worldwide. Diet is known to play an important role in the etiology of colon cancer and dietary chemoprevention is receiving increasing attention for prevention and/or alternative treatment of colon cancers. Allium fistulosum L., commonly known as scallion, is popularly used as a spice or vegetable worldwide, and as a traditional medicine in Asian cultures for treating a variety of diseases. In this study we evaluated the possible beneficial effects of dietary scallion on chemoprevention of colon cancer using a mouse model of colon carcinoma (CT-26 cells subcutaneously inoculated into BALB/c mice. Tumor lysates were subjected to western blotting for analysis of key inflammatory markers, ELISA for analysis of cytokines, and immunohistochemistry for analysis of inflammatory markers. Metabolite profiles of scallion extracts were analyzed by LC-MS/MS. Scallion extracts, particularly hot-water extract, orally fed to mice at 50 mg (dry weight/kg body weight resulted in significant suppression of tumor growth and enhanced the survival rate of test mice. At the molecular level, scallion extracts inhibited the key inflammatory markers COX-2 and iNOS, and suppressed the expression of various cellular markers known to be involved in tumor apoptosis (apoptosis index, proliferation (cyclin D1 and c-Myc, angiogenesis (VEGF and HIF-1α, and tumor invasion (MMP-9 and ICAM-1 when compared with vehicle control-treated mice. Our findings may warrant further investigation of the use of common scallion as a chemopreventive dietary agent to lower the risk of colon cancer.

  9. A Single Chance to Contact Multiple Targets: Distinct Osteocyte Morphotypes Shed Light on the Cellular Mechanism Ensuring the Robust Formation of Osteocytic Networks.

    Science.gov (United States)

    Fritz, Alan; Bertin, Ariana; Hanna, Patricia; Nualart, Francisco; Marcellini, Sylvain

    2016-07-01

    The formation of the complex osteocytic network relies on the emission of long cellular processes involved in communication, mechanical strain sensing, and bone turnover control. Newly deposited osteocytic processes rapidly become trapped within the calcifying matrix, and, therefore, they must adopt their definitive conformation and contact their targets in a single morphogenetic event. However, the cellular mechanisms ensuring the robustness of this unique mode of morphogenesis remain unknown. To address this issue, we examined the developing calvaria of the amphibian Xenopus tropicalis by confocal, two-photon, and super-resolution imaging, and described flattened osteocytes lying within a woven bone structured in lamellae of randomly oriented collagen fibers. While most cells emit peripheral and perpendicular processes, we report two osteocytes morphotypes, located at different depth within the bone matrix and exhibiting distinct number and orientation of perpendicular cell processes. We show that this pattern is conserved with the chick Gallus gallus and suggest that the cellular microenvironment, and more particularly cell-cell contact, plays a fundamental role in the induction and stabilization of osteocytic processes. We propose that this intrinsic property might have been evolutionarily selected for its ability to robustly generate self-organizing osteocytic networks harbored by the wide variety of bone shapes and architectures found in extant and extinct vertebrates. PMID:27381191

  10. Microstructures, mechanical behavior, cellular response, and hemocompatibility of bulk ultrafine-grained pure tantalum.

    Science.gov (United States)

    Nie, F L; Zheng, Y F; Wang, Y; Wang, J T

    2014-02-01

    Bulk ultrafine-grained (UFG) pure Ta had been successfully prepared by equal channel angular pressing (ECAP) technique till eight passes. The 1st, 2nd, 4th, and 8th ECAPed Ta samples were investigated in the current study, with the 0th ECAPed Ta sample as the microcrystalline counterpart control. The microstructure and grain size distribution were characterized by X-ray diffractometer patterns, scanning electron microscopy, and transmission electron microscopy analysis by means of histogram. Although the mechanical behavior of all the experimental samples were analyzed through uniaxial tensile measurement and microhardness test, in vitro biological interactions onto the substrates such as protein adsorption, cellular responses derived from different types of cell lines, and the activity of erythrocyte and platelets were further evaluated and specifically assessed by bicinchoninic acid assay, enzyme-linked immunosorbent assay, and the method of colorimetric reading. A superior percentage of protein adsorption can be observed on the substrate of the UFG 8th ECAPed Ta (around 90%), even above those on the tissue culture plate (control) and the other ECAPed Ta samples. Furthermore, the UFG 8th ECAPed Ta shows no cytotoxic within 4 days culture when incubated with the murine fibroblast cell lines (L929). In addition, a priority order in the growth of endothelial cells (ECV304) other than vascular smooth muscle cells was observed in the case of the UFG 8th ECAPed Ta. In terms of hemolysis rate and adhered platelets (both the amount and the individual morphology), an evolutionary outcome of preferentially enhanced hemocompatibility can be concluded for the case of the UFG 8th ECAPed Ta. PMID:23908098

  11. Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms.

    Directory of Open Access Journals (Sweden)

    Kelly L Robertson

    Full Text Available Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS, increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and

  12. A computational model of cellular mechanisms of temporal coding in the medial geniculate body (MGB.

    Directory of Open Access Journals (Sweden)

    Cal F Rabang

    Full Text Available Acoustic stimuli are often represented in the early auditory pathway as patterns of neural activity synchronized to time-varying features. This phase-locking predominates until the level of the medial geniculate body (MGB, where previous studies have identified two main, largely segregated response types: Stimulus-synchronized responses faithfully preserve the temporal coding from its afferent inputs, and Non-synchronized responses, which are not phase locked to the inputs, represent changes in temporal modulation by a rate code. The cellular mechanisms underlying this transformation from phase-locked to rate code are not well understood. We use a computational model of a MGB thalamocortical neuron to test the hypothesis that these response classes arise from inferior colliculus (IC excitatory afferents with divergent properties similar to those observed in brain slice studies. Large-conductance inputs exhibiting synaptic depression preserved input synchrony as short as 12.5 ms interclick intervals, while maintaining low firing rates and low-pass filtering responses. By contrast, small-conductance inputs with Mixed plasticity (depression of AMPA-receptor component and facilitation of NMDA-receptor component desynchronized afferent inputs, generated a click-rate dependent increase in firing rate, and high-pass filtered the inputs. Synaptic inputs with facilitation often permitted band-pass synchrony along with band-pass rate tuning. These responses could be tuned by changes in membrane potential, strength of the NMDA component, and characteristics of synaptic plasticity. These results demonstrate how the same synchronized input spike trains from the inferior colliculus can be transformed into different representations of temporal modulation by divergent synaptic properties.

  13. Cellular and molecular mechanisms of immunomodulation in the brain through environmental enrichment

    Directory of Open Access Journals (Sweden)

    Gaurav eSinghal

    2014-04-01

    Full Text Available Recent studies on environmental enrichment (EE have shown cytokines, cellular immune components (e.g. T lymphocytes, NK cells and glial cells in causal relationship to EE in bringing out changes to neurobiology and behavior. The purpose of this review is to evaluate these neuroimmune mechanisms associated with neurobiological and behavioral changes in response to different EE methods. We systematically reviewed common research databases. After applying all inclusion and exclusion criteria, 328 articles remained for this review. Physical exercise, a form of EE, elicits anti-inflammatory and neuromodulatory effects through interaction with several immune pathways including IL-6 secretion from muscle fibers, reduced expression of TLR’s on monocytes and macrophages, reduced secretion of adipokines, modulation of hippocampal T cells, priming of microglia and upregulation of MKP-1 in CNS. In contrast, immunomodulatory roles of other enrichment methods are not studied extensively. Nonetheless, studies showing reduction in the expression of IL-1β and TNF-α in response to enrichment with novel objects and accessories suggest anti-inflammatory effects of novel environment. Likewise, social enrichment, though considered a necessity for healthy behavior, results in immunosuppression in socially defeated animals. This has been attributed to reduction in T lymphocytes, NK cells and IL-10 in subordinate animals. EE through sensory stimuli has been investigated to a lesser extent and the effect on immune factors has not been evaluated yet. Discovery of this multidimensional relationship between immune system, brain functioning and EE has paved a way towards formulating environ-immuno therapies for treating psychiatric illnesses with minimal use of pharmacotherapy. While the immuno-modulatory role of physical exercise has been evaluated extensively, more research is required to investigate neuroimmune changes associated with other enrichment methods.

  14. Global Rebalancing of Cellular Resources by Pleiotropic Point Mutations Illustrates a Multi-scale Mechanism of Adaptive Evolution

    DEFF Research Database (Denmark)

    Utrilla, José; O'Brien, Edward J.; Chen, Ke;

    2016-01-01

    Pleiotropic regulatory mutations affect diverse cellular processes, posing a challenge to our understanding of genotype-phenotype relationships across multiple biological scales. Adaptive laboratory evolution (ALE) allows for such mutations to be found and characterized in the context of clear...... selection pressures. Here, several ALE-selected single-mutation variants in RNA polymerase (RNAP) of Escherichia coli are detailed using an integrated multi-scale experimental and computational approach. While these mutations increase cellular growth rates in steady environments, they reduce tolerance......, they share a common adaptive mechanism. In turn, these findings highlight the resource allocation trade-offs organisms face and suggest how the structure of the regulatory network enhances evolvability....

  15. Bone marrow involvement in diffuse large B-cell lymphoma: correlation between FDG-PET uptake and type of cellular infiltrate

    Energy Technology Data Exchange (ETDEWEB)

    Paone, Gaetano; Itti, Emmanuel; Lin, Chieh; Meignan, Michel [Universite Paris 12, Department of Nuclear Medicine, Hopital Henri Mondor, Assistance Publique-Hopitaux de Paris (AP-HP), Creteil (France); Haioun, Corinne; Dupuis, Jehan [Universite Paris 12, Department of Clinical Haematology, Hopital Henri Mondor, Assistance Publique-Hopitaux de Paris (AP-HP), Creteil (France); Gaulard, Philippe [Universite Paris 12, Department of Pathology, Hopital Henri Mondor, Assistance Publique-Hopitaux de Paris (AP-HP), Creteil (France); Universite Paris 12, INSERM U841, Hopital Henri Mondor, Assistance Publique-Hopitaux de Paris (AP-HP), Creteil (France)

    2009-05-15

    To assess, in patients with diffuse large B-cell lymphoma (DLBCL), whether the low sensitivity of {sup 18}F-fluorodeoxyglucose positron emission tomography (FDG-PET) for bone marrow assessment may be explained by histological characteristics of the cellular infiltrate. From a prospective cohort of 110 patients with newly diagnosed aggressive lymphoma, 21 patients with DLBCL had bone marrow involvement. Pretherapeutic FDG-PET images were interpreted visually and semiquantitatively, then correlated with the type of cellular infiltrate and known prognostic factors. Of these 21 patients, 7 (33%) had lymphoid infiltrates with a prominent component of large transformed lymphoid cells (concordant bone marrow involvement, CBMI) and 14 (67%) had lymphoid infiltrates composed of small cells (discordant bone marrow involvement, DBMI). Only 10 patients (48%) had abnormal bone marrow FDG uptake, 6 of the 7 with CBMI and 4 of the 14 with DBMI. Therefore, FDG-PET positivity in the bone marrow was significantly associated with CBMI, while FDG-PET negativity was associated with DBMI (Fisher's exact test, p=0.024). There were no significant differences in gender, age and overall survival between patients with CBMI and DBMI, while the international prognostic index was significantly higher in patients with CBMI. Our study suggests that in patients with DLBCL with bone marrow involvement bone marrow FDG uptake depends on two types of infiltrate, comprising small (DBMI) or large (CBMI) cells. This may explain the apparent low sensitivity of FDG-PET previously reported for detecting bone marrow involvement. (orig.)

  16. Endoplasmic reticulum quality control is involved in the mechanism of endoglin-mediated hereditary haemorrhagic telangiectasia.

    Directory of Open Access Journals (Sweden)

    Bassam R Ali

    Full Text Available Hereditary haemorrhagic telangiectasia (HHT is an autosomal dominant genetic condition affecting the vascular system and is characterised by epistaxis, arteriovenous malformations and mucocutaneous and gastrointestinal telangiectases. This disorder affects approximately 1 in 8,000 people worldwide. Significant morbidity is associated with this condition in affected individuals, and anaemia can be a consequence of repeated haemorrhages from telangiectasia in the gut and nose. In the majority of the cases reported, the condition is caused by mutations in either ACVRL1 or endoglin genes, which encode components of the TGF-beta signalling pathway. Numerous missense mutations in endoglin have been reported as causative defects for HHT but the exact underlying cellular mechanisms caused by these mutations have not been fully established despite data supporting a role for the endoplasmic reticulum (ER quality control machinery. For this reason, we examined the subcellular trafficking of twenty-five endoglin disease-causing missense mutations. The mutant proteins were expressed in HeLa and HEK293 cell lines, and their subcellular localizations were established by confocal fluorescence microscopy alongside the analysis of their N-glycosylation profiles. ER quality control was found to be responsible in eight (L32R, V49F, C53R, V125D, A160D, P165L, I271N and A308D out of eleven mutants located on the orphan extracellular domain in addition to two (C363Y and C382W out of thirteen mutants in the Zona Pellucida (ZP domain. In addition, a single intracellular domain missense mutant was examined and found to traffic predominantly to the plasma membrane. These findings support the notion of the involvement of the ER's quality control in the mechanism of a significant number, but not all, missense endoglin mutants found in HHT type 1 patients. Other mechanisms including loss of interactions with signalling partners as well as adverse effects on functional

  17. gC1q-R/p33, a member of a new class of multifunctional and multicompartmental cellular proteins, is involved in inflammation and infection.

    Science.gov (United States)

    Ghebrehiwet, B; Lim, B L; Kumar, R; Feng, X; Peerschke, E I

    2001-04-01

    Human gC1q-R (p33, p32, C1qBP, TAP) is a ubiquitously expressed, multiligand-binding, multicompartmental cellular protein involved in various ligand-mediated cellular responses. Although expressed on the surface of cells, an intriguing feature of the membrane-associated form of gC1q-R is that its translated amino acid sequence does not predict the presence of either a sequence motif compatible with a transmembrane segment or a consensus site for a glycosylphosphatidylinositol anchor. Moreover, the N-terminal sequence of the pre-pro-protein gC1q-R contains a motif that targets the molecule to the mitochondria and as such was deemed unlikely to be expressed on the surface. However, several lines of experimental evidence clearly show that gC1q-R is present in all compartments of the cell, including the extracellular cell surface. First, surface labeling of B lymphocytes with the membrane-impermeable reagent sulfosuccinimidyl 6-(biotinamido)hexanoate shows specific biotin incorporation into the surface-expressed but not the intracellular form of gC1q-R. Second, FACS and confocal laser scanning microscopic analyses using anti-gC1q-R IgG mAb 60.11 or 74.5.2, and the fluorophore Alexa 488-conjugated F(ab')2 goat anti-mouse IgG as a probe, demonstrated specific staining of Raji cells (>95% viable). Three-dimensional analyses of the same cells by confocal microscopy showed staining distribution that was consistent with surface expression. Third, endothelial gC1q-R, which is associated with the urokinase plasminogen activator receptor, and cytokeratin 1 bind 125I-high molecular weight kininogen in a specific manner, and the binding is inhibited dose-dependently by mAb 74.5.2 recognizing gC1q-R residues 204-218. Fourth, native gC1q-R purified from Raji cell membranes but not intracellular gC1q-R is glycosylated, as evidenced by a positive periodic acid Schiff stain as well as sensitivity to digestion with endoglycosidase H and F. Finally, cross-linking experiments using C1q

  18. Oral administration of copper to rats leads to increased lymphocyte cellular DNA degradation by dietary polyphenols: implications for a cancer preventive mechanism.

    Science.gov (United States)

    Khan, Husain Y; Zubair, Haseeb; Ullah, Mohd F; Ahmad, Aamir; Hadi, Sheikh M

    2011-12-01

    To account for the observed anticancer properties of plant polyphenols, we have earlier proposed a mechanism which involves the mobilization of endogenous copper ions by polyphenols leading to the generation of reactive oxygen species (ROS) that serve as proximal DNA cleaving agents and lead to cell death. Over the last decade we have proceeded to validate our hypothesis with considerable success. As a further confirmation of our hypothesis, in this paper we first show that oral administration of copper to rats leads to elevated copper levels in lymphocytes. When such lymphocytes with a copper overload were isolated and treated with polyphenols EGCG, genistein and resveratrol, an increased level of DNA breakage was observed. Further, preincubation of lymphocytes having elevated copper levels with the membrane permeable copper chelator neocuproine, resulted in inhibition of polyphenol induced DNA degradation. However, membrane impermeable chelator of copper bathocuproine, as well as iron and zinc chelators were ineffective in causing such inhibition in DNA breakage, confirming the involvement of endogenous copper in polyphenol induced cellular DNA degradation. It is well established that serum and tissue concentrations of copper are greatly increased in various malignancies. In view of this fact, the present results further confirm our earlier findings and strengthen our hypothesis that an important anticancer mechanism of plant polyphenols could be the mobilization of intracellular copper leading to ROS-mediated cellular DNA breakage. In this context, it may be noted that cancer cells are under considerable oxidative stress and increasing such stress to cytotoxic levels could be a successful anticancer approach.

  19. Olfactory stem cells, a new cellular model for studying molecular mechanisms underlying familial dysautonomia.

    Directory of Open Access Journals (Sweden)

    Nathalie Boone

    Full Text Available BACKGROUND: Familial dysautonomia (FD is a hereditary neuropathy caused by mutations in the IKBKAP gene, the most common of which results in variable tissue-specific mRNA splicing with skipping of exon 20. Defective splicing is especially severe in nervous tissue, leading to incomplete development and progressive degeneration of sensory and autonomic neurons. The specificity of neuron loss in FD is poorly understood due to the lack of an appropriate model system. To better understand and modelize the molecular mechanisms of IKBKAP mRNA splicing, we collected human olfactory ecto-mesenchymal stem cells (hOE-MSC from FD patients. hOE-MSCs have a pluripotent ability to differentiate into various cell lineages, including neurons and glial cells. METHODOLOGY/PRINCIPAL FINDINGS: We confirmed IKBKAP mRNA alternative splicing in FD hOE-MSCs and identified 2 novel spliced isoforms also present in control cells. We observed a significant lower expression of both IKBKAP transcript and IKAP/hELP1 protein in FD cells resulting from the degradation of the transcript isoform skipping exon 20. We localized IKAP/hELP1 in different cell compartments, including the nucleus, which supports multiple roles for that protein. We also investigated cellular pathways altered in FD, at the genome-wide level, and confirmed that cell migration and cytoskeleton reorganization were among the processes altered in FD. Indeed, FD hOE-MSCs exhibit impaired migration compared to control cells. Moreover, we showed that kinetin improved exon 20 inclusion and restores a normal level of IKAP/hELP1 in FD hOE-MSCs. Furthermore, we were able to modify the IKBKAP splicing ratio in FD hOE-MSCs, increasing or reducing the WT (exon 20 inclusion:MU (exon 20 skipping ratio respectively, either by producing free-floating spheres, or by inducing cells into neural differentiation. CONCLUSIONS/SIGNIFICANCE: hOE-MSCs isolated from FD patients represent a new approach for modeling FD to better

  20. Molecular mechanism of cellular reception of ionizing radiation and of activation of signal transduction pathway

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Keiji [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    The author reviewed what in cells receives ionizing radiation as a stress and which signal transduction pathway is activated to induce the stress reaction in the following order: Activation of protein kinase C (PKC) pathway by radiation, activation of MAP kinase superfamily by radiation, induction of p53 function by radiation, and radiation exposure and stress reaction pathway. Conclusion was as follows: Cellular receptors to radiation can be cell membrane and DNA. Membrane reception of radiation induces activation of tyrosine kinase and sphingomyelinase, which resulting in activation of PKC- and MAP kinase-mediated signal transduction. The signal generated in the nucleus participates in regulation of cell cycle and in DNA repair. Therefore, it seems that irradiation of ionizing radiation gives energy to various cellular receptor sites as well as DNA, which generate various independent signals to be transduced and accumulated in the nucleus, and leading to cellular response. (K.H.). 63 refs.

  1. The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation

    Science.gov (United States)

    Roth, Caleb C.

    Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry

  2. The telomeric protein AKTIP interacts with A- and B-type lamins and is involved in regulation of cellular senescence

    Science.gov (United States)

    Burla, Romina; Carcuro, Mariateresa; Torre, Mattia La; Fratini, Federica; Crescenzi, Marco; D'Apice, Maria Rosaria; Spitalieri, Paola; Raffa, Grazia Daniela; Astrologo, Letizia; Lattanzi, Giovanna; Cundari, Enrico; Raimondo, Domenico; Biroccio, Annamaria; Gatti, Maurizio

    2016-01-01

    AKTIP is a shelterin-interacting protein required for replication of telomeric DNA. Here, we show that AKTIP biochemically interacts with A- and B-type lamins and affects lamin A, but not lamin C or B, expression. In interphase cells, AKTIP localizes at the nuclear rim and in discrete regions of the nucleoplasm just like lamins. Double immunostaining revealed that AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase cells, and that proper AKTIP localization requires functional lamin A. In mitotic cells, AKTIP is enriched at the spindle poles and at the midbody of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid phenotype. Collectively, our results indicate that AKTIP is a new player in lamin-related processes, including those that govern nuclear architecture, telomere homeostasis and cellular senescence. PMID:27512140

  3. Genome-wide assessment of the carriers involved in the cellular uptake of drugs: a model system in yeast

    Directory of Open Access Journals (Sweden)

    Lanthaler Karin

    2011-10-01

    Full Text Available Abstract Background The uptake of drugs into cells has traditionally been considered to be predominantly via passive diffusion through the bilayer portion of the cell membrane. The recent recognition that drug uptake is mostly carrier-mediated raises the question of which drugs use which carriers. Results To answer this, we have constructed a chemical genomics platform built upon the yeast gene deletion collection, using competition experiments in batch fermenters and robotic automation of cytotoxicity screens, including protection by 'natural' substrates. Using these, we tested 26 different drugs and identified the carriers required for 18 of the drugs to gain entry into yeast cells. Conclusions As well as providing a useful platform technology, these results further substantiate the notion that the cellular uptake of pharmaceutical drugs normally occurs via carrier-mediated transport and indicates that establishing the identity and tissue distribution of such carriers should be a major consideration in the design of safe and effective drugs.

  4. Protein tyrosine phosphatase is possibly involved in cellular signal transduction and the regulation of ABA accumulation in response to water deficit in Maize L. coleoptile

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Water deficit-induced ABA accumulation is an ideal model or "stimulus-response" system to investigate cellular stress signaling in plant cells, using such a model the cellular stress signaling triggered by water deficit was investigated in Maize L. coleoptile. Water deficit-induced ABA accumulation was sensitively blocked by NaVO3, a potent inhibitor both to plasma membrane H+-ATPase (PM-H+- ATPase) and protein tyrosine phosphatase (PTPase). However, while PM- H+-ATPase activity was unaffected under water deficit and PM- H+-ATPase activator did not induce an ABA accumulation instead of water deficit, water deficit induced an increase in the protein phosphatase activity, and furthermore, ABA accumulation was inhibited by PAO, a specific inhibitor of PTPase. These results indicate that protein phosphtases may be involved in the cellular signaling in response to water deficit. Further studies identified at least four species of protein phosphtase as assayed by using pNPP as substrate, among which one component was especially sensitive to NaVO3. The NaVO3-sensitive enzyme was purified and finally showed a protein band about 66 kD on SDS/PAGE. The purified enzyme showed a great activity to some specific PTPase substrates at pH 6.0. In addition to NaVO3, the enzyme was also sensitive to some other PTPase inhibitors such as Zn2+ and MO33+, but not to Ca2+ and Mg2+, indicating that it might be a protein tyrosine phosphatase. Interestingly, the purified enzyme could be deactivated by some reducing agent DTT, which was previously proved to be an inhibitor of water deficit-induced ABA accumulation. This result further proved that PTPase might be involved in the cellular signaling of ABA accumulation in response to water deficit.

  5. Profiling human protein degradome delineates cellular responses to proteasomal inhibition and reveals a feedback mechanism in regulating proteasome homeostasis

    OpenAIRE

    Yu, Tao; Tao, Yonghui; Yang, Meiqiang; Chen, Peng; Gao, XiaoBo; Zhang, Yanbo; Zhang,Tao; Chen, Zi; Hou, Jian; Zhang, Yan; Ruan, Kangcheng; Wang, Hongyan; Hu, Ronggui

    2014-01-01

    Global change in protein turnover (protein degradome) constitutes a central part of cellular responses to intrinsic or extrinsic stimuli. However, profiling protein degradome remains technically challenging. Recently, inhibition of the proteasome, e.g., by using bortezomib (BTZ), has emerged as a major chemotherapeutic strategy for treating multiple myeloma and other human malignancies, but systematic understanding of the mechanisms for BTZ drug action and tumor drug resistance is yet to be a...

  6. Cellular senescence in aging and age-related disease: from mechanisms to therapy

    NARCIS (Netherlands)

    Childs, B.G.; Durik, M.; Baker, D.J.; Deursen, J.M.A. van

    2015-01-01

    Cellular senescence, a process that imposes permanent proliferative arrest on cells in response to various stressors, has emerged as a potentially important contributor to aging and age-related disease, and it is an attractive target for therapeutic exploitation. A wealth of information about senesc

  7. Molecular and Cellular Mechanisms of Myelodysplastic Syndrome: Implications on Targeted Therapy.

    Science.gov (United States)

    Gill, Harinder; Leung, Anskar Y H; Kwong, Yok-Lam

    2016-01-01

    Myelodysplastic syndrome (MDS) is a group of heterogeneous clonal hematopoietic stem cell disorders characterized by cytopenia, ineffective hematopoiesis, and progression to secondary acute myeloid leukemia in high-risk cases. Conventional prognostication relies on clinicopathological parameters supplemented by cytogenetic information. However, recent studies have shown that genetic aberrations also have critical impacts on treatment outcome. Moreover, these genetic alterations may themselves be a target for treatment. The mutation landscape in MDS is shaped by gene aberrations involved in DNA methylation (TET2, DNMT3A, IDH1/2), histone modification (ASXL1, EZH2), the RNA splicing machinery (SF3B1, SRSF2, ZRSR2, U2AF1/2), transcription (RUNX1, TP53, BCOR, PHF6, NCOR, CEBPA, GATA2), tyrosine kinase receptor signaling (JAK2, MPL, FLT3, GNAS, KIT), RAS pathways (KRAS, NRAS, CBL, NF1, PTPN11), DNA repair (ATM, BRCC3, DLRE1C, FANCL), and cohesion complexes (STAG2, CTCF, SMC1A, RAD21). A detailed understanding of the pathogenetic mechanisms leading to transformation is critical for designing single-agent or combinatorial approaches in target therapy of MDS. PMID:27023522

  8. Molecular and cellular mechanisms for the regulation of ovarian follicular function in cows.

    Science.gov (United States)

    Shimizu, Takashi

    2016-08-25

    Ovary is an important organ that houses the oocytes (reproductive cell). Oocyte growth depends on the function of follicular cells such as the granulosa and theca cells. Two-cell two gonadotropin systems are associated with oocyte growth and follicular cell functions. In addition to these systems, it is also known that several growth factors regulate oocyte growth and follicular cell functions. Vascular endothelial growth factor (VEGF) is involved in thecal vasculature during follicular development and the suppression of granulosa cell apoptosis. Metabolic factors such as insulin, growth hormone (GH) and insulin-like growth factor 1 (IGF-1) also play critical roles in the process of follicular development and growth. These factors are associated not only with follicular development, but also with follicular cell function. Steroid hormones (estrogens, androgens, and progestins) that are secreted from follicular cells influence the function of the female genital tract and its affect the susceptibility to bacterial infection. This review covers our current understanding of the mechanisms by which gonadotrophins and/or steroid hormones regulate the growth factors in the follicular cells of the bovine ovary. In addition, this review describes the effect of endotoxin on the function of follicular cells. PMID:27097851

  9. Phyto-mediated nanostructured carriers based on dual vegetable actives involved in the prevention of cellular damage.

    Science.gov (United States)

    Istrati, D; Lacatusu, I; Bordei, N; Badea, G; Oprea, O; Stefan, L M; Stan, R; Badea, N; Meghea, A

    2016-07-01

    The growing scientific interest in exploitation of vegetable bioactives has raised a number of questions regarding their imminent presence in pharmaceutical formulations. This study intends to demonstrate that a dual combination between vegetable oil (e.g. thistle oil, safflower oil, sea buckthorn oil) and a carrot extract represents an optimal approach to formulate safe carrier systems that manifest cell regeneration effect and promising antioxidant and anti-inflammatory activity. Inclusion of both natural actives into lipid carriers imparted a strong negative charge on the nanocarrier surface (up to -45mV) and displayed average sizes of 70nm to 140nm. The entrapment efficiency of carrot extract into nanostructured carriers ranged between 78.3 and 88.3%. The in vitro release study has demonstrated that the entrapment of the extract represents a viable way for an equilibrated release of carotenoids. Besides the excellent antioxidant properties (e.g. scavenging up to 98% of the free oxygen radicals), the results of cellular integrity (e.g. cell viability of 133%) recommend these nanocarriers based on dual carrot extract-bioactive oil as a promising trend for the treatment of certain disorders in which oxidative stress plays a prominent role. In addition, the lipid nanocarriers based on safflower oil and sea buckthorn oil demonstrated an anti-inflammatory effect on LPS induced THP-1 macrophages, by inhibiting the secretion of two pro-inflammatory cytokines, IL-6 and TNF-α. PMID:27127051

  10. Phyto-mediated nanostructured carriers based on dual vegetable actives involved in the prevention of cellular damage.

    Science.gov (United States)

    Istrati, D; Lacatusu, I; Bordei, N; Badea, G; Oprea, O; Stefan, L M; Stan, R; Badea, N; Meghea, A

    2016-07-01

    The growing scientific interest in exploitation of vegetable bioactives has raised a number of questions regarding their imminent presence in pharmaceutical formulations. This study intends to demonstrate that a dual combination between vegetable oil (e.g. thistle oil, safflower oil, sea buckthorn oil) and a carrot extract represents an optimal approach to formulate safe carrier systems that manifest cell regeneration effect and promising antioxidant and anti-inflammatory activity. Inclusion of both natural actives into lipid carriers imparted a strong negative charge on the nanocarrier surface (up to -45mV) and displayed average sizes of 70nm to 140nm. The entrapment efficiency of carrot extract into nanostructured carriers ranged between 78.3 and 88.3%. The in vitro release study has demonstrated that the entrapment of the extract represents a viable way for an equilibrated release of carotenoids. Besides the excellent antioxidant properties (e.g. scavenging up to 98% of the free oxygen radicals), the results of cellular integrity (e.g. cell viability of 133%) recommend these nanocarriers based on dual carrot extract-bioactive oil as a promising trend for the treatment of certain disorders in which oxidative stress plays a prominent role. In addition, the lipid nanocarriers based on safflower oil and sea buckthorn oil demonstrated an anti-inflammatory effect on LPS induced THP-1 macrophages, by inhibiting the secretion of two pro-inflammatory cytokines, IL-6 and TNF-α.

  11. Cellular uptake mechanism and comparative evaluation of antineoplastic effects of paclitaxel–cholesterol lipid emulsion on triple-negative and non-triple-negative breast cancer cell lines

    Science.gov (United States)

    Ye, Jun; Xia, Xuejun; Dong, Wujun; Hao, Huazhen; Meng, Luhua; Yang, Yanfang; Wang, Renyun; Lyu, Yuanfeng; Liu, Yuling

    2016-01-01

    There is no effective clinical therapy for triple-negative breast cancers (TNBCs), which have high low-density lipoprotein (LDL) requirements and express relatively high levels of LDL receptors (LDLRs) on their membranes. In our previous study, a novel lipid emulsion based on a paclitaxel–cholesterol complex (PTX-CH Emul) was developed, which exhibited improved safety and efficacy for the treatment of TNBC. To date, however, the cellular uptake mechanism and intracellular trafficking of PTX-CH Emul have not been investigated. In order to offer powerful proof for the therapeutic effects of PTX-CH Emul, we systematically studied the cellular uptake mechanism and intracellular trafficking of PTX-CH Emul and made a comparative evaluation of antineoplastic effects on TNBC (MDA-MB-231) and non-TNBC (MCF7) cell lines through in vitro and in vivo experiments. The in vitro antineoplastic effects and in vivo tumor-targeting efficiency of PTX-CH Emul were significantly more enhanced in MDA-MB-231-based models than those in MCF7-based models, which was associated with the more abundant expression profile of LDLR in MDA-MB-231 cells. The results of the cellular uptake mechanism indicated that PTX-CH Emul was internalized into breast cancer cells through the LDLR-mediated internalization pathway via clathrin-coated pits, localized in lysosomes, and then released into the cytoplasm, which was consistent with the internalization pathway and intracellular trafficking of native LDL. The findings of this paper further confirm the therapeutic potential of PTX-CH Emul in clinical applications involving TNBC therapy. PMID:27601899

  12. Cellular uptake mechanism and comparative evaluation of antineoplastic effects of paclitaxel-cholesterol lipid emulsion on triple-negative and non-triple-negative breast cancer cell lines.

    Science.gov (United States)

    Ye, Jun; Xia, Xuejun; Dong, Wujun; Hao, Huazhen; Meng, Luhua; Yang, Yanfang; Wang, Renyun; Lyu, Yuanfeng; Liu, Yuling

    2016-01-01

    There is no effective clinical therapy for triple-negative breast cancers (TNBCs), which have high low-density lipoprotein (LDL) requirements and express relatively high levels of LDL receptors (LDLRs) on their membranes. In our previous study, a novel lipid emulsion based on a paclitaxel-cholesterol complex (PTX-CH Emul) was developed, which exhibited improved safety and efficacy for the treatment of TNBC. To date, however, the cellular uptake mechanism and intracellular trafficking of PTX-CH Emul have not been investigated. In order to offer powerful proof for the therapeutic effects of PTX-CH Emul, we systematically studied the cellular uptake mechanism and intracellular trafficking of PTX-CH Emul and made a comparative evaluation of antineoplastic effects on TNBC (MDA-MB-231) and non-TNBC (MCF7) cell lines through in vitro and in vivo experiments. The in vitro antineoplastic effects and in vivo tumor-targeting efficiency of PTX-CH Emul were significantly more enhanced in MDA-MB-231-based models than those in MCF7-based models, which was associated with the more abundant expression profile of LDLR in MDA-MB-231 cells. The results of the cellular uptake mechanism indicated that PTX-CH Emul was internalized into breast cancer cells through the LDLR-mediated internalization pathway via clathrin-coated pits, localized in lysosomes, and then released into the cytoplasm, which was consistent with the internalization pathway and intracellular trafficking of native LDL. The findings of this paper further confirm the therapeutic potential of PTX-CH Emul in clinical applications involving TNBC therapy. PMID:27601899

  13. An evaluation of the mechanism of ABCA7 on cellular lipid release in ABCA7-HEC293 cell

    Institute of Scientific and Technical Information of China (English)

    WU Cheng-ai; WANG Na; ZHAO Dan-hui

    2013-01-01

    Background ABCA7 is a member of the ABCA subfamily that shows a high degree of homology to ABCA1 and,like ABCA1,mediates cellular cholesterol and phospholipid release by apolipoproteins when transfected in vitro.However,expression of ABCA7 has been shown to be downregulated by increased cellular cholesterol while ABCA1 was upregulated.Methods The underlying mechanism for this effect was examined in ABCA1 or ABCA7-transfected HEC293.Lipid content in the medium and cells was determined by enzymatic assays.Gene expression was quantitated by real time PCR,and protein content was determined by Western blotting.Results While ABCA7 mRNA was decreased by 25-hydroxycholesterol treatment,ABCA1 was apparently increased.Treatment with the synthetic LXR agonist T0901317 (T09) upregulated ABCA1 expression and apoAI-mediated cellular lipid release in ABCA1-transfected HEC293 cells,but ABCA7 expression and cellular lipid release in ABCA7-transfected HEC293 cells showed no obvious changes.Conclusion The ABCA7 gene is regulated by sterol in a direction opposite to that of ABCA1.

  14. Pathophysiology of major depressive disorder : mechanisms involved in etiology are not associated with clinical progression

    NARCIS (Netherlands)

    Verduijn, J.; Milaneschi, Y.; Schoevers, R. A.; van Hemert, A. M.; Beekman, A. T. F.; Penninx, B. W. J. H.

    2015-01-01

    Meta-analyses support the involvement of different pathophysiological mechanisms (inflammation, hypothalamic-pituitary (HPA)-axis, neurotrophic growth and vitamin D) in major depressive disorder (MDD). However, it remains unknown whether dysregulations in these mechanisms are more pronounced when MD

  15. Mechanisms and Regulation of Intestinal Absorption of Water-soluble Vitamins: Cellular and Molecular Aspects

    DEFF Research Database (Denmark)

    Nexø, Ebba; Said, Hamid M

    2012-01-01

    The water-soluble vitamins represent a group of structurally and functionally unrelated compounds that share the common feature of being essential for normal cellular functions, growth, and development. With the exception of some endogenous production of niacin, human cells cannot synthesize...... or deficiency. An impaired absorptive function occurs in a variety of conditions including congenital defects in the digestive or absorptive processes, intestinal diseases, drug interaction, and chronic alcohol use....

  16. Cellular origins and differentiation control mechanisms during periodontal development and wound healing.

    Science.gov (United States)

    Pitaru, S; McCulloch, C A; Narayanan, S A

    1994-03-01

    In the context of cellular origins, odontogenic epithelium and oral epithelium are the sources for junctional epithelium during development and during wound healing respectively. In contrast, both odontogenic and non-odontogenic mesenchyme contain the progenitors for gingival fibroblasts in developing tissues while in wounded tissues, gingival fibroblasts are derived from gingival connective tissues and comprise a heterogeneous population of cells with diverse properties and functions. Periodontal ligament, bone and cementum cell populations apparently originate from dental follicle progenitor cells during development, but during wound healing derive from ancestral cells in periodontal ligament and bone. Cellular differentiation in developing periodontium is governed in part by epithelial-mesenchymal interactions that generate specific signals which regulate selective cell populations in time and space. On the other hand, differentiation during wound healing and regeneration is regulated by a vast array of extracellular matrix informational molecules and by cytokines that induce both selective and non-selective responses in the different cell lineages and their precursors. Further, several important signalling systems are irretrievably lost after development is complete. Thus, in the context of cellular origins and differentiation, developing and wounded periodontal tissues exhibit fundamental differences. Future prospects for improved healing and regeneration of periodontal tissues may derive from identification and isolation of informational molecules that are stored in connective tissue matrices. These molecules and elucidation of their functions may open new perspectives in our understanding of the biology of periodontal wound healing and may provide novel approaches to periodontal regeneration. PMID:8158503

  17. Investigation of mechanical properties for open cellular structure CoCrMo alloy fabricated by selective laser melting process

    Science.gov (United States)

    Azidin, A.; Taib, Z. A. M.; Harun, W. S. W.; Che Ghani, S. A.; Faisae, M. F.; Omar, M. A.; Ramli, H.

    2015-12-01

    Orthodontic implants have been a major focus through mechanical and biological performance in advance to fabricate shape of complex anatomical. Designing the part with a complex mechanism is one of the challenging process and addition to achieve the balance and desired mechanical performance brought to the right manufacture technique to fabricate. Metal additive manufacturing (MAM) is brought forward to the newest fabrication technology in this field. In this study, selective laser melting (SLM) process was utilized on a medical grade cobalt-chrome molybdenum (CoCrMo) alloy. The work has focused on mechanical properties of the CoCrMo open cellular structures samples with 60%, 70%, and 80% designed volume porosity that could potentially emulate the properties of human bone. It was observed that hardness values decreased as the soaking time increases except for bottom face. For compression test, 60% designed volume porosity demonstrated highest ultimate compressive strength compared to 70% and 80%.

  18. Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory.

    Science.gov (United States)

    Hasselmo, Michael E; Giocomo, Lisa M; Brandon, Mark P; Yoshida, Motoharu

    2010-12-31

    Understanding the mechanisms of episodic memory requires linking behavioral data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in behaving animals indicate episodic memory processes. Intracellular recording in these regions demonstrates specific cellular properties including resonance, membrane potential oscillations and bistable persistent spiking that could underlie the encoding and retrieval of episodic trajectories. A model presented here shows how intrinsic dynamical properties of neurons could mediate the encoding of episodic memories as complex spatiotemporal trajectories. The dynamics of neurons allow encoding and retrieval of unique episodic trajectories in multiple continuous dimensions including temporal intervals, personal location, the spatial coordinates and sensory features of perceived objects and generated actions, and associations between these elements. The model also addresses how cellular dynamics could underlie unit firing data suggesting mechanisms for coding continuous dimensions of space, time, sensation and action. PMID:20018213

  19. Involvement of the Iron Regulatory Protein from Eisenia andrei Earthworms in the Regulation of Cellular Iron Homeostasis

    OpenAIRE

    Petra Procházková; František Škanta; Radka Roubalová; Marcela Šilerová; Jiří Dvořák; Martin Bilej

    2014-01-01

    Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs) that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs) of the 5'- or 3'-untranslated regions (UTR) of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP). The earthworm IRE site in 5'-UTR of ferritin mRNA most likely f...

  20. Identification of PM10 characteristics involved in cellular responses in human bronchial epithelial cells (Beas-2B).

    Science.gov (United States)

    Van Den Heuvel, Rosette; Den Hond, Elly; Govarts, Eva; Colles, Ann; Koppen, Gudrun; Staelens, Jeroen; Mampaey, Maja; Janssen, Nicole; Schoeters, Greet

    2016-08-01

    reduction in cell viability was significantly correlated with BC, Cd and Pb. The induction of IL-8 in Beas-2B cells was significantly associated with Cu, Ni and Zn and endotoxin. Endotoxin levels explained 33% of the variance in IL-8 induction. A significant interaction between ambient temperature and endotoxin on the pro-inflammatory activity was seen. No association was found between OP and the cellular responses. This study supports the hypothesis that, on an equal mass basis, PM10 induced biological effects differ due to differences in PM10 characteristics. Metals (Cd, Cu, Ni and Zn), BC, and endotoxin were among the main determinants for the observed biological responses. PMID:27177354

  1. Identification of PM10 characteristics involved in cellular responses in human bronchial epithelial cells (Beas-2B).

    Science.gov (United States)

    Van Den Heuvel, Rosette; Den Hond, Elly; Govarts, Eva; Colles, Ann; Koppen, Gudrun; Staelens, Jeroen; Mampaey, Maja; Janssen, Nicole; Schoeters, Greet

    2016-08-01

    reduction in cell viability was significantly correlated with BC, Cd and Pb. The induction of IL-8 in Beas-2B cells was significantly associated with Cu, Ni and Zn and endotoxin. Endotoxin levels explained 33% of the variance in IL-8 induction. A significant interaction between ambient temperature and endotoxin on the pro-inflammatory activity was seen. No association was found between OP and the cellular responses. This study supports the hypothesis that, on an equal mass basis, PM10 induced biological effects differ due to differences in PM10 characteristics. Metals (Cd, Cu, Ni and Zn), BC, and endotoxin were among the main determinants for the observed biological responses.

  2. Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the Arabidopsis embryo.

    Science.gov (United States)

    Bassel, George W; Stamm, Petra; Mosca, Gabriella; Barbier de Reuille, Pierre; Gibbs, Daniel J; Winter, Robin; Janka, Ales; Holdsworth, Michael J; Smith, Richard S

    2014-06-10

    Morphogenesis occurs in 3D space over time and is guided by coordinated gene expression programs. Here we use postembryonic development in Arabidopsis plants to investigate the genetic control of growth. We demonstrate that gene expression driving the production of the growth-stimulating hormone gibberellic acid and downstream growth factors is first induced within the radicle tip of the embryo. The center of cell expansion is, however, spatially displaced from the center of gene expression. Because the rapidly growing cells have very different geometry from that of those at the tip, we hypothesized that mechanical factors may contribute to this growth displacement. To this end we developed 3D finite-element method models of growing custom-designed digital embryos at cellular resolution. We used this framework to conceptualize how cell size, shape, and topology influence tissue growth and to explore the interplay of geometrical and genetic inputs into growth distribution. Our simulations showed that mechanical constraints are sufficient to explain the disconnect between the experimentally observed spatiotemporal patterns of gene expression and early postembryonic growth. The center of cell expansion is the position where genetic and mechanical facilitators of growth converge. We have thus uncovered a mechanism whereby 3D cellular geometry helps direct where genetically specified growth takes place.

  3. Cellular and circuit mechanisms maintain low spike co-variability and enhance population coding in somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Cheng eLy

    2012-03-01

    Full Text Available The responses of cortical neurons are highly variable across repeated presentations of a stimulus. Understanding this variability is critical for theories of both sensory and motor processing, since response variance affects the accuracy of neural codes. Despite this influence, the cellular and circuit mechanisms that shape the trial-to-trial variability of population responses remain poorly understood. We used a combination of experimental and computational techniques to uncover the mechanisms underlying response variability of populations of pyramidal (E cells in layer 2/3 of rat whisker barrel cortex. Spike trains recorded from pairs of E-cells during either spontaneous activity or whisker deflected responses show similarly low levels of spiking co-variability, despite large differences in network activation between the two states. We developed network models that show how spike threshold nonlinearities dilutes E-cell spiking co-variability during spontaneous activity and low velocity whisker deflections. In contrast, during high velocity whisker deflections, cancelation mechanisms mediated by feedforward inhibition maintain low E-cell pairwise co-variability. Thus, the combination of these two mechanisms ensure low E-cell population variability over a wide range of whisker deflection velocities. Finally, we show how this active decorrelation of population variability leads to a drastic increase in the population information about whisker velocity. The canonical cellular and circuit components of our study suggest that low network variability over a broad range of neural states may generalize across the nervous system.

  4. A novel mechanism involved in the coupling of mitochondrial biogenesis to oxidative phosphorylation

    Directory of Open Access Journals (Sweden)

    Jelena Ostojić

    2014-01-01

    Full Text Available Mitochondria are essential organelles that are central to a multitude of cellular processes, including oxidative phosphorylation (OXPHOS, which produces most of the ATP in animal cells. Thus it is important to understand not only the mechanisms and biogenesis of this energy production machinery but also how it is regulated in both physiological and pathological contexts. A recent study by Ostojić et al. [Cell Metabolism (2013 18, 567-577] has uncovered a regulatory loop by which the biogenesis of a major enzyme of the OXPHOS pathway, the respiratory complex III, is coupled to the energy producing activity of the mitochondria.

  5. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low dose/low LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Munira A Kadhim

    2010-03-05

    To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e., less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these “non-targeted” responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate radiation-induced genomic instability and bystander responses in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/H and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition on two non-targeted radiation responses in these models; the bystander effect and genomic instability, which we believe are closely related. We will specifically focus on the effects of low doses of low LET radiation, down to doses approaching a single electron traversal. Using conventional X-ray and γ-ray sources, novel dish separation and targeted irradiation approaches, we will be able to assess the role of genetic variation under various bystander conditions at doses down to a few electron tracks. Irradiations will be carried out using facilities in routine operation for bystander targeted studies. Mechanistic studies of instability and the bystander response in different cell lineages will focus initially on the role of cytokines which have been shown to be involved in bystander signaling and the initiation of instability. These studies also aim

  6. [How is the sense of smell connected? Cellular and molecular mechanisms guiding the development of the synaptic connections from the nose to the cortex (I)].

    Science.gov (United States)

    García-González, Diego; de Castro, Fernando

    2011-04-16

    The physiological particularities that occur during the development of the olfactory system make it one of the most fascinating parts of the central nervous system and one of models that has been most widely studied in order to understand the mechanisms related with axonal growth and guidance towards the right targets. A variety of mechanisms are known, some mediated by contact (laminins, cell adhesion molecules, ephrins, etc.) and others that are secreted (semaphorins, slits, growth factors, etc.), to play diverse roles in establishing the synaptic interactions among the olfactory epithelium, the olfactory bulb and the olfactory cortex. In relation to this, other specific mechanisms for this system have also been proposed, including the incredible family of close to 1000 different olfactory receptors. In recent years, different reviews have focused on the partial elements of this system, especially on the mechanisms involved in the formation of the olfactory nerve. However, no detailed review of those related with the development of the connections between the different olfactory structures (epithelium, bulb and cortex) has been put forward to date. In this first part of the review, we address this topic from the following perspective: the different cellular and molecular mechanisms that guide the formation of the olfactory nerve and the lateral olfactory tract.

  7. Helicobacter pylori eradication to prevent gastric cancer:underlying molecular and cellular mechanisms

    Institute of Scientific and Technical Information of China (English)

    Shingo Tsuji; Norio Hayashi; Masahiko Tsujii; Hiroaki Murata; Tsutomu Nishida; Masato Komori; Masakazu Yasumaru; Shuji Ishii; Yoshiaki Sasayama; Sunao Kawano

    2006-01-01

    Numerous cellular and molecular events have been described in development of gastric cancer. In this article,we overviewed roles of Helicobacter pylori(H pylori) infection on some of the important events in gastric carcinogenesis and discussed whether these cellular and molecular events are reversible after cure of the infection. There are several bacterial components affecting gastric epithelial kinetics and promotion of gastric carcinogenesis. The bacterium also increases risks of genetic instability and mutations due to NO and other reactive oxygen species. Epigenetic silencing of tumor suppressor genes such as RUNX3 may alter the frequency of phenotype change of gastric glands to those with intestinal metaplasia. Host factors such as increased expression of growth factors, cytokines and COX-2 have been also reported in non-cancerous tissue in H pylori-positive subjects. It is noteworthy that most of the above phenomena are reversed after the cure of the infection. However,some of them including overexpression of COX-2 continue to exist and may increase risks for carcinogenesis in metaplastic or dysplastic mucosa even after successful H pylori eradication. Thus, H pylori eradication may not completely abolish the risk for gastric carcinogenesis. Efficiency of the cure of the infection in suppressing gastric cancer depends on the timing and the target population,and warrant further investigation.

  8. Psychiatric disorders and leukocyte telomere length: Underlying mechanisms linking mental illness with cellular aging.

    Science.gov (United States)

    Lindqvist, Daniel; Epel, Elissa S; Mellon, Synthia H; Penninx, Brenda W; Révész, Dóra; Verhoeven, Josine E; Reus, Victor I; Lin, Jue; Mahan, Laura; Hough, Christina M; Rosser, Rebecca; Bersani, F Saverio; Blackburn, Elizabeth H; Wolkowitz, Owen M

    2015-08-01

    Many psychiatric illnesses are associated with early mortality and with an increased risk of developing physical diseases that are more typically seen in the elderly. Moreover, certain psychiatric illnesses may be associated with accelerated cellular aging, evidenced by shortened leukocyte telomere length (LTL), which could underlie this association. Shortened LTL reflects a cell's mitotic history and cumulative exposure to inflammation and oxidation as well as the availability of telomerase, a telomere-lengthening enzyme. Critically short telomeres can cause cells to undergo senescence, apoptosis or genomic instability, and shorter LTL correlates with poorer health and predicts mortality. Emerging data suggest that LTL may be reduced in certain psychiatric illnesses, perhaps in proportion to exposure to the psychiatric illnesses, although conflicting data exist. Telomerase has been less well characterized in psychiatric illnesses, but a role in depression and in antidepressant and neurotrophic effects has been suggested by preclinical and clinical studies. In this article, studies on LTL and telomerase activity in psychiatric illnesses are critically reviewed, potential mediators are discussed, and future directions are suggested. A deeper understanding of cellular aging in psychiatric illnesses could lead to re-conceptualizing them as systemic illnesses with manifestations inside and outside the brain and could identify new treatment targets. PMID:25999120

  9. Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation.

    Science.gov (United States)

    Zhang, Bingxing; Zhang, Jianling; Sang, Xinxin; Liu, Chengcheng; Luo, Tian; Peng, Li; Han, Buxing; Tan, Xiuniang; Ma, Xue; Wang, Dong; Zhao, Ning

    2016-05-12

    The construction of three-dimensional graphene aerogels (GAs) is of great importance owing to their outstanding properties for various applications. Up to now, the combination of ultralow weight and super mechanical strength for GA remains a great challenge. Here we demonstrate the fabrication of cellular GAs by a facile, easily controlled and versatile route, i.e. the chemical reduction of graphene oxide assemblies at oil-water interface under a mild condition (70 °C). The GA is ultralight (with density <3 mg cm(-3)) yet mechanically resilient because the walls of the cell closely pack in a highly ordered manner to maximize mechanical strength. The GA has been utilized as an appealing reactor for catalytic hydrogenation, which exhibited great advantages such as large oil absorption capability, exceptional catalytic activity, ease of product separation and high stability.

  10. Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation.

    Science.gov (United States)

    Zhang, Bingxing; Zhang, Jianling; Sang, Xinxin; Liu, Chengcheng; Luo, Tian; Peng, Li; Han, Buxing; Tan, Xiuniang; Ma, Xue; Wang, Dong; Zhao, Ning

    2016-01-01

    The construction of three-dimensional graphene aerogels (GAs) is of great importance owing to their outstanding properties for various applications. Up to now, the combination of ultralow weight and super mechanical strength for GA remains a great challenge. Here we demonstrate the fabrication of cellular GAs by a facile, easily controlled and versatile route, i.e. the chemical reduction of graphene oxide assemblies at oil-water interface under a mild condition (70 °C). The GA is ultralight (with density <3 mg cm(-3)) yet mechanically resilient because the walls of the cell closely pack in a highly ordered manner to maximize mechanical strength. The GA has been utilized as an appealing reactor for catalytic hydrogenation, which exhibited great advantages such as large oil absorption capability, exceptional catalytic activity, ease of product separation and high stability. PMID:27174450

  11. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease.

    Science.gov (United States)

    Kur, Joanna; Newman, Eric A; Chan-Ling, Tailoi

    2012-09-01

    We review the cellular and physiological mechanisms responsible for the regulation of blood flow in the retina and choroid in health and disease. Due to the intrinsic light sensitivity of the retina and the direct visual accessibility of fundus blood vessels, the eye offers unique opportunities for the non-invasive investigation of mechanisms of blood flow regulation. The ability of the retinal vasculature to regulate its blood flow is contrasted with the far more restricted ability of the choroidal circulation to regulate its blood flow by virtue of the absence of glial cells, the markedly reduced pericyte ensheathment of the choroidal vasculature, and the lack of intermediate filaments in choroidal pericytes. We review the cellular and molecular components of the neurovascular unit in the retina and choroid, techniques for monitoring retinal and choroidal blood flow, responses of the retinal and choroidal circulation to light stimulation, the role of capillaries, astrocytes and pericytes in regulating blood flow, putative signaling mechanisms mediating neurovascular coupling in the retina, and changes that occur in the retinal and choroidal circulation during diabetic retinopathy, age-related macular degeneration, glaucoma, and Alzheimer's disease. We close by discussing issues that remain to be explored.

  12. Cellular and Molecular Mechanisms of 3,3′-Diindolylmethane in Gastrointestinal Cancer

    Directory of Open Access Journals (Sweden)

    Soo Mi Kim

    2016-07-01

    Full Text Available Studies in humans have shown that 3,3′-diindolylmethane (DIM, which is found in cruciferous vegetables, such as cabbage and broccoli, is effective in the attenuation of gastrointestinal cancers. This review presents the latest findings on the use, targets, and modes of action of DIM for the treatment of human gastrointestinal cancers. DIM acts upon several cellular and molecular processes in gastrointestinal cancer cells, including apoptosis, autophagy, invasion, cell cycle regulation, metastasis, angiogenesis, and endoplasmic reticulum (ER stress. In addition, DIM increases the efficacy of other drugs or therapeutic chemicals when used in combinatorial treatment for gastrointestinal cancer. The studies to date offer strong evidence to support the use of DIM as an anticancer and therapeutic agent for gastrointestinal cancer. Therefore, this review provides a comprehensive understanding of the preventive and therapeutic properties of DIM in addition to its different perspective on the safety of DIM in clinical applications for the treatment of gastrointestinal cancers.

  13. Cellular and Molecular Mechanisms of 3,3'-Diindolylmethane in Gastrointestinal Cancer.

    Science.gov (United States)

    Kim, Soo Mi

    2016-01-01

    Studies in humans have shown that 3,3'-diindolylmethane (DIM), which is found in cruciferous vegetables, such as cabbage and broccoli, is effective in the attenuation of gastrointestinal cancers. This review presents the latest findings on the use, targets, and modes of action of DIM for the treatment of human gastrointestinal cancers. DIM acts upon several cellular and molecular processes in gastrointestinal cancer cells, including apoptosis, autophagy, invasion, cell cycle regulation, metastasis, angiogenesis, and endoplasmic reticulum (ER) stress. In addition, DIM increases the efficacy of other drugs or therapeutic chemicals when used in combinatorial treatment for gastrointestinal cancer. The studies to date offer strong evidence to support the use of DIM as an anticancer and therapeutic agent for gastrointestinal cancer. Therefore, this review provides a comprehensive understanding of the preventive and therapeutic properties of DIM in addition to its different perspective on the safety of DIM in clinical applications for the treatment of gastrointestinal cancers. PMID:27447608

  14. MECHANISMS OF DAMAGING EFFECT OF MANGENESE IN TOXIC CONCENTRATIONS ON CELLULAR AND SUBCELLULAR LEVELS

    Directory of Open Access Journals (Sweden)

    Goncharenko A. V.

    2012-11-01

    Full Text Available Influence of subtoxic concentration of manganese chloride in dose equal to LD 50 on condition of plasmatic membranes (model: erythrocytes and functional activity of cell power (model: the isolated liver mitochondrion of rats was studied. It was established that manganese chloride in fixed concentration caused authentic augmentation of sorption capacity of erythrocytes towards alcian blue, influenced increasing of their spontaneous haemolysis and activation of peroxide oxidation of lipids. In experiment on the isolated mitochondrion it was proved that manganese chloride caused dissociation of an oxidizing phosphorusling and complete inhibition of respiration in concentrations of 3 and 4,5mM. These dependences testify that subtoxic concentration of manganese can damage the cell energy. Thus, this pilot research indicated damaging effect of manganese on cellular (erythrocytes and subcellular (mitochondrion levels which are realized through external functioning of membrane structures and deprived them from restoration.

  15. Cellular Interrogation: Exploiting Cell-to-Cell Variability to Discriminate Regulatory Mechanisms in Oscillatory Signalling

    Science.gov (United States)

    Gibson, Daniel; Chang, Frederick; Gnad, Florian; Gunawardena, Jeremy

    2016-01-01

    The molecular complexity within a cell may be seen as an evolutionary response to the external complexity of the cell’s environment. This suggests that the external environment may be harnessed to interrogate the cell’s internal molecular architecture. Cells, however, are not only nonlinear and non-stationary, but also exhibit heterogeneous responses within a clonal, isogenic population. In effect, each cell undertakes its own experiment. Here, we develop a method of cellular interrogation using programmable microfluidic devices which exploits the additional information present in cell-to-cell variation, without requiring model parameters to be fitted to data. We focussed on Ca2+ signalling in response to hormone stimulation, which exhibits oscillatory spiking in many cell types and chose eight models of Ca2+ signalling networks which exhibit similar behaviour in simulation. We developed a nonlinear frequency analysis for non-stationary responses, which could classify models into groups under parameter variation, but found that this question alone was unable to distinguish critical feedback loops. We further developed a nonlinear amplitude analysis and found that the combination of both questions ruled out six of the models as inconsistent with the experimentally-observed dynamics and heterogeneity. The two models that survived the double interrogation were mathematically different but schematically identical and yielded the same unexpected predictions that we confirmed experimentally. Further analysis showed that subtle mathematical details can markedly influence non-stationary responses under parameter variation, emphasising the difficulty of finding a “correct” model. By developing questions for the pathway being studied, and designing more versatile microfluidics, cellular interrogation holds promise as a systematic strategy that can complement direct intervention by genetics or pharmacology. PMID:27367445

  16. Use of static lung mechanics to identify early pulmonary involvement in patients with ankylosing spondylitis.

    OpenAIRE

    Aggarwal A; Gupta D; Wanchu A; Jindal S

    2001-01-01

    AIM: To assess if a detailed analysis of lung mechanics could help in early recognition of pulmonary abnormalities in patients with ankylosing spondylitis. METHODS: Static pulmonary mechanics were studied in 17 patients (16 men and one woman) of ankylosing spondylitis with no obvious clinical or radiological evidence of pulmonary involvement. Lung pressure-volume relationship was generated using a whole body plethysmograph, and a monoexponential equation fitted to this data. RESULTS: Total lu...

  17. Tetracapsuloides bryosalmonae infection affects the expression of genes involved in cellular signal transduction and iron metabolism in the kidney of the brown trout Salmo trutta.

    Science.gov (United States)

    Kumar, Gokhlesh; Sarker, Subhodeep; Menanteau-Ledouble, Simon; El-Matbouli, Mansour

    2015-06-01

    Tetracapsuloides bryosalmonae is an enigmatic endoparasite which causes proliferative kidney disease in various species of salmonids in Europe and North America. The life cycle of the European strain of T. bryosalmonae generally completes in an invertebrate host freshwater bryozoan and vertebrate host brown trout (Salmo trutta) Linnaeus, 1758. Little is known about the gene expression in the kidney of brown trout during the developmental stages of T. bryosalmonae. In the present study, quantitative real-time PCR was applied to quantify the target genes of interest in the kidney of brown trout at different time points of T. bryosalmonae development. PCR primers specific for target genes were designed and optimized, and their gene expression levels were quantified in the cDNA kidney samples using SYBR Green Supermix. Expression of Rab GDP dissociation inhibitor beta, integral membrane protein 2B, NADH dehydrogenase 1 beta subcomplex subunit 6, and 26S protease regulatory subunit S10B were upregulated significantly in infected brown trout, while the expression of the ferritin M middle subunit was downregulated significantly. These results suggest that host genes involved in cellular signal transduction, proteasomal activities, including membrane transporters and cellular iron storage, are differentially upregulated or downregulated in the kidney of brown trout during parasite development. The gene expression pattern of infected renal tissue may support the development of intraluminal sporogonic stages of T. bryosalmonae in the renal tubular lumen of brown trout which may facilitate the release of viable parasite spores to transmit to the invertebrate host bryozoan. PMID:25786607

  18. WWP-1 is a novel modulator of the DAF-2 insulin-like signaling network involved in pore-forming toxin cellular defenses in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Chang-Shi Chen

    Full Text Available Pore-forming toxins (PFTs are the single largest class of bacterial virulence factors. The DAF-2 insulin/insulin-like growth factor-1 signaling pathway, which regulates lifespan and stress resistance in Caenorhabditis elegans, is known to mutate to resistance to pathogenic bacteria. However, its role in responses against bacterial toxins and PFTs is as yet unexplored. Here we reveal that reduction of the DAF-2 insulin-like pathway confers the resistance of Caenorhabditis elegans to cytolitic crystal (Cry PFTs produced by Bacillus thuringiensis. In contrast to the canonical DAF-2 insulin-like signaling pathway previously defined for aging and pathogenesis, the PFT response pathway diverges at 3-phosphoinositide-dependent kinase 1 (PDK-1 and appears to feed into a novel insulin-like pathway signal arm defined by the WW domain Protein 1 (WWP-1. In addition, we also find that WWP-1 not only plays an important role in the intrinsic cellular defense (INCED against PFTs but also is involved in innate immunity against pathogenic bacteria Pseudomonas aeruginosa and in lifespan regulation. Taken together, our data suggest that WWP-1 and DAF-16 function in parallel within the fundamental DAF-2 insulin/IGF-1 signaling network to regulate fundamental cellular responses in C. elegans.

  19. EFFECTS OF AMINO ACIDS ON THE MEMBRANE POTENTIAL OF TOAD OOCYTES AND THE MECHANISMS INVOLVED

    Institute of Scientific and Technical Information of China (English)

    WANGYu-Feng; CHENGJiun; CHENGZhi-Ping

    1989-01-01

    The etTects of 23 amino acids on the membrane potential of toad ( Bufo bufo gargarizans ) oocytes and the mechanisms involved were investigated in vitro by means of microelectrode. At a concentration of I mmol/L-alanine, leucine and lyaine induced signfiant depolarization, and tryptophan provoked a marked hyperpolarization during

  20. Mechanism of Laser/light beam interaction at cellular and tissue level and study of the influential factors for the application of low level laser therapy

    OpenAIRE

    Khalid, Muhammad Zeeshan

    2016-01-01

    After the discovery of laser therapy it was realized it has useful application of wound healing and reduce pain, but due to the poor understanding of the mechanism and dose response this technique remained to be controversial for therapeutic applications. In order to understand the working and effectiveness different experiments were performed to determine the laser beam effect at the cellular and tissue level. This article discusses the mechanism of beam interaction at tissues and cellular l...

  1. Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation

    Science.gov (United States)

    Zhang, Bingxing; Zhang, Jianling; Sang, Xinxin; Liu, Chengcheng; Luo, Tian; Peng, Li; Han, Buxing; Tan, Xiuniang; Ma, Xue; Wang, Dong; Zhao, Ning

    2016-05-01

    The construction of three-dimensional graphene aerogels (GAs) is of great importance owing to their outstanding properties for various applications. Up to now, the combination of ultralow weight and super mechanical strength for GA remains a great challenge. Here we demonstrate the fabrication of cellular GAs by a facile, easily controlled and versatile route, i.e. the chemical reduction of graphene oxide assemblies at oil-water interface under a mild condition (70 °C). The GA is ultralight (with density resilient because the walls of the cell closely pack in a highly ordered manner to maximize mechanical strength. The GA has been utilized as an appealing reactor for catalytic hydrogenation, which exhibited great advantages such as large oil absorption capability, exceptional catalytic activity, ease of product separation and high stability.

  2. Mecanismos envolvidos na cicatrização: uma revisão Mechanisms involved in wound healing: a revision

    Directory of Open Access Journals (Sweden)

    Carlos Aberto Balbino

    2005-03-01

    Full Text Available Os mecanismos envolvidos no processo de reparo de tecidos estão revisados nesse trabalho. O processo de cicatrização ocorre fundamentalmente em três fases: inflamação, formação de tecido de granulação e deposição de matriz extracelular e remodelação. Os eventos celulares e tissulares de cada uma dessas fases estão descritos e discutidos. Os mediadores químicos estão correlacionados com os eventos do processo de cicatrização e as células envolvidas. Especial ênfase é dada à participação dos fatores de crescimento.The mechanisms involved in tissue repair are revised. The wound healing process occurs basically in three phases: inflammation, formation of granulating tissue and extracellular tissue deposition, and tissue remodeling. The cellular and tissue events of each phase are described and discussed. The chemical mediators and their interplay with the wound healing events and cells involved are also discussed. However, especial attention was given to the role played by the growth factors in the tissue repair process.

  3. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    Science.gov (United States)

    Maiti, A.; Small, W.; Lewicki, J. P.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-04-01

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.

  4. Life under Climate Change Scenarios: Sea Urchins’ Cellular Mechanisms for Reproductive Success

    Directory of Open Access Journals (Sweden)

    Desislava Bögner

    2016-03-01

    Full Text Available Ocean Acidification (OA represents a major field of research and increased efforts are being made to elucidate its repercussions on biota. Species survival is ensured by successful reproduction, which may be threatened under detrimental environmental conditions, such as OA acting in synergy with other climate change related stressors. Achieving successful gametogenesis, fertilization, and the development of larvae into healthy juveniles and adults is crucial for the perpetuation of species and, thus, ecosystems’ functionality. The considerable vulnerability of the abovementioned developmental stages to the adverse conditions that future OA may impose has been shown in many species, including sea urchins which are commonly used due to the feasibility of their maintenance in captivity and the great amount of gametes that a mature adult is able to produce. In the present review, the latest knowledge about the impact of OA on various stages of the life cycle of sea urchins is summarized with remarks on the possible impact of other stressors. The cellular physiology of the gametes before, at fertilization and, at early development, is extensively described with a focus on the complex enzymatic machinery and the intracellular pH (pHi and Ca2+ homeostasis for their vulnerability when facing adverse conditions such as acidification, temperature variations, or hypoxia.

  5. The cellular prion protein PrP(c is involved in the proliferation of epithelial cells and in the distribution of junction-associated proteins.

    Directory of Open Access Journals (Sweden)

    Etienne Morel

    Full Text Available BACKGROUND: The physiological function of the ubiquitous cellular prion protein, PrP(c, is still under debate. It was essentially studied in nervous system, but poorly investigated in epithelial cells. We previously reported that PrP(c is targeted to cell-cell junctions of polarized epithelial cells, where it interacts with c-Src. METHODOLOGY/FINDINGS: We show here that, in cultured human enterocytes and in intestine in vivo, the mature PrP(c is differentially targeted either to the nucleus in dividing cells or to cell-cell contacts in polarized/differentiated cells. By proteomic analysis, we demonstrate that the junctional PrP(c interacts with cytoskeleton-associated proteins, such as gamma- and beta-actin, alpha-spectrin, annexin A2, and with the desmosome-associated proteins desmoglein, plakoglobin and desmoplakin. In addition, co-immunoprecipitation experiments revealed complexes associating PrP(c, desmoglein and c-Src in raft domains. Through siRNA strategy, we show that PrP(c is necessary to complete the process of epithelial cell proliferation and for the sub-cellular distribution of proteins involved in cell architecture and junctions. Moreover, analysis of the architecture of the intestinal epithelium of PrP(c knock-out mice revealed a net decrease in the size of desmosomal junctions and, without change in the amount of BrdU incorporation, a shortening of the length of intestinal villi. CONCLUSIONS/SIGNIFICANCE: From these results, PrP(c could be considered as a new partner involved in the balance between proliferation and polarization/differentiation in epithelial cells.

  6. Factors influencing the transfection efficiency and cellular uptake mechanisms of Pluronic P123-modified polypropyleneimine/pDNA polyplexes in multidrug resistant breast cancer cells.

    Science.gov (United States)

    Gu, Jijin; Hao, Junguo; Fang, Xiaoling; Sha, Xianyi

    2016-04-01

    Generally, the major obstacles for efficient gene delivery are cellular internalization and endosomal escape of nucleic acid such as plasmid DNA (pDNA) or small interfering RNA (siRNA). We previously developed Pluronic P123 modified polypropyleneimine (PPI)/pDNA (P123-PPI/pDNA) polyplexes as a gene delivery system. The results showed that P123-PPI/pDNA polyplexes revealed higher transfection efficiency than PPI/pDNA polyplexes in multidrug resistant breast cancer cells. As a continued effort, the present investigation on the factors influencing the transfection efficiency, cellular uptake mechanisms, and intracellular fate of P123-PPI/pDNA polyplexes is reported. The presence of P123 was the main factor influencing the transfection efficiency of P123-PPI/pDNA polyplexes in MCF-7/ADR cells, but other parameters, such as N/P ratio, FBS concentration, incubation time and temperature were important as well. The endocytic inhibitors against clathrin-mediated endocytosis (CME), caveolae-mediated endocytosis (CvME), and macropinocytosis were involved in the internalization to investigate their effects on the cellular uptake and transfection efficiency of P123-PPI/pDNA polyplexes in vitro. The data showed that the internalization of P123-PPI/pDNA polyplexes was obtained from both CME and CvME. Colocalization experiments with TRITC-transferrin (CME indicator), Alexa Fluor 555-CTB (CvME indicator), monoclonal anti-α-tubulin (microtubule indicator), and LysoTracker Green (Endosome/lysosome indicator) were carried out to confirm the internalization routes. The results showed that both CME and CvME played vital roles in the effective transfection of P123-PPI/pDNA polyplexes. Endosome/lysosome system and skeleton, including actin filament and microtubule, were necessary for the transportation after internalization. PMID:26741268

  7. Involvement of the mechanoreceptors in the sensory mechanisms of manual and electrical acupuncture.

    Science.gov (United States)

    Yamamoto, Hiromi; Kawada, Toru; Kamiya, Atsunori; Miyazaki, Shunichi; Sugimachi, Masaru

    2011-02-24

    The modalities of acupuncture can be broadly classified into manual acupuncture (MA) and electroacupuncture (EA). Although MA has been reported to cause winding of tissue around the needle and subsequent activation of the sensory mechanoreceptors and nociceptors, the sensory mechanisms of acupuncture stimulation are not fully understood. To test the hypothesis that the involvement of the mechanoreceptors in the sensory mechanism is different in MA and EA, we examined the effects of a stretch-activated channel blocker gadolinium on the hemodynamic responses to hind limb MA and EA in anesthetized rats (n = 9). Gadolinium significantly attenuated the MA-induced bradycardic response (-22 ± 5 vs. -10 ± 3 bpm, Pmechanoreceptors are involved in the sensory mechanisms for both MA and EA.

  8. (Some) cellular mechanisms influencing the transcription of human endogenous retrovirus, HERV-Fc1

    DEFF Research Database (Denmark)

    Laska, Magdalena Janina; Nissen, Kari Konstantin; Nexø, Bjørn Andersen

    2013-01-01

    DNA methylation and histone acetylation are epigenetic modifications that act as regulators of gene expression. DNA methylation is considered an important mechanism for silencing of retroelements in the mammalian genome. However, the methylation of human endogenous retroviruses (HERVs) is not wel...

  9. Feeding Behavior of Aplysia: A Model System for Comparing Cellular Mechanisms of Classical and Operant Conditioning

    Science.gov (United States)

    Baxter, Douglas A.; Byrne, John H.

    2006-01-01

    Feeding behavior of Aplysia provides an excellent model system for analyzing and comparing mechanisms underlying appetitive classical conditioning and reward operant conditioning. Behavioral protocols have been developed for both forms of associative learning, both of which increase the occurrence of biting following training. Because the neural…

  10. Effects of nitric oxide on magnocellular neurons of the supraoptic nucleus involve multiple mechanisms.

    Science.gov (United States)

    Silva, M P da; Cedraz-Mercez, P L; Varanda, W A

    2014-02-01

    Physiological evidence indicates that the supraoptic nucleus (SON) is an important region for integrating information related to homeostasis of body fluids. Located bilaterally to the optic chiasm, this nucleus is composed of magnocellular neurosecretory cells (MNCs) responsible for the synthesis and release of vasopressin and oxytocin to the neurohypophysis. At the cellular level, the control of vasopressin and oxytocin release is directly linked to the firing frequency of MNCs. In general, we can say that the excitability of these cells can be controlled via two distinct mechanisms: 1) the intrinsic membrane properties of the MNCs themselves and 2) synaptic input from circumventricular organs that contain osmosensitive neurons. It has also been demonstrated that MNCs are sensitive to osmotic stimuli in the physiological range. Therefore, the study of their intrinsic membrane properties became imperative to explain the osmosensitivity of MNCs. In addition to this, the discovery that several neurotransmitters and neuropeptides can modulate their electrical activity greatly increased our knowledge about the role played by the MNCs in fluid homeostasis. In particular, nitric oxide (NO) may be an important player in fluid balance homeostasis, because it has been demonstrated that the enzyme responsible for its production has an increased activity following a hypertonic stimulation of the system. At the cellular level, NO has been shown to change the electrical excitability of MNCs. Therefore, in this review, we focus on some important points concerning nitrergic modulation of the neuroendocrine system, particularly the effects of NO on the SON.

  11. Seminal vesicle intraepithelial involvement by prostate cancer: putative mechanism and clinicopathological significance.

    Science.gov (United States)

    Miyai, Kosuke; Kristiansen, Anna; Egevad, Lars; Pina-Oviedo, Sergio; Divatia, Mukul K; Shen, Steven S; Miles, Brian J; Ayala, Alberto G; Park, Yong Wook; Ro, Jae Y

    2014-09-01

    We have recently shown seminal vesicle intraepithelial involvement of prostate cancer in cases with seminal vesicle invasion (pT3b). Based on the manner of seminal vesicle invasion, there could be 2 possible mechanisms of seminal vesicle intraepithelial involvement: direct intraepithelial invasion from prostate carcinoma in the muscular wall of seminal vesicles or intraepithelial involvement of cancer from the invaginated extraprostatic space (IES)/ejaculatory duct system to extraprostatic seminal vesicle. We aimed to clarify the manner and clinicopathological significance of seminal vesicle intraepithelial involvement. Of 1629 consecutive radical prostatectomies, 109 cases (6.7%) showed seminal vesicle invasion in whole-mounted radical prostatectomy specimens. In these pT3b cases, 18 (17%) showed seminal vesicle intraepithelial involvement by prostate cancer. Stromal invasion of the IES/ejaculatory duct system and ejaculatory duct intraepithelial invasion by prostate cancer were identified in 62 and 5 of 109 pT3b cases, respectively. However, the presence/absence of IES/ejaculatory duct system involvement by prostate cancer does not predict seminal vesicle intraepithelial involvement. No statistically significant correlation was observed between all pathologic parameters/biochemical recurrence and the presence/absence of seminal vesicle intra-epithelial involvement in the pT3b cases. These findings suggest that seminal vesicle intraepithelial involvement is more likely due to direct invasion of carcinoma from the muscular wall of seminal vesicles rather than intraepithelial extension from the ejaculatory duct system in the IES. Further studies with a substantially greater case number are needed to clarify the clinicopathological significance of seminal vesicle intraepithelial involvement in a better manner.

  12. Cellular mechanisms underlying the laxative effect of flavonol naringenin on rat constipation model.

    Directory of Open Access Journals (Sweden)

    Zi-Huan Yang

    Full Text Available BACKGROUND & AIMS: Symptoms of constipation are extremely common, especially in the elderly. The present study aim to identify an efficacious treatment strategy for constipation by evaluating the secretion-promoting and laxative effect of a herbal compound, naringenin, on intestinal epithelial anion secretion and a rat constipation model, respectively. METHODS/PRINCIPAL FINDINGS: In isolated rat colonic crypts, mucosal addition of naringenin (100 microM elicited a concentration-dependent and sustained increase in the short-circuit current (I(SC, which could be inhibited in Cl- free solution or by bumetanide and DPC (diphenylamine-2-carboxylic acid, but not by DIDS (4, 4'- diisothiocyanatostilbene-2, 2'-disulfonic acid. Naringenin could increase intracellular cAMP content and PKA activity, consisted with that MDL-12330A (N-(Cis-2-phenyl-cyclopentyl azacyclotridecan-2-imine-hydrochloride pretreatment reduced the naringenin-induced I(SC. In addition, significant inhibition of the naringenin-induced I(SC by quinidine indicated that basolateral K+ channels were involved in maintaining this cAMP-dependent Cl- secretion. Naringenin-evoked whole cell current which exhibited a linear I-V relationship and time-and voltage- independent characteristics was inhibited by DPC, indicating that the cAMP activated Cl- conductance most likely CFTR (cystic fibrosis transmembrane conductance regulator was involved. In rat constipation model, administration of naringenin restored the level of fecal output, water content and mucus secretion compared to loperamide-administrated group. CONCLUSIONS: Taken together, our data suggest that naringenin could stimulate Cl- secretion in colonic epithelium via a signaling pathway involving cAMP and PKA, hence provide an osmotic force for subsequent colonic fluid secretion by which the laxative effect observed in the rat constipation model. Naringenin appears to be a novel alternative treatment strategy for constipation.

  13. 'Effective inefficiency': cellular control of protein trafficking as a mechanism of post-translational regulation.

    Science.gov (United States)

    Conn, P Michael; Janovick, Jo Ann; Brothers, Shaun P; Knollman, Paul E

    2006-07-01

    The great writer and polyglot, W Somerset Maugham said, 'I'll give you my opinion of the human race in a nutshell...their heart's in the right place, but their head is a thoroughly inefficient organ.' If his words are applied to trafficking of the human pituitary gonadotropin-releasing hormone receptor, it turns out that he was more right than he knew. Paradoxically, the inefficiency of receptor trafficking to the plasma membrane can bring regulatory advantages to cells. Understanding the mechanism by which cells recognize correctly folded proteins in health and disease opens doors to new therapeutic approaches and provides a more accurate view of mechanisms of normal cell function than is presently available. PMID:16837606

  14. Soft matter physics: Tools and mechanical models for living cellular aggregates

    Science.gov (United States)

    Khalifat, Nada; Beaune, Grégory; Nagarajan, Usharani; Winnik, Françoise M.; Brochard-Wyart, Françoise

    2016-11-01

    Tissues belong to the broad field of active matter, a novel class of non-equilibrium materials composed of many interacting units that individually consume energy and collectively generate motion or mechanical stresses. Active systems span an enormous range of length scales, from individual living cells, to tissues and organisms, to animal groups. We introduce the concept of biological tissues as examples of entangled active matter, where the units (cell) are bound by transient links. We focus here on the mechanical properties (surface tension, elasticity, and viscosity) of cells and tissues derived from measurements performed by the pipette aspiration technique. This approach has been very fruitful in unveiling striking analogies between the physics of inert soft matter (polymer, viscous pastes, and Silly Putty®) and the behavior of biological tissues. The results obtained from such analogies suggest important implications in the fields of tissue engineering and development.

  15. Cellular Mechanisms of Tissue Fibrosis. 6. Purinergic signaling and response in fibroblasts and tissue fibrosis

    OpenAIRE

    Lu, David; Insel, Paul A.

    2013-01-01

    Tissue fibrosis occurs as a result of the dysregulation of extracellular matrix (ECM) synthesis. Tissue fibroblasts, resident cells responsible for the synthesis and turnover of ECM, are regulated via numerous hormonal and mechanical signals. The release of intracellular nucleotides and their resultant autocrine/paracrine signaling have been shown to play key roles in the homeostatic maintenance of tissue remodeling and in fibrotic response post-injury. Extracellular nucleotides signal throug...

  16. Chinese Medicines Induce Cell Death: The Molecular and Cellular Mechanisms for Cancer Therapy

    OpenAIRE

    Xuanbin Wang; Yibin Feng; Ning Wang; Fan Cheung; Hor Yue Tan; Sen Zhong; Charlie Li; Seiichi Kobayashi

    2014-01-01

    Chinese medicines have long history in treating cancer. With the growing scientific evidence of biomedical researches and clinical trials in cancer therapy, they are increasingly accepted as a complementary and alternative treatment. One of the mechanisms is to induce cancer cell death. Aim. To comprehensively review the publications concerning cancer cell death induced by Chinese medicines in recent years and provide insights on anticancer drug discovery from Chinese medicines. Materials and...

  17. 1. Morphological Implication on Cellular Response to Mechanical Stress in Bone.

    Science.gov (United States)

    Amizuka, Norio

    2016-08-01

    In bone, there are 3 distinct cell types: an osteoblast, a bone forming cell; an osteocyte embedded in bone matrix as a consequence of being differentiated from an osteoblast; and an osteoclast, a multinucleated giant cell responsible for bone resorption. Bone is always remodeled by replacing old bone with new bone (bone remodeling), by which bone can maintain its stiffness and flexibility. However, in an osteoporotic state, the disrupted balance between bone resorption and formation results in not only markedly reduced bone mass, but also in disorganized geometry of trabecules, which can often give rise to a bone fracture. Osteocytes located in their lacunae insert their fine cytoplasmic processes into narrow passageways referred to as osteocytic canaliculi. Neighboring osteocytes connect to each other by means of a gap junction in their cytoplasmic processes. Therefore, osteocytes and their lacunae/canaliculi appear to form functional syncytium called osteocytic lacunar canalicular system (OLCS). The geometrical distribution of OLCS is poorly arranged in immature bone, while it appears well-arranged distribution in mature bone (cortical bone), in which molecular transports and sensing mechanical stress seems to be efficient, and therefore, may be able to respond to mechanical stress. In this seminar, I will introduce our recent findings on the morphology and function of OLCS which may respond to mechanical stress. PMID:27441762

  18. Energy cost and putative benefits of cellular mechanisms modulating buoyancy in aflagellate marine phytoplankton.

    Science.gov (United States)

    Lavoie, Michel; Raven, John A; Levasseur, Maurice

    2016-04-01

    Little information is available on the energetics of buoyancy modulation in aflagellate phytoplankton, which comprises the majority of autotrophic cells found in the ocean. Here, we computed for three aflagellate species of marine phytoplankton (Emiliania huxleyi, Thalassiosira pseudonana, and Ethmodiscus rex) the theoretical minimum energy cost as photons absorbed and nitrogen resource required of the key physiological mechanisms (i.e., replacement of quaternary ammonium by dimethyl-sulfoniopropionate, storage of polysaccharides, and cell wall biosynthesis) affecting the cell's vertical movement as a function of nitrogen (N) availability. These energy costs were also normalized to the capacity of each buoyancy mechanism to modulate sinking or rising rates based on Stokes' law. The three physiological mechanisms could act as ballast in the three species tested in conditions of low N availability at a low fraction (organic solute synthesis to achieve vertical migration. This supports the carbohydrate-ballast strategy for vertical migration for this species, but argues against the theory of replacement of low- or high-density organic solutes. This study brings new insights into the energy cost and potential selective advantages of several strategies modulating the buoyancy of aflagellate marine phytoplankton. PMID:27037589

  19. (Some cellular mechanisms influencing the transcription of human endogenous retrovirus, HERV-Fc1.

    Directory of Open Access Journals (Sweden)

    Magdalena Janina Laska

    Full Text Available DNA methylation and histone acetylation are epigenetic modifications that act as regulators of gene expression. DNA methylation is considered an important mechanism for silencing of retroelements in the mammalian genome. However, the methylation of human endogenous retroviruses (HERVs is not well investigated. The aim of this study was to investigate the transcriptional potential of HERV-Fc1 proviral 5'LTR in more detail, and examined the specific influence of CpG methylation on this LTR in number of cell lines. Specifically, the role of demethylating chemicals e.g. 5-aza-2' deoxycytidine and Trichostatin-A, in inducing or reactivating expression of HERV-Fc1 specific sequences and the mechanisms were investigated. In our present study, 5-aza-dC is shown to be a powerful inducer of HERV-Fc1, and at the same time it strongly inhibits methylation of DNA. Treatment with this demethylating agent 5-aza-dC, results in significantly increased levels of HERV-Fc1 expression in cells previously not expressing HERV-Fc1, or with a very low expression level. The extent of expression of HERV-Fc1 RNAs precisely correlates with the apparent extent of demethylation of the related DNA sequences. In conclusion, the results suggest that inhibition of DNA methylation/histone deacetylase can interfere with gene silencing mechanisms affecting HERV-Fc1 expression in human cells.

  20. Cissus sicyoides: Pharmacological Mechanisms Involved in the Anti-Inflammatory and Antidiarrheal Activities

    Science.gov (United States)

    Beserra, Fernando Pereira; de Cássia Santos, Raquel; Périco, Larissa Lucena; Rodrigues, Vinicius Peixoto; de Almeida Kiguti, Luiz Ricardo; Saldanha, Luiz Leonardo; Pupo, André Sampaio; da Rocha, Lúcia Regina Machado; Dokkedal, Anne Lígia; Vilegas, Wagner; Hiruma-Lima, Clélia Akiko

    2016-01-01

    The objective of this study was to evaluate the pharmacological mechanisms involved in anti-inflammatory and antidiarrheal actions of hydroalcoholic extract obtained from the leaves of Cissus sicyoides (HECS). The anti-inflammatory effect was evaluated by oral administration of HECS against acute model of edema induced by xylene, and the mechanisms of action were analysed by involvement of arachidonic acid (AA) and prostaglandin E2 (PGE2). The antidiarrheal effect of HECS was observed and we analyzed the motility and accumulation of intestinal fluid. We also analyzed the antidiarrheal mechanisms of action of HECS by evaluating the role of the opioid receptor, α2 adrenergic receptor, muscarinic receptor, nitric oxide (NO) and PGE2. The oral administration of HECS inhibited the edema induced by xylene and AA and was also able to significantly decrease the levels of PGE2. The extract also exhibited significant anti-diarrheal activity by reducing motility and intestinal fluid accumulation. This extract significantly reduced intestinal transit stimulated by muscarinic agonist and intestinal secretion induced by PGE2. Our data demonstrate that the mechanism of action involved in the anti-inflammatory effect of HECS is related to PGE2. The antidiarrheal effect of this extract may be mediated by inhibition of contraction by acting on the intestinal smooth muscle and/or intestinal transit. PMID:26805827

  1. Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity

    Science.gov (United States)

    Botelho, Danielle J.; Leo, Bey Fen; Massa, Christopher B.; Sarkar, Srijata; Tetley, Terry D.; Chung, Kian Fan; Chen, Shu; Ryan, Mary P.; Porter, Alexandra E.; Zhang, Junfeng; Schwander, Stephan K.; Gow, Andrew J.

    2016-01-01

    Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 µg/g body weight) 20 and 110nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered. PMID:26152688

  2. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    Directory of Open Access Journals (Sweden)

    Ana-Maria Florea

    2011-03-01

    Full Text Available Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs and might provide new therapeutic strategies and reduce side effects.

  3. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    Energy Technology Data Exchange (ETDEWEB)

    Florea, Ana-Maria [Department of Neuropathology, Heinrich-Heine University, Düsseldorf (Germany); Büsselberg, Dietrich, E-mail: dib2015@qatar-med.cornell.edu [Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha (Qatar)

    2011-03-15

    Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects.

  4. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    International Nuclear Information System (INIS)

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: ► Endothelial cells mount a stress response under conditions of low serum. ► Endothelial VEGFR levels are

  5. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Antony M.; Odell, Adam F. [Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom); Mughal, Nadeem A. [Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom); Issitt, Theo; Ulyatt, Clare; Walker, John H. [Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom); Homer-Vanniasinkam, Shervanthi [Leeds Vascular Institute, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom); Ponnambalam, Sreenivasan, E-mail: s.ponnambalam@leeds.ac.uk [Endothelial Cell Biology Unit, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2012-11-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black

  6. Cellular Mechanism of Newly Synthesized Indoledione Derivative-induced Immunological Death of Tumor Cell

    OpenAIRE

    Oh, Su-Jin; Ryu, Chung-Kyu; Baek, So-Young; Lee, Hyunah

    2011-01-01

    Background EY-6 is one of the newly synthesized indoledione derivatives to induce tumor cell-specific cell death. In this study, we investigated the mechanism of immunological death induced by EY-6 at mouse colon cancer cell as well as at the normal immune cell represented by dendritic cell. Methods C57BL/6 mouse syngeneic colon cancer cell MC38 was treated with EY-6, and analyzed by MTT for viability test, flow cytometry for confirming surface expressing molecules and ELISA for detection of ...

  7. [Using atomic force microscopy to analyze morphological changes and mechanical properties caused by cellular exposure to low doses of pesticides].

    Science.gov (United States)

    L'Abbate, N; Lasalvia, M; Perna, G; D'Antonio, P; Quartucci, G; Gallo, C; Capozzi, V

    2012-01-01

    A commercial pesticide is usually composed of active ingredients and formulants. Among the active ingredients, Deltamethrin is a pyrethroid chemical widely used for synthesizing pesticides products which are very effective in damaging the central nervous system of pests. In this work, we analyze, by means of atomic force microscopy (AFM), cellular morphological changes induced by exposure to a Deltamethrin-based commercial pesticide (Decaflow). AFM microscopy, in addition to the well-known characterization of the cellular topography, has the ability to monitor interesting biomechanical parameters of the surface as roughness and elastic modulus. In particular, we exposed normal human keratinocytes for 24 hours at different solutions of Decaflow, well below the threshold of cytotoxicity. The AFM images of exposed cells show alterations of surface cell shape. Moreover exposed cells are characterized by an increase of the value of membrane roughness. The mechanical properties of cells are also modified after Decaflow exposure, as confirmed by a decrease of the elasticity modulus with increasing the concentration of pesticide.

  8. The Effect of Structural Design on Mechanical Properties and Cellular Response of Additive Manufactured Titanium Scaffolds

    Directory of Open Access Journals (Sweden)

    Jan Wieding

    2012-08-01

    Full Text Available Restoration of segmental defects in long bones remains a challenging task in orthopedic surgery. Although autologous bone is still the ‘Gold Standard’ because of its high biocompatibility, it has nevertheless been associated with several disadvantages. Consequently, artificial materials, such as calcium phosphate and titanium, have been considered for the treatment of bone defects. In the present study, the mechanical properties of three different scaffold designs were investigated. The scaffolds were made of titanium alloy (Ti6Al4V, fabricated by means of an additive manufacturing process with defined pore geometry and porosities of approximately 70%. Two scaffolds exhibited rectangular struts, orientated in the direction of loading. The struts for the third scaffold were orientated diagonal to the load direction, and featured a circular cross-section. Material properties were calculated from stress-strain relationships under axial compression testing. In vitro cell testing was undertaken with human osteoblasts on scaffolds fabricated using the same manufacturing process. Although the scaffolds exhibited different strut geometry, the mechanical properties of ultimate compressive strength were similar (145–164 MPa and in the range of human cortical bone. Test results for elastic modulus revealed values between 3.7 and 6.7 GPa. In vitro testing demonstrated proliferation and spreading of bone cells on the scaffold surface.

  9. Chinese Medicines Induce Cell Death: The Molecular and Cellular Mechanisms for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Xuanbin Wang

    2014-01-01

    Full Text Available Chinese medicines have long history in treating cancer. With the growing scientific evidence of biomedical researches and clinical trials in cancer therapy, they are increasingly accepted as a complementary and alternative treatment. One of the mechanisms is to induce cancer cell death. Aim. To comprehensively review the publications concerning cancer cell death induced by Chinese medicines in recent years and provide insights on anticancer drug discovery from Chinese medicines. Materials and Methods. Chinese medicines (including Chinese medicinal herbs, animal parts, and minerals were used in the study. The key words including “cancer”, “cell death”, “apoptosis”, “autophagy,” “necrosis,” and “Chinese medicine” were used in retrieval of related information from PubMed and other databases. Results. The cell death induced by Chinese medicines is described as apoptotic, autophagic, or necrotic cell death and other types with an emphasis on their mechanisms of anticancer action. The relationship among different types of cell death induced by Chinese medicines is critically reviewed and discussed. Conclusions. This review summarizes that CMs treatment could induce multiple pathways leading to cancer cell death, in which apoptosis is the dominant type. To apply these preclinical researches to clinic application will be a key issue in the future.

  10. Insight from Molecular, Pathological, and Immunohistochemical Studies on Cellular and Humoral Mechanisms Responsible for Vaccine-Induced Protection of Rainbow Trout against Yersinia ruckeri

    DEFF Research Database (Denmark)

    Deshmukh, Sidhartha; Kania, Per W.; Chettri, Jiwan K.;

    2013-01-01

    indirectly to both humoral and cellular elements being involved in protection. The present study correlates the level of protection in rainbow trout to cellular reactions in spleen and head kidney and visualizes the processes by applying histopathological, immunohistochemical, and in situ hybridization...... techniques. It was shown that these cellular reactions, which were more prominent in spleen than in head kidney, were associated with the expression of immune-related genes, suggesting a Th2-like response. Y. ruckeri, as shown by in situ hybridization (ISH), was eliminated within a few days in vaccinated...

  11. The cytotoxicity of polycationic iron oxide nanoparticles: Common endpoint assays and alternative approaches for improved understanding of cellular response mechanism

    Directory of Open Access Journals (Sweden)

    Hoskins Clare

    2012-04-01

    Our findings indicate that common in vitro cell endpoint assays do not give detailed and complete information on cellular state and it is essential to explore novel approaches and carry out more in-depth studies to elucidate cellular response mechanism to magnetic nanoparticles.

  12. Physical mechanisms involved in grooved flat heat pipes: experimental and numerical analyses

    OpenAIRE

    Lips, S.; Lefevre, F.; Bonjour, J.

    2011-01-01

    An experimental database, obtained with flat plate heat pipes (FPHP) with longitudinal grooves is presented. The capillary pressure measured by confocal microscopy and the temperature field in the wall are presented in various experimental conditions (vapour space thickness, filing ratio, heat transfer rate, tilt angle, fluid). Coupled hydrodynamic and thermal models are developed. Experimental results are compared to results of numerical models. Physical mechanisms involved in grooved heat p...

  13. Mechanical Properties of 3-D Printed Cellular Foams with triangular cells

    Science.gov (United States)

    Bunga, Pratap Kumar

    In the present work, poly lactic acid (PLA) is used as a model system to investigate the mechanical behavior of 3-D printed foams with triangular cells. Solid PLA tension and compression specimens and foams made of PLA were fabricated using fused deposition 3-D printing technique. The solid PLA tension specimens were characterized for their densities and found to be about 10% lower in density as compared to their bulk counter parts. The triangular foams had a relative density of about 64%. The relationships between the structure of the foams and its deformation behavior under compression along two in-plane directions were characterized. Furthermore, simple finite element models were developed to understand the observed deformation behavior of triangular foams.

  14. Auxin apical control of the auxin polar transport and its oscillation - a suggested cellular transduction mechanism

    Directory of Open Access Journals (Sweden)

    Tomasz J. Wodzicki

    2014-02-01

    Full Text Available The proposed hypothesis concerns the transduction of auxin molecular signals arriving from the apoplast at the plasma membrane or recognized by the proteineous receptors of the responding cell, to the concentration gradients oscillating in the supracellular space, associated usually with the specific plant growth and differentiation. Acting as an agonist from outside the target cell auxin stimulates in this cell: (1 the liberation of auxin from the cytosolic pool of its conjugates directly into the basipetal efflux; (2 the synthesis of new auxin which restores the cytosolic reserve of auxin conjugates. The functioning of such a system may be effective in a series of processes initiated by the changing concentration of cytosolic calcium. The hypothesis suggests a molecular mechanism for the development and effective operation of the morphogenetic field in the supracellular space of the plant body, such as the field resulting from auxin waves discovered in cambium.

  15. Use of static lung mechanics to identify early pulmonary involvement in patients with ankylosing spondylitis.

    Directory of Open Access Journals (Sweden)

    Aggarwal A

    2001-04-01

    Full Text Available AIM: To assess if a detailed analysis of lung mechanics could help in early recognition of pulmonary abnormalities in patients with ankylosing spondylitis. METHODS: Static pulmonary mechanics were studied in 17 patients (16 men and one woman of ankylosing spondylitis with no obvious clinical or radiological evidence of pulmonary involvement. Lung pressure-volume relationship was generated using a whole body plethysmograph, and a monoexponential equation fitted to this data. RESULTS: Total lung capacity (TLC was reduced in one (5.9% and static lung compliance (Cst in nine (52.9% patients. Four (23.5% patients had normal TLC, yet Cst and shape constant (K were reduced. Five (29.4% patients had reduced TLC and Cst; four of them had low K. One (5.9% patient had normal TLC but elevated Cst and K. CONCLUSIONS: Pulmonary involvement in patients with ankylosing spondylitis is probably diffuse and begins much earlier than generally presumed. Evaluation of static lung mechanics can identify pulmonary involvement early in the course of disease in several of these patients.

  16. Cellular uptake of the antitumor agent Dp44mT occurs via a carrier/receptor-mediated mechanism.

    Science.gov (United States)

    Merlot, Angelica M; Pantarat, Namfon; Menezes, Sharleen V; Sahni, Sumit; Richardson, Des R; Kalinowski, Danuta S

    2013-12-01

    The chelator di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) shows potent and selective anticancer and antimetastatic activity. However, the mechanism by which it is initially transported into cells to induce cytotoxicity is unknown. Hence, the current investigation examined the cellular uptake of ¹⁴C-Dp44mT relative to two structurally related ligands, namely the aroylhydrazone ¹⁴C-pyridoxal isonicotinoyl hydrazone (¹⁴C-PIH) and the thiosemicarbazone (¹⁴C-2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (¹⁴C-Bp4eT). In marked contrast to the cellular uptake of ¹⁴C-PIH and ¹⁴C-Bp4eT, which were linear as a function of concentration, ¹⁴C-Dp44mT uptake was saturable using SK-N-MC neuroepithelioma cells (Bmax, 4.28 × 10⁷ molecules of chelator/cell; and Kd, 2.45 μM). Together with the fact that ¹⁴C-Dp44mT uptake was temperature-dependent and significantly (P complex [Fe(¹⁴C-Dp44mT)₂] was not saturable as a function of concentration and was much greater than the ligand alone, indicating an alternate mode of transport. Studies examining the tissue distribution of ¹⁴C-Dp44mT injected intravenously into a mouse tumor model demonstrated the ¹⁴C label was primarily identified in the excretory system. Collectively, these findings examining the mechanism of Dp44mT uptake and its distribution and excretion have clinical implications for its bioavailability and uptake in vivo. PMID:24085840

  17. Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER2/neu.

    Science.gov (United States)

    Cooley, S; Burns, L J; Repka, T; Miller, J S

    1999-10-01

    Treatment of advanced breast cancer with autologous stem cell transplantation is limited by a high probability of disease relapse. In clinical trials, interleukin 2 (IL-2) alone can expand natural killer (NK) cells in vivo and increase their cytotoxic activity against breast cancer cell lines, but this increase is modest. Understanding the mechanisms that mediate NK cell lysis of breast cancer targets may lead to improvements of current immunotherapy strategies. NK cells from normal donors or patients receiving subcutaneous IL-2 were tested in cytotoxicity assays against five breast cancer cell lines. The role of adhesion molecules and antibodies that interact through Fc receptors on NK cells was explored. NK cell lysis of breast cancer targets is variable and is partially dependent on recognition through ICAM-1 and CD18. While blocking CD2 slightly decreased cytotoxicity, contrary to expectations, an antibody against CD58 (the ligand for CD2), failed to block killing and instead mediated an increased cytotoxicity that correlated with target density of CD58. The CD58 antibody-enhanced killing was dependent not only on FcRgammaIII but also on CD2 and ICAM-1/CD18. To further elucidate the mechanism of this CD58 antibody-dependent cellular cytotoxicity (ADCC), another antibody was tested. Trastuzumab (Herceptin), a humanized antibody against HER2/neu, mediated potent ADCC against all the HER2/neu positive breast cancer targets. Unlike CD58 antibody-mediated ADCC, Herceptin ADCC was minimally affected by blocking antibodies to CD2 or ICAM-1/CD18, which suggests a different mechanism of action. This study shows that multiple mechanisms are involved in NK cell lysis of breast cancer targets, that none of the targets are inherently resistant to killing, and that two distinct mechanisms of ADCC can target immunotherapy to breast cancer cells. PMID:10517495

  18. Effects and mechanisms of 3α,5α,-THP on emotion, motivation, and reward functions involving pregnane xenobiotic receptor

    Directory of Open Access Journals (Sweden)

    Cheryl A Frye

    2012-01-01

    Full Text Available Progestogens [progesterone (P4 and its products] play fundamental roles in the development and/or function of the central nervous system during pregnancy. We, and others, have investigated the role of pregnane neurosteroids for a plethora of functional effects beyond their pro-gestational processes. Emerging findings regarding the effects, mechanisms, and sources of neurosteroids have challenged traditional dogma about steroid action. How the P4 metabolite and neurosteroid, 3α-hydroxy-5α-pregnan-20-one (3α,5α-THP, influences cellular functions and behavioral processes involved in emotion/affect, motivation, and reward, is the focus of the present review. To further understand these processes, we have utilized an animal model assessing the effects, mechanisms, and sources of 3α,5α-THP. In the ventral tegmental area (VTA, 3α,5α-THP has actions to facilitate affective, and motivated, social behaviors through non-traditional targets, such as GABA, glutamate, and dopamine receptors. 3α,5α-THP levels in the midbrain VTA both facilitate, and/or are enhanced by, affective and social behavior. The pregnane xenobiotic receptor (PXR mediates the production of, and/or metabolism to, various neurobiological factors. PXR is localized to the midbrain VTA of rats. The role of PXR to influence 3α,5α-THP production from central biosynthesis, and/or metabolism of peripheral P4, in the VTA, as well as its role to facilitate, or be increased by, affective/social behaviors is under investigation. Investigating novel behavioral functions of 3α,5α-THP extends our knowledge of the neurobiology of progestogens, relevant for affective/social behaviors, and their connections to systems that regulate affect and motivated processes, such as those important for stress regulation and neuropsychiatric disorders (anxiety, depression, schizophrenia, drug dependence. Thus, further understanding of 3α,5α-THP’s role and mechanisms to enhance affective and motivated

  19. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low

    Energy Technology Data Exchange (ETDEWEB)

    Kadhim, Munira A

    2012-08-22

    The above studies will provide fundamental mechanistic information relating genetic predisposition to important low dose phenomena, and will aid in the development of Department of Energy policy, as well as radiation risk policy for the public and the workplace. We believe the proposed studies accurately reflect the goals of the DOE low dose program. To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e. less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these "non-targeted responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate non-targeted effects of ionizing radiation with a focus on the induction of genomic instability (GI) in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/CaH and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition in these models on genomic instability. We will specifically focus on the effects of low doses of low LET radiation, down to the dose of 10mGy (0.01Gy) X-rays. Using conventional X-ray and we will be able to assess the role of genetic variation under various conditions at a range of doses down to the very low dose of 0.01Gy. Irradiations will be carried out using facilities in routine operation for such studies. Mechanistic studies of instability in different cell

  20. Cellular mechanism underlying formaldehyde-stimulated Cl- secretion in rat airway epithelium.

    Directory of Open Access Journals (Sweden)

    Yu-Li Luo

    Full Text Available BACKGROUND: Recent studies suggest that formaldehyde (FA could be synthesized endogeneously and transient receptor potential (TRP channel might be the sensor of FA. However, the physiological significance is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: The present study investigated the FA induced epithelial Cl(- secretion by activation of TRPV-1 channel located in the nerve ending fiber. Exogenously applied FA induced an increase of I(SC in intact rat trachea tissue but not in the primary cultured epithelial cells. Western blot and immunofluorescence analysis identified TRPV-1 expression in rat tracheal nerve ending. Capsazepine (CAZ, a TRPV-1 specific antagonist significantly blocked the I(SC induced by FA. The TRPV-1 agonist capsaicin (Cap induced an increase of I(SC, which was similar to the I(SC induced by FA. L-703606, an NK-1 specific inhibitor and propranolol, an adrenalin β receptor inhibitor significantly abolished the I(SC induced by FA or Cap. In the ion substitute analysis, FA could not induce I(SC in the absence of extracelluar Cl(-. The I(SC induced by FA could be blocked by the non-specific Cl(- channel inhibitor DPC and the CFTR specific inhibitor CFTR(i-172, but not by the Ca(2+-activated Cl(- channel inhibitor DIDS. Furthermore, both forskolin, an agonist of adenylate cyclase (AC and MDL-12330A, an antagonist of AC could block FA-induced I(SC. CONCLUSION: Our results suggest that FA-induced epithelial I(SC response is mediated by nerve, involving the activation of TRPV-1 and release of adrenalin as well as substance P.

  1. Uncoupling of oxidative phosphorylation by curcumin: Implication of its cellular mechanism of action

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Han Wern; Lim, Hwee Ying [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260 (Singapore); Wong, Kim Ping, E-mail: bchsitkp@nus.edu.sg [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260 (Singapore)

    2009-11-06

    Curcumin is a phytochemical isolated from the rhizome of turmeric. Recent reports have shown curcumin to have antioxidant, anti-inflammatory and anti-tumor properties as well as affecting the 5'-AMP activated protein kinase (AMPK), mTOR and STAT-3 signaling pathways. We provide evidence that curcumin acts as an uncoupler. Well-established biochemical techniques were performed on isolated rat liver mitochondria in measuring oxygen consumption, F{sub 0}F{sub 1}-ATPase activity and ATP biosynthesis. Curcumin displays all the characteristics typical of classical uncouplers like fccP and 2,4-dinitrophenol. In addition, at concentrations higher than 50 {mu}M, curcumin was found to inhibit mitochondrial respiration which is a characteristic feature of inhibitory uncouplers. As a protonophoric uncoupler and as an activator of F{sub 0}F{sub 1}-ATPase, curcumin causes a decrease in ATP biosynthesis in rat liver mitochondria. The resulting change in ATP:AMP could disrupt the phosphorylation status of the cell; this provides a possible mechanism for its activation of AMPK and its downstream mTOR and STAT-3 signaling.

  2. Gastric cytoprotection beyond prostaglandins: cellular and molecular mechanisms of gastroprotective and ulcer healing actions of antacids.

    Science.gov (United States)

    Tarnawski, Andrzej; Ahluwalia, Amrita; Jones, Michael K

    2013-01-01

    This article updates current views on gastric mucosal defense, injury, protection and ulcer healing with a focus on mucosal protective and ulcer healing actions of antacids. The gastric mucosa is continuously exposed to a variety of noxious factors, both endogenous such as: 0.1N hydrochloric acid, pepsin, bile acids, lysolecithin, H. pylori toxins and exogenous such as NSAIDs, ethanol and others. Gastric mucosal integrity is maintained by pre-epithelial, epithelial and post-epithelial defense mechanisms permitting the mucosa to withstand exposure to the above damaging factors. When mucosal defense is weakened or overwhelmed by injurious factors, injury develops in the form of erosions or ulcers. In the late 1970s Andre Robert and coworkers discovered that microgram amounts of a prostaglandin E2 analog protects the gastric mucosa against a variety of ulcerogenic and necrotizing agents - even such strong inducers of injury as 100% ethanol and boiling water. They proposed a new concept of cytoprotection. Subsequently, other compounds, such as sulfhydryls, sucralfate and epidermal growth factor were shown to exert protective action on gastric mucosa. Additionally, some antacids have been shown to exert a potent mucosal protective action against a variety of injurious factors and accelerate healing of erosions and gastric ulcers. These actions of antacids, especially hydrotalcite - the newest and the most extensively studied antacid - are due to activation of prostaglandin synthesis; binding to and inactivation of pepsin, bile acids and H. pylori toxins; induction of heat shock proteins; and, activation of genes encoding growth factors and their receptors.

  3. Cellular and molecular mechanisms activating the cell death processes by chalcones: Critical structural effects.

    Science.gov (United States)

    Champelovier, Pierre; Chauchet, Xavier; Hazane-Puch, Florence; Vergnaud, Sabrina; Garrel, Catherine; Laporte, François; Boutonnat, Jean; Boumendjel, Ahcène

    2013-12-01

    Chalcones are naturally occurring compounds with diverse pharmacological activities. Chalcones derive from the common structure: 1,3-diphenylpropenone. The present study aims to better understand the mechanistic pathways triggering chalcones anticancer effects and providing evidences that minor structural difference could lead to important difference in mechanistic effect. We selected two recently investigated chalcones (A and B) and investigated them on glioblastoma cell lines. It was found that chalcone A induced an apoptotic process (type I PCD), via the activation of caspase-3, -8 and -9. Chalcone A also increased CDK1/cyclin B ratios and decreased the mitochondrial transmembrane potential (ΔΨm). Chalcone B induced an autophagic cell death process (type II PCD), ROS-related but independent of both caspases and protein synthesis. Both chalcones increased Bax/Bcl2 ratios and decreased Ki67 and CD71 antigen expressions. The present investigation reveals that despite the close structure of chalcones A and B, significant differences in mechanism of effect were found.

  4. Uncoupling of oxidative phosphorylation by curcumin: Implication of its cellular mechanism of action

    International Nuclear Information System (INIS)

    Curcumin is a phytochemical isolated from the rhizome of turmeric. Recent reports have shown curcumin to have antioxidant, anti-inflammatory and anti-tumor properties as well as affecting the 5'-AMP activated protein kinase (AMPK), mTOR and STAT-3 signaling pathways. We provide evidence that curcumin acts as an uncoupler. Well-established biochemical techniques were performed on isolated rat liver mitochondria in measuring oxygen consumption, F0F1-ATPase activity and ATP biosynthesis. Curcumin displays all the characteristics typical of classical uncouplers like fccP and 2,4-dinitrophenol. In addition, at concentrations higher than 50 μM, curcumin was found to inhibit mitochondrial respiration which is a characteristic feature of inhibitory uncouplers. As a protonophoric uncoupler and as an activator of F0F1-ATPase, curcumin causes a decrease in ATP biosynthesis in rat liver mitochondria. The resulting change in ATP:AMP could disrupt the phosphorylation status of the cell; this provides a possible mechanism for its activation of AMPK and its downstream mTOR and STAT-3 signaling.

  5. Nanosilicon carbide/hydroxyapatite nanocomposites: structural, mechanical and in vitro cellular properties.

    Science.gov (United States)

    Hesaraki, Saeed; Ebadzadeh, Touraj; Ahmadzadeh-Asl, Shaghayegh

    2010-07-01

    In this study, bioceramic nanocomposites were synthesized by sintering compacted bodies of hydroxyapatite (HA) mixed with 5 or 15 wt% nanosilicon carbide at 1,100 or 1,200 degrees C in a reducing atmosphere. Pure hydroxyapatite was also prepared for comparison. Phase compositions, structural and physical properties of the composites were studied using appropriate techniques. Some in vitro biological properties of the composites were also investigated by using newrat calvaria osteoblastic cells. X-ray diffraction analysis indicated that tricalcium phosphate (TCP) comprising negligible alpha-TCP and considerable beta-TCP were formed in composites during sintering meanwhile hydroxyapatite and silicon carbide (SiC) were also existed in the composition. Based on the results, that composite made of 5 wt% nanosilicon carbide exhibited higher bending strength, fracture toughness and bulk density than pure HA and composite with 15 wt% silicon carbide. The scanning electron microscopy coupled with energy dispersive X-ray analysis revealed that the addition of nanosilicon carbide suppressed the grain growth and yielded a feature of island-type clusters consisting of blistered calcium phosphate (HA and TCP) and SiC grains. Also, in this study, better proliferation rate and alkaline phosphatase activity were observed for the osteoblastic cells seeded on top of the composites compared to pure HA. Overall, the results indicated that the composite of 95 wt% hydroxyapatite and 5 wt% SiC exhibited better mechanical and biological properties than pure HA and further addition of SiC failed strength and toughness.

  6. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-01-01

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression. PMID:21964384

  7. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking.

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-10-24

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression.

  8. Linking Cellular Mechanisms to Behavior: Entorhinal Persistent Spiking and Membrane Potential Oscillations May Underlie Path Integration, Grid Cell Firing, and Episodic Memory

    Directory of Open Access Journals (Sweden)

    Michael E. Hasselmo

    2008-01-01

    Full Text Available The entorhinal cortex plays an important role in spatial memory and episodic memory functions. These functions may result from cellular mechanisms for integration of the afferent input to entorhinal cortex. This article reviews physiological data on persistent spiking and membrane potential oscillations in entorhinal cortex then presents models showing how both these cellular mechanisms could contribute to properties observed during unit recording, including grid cell firing, and how they could underlie behavioural functions including path integration. The interaction of oscillations and persistent firing could contribute to encoding and retrieval of trajectories through space and time as a mechanism relevant to episodic memory.

  9. HAMLET kills tumor cells by an apoptosis-like mechanism--cellular, molecular, and therapeutic aspects.

    Science.gov (United States)

    Svanborg, Catharina; Agerstam, Helena; Aronson, Annika; Bjerkvig, Rolf; Düringer, Caroline; Fischer, Walter; Gustafsson, Lotta; Hallgren, Oskar; Leijonhuvud, Irene; Linse, Sara; Mossberg, Ann-Kristin; Nilsson, Hanna; Pettersson, Jenny; Svensson, Malin

    2003-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex that induces apoptosis-like death in tumor cells, but leaves fully differentiated cells unaffected. This review summarizes the information on the in vivo effects of HAMLET in patients and tumor models on the tumor cell biology, and on the molecular characteristics of the complex. HAMLET limits the progression of human glioblastomas in a xenograft model and removes skin papillomas in patients. This broad anti-tumor activity includes >40 different lymphomas and carcinomas and apoptosis is independent of p53 or bcl-2. In tumor cells HAMLET enters the cytoplasm, translocates to the perinuclear area, and enters the nuclei where it accumulates. HAMLET binds strongly to histones and disrupts the chromatin organization. In the cytoplasm, HAMLET targets ribosomes and activates caspases. The formation of HAMLET relies on the propensity of alpha-lactalbumin to alter its conformation when the strongly bound Ca2+ ion is released and the protein adopts the apo-conformation that exposes a new fatty acid binding site. Oleic acid (C18:1,9 cis) fits this site with high specificity, and stabilizes the altered protein conformation. The results illustrate how protein folding variants may be beneficial, and how their formation in peripheral tissues may depend on the folding change and the availability of the lipid cofactor. One example is the acid pH in the stomach of the breast-fed child that promotes the formation of HAMLET. This mechanism may contribute to the protective effect of breastfeeding against childhood tumors. We propose that HAMLET should be explored as a novel approach to tumor therapy.

  10. Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety

    Directory of Open Access Journals (Sweden)

    J.C. Brenes

    2012-04-01

    Full Text Available Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG and inferior colliculus (IC, produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing. These defensive reaction responses are critically mediated by γ-aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 μL, a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG.

  11. Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety

    Energy Technology Data Exchange (ETDEWEB)

    Brenes, J.C. [Experimental and Physiological Psychology, Philipps-University of Marburg, Marburg (Germany); Broiz, A.C.; Bassi, G.S. [Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP (Brazil); Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Schwarting, R.K.W. [Experimental and Physiological Psychology, Philipps-University of Marburg, Marburg (Germany); Brandão, M.L. [Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP (Brazil); Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-03-09

    Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by {sub Y}-aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 µL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG.

  12. Study on the Cellular Molecular Mechanism of Intrauterine Transmission of Hepatitis B Virus

    Institute of Scientific and Technical Information of China (English)

    王健; 孙琳

    2003-01-01

    Objective: To study intrauterine transmission of HBV and its celbular molecular mechanism and influence on the fetus. Methods: A total of 46 cases of Fegnant uxnnen who suffered from HBV were divided into HBeAg (+) and HBeAg (-) groups. HBV-DNA in serum and peripheral blood mononuclear cells ( PBMC ) of 46 cases of pregnant women before delivery urns detected by polymerase chain reaction ( PCR). After placenta being delivery, HBV-DNA in serum and cord blood mononuclear cells ( CBMC) was also detected by PCR. Results: The total of positive rates of HBV-DNA in serum and PBMC of pregnant women with hepatitis B were 69.57% (32/46) and 41.30% (19/46). The positive rates of HBV-DNA in serum of cord blood and CBMC were 56.52%(26/46) and 21.74% (10/46) respectively. Among them, the positive rates of HBV-DNA inserum and PBMC of pregnant women with HBeAg (+) were 100. 00% (25/25) and 60.00% (15/25) respectively. The positive rates of HBV-DNA in serum of cord blood and CBMC were 88.00% (22/25) and 32. 00% (8/25) respectively. The positive rates of HBV-DNA in serum and PBMC of pregnant women with HBeAg (-) were 33.33%(7/21) and 19.05%(4/21) respectively. The positive rates of HBV-DNA in serum of card blood and CBMC were 19.05%(4/21) and 9.52%(2/21) resspectively. The positive rates of HBV-DNA in serum of card blood and CBMC of newborns were higher in the group of pregnant women with HBeAg (+) than those in the group of pregnant women with HBeAg (--) (P<0. O1 and P<0. 05). There was no HBV-DNA in serum, PBMC and CBMC of normal pregnant women and normal neorwles. Conclusion : The intrauterine transmission of HBV can be existent and its transmission way not only can be induced by serum but also can be induced by PBMC. The way of intrauterine transmission of HBV in-duced by PBMC was concealed. The dangerous possibility of intrauterine transmission is higher in thepregnant women with HBeAg (+) than that in the group of pregnant women with HBeAg (-).

  13. Peripheral and Central Mechanisms Involved in the Hormonal Control of Male and Female Reproduction.

    Science.gov (United States)

    Rudolph, L M; Bentley, G E; Calandra, R S; Paredes, A H; Tesone, M; Wu, T J; Micevych, P E

    2016-07-01

    Reproduction involves the integration of hormonal signals acting across multiple systems to generate a synchronised physiological output. A critical component of reproduction is the luteinising hormone (LH) surge, which is mediated by oestradiol (E2 ) and neuroprogesterone interacting to stimulate kisspeptin release in the rostral periventricular nucleus of the third ventricle in rats. Recent evidence indicates the involvement of both classical and membrane E2 and progesterone signalling in this pathway. A metabolite of gonadotrophin-releasing hormone (GnRH), GnRH-(1-5), has been shown to stimulate GnRH expression and secretion, and has a role in the regulation of lordosis. Additionally, gonadotrophin release-inhibitory hormone (GnIH) projects to and influences the activity of GnRH neurones in birds. Stress-induced changes in GnIH have been shown to alter breeding behaviour in birds, demonstrating another mechanism for the molecular control of reproduction. Peripherally, paracrine and autocrine actions within the gonad have been suggested as therapeutic targets for infertility in both males and females. Dysfunction of testicular prostaglandin synthesis is a possible cause of idiopathic male infertility. Indeed, local production of melatonin and corticotrophin-releasing hormone could influence spermatogenesis via immune pathways in the gonad. In females, vascular endothelial growth factor A has been implicated in an angiogenic process that mediates development of the corpus luteum and thus fertility via the Notch signalling pathway. Age-induced decreases in fertility involve ovarian kisspeptin and its regulation of ovarian sympathetic innervation. Finally, morphological changes in the arcuate nucleus of the hypothalamus influence female sexual receptivity in rats. The processes mediating these morphological changes have been shown to involve the rapid effects of E2 controlling synaptogenesis in this hypothalamic nucleus. In summary, this review highlights new

  14. Phytoremediation potential of the novel atrazine tolerant Lolium multiflorum and studies on the mechanisms involved

    International Nuclear Information System (INIS)

    Atrazine impact on human health and the environment have been extensively studied. Phytoremediation emerged as a low cost, environmental friendly biotechnological solution for atrazine pollution in soil and water. In vitro atrazine tolerance assays were performed and Lolium multiflorum was found as a novel tolerant species, able to germinate and grow in the presence of 1 mg kg-1 of the herbicide. L. multiflorum presented 20% higher atrazine removal capacity than the natural attenuation, with high initial degradation rate in microcosms. The mechanisms involved in atrazine tolerance such as mutation in psbA gene, enzymatic detoxification via P450 or chemical hydrolysis through benzoxazinones were evaluated. It was demonstrated that atrazine tolerance is conferred by enhanced enzymatic detoxification via P450. Due to its atrazine degradation capacity in soil and its agronomical properties, L. multiflorum is a candidate for designing phytoremediation strategies for atrazine contaminated agricultural soils, especially those involving run-off avoiding. - Finding of a novel atrazine-tolerant species, as a potential candidate for phytoremediating herbicide-contaminated agriculture soils and elucidation of the mechanisms involved in tolerance.

  15. Phytoremediation potential of the novel atrazine tolerant Lolium multiflorum and studies on the mechanisms involved

    Energy Technology Data Exchange (ETDEWEB)

    Merini, Luciano J. [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina); Bobillo, Cecilia [Servicio de Huellas Digitales Geneticas, Facultad de Farmacia y Bioquimica, Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires, Junin 956, BS As (Argentina); Cuadrado, Virginia [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina); Corach, Daniel [Servicio de Huellas Digitales Geneticas, Facultad de Farmacia y Bioquimica, Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires, Junin 956, BS As (Argentina); Giulietti, Ana M., E-mail: agiule@ffyb.uba.a [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina)

    2009-11-15

    Atrazine impact on human health and the environment have been extensively studied. Phytoremediation emerged as a low cost, environmental friendly biotechnological solution for atrazine pollution in soil and water. In vitro atrazine tolerance assays were performed and Lolium multiflorum was found as a novel tolerant species, able to germinate and grow in the presence of 1 mg kg{sup -1} of the herbicide. L. multiflorum presented 20% higher atrazine removal capacity than the natural attenuation, with high initial degradation rate in microcosms. The mechanisms involved in atrazine tolerance such as mutation in psbA gene, enzymatic detoxification via P{sub 450} or chemical hydrolysis through benzoxazinones were evaluated. It was demonstrated that atrazine tolerance is conferred by enhanced enzymatic detoxification via P{sub 450}. Due to its atrazine degradation capacity in soil and its agronomical properties, L. multiflorum is a candidate for designing phytoremediation strategies for atrazine contaminated agricultural soils, especially those involving run-off avoiding. - Finding of a novel atrazine-tolerant species, as a potential candidate for phytoremediating herbicide-contaminated agriculture soils and elucidation of the mechanisms involved in tolerance.

  16. Potential Mechanisms Involved in Ceramide-induced Apoptosis in Human Colon Cancer HT29 Cells

    Institute of Scientific and Technical Information of China (English)

    JING WANG; XIAO-WEN LV; YU-GUO DU

    2009-01-01

    Objective To investigate the potential mechanisms of cell death after the treatment with ceramide. Methods MTT assay,DNA ladder, reporter assay, FACS and Western blot assay were employed to investigate the potential mechanisms of cell death after the treatment with C2-ceramide. Results A short-time treatment with C2-ceramide induced cell death, which was associated with p38 MAP kinase activation, but had no links with typical caspase activation or PARP degradation. Rather than caspase inhibitor, Inhibitor of p38 MAP kinase blocked cell death induced by a short-time treatment with ceramide (12 h). Moreover, incubation of cells with ceramide for a long time (>12 h) increased subGl, but reduced S phase accompanied by caspase-dependent and caspase-independent changes including NFκB activation. Conclusion Ceramide-induced cell apoptosis involves both caspase-dependent and -independent signaling pathway. Caspase-independent cell death occurring in a relatively early stage, which is mediated via p38 MAP kinase, can progress into a stage involving both caspase-dependent and -independent mechanisms accompanied by cell signaling of MAPKs and NFκB.

  17. Thymus involvement in myasthenia gravis: Epidemiological and clinical impacts of different self-tolerance breakdown mechanisms.

    Science.gov (United States)

    Karni, Arnon; Asmail, Ali; Drory, Vivian E; Kolb, Hadar; Kesler, Anat

    2016-09-15

    The reasons for the abrogation of self-immunological tolerance in patients with myasthenia gravis (MG) may be different between those with concomitant thymic hyperplasia or thymoma, and those with no evidence of thymic involvement. We conducted a retrospective observational case series study to investigate the epidemiology as well as the clinical, serologic, and electromyographic (EMG) characteristics of individuals diagnosed as having MG. We found that the average age at MG onset of patients with either thymic hyperplasia or thymoma was much younger (by ~20years) than that of MG patients without thymic involvement. Thymic hyperplasia was more common in females than males. There were no differences in the rates of ocular MG vs. generalized MG among those three study groups. There were also no group differences in the rates of neuromuscular junction disfunction, as observed on EMG or by the results of serology tests for acetyl choline receptor antibody. Interestingly, only patients without thymic involvement had other autoimmune diseases, and most of them were females. The patients with other coexisting autoimmune disease had a similar age at MG onset as the other patients with no thymic involvement. These results shed light on the impact of epidemiological and clinical factors that result from different mechanisms of self-immunological tolerance breakdown that occurs in MG. PMID:27609276

  18. Prostaglandin A2 enhances cellular insulin sensitivity via a mechanism that involves the orphan nuclear receptor NR4A3.

    Science.gov (United States)

    Zhu, X; Walton, R G; Tian, L; Luo, N; Ho, S-R; Fu, Y; Garvey, W T

    2013-03-01

    We have previously reported that members of the NR4A family of orphan nuclear receptors can augment insulin's ability to stimulate glucose transport in adipocytes. In the current study, we endeavored to test for an insulin-sensitizing effect in muscle cells and to identify a potential transactivator. Lentiviral constructs were used to engineer both hyperexpression and shRNA silencing of NR4A3 in C2C12 myocytes. The NR4A3 hyper-expression construct led to a significant increase in glucose transport rates in the presence of maximal insulin while the NR4A3 knock-down exhibited a significant reduction in insulin-stimulated glucose transport rates. Consistently, insulin-mediated AKT phosphorylation was increased by NR4A3 hyperexpression and decreased following shRNA NR4A3 suppression. Then, we examined effects of prostaglandin A2 (PGA2) on insulin action and NR4A3 transactivation. PGA2 augmented insulin-stimulated glucose uptake in C2C12 myocytes and AKT phosphorylation after 12-h treatment, without significant effects on basal transport or basal AKT phosphorylation. More importantly, we demonstrated that PGA2 led to a greater improvement in insulin-stimulated glucose rates in NR4A3 overexpressing C2C12 myocytes, when compared with Lac-Z controls stimulated with insulin and PGA2. Moreover, the sensitizing effect of PGA2 was significantly diminished in NR4A3 knockdown myocytes compared to scramble controls. These results show for the first time that: (i) PGA2 augments insulin action in myocytes as manifested by enhanced stimulation of glucose transport and AKT phosphorylation; and (ii) the insulin sensitizing effect is dependent upon the orphan nuclear receptor NR4A3. PMID:23104421

  19. Absorption of Carotenoids and Mechanisms Involved in Their Health-Related Properties.

    Science.gov (United States)

    Cervantes-Paz, Braulio; Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús

    2016-01-01

    Carotenoids participate in the normal metabolism and function of the human body. They are involved in the prevention of several diseases, especially those related to the inflammation syndrome. Their main mechanisms of action are associated to their potent antioxidant activity and capacity to regulate the expression of specific genes and proteins. Recent findings suggest that carotenoid metabolites may explain several processes where the participation of their parent carotenoids was unclear. The health benefits of carotenoids strongly depend on their absorption and transformation during gastrointestinal digestion. The estimation of the 'bioaccessibility' of carotenoids through in vitro models have made possible the evaluation of the effect of a large number of factors on key stages of carotenoid digestion and intestinal absorption. The bioaccessibility of these compounds allows us to have a clear idea of their potential bioavailability, a term that implicitly involves the biological activity of these compounds. PMID:27485232

  20. Mechanisms regulating proteostasis are involved in sympatric speciation of the blind mole rat, Spalax galili.

    Science.gov (United States)

    Rodriguez, Karl A; Li, Kexin; Nevo, Eviatar; Buffenstein, Rochelle

    2016-01-01

    Genome-wide analysis demonstrates extensive genomic adaptive complexes involved in sympatric speciation between blind mole rats (Spalax galili) in abutting populations living in basalt and chalk soils. Among the gene ontology (GO) enrichment, musculature and metabolism stood out in basalt dwellers while nutrition and neurogenetics were highlighted in chalk residents. Measurements of mechanisms regulating protein homeostasis inspired by these GO terms suggest that at the proteomic level there is also a habitat/soil-type driven divergence with the basalt residents exhibiting higher proteasome activity whereas elevated levels of markers of autophagy are evident in the chalk inhabitants.

  1. Multiple mechanisms involved in oxytocin-induced modulation of myometrial contractility

    Institute of Scientific and Technical Information of China (English)

    Anatoly SHMYGOL; Joanna GULLAM; Andrew BLANKS; Steven THORNTON

    2006-01-01

    Oxytocin is a small peptide hormone with multiple sites of action in human body.It regulates a large number of reproduction-related processes in all species.Particularly important is its ability to stimulate uterine contractility.This is achieved by multiple mechanisms involving sarcoplasmic reticulum Ca2+ release and sensitization of the contractile apparatus to Ca2+.In this paper,we review the data published by US and other groups on oxytocin-induced modulation of uterine contractility.We conclude that sensitization of contractile apparatus to Ca2+ is the most relevant physiological effect of oxytocin on human myometrium.

  2. Cholinergic deficiency involved in vascular dementia:possible mechanism and strategy of treatment

    Institute of Scientific and Technical Information of China (English)

    Juan WANG; Hai-yan ZHANG; Xi-can TANG

    2009-01-01

    Vascular dementia (VaD) is a progressive neurodegenerative disease with a high prevalence.Several studies have recently reported that VaD patients present cholinergic deficits in the brain and cerebrospinal fluid (CSF) that may be closely related to the pathophysiology of cognitive impairment.Moreover,cholinergic therapies have shown promising effects on cognitive improvement in VaD patients.The precise mechanisms of these cholinergic agents are currently not fully understood;however,accumulating evidence indicates that these drugs may act through the cholinergic anti-inflammatory pathway,in which the efferent vagus nerve signals suppress pro-inflammatory cytokine release and inhibit inflammation,although regulation of oxidative stress and energy metabolism,alleviation of apoptosis may also be involved.In this paper,we provide a brief overview of the cholinergic treatment strategy for VaD and its relevant mechanisms of anti-inflammation.

  3. A pathogenic mechanism in Huntington's disease involves small CAG-repeated RNAs with neurotoxic activity.

    Directory of Open Access Journals (Sweden)

    Mónica Bañez-Coronel

    Full Text Available Huntington's disease (HD is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the Huntingtin (HTT gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level. In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete penetrance (40 or greater induced cell death and increased levels of small CAG-repeated RNAs (sCAGs, of ≈21 nucleotides in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic approaches.

  4. Mechanism of Laser/light beam interaction at cellular and tissue level and study of the influential factors for the application of low level laser therapy

    CERN Document Server

    Khalid, Muhammad Zeeshan

    2016-01-01

    After the discovery of laser therapy it was realized it has useful application of wound healing and reduce pain, but due to the poor understanding of the mechanism and dose response this technique remained to be controversial for therapeutic applications. In order to understand the working and effectiveness different experiments were performed to determine the laser beam effect at the cellular and tissue level. This article discusses the mechanism of beam interaction at tissues and cellular level with different light sources and dosimetry principles for clinical application of low level laser therapy. Different application techniques and methods currently in use for clinical treatment has also been reviewed.

  5. The mechanism of sperm-egg interaction and the involvement of IZUM01 in fusion

    Institute of Scientific and Technical Information of China (English)

    Naokazu Inoue; Masahito Ikawa; Masaru Okabe

    2011-01-01

    An average human ejaculate contains over 100 million sperm,but only a few succeed in accomplishing the journey to an egg by migration through the female reproductive tract.Among these few sperm,only one participates in fertilization.There might be an ingenious molecular mechanism to ensure that the very best sperm fertilize an egg.However,recent gene disruption experiments in mice have revealed that many factors previously described as important for fertilization are largely dispensable.One could argue that the fertilization mechanism is made robust against gene disruptions.However,this is not likely,as there are already six different gene-disrupted mouse lines (Calmegin,Adam1a,Adam2,Adam3,Aceand Pgap1),all of which result in male sterility.The sperm from these animals are known to have defective zona-binding ability and at the same time lose oviduct-migrating ability.Concerning spermzona binding,the widely accepted involvement of sugar moiety on zona pellucida 3 (ZP3) is indicated to be dispensable by gene disruption experiments.Thus,the landscape of the mechanism of fertilization is revolving considerably.In the sperm-egg fusion process,CD9 on egg and IZUM01 on sperm have emerged as essential factors.This review focuses on the mechanism of fertilization elucidated by gene-manipulated animals.

  6. Mechanism of electron transfer reaction of ternary dipicolinatochromium(III) complex involving oxalate as secondary ligand

    Indian Academy of Sciences (India)

    Hassan Amroun Ewais; Iqbal Mohamed Ibrhium Ismail

    2013-09-01

    Mechanism of electron transfer reaction of ternary Mechanism of the oxidation of [CrIII(DPA)(OX)(H2O)]− (DPA = dipicolinate and OX = oxalate) by periodate in aqueous acidic medium has been studied spectrophotometrically over the pH range of 4.45-5.57 at different temperatures. The reaction is first order with respect to both [IO$^{−}_{4}$] and the complex concentration, and it obeys the following rate law: $$d[{\\text Cr}^{\\text{VI}}]/dt = k_6K_4K_6[{\\text IO}^−_4][{\\text{Cr}}^{\\text{III}}]_{\\text{T}}/\\{([H^+] + K_4) + (K_5[H+] + K_6K_4)[{\\text{IO}}^{−}_{4}]\\}.$$ The rate of the reaction increases with increasing pH due to the deprotonation equilibria of the complex. The experimental rate law is consistent with a mechanism in which the deprotonated form [CrIII(DPA)(OX)(OH)]2− is more reactive than the conjugated acid. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO$^{−}_{4}$ to chromium(III). Thermodynamic activation parameters were calculated using the transition state theory equation.dipicolinatochromium(III) complex involving oxalate as secondary ligand

  7. The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity

    DEFF Research Database (Denmark)

    Gordillo, M.; Vega, H.; Trainer, A.H.;

    2008-01-01

    on enzymatic activity and cellular phenotype. We found that ESCO2 W539G results in loss of autoacetyltransferase activity. The cellular phenotype produced by this mutation causes cohesion defects, proliferation capacity reduction and mitomycin C sensitivity equivalent to those produced by frameshift...

  8. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved.

    Science.gov (United States)

    Brassard, Patrick; Godbout, Stéphane; Raghavan, Vijaya

    2016-10-01

    Biochar, a solid porous material obtained from the carbonization of biomass under low or no oxygen conditions, has been proposed as a climate change mitigation tool because it is expected to sequester carbon (C) for centuries and to reduce greenhouse gas (GHG) emissions from soils. This review aimed to identify key biochar properties and production parameters that have an effect on these specific applications of the biochar. Moreover, mechanisms involved in interactions between biochar and soils were highlighted. Following a compilation and comparison of the characteristics of 76 biochars from 40 research studies, biochars with a lower N content, and consequently a higher C/N ratio (>30), were found to be more suitable for mitigation of N2O emissions from soils. Moreover, biochars produced at a higher pyrolysis temperature, and with O/C ratio <0.2, H/Corg ratio <0.4 and volatile matter below 80% may have high C sequestration potential. Based on these observations, biochar production and application to the field can be used as a tool to mitigate climate change. However, it is important to determine the pyrolysis conditions and feedstock needed to produce a biochar with the desired properties for a specific application. More research studies are needed to identify the exact mechanisms involved following biochar amendment to soil. PMID:27420171

  9. Antinociceptive Activity of Methanol Extract of Muntingia calabura Leaves and the Mechanisms of Action Involved

    Directory of Open Access Journals (Sweden)

    M. H. Mohd. Sani

    2012-01-01

    Full Text Available Muntingia calabura L. (family Elaeocarpaceae has been traditionally used to relieve various pain-related ailments. The present study aimed to determine the antinociceptive activity of methanol extract of M. calabura leaves (MEMC and to elucidate the possible mechanism of antinociception involved. The in vivo chemicals (acetic acid-induced abdominal constriction and formalin-, capsaicin-, glutamate-, serotonin-induced paw licking test and thermal (hot plate test models of nociception were used to evaluate the extract antinociceptive activity. The extract (100, 250, and 500 mg/kg was administered orally 60 min prior to subjection to the respective test. The results obtained demonstrated that MEMC produced significant (P<0.05 antinociceptive response in all the chemical- and thermal-induced nociception models, which was reversed after pretreatment with 5 mg/kg naloxone, a non-selective opioid antagonist. Furthermore, pretreatment with L-arginine (a nitric oxide (NO donor, NG-nitro-L-arginine methyl esters (L-NAME; an inhibitor of NO synthase (NOS, methylene blue (MB; an inhibitor of cyclic-guanosine monophosphate (cGMP pathway, or their combination also caused significant (P<0.05 change in the intensity of the MEMC antinociception. In conclusion, the MEMC antinociceptive activity involves activation of the peripheral and central mechanisms, and modulation via, partly, the opioid receptors and NO/cGMP pathway.

  10. Dietary restriction involves NAD⁺ -dependent mechanisms and a shift toward oxidative metabolism.

    Science.gov (United States)

    Moroz, Natalie; Carmona, Juan J; Anderson, Edward; Hart, Anne C; Sinclair, David A; Blackwell, T Keith

    2014-12-01

    Interventions that slow aging and prevent chronic disease may come from an understanding of how dietary restriction (DR) increases lifespan. Mechanisms proposed to mediate DR longevity include reduced mTOR signaling, activation of the NAD⁺ -dependent deacylases known as sirtuins, and increases in NAD⁺ that derive from higher levels of respiration. Here, we explored these hypotheses in Caenorhabditis elegans using a new liquid feeding protocol. DR lifespan extension depended upon a group of regulators that are involved in stress responses and mTOR signaling, and have been implicated in DR by some other regimens [DAF-16 (FOXO), SKN-1 (Nrf1/2/3), PHA-4 (FOXA), AAK-2 (AMPK)]. Complete DR lifespan extension required the sirtuin SIR-2.1 (SIRT1), the involvement of which in DR has been debated. The nicotinamidase PNC-1, a key NAD⁺ salvage pathway component, was largely required for DR to increase lifespan but not two healthspan indicators: movement and stress resistance. Independently of pnc-1, DR increased the proportion of respiration that is coupled to ATP production but, surprisingly, reduced overall oxygen consumption. We conclude that stress response and NAD⁺ -dependent mechanisms are each critical for DR lifespan extension, although some healthspan benefits do not require NAD⁺ salvage. Under DR conditions, NAD⁺ -dependent processes may be supported by a DR-induced shift toward oxidative metabolism rather than an increase in total respiration.

  11. Astrocytes are involved in trigeminal dynamic mechanical allodynia: potential role of D-serine.

    Science.gov (United States)

    Dieb, W; Hafidi, A

    2013-09-01

    Trigeminal neuropathic pain affects millions of people worldwide. Despite decades of study on the neuronal processing of pain, mechanisms underlying enhanced pain states after injury remain unclear. N-methyl-D-aspartate (NMDA) receptor-dependent changes play a critical role in triggering central sensitization in neuropathic pain. These receptors are regulated at the glycine site through a mandatory endogenous co-agonist D-serine, which is synthesized by astrocytes. Therefore, the present study was carried out to determine whether astrocytes are involved, through D-serine secretion, in dynamic mechanical allodynia (DMA) obtained after chronic constriction of the infraorbital nerve (CCI-IoN) in rats. Two weeks after CCI-IoN, an important reaction of astrocytes was present in the medullary dorsal horn (MDH), as revealed by an up-regulation of glial fibrillary acidic protein (GFAP) in allodynic rats. In parallel, an increase in D-serine synthesis, which co-localized with its synthesis enzyme serine racemase, was strictly observed in astrocytes. Blocking astrocyte metabolism by intracisternal delivery of fluorocitrate alleviated DMA. Furthermore, the administration of D-amino-acid oxidase (DAAO), a D-serine-degrading enzyme, or that of L-serine O-sulfate (LSOS), a serine racemase inhibitor, significantly decreased pain behavior in allodynic rats. These results demonstrate that astrocytes are involved in the modulation of orofacial post-traumatic neuropathic pain via the release of the gliotransmitter D-serine.

  12. Mechanisms and neuronal networks involved in reactive and proactive cognitive control of interference in working memory.

    Science.gov (United States)

    Irlbacher, Kerstin; Kraft, Antje; Kehrer, Stefanie; Brandt, Stephan A

    2014-10-01

    Cognitive control can be reactive or proactive in nature. Reactive control mechanisms, which support the resolution of interference, start after its onset. Conversely, proactive control involves the anticipation and prevention of interference prior to its occurrence. The interrelation of both types of cognitive control is currently under debate: Are they mediated by different neuronal networks? Or are there neuronal structures that have the potential to act in a proactive as well as in a reactive manner? This review illustrates the way in which integrating knowledge gathered from behavioral studies, functional imaging, and human electroencephalography proves useful in answering these questions. We focus on studies that investigate interference resolution at the level of working memory representations. In summary, different mechanisms are instrumental in supporting reactive and proactive control. Distinct neuronal networks are involved, though some brain regions, especially pre-SMA, possess functions that are relevant to both control modes. Therefore, activation of these brain areas could be observed in reactive, as well as proactive control, but at different times during information processing.

  13. Role of the endocannabinoid system in the mechanisms involved in the LPS-induced preterm labor.

    Science.gov (United States)

    Bariani, María Victoria; Domínguez Rubio, Ana Paula; Cella, Maximiliano; Burdet, Juliana; Franchi, Ana María; Aisemberg, Julieta

    2015-12-01

    Prematurity is the leading cause of perinatal morbidity and mortality worldwide. There is a strong causal relationship between infection and preterm births. Intrauterine infection elicits an immune response involving the release of inflammatory mediators like cytokines and prostaglandins (PG) that trigger uterine contractions and parturition events. Anandamide (AEA) is an endogenous ligand for the cannabinoid receptors CB1 and CB2. Similarly to PG, endocannabinoids are implicated in different aspects of reproduction, such as maintenance of pregnancy and parturition. Little is known about the involvement of endocannabinoids on the onset of labor in an infectious milieu. Here, using a mouse model of preterm labor induced by lipopolysaccharide (LPS), we explored changes on the expression of components of endocannabinoid system (ECS). We have also determined whether AEA and CB antagonists alter PG production that induces labor. We observed an increase in uterine N-acylphosphatidylethanolamine-specific phospholipase D expression (NAPE-PLD, the enzyme that synthesizes AEA) upon LPS treatment. Activity of catabolic enzyme fatty acid amide hydrolase (FAAH) did not change significantly. In addition, we also found that LPS modulated uterine cannabinoid receptors expression by downregulating Cb2 mRNA levels and upregulating CB1 protein expression. Furthermore, LPS and AEA induced PGF2a augmentation, and this was reversed by antagonizing CB1 receptor. Collectively, our results suggest that ECS may be involved in the mechanism by which infection causes preterm birth. PMID:26347521

  14. Estradiol decreases cortical reactive astrogliosis after brain injury by a mechanism involving cannabinoid receptors.

    Science.gov (United States)

    López Rodríguez, Ana Belén; Mateos Vicente, Beatriz; Romero-Zerbo, Silvana Y; Rodriguez-Rodriguez, Noé; Bellini, María José; Rodriguez de Fonseca, Fernando; Bermudez-Silva, Francisco Javier; Azcoitia, Iñigo; Garcia-Segura, Luis M; Viveros, María-Paz

    2011-09-01

    The neuroactive steroid estradiol reduces reactive astroglia after brain injury by mechanisms similar to those involved in the regulation of reactive gliosis by endocannabinoids. In this study, we have explored whether cannabinoid receptors are involved in the effects of estradiol on reactive astroglia. To test this hypothesis, the effects of estradiol, the cannabinoid CB1 antagonist/inverse agonist AM251, and the cannabinoid CB2 antagonist/inverse agonist AM630 were assessed in the cerebral cortex of male rats after a stab wound brain injury. Estradiol reduced the number of vimentin immunoreactive astrocytes and the number of glial fibrillary acidic protein immunoreactive astrocytes in the proximity of the wound. The effect of estradiol was significantly inhibited by the administration of either CB1 or CB2 receptor antagonists. The effect of estradiol may be in part mediated by alterations in endocannabinoid signaling because the hormone increased in the injured cerebral cortex the messenger RNA levels of CB2 receptors and of some of the enzymes involved in the synthesis and metabolism of endocannabinoids. These findings suggest that estradiol may decrease reactive astroglia in the injured brain by regulating the activity of the endocannabinoid system.

  15. Minocycline mechanism of neuroprotection involves the Bcl-2 gene family in optic nerve transection.

    Science.gov (United States)

    Levkovitch-Verbin, Hani; Waserzoog, Yael; Vander, Shelly; Makarovsky, Daria; Ilia, Piven

    2014-10-01

    The second-generation tetracycline, minocycline, has been shown to exhibit neuroprotective therapeutic benefits in many neurodegenerative diseases including experimental glaucoma and optic nerve transection (ONT). This study investigated the mechanism underlying minocycline neuroprotection in a model of ONT. ONT was applied unilaterally in 36 Wistar rat eyes. The rats were randomly divided into a minocycline (22 mg/kg/d) treatment group and a saline treatment group (control). Treatment (minocycline or saline) was given by intraperitoneal injections initiated 3 d before ONT and continued daily until the end of the experiment. The involvement of pro-apoptotic, pro-survival and inflammatory pathways was analyzed by quantitative Real-Time Polymerase Chain Reaction at 4 h and 3 d after the transection in both treatment groups. The involvement of Bcl-2 protein was evaluated by immunohistochemistry. We found that Minocycline significantly increased the expression of the antiapoptotic gene bcl-2 4 h after transection (n = 8, p = 0.008) and decreased the expression of Bax at the same time point (n = 8, p = 0.03). Tumor Necrosis Factor α (TNFα), Inhibitor of Apoptosis Protein (IAP1) and Gadd45α were significantly upregulated in the retinas of eyes with ONTs compared to control (n = 10 for each gene, p = 0.02, p = 0.03, p = 0.04, respectively) but this effect was unaffected by minocycline. This study further support that the mechanism underlying minocycline neuroprotection involves the Bcl-2 gene family, suggesting that minocycline has antiapoptotic properties that support its value as a promising neuroprotective drug. PMID:24410139

  16. Glucose stimulates neurotensin secretion from the rat small intestine by mechanisms involving SGLT1 and GLUT2 leading to cell depolarization and calcium influx

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Bechmann, Louise Ellegaard; Hartmann, Bolette;

    2015-01-01

    , but the mechanisms involved are not well understood. Here, we show that rats express NT in the gut and that glucose gavage stimulates secretion similarly to oral glucose in humans. Therefore, we conducted experiments on isolated perfused rat small intestine with a view to characterize the cellular pathways......Neurotensin (NT) is a neurohormone produced in the central nervous system and in the gut epithelium by the enteroendocrine N cell. NT may play a role in appetite regulation and may have potential in obesity treatment. Glucose ingestion stimulates NT secretion in healthy young humans...... of secretion. Luminal glucose (20% wt/vol) stimulated secretion but vascular glucose (5, 10, or 15 mmol/l) was without effect. The underlying mechanisms depend on membrane depolarization and calcium influx, since the voltage-gated calcium channel inhibitor nifedipine and the KATP channel opener diazoxide...

  17. Induction of multixenobiotic defense mechanisms in resistant Daphnia magna clones as a general cellular response to stress.

    Science.gov (United States)

    Jordão, Rita; Campos, Bruno; Lemos, Marco F L; Soares, Amadeu M V M; Tauler, Romà; Barata, Carlos

    2016-06-01

    Multixenobiotic resistance mechanisms (MXR) were recently identified in Daphnia magna. Previous results characterized gene transcripts of genes encoding and efflux activities of four putative ABCB1 and ABCC transporters that were chemically induced but showed low specificity against model transporter substrates and inhibitors, thus preventing us from distinguishing between activities of different efflux transporter types. In this study we report on the specificity of induction of ABC transporters and of the stress protein hsp70 in clones selected to be genetically resistant to ABCB1 chemical substrates. Clones resistant to mitoxantrone, ivermectin and pentachlorophenol showed distinctive transcriptional responses of transporter protein coding genes and of putative transporter dye activities. Expression of hsp70 proteins also varied across resistant clones. Clones resistant to mitoxantrone and pentachlorophenol showed high constitutive levels of hsp70. Transcriptional levels of the abcb1 gene transporter and of putative dye transporter activity were also induced to a greater extent in the pentachlorophenol resistant clone. Observed higher dye transporter activities in individuals from clones resistant to mitoxantrone and ivermectin were unrelated with transcriptional levels of the studied four abcc and abcb1 transporter genes. These findings suggest that Abcb1 induction in D. magna may be a part of a general cellular stress response. PMID:27039215

  18. Differentiation of autonomic reflex control begins with cellular mechanisms at the first synapse within the nucleus tractus solitarius

    Directory of Open Access Journals (Sweden)

    M.C. Andresen

    2004-04-01

    Full Text Available Visceral afferents send information via cranial nerves to the nucleus tractus solitarius (NTS. The NTS is the initial step of information processing that culminates in homeostatic reflex responses. Recent evidence suggests that strong afferent synaptic responses in the NTS are most often modulated by depression and this forms a basic principle of central integration of these autonomic pathways. The visceral afferent synapse is uncommonly powerful at the NTS with large unitary response amplitudes and depression rather than facilitation at moderate to high frequencies of activation. Substantial signal depression occurs through multiple mechanisms at this very first brainstem synapse onto second order NTS neurons. This review highlights new approaches to the study of these basic processes featuring patch clamp recordings in NTS brain slices and optical techniques with fluorescent tracers. The vanilloid receptor agonist, capsaicin, distinguishes two classes of second order neurons (capsaicin sensitive or capsaicin resistant that appear to reflect unmyelinated and myelinated afferent pathways. The differences in cellular properties of these two classes of NTS neurons indicate clear functional differentiation at both the pre- and postsynaptic portions of these first synapses. By virtue of their position at the earliest stage of these pathways, such mechanistic differences probably impart important differentiation in the performance over the entire reflex pathways.

  19. Mechanism of cancer drug resistance and the involvement of noncoding RNAs.

    Science.gov (United States)

    Xia, Hongping; Hui, Kam M

    2014-01-01

    Drug resistance is one of the major reasons for the failure of cancer therapies. Although our understanding of resistance to targeted cancer drugs remains incomplete, new and more creative approaches are being exploited to intercept this phenomenon. Considerable advances have been made in our understanding that cancer drug resistance can be caused by alterations of drug efflux, increases in drug metabolism, mutations of drug targets, alterations in DNA repair and cell cycle, changes in cell apoptosis and autophagy, induction of epithelial-mesenchymal transition (EMT) and the generation of cancer stem cells (CSCs). Furthermore, intracellular signalling pathways have been shown to play key physiological roles and the abnormal activation of signalling pathways may be correlated with drug resistance. Recently, noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have emerged as important regulators of gene expression and alternative splicing, which provides cells with yet another mode to greatly increase regulatory complexity and fine-tune their transcriptome and can rapidly adjust their proteome in response to stimuli. Consequently, a wide variety of biological functions have been shown to depend on the coordinated interactions between noncoding RNAs and cellular signalling networks to achieve a concerted desired physiological outcome, whereas mutations and dysregulation of ncRNAs have been linked to diverse human diseases, including cancer drug resistance. In this review, we will discuss recent findings on the multiple molecular roles of regulatory ncRNAs on the signalling pathways involved in cancer drug resistance and the therapeutic potential of reverse drug resistance.

  20. Involvement of prolactin and somatostatin in depression and the mechanism of action of antidepressant drugs.

    Science.gov (United States)

    Faron-Górecka, Agata; Kuśmider, Maciej; Solich, Joanna; Kolasa, Magdalena; Szafran, Kinga; Zurawek, Dariusz; Pabian, Paulina; Dziedzicka-Wasylewska, Marta

    2013-01-01

    Neuropeptides have been implicated in the physiology and pathophysiology of stress responses and therefore may play an important role in the pathogenesis of affective disorders such as Major Depression Disorder (MDD). The data presented in this mini-review demonstrate the role of prolactin (PRL) and somatostatin (STT) in the pathology and pharmacotherapy of MDD, focusing particularly on the response to antidepressant treatment, and compare the available data with the results obtained in our laboratory using the well-validated chronic mild stress (CMS) animal model of MDD. Despite the availability of many pharmacological therapies for depression, ca. 35% patients remain treatment resistant. This clinical situation is also true for rats subjected to CMS; some animals do not respond to antidepressant therapy and are considered treatment resistant. The most interesting results presented in this mini-review concern the changes in PRL and SST receptors in the brains of rats subjected to the full CMS procedure and IMI treatment and demonstrate the role of these receptors in the mechanisms of antidepressant action. The possible interaction between SST and PRL, the involvement of the D2 dopamine receptor, and their direct protein-protein interactions are also discussed, with the conclusion that these two neurohormones play an important role in the mechanism of resilience after stress as well as in the mechanism of action of antidepressant drugs.

  1. CELLULAR INTERACTIONS MEDIATED BY GLYCONECTIDS

    OpenAIRE

    Popescu, O.; Sumanovski, L. T.; I. Checiu; Elisabeta Popescu; G. N. Misevic

    1999-01-01

    Cellular interactions involve many types of cell surface molecules and operate via homophilic and/or heterophilic protein-protein and protein-carbohydrate binding. Our investigations in different model-systems (marine invertebrates and mammals) have provided direct evidence that a novel class of primordial proteoglycans, named by us gliconectins, can mediate cell adhesion via a new alternative molecular mechanism of polyvalent carbohydrate-carbohydrate binding. Biochemical characterization of...

  2. Mechanisms involved in the nociception triggered by the venom of the armed spider Phoneutria nigriventer.

    Directory of Open Access Journals (Sweden)

    Camila Gewehr

    Full Text Available BACKGROUND: The frequency of accidental spider bites in Brazil is growing, and poisoning due to bites from the spider genus Phoneutria nigriventer is the second most frequent source of such accidents. Intense local pain is the major symptom reported after bites of P. nigriventer, although the mechanisms involved are still poorly understood. Therefore, the aim of this study was to identify the mechanisms involved in nociception triggered by the venom of Phoneutria nigriventer (PNV. METHODOLOGY/PRINCIPAL FINDINGS: Twenty microliters of PNV or PBS was injected into the mouse paw (intraplantar, i.pl.. The time spent licking the injected paw was considered indicative of the level of nociception. I.pl. injection of PNV produced spontaneous nociception, which was reduced by arachnid antivenin (ArAv, local anaesthetics, opioids, acetaminophen and dipyrone, but not indomethacin. Boiling or dialysing the venom reduced the nociception induced by the venom. PNV-induced nociception is not dependent on glutamate or histamine receptors or on mast cell degranulation, but it is mediated by the stimulation of sensory fibres that contain serotonin 4 (5-HT4 and vanilloid receptors (TRPV1. We detected a kallikrein-like kinin-generating enzyme activity in tissue treated with PNV, which also contributes to nociception. Inhibition of enzymatic activity or administration of a receptor antagonist for kinin B2 was able to inhibit the nociception induced by PNV. PNV nociception was also reduced by the blockade of tetrodotoxin-sensitive Na(+ channels, acid-sensitive ion channels (ASIC and TRPV1 receptors. CONCLUSION/SIGNIFICANCE: Results suggest that both low- and high-molecular-weight toxins of PNV produce spontaneous nociception through direct or indirect action of kinin B2, TRPV1, 5-HT4 or ASIC receptors and voltage-dependent sodium channels present in sensory neurons but not in mast cells. Understanding the mechanisms involved in nociception caused by PNV are of

  3. p53/p21 Pathway involved in mediating cellular senescence of bone marrow-derived mesenchymal stem cells from systemic lupus erythematosus patients.

    Science.gov (United States)

    Gu, Zhifeng; Jiang, Jinxia; Tan, Wei; Xia, Yunfei; Cao, Haixia; Meng, Yan; Da, Zhanyun; Liu, Hong; Cheng, Chun

    2013-01-01

    Our and other groups have found that bone marrow-derived mesenchymal stem cells (BM-MSCs) from systemic lupus erythematosus (SLE) patients exhibited senescent behavior and are involved in the pathogenesis of SLE. Numerous studies have shown that activation of the p53/p21 pathway inhibits the proliferation of BM-MSCs. The aim of this study was to determine whether p53/p21 pathway is involved in regulating the aging of BM-MSCs from SLE patients and the underlying mechanisms. We further confirmed that BM-MSCs from SLE patients showed characteristics of senescence. The expressions of p53 and p21 were significantly increased, whereas levels of Cyclin E, cyclin-dependent kinase-2, and phosphorylation of retinoblastoma protein were decreased in the BM-MSCs from SLE patients and knockdown of p21 expression reversed the senescent features of BM-MSCs from SLE patients. Our results demonstrated that p53/p21 pathway played an important role in the senescence process of BM-MSCs from SLE.

  4. p53/p21 Pathway Involved in Mediating Cellular Senescence of Bone Marrow-Derived Mesenchymal Stem Cells from Systemic Lupus Erythematosus Patients

    Directory of Open Access Journals (Sweden)

    Zhifeng Gu

    2013-01-01

    Full Text Available Our and other groups have found that bone marrow-derived mesenchymal stem cells (BM-MSCs from systemic lupus erythematosus (SLE patients exhibited senescent behavior and are involved in the pathogenesis of SLE. Numerous studies have shown that activation of the p53/p21 pathway inhibits the proliferation of BM-MSCs. The aim of this study was to determine whether p53/p21 pathway is involved in regulating the aging of BM-MSCs from SLE patients and the underlying mechanisms. We further confirmed that BM-MSCs from SLE patients showed characteristics of senescence. The expressions of p53 and p21 were significantly increased, whereas levels of Cyclin E, cyclin-dependent kinase-2, and phosphorylation of retinoblastoma protein were decreased in the BM-MSCs from SLE patients and knockdown of p21 expression reversed the senescent features of BM-MSCs from SLE patients. Our results demonstrated that p53/p21 pathway played an important role in the senescence process of BM-MSCs from SLE.

  5. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Paola Massi

    2010-05-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  6. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Massi, Paola [Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan (Italy); Valenti, Marta; Solinas, Marta; Parolaro, Daniela, E-mail: daniela.parolaro@uninsubria.it [Department of Structural and Functional Biology, Section of Pharmacology, Center of Neuroscience, University of Insubria, Via A. da Giussano 10, 20152 Busto Arsizio, Varese (Italy)

    2010-05-26

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  7. A case of primary spinal myoclonus: clinical presentation and possible mechanisms involved

    Directory of Open Access Journals (Sweden)

    Campos Cynthia Resende

    2003-01-01

    Full Text Available Spinal myoclonus is a rare movement disorder characterized by myoclonic involvement of a group of muscles supplied by a few contiguous segments of the spinal cord. Structural lesions are usually the cause, but in primary spinal myoclonus the etiology remains unknown. We present the case of a 26-year-old woman with cervical spinal myoclonus in which both clinical and electromyographic findings pointed to the segment C1-C3 as the origin of the myoclonus. Laboratorial examinations were normal and no structural lesion was found in magnetic resonance imaging (MRI. Botulinum toxin type A was injected in infrahyoid muscles and cervical paraspinal musculature. The patient remained free of symptoms for almost five months. The pathophysiology of spinal myoclonus remains speculative, but there is evidence that various possible mechanisms can be involved: loss of inhibitory function of local dorsal horn interneurons, abnormal hyperactivity of local anterior horn neurons, aberrant local axons re-excitations and loss of inhibition from suprasegmentar descending pathways.

  8. Effect of diet and fenfluramine on thermogenesis in the rat: possible involvement of serotonergic mechanisms.

    Science.gov (United States)

    Rothwell, N J; Stock, M J

    1987-01-01

    A single injection of 5-hydroxytryptamine (5HT, 1 mg/kg, s.c.) in rats stimulated resting oxygen consumption (Vo2) by 21 percent; this was reduced (to 8 percent) by pretreatment with hexamethonium (5 mg/kg, s.c.). DL-fenfluramine injection (20 mg/kg, s.c.) stimulated metabolic rate (Vo2) by about 40 percent, but caused only 11 and 15 per cent increases in animals pretreated with hexamethonium or metergoline (5 mg/kg, s.c.), respectively. Interscapular brown adipose tissue (BAT) activity, assessed from mitochondrial GDP-binding, was increased by 96 per cent in intact tissue 1 h after fenfluramine injection; this response was completely prevented by surgical sympathectomy of interscapular BAT. Metergoline significantly inhibited (by 46 percent) the acute thermic response (postprandial rise in Vo2) to a 40-kJ meal in normal rats, and depressed resting Vo2 in protein-deficient rats by 18 percent, but did not affect resting Vo2 in control animals. BAT activity (mitochondrial GDP-binding) was elevated by 56 per cent in rats fed the low-protein diet, but this difference was almost completely abolished by prior treatment with metergoline. These data demonstrate a potent thermogenic effect of fenfluramine which apparently involves serotonergic pathways and activation of sympathetic outflow to BAT, and indicate that acute thermic responses to food and chronic thermogenic responses to low-protein diets may also involve serotonergic mechanisms. PMID:3667065

  9. Molecular characterization of HIV-1 subtype C gp-120 regions potentially involved in virus adaptive mechanisms.

    Directory of Open Access Journals (Sweden)

    Alessandra Cenci

    Full Text Available The role of variable regions of HIV-1 gp120 in immune escape of HIV has been investigated. However, there is scant information on how conserved gp120 regions contribute to virus escaping. Here we have studied how molecular sequence characteristics of conserved C3, C4 and V3 regions of clade C HIV-1 gp120 that are involved in HIV entry and are target of the immune response, are modulated during the disease course. We found an increase of "shifting" putative N-glycosylation sites (PNGSs in the α2 helix (in C3 and in C4 and an increase of sites under positive selection pressure in the α2 helix during the chronic stage of disease. These sites are close to CD4 and to co-receptor binding sites. We also found a negative correlation between electric charges of C3 and V4 during the late stage of disease counteracted by a positive correlation of electric charges of α2 helix and V5 during the same stage. These data allow us to hypothesize possible mechanisms of virus escape involving constant and variable regions of gp120. In particular, new mutations, including new PNGSs occurring near the CD4 and CCR5 binding sites could potentially affect receptor binding affinity and shield the virus from the immune response.

  10. Molecular mechanisms of heptaplatin effective against cisplatin-resistant cancer cell lines: less involvement of metallothionein

    Directory of Open Access Journals (Sweden)

    Moon Sung-Pyo

    2004-10-01

    Full Text Available Abstract Background Heptaplatin is a new platinum derivative with anticancer activity against various cancer cell lines, including cisplatin-resistant cancer cell lines (Cancer Chemother Pharmacol 1995; 35: 441. Methods Molecular mechanisms of heptaplatin effective against cisplatin-resistant cancer cell lines has been investigated in connection with metallothionein (MT. Cytotoxicity was determined by an MTT assay. MT mRNA, was determined by RT-PCR assay. Transfection study was carried out to examine the function of MT. Results Of various gastric cancer cell lines, SNU-638 and SNU-601 showed the highest and lowest levels of MT mRNA, respectively, showing 80-fold difference. The IC50 values of SNU-638 to cisplatin, carboplatin and heptaplatin were 11.2-fold, 5.1-fold and 2.0-fold greater than those of SNU-601, respectively. Heptaplatin was more effective against cisplatin-resistant and MT-transfected gastric cancer sublines than cisplatin or carboplatin was. In addition, heptaplatin attenuated cadmium, but not zinc, induction of MT. Conclusion These results indicate that molecular mechanisms of heptaplatin effective against cisplatin-resistant gastric cancer sublines is at least in part due to the less involvement of MT in heptaplatin resistance as well as its attenuation of MT induction.

  11. A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel

    Directory of Open Access Journals (Sweden)

    Andrew P. Wojtovich

    2013-03-01

    Full Text Available Opening of BK-type Ca2+ activated K+ channels protects the heart against ischemia-reperfusion (IR injury. However, the location of BK channels responsible for cardioprotection is debated. Herein we confirmed that openers of the SLO1 BK channel, NS1619 and NS11021, were protective in a mouse perfused heart model of IR injury. As anticipated, deletion of the Slo1 gene blocked this protection. However, in an isolated cardiomyocyte model of IR injury, protection by NS1619 and NS11021 was insensitive to Slo1 deletion. These data suggest that protection in intact hearts occurs by a non-cardiomyocyte autonomous, SLO1-dependent, mechanism. In this regard, an in-situ assay of intrinsic cardiac neuronal function (tachycardic response to nicotine revealed that NS1619 preserved cardiac neurons following IR injury. Furthermore, blockade of synaptic transmission by hexamethonium suppressed cardioprotection by NS1619 in intact hearts. These results suggest that opening SLO1 protects the heart during IR injury, via a mechanism that involves intrinsic cardiac neurons. Cardiac neuronal ion channels may be useful therapeutic targets for eliciting cardioprotection.

  12. Mechanisms involved in ceramide-induced cell cycle arrest in human hepatocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Xiao-Wen Lv; Jie-Ping Shi; Xiao-Song Hu

    2007-01-01

    AIM:To investigate the effect of ceramide on the cell cycle in human hepatocarcinoma Bel7402 cells.Possible molecular mechanisms were explored.METHODS:[3-(4,5)-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide(MTT)assay,plasmid transfection,reporter assay,FACS and Western blotting analyses were employed to investigate the effect and the related molecular mechanisms of C2-ceramide on the cell cycle of Bel7402 cells.RESULTS:C2-ceramide was found to inhibit the growth of Bel7402 cells by inducing cell cycle arrest.During the process,the expression of p21 protein increased,while that of cyclinD1,phospho-ERK1/2 and c-myc decreased.Furthermore,the level of CDK7 was downregulated,while the transcriptional activity of PPARγ was upregulated.Addition of GW9662,which is a PPARγ specific antagonist,could reserve the modulation action on CDK7.CONCLUSION:Our results support the hypothesis that cell cycle arrest induced by C2-ceramide may be mediated via accumulation of p21 and reduction of cyclinD1 and CDK7,at least partly,through PPARγ activation.The ERK signaling pathway was involved in this process.

  13. Seismic behavior and mechanism analysis of innovative precast shear wall involving vertical joints

    Institute of Scientific and Technical Information of China (English)

    孙建; 邱洪兴

    2015-01-01

    To study the seismic performance and load-transferring mechanism of an innovative precast shear wall (IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted on two test walls. The test results confirm the feasibility of the novel joints as well as the favorable seismic performance of the walls, even though certain optimization measures should be taken to improve the ductility. The load-transferring mechanism subsequently is theoretically investigated based on the experimental study. The theoretical results show the load-transferring route of the novel joints is concise and definite. During the elastic stage, the vertical shear stress in the connecting steel frame (CSF) distributes uniformly;and each high-strength bolt (HSB) primarily delivers vertical shear force. However, the stress in the CSF redistributes when the walls develop into the elastic-plastic stage. At the ultimate state, the vertical shear stress and horizontal normal stress in the CSF distribute linearly;and the HSBs at both ends of the CSF transfer the maximum shear forces.

  14. A host defense mechanism involving CFTR-mediated bicarbonate secretion in bacterial prostatitis.

    Directory of Open Access Journals (Sweden)

    Chen Xie

    Full Text Available BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(- and HCO(3(-, in mediating prostate HCO(3(- secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II, along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3(- content (>50 mM, rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3(- on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3(- secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3(- secretion may be up-regulated in prostatitis as a host defense mechanism.

  15. Crosstalk of Signaling Mechanisms Involved in Host Defense and Symbiosis Against Microorganisms in Rice.

    Science.gov (United States)

    Akamatsu, Akira; Shimamoto, Ko; Kawano, Yoji

    2016-08-01

    Rice is one of the most important food crops, feeding about half population in the world. Rice pathogens cause enormous damage to rice production worldwide. In plant immunity research, considerable progress has recently been made in our understanding of the molecular mechanisms underlying microbe-associated molecular pattern (MAMP)-triggered immunity. Using genome sequencing and molecular techniques, a number of new MAMPs and their receptors have been identified in the past two decades. Notably, the mechanisms for chitin perception via the lysine motif (LysM) domain-containing receptor OsCERK1, as well as the mechanisms for bacterial MAMP (e.g. flg22, elf18) perception via the leucine-rich repeat (LRR) domain-containing receptors FLS2 and EFR, have been clarified in rice and Arabidopsis, respectively. In chitin signaling in rice, two direct substrates of OsCERK1, Rac/ROP GTPase guanine nucleotide exchange factor OsRacGEF1 and receptor-like cytoplasmic kinase OsRLCK185, have been identified as components of the OsCERK1 complex and are rapidly phosphorylated by OsCERK1 in response to chitin. Interestingly, OsCERK1 also participates in symbiosis with arbuscular mycorrhizal fungi (AMF) in rice and plays a role in the recognition of short-chitin molecules (CO4/5), which are symbiotic signatures included in AMF germinated spore exudates and induced by synthetic strigolactone. Thus, OsCERK1 contributes to both immunity and symbiotic responses. In this review, we describe recent studies on pathways involved in rice immunity and symbiotic signaling triggered by interactions with microorganisms. In addition, we describe recent advances in genetic engineering by using plant immune receptors and symbiotic microorganisms to enhance disease resistance of rice. PMID:27499679

  16. The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organisation.

    Science.gov (United States)

    Klika, Václav; Baker, Ruth E; Headon, Denis; Gaffney, Eamonn A

    2012-04-01

    Understanding the mechanisms governing and regulating self-organisation in the developing embryo is a key challenge that has puzzled and fascinated scientists for decades. Since its conception in 1952 the Turing model has been a paradigm for pattern formation, motivating numerous theoretical and experimental studies, though its verification at the molecular level in biological systems has remained elusive. In this work, we consider the influence of receptor-mediated dynamics within the framework of Turing models, showing how non-diffusing species impact the conditions for the emergence of self-organisation. We illustrate our results within the framework of hair follicle pre-patterning, showing how receptor interaction structures can be constrained by the requirement for patterning, without the need for detailed knowledge of the network dynamics. Finally, in the light of our results, we discuss the ability of such systems to pattern outside the classical limits of the Turing model, and the inherent dangers involved in model reduction. PMID:22072186

  17. Involvement of medullary GABAergic system in extraterritorial neuropathic pain mechanisms associated with inferior alveolar nerve transection.

    Science.gov (United States)

    Okada-Ogawa, Akiko; Nakaya, Yuka; Imamura, Yoshiki; Kobayashi, Masayuki; Shinoda, Masamichi; Kita, Kozue; Sessle, Barry J; Iwata, Koichi

    2015-05-01

    In order to determine if the functional changes in the GABAergic system in the trigeminal spinal subnucleus caudalis (Vc) are involved in the mechanisms underlying extraterritorial neuropathic pain in the orofacial region following inferior alveolar nerve transection (IANX), mechanical noxious behavior, phosphorylated extracellular signal-regulated kinase (pERK) immunohistochemistry and single neuronal activity were analyzed in vesicular GABA transporter (VGAT)-VenusA rats expressing fluorescent protein and the VGAT in Vc neurons. The number of VGAT-VenusA positive neurons was significantly reduced in IANX rats than naive and sham rats at 7days after nerve transection. The number of VGAT-VenusA positive pERK-immunoreactive (IR) cells was significantly increased in IANX rats at 21days after IAN transection compared with naive and sham rats. The background activity and mechanical-evoked responses of Vc nociceptive neurons were significantly depressed after intrathecal application of the GABA receptor agonist muscimol in sham rats but not in IANX rats. Furthermore, the expression of potassium-chloride co-transporter 2 (KCC2) in the Vc was significantly reduced in IANX rats compared with sham rats. The head-withdrawal threshold (HWT) to mechanical stimulation of the whisker pad skin was significantly decreased in IANX rats compared with sham rats on days 7 and 21 after IANX. The significant reduction of the HWT and significant increase in the number of VGAT-VenusA negative pERK-IR cells were observed in KCC2 blocker R-DIOA-injected rats compared with vehicle-injected rats on day 21 after sham treatment. These findings revealed that GABAergic Vc neurons might be reduced in their number at the early period after IANX and the functional changes might occur in GABAergic neurons from inhibitory to excitatory at the late period after IANX, suggesting that the neuroplastic changes occur in the GABAergic neuronal network in the Vc due to morphological and functional changes at

  18. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    International Nuclear Information System (INIS)

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4+CD25+Foxp3+ regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation

  19. Neural Correlates of Successful and Unsuccessful Strategical Mechanisms Involved in Uncertain Decision-Making.

    Directory of Open Access Journals (Sweden)

    Julie Giustiniani

    Full Text Available The ability to develop successful long-term strategies in uncertain situations relies on complex neural mechanisms. Although lesion studies have shown some of the mechanisms involved, it is still unknown why some healthy subjects are able to make the right decision whereas others are not. The aim of our study was to investigate neurophysiological differences underlying this ability to develop a successful strategy in a group of healthy subjects playing a monetary card game called the Iowa Gambling Task (IGT. In this task, subjects have to win and earn money by choosing between four decks of cards, two were advantageous in the long term and two disadvantageous. Twenty healthy right-handed subjects performed the IGT while their cerebral activity was recorded by electroencephalography. Based on their behavioral performances, two groups of subjects could clearly be distinguished: one who selected the good decks and thus succeeded in developing a Favorable strategy (9 subjects and one who remained Undecided (11 subjects. No neural difference was found between each group before the selection of a deck, but in both groups a greater negativity was found emerging from the right superior frontal gyrus 600 ms before a disadvantageous selection. During the processing of the feedback, an attenuation of the P200 and P300 waveforms was found for the Undecided group, and a P300 originating from the medial frontal gyrus was found in response to a loss only in the Favorable group. Our results suggest that undecided subjects are hyposensitive to the valence of the cards during gambling, which affects the feedback processing.

  20. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan (China); Cao, Hui [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wang, Hongjie [Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL (United States); Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Xiang, Ming, E-mail: xiangming@mails.tjmu.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2015-06-15

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation.

  1. Cellular prion protein is required for neuritogenesis: fine-tuning of multiple signaling pathways involved in focal adhesions and actin cytoskeleton dynamics

    Directory of Open Access Journals (Sweden)

    Alleaume-Butaux A

    2013-07-01

    Full Text Available Aurélie Alleaume-Butaux,1,2 Caroline Dakowski,1,2 Mathéa Pietri,1,2 Sophie Mouillet-Richard,1,2 Jean-Marie Launay,3,4 Odile Kellermann,1,2 Benoit Schneider1,2 1INSERM, UMR-S 747, 2Paris Descartes University, Sorbonne Paris Cité, UMR-S 747, 3Public Hospital of Paris, Department of Biochemistry, INSERM UMR-S 942, Lariboisière Hospital, Paris, France; 4Pharma Research Department, Hoffmann La Roche Ltd, Basel, Switzerland Abstract: Neuritogenesis is a dynamic phenomenon associated with neuronal differentiation that allows a rather spherical neuronal stem cell to develop dendrites and axon, a prerequisite for the integration and transmission of signals. The acquisition of neuronal polarity occurs in three steps: (1 neurite sprouting, which consists of the formation of buds emerging from the postmitotic neuronal soma; (2 neurite outgrowth, which represents the conversion of buds into neurites, their elongation and evolution into axon or dendrites; and (3 the stability and plasticity of neuronal polarity. In neuronal stem cells, remodeling and activation of focal adhesions (FAs associated with deep modifications of the actin cytoskeleton is a prerequisite for neurite sprouting and subsequent neurite outgrowth. A multiple set of growth factors and interactors located in the extracellular matrix and the plasma membrane orchestrate neuritogenesis by acting on intracellular signaling effectors, notably small G proteins such as RhoA, Rac, and Cdc42, which are involved in actin turnover and the dynamics of FAs. The cellular prion protein (PrPC, a glycosylphosphatidylinositol (GPI-anchored membrane protein mainly known for its role in a group of fatal neurodegenerative diseases, has emerged as a central player in neuritogenesis. Here, we review the contribution of PrPC to neuronal polarization and detail the current knowledge on the signaling pathways fine-tuned by PrPC to promote neurite sprouting, outgrowth, and maintenance. We emphasize that Pr

  2. Molecular Mechanisms Involved in the Pathogenesis of Alphavirus-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    Iranaia Assunção-Miranda

    2013-01-01

    Full Text Available Arthritogenic alphaviruses, including Ross River virus (RRV, Chikungunya virus (CHIKV, Sindbis virus (SINV, Mayaro virus (MAYV, O'nyong-nyong virus (ONNV, and Barmah Forest virus (BFV, cause incapacitating and long lasting articular disease/myalgia. Outbreaks of viral arthritis and the global distribution of these diseases point to the emergence of arthritogenic alphaviruses as an important public health problem. This review discusses the molecular mechanisms involved in alphavirus-induced arthritis, exploring the recent data obtained with in vitro systems and in vivo studies using animal models and samples from patients. The factors associated to the extension and persistence of symptoms are highlighted, focusing on (a virus replication in target cells, and tissues, including macrophages and muscle cells; (b the inflammatory and immune responses with recruitment and activation of macrophage, NK cells and T lymphocytes to the lesion focus and the increase of inflammatory mediators levels; and (c the persistence of virus or viral products in joint and muscle tissues. We also discuss the importance of the establishment of novel animal models to test new molecular targets and to develop more efficient and selective drugs to treat these diseases.

  3. Mechanisms involved in alleviation of intestinal inflammation by bifidobacterium breve soluble factors.

    Directory of Open Access Journals (Sweden)

    Elise Heuvelin

    Full Text Available OBJECTIVES: Soluble factors released by Bifidobacterium breve C50 (Bb alleviate the secretion of pro-inflammatory cytokines by immune cells, but their effect on intestinal epithelium remains elusive. To decipher the mechanisms accounting for the cross-talk between bacteria/soluble factors and intestinal epithelium, we measured the capacity of the bacteria, its conditioned medium (Bb-CM and other Gram(+ commensal bacteria to dampen inflammatory chemokine secretion. METHODS: TNFalpha-induced chemokine (CXCL8 secretion and alteration of NF-kappaB and AP-1 signalling pathways by Bb were studied by EMSA, confocal microscopy and western blotting. Anti-inflammatory capacity was also tested in vivo in a model of TNBS-induced colitis in mice. RESULTS: Bb and Bb-CM, but not other commensal bacteria, induced a time and dose-dependent inhibition of CXCL8 secretion by epithelial cells driven by both AP-1 and NF-kappaB transcription pathways and implying decreased phosphorylation of p38-MAPK and IkappaB-alpha molecules. In TNBS-induced colitis in mice, Bb-CM decreased the colitis score and inflammatory cytokine expression, an effect reproduced by dendritic cell conditioning with Bb-CM. CONCLUSIONS: Bb and secreted soluble factors contribute positively to intestinal homeostasis by attenuating chemokine production. The results indicate that Bb down regulate inflammation at the epithelial level by inhibiting phosphorylations involved in inflammatory processes and by protective conditioning of dendritic cells.

  4. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms : Involvement of JNK and ERK MAP kinases

    NARCIS (Netherlands)

    Conde de la Rosa, L; Schoemaker, MH; Vrenken, TE; Buist-Homan, M; Havinga, R; Jansen, PLM; Moshage, H

    2006-01-01

    Background/Aims: In liver diseases, reactive oxygen species (ROS) are involved in cell death and liver injury, but the mechanisms are not completely elucidated. To elucidate the mechanisms of hepatocyte cell death induced by the ROS superoxide anions and hydrogen peroxide, primary cultures of hepato

  5. Mechanism involved in trichloroethylene-induced liver cancer: Importance to environmental cleanup. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bull, R.J.; Thrall, B.D.; Sasser, L.B.; Miller, J.H.; Schultz, I.R.

    1998-06-01

    'The objective of this project is to develop critical data for changing risk-based clean-up standards for trichloroethylene (TCE). The project is organized around two interrelated tasks: Task 1 addresses the tumorigenic and dosimetry issues for the metabolites of TCE that produce liver cancer in mice, dichloroacetate (DCA) and trichloroacetate (TCA). Early work had suggested that TCA was primarily responsible for TCE-induced liver tumors, but several, more mechanistic observations suggest that DCA may play a prominent role. This task is aimed at determining the basis for the selection hypothesis and seeks to prove that this mode of action is responsible for TCE-induced tumors. This project will supply the basic dose-response data from which low-dose extrapolations would be made. Task 2 seeks specific evidence that TCA and DCA are capable of promoting the growth of spontaneously initiated cells from mouse liver, in vitro. The data provide the clearest evidence that both metabolites act by a mechanism of selection rather than mutation. These data are necessary to select between a linear (i.e. no threshold) and non-linear low-dose extrapolation model. As of May of 1998, this research has identified two plausible modes of action by which TCE produces liver tumors in mice. These modes of action do not require the compounds to be mutagenic. The bulk of the experimental evidence suggests that neither TCE nor the two hepatocarcinogenic metabolites of TCE are mutagenic. The results from the colony formation assay clearly establish that both of these metabolites cause colony growth from initiated cells that occur spontaneously in the liver of B 6 C 3 F 1 mice, although the phenotypes of the colonies differ in the same manner as tumors differ, in vivo. In the case of DCA, a second mechanism may occur at a lower dose involving the release of insulin. This observation is timely as it was recently reported that occupational exposures to trichloroethylene results in 2 to 4

  6. Early differential cell death and survival mechanisms initiate and contribute to the development of OPIDN: A study of molecular, cellular, and anatomical parameters

    International Nuclear Information System (INIS)

    Organophosphorus-ester induced delayed neurotoxicity (OPIDN) is a neurodegenerative disorder characterized by ataxia progressing to paralysis with a concomitant central and peripheral, distal axonapathy. Diisopropylphosphorofluoridate (DFP) produces OPIDN in the chicken that results in mild ataxia in 7–14 days and severe paralysis as the disease progresses with a single dose. White leghorn layer hens were treated with DFP (1.7 mg/kg, sc) after prophylactic treatment with atropine (1 mg/kg, sc) in normal saline and eserine (1 mg/kg, sc) in dimethyl sulfoxide. Control groups were treated with vehicle propylene glycol (0.1 ml/kg, sc), atropine in normal saline and eserine in dimethyl sulfoxide. The hens were euthanized at different time points such as 1, 2, 5, 10 and 20 days, and the tissues from cerebrum, midbrain, cerebellum, brainstem and spinal cord were quickly dissected and frozen for mRNA (northern) studies. Northern blots were probed with BCL2, GADD45, beta actin, and 28S RNA to investigate their expression pattern. Another set of hens was treated for a series of time points and perfused with phosphate buffered saline and fixative for histological studies. Various staining protocols such as Hematoxylin and Eosin (H and E); Sevier-Munger; Cresyl echt Violet for Nissl substance; and Gallocynin stain for Nissl granules were used to assess various patterns of cell death and degenerative changes. Complex cell death mechanisms may be involved in the neuronal and axonal degeneration. These data indicate altered and differential mRNA expressions of BCL2 (anti apoptotic gene) and GADD45 (DNA damage inducible gene) in various tissues. Increased cell death and other degenerative changes noted in the susceptible regions (spinal cord and cerebellum) than the resistant region (cerebrum), may indicate complex molecular pathways via altered BCL2 and GADD45 gene expression, causing the homeostatic imbalance between cell survival and cell death mechanisms. Semi quantitative

  7. Early differential cell death and survival mechanisms initiate and contribute to the development of OPIDN: A study of molecular, cellular, and anatomical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Damodaran, T.V., E-mail: tdamodar@nccu.edu [Dept of Medicine, Duke University Medical Center, Durham, NC (United States); Pharmacology and Cancer biology, Duke University Medical Center, Durham, NC (United States); Dept of Biology, North Carolina Central University, Durham, NC 27707 (United States); Attia, M.K. [Pharmacology and Cancer biology, Duke University Medical Center, Durham, NC (United States); Abou-Donia, M.B., E-mail: donia@mc.duke.edu [Pharmacology and Cancer biology, Duke University Medical Center, Durham, NC (United States)

    2011-11-15

    Organophosphorus-ester induced delayed neurotoxicity (OPIDN) is a neurodegenerative disorder characterized by ataxia progressing to paralysis with a concomitant central and peripheral, distal axonapathy. Diisopropylphosphorofluoridate (DFP) produces OPIDN in the chicken that results in mild ataxia in 7-14 days and severe paralysis as the disease progresses with a single dose. White leghorn layer hens were treated with DFP (1.7 mg/kg, sc) after prophylactic treatment with atropine (1 mg/kg, sc) in normal saline and eserine (1 mg/kg, sc) in dimethyl sulfoxide. Control groups were treated with vehicle propylene glycol (0.1 ml/kg, sc), atropine in normal saline and eserine in dimethyl sulfoxide. The hens were euthanized at different time points such as 1, 2, 5, 10 and 20 days, and the tissues from cerebrum, midbrain, cerebellum, brainstem and spinal cord were quickly dissected and frozen for mRNA (northern) studies. Northern blots were probed with BCL2, GADD45, beta actin, and 28S RNA to investigate their expression pattern. Another set of hens was treated for a series of time points and perfused with phosphate buffered saline and fixative for histological studies. Various staining protocols such as Hematoxylin and Eosin (H and E); Sevier-Munger; Cresyl echt Violet for Nissl substance; and Gallocynin stain for Nissl granules were used to assess various patterns of cell death and degenerative changes. Complex cell death mechanisms may be involved in the neuronal and axonal degeneration. These data indicate altered and differential mRNA expressions of BCL2 (anti apoptotic gene) and GADD45 (DNA damage inducible gene) in various tissues. Increased cell death and other degenerative changes noted in the susceptible regions (spinal cord and cerebellum) than the resistant region (cerebrum), may indicate complex molecular pathways via altered BCL2 and GADD45 gene expression, causing the homeostatic imbalance between cell survival and cell death mechanisms. Semi quantitative

  8. Inhibition of cAMP-activated intestinal chloride secretion by diclofenac: cellular mechanism and potential application in cholera.

    Directory of Open Access Journals (Sweden)

    Pawin Pongkorpsakol

    2014-09-01

    Full Text Available Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84 cells with IC50 of ∼ 20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl- current showed that diclofenac reversibly inhibited CFTR Cl- channel activity (IC50 ∼ 10 µM via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na(+-K(+ ATPases and Na(+-K(+-Cl- cotransporters, but inhibited cAMP-activated basolateral K(+ channels with IC50 of ∼ 3 µM. In addition, diclofenac suppressed Ca(2+-activated Cl- channels, inwardly rectifying Cl- channels, and Ca(2+-activated basolateral K(+ channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT-induced Cl- secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼ 70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca(2+-activated Cl- secretion by inhibiting both apical Cl- channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal

  9. Task Group 7B: Cellular and Molecular Mechanisms of Biological Aging: The Roles of Nature, Nurture and Chance in the Maintenance of Human Healthspan

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulrich; Arya, Suresh; Grant, Christine; Miller, Linda; Ono, Santa Jeremy; Patil, Chris; Shay, Jerry; Topol, Eric; Torry, Michael; Weier, Heinz-Ulrich G.; Tse, Iris; Lin, Su-Ju; Miller, Richard

    2007-11-14

    The degree to which an individual organism maintains healthspan and lifespan is a function of complex interactions between genetic inheritance ('nature'), environment, including cultural inheritance (nurture) and stochastic events ('luck' or 'chance'). This task group will focus upon the role of chance because it is so poorly understood and because it appears to be of major importance in the determination of individual variations in healthspan and lifespan within species. The major factor determining variations in healthspan and lifespan between species is genetic inheritance. Broader aspects of cellular and molecular mechanisms of biological aging will also be considered, given their importance for understanding the cellular and molecular basis of successful aging. The task force will consider the cellular and molecular basis for nature, nurture and chance in healthspan and life span determination. On the basis of comparisons between identical and non-identical twins, geneticists have estimated that genes control no more than about a quarter of the inter-individual differences in lifespan (Herskind 1996). Twin studies of very old individuals, however, show substantially greater genetic contributions to Healthspan (McClearn 2004; Reed 2003). The environment clearly plays an important role in the length and the quality of life. Tobacco smoke, for example has the potential to impact upon multiple body systems in ways that appear to accelerate the rates at which those systems age (Bernhard 2007). To document the role of chance events on aging, one must rigorously control both the genetic composition of an organism and its environment. This has been done to a remarkable degree in a species of nematodes, Caenorhabditis elegans (Vanfleteren 1998). The results confirm hundreds of previous studies with a wide range of species, especially those with inbred rodents housed under apparently identical but less well controlled environments. One

  10. A knock-in model of human epilepsy in Drosophila reveals a novel cellular mechanism associated with heat-induced seizure

    OpenAIRE

    Sun, Lei; Gilligan, Jeff; Staber, Cynthia; Schutte, Ryan J; Nguyen, Vivian; O'Dowd, Diane K.; Reenan, Robert

    2012-01-01

    Over 40 missense mutations in the human SCN1A sodium channel gene are linked to an epilepsy syndrome termed genetic epilepsy with febrile seizures plus (GEFS+). Inheritance of GEFS+ is dominant but the underlying cellular mechanisms remain poorly understood. Here we report knock-in of a GEFS+ SCN1A mutation (K1270T) into the Drosophila sodium channel gene, para, causes a semi-dominant temperature-induced seizure phenotype. Electrophysiological studies of GABAergic interneurons in the brains o...

  11. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    Directory of Open Access Journals (Sweden)

    Sagai Masaru

    2011-12-01

    moderate oxidative stress. Recently these concepts have become widely accepted. The versatility of ozone in treating vascular and degenerative diseases as well as skin lesions, hernial disc and primary root carious lesions in children is emphasized. Further researches able to elucidate whether the mechanisms of action of ozone therapy involve nuclear transcription factors, such as Nrf2, NFAT, AP-1, and HIF-1α are warranted.

  12. Physiological mechanisms involved in resistance to cotton verticillium wilt induced by AM fungi

    Institute of Scientific and Technical Information of China (English)

    LIU Bing-jiang; LIU Run-jin

    2004-01-01

    @@ It was proved that arbuscular mycorrhizal (AM) fungi played an important role in increasing plant resistance to soilborne pathogens, especially when plants were pre-inoculated with AM fungi.Mechanisms involved in this phenomenon are not yet well understood. On the basis of the former experiment results in our lab, effects of AM fungi on cotton Verticillium wilt and the mechanisms of increasing disease resisitance by the tested fungi were studied in pot culture under greenhouse conditions. Two cotton cutivars Litai 8 and 86-1 which are susceptible to Verticillium dahliae were pre-inoculated with Glomus fasiculatum, and Gigaspora margarita, then inoculated with the strain of Verticillium dahliae, namely "An-Yang" (belong to intermediate virulent type) 30 days after the former inoculation. Results showed that AM fungi could improve the growth and development of cotton plants, increase plants dry mass, decrease incidence and disease index of Verticillium wilt of cotton plants, inhibit the infection and development of V. dahliae to different extent in the rhizosphere of cotton pre-inoculated with AM fungi, while the colonization and spore numbers of AM fungi were not reduced significantly by this pathogen. The defence enzymes, such as phenylalanine ammonia-lyase (PAL), chitinase, β-1, 3-glucanase, peroxidase, polyphenoloxidase (PPO) were induced, and their activities and peak increased by AM fungi in roots and leaves, and the increasing speed and peak of the enzyme activity were higher in treatment with AM fungus preinoculation than the inoculation with only V. dahliae, which suggested that defense response was activated by AM fungi, and then made the cotton to react strongly and rapidly to the infection of V. dahliae. In addition, AM fungi decreased the content of malondiadehyde (MDA) in cotton roots and leaves,protected membrane system and alleviated the damage caused by the pathogen. The AM fungus,Glomus fasiculatum showed the superior effects of biological

  13. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    Science.gov (United States)

    2011-01-01

    oxidative stress. Recently these concepts have become widely accepted. The versatility of ozone in treating vascular and degenerative diseases as well as skin lesions, hernial disc and primary root carious lesions in children is emphasized. Further researches able to elucidate whether the mechanisms of action of ozone therapy involve nuclear transcription factors, such as Nrf2, NFAT, AP-1, and HIF-1α are warranted. PMID:22185664

  14. The Influence of Receptor-Mediated Interactions on Reaction-Diffusion Mechanisms of Cellular Self-organisation

    KAUST Repository

    Klika, Václav

    2011-11-10

    Understanding the mechanisms governing and regulating self-organisation in the developing embryo is a key challenge that has puzzled and fascinated scientists for decades. Since its conception in 1952 the Turing model has been a paradigm for pattern formation, motivating numerous theoretical and experimental studies, though its verification at the molecular level in biological systems has remained elusive. In this work, we consider the influence of receptor-mediated dynamics within the framework of Turing models, showing how non-diffusing species impact the conditions for the emergence of self-organisation. We illustrate our results within the framework of hair follicle pre-patterning, showing how receptor interaction structures can be constrained by the requirement for patterning, without the need for detailed knowledge of the network dynamics. Finally, in the light of our results, we discuss the ability of such systems to pattern outside the classical limits of the Turing model, and the inherent dangers involved in model reduction. © 2011 Society for Mathematical Biology.

  15. p16(INK4a suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    Full Text Available Although caloric restriction (CR has been shown to increase lifespan in various animal models, the mechanisms underlying this phenomenon have not yet been revealed. We developed an in vitro system to mimic CR by reducing glucose concentration in cell growth medium which excludes metabolic factors and allows assessment of the effects of CR at the cellular and molecular level. We monitored cellular proliferation of normal WI-38, IMR-90 and MRC-5 human lung fibroblasts and found that glucose restriction (GR can inhibit cellular senescence and significantly extend cellular lifespan compared with cells receiving normal glucose (NG in the culture medium. Moreover, GR decreased expression of p16(INK4a (p16, a well-known senescence-related gene, in all of the tested cell lines. Over-expressed p16 resulted in early replicative senescence in glucose-restricted cells suggesting a crucial role of p16 regulation in GR-induced cellular lifespan extension. The decreased expression of p16 was partly due to GR-induced chromatin remodeling through effects on histone acetylation and methylation of the p16 promoter. GR resulted in an increased expression of SIRT1, a NAD-dependent histone deacetylase, which has positive correlation with CR-induced longevity. The elevated SIRT1 was accompanied by enhanced activation of the Akt/p70S6K1 signaling pathway in response to GR. Furthermore, knockdown of SIRT1 abolished GR-induced p16 repression as well as Akt/p70S6K1 activation implying that SIRT1 may affect p16 repression through direct deacetylation effects and indirect regulation of Akt/p70S6K1 signaling. Collectively, these results provide new insights into interactions between epigenetic and genetic mechanisms on CR-induced longevity that may contribute to anti-aging approaches and also provide a general molecular model for studying CR in vitro in mammalian systems.

  16. Deep sequencing reveals direct targets of gammaherpesvirus-induced mRNA decay and suggests that multiple mechanisms govern cellular transcript escape.

    Directory of Open Access Journals (Sweden)

    Karen Clyde

    Full Text Available One characteristic of lytic infection with gammaherpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV, Epstein-Barr virus (EBV and murine herpesvirus 68 (MHV68, is the dramatic suppression of cellular gene expression in a process known as host shutoff. The alkaline exonuclease proteins (KSHV SOX, MHV-68 muSOX and EBV BGLF5 have been shown to induce shutoff by destabilizing cellular mRNAs. Here we extend previous analyses of cellular mRNA abundance during lytic infection to characterize the effects of SOX and muSOX, in the absence of other viral genes, utilizing deep sequencing technology (RNA-seq. Consistent with previous observations during lytic infection, the majority of transcripts are downregulated in cells expressing either SOX or muSOX, with muSOX acting as a more potent shutoff factor than SOX. Moreover, most cellular messages fall into the same expression class in both SOX- and muSOX-expressing cells, indicating that both factors target similar pools of mRNAs. More abundant mRNAs are more efficiently downregulated, suggesting a concentration effect in transcript targeting. However, even among highly expressed genes there are mRNAs that escape host shutoff. Further characterization of select escapees reveals multiple mechanisms by which cellular genes can evade downregulation. While some mRNAs are directly refractory to SOX, the steady state levels of others remain unchanged, presumably as a consequence of downstream effects on mRNA biogenesis. Collectively, these studies lay the framework for dissecting the mechanisms underlying the susceptibility of mRNA to destruction during lytic gammaherpesvirus infection.

  17. Pathophysiological mechanisms involved in non-alcoholicsteatohepatitis and novel potential therapeutic targets

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a major healthcare problem and represents the hepatic expression ofthe metabolic syndrome. NAFLD is classified as nonalcoholicfatty liver (NAFL) or simple steatosis, and nonalcoholicsteatohepatitis (NASH). NASH is characterizedby the presence of steatosis and inflammation withor without fibrosis. The physiopathology of NAFL andNASH and their progression to cirrhosis involve severalparallel and interrelated mechanisms, such as, insulinresistance (IR), lipotoxicity, inflammation, oxidativestress, and recently the gut-liver axis interaction has beendescribed. Incretin-based therapies could play a role inthe treatment of NAFLD. Glucagon-like peptide-1 (GLP-1)is an intestinal mucosa-derived hormone which is secretedinto the bloodstream in response to nutrient ingestion;it favors glucose-stimulated insulin secretion, inhibitionof postprandial glucagon secretion and delayed gastricemptying. It also promotes weight loss and is involvedin lipid metabolism. Once secreted, GLP-1 is quicklydegraded by dipeptidyl peptidase-4 (DPP-4). Therefore,DPP-4 inhibitors are able to extend the activity of GLP-1.Currently, GLP-1 agonists and DPP-4 inhibitors representattractive options for the treatment of NAFLD andNASH. The modulation of lipid and glucose metabolismthrough nuclear receptors, such as the farsenoid Xreceptor, also constitutes an attractive therapeutic target.Obeticholic acid is a potent activator of the farnesoidX nuclear receptor and reduces liver fat content andfibrosis in animal models. Ursodeoxycholic acid (UDCA)is a hydrophilic bile acid with immunomodulatory, antiinflammatory,antiapoptotic, antioxidant and antifibroticproperties. UDCA can improve IR and modulatelipid metabolism through its interaction with nuclearreceptors such as, TGR5, farnesoid X receptor-a, orthe small heterodimeric partner. Finally, pharmacologicmodulation of the gut microbiota could have a role in thetherapy of NAFLD and

  18. Mechanisms involved in the selective transfer of long chain polyunsaturted fatty acids to the fetus

    Directory of Open Access Journals (Sweden)

    Alfonso eGil-Sánchez

    2011-09-01

    Full Text Available The concentration of long chain polyunsaturated fatty acid (LCPUFA in the fetal brain increases dramatically from the third trimester until 18 months of life. Several studies have shown an association between the percentage of maternal plasma docosahexaenoic acid (DHA during gestation and development of the cognitive functions in the neonate. Since only very low levels of LCPUFA are synthesized in the fetus and placenta, their primary source for the fetus is that of maternal origin. Both in vitro and human in vivo studies using labelled fatty acids have shown the preferential transfer of LCPUFA from the placenta to the fetus compared with other fatty acids, although the mechanisms involved are still uncertain. The placenta takes up circulating maternal non-esterified fatty acids (NEFA and fatty acids released mainly by maternal lipoprotein lipase and endothelial lipase. These NEFA may enter the cell by passive diffusion or by means of membrane carrier proteins. Once in the cytosol, NEFA bind to cytosolic fatty acid-binding proteins for transfer to the fetal circulation or can be oxidized within the trophoblasts and even re-esterified and stored in lipid droplets (LD. Although trophoblast cells are not specialized in lipid storage, LCPUFA may up-regulate peroxisome proliferator activated receptor-γ (PPARγ and hence the gene expression of fatty acid transport carriers, fatty acid acyl-CoA synthetases and adipophilin or other enzymes related with lipolysis, modifying their rate of placental transfer and metabolization. The placental transfer of LCPUFA during pregnancy seems to be a key factor in the neurological development of the fetus. Increased knowledge on the factors that modify placental transfer of fatty acids would contribute to our understanding of this complex process.

  19. Avian reovirus nonstructural protein p17-induced G(2)/M cell cycle arrest and host cellular protein translation shutoff involve activation of p53-dependent pathways.

    Science.gov (United States)

    Chulu, Julius L C; Huang, Wei R; Wang, L; Shih, Wen L; Liu, Hung J

    2010-08-01

    The effects of avian reovirus (ARV) p17 protein on cell cycle progression and host cellular protein translation were studied. ARV infection and ARV p17 transfection resulted in the accumulation of infected and/or transfected cells in the G(2)/M phase of the cell cycle. The accumulation of cells in the G(2)/M phase was accompanied by upregulation and phosphorylation of the G(2)/M-phase proteins ATM, p53, p21(cip1/waf1), Cdc2, cyclin B1, Chk1, Chk2, and Cdc25C, suggesting that p17 induces a G(2)/M cell cycle arrest through activation of the ATM/p53/p21(cip1/waf1)/Cdc2/cyclin B1 and ATM/Chk1/Chk2/Cdc25C pathways. The G(2)/M cell cycle arrest resulted in increased virus replication. In the present study, we also provide evidence demonstrating that p17 protein is responsible for ARV-induced host cellular protein translation shutoff. Increased phosphorylation levels of the eukaryotic translation elongation factor 2 (eEF2) and initiation factor eIF2alpha and reduced phosphorylation levels of the eukaryotic translation initiation factors eIF4E, eIF4B, and eIF4G, as well as 4E-BP1 and Mnk-1 in p17-transfected cells, demonstrated that ARV p17 suppresses translation initiation factors and translation elongation factors to induce host cellular protein translation shutoff. Inhibition of mTOR by rapamycin resulted in a decrease in the levels of phosphorylated 4E-BP1, eIF4B, and eIF4G and an increase in the levels eEF2 but did not affect ARV replication, suggesting that ARV replication was not hindered by inhibition of cap-dependent translation. Taken together, our data indicate that ARV p17-induced G(2)/M arrest and host cellular translation shutoff resulted in increased ARV replication.

  20. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice.

    Science.gov (United States)

    Gao, Lei; Chang, Jiadong; Chen, Ruijie; Li, Hubo; Lu, Hongfei; Tao, Longxing; Xiong, Jie

    2016-12-01

    Iron (Fe) is essential for rice growth and humans consuming as their staple food but is often deficient because of insoluble Fe(III) in soil for rice growth and limited assimilation for human bodies, while cadmium (Cd) is non-essential and toxic for rice growth and humans if accumulating at high levels. Over-accumulated Cd can cause damage to human bodies. Selecting and breeding Fe-rich but Cd-free rice cultivars are ambitious, challenging and meaningful tasks for researchers. Although evidences show that the mechanisms of Fe/Cd uptake and accumulation in rice are common to some extent as a result of similar entry routes within rice, an increasing number of researchers have discovered distinct mechanisms between Fe/Cd uptake and accumulation in rice. This comprehensive review systematically elaborates and compares cellular mechanisms of Fe/Cd uptake and accumulation in rice, respectively. Mechanisms for maintaining Fe homeostasis and Cd detoxicification are also elucidated. Then, effects of different fertilizer management on Fe/Cd accumulation in rice are discussed. Finally, this review enumerates various approaches for reducing grain Cd accumulation and enhancing Fe content in rice. In summary, understanding of discrepant cellular mechanisms of Fe/Cd accumulation in rice provides guidance for cultivating Fe-fortified rice and has paved the way to develop rice that are tolerant to Cd stress, aiming at breeding Fe-rich but Cd-free rice.

  1. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice.

    Science.gov (United States)

    Gao, Lei; Chang, Jiadong; Chen, Ruijie; Li, Hubo; Lu, Hongfei; Tao, Longxing; Xiong, Jie

    2016-12-01

    Iron (Fe) is essential for rice growth and humans consuming as their staple food but is often deficient because of insoluble Fe(III) in soil for rice growth and limited assimilation for human bodies, while cadmium (Cd) is non-essential and toxic for rice growth and humans if accumulating at high levels. Over-accumulated Cd can cause damage to human bodies. Selecting and breeding Fe-rich but Cd-free rice cultivars are ambitious, challenging and meaningful tasks for researchers. Although evidences show that the mechanisms of Fe/Cd uptake and accumulation in rice are common to some extent as a result of similar entry routes within rice, an increasing number of researchers have discovered distinct mechanisms between Fe/Cd uptake and accumulation in rice. This comprehensive review systematically elaborates and compares cellular mechanisms of Fe/Cd uptake and accumulation in rice, respectively. Mechanisms for maintaining Fe homeostasis and Cd detoxicification are also elucidated. Then, effects of different fertilizer management on Fe/Cd accumulation in rice are discussed. Finally, this review enumerates various approaches for reducing grain Cd accumulation and enhancing Fe content in rice. In summary, understanding of discrepant cellular mechanisms of Fe/Cd accumulation in rice provides guidance for cultivating Fe-fortified rice and has paved the way to develop rice that are tolerant to Cd stress, aiming at breeding Fe-rich but Cd-free rice. PMID:27502932

  2. Early-life Stress Impacts the Developing Hippocampus and Primes Seizure Occurrence: cellular, molecular, and epigenetic mechanisms

    Directory of Open Access Journals (Sweden)

    Li-Tung eHuang

    2014-02-01

    Full Text Available Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can affect the development of the hypothalamic-pituitary-adrenal (HPA axis, and cause cellular and molecular changes in the developing hippocampus that can result in neurobehavioral changes later in life. Epidemiological data implicate stress as a cause of seizures in both children and adults. Emerging evidence indicates that both prenatal and postnatal stress can prime the developing brain for seizures and an increase in epileptogenesis. This article reviews the cellular and molecular changes encountered during prenatal and postnatal stress, and assesses the possible link between these changes and increases in seizure occurrence and epileptogenesis in the developing hippocampus. In addititon, the priming effect of prenatal and postnatal stress for seizures and epileptogenesis is discussed. Finally, the roles of epigenetic modifications in hippocampus and HPA axis programming, early-life stress, and epilepsy are discussed.

  3. DNA-Destabilizing Agents as an Alternative Approach for Targeting DNA: Mechanisms of Action and Cellular Consequences

    Directory of Open Access Journals (Sweden)

    Gaëlle Lenglet

    2010-01-01

    Full Text Available DNA targeting drugs represent a large proportion of the actual anticancer drug pharmacopeia, both in terms of drug brands and prescription volumes. Small DNA-interacting molecules share the ability of certain proteins to change the DNA helix's overall organization and geometrical orientation via tilt, roll, twist, slip, and flip effects. In this ocean of DNA-interacting compounds, most stabilize both DNA strands and very few display helix-destabilizing properties. These types of DNA-destabilizing effect are observed with certain mono- or bis-intercalators and DNA alkylating agents (some of which have been or are being developed as cancer drugs. The formation of locally destabilized DNA portions could interfere with protein/DNA recognition and potentially affect several crucial cellular processes, such as DNA repair, replication, and transcription. The present paper describes the molecular basis of DNA destabilization, the cellular impact on protein recognition, and DNA repair processes and the latter's relationships with antitumour efficacy.

  4. Early-life Stress Impacts the Developing Hippocampus and Primes Seizure Occurrence: cellular, molecular, and epigenetic mechanisms

    OpenAIRE

    Li-Tung eHuang

    2014-01-01

    Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can affect the development of the hypothalamic-pituitary-adrenal (HPA) axis, and cause cellular and molecular changes in the developing hippocampus that can result in neurobehavioral changes later in life. Epidemiological data implicate stress as a cause of seizures in both children and adults. Emerging evidence indicates that both prenatal and postnatal stress can prime the developing brain for seizures...

  5. Early-life stress impacts the developing hippocampus and primes seizure occurrence: cellular, molecular, and epigenetic mechanisms

    OpenAIRE

    Huang, Li-Tung

    2014-01-01

    Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can affect the development of the hypothalamic-pituitary-adrenal (HPA) axis, and cause cellular and molecular changes in the developing hippocampus that can result in neurobehavioral changes later in life. Epidemiological data implicate stress as a cause of seizures in both children and adults. Emerging evidence indicates that both prenatal and postnatal stress can prime the developing brain for seizures...

  6. Confocal imaging of whole vertebrate embryos reveals novel insights into molecular and cellular mechanisms of organ development

    Science.gov (United States)

    Hadel, Diana M.; Keller, Bradley B.; Sandell, Lisa L.

    2014-03-01

    Confocal microscopy has been an invaluable tool for studying cellular or sub-cellular biological processes. The study of vertebrate embryology is based largely on examination of whole embryos and organs. The application of confocal microscopy to immunostained whole mount embryos, combined with three dimensional (3D) image reconstruction technologies, opens new avenues for synthesizing molecular, cellular and anatomical analysis of vertebrate development. Optical cropping of the region of interest enables visualization of structures that are morphologically complex or obscured, and solid surface rendering of fluorescent signal facilitates understanding of 3D structures. We have applied these technologies to whole mount immunostained mouse embryos to visualize developmental morphogenesis of the mammalian inner ear and heart. Using molecular markers of neuron development and transgenic reporters of neural crest cell lineage we have examined development of inner ear neurons that originate from the otic vesicle, along with the supporting glial cells that derive from the neural crest. The image analysis reveals a previously unrecognized coordinated spatial organization between migratory neural crest cells and neurons of the cochleovestibular nerve. The images also enable visualization of early cochlear spiral nerve morphogenesis relative to the developing cochlea, demonstrating a heretofore unknown association of neural crest cells with extending peripheral neurite projections. We performed similar analysis of embryonic hearts in mouse and chick, documenting the distribution of adhesion molecules during septation of the outflow tract and remodeling of aortic arches. Surface rendering of lumen space defines the morphology in a manner similar to resin injection casting and micro-CT.

  7. Involvement of lignin and hormones in the response of woody poplar taproots to mechanical stress.

    Science.gov (United States)

    Trupiano, Dalila; Di Iorio, Antonino; Montagnoli, Antonio; Lasserre, Bruno; Rocco, Mariapina; Grosso, Alessandro; Scaloni, Andrea; Marra, Mauro; Chiatante, Donato; Scippa, Gabriella S

    2012-09-01

    Mechanical stress is a widespread condition caused by numerous environmental factors that severely affect plant stability. In response to mechanical stress, plants have evolved complex response pathways able to detect mechanical perturbations and inducing a suite of modifications in order to improve anchorage. The response of woody roots to mechanical stresses has been studied mainly at the morphological and biomechanical level, whereas investigations on the factors triggering these important alterations are still at the initial stage. Populus has been widely used to study the response of stem to different mechanical stresses and, since it has the first forest tree genome to be decoded, represents a model woody plant for addressing questions on the mechanisms controlling adaptation of woody roots to changing environments. In this study, a morphological and physiological analysis was used to investigate factors controlling modifications in Populus nigra woody taproots subjected to mechanical stress. An experimental model analyzing spatial and temporal mechanical force distribution along the woody taproot axis enabled us to compare the events occurring in its above-, central- and below-bending sectors. Different morphogenetic responses and local variations of lignin and plant hormones content have been observed, and a relation with the distribution of the mechanical forces along the stressed woody taproots is hypothesized. We investigated the differences of the response to mechanical stress induction during the time; in this regard, we present data referring to the effect of mechanical stress on plant transition from its condition of winter dormancy to that of full vegetative activity.

  8. Mangiferin, a natural xanthone, accelerates gastrointestinal transit in mice involving cholinergic mechanism

    Institute of Scientific and Technical Information of China (English)

    Talita Cavalcante Morais; Synara Cavalcante Lopes; Karine Maria Martins Bezerra Carvalho; Bruno Rodrigues Arruda; Francisco Thiago Correia de Souza; Maria Teresa Salles Trevisan; Vietla Satyanarayana Rao; Flávia Almeida Santos

    2012-01-01

    AIM:To investigate the effects of mangiferin on gastrointestinal transit (GIT) in normal and constipated mice,together with the possible mechanism.METHODS:Intragastrically-administered charcoal meal was used to measure GIT in overnight starved Swiss mice.In the first experiments,mangiferin (3 mg/kg,10mg/kg,30 mg/kg,and 100 mg/kg,po) or tegaserod (1mg/kg,ip) were administered 30 min before the charcoal meal to study their effects on normal transit.In the second series,mangiferin (30 mg/kg) was tested on delayed GIT induced by several different pharmacological agonists (morphine,clonidine,capsaicin) or antagonists (ondansetron,verapamil,and atropine) whereas in the third series,mangiferin (30 mg/kg,100mg/kg and 300 mg/kg) or tegaserod (1 mg/kg) were tested on 6 h fecal pellets outputted by freely fed mice.The ratio of wet to dry weight was calculated and used as a marker of fecal water content.RESULTS:Mangiferin administered orally significantly (P < 0.05) accelerated GIT at 30 mg/kg and 100 mg/kg (89%and 93%,respectively),similarly to 5-hydroxytryptamine4 (5-HT4) agonist tegaserod (81%) when compared to vehicle-treated control (63%).Co-administered mangiferin (30 mg/kg) totally reversed the inhibitory effect of opioid agonist morphine,5-HT3-receptor antagonist ondansetron and transient receptor potential vanilloid-1 receptor agonist capsaicin on GIT,but only to a partial extent with the GIT-delay induced by α2-adrenoceptor agonist clonidine,and calcium antagonist verapamil.However,co-administered atropine completely blocked the stimulant effect of mangiferin on GIT,suggesting the involvement of muscarinic acetylcholine receptor activation.Although mangiferin significantly enhanced the 6 h fecal output at higher doses (245.5 ± 10.43 mg vs 161.9 ± 10.82 mg and 227.1 ± 20.11 mg vs 161.9 ±10.82 mg of vehicle-treated control,at 30 and 100 mg/kg,P < 0.05,respectively),the effect of tegaserod was more potent (297.4 ± 7.42 mg vs 161.9 ± 10.82 mg of

  9. A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-α

    Directory of Open Access Journals (Sweden)

    Dickinson Bryony A

    2009-06-01

    Full Text Available Abstract Background Long-term depression (LTD in the hippocampus can be induced by activation of different types of G-protein coupled receptors, in particular metabotropic glutamate receptors (mGluRs and muscarinic acethycholine receptors (mAChRs. Since mGluRs and mAChRs activate the same G-proteins and isoforms of phospholipase C (PLC, it would be expected that these two forms of LTD utilise the same molecular mechanisms. However, we find a distinct mechanism of LTD involving GRIP and liprin-α. Results Whilst both forms of LTD require activation of tyrosine phosphatases and involve internalisation of AMPARs, they use different molecular interactions. Specifically, mAChR-LTD, but not mGluR-LTD, is blocked by peptides that inhibit the binding of GRIP to the AMPA receptor subunit GluA2 and the binding of GRIP to liprin-α. Thus, different receptors that utilise the same G-proteins can regulate AMPAR trafficking and synaptic efficacy via distinct molecular mechanisms. Conclusion Our results suggest that mAChR-LTD selectively involves interactions between GRIP and liprin-α. These data indicate a novel mechanism of synaptic plasticity in which activation of M1 receptors results in AMPAR endocytosis, via a mechanism involving interactions between GluA2, GRIP and liprin-α.

  10. Fatty-acid metabolism is involved in stress-resistance mechanisms of Caenorhabditis elegans

    OpenAIRE

    Horikawa, Makoto; Sakamoto, Kazuichi

    2009-01-01

    Fatty acids are the major components of the phospholipid bilayer and are involved in several functions of cell membrane. We previously reported that fatty-acid metabolism is involved in the regulation of DAF-2/insulin signal in Caenorhabditis elegans. In this study, we investigate the role of fatty-acid metabolism in stress resistance with respect to daf-16 in nematode. We found that fatty-acid metabolism regulates heat, osmotic, and oxidative-stress resistance in C. elegans. RNA interference...

  11. Influence of TiO2 nanoparticles on cellular antioxidant defense and its involvement in genotoxicity in HepG2 cells

    Science.gov (United States)

    Petković, Jana; Žegura, Bojana; Filipič, Metka

    2011-07-01

    We investigated the effects of two types of TiO2 nanoparticles (oxidative DNA damage, production of intracellular reactive oxygen species, and up-regulation of mRNA expression of DNA-damage-responsive genes (p53, p21, gadd45α and mdm2). In the present study, we measured changes in mRNA expression of several antioxidant enzymes: catalase, superoxide dismutase, glutathione peroxidase, nitric oxide synthase, glutathione reductase and glutamate-cysteine ligase. As reduced glutathione has a central role in cellular antioxidant defense, we determined the effects of TiO2 nanoparticles on changes in the intracellular glutathione content. To confirm a role for glutathione in protection against TiO2-nanoparticle-induced DNA damage, we compared the extent of TiO2-nanoparticle-induced DNA damage in HepG2 cells that were glutathione depleted with buthionine-(S,R)-sulfoximine pretreatment and in nonglutathione-depleted cells. Our data show that both types of TiO2 nanoparticles up-regulate mRNA expression of oxidative-stress-related genes, with TiO2-Ru being a stronger inducer than TiO2-An. Both types of TiO2 nanoparticles also induce dose-dependent increases in intracellular glutathione levels, and in glutathione-depleted cells, TiO2-nanoparticle-induced DNA damage was significantly greater than in nonglutathione-depleted cells. Interestingly, the glutathione content and the extent of DNA damage were significantly higher in TiO2-An- than TiO2-Ru-exposed cells. Thus, we show that TiO2 nanoparticles cause activation of cellular antioxidant processes, and that intracellular glutathione has a critical role in defense against this TiO2-nanoparticle-induced DNA damage.

  12. Autophagy and proteins involved in vesicular trafficking.

    Science.gov (United States)

    Amaya, Celina; Fader, Claudio Marcelo; Colombo, María Isabel

    2015-11-14

    Autophagy is an intracellular degradation system that, as a basic mechanism it delivers cytoplasmic components to the lysosomes in order to maintain adequate energy levels and cellular homeostasis. This complex cellular process is activated by low cellular nutrient levels and other stress situations such as low ATP levels, the accumulation of damaged proteins or organelles, or pathogen invasion. Autophagy as a multistep process involves vesicular transport events leading to tethering and fusion of autophagic vesicles with several intracellular compartments. This review summarizes our current understanding of the autophagic pathway with emphasis in the trafficking machinery (i.e. Rabs GTPases and SNAP receptors (SNAREs)) involved in specific steps of the pathway.

  13. MECHANISMS INVOLVED IN TRICHLOROETHYLENE INDUCED LIVER CANCER: IMPORTANCE TO ENVIRONMENTAL CLEANUP

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Richard J.; Thrall, Brain D.

    2001-12-31

    Trichloroethylene (TCE) is a common contaminant of groundwater as a result of poor disposal practices of the past. As a consequence, this solvent is the focus of many clean-up operations of uncontrolled hazardous waste sites. TCE is carcinogenic in both mice and rats, but at different sites, the liver and kidney, respectively (NCI 1976; NTP 1988; NTP 1990). Liver tumor induction in mice has been the tumor most critical from the standpoint of environmental regulation (Bull 2000). Under the proposed cancer risk guidelines of the Environmental Protection Agency (EPA 1996), identifying the dose-response behavior of key events involved in carcinogenic responses can be used for developing alternative risk assessments. A major difficulty in developing alternative approaches for TCE is the fact that three of its metabolites are capable of inducing liver cancer in mice (Bull et al. 1990; Daniel et al. 1992; DeAngelo et al. 1999; Pereria 1996). Two of these metabolites have distinct modes of action, dichloroacetate (DCA) and trichloroacetate (TCA). The third metabolite, chloral hydrate, is probably active as a result of its conversion to one or both of these two metabolites. Ordinarily, the first approach to assigning causality to a metabolite in tumorigenesis would be an attempt to measure its concentration in the body and associate that with tumorigenic concentrations observed when the compound is itself administered. This can be done with relative ease with TCA. However, it has been more difficult with DCA since blood levels of this metabolite after exposure to carcinogenic doses of DCA fall rapidly below detection limits (Kato-Weinstein et al. 1998; Merdink et al. 1998). Mutations in the ras protooncogene have been used to determine if distinct patterns of DNAsequence alterations can provide indications of the type of DNA damage that might be produced by carcinogens. The presence of ras mutations in chemically-induced tumors was suggested as a means o f determining

  14. Purely Mechanical Memristors: Perfect Massless Memory Resistors, the Missing Perfect Mass-Involving Memristor, and Massive Memristive Systems

    OpenAIRE

    Vongehr, Sascha

    2015-01-01

    We define a mechanical analog to the electrical basic circuit element M = d{\\phi}/dQ, namely the ideal mechanical memristance M = dp/dx; p is momentum. We then introduce a mechanical memory resistor which has M(x) independent of velocity v, so it is a perfect (= not-just-memristive) memristor, although its memristance does not crucially involve inert mass. It is practically realizable with a 1cm radius hollow sphere in heavy fuel oil with a temperature gradient. It has a pinched hysteretic lo...

  15. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  16. Positive and negative regulatory mechanisms for fine-tuning cellularity and functions of medullary thymic epithelial cells

    Directory of Open Access Journals (Sweden)

    Taishin eAkiyama

    2015-09-01

    Full Text Available Self-tolerant T cells and regulatory T cells develop in the thymus. A wide variety of cell-cell interactions in the thymus is required for the differentiation, proliferation, and repertoire selection of T cells. Various secreted and cell surface molecules expressed in thymic epithelial cells mediate these processes. Moreover, cytokines expressed by cells of hematopoietic origin regulate the cellularity of thymic epithelial cells (TECs. Tumor necrosis factor (TNF family RANK ligand, lymphotoxin, and CD40 ligand, expressed in T cells and innate lymphoid cells (ILCs, promote the differentiation and proliferation of medullary TECs (mTECs that play critical roles in the induction of immune tolerance. A recent study suggests that interleukin-22 (IL-22 produced by ILCs promotes regeneration of TECs after irradiation. Intriguingly, TGF-β and osteoprotegerin limit cellularity of mTECs, thereby attenuating regulatory T cell generation. We will review recent insights into the molecular basis for cell-cell interactions regulating differentiation and proliferation of mTECs and also discuss about a perspective on use of mathematical models for understanding this complicated system.

  17. Molecular mechanism for the involvement of nuclear receptor FXR in HBV-associated hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Yong-dong Niu

    2011-08-01

    Full Text Available Farnesoid X receptor (FXR, also termed nuclear receptor NR1H4 is critically involved in the regulation of nascent bile formation and bile acid enterohepatic circulation. FXR and bile acids have been shown to play roles in liver regeneration and inflammatory responses. There is increasing evidence suggesting that FXR and the FXR signaling pathway are involved in the pathophysiology of a wide range of liver diseases, such as viral hepatitis, cirrhosis, and hepatocellular carcinoma (HCC. Here we discuss the latest discoveries of FXR functions with relevance to bile acid metabolism and HBV-associated HCC. More specifically, the goal of this review is to discuss the roles of FXR and bile acids in regulating HBV replication and how disregulation of the FXR-bile acid signaling pathway is involved in HBV-associated hepatocarcinogenesis.

  18. A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures

    Science.gov (United States)

    Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.

    2014-01-01

    While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.

  19. Molecules and mechanisms involved in the generation and migration of cortical interneurons

    Directory of Open Access Journals (Sweden)

    Luis R Hernández‑Miranda

    2010-03-01

    Full Text Available The GABA (γ-aminobutyric acid-containing interneurons of the neocortex are largely derived from the ganglionic eminences in the subpallium. Numerous studies have previously defined the migratory paths travelled by these neurons from their origins to their destinations in the cortex. We review here results of studies that have identified many of the genes expressed in the subpallium that are involved in the specification of the subtypes of cortical interneurons, and the numerous transcription factors, motogenic factors and guidance molecules that are involved in their migration.

  20. A conflict monitoring account of the control mechanisms involved in dual-tasking

    OpenAIRE

    Olszanowski, Michal; Bajo, Maria Teresa; Szmalec, Arnaud

    2015-01-01

    The present study investigates the cognitive mechanism underlying the control of interference during dual-task coordination. Partially inspired by the Conflict Monitoring Hypothesis (Botvinick et al., 2001), we test the assumption that dual-task interference is resolved by a top-down adaptation mechanism that is responsible for behavioral adjustments in the prioritization of the coordinated tasks. In a series of two experiments, we measured conflict adaptation to the so-called Gratton effect—...

  1. Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Parhamifar, Ladan; Lange, Marina Krarup;

    2015-01-01

    demonstrate that the central mechanisms of PEI architecture- and size-dependent perturbations of integrated cellular metabolomics involve destabilization of plasma membrane and mitochondrial membranes with consequences on mitochondrial oxidative phosphorylation (OXPHOS), glycolytic flux and redox homeostasis...

  2. Rapid Disruption of Cellular Integrity of Zinc-treated Astroglia Is Regulated by p38 MAPK and Ca2+-dependent Mechanisms

    OpenAIRE

    Im, Joo-Young; Joo, Hyo-Jin; Han, Pyung-Lim

    2011-01-01

    Cultured cortical primary astroglia treated with zinc died while rapidly detached from culture plates, a distinct part of zinc-treated astroglia. In the present study, we investigated the mechanism underlying the rapid change in the morphologic integrity of zinc-treated astroglia. Among the early cellular events occurring in zinc-treated astroglia, strong activation of p38 MAPK and JNK was evident. Although inhibitors of p38 (SB203580 and SB202190) or JNK (SP600125) did not protect zinc-insul...

  3. Identification of a Pro-Angiogenic Potential and Cellular Uptake Mechanism of a LMW Highly Sulfated Fraction of Fucoidan from Ascophyllum nodosum

    Science.gov (United States)

    Marinval, Nicolas; Saboural, Pierre; Haddad, Oualid; Maire, Murielle; Bassand, Kevin; Geinguenaud, Frederic; Djaker, Nadia; Ben Akrout, Khadija; Lamy de la Chapelle, Marc; Robert, Romain; Oudar, Olivier; Guyot, Erwan; Laguillier-Morizot, Christelle; Sutton, Angela; Chauvierre, Cedric; Chaubet, Frederic; Charnaux, Nathalie; Hlawaty, Hanna

    2016-01-01

    Herein we investigate the structure/function relationships of fucoidans from Ascophyllum nodosum to analyze their pro-angiogenic effect and cellular uptake in native and glycosaminoglycan-free (GAG-free) human endothelial cells (HUVECs). Fucoidans are marine sulfated polysaccharides, which act as glycosaminoglycans mimetics. We hypothesized that the size and sulfation rate of fucoidans influence their ability to induce pro-angiogenic processes independently of GAGs. We collected two fractions of fucoidans, Low and Medium Molecular Weight Fucoidan (LMWF and MMWF, respectively) by size exclusion chromatography and characterized their composition (sulfate, fucose and uronic acid) by colorimetric measurement and Raman and FT-IR spectroscopy. The high affinities of fractionated fucoidans to heparin binding proteins were confirmed by Surface Plasmon Resonance. We evidenced that LMWF has a higher pro-angiogenic (2D-angiogenesis on Matrigel) and pro-migratory (Boyden chamber) potential on HUVECs, compared to MMWF. Interestingly, in a GAG-free HUVECs model, LMWF kept a pro-angiogenic potential. Finally, to evaluate the association of LMWF-induced biological effects and its cellular uptake, we analyzed by confocal microscopy the GAGs involvement in the internalization of a fluorescent LMWF. The fluorescent LMWF was mainly internalized through HUVEC clathrin-dependent endocytosis in which GAGs were partially involved. In conclusion, a better characterization of the relationships between the fucoidan structure and its pro-angiogenic potential in GAG-free endothelial cells was required to identify an adapted fucoidan to enhance vascular repair in ischemia. PMID:27763505

  4. Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved.

    Science.gov (United States)

    Lentacker, Ine; Geers, Bart; Demeester, Joseph; De Smedt, Stefaan C; Sanders, Niek N

    2010-01-01

    Drug delivery with microbubbles and ultrasound is gaining more and more attention in the drug delivery field due to its noninvasiveness, local applicability, and proven safety in ultrasonic imaging techniques. In this article, we tried to improve the cytotoxicity of doxorubicin (DOX)-containing liposomes by preparing DOX-liposome-containing microbubbles for drug delivery with therapeutic ultrasound. In this way, the DOX release and uptake can be restricted to ultrasound-treated areas. Compared to DOX-liposomes, DOX-loaded microbubbles killed at least two times more melanoma cells after exposure to ultrasound. After treatment of the melanoma cells with DOX-liposome-loaded microbubbles and ultrasound, DOX was mainly present in the nuclei of the cancer cells, whereas it was mainly detected in the cytoplasm of cells treated with DOX-liposomes. Exposure of cells to DOX-liposome-loaded microbubbles and ultrasound caused an almost instantaneous cellular entry of the DOX. At least two mechanisms were identified that explain the fast uptake of DOX and the superior cell killing of DOX-liposome-loaded microbubbles and ultrasound. First, exposure of DOX-liposome-loaded microbubbles to ultrasound results in the release of free DOX that is more cytotoxic than DOX-liposomes. Second, the cellular entry of the released DOX is facilitated due to sonoporation of the cell membranes. The in vitro results shown in this article indicate that DOX-liposome-loaded microbubbles could be a very interesting tool to obtain an efficient ultrasound-controlled DOX delivery in vivo.

  5. The Role and Mechanisms of Action of Glucocorticoid Involvement in Memory Storage

    Directory of Open Access Journals (Sweden)

    Carmen Sandi

    1998-01-01

    integral aspect of the neurobiological mechanism underlying memory formation. By reviewing the work carried out in different learning models in chicks (passive avoidance learning and rats (spatial orientation in the Morris water maze and contextual fear conditioning, a role for brain corticosterone action through the glucocorticoid receptor type on the mechanisms of memory consolidation is hypothesized. Evidence is also presented to relate post-training corticosterone levels to the strength of memory storage. Finally, the possible molecular mechanisms that might mediate the influences of glucocorticoids in synaptic plasticity subserving long-term memory formation are considered, mainly by focusing on studies implicating a steroid action through (i glutamatergic transmission and (ii cell adhesion molecules.

  6. BCR-ABL negative myeloproliferative neoplasia: a review of involved molecular mechanisms.

    Science.gov (United States)

    Koopmans, Suzanne M; Schouten, Harry C; van Marion, Ariënne M W

    2015-02-01

    The clonal bone marrow stem cell disorders essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) belong to the group of Philadelphia chromosome negative myeloproliferative neoplasia (Ph- MPN). In 2005 the JAK2(V617F) mutation was discovered which has generated more insight in the pathogenetic mechanism of the MPNs. More mutations have been detected in MPN patients since. However, the underlying cause of MPN has not been discovered so far. The mechanism of increased angiogenesis in MPNs and the development of fibrosis in the bone marrow in PMF patients and in some ET and PV patients is still not known. This review will focus on the most important molecular pathogenetic mechanisms in MPN patients. PMID:25196073

  7. Integrated analyses of genome-wide DNA occupancy and expression profiling identify key genes and pathways involved in cellular transformation by the Marek's disease virus oncoprotein Meq

    Science.gov (United States)

    Marek’s disease (MD) is an economically significant disease in chickens caused by the highly oncogenic Marek’s disease virus (MDV). A major unanswered question is the mechanism of MDV-induced tumor formation. Meq, a bZIP transcription factor discovered in the 1990s, is largely attributed for viral o...

  8. Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Kharazmi, A

    1991-01-01

    Pseudomonas aeruginosa, an extracellular opportunistic pathogen, utilizes two major mechanisms to evade the host defence system. One of these mechanisms is the production of a large number of extracellular products, such as proteases, toxins, and lipases. The two proteases, alkaline protease...... and elastase, inhibit the function of the cells of the immune system (phagocytes, NK cells, T cells), inactivate several cytokines (IL-1, IL-2, IFN-r, TNF), cleave immunoglobulins and inactivate complement. Inhibition of the local immune response by bacterial proteases provides an environment...

  9. Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression.

    Science.gov (United States)

    Avila-Rodriguez, Marco; Garcia-Segura, Luis Miguel; Hidalgo-Lanussa, Oscar; Baez, Eliana; Gonzalez, Janneth; Barreto, George E

    2016-09-15

    Tibolone, a synthetic steroid used for the prevention of osteoporosis and the treatment of climacteric symptoms in post-menopausal women, may exert tissue selective estrogenic actions acting on estrogen receptors (ERs). We previously showed that tibolone protects human T98G astroglial cells against glucose deprivation (GD). In this study we have explored whether the protective effect of tibolone on these cells is mediated by ERs. Experimental studies showed that both ERα and ERβ were involved in the protection by tibolone on GD cells, being ERβ preferentially involved on these actions over ERα. Tibolone increased viability of GD cells by a mechanism fully blocked by an ERβ antagonist and partially blocked by an ERα antagonist. Furthermore, ERβ inhibition prevented the effect of tibolone on nuclear fragmentation, ROS and mitochondrial membrane potential in GD cells. The protective effect of tibolone was mediated by neuroglobin. Tibolone upregulated neuroglobin in T98G cells and primary mouse astrocytes by a mechanism involving ERβ and neuroglobin silencing prevented the protective action of tibolone on GD cells. In summary, tibolone protects T98G cells by a mechanism involving ERβ and the upregulation of neuroglobin. PMID:27250720

  10. Constitutional Chromothripsis Rearrangements Involve Clustered Double-Stranded DNA Breaks and Nonhomologous Repair Mechanisms

    Directory of Open Access Journals (Sweden)

    Wigard P. Kloosterman

    2012-06-01

    Full Text Available Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements.

  11. VIGS for dissecting mechanisms involved in the symbiotic interaction of microbes with plants

    DEFF Research Database (Denmark)

    Grønlund, Mette

    2015-01-01

    Virus-induced gene silencing (VIGS) is an alternative reverse genetics tool for silencing of genes in some plants which are difficult to transform. The pea early browning virus (PEBV) has been developed as a VIGS vector and used in pea for functional analysis of several genes. Here, a PEBV......-VIGS protocol is described which is suitable for reverse genetics studies in pea for genes involved in the symbiosis with arbuscular mycorrhizal fungi and Rhizobium....

  12. Understanding the molecular mechanisms involved in the interfacial self-healing of supramolecular rubbers

    NARCIS (Netherlands)

    Bose, R.K.; Garcia Espallargas, S.J.; Van der Zwaag, S.

    2013-01-01

    Supramolecular rubbers based on 2-aminoethylimidazolidone and fatty acids with epoxy crosslinks have been shown to self-heal via multiple hydrogen bonding sites. In this work, several tools are used to investigate the molecular mechanisms taking place at the interface to understand cohesive healing

  13. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor

    DEFF Research Database (Denmark)

    List, K; Høyer-Hansen, G; Rønne, E;

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or...

  14. Hormesis and Cellular Quality Control: A Possible Explanation for the Molecular Mechanisms that Underlie the Benefits of Mild Stress

    OpenAIRE

    Wiegant, F.A.C.; de Poot, S A H; Boers-Trilles, V.E.; Schreij, A.M.A

    2012-01-01

    In contrast to the detrimental action of severe stress conditions, the beneficial effects of mild stress, known as hormesis, is increasingly discussed and studied. A variety of applications for hormesis in risk assessment processes, anti-ageing strategies and clinical therapies have been proposed. The molecular mechanisms underlying the phenomenon of hormesis, however, are not yet fully understood. A possible mechanism that has been proposed for hormesis, the homoeostasis overshoot hypothesis...

  15. Understanding the cellular mechanism of recovery from freeze-thaw injury in spinach: possible role of aquaporins, heat shock proteins, dehydrin and antioxidant system.

    Science.gov (United States)

    Chen, Keting; Arora, Rajeev

    2014-03-01

    Recovery from reversible freeze-thaw injury in plants is a critical component of ultimate frost survival. However, little is known about this aspect at the cellular level. To explore possible cellular mechanism(s) for post-thaw recovery (REC), we used Spinacia oleracea L. cv. Bloomsdale leaves to first determine the reversible freeze-thaw injury point. Freeze (-4.5°C)-thaw-injured tissues (32% injury vs <3% in unfrozen control) fully recovered during post-thaw, as assessed by an ion leakage-based method. Our data indicate that photosystem II efficiency (Fv/Fm) was compromised in injured tissues but recovered during post-thaw. Similarly, the reactive oxygen species (O2 (•-) and H2 O2 ) accumulated in injured tissues but dissipated during recovery, paralleled by the repression and restoration, respectively, of activities of antioxidant enzymes, superoxide dismutase (SOD) (EC. 1.14.1.1), and catalase (CAT) (EC.1.11.1.6) and ascorbate peroxidase (APX) (EC.1.11.1.11). Restoration of CAT and APX activities during recovery was slower than SOD, concomitant with a slower depletion of H2 O2 compared to O2 (•-) . A hypothesis was also tested that the REC is accompanied by changes in the expression of water channels [aquaporines (AQPs)] likely needed for re-absorption of thawed extracellular water. Indeed, the expression of two spinach AQPs, SoPIP2;1 and SoδTIP, was downregulated in injured tissues and restored during recovery. Additionally, a notion that molecular chaperones [heat shock protein of 70 kDa (HSP70s)] and putative membrane stabilizers [dehydrins (DHNs)] are recruited during recovery to restore cellular homeostasis was also tested. We noted that, after an initial repression in injured tissues, the expression of three HSP70s (cytosolic, endoplasmic reticulum and mitochondrial) and a spinach DHN (CAP85) was significantly restored during the REC. PMID:23981077

  16. Involvement of cellular immunity and humoral immunity in mixed allergy induced by trichloroethylene%三氯乙烯致细胞免疫和体液免疫参与的混合型变态反应研究

    Institute of Scientific and Technical Information of China (English)

    徐新云; 李学余; 刘月峰

    2014-01-01

    目的 探讨三氯乙烯(TCE)致变态反应是否存在细胞免疫和体液免疫共同参与,为研究其发病机制提供科学依据.方法 应用豚鼠和大鼠进行实验,分别设立阴性对照组、阳性对照组、TCE实验组,用皮内注射方式分别注射橄榄油、2,4-二硝基氯苯(DNCB)和TCE.实验结束后收集大鼠外周血液,用流式细胞仪检测淋巴细胞CD3+、CD4+、CD8+比例;收集豚鼠外周血液测定IgG、IgA、IgM、C3、C4水平;收集豚鼠脾淋巴细胞,用荧光定量PCR检测免疫相关基因GATA3、T-bet、CTLA4和Foxp3的mRNA表达水平.此外,选取TCE药疹样皮炎患者作为病例组,采用荧光定量PCR检测外周血Foxp3、GATA3、CTLA4、T-bet的mRNA表达水平.结果 (1)TCE对豚鼠皮肤有明显致敏作用,致敏率为83.3%;TCE实验组和阳性对照组IgG水平比阴性对照组显著升高(P<0.01);TCE实验组和阳性对照组GATA3、T-bet、CTLA4 mRNA表达水平显著高于阴性对照组,Foxp3 mRNA表达水平低于阴性对照组.(2)TCE实验组和阳性对照组大鼠外周血淋巴细胞CD3+比例高于阴性对照组,TCE实验组CD4+、CD8+、CD4+/CD8+与阴性对照组比较无统计学差异.(3)TCE病例组Foxp3、GATA3、CTLA4 mRNA表达水平比对照组分别升高115%、97%和241%(P<0.01),T-bet mRNA表达水平下降47%(P<0.01).结论 TCE可引起细胞免疫和体液免疫发生明显改变,说明TCE导致的免疫损伤属于细胞免疫和体液免疫共同参与的混合型变态反应,可能是Ⅳ型和Ⅱ型变态反应.%Objective To investigate whether cellular immunity and humoral immunity are involved in trichlorethylene (TCE)-induced mixed allergy,then provide the scientific basis for the mechanism of this disease.Methods Guinea pigs and rats were tested for this study by application of guinea pig maximization test (GPMT),the animals were randomly divided into negative control,positive control and TCE treatment groups.Animals of these groups were

  17. A novel embryological theory of autism causation involving endogenous biochemicals capable of initiating cellular gene transcription: a possible link between twelve autism risk factors and the autism 'epidemic'.

    Science.gov (United States)

    King, Chiara R

    2011-05-01

    Human alpha-fetoprotein is a pregnancy-associated protein with an undetermined physiological role. As human alpha-fetoprotein binds retinoids and inhibits estrogen-dependent cancer cell proliferation, and because retinoic acid (a retinol metabolite) and estradiol (an estrogen) can both initiate cellular gene transcription, it is hypothesized here that alpha-fetoprotein functions during critical gestational periods to prevent retinoic acid and maternal estradiol from inappropriately stimulating gene expression in developing brain regions which are sensitive to these chemicals. Prenatal/maternal factors linked to increased autism risk include valproic acid, thalidomide, alcohol, rubella, cytomegalovirus, depression, schizophrenia, obsessive-compulsive disorder, autoimmune disease, stress, allergic reaction, and hypothyroidism. It will be shown how each of these risk factors may initiate expression of genes which are sensitive to retinoic acid and/or estradiol - whether by direct promotion or by reducing production of alpha-fetoprotein. It is thus hypothesized here that autism is not a genetic disorder, but is rather an epigenetic disruption in brain development caused by gestational exposure to chemicals and/or conditions which either inhibit alpha-fetoprotein production or directly promote retinoic acid-sensitive or estradiol-sensitive gene expression. This causation model leads to potential chemical explanations for autistic brain morphology, the distinct symptomatology of Asperger's syndrome, and the differences between high-functioning and low-functioning autism with regard to mental retardation, physical malformation, and sex ratio. It will be discussed how folic acid may cause autism under the retinoic acid/estradiol model, and the history of prenatal folic acid supplementation will be shown to coincide with the history of what is popularly known as the autism epidemic. It is thus hypothesized here that prenatal folic acid supplementation has contributed to the

  18. Are immunological mechanisms involved in colon cancer and are they possible markers for biotherapy improvement?

    Science.gov (United States)

    Berghella, Anna Maria; Contasta, Ida; Pellegrini, Patrizia; Del Beato, Tiziana; Adorno, Domenico

    2006-10-01

    This paper focuses on our data on colon cancer patients. Our overall results lead us to believe that the suppressive effect of specific cytokines in colon cancer patients alters the functionality of TH1 and TH2 subsets of CD4+ T-cells, with an expansion of TH2 cells and a malfunctioning of TH1 cells. This immunological disregulation appears to increase with stage progression, suggesting a direct role in the mechanisms that allow the tumour to locate and expand within the host. It is also clear that in order to identify disease markers and generate an in vivo immune response that corrects the imbalance between TH1 and TH2 cells, we need to understand how tumour mechanisms cause this imbalance to begin with.

  19. Molecular mechanisms involved in the bidirectional relationship between diabetes mellitus and periodontal disease

    Directory of Open Access Journals (Sweden)

    Harpreet Singh Grover

    2013-01-01

    Full Text Available Both diabetes and periodontitis are chronic diseases. Diabetes has many adverse effects on the periodontium, and conversely periodontitis may have deleterious effects further aggravating the condition in diabetics. The potential common pathophysiologic pathways include those associated with inflammation, altered host responses, altered tissue homeostasis, and insulin resistance. This review examines the relationship that exists between periodontal diseases and diabetes mellitus with a focus on potential common pathophysiologic mechanisms.

  20. Physiological and Molecular Mechanism of Nitric Oxide (NO) Involved in Bermudagrass Response to Cold Stress

    OpenAIRE

    Fan, Jibiao; Chen, Ke; Amombo, Erick; Hu, Zhengrong; Chen, Liang; Fu, Jinmin

    2015-01-01

    Bermudagrass is widely utilized in parks, lawns, and golf courses. However, cold is a key factor limiting resource use in bermudagrass. Therefore, it is meaningful to study the mechanism of bermudagrass response to cold. Nitric oxide (NO) is a crucial signal molecule with multiple biological functions. Thus, the objective of this study was to investigate whether NO play roles in bermudagrass response to cold. Sodium nitroprusside (SNP) was used as NO donor, while 2-phenyl-4,4,5,5-tetramentyli...

  1. Vascular oxidative stress upregulates angiotensin II type I receptors via mechanisms involving nuclear factor kappa B

    OpenAIRE

    Bhatt, Siddhartha R.; Lokhandwala, Mustafa F.; Banday, Anees Ahmad

    2014-01-01

    The association of oxidative stress with hypertension is well known. However, a causal role of oxidative stress in hypertension is unclear. Vascular angiotensin II type 1 receptor (AT1R) upregulation is a prominent contributor to pathogenesis of hypertension. However, the mechanisms causing this upregulation are unknown. Oxidative stress is an important regulator of protein expression via activation of transcription factors such as nuclear factor kappa B (NFκB). The present study was carried ...

  2. Optimization of the Asymptotic Property of Mutual Learning Involving an Integration Mechanism of Ensemble Learning

    OpenAIRE

    Hara, Kazuyuki; Yamada, Takahiro

    2007-01-01

    We propose an optimization method of mutual learning which converges into the identical state of optimum ensemble learning within the framework of on-line learning, and have analyzed its asymptotic property through the statistical mechanics method.The proposed model consists of two learning steps: two students independently learn from a teacher, and then the students learn from each other through the mutual learning. In mutual learning, students learn from each other and the generalization er...

  3. Recovery of Respiratory Activity after C2 hemisection (C2HS): Involvement of Adenosinergic Mechanisms

    OpenAIRE

    Nantwi, Kwaku D

    2009-01-01

    Consequences of spinal cord injury (SCI) depend on the level and extent of injury. Cervical SCI often results in a compromised respiratory system. Primary treatment of SCI patients with respiratory insufficiency continues to be with mechanical ventilatory support. In an animal model of SCI, an upper cervical spinal cord hemisection paralyzes the hemidiaphragm ipsilateral to the side of injury. However, a latent respiratory motor pathway can be activated to restore respiratory function after i...

  4. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    OpenAIRE

    Sagai Masaru; Bocci Velio

    2011-01-01

    Abstract The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not. Severe o...

  5. Mechanical properties and cellular response of novel electrospun nanofibers for ligament tissue engineering: Effects of orientation and geometry.

    Science.gov (United States)

    Pauly, Hannah M; Kelly, Daniel J; Popat, Ketul C; Trujillo, Nathan A; Dunne, Nicholas J; McCarthy, Helen O; Haut Donahue, Tammy L

    2016-08-01

    Electrospun nanofibers are a promising material for ligamentous tissue engineering, however weak mechanical properties of fibers to date have limited their clinical usage. The goal of this work was to modify electrospun nanofibers to create a robust structure that mimics the complex hierarchy of native tendons and ligaments. The scaffolds that were fabricated in this study consisted of either random or aligned nanofibers in flat sheets or rolled nanofiber bundles that mimic the size scale of fascicle units in primarily tensile load bearing soft musculoskeletal tissues. Altering nanofiber orientation and geometry significantly affected mechanical properties; most notably aligned nanofiber sheets had the greatest modulus; 125% higher than that of random nanofiber sheets; and 45% higher than aligned nanofiber bundles. Modifying aligned nanofiber sheets to form aligned nanofiber bundles also resulted in approximately 107% higher yield stresses and 140% higher yield strains. The mechanical properties of aligned nanofiber bundles were in the range of the mechanical properties of the native ACL: modulus=158±32MPa, yield stress=57±23MPa and yield strain=0.38±0.08. Adipose derived stem cells cultured on all surfaces remained viable and proliferated extensively over a 7 day culture period and cells elongated on nanofiber bundles. The results of the study suggest that aligned nanofiber bundles may be useful for ligament and tendon tissue engineering based on their mechanical properties and ability to support cell adhesion, proliferation, and elongation.

  6. Mechanical properties and cellular response of novel electrospun nanofibers for ligament tissue engineering: Effects of orientation and geometry.

    Science.gov (United States)

    Pauly, Hannah M; Kelly, Daniel J; Popat, Ketul C; Trujillo, Nathan A; Dunne, Nicholas J; McCarthy, Helen O; Haut Donahue, Tammy L

    2016-08-01

    Electrospun nanofibers are a promising material for ligamentous tissue engineering, however weak mechanical properties of fibers to date have limited their clinical usage. The goal of this work was to modify electrospun nanofibers to create a robust structure that mimics the complex hierarchy of native tendons and ligaments. The scaffolds that were fabricated in this study consisted of either random or aligned nanofibers in flat sheets or rolled nanofiber bundles that mimic the size scale of fascicle units in primarily tensile load bearing soft musculoskeletal tissues. Altering nanofiber orientation and geometry significantly affected mechanical properties; most notably aligned nanofiber sheets had the greatest modulus; 125% higher than that of random nanofiber sheets; and 45% higher than aligned nanofiber bundles. Modifying aligned nanofiber sheets to form aligned nanofiber bundles also resulted in approximately 107% higher yield stresses and 140% higher yield strains. The mechanical properties of aligned nanofiber bundles were in the range of the mechanical properties of the native ACL: modulus=158±32MPa, yield stress=57±23MPa and yield strain=0.38±0.08. Adipose derived stem cells cultured on all surfaces remained viable and proliferated extensively over a 7 day culture period and cells elongated on nanofiber bundles. The results of the study suggest that aligned nanofiber bundles may be useful for ligament and tendon tissue engineering based on their mechanical properties and ability to support cell adhesion, proliferation, and elongation. PMID:27082129

  7. Phenanthrene causes ocular developmental toxicity in zebrafish embryos and the possible mechanisms involved

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lixing [State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Wang, Chonggang [State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005 (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen (China); Zhang, Youyu; Wu, Meifang [State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005 (China); Zuo, Zhenghong, E-mail: zuozhenghong@xmu.edu.cn [State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005 (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen (China)

    2013-10-15

    Highlights: • Phe exposure caused obvious morphological changes in the retina. • Phe exposure caused apoptosis and reduction of cell proliferation in the retina. • Phe causes ocular toxicity might be via the AhR/Zeb1/Mitf/Pax6 signaling pathway. • AhR is a repressor of Zeb1. -- Abstract: Recent studies show that polycyclic aromatic hydrocarbons (PAHs) may be a candidate cause of developmental defects of the retina, but the mechanism is still unclear. We evaluated the mechanism(s) underlying PAH-induced retinal development defects due to exposure to environmental concentrations of Phenanthrene (Phe) in zebrafish. We found that exposure to environmental concentrations of Phe caused obvious morphological changes, developmental retardation, apoptosis, and reduction of cell proliferation in the retina. Our results indicated that Phe could cause visual system developmental defects. Phe exposure up-regulated aryl hydrocarbon receptor (AhR) and microphthalmia-associated transcription factor (Mtif) expression, and down-regulated zinc finger E-box binding homeobox 1 (Zeb1) and paired box 6 (Pax6). Moreover, we demonstrated that AhR was a repressor of Zeb1. We propose that Phe's ocular toxicity is mediated by up-regulating AhR, which then down-regulates Zeb1, in turn inducing Mitf expression while inhibiting Pax6 expression.

  8. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells.

    Science.gov (United States)

    Zhang, Jie; Liu, Dan; Zhang, Mengjun; Sun, Yuqi; Zhang, Xiaojun; Guan, Guannan; Zhao, Xiuli; Qiao, Mingxi; Chen, Dawei; Hu, Haiyang

    2016-01-01

    Polyamidoamine dendrimers, which can deliver drugs and genetic materials to resistant cells, are attracting increased research attention, but their transportation behavior in resistant cells remains unclear. In this paper, we performed a systematic analysis of the cellular uptake, intracellular transportation, and efflux of PAMAM-NH2 dendrimers in multidrug-resistant breast cancer cells (MCF-7/ADR cells) using sensitive breast cancer cells (MCF-7 cells) as the control. We found that the uptake rate of PAMAM-NH2 was much lower and exocytosis of PAMAM-NH2 was much greater in MCF-7/ADR cells than in MCF-7 cells due to the elimination of PAMAM-NH2 from P-glycoprotein and the multidrug resistance-associated protein in MCF-7/ADR cells. Macropinocytosis played a more important role in its uptake in MCF-7/ADR cells than in MCF-7 cells. PAMAM-NH2 aggregated and became more degraded in the lysosomal vesicles of the MCF-7/ADR cells than in those of the MCF-7 cells. The endoplasmic reticulum and Golgi complex were found to participate in the exocytosis rather than endocytosis process of PAMAM-NH2 in both types of cells. Our findings clearly showed the intracellular transportation process of PAMAM-NH2 in MCF-7/ADR cells and provided a guide of using PAMAM-NH2 as a drug and gene vector in resistant cells. PMID:27536106

  9. Task Group 7B: Cellular and Molecular Mechanisms of Biological Aging: The Roles of Nature, Nurture and Chance in the Maintenance of Human Healthspan

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulrich; Arya, Suresh; Grant, Christine; Miller, Linda; Ono, Santa Jeremy; Patil, Chris; Shay, Jerry; Topol, Eric; Torry, Michael; Weier, Heinz-Ulrich G.; Tse, Iris; Lin, Su-Ju; Miller, Richard

    2007-11-14

    The degree to which an individual organism maintains healthspan and lifespan is a function of complex interactions between genetic inheritance ('nature'), environment, including cultural inheritance (nurture) and stochastic events ('luck' or 'chance'). This task group will focus upon the role of chance because it is so poorly understood and because it appears to be of major importance in the determination of individual variations in healthspan and lifespan within species. The major factor determining variations in healthspan and lifespan between species is genetic inheritance. Broader aspects of cellular and molecular mechanisms of biological aging will also be considered, given their importance for understanding the cellular and molecular basis of successful aging. The task force will consider the cellular and molecular basis for nature, nurture and chance in healthspan and life span determination. On the basis of comparisons between identical and non-identical twins, geneticists have estimated that genes control no more than about a quarter of the inter-individual differences in lifespan (Herskind 1996). Twin studies of very old individuals, however, show substantially greater genetic contributions to Healthspan (McClearn 2004; Reed 2003). The environment clearly plays an important role in the length and the quality of life. Tobacco smoke, for example has the potential to impact upon multiple body systems in ways that appear to accelerate the rates at which those systems age (Bernhard 2007). To document the role of chance events on aging, one must rigorously control both the genetic composition of an organism and its environment. This has been done to a remarkable degree in a species of nematodes, Caenorhabditis elegans (Vanfleteren 1998). The results confirm hundreds of previous studies with a wide range of species, especially those with inbred rodents housed under apparently identical but less well controlled environments. One

  10. Molecular mechanisms involved in secretory vesicle recruitment to the plasma membrane in beta-cells.

    Science.gov (United States)

    Varadi, Aniko; Ainscow, E K; Allan, V J; Rutter, G A

    2002-04-01

    Glucose stimulates the release of insulin in part by activating the recruitment of secretory vesicles to the cell surface. While this movement is known to be microtubule-dependent, the molecular motors involved are undefined. Active kinesin was found to be essential for vesicle translocation in live beta-cells, since microinjection of cDNA encoding dominant-negative KHC(mut) (motor domain of kinesin heavy chain containing a Thr(93)-->Asn point mutation) blocked vesicular movements. Moreover, expression of KHC(mut) strongly inhibited the sustained, but not acute, stimulation of secretion by glucose. Thus, vesicles released during the first phase of insulin secretion exist largely within a translocation-independent pool. Kinesin-driven anterograde movement of vesicles is then necessary for the sustained (second phase) of insulin release. Kinesin may, therefore, represent a novel target for increases in intracellular ATP concentrations in response to elevated extracellular glucose and may be involved in the ATP-sensitive K+channel-independent stimulation of secretion by the sugar.

  11. Nanostructured cellular networks.

    Science.gov (United States)

    Moriarty, P; Taylor, M D R; Brust, M

    2002-12-01

    Au nanocrystals spin-coated onto silicon from toluene form cellular networks. A quantitative statistical crystallography analysis shows that intercellular correlations drive the networks far from statistical equilibrium. Spin-coating from hexane does not produce cellular structure, yet a strong correlation is retained in the positions of nanocrystal aggregates. Mechanisms based on Marangoni convection alone cannot account for the variety of patterns observed, and we argue that spinodal decomposition plays an important role in foam formation.

  12. Numerical simulation on the adaptation of forms in trabecular bone to mechanical disuse and basic multi-cellular unit activation threshold at menopause

    Institute of Scientific and Technical Information of China (English)

    He Gong; Yubo Fan; Ming Zhang

    2008-01-01

    The objective of this paper is to identify the effects of mechanical disuse and basic multi-cellular unit (BMU) activation threshold on the form of trabecular bone during menopause. A bone adaptation model with mechanical-biological factors at BMU level was integrated with finite element analysis to simulate the changes of trabecular bone structure during menopause. Mechanical disuse and changes in the BMU activation threshold were applied to the model for the period from 4 years before to 4 years after menopause.The changes in bone volume fraction, trabecular thickness and fractal dimension of the trabecular structures were used to quantify the changes of trabecular bone in three different cases associated with mechanical disuse and BMU activation threshold. It was found that the changes in the simulated bone volume fraction were highly correlated and consistent with clinical data, and that the trabecular thickness reduced signi-ficantly during menopause and was highly linearly correlated with the bone volume fraction, and that the change trend of fractal dimension of the simulated trabecular structure was in correspondence with clinical observations. The numerical simulation in this paper may help to better understand the relationship between the bone morphology and the mecha- nical, as well as biological environment; and can provide a quantitative computational model and methodology for the numerical simulation of the bone structural morphological changes caused by the mechanical environment, and/or the biological environment.

  13. Down-regulation of mechanisms involved in cell transport and maintenance of mucosal integrity in pigs infected with Lawsonia intracellularis

    OpenAIRE

    Smith, Sionagh H; Wilson, Alison D.; Van Ettinger, Imke; MacIntyre, Neil; Archibald, Alan L.; Ait-Ali, Tahar

    2014-01-01

    International audience Lawsonia intracellularis is an obligate intracellular bacterium, responsible for the disease complex known as proliferative enteropathy (PE). L. intracellularis is associated with intestinal crypt epithelial cell proliferation but the mechanisms responsible are yet to be defined. Microarray analysis was used to investigate the host-pathogen interaction in experimentally infected pigs to identify pathways that may be involved. Ileal samples originating from twenty-eig...

  14. Mechanisms Involved in Thromboxane A2-induced Vasoconstriction of Rat Intracavernous Small Penile Arteries

    DEFF Research Database (Denmark)

    Grann, Martin; Comerma Steffensen, Simon Gabriel; Arcanjo, Daniel Dias Rufino;

    2015-01-01

    Diabetes is associated with erectile dysfunction and with hypercontractility in erectile tissue and this is in part ascribed to increased formation of thromboxane. Rho kinase (ROCK) is a key regulator of calcium sensitization and contraction in vascular smooth muscle. This study investigated...... relaxation in rat mesenteric arteries. Our findings suggest that U46619 contraction depends on Ca2+ influx through L-type and TRP channels, and ROCKdependent mechanisms in penile arteries. Inhibition of the ROCK pathway is a potential approach for the treatment of erectile dysfunction associated...

  15. GR-127935-sensitive mechanism mediating hypotension in anesthetized rats: are 5-HT5B receptors involved?

    Science.gov (United States)

    Sánchez-Maldonado, Carolina; López-Sánchez, Pedro; Anguiano-Robledo, Liliana; Leopoldo, Marcello; Lacivita, Enza; Terrón, José A

    2015-04-01

    The 5-HT1B/1D receptor antagonist, GR-127935, inhibits hypotensive responses produced by the 5-HT1A, 5-HT1B/1D and 5-HT7 receptor agonist, and 5-HT5A/5B receptor ligand, 5-carboxamidotryptamine (5-CT), in rats. This work further characterized the above mechanism using more selective 5-HT1B and 5-HT1D receptor antagonists. Also, expression of 5-HT5A and 5-HT5B receptor mRNAs in blood vessels was searched by reverse transcription polymerase chain reaction. Decreases in diastolic blood pressure induced by 5-CT (0.001-10 μg/kg, intravenously) were analyzed in anesthetized rats that had received intravenous vehicle (1 mL/kg), SB-224289 (5-HT1B antagonist; 0.3 and 1.0 mg/kg), BRL15572 (5-HT1D antagonist; 0.3 and 1.0 mg/kg), SB-224289 + BRL15572 (0.3 mg/kg, each), or SB-224289 + BRL15572 (0.3 mg/kg, each) + GR-127935 (1 mg/kg). Because only the latter treatment inhibited 5-CT-induced hypotension, suggestive of a mechanism unrelated to 5-HT1B/1D receptors, the effects of antagonists/ligands at 5-HT5A (SB-699551, 1 mg/kg), 5-HT6 (SB-399885, 1 mg/kg), and 5-HT1B/1D/5A/5B/7 receptors (ergotamine, 0.1 mg/kg) on 5-CT-induced hypotension were tested. Interestingly, only ergotamine blocked 5-CT-induced responses; this effect closely paralleled that of SB-224289 + BRL-15572 + GR-127935. Neither did ergotamine nor GR-127935 inhibit hypotensive responses induced by the 5-HT7 receptor agonist, LP-44. Faint but clear bands corresponding to 5-HT5A and 5-HT5B receptor mRNAs in aorta and mesenteric arteries were detected. Results suggest that the GR-127935-sensitive mechanism mediating hypotension in rats is unrelated to 5-HT1B, 5-HT1D, 5-HT5A, 5-HT6, and 5-HT7 receptors. This mechanism, however, resembles putative 5-HT5B receptors. PMID:25502305

  16. Cellular Metabolism and Dose Reveal Carnitine-Dependent and -Independent Mechanisms of Butyrate Oxidation in Colorectal Cancer Cells.

    Science.gov (United States)

    Han, Anna; Bennett, Natalie; MacDonald, Amber; Johnstone, Megan; Whelan, Jay; Donohoe, Dallas R

    2016-08-01

    Dietary fiber has been suggested to suppress colorectal cancer development, although the mechanisms contributing to this beneficial effect remain elusive. Butyrate, a fermentation product of fiber, has been shown to have anti-proliferative and pro-apoptotic effects on colorectal cancer cells. The metabolic fate of butyrate in the cell is important in determining whether, it acts as an HDAC inhibitor or is consumed as a short-chain fatty acid. Non-cancerous colonocytes utilize butyrate as the primary energy source whereas cancerous colonocytes increase glucose utilization through the Warburg effect. In this study, we show that butyrate oxidation is decreased in cancerous colonocytes compared to non-cancerous colonocytes. We demonstrate that colorectal cancer cells utilize both a carnitine-dependent and carnitine-independent mechanism that contributes to butyrate oxidation. The carnitine-dependent mechanism is contingent on butyrate concentration. Knockdown of CPT1A in colorectal cancer cells abolishes butyrate oxidation. In terms of selectivity, the carnitine-dependent mechanism only regulated butyrate oxidation, as acetate and propionate oxidation were carnitine-independent. Carnitine decreased the action of butyrate as an HDAC inhibitor and suppressed induction of H3 acetylation by butyrate in colorectal cancer cells. Thus, diminished oxidation of butyrate is associated with decreased HDAC inhibition and histone acetylation. In relation to the mechanism, we find that dichloroacetate, which decreases phosphorylation of pyruvate dehydrogenase, increased butyrate oxidation and that this effect was carnitine-dependent. In conclusion, these data suggest that colorectal cancer cells decrease butyrate oxidation through inhibition of pyruvate dehydrogenase, which is carnitine-dependent, and provide insight into why butyrate shows selective effects toward colorectal cancer cells. J. Cell. Physiol. 231: 1804-1813, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661480

  17. Sensitizing Children to the Social and Emotional Mechanisms involved in Racism: a program evaluation

    Directory of Open Access Journals (Sweden)

    Sofia Triliva

    2014-11-01

    Full Text Available This paper describes and discusses the results of an intervention aiming to sensitize children to the social and emotional processes involved in racism. The intervention was applied and evaluated in 10 Greek elementary schools. The goals and the intervention methods of the program modules are briefly outlined and the results of the program evaluation are elaborated and discussed. Two-hundred students participated in the program and 180 took part in the pre-and-post-testing which assessed their ability to identify emotions associated with prejudice, discrimination and stereotypical thinking; to understand similarities and differences between people; and to develop perspective taking and empathic skills in relation to diverse others. Results indicate gains in all three areas of assessment although the increased ability to identify similarities between people can also be attributed to age/grade effects. The implications of the findings are discussed with regard to antiracism intervention methods and evaluation strategies.

  18. A possible new mechanism involved in non-uniform field breakdown in gaseous dielectrics

    International Nuclear Information System (INIS)

    The electrical breakdown of gases under uniform field conditions is fairly well understood in terms of the Townsend's breakdown theory. In most cases involving uniform fields, the breakdown voltage can be estimated via this theory using basic electron impact parameters for molecules in their ground electronic states. In contrast, a consistent model of gaseous breakdown under nonuniform fields is not available at present although substantial progress has been made recently. We point out the possibility that electron impact processes involving high-lying electronically-excited states may play a significant role under non-uniform field conditions. Thus, such processes may need to be included in order to obtain a better understanding of non-uniform field breakdown phenomena. The general, breakdown characteristics of highly non-uniform field gaps can be illustrated by that for a point-plane geometry. It has been found that the breakdown voltage for such a gap can be calculated by a simple streamer criterion if the pressure P, is above a critical value, Pc; for P c, the estimated breakdown voltage is found to coincide with the corona inception voltage, with the actual breakdown occurring at a higher voltage, corona discharges occur only for P c. In other words, the presence of corona in the pressure region below Pc seems to prevent the breakdown from occurring at the predicted value. This has led to the term ''corona stabilization'' to describe the enhancement in the breakdown voltage for pressures below Pc. Non-uniform field breakdown measurements in gases will be discussed. We will discuss the possibility that the ''corona stabilization'' is due to the prevention of avalanche progression by attachment of free electrons to molecules in their high-lying electronically-excited states. Information on electron attachment to electronically-excited states of molecules was not available up until the late 1980's

  19. A possible new mechanism involved in non-uniform field breakdown in gaseous dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, L.A.; Christophorou, L.G.

    1994-06-01

    The electrical breakdown of gases under uniform field conditions is fairly well understood in terms of the Townsend`s breakdown theory. In most cases involving uniform fields, the breakdown voltage can be estimated via this theory using basic electron impact parameters for molecules in their ground electronic states. In contrast, a consistent model of gaseous breakdown under nonuniform fields is not available at present although substantial progress has been made recently. We point out the possibility that electron impact processes involving high-lying electronically-excited states may play a significant role under non-uniform field conditions. Thus, such processes may need to be included in order to obtain a better understanding of non-uniform field breakdown phenomena. The general, breakdown characteristics of highly non-uniform field gaps can be illustrated by that for a point-plane geometry. It has been found that the breakdown voltage for such a gap can be calculated by a simple streamer criterion if the pressure P, is above a critical value, P{sub c}; for P < P{sub c}, the estimated breakdown voltage is found to coincide with the corona inception voltage, with the actual breakdown occurring at a higher voltage, corona discharges occur only for P < P{sub c}. In other words, the presence of corona in the pressure region below P{sub c} seems to prevent the breakdown from occurring at the predicted value. This has led to the term ``corona stabilization`` to describe the enhancement in the breakdown voltage for pressures below P{sub c}. Non-uniform field breakdown measurements in gases will be discussed. We will discuss the possibility that the ``corona stabilization`` is due to the prevention of avalanche progression by attachment of free electrons to molecules in their high-lying electronically-excited states. Information on electron attachment to electronically-excited states of molecules was not available up until the late 1980`s.

  20. A cell-regulatory mechanism involving feedback between contraction and tissue formation guides wound healing progression.

    Directory of Open Access Journals (Sweden)

    Clara Valero

    Full Text Available Wound healing is a process driven by cells. The ability of cells to sense mechanical stimuli from the extracellular matrix that surrounds them is used to regulate the forces that cells exert on the tissue. Stresses exerted by cells play a central role in wound contraction and have been broadly modelled. Traditionally, these stresses are assumed to be dependent on variables such as the extracellular matrix and cell or collagen densities. However, we postulate that cells are able to regulate the healing process through a mechanosensing mechanism regulated by the contraction that they exert. We propose that cells adjust the contraction level to determine the tissue functions regulating all main activities, such as proliferation, differentiation and matrix production. Hence, a closed-regulatory feedback loop is proposed between contraction and tissue formation. The model consists of a system of partial differential equations that simulates the evolution of fibroblasts, myofibroblasts, collagen and a generic growth factor, as well as the deformation of the extracellular matrix. This model is able to predict the wound healing outcome without requiring the addition of phenomenological laws to describe the time-dependent contraction evolution. We have reproduced two in vivo experiments to evaluate the predictive capacity of the model, and we conclude that there is feedback between the level of cell contraction and the tissue regenerated in the wound.

  1. Mechanical Properties Involved in the Micro-forming of Ultra-thin Stainless Steel Sheets

    Science.gov (United States)

    Pham, Cong-Hanh; Thuillier, Sandrine; Manach, Pierre-Yves

    2015-08-01

    The objective of this paper is to characterize the mechanical behavior of an ultra-thin stainless steel, of 0.15-mm thickness, that is commonly used in the manufacturing of miniature connectors. The main focus is the relationship between some microstructural features, like grain size and surface roughness, and the macroscopic mechanical behavior investigated in uniaxial tension and simple shear. In tension, adaptations to the very small sheet thickness, in order to hold the specimen under the grips, are presented. Yield stress, initial elastic modulus, and evolution of the loading-unloading slope with plastic deformation were evaluated. Moreover, the kinematic contribution to the hardening was characterized by monotonic and cyclic simple shear test and reproduced by a mixed hardening law implemented in Abaqus finite element code. Then, the evolution of surface roughness with plastic strain, both in tension and simple shear, was analyzed. It was shown that in the case of an ultra-thin sheet, the stress levels, calculated either from an average thickness or when considering the effect of the surface roughness, exhibit a significant difference. Finally, the influence of surface roughness on the fracture of a tensile specimen was also investigated.

  2. Cellular and molecular basis of mammary microcalcifications

    OpenAIRE

    Cox, Rachel

    2011-01-01

    Mammary microcalcifications represent one of the most reliable mammographic features of non-palpable breast cancer and are often the sole indicator of the disease. However, it is unknown whether these microcalcifications are a sign of degeneration or an active cellular process. The aims of this project were to establish and characterise an in vitro model of mammary mineralisation in monolayer, 3D scaffolds and in vivo and to investigate the molecular mechanisms involved in this process, focus...

  3. Potassium channel and NKCC cotransporter involvement in ocular refractive control mechanisms.

    Directory of Open Access Journals (Sweden)

    Sheila G Crewther

    Full Text Available Myopia affects well over 30% of adult humans globally. However, the underlying physiological mechanism is little understood. This study tested the hypothesis that ocular growth and refractive compensation to optical defocus can be controlled by manipulation of potassium and chloride ion-driven transretinal fluid movements to the choroid. Chicks were raised with +/-10D or zero power optical defocus rendering the focal plane of the eye in front of, behind, or at the level of the retinal photoreceptors respectively. Intravitreal injections of barium chloride, a non-specific inhibitor of potassium channels in the retina and RPE or bumetanide, a selective inhibitor of the sodium-potassium-chloride cotransporter were made, targeting fluid control mechanisms. Comparison of refractive compensation to 5 mM Ba(2+ and 10(-5 M bumetanide compared with control saline injected eyes shows significant change for both positive and negative lens defocus for Ba(2+ but significant change only for negative lens defocus with bumetanide (Rx(SAL(-10D = -8.6 +/- .9 D; Rx(Ba2+(-10D = -2.9 +/- .9 D; Rx(Bum(-10D = -2.9 +/- .9 D; Rx(SAL(+10D = +8.2 +/- .9 D; Rx(Ba2+(+10D = +2.8 +/- 1.3 D; Rx(Bum(+10D = +8.0 +/- .7 D. Vitreous chamber depths showed a main effect for drug conditions with less depth change in response to defocus shown for Ba(2+ relative to Saline, while bumetanide injected eyes showed a trend to increased depth without a significant interaction with applied defocus. The results indicate that both K channels and the NKCC cotransporter play a role in refractive compensation with NKCC blockade showing far more specificity for negative, compared with positive, lens defocus. Probable sites of action relevant to refractive control include the apical retinal pigment epithelium membrane and the photoreceptor/ON bipolar synapse. The similarities between the biometric effects of NKCC inhibition and biometric reports of the blockade of the retinal ON response, suggest a

  4. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    Science.gov (United States)

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the

  5. Mechanism of cellular uptake of HIV-TAT peptide & effects of TAT-SOD against ultraviolet induced skin damage

    OpenAIRE

    Chen, Xiaochao

    2013-01-01

    TAT peptide is one of the best-characterised cell penetrating peptides (CPPs) derived from the transactivator of transcription protein from the human immunodeficiency virus 1 (HIV-1). TAT peptide is able to cross the cell membrane and deliver various biomolecules into cells with low immunogenicity and no toxicity. However, the exact mechanism of internalization still remains a subject of controversy. Lamellar neutron scattering was used to determine the location of TAT pepti...

  6. Cellular differentiation in 3D-bioprinted mesenchymal stem cell-loaded hydrogels with varying structural and mechanical properties

    OpenAIRE

    Duarte Campos, Daniela Filipa

    2016-01-01

    Hydrogels are a promising alternative to rigid biomaterials typically used in the field of bone tissue engineering for the treatment of musculoskeletal disorders. By hydrogel-based 3D-bioprinting, the native ornamentation of cells and matrix from bone tissue could be resembled. Herein, it was hypothesized the combination of polysaccharides (agarose, alginate) with biological components (collagen, fibrinogen) would increase mechanical stiffness of printed constructs as well as support the prin...

  7. Molecular mechanisms involved in adaptive responses to radiation, UV light, and heat

    International Nuclear Information System (INIS)

    Viable organisms recognize and respond to environmental changes or stresses. When these environmental changes and their responses by organisms are extreme, they can limit viability. However, organisms can adapt to these different stresses by utilizing different possible responses via signal transduction pathways when the stress is not lethal. In particular, prior mild stresses can provide some aid to prepare organisms for subsequent more severe stresses. These adjustments or adaptations for future stresses have been called adaptive responses. These responses are present in bacteria, plants and animals. The following review covers recent research which can help describe or postulate possible mechanisms which may be active in producing adaptive responses to radiation, ultraviolet light, and heat. (author)

  8. Biochemistry and therapeutic implications of mechanisms involved in FOXP3 activity in immune suppression.

    Science.gov (United States)

    Li, Bin; Saouaf, Sandra J; Samanta, Arabinda; Shen, Yuan; Hancock, Wayne W; Greene, Mark I

    2007-10-01

    While mutations in human FOXP3 predispose individuals to autoimmune conditions, it is unclear how the mutant protein fails to function as a transcriptional regulator. There is also limited detail of how FOXP3 itself interacts with the transcriptional machinery and which components of the FOXP3 ensembles exert phenotypic changes to render cells able to mediate suppression. Increasing evidence indicates that the level and duration of FOXP3 expression plays a crucial role in the development and function of natural regulatory T cells (Tregs). Our studies focus on the post-translational modification of the FOXP3 protein, and how the FOXP3 complex ensemble, containing histone modification and chromatin-remodeling enzymes, defines its functional role in regulatory T cells. Understanding the molecular mechanisms underlying FOXP3 activity will provide therapeutic implications for transplantation, allergy, autoimmune disease and cancer. PMID:17703930

  9. Mechanisms Involved in Trichloroethylene-Induced Liver Cancer: Importance to Environmental Cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Richard J.; Thrall, Brian D.

    2000-06-01

    The project is organized around two interrelated tasks: Task 1 develops the basic dosimetry parameters and provides in vivo data describing the mode of action tumorigenic and for the metabolites of TCE that produce liver cancer in mice, dichloroacetate (DCA) and trichloroacetate (TCA). Early work suggested that TCA was primarily responsible for TCE-induced liver tumor. More recent, mechanistic observations indicated that DCA played a prominent role. Therefore, studies were designed to determine whether the effects of DCA were mediated through a mode of action that affects primarily tumor growth rates. Task 2 seeks specific evidence that TCA and DCA are capable of promoting the growth of spontaneously initiated cells from mouse liver, in vitro. The data provide the clearest evidence that both metabolites act by a mechanism of selection rather than mutation. These data are necessary to select between a linear (i.e. no threshold) and non-linear low-dose extrapolation models.

  10. Successful retrieval of competing spatial environments in humans involves hippocampal pattern separation mechanisms.

    Science.gov (United States)

    Kyle, Colin T; Stokes, Jared D; Lieberman, Jennifer S; Hassan, Abdul S; Ekstrom, Arne D

    2015-01-01

    The rodent hippocampus represents different spatial environments distinctly via changes in the pattern of "place cell" firing. It remains unclear, though, how spatial remapping in rodents relates more generally to human memory. Here participants retrieved four virtual reality environments with repeating or novel landmarks and configurations during high-resolution functional magnetic resonance imaging (fMRI). Both neural decoding performance and neural pattern similarity measures revealed environment-specific hippocampal neural codes. Conversely, an interfering spatial environment did not elicit neural codes specific to that environment, with neural activity patterns instead resembling those of competing environments, an effect linked to lower retrieval performance. We find that orthogonalized neural patterns accompany successful disambiguation of spatial environments while erroneous reinstatement of competing patterns characterized interference errors. These results provide the first evidence for environment-specific neural codes in the human hippocampus, suggesting that pattern separation/completion mechanisms play an important role in how we successfully retrieve memories. PMID:26613414

  11. Effects of high fluoride intake on child mental work capacity: preliminary investigation into the mechanisms involved

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Li, X.J.; Wei, S.Q. [Child & Adolescent Hygiene Teaching Research Station, Chengdu (China)

    2008-10-15

    A study was carried out on 157 children, age 12-13, from a coal-burning fluorosis endemic area together with an experiment looking into the effect of high fluoride intake in animals. The results showed that early, prolonged high fluoride intake causes a decrease in a child's mental work capacity and that prolonged high uptake of fluoride causes a child's levels of hair zinc to drop. A multifactoral correlative analysis demonstrated a direct correlation between hair zinc and mental work capacity. The decrease of 5-hydroxyindoleacetic acid and the increase of norepinephrine in animal brains exposed to high levels of fluoride suggest a possible mechanism for mental work capacity deficits in children. However, further research is necessary.

  12. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage.

    Science.gov (United States)

    Gaut, Carrie; Sugaya, Kiminobu

    2015-01-01

    Articular cartilage defects often progress to osteoarthritis, which negatively impacts quality of life for millions of people worldwide and leads to high healthcare expenditures. Tissue engineering approaches to osteoarthritis have concentrated on proliferation and differentiation of stem cells by activation and suppression of signaling pathways, and by using a variety of scaffolding techniques. Recent studies indicate a key role of environmental factors in the differentiation of mesenchymal stem cells to mature cartilage-producing chondrocytes. Therapeutic approaches that consider environmental regulation could optimize chondrogenesis protocols for regeneration of articular cartilage. This review focuses on the effect of scaffold structure and composition, mechanical stress and hypoxia in modulating mesenchymal stem cell fate and the current use of these environmental factors in tissue engineering research.

  13. Facilitation of memory processing by posttrial morphine: possible involvement of reinforcement mechanisms?

    Science.gov (United States)

    Mondadori, C; Waser, P G

    1979-06-21

    Posttrial administration of 40 mg/kg and 100 mg/kg, but not of 1 mg/kg, of morphine hydrochloride facilitates learning of a one-trial passive avoidance task in drug-naive mice. The effect does not depend on the punishing properties of the morphine injection, since in injection of LiCl (a strong punisher) fails to enhance learning in a similar way. After the establishment of tolerance by several morphone administrations, the 100 mg/kg, but not the 40 mg/kg, dose level resulted in memory facilitation. The data are discussed in connection with the hypothesis that morphine acts directly on reinforcement mechanisms by activating the opiate receptor. PMID:113818

  14. Attentional Biases toward Attractive Alternatives and Rivals: Mechanisms Involved in Relationship Maintenance among Chinese Women.

    Directory of Open Access Journals (Sweden)

    Yidan Ma

    Full Text Available A long-term romantic relationship can offer many benefits to committed individuals. Thus, humans possess relationship maintenance mechanisms to protect against threats from those who serve as attractive alternatives or intrasexual rivals. Many studies have indicated that romantic love can act as a commitment device to activate these mechanisms. To examine the attentional bias associated with relationship maintenance among 108 college students (49 single and 59 committed females in China, we used a semantic priming procedure to activate mental representations associated with romantic love and then asked participants to complete a dot-probe task for the purpose of making a distinction between the engage and disengage components of attention. No significant engaging effects toward attractive faces were observed among committed females, but the following significant disengaging effects were found: when primed with romantic love, single females showed increased attention toward and difficulty in disengaging from attractive male faces, whereas females already in a committed relationship did not alter their attention, remaining as inattentive to attractive alternatives as they were in the baseline condition. In addition, committed females responded to love priming by exhibiting difficulty in disengaging from attractive rivals. The present findings provide evidence in the Chinese cultural context for the existence of early-stage attentional processes in the domain of relationship maintenance that committed Chinese females protected an ongoing relationship by not only being inattentive to attractive males who could serve as attractive alternatives, but also being more attentive to attractive females who could be potential rivals when mental representations associated with romantic love were primed.

  15. Therapeutic targeting of myeloid-derived suppressor cells involves a novel mechanism mediated by clusterin.

    Science.gov (United States)

    Zhou, Junmin; Donatelli, Sarah S; Gilvary, Danielle L; Tejera, Melba M; Eksioglu, Erika A; Chen, Xianghong; Coppola, Domenico; Wei, Sheng; Djeu, Julie Y

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) constitute a key checkpoint that impedes tumor immunity against cancer. Chemotherapeutic intervention of MDSCs has gained ground as a strategy for cancer therapy but its mechanism remains obscure.We report here a unique mechanism by which monocytic (M)-MDSCs are spared, allowing them to polarize towards M1 macrophages for reactivation of immunity against breast cancer. We first demonstrated that curcumin, like docetaxel (DTX), can selectively target CD11b(+)Ly6G(+)Ly6C(low) granulocytic (G)-MDSCs, sparing CD11b(+)Ly6G(-)Ly6C(high) M-MDSCs, with reduced tumor burden in 4T1-Neu tumor-bearing mice. Curcumin treatment polarized surviving M-MDSCs toward CCR7(+) Dectin-1(-)M1 cells, accompanied by IFN-γ production and cytolytic function in T cells. Selective M-MDSC chemoresistence to curcumin and DTX was mediated by secretory/cytoplasmic clusterin (sCLU). sCLU functions by trapping Bax from mitochondrial translocation, preventing the apoptotic cascade. Importantly, sCLU was only found in M-MDSCs but not in G-MDSCs. Knockdown of sCLU in M-MDSCs and RAW264.7 macrophages was found to reverse their natural chemoresistance. Clinically, breast cancer patients possess sCLU expression only in mature CD68(+) macrophages but not in immature CD33(+) immunosuppressive myeloid cells infiltrating the tumors. We thus made the seminal discovery that sCLU expression in M-MDSCs accounts for positive immunomodulation by chemotherapeutic agents. PMID:27405665

  16. Therapeutic targeting of myeloid-derived suppressor cells involves a novel mechanism mediated by clusterin

    Science.gov (United States)

    Zhou, Junmin; Donatelli, Sarah S.; Gilvary, Danielle L.; Tejera, Melba M.; Eksioglu, Erika A.; Chen, Xianghong; Coppola, Domenico; Wei, Sheng; Djeu, Julie Y.

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) constitute a key checkpoint that impedes tumor immunity against cancer. Chemotherapeutic intervention of MDSCs has gained ground as a strategy for cancer therapy but its mechanism remains obscure.We report here a unique mechanism by which monocytic (M)-MDSCs are spared, allowing them to polarize towards M1 macrophages for reactivation of immunity against breast cancer. We first demonstrated that curcumin, like docetaxel (DTX), can selectively target CD11b+Ly6G+Ly6Clow granulocytic (G)-MDSCs, sparing CD11b+Ly6G−Ly6Chigh M-MDSCs, with reduced tumor burden in 4T1-Neu tumor-bearing mice. Curcumin treatment polarized surviving M-MDSCs toward CCR7+ Dectin-1−M1 cells, accompanied by IFN-γ production and cytolytic function in T cells. Selective M-MDSC chemoresistence to curcumin and DTX was mediated by secretory/cytoplasmic clusterin (sCLU). sCLU functions by trapping Bax from mitochondrial translocation, preventing the apoptotic cascade. Importantly, sCLU was only found in M-MDSCs but not in G-MDSCs. Knockdown of sCLU in M-MDSCs and RAW264.7 macrophages was found to reverse their natural chemoresistance. Clinically, breast cancer patients possess sCLU expression only in mature CD68+ macrophages but not in immature CD33+ immunosuppressive myeloid cells infiltrating the tumors. We thus made the seminal discovery that sCLU expression in M-MDSCs accounts for positive immunomodulation by chemotherapeutic agents. PMID:27405665

  17. Allosteric activation of SENP1 by SUMO1 β-grasp domain involves a dock-and-coalesce mechanism

    Science.gov (United States)

    Guo, Jingjing; Zhou, Huan-Xiang

    2016-01-01

    Small ubiquitin-related modifiers (SUMOs) are conjugated to proteins to regulate a variety of cellular processes. SENPs are cysteine proteases with a catalytic center located within a channel between two subdomains that catalyzes SUMO C-terminal cleavage for processing of SUMO precursors and de-SUMOylation of target proteins. The β-grasp domain of SUMOs binds to an exosite cleft, and allosterically activates SENPs via an unknown mechanism. Our molecular dynamics simulations showed that binding of the β-grasp domain induces significant conformational and dynamic changes in SENP1, including widening of the exosite cleft and quenching of nanosecond dynamics in all but a distal region. A dock-and-coalesce mechanism emerges for SENP-catalyzed SUMO cleavage: the wedging of the β-grasp domain enables the docking of the proximal portion of the C-terminus and the strengthened cross-channel motional coupling initiates inter-subdomain correlated motions to allow for the distal portion to coalesce around the catalytic center. DOI: http://dx.doi.org/10.7554/eLife.18249.001 PMID:27576863

  18. Mechanisms of shrub encroachment into Northern Chihuahuan Desert grasslands and impacts of climate change investigated using a cellular automata model

    Science.gov (United States)

    Caracciolo, Domenico; Istanbulluoglu, Erkan; Noto, Leonardo Valerio; Collins, Scott L.

    2016-05-01

    Arid and semiarid grasslands of southwestern North America have changed dramatically over the last 150 years as a result of woody plant encroachment. Overgrazing, reduced fire frequency, and climate change are known drivers of woody plant encroachment into grasslands. In this study, relatively simple algorithms for encroachment factors (i.e., grazing, grassland fires, and seed dispersal by grazers) are proposed and implemented in the ecohydrological Cellular-Automata Tree Grass Shrub Simulator (CATGraSS). CATGraSS is used in a 7.3 km2 rectangular domain located in central New Mexico along a zone of grassland to shrubland transition, where shrub encroachment is currently active. CATGraSS is calibrated and used to investigate the relative contributions of grazing, fire frequency, seed dispersal by herbivores and climate change on shrub abundance over a 150-year period of historical shrub encroachment. The impact of future climate change is examined using a model output that realistically represents current vegetation cover as initial condition, in a series of stochastic CATGraSS future climate simulations. Model simulations are found to be highly sensitive to the initial distribution of shrub cover. Encroachment factors more actively lead to shrub propagation within the domain when the model starts with randomly distributed individual shrubs. However, when shrubs are naturally evolved into clusters, the model response to encroachment factors is muted unless the effect of seed dispersal by herbivores is amplified. The relative contribution of different drivers on modeled shrub encroachment varied based on the initial shrub cover condition used in the model. When historical weather data is used, CATGraSS predicted loss of shrub and grass cover during the 1950 s drought. While future climate change is found to amplify shrub encroachment (∼13% more shrub cover by 2100), grazing remains the dominant factor promoting shrub encroachment. When we modeled future climate

  19. Evolutionary mechanisms involved in the virulence of infectious salmon anaemia virus (ISAV), a piscine orthomyxovirus

    International Nuclear Information System (INIS)

    Infectious salmon anaemia virus (ISAV) is an orthomyxovirus causing a multisystemic, emerging disease in Atlantic salmon. Here we present, for the first time, detailed sequence analyses of the full-genome sequence of a presumed avirulent isolate displaying a full-length hemagglutinin-esterase (HE) gene (HPR0), and compare this with full-genome sequences of 11 Norwegian ISAV isolates from clinically diseased fish. These analyses revealed the presence of a virulence marker right upstream of the putative cleavage site R267 in the fusion (F) protein, suggesting a Q266 → L266 substitution to be a prerequisite for virulence. To gain virulence in isolates lacking this substitution, a sequence insertion near the cleavage site seems to be required. This strongly suggests the involvement of a protease recognition pattern at the cleavage site of the fusion protein as a determinant of virulence, as seen in highly pathogenic influenza A virus H5 or H7 and the paramyxovirus Newcastle disease virus

  20. Genes and molecular mechanisms involved in the epileptogenesis of idiopathic absence epilepsies.

    Science.gov (United States)

    Yalçın, Ozlem

    2012-03-01

    Idiopathic absence epilepsies (IAE), that have high prevalence particularly among children and adolescents, are complex disorders mainly caused by genetic factors. Childhood absence epilepsy and juvenile absence epilepsy are among the most common subtypes of IAEs. While the role of ion channels has been the primary focus of epilepsy research, the analysis of mutation and association in both patients with absence epilepsies and animal models revealed the involvement of GABA receptors and calcium channels, but also of novel non-ion channel proteins in inducing spike wave discharges (SWD). Functional studies on a mutated variant of these proteins also support their role in the epileptogenesis of absence seizures. Studies in animal models point to both the thalamus and cortex as the origin of SWDs: the abnormalities in the components of these circuits leading to seizure activity. This review examines the current research on mutations and susceptibility alleles determined in the genes that code for the subunits of GABA receptors (GABRG2, GABRA1, GABRB3, GABRA5, GABA(B1) and GABA(B2)), calcium channels (CACNA1A, CACNA1G, CACNA1H, CACNA1I, CACNAB4, CACNAG2 and CACNG3), and novel non-ion channel proteins, taking into account the results of functional studies on these variants. PMID:22206818

  1. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jaslyn E. M. M. [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Midtgaard, Søren Roi [University of Copenhagen, Universitetsparken 5, 2100 Copenhagen (Denmark); Gysel, Kira [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Thygesen, Mikkel B.; Sørensen, Kasper K.; Jensen, Knud J. [University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Stougaard, Jens; Thirup, Søren; Blaise, Mickaël, E-mail: mickael.blaise@cpbs.cnrs.fr [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark)

    2015-03-01

    The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  2. Dopamine as a potent inducer of cellular glutathione and NAD(P)H:quinone oxidoreductase 1 in PC12 neuronal cells: a potential adaptive mechanism for dopaminergic neuroprotection.

    Science.gov (United States)

    Jia, Zhenquan; Zhu, Hong; Misra, Bhaba R; Li, Yunbo; Misra, Hara P

    2008-11-01

    Dopamine auto-oxidation and the consequent formation of reactive oxygen species and electrophilic quinone molecules have been implicated in dopaminergic neuronal cell death in Parkinson's disease. We reported here that in PC12 dopaminergic neuronal cells dopamine at noncytotoxic concentrations (50-150 muM) potently induced cellular glutathione (GSH) and the phase 2 enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1), two critical cellular defenses in detoxification of ROS and electrophilic quinone molecules. Incubation of PC12 cells with dopamine also led to a marked increase in the mRNA levels for gamma-glutamylcysteine ligase catalytic subunit (GCLC) and NQO1. In addition, treatment of PC12 cells with dopamine resulted in a significant elevation of GSH content in the mitochondrial compartment. To determine whether treatment with dopamine at noncytotoxic concentrations, which upregulated the cellular defenses could protect the neuronal cells against subsequent lethal oxidative and electrophilic injury, PC12 cells were pretreated with dopamine (150 muM) for 24 h and then exposed to various cytotoxic concentrations of dopamine or 6-hydroxydopamine (6-OHDA). We found that pretreatment of PC12 cells with dopamine at a noncytotoxic concentration led to a remarkable protection against cytotoxicity caused by dopamine or 6-OHDA at lethal concentrations, as detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. In view of the critical roles of GSH and NQO1 in protecting against dopaminergic neuron degeneration, the above findings implicate that upregulation of both GSH and NQO1 by dopamine at noncytotoxic concentrations may serve as an important adaptive mechanism for dopaminergic neuroprotection. PMID:18368484

  3. Cellular regulation of the structure and function of aortic valves

    Directory of Open Access Journals (Sweden)

    Ismail El-Hamamsy

    2010-01-01

    Full Text Available The aortic valve was long considered a passive structure that opens and closes in response to changes in transvalvular pressure. Recent evidence suggests that the aortic valve performs highly sophisticated functions as a result of its unique microscopic structure. These functions allow it to adapt to its hemodynamic and mechanical environment. Understanding the cellular and molecular mechanisms involved in normal valve physiology is essential to elucidate the mechanisms behind valve disease. We here review the structure and developmental biology of aortic valves; we examine the role of its cellular parts in regulating its function and describe potential pathophysiological and clinical implications.

  4. Advancement in the research of mechanism of endogenous cellular injury in visceral complications as complications after severe burn%严重烧伤脏器并发症的内源性细胞损伤机制研究进展

    Institute of Scientific and Technical Information of China (English)

    罗鹏飞; 王光毅; 夏照帆

    2012-01-01

    It is of great importance to know the endogenous mechanism in burn-induced organ injuries,not only for the understanding of pathophysiological processes after burn,but also for guiding the clinical treatment.Recent studies have widened and deepened our scope and understanding of secondary injuries to various organs.However,a unaminous understanding of molecular pathway involved in all burn-induced organ injuries has not been attained.Relatively,the mechanism of endogenous cellular injuries as a result of burn injury could be regarded as a common one to explain the causation of cellular injury,and to guide the prevention and treatment for the burn-induced complications using cytoprotection strategy. This review summarized four aspects of the mechanism of endogenous cellular injuries,including cellular injuries induced by ischemic/hypoxic-oxidative stress,excessive inflammatory factors released by inflammatory cells,immunosuppression caused by suppression of function of adaptive immune cells,and dysfunction of important supportive cells of various organs.

  5. Study of the physical mechanisms involved in the femtosecond laser optical breakdown of dielectric materials

    International Nuclear Information System (INIS)

    We have carried out detailed time resolved experimental studies of the mechanism of electron excitation-relaxation, when an ultrashort (60 fs-1 ps) laser (UV and IR) pulse interacts with a wide band gap dielectric material. The studies cover a range of different dielectric materials and the investigated regimes span from nondestructive ionization of the material at the low power end (∼TW/cm2) to ablative domain at a higher laser power (∼10 TW/cm2). This gives fundamental insight into the understanding of the laser damaging process taking place under our irradiation conditions. The usage of time-resolved spectral interferometry technique allows to directly measure the electron density of the irradiated material under different excitation conditions and hence leads to quantification of the process. The measurements, carried out at the optical breakdown threshold utilizing different pulse durations, raise questions regarding the usage of critical excitation density as a universal ablation criterion. A new criterion related to the exchanged energy is proposed. Additionally, the use of an experimental setup implementing a double pump pulse allows the identification of different excitation mechanisms taking place at time scales of the order of the pulse duration used. Electronic avalanche is observed in some materials (SiO2, NaCl) while this is not the case for others (Al2O3, MgO). These differences are discussed in detail. Next, we measure the energy spectrum of excited electrons with a complementary technique: the photoemission spectroscopy. These results allow us on one hand to show a crossed effect between the two 'pump' pulses and on the other hand to measure electron relaxation characteristic times, as a function of their kinetic energy. Finally, a morphological study of craters resulting from ablation in the case of a single pulse has been carried out for different irradiation parameters: number of shots, energy and pulse duration. This work has been extended

  6. Sex differences in cerebellar mechanisms involved in pain-related safety learning.

    Science.gov (United States)

    Labrenz, Franziska; Icenhour, Adriane; Thürling, Markus; Schlamann, Marc; Forsting, Michael; Timmann, Dagmar; Elsenbruch, Sigrid

    2015-09-01

    Recent studies have suggested that the cerebellum contributes to the central processing of pain, including pain-related learning and memory processes. As a complex experience with multiple emotional and cognitive facets, the response to pain and its underlying neural correlates differ between men and women. However, it remains poorly understood whether and to what extent sex differences exist in the cerebellar contribution to pain-related associative learning processes. In the present conditioning study with experimental abdominal pain as unconditioned stimuli (US), we assessed sex-dependent differences in behavioral and neural responses to conditioned warning and safety cues in healthy volunteers. The results revealed that in response to visual stimuli signaling safety from abdominal pain (CS(-)), women showed enhanced cerebellar activation in lobules I-IV, V, VI, VIIIa, IX and X as well as Crus II and the dentate nucleus, which are mostly representative of somatomotor networks. On the other hand, men showed enhanced neural activation in lobules I-IV, VI, VIIb, VIIIb, IX as well as Crus I and II in response to CS(-), which are representative of frontoparietal and ventral attention networks. No sex differences were observed in response to pain-predictive warning signals (CS(+)). Similarly, men and women did not differ in behavioral measures of conditioning, including conditioned changes in CS valence and contingency awareness. Together, we could demonstrate that the cerebellum is involved in associative learning processes of conditioned anticipatory safety from pain and mediates sex differences in the underlying neural processes. Given the high prevalence of chronic pain conditions in women, these results may contribute to improve our understanding of the acquisition and manifestation of chronic abdominal pain syndromes. PMID:26004678

  7. Adaptation of grapevine flowers to cold involves different mechanisms depending on stress intensity.

    Directory of Open Access Journals (Sweden)

    Mélodie Sawicki

    Full Text Available Grapevine flower development and fruit set are influenced by cold nights in the vineyard. To investigate the impact of cold stress on carbon metabolism in the inflorescence, we exposed the inflorescences of fruiting cuttings to chilling and freezing temperatures overnight and measured fluctuations in photosynthesis and sugar content. Whatever the temperature, after the stress treatment photosynthesis was modified in the inflorescence, but the nature of the alteration depended on the intensity of the cold stress. At 4°C, photosynthesis in the inflorescence was impaired through non-stomatal limitations, whereas at 0°C it was affected through stomatal limitations. A freezing night (-3°C severely deregulated photosynthesis in the inflorescence, acting primarily on photosystem II. Cold nights also induced accumulation of sugars. Soluble carbohydrates increased in inflorescences exposed to -3°C, 0°C and 4°C, but starch accumulated only in inflorescences of plants treated at 0 and -3°C. These results suggest that inflorescences are able to cope with cold temperatures by adapting their carbohydrate metabolism using mechanisms that are differentially induced according to stress intensity.

  8. Involvement of a joker mutation in a polymerase-independent lethal mutagenesis escape mechanism.

    Science.gov (United States)

    Agudo, Rubén; de la Higuera, Ignacio; Arias, Armando; Grande-Pérez, Ana; Domingo, Esteban

    2016-07-01

    We previously characterized a foot-and-mouth disease virus (FMDV) with three amino acid replacements in its polymerase (3D) that conferred resistance to the mutagenic nucleoside analogue ribavirin. Here we show that passage of this mutant in the presence of high ribavirin concentrations resulted in selection of viruses with the additional replacement I248T in 2C. This 2C substitution alone (even in the absence of replacements in 3D) increased FMDV fitness mainly in the presence of ribavirin, prevented an incorporation bias in favor of A and U associated with ribavirin mutagenesis, and conferred the ATPase activity of 2C decreased sensitivity to ribavirin-triphosphate. Since in previous studies we described that 2C with I248T was selected under different selective pressures, this replacement qualifies as a joker substitution in FMDV evolution. The results have identified a role of 2C in nucleotide incorporation, and have unveiled a new polymerase-independent mechanism of virus escape to lethal mutagenesis. PMID:27136067

  9. Paracrine mechanisms involved in the control of early stages of mammalian spermatogenesis

    Directory of Open Access Journals (Sweden)

    Pellegrino eRossi

    2013-11-01

    Full Text Available Within the testis, Sertoli cell is the primary target of pituitary FSH. Several growth factors have been described to be produced specifically by Sertoli cells and modulate male germ cell development through paracrine mechanisms. Some have been shown to act directly on spermatogonia such as GDNF, which acts on self-renewal of spermatogonial stem cells (SSCs while inhibiting their differentiation; BMP4, which has both a proliferative and differentiative effect on these cells, and KL, which stimulates the KIT tyrosine-kinase receptor expressed by differentiating spermatogonia (but not by SSCs. KL not only controls the proliferative cycles of KIT positive spermatogonia, but it also stimulates the expression of genes that are specific of the early phases of meiosis, whereas the expression of typical spermatogonial markers is down-regulated. On the contrary, FGF9 acts as a meiotic inhibiting substance both in fetal gonocytes and in post-natal spermatogonia through the induction of the RNA-binding protein NANOS2. Vitamin A, which is metabolized to Retinoic Acid in Sertoli cells, controls both SSCs differentiation through KIT induction and NANOS2 inhibition, and meiotic entry of differentiating spermatogonia through STRA8 upregulation.

  10. Studies of the mechanisms involved in the laser surface hardening process of aluminum base alloys

    International Nuclear Information System (INIS)

    The Al-Si alloys are widely used in industry to replace the steel and gray cast iron in high-tech sectors. The commercial importance of these alloys is mainly due to its low weight, excellent wear (abrasion) and corrosion resistance, high resistance at elevated temperatures, low coefficient of thermal expansion and lesser fuel consumption that provide considerable reduction of emission of pollutants. In this work, Al-Si alloy used in the automotive industry to manufacture pistons of internal combustion engines, was undergone to surface treatments using LASER remelting (Nd:YAG, λ = 1.06 μm, pulsed mode). The LASER enables various energy concentrations with accurate transfer to the material without physical contact. The intense energy transfer causes the occurrence of structural changes in the superficial layer of the material. Experiments with single pulses and trails were conducted under various conditions of LASER processing in order to analyze microstructural changes resulting from treatments and their effects on the hardness. For the characterization of hardened layer was utilized the following techniques: optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray mapping, Vickers microhardness and maximum roughness tests. The high cooling rate caused a change in the alloy structure due to the refinement of the primary eutectic silicon particles, resulting in increase of the mechanical properties (hardness) of the Al-Si alloy. (author)

  11. A POTENTIAL MECHANISM OF BREAKTHROUGH BLEEDING ASSOCIATED WITH PROGESTIN: INVOLVEMENT IN ALTERATION OF ENDOMETRIAL ENDOTHELIAL CELLS

    Institute of Scientific and Technical Information of China (English)

    Gui-hua Sha; Shou-qing Lin

    2008-01-01

    Objective To explore the potential mechanism of breakthrough bleeding associated with progestin with in vitro methods.Methods The isolation and culture of human endometrial endothelial cells (HEECs) was performed with themethod established in our laboratory. The content and activity of urokinase-type plasminogen activator (uPA) and the content of plasminogen activator inhibitor-1 ( PAI-1 ) in cell supernatants after incubated with different concentrations of progesterone (0-5 μmol/L) and 17β-estradiol (0, 0.1, or 1 nmol/L) were measured by method of ELISA. Apoptosis rate of HEECs was measured by flow eytometry. Viable cell count was measured by MTr.Results The increased level of progesterone (0.5-5 μmol/L) combined with 17β-estmdiol elevated content and activity of uPA while the production of PAI-1 remained unchanged. The apoptosis of HEECs was inhibited along with the increment of total viable cell counts at higher ooneenwations of progesterone with 17β-estradiol.Conclusion The inhibition of apoptosis and increased content and activity of uPA may contribute to the occurrence of irregular bleeding associated with progestin use to some extent.

  12. Auxin-induced growth of Avena coleoptiles involves two mechanisms with different pH optima

    Science.gov (United States)

    Cleland, R. E.

    1992-01-01

    Although rapid auxin-induced growth of coleoptile sections can persist for at least 18 hours, acid-induced growth lasts for a much shorter period of time. Three theories have been proposed to explain this difference in persistence. To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process. Coleoptile sections from which the outer epidermis was removed to facilitate buffer entry were incubated, with or without 10 micromolar indoleacetic acid, in 20 millimolar buffers at pH 4.5 to 7.0 to maintain a fixed wall pH. During the first 1 to 2 hours after addition of auxin, elongation occurs by acid-induced extension (i.e. the pH optimum is <5 and the elongation varies inversely with the solution pH). Auxin causes no additional elongation because the buffers prevent further changes in wall pH. After 60 to 90 minutes, a second mechanism of auxin-induced growth, whose pH optimum is 5.5 to 6.0, predominates. It is proposed that rapid growth responses to changes in auxin concentration are mediated by auxin-induced changes in wall pH, whereas the prolonged, steady-state growth rate is controlled by a second, auxin-mediated process whose pH optimum is less acidic.

  13. Radiotherapy for glioblastoma: reorganization of genome maintenance mechanisms involved in the process of inhibiting cancer

    International Nuclear Information System (INIS)

    Glioblastoma is a very aggressive brain tumor, which occurs in Glial cells. The treatment consists in chemotherapy, surgery and radiotherapy. The radiotherapy is a treatment method that uses ionizing radiation to kill cancer cells. The cells have genome maintenance mechanisms (MMG) distributed in apoptosis, DNA damage response, and cell cycle pathways. These pathways are formed by sets of proteins and perform specific functions within the cell (example: induce cell death). The mutation of these proteins associated with the failure of the MMG can cause the activation of mutations and consequently induce the development of cancer. This work, objective has to identify pathways and proteins expressed in cancer treatment using free software of the statistical analysis, developed in Fortran and R platforms to show the effects caused by radiation in the proteins of cancerous tissues. The results, were fond to pathways of glioblastoma treated with radiotherapy, activation of apoptosis and response to DNA damage pathways, indicating that there is death of carcinogenic tissue caused by radiation and that some cells are triggering a process of DNA repair. (author)

  14. Endocannabinoids are involved in male vertebrate reproduction: regulatory mechanisms at central and gonadal level

    Directory of Open Access Journals (Sweden)

    Patrizia eBovolin

    2014-04-01

    Full Text Available Endocannabinoids are natural lipids regulating a large array of physiological functions and behaviors in vertebrates. The endocannabinoid system is highly conserved in evolution and comprises several specific receptors (type-1 and type-2 cannabinoid receptors, their endogenous ligands (e.g. anandamide and 2-arachidonoylglycerol, and a number of biosynthetic and degradative enzymes. In the last few years, endocannabinoids have been described as critical signals in the control of male and female reproduction at multiple levels: centrally, by targeting hypothalamic Gonadotropin-Releasing-Hormone secreting neurons and pituitary, and locally, with direct effects on the gonads. These functions are supported by the extensive localization of cannabinoid receptors and endocannabinoid metabolic enzymes at different levels of the hypothalamic-pituitary-gonadal axis in mammals, as well as bonyfish and amphibians. In vivo and in vitro studies indicate that endocannabinoids centrally regulate gonadal functions by modulating the Gonadotropin Releasing Hormone-gonadotropin-steroid network through direct and indirect mechanisms. Several proofs of local endocannabinoid regulation have been found in the testis and male genital tracts, since endocannabinoids control Sertoli and Leydig cells activity, germ cell progression, as well as the acquisition of sperm functions. A comparative approach usually is a key step in the study of physiological events leading to the building of a general model. Thus, in this review we summarize the action of endocannabinoids at different levels of the male reproductive axis, with special emphasis, where appropriate, on data from non-mammalian vertebrates.

  15. Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress.

    Science.gov (United States)

    Yan, Ming; Zhang, Yun; Qin, Haiyan; Liu, Kezhou; Guo, Miao; Ge, Yakun; Xu, Mingen; Sun, Yonghong; Zheng, Xiaoxiang

    2016-01-01

    Cadmium telluride quantum dots (CdTe QDs) have been proposed to induce oxidative stress, which plays a crucial role in CdTe QDs-mediated mitochondrial-dependent apoptosis in human umbilical vein endothelial cells (HUVECs). However, the direct interactions of CdTe QDs with HUVECs and their potential impairment of other organelles like endoplasmic reticulum (ER) in HUVECs are poorly understood. In this study, we reported that the negatively charged CdTe QDs (-21.63±0.91 mV), with good dispersity and fluorescence stability, were rapidly internalized via endocytosis by HUVECs, as the notable internalization could be inhibited up to 95.52% by energy depletion (NaN3/deoxyglucose or low temperature). The endocytosis inhibitors (methyl-β-cyclodextrin, genistein, sucrose, chlorpromazine, and colchicine) dramatically decreased the uptake of CdTe QDs by HUVECs, suggesting that both caveolae/raft- and clathrin-mediated endocytosis were involved in the endothelial uptake of CdTe QDs. Using immunocytochemistry, a striking overlap of the internalized CdTe QDs and ER marker was observed, which indicates that QDs may be transported to ER. The CdTe QDs also caused remarkable ER stress responses in HUVECs, confirmed by significant dilatation of ER cisternae, upregulation of ER stress markers GRP78/GRP94, and activation of protein kinase RNA-like ER kinase-eIF2α-activating transcription factor 4 pathway (including phosphorylation of both protein kinase RNA-like ER kinase and eIF2α and elevated level of activating transcription factor 4). CdTe QDs further promoted an increased C/EBP homologous protein expression, phosphorylation of c-JUN NH2-terminal kinase, and cleavage of ER-resident caspase-4, while the specific inhibitor (SP600125, Z-LEVD-fmk, or salubrinal) significantly attenuated QDs-triggered apoptosis, indicating that all three ER stress-mediated apoptosis pathways were activated and the direct participation of ER in the CdTe QDs-caused apoptotic cell death in HUVECs. Our

  16. Cellular and molecular basis of cerebellar development

    Science.gov (United States)

    Martinez, Salvador; Andreu, Abraham; Mecklenburg, Nora; Echevarria, Diego

    2013-01-01

    Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering, and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification, and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function. PMID:23805080

  17. Cellular and Molecular Basis of Cerebellar Development

    Directory of Open Access Journals (Sweden)

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  18. Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model

    Science.gov (United States)

    Li, Xin; Li, Xingang; Xiao, Yao; Jia, Bin

    2016-06-01

    Real traffic is heterogeneous with car and truck. Due to mechanical restrictions, the car and the truck have different limited deceleration capabilities, which are important factors in safety driving. This paper extends the single lane safety driving (SD) model with limited deceleration capability to two-lane SD model, in which car-truck heterogeneous traffic is considered. A car has a larger limited deceleration capability while a heavy truck has a smaller limited deceleration capability as a result of loaded goods. Then the safety driving conditions are different as the types of the following and the leading vehicles vary. In order to eliminate the well-known plug in heterogeneous two-lane traffic, it is assumed that heavy truck has active deceleration behavior when the heavy truck perceives the forming plug. The lane-changing decisions are also determined by the safety driving conditions. The fundamental diagram, spatiotemporal diagram, and lane-changing frequency were investigated to show the effect of mechanical restriction on heterogeneous traffic flow. It was shown that there would be still three traffic phases in heterogeneous traffic condition; the active deceleration of the heavy truck could well eliminate the plug; the lane-changing frequency was low in synchronized flow; the flow and velocity would decrease as the proportion of heavy truck grows or the limited deceleration capability of heavy truck drops; and the flow could be improved with lane control measures.

  19. Anorexic response to rapamycin does not appear to involve a central mechanism.

    Science.gov (United States)

    Toklu, Hale Z; Bruce, Erin B; Sakarya, Yasemin; Carter, Christy S; Morgan, Drake; Matheny, Michael K; Kirichenko, Nataliya; Scarpace, Philip J; Tümer, Nihal

    2016-09-01

    The authors have previously demonstrated that a low and intermittent peripheral dose of rapamycin (1 mg/kg three times/week) to rats inhibited mTORC1 signalling, but avoided the hyperlipidemia and diabetes-like syndrome associated with higher doses of rapamycin. The dosing regimen reduced food intake, body weight, adiposity, serum leptin and triglycerides. mTORC1 signalling was inhibited in both liver and hypothalamus, suggesting some of the actions, in particular the decrease in food intake, may be the results of a central mechanism. To test this hypothesis, rapamycin (30 μg/day for 4 weeks) was infused into 23-25-month-old F344xBN rats by intracerebroventricular (icv) mini pumps. Our results demonstrated that central infusion did not alter food intake or body weight, although there was a tendency for a decrease in body weight towards the end of the study. mTORC1 signalling, evidenced by decreased phosphorylation of S6 protein at end of 4 weeks, was not activated in liver, hypothalamus or hindbrain. Fat and lean mass, sum of white adipose tissues, brown adipose tissue, serum glucose, insulin and leptin levels remained unchanged. Thus, these data suggest that the anorexic and body weight responses evident with peripheral rapamycin are not the result of direct central action. The tendency for decreased body weight towards the end of study, suggests that there is either a slow transport of centrally administered rapamycin into the periphery, or that there is delayed action of rapamycin at sites in the brain. PMID:27232670

  20. Physiological and Molecular Mechanism of Nitric Oxide (NO Involved in Bermudagrass Response to Cold Stress.

    Directory of Open Access Journals (Sweden)

    Jibiao Fan

    Full Text Available Bermudagrass is widely utilized in parks, lawns, and golf courses. However, cold is a key factor limiting resource use in bermudagrass. Therefore, it is meaningful to study the mechanism of bermudagrass response to cold. Nitric oxide (NO is a crucial signal molecule with multiple biological functions. Thus, the objective of this study was to investigate whether NO play roles in bermudagrass response to cold. Sodium nitroprusside (SNP was used as NO donor, while 2-phenyl-4,4,5,5-tetramentylimidazoline-l-oxyl-3-xide (PTIO plus NG-nitro-L-arginine methyl ester (L-NAME were applied as NO inhibitor. Wild bermudagrass was subjected to 4 °C in a growth chamber under different treatments (Control, SNP, PTIO + L-NAME. The results indicated lower levels of malondialdehyde (MDA content and electrolyte leakage (EL, higher value for chlorophyll content, superoxide dismutase (SOD and peroxidase (POD activities after SNP treatment than that of PTIO plus L-NAME treatments under cold stress. Analysis of Chlorophyll (Chl a fluorescence transient displayed that the OJIP transient curve was higher after treatment with SNP than that of treated with PTIO plus L-NAME under cold stress. The values of photosynthetic fluorescence parameters were higher after treatment with SNP than that of treated with PTIO plus L-NAME under cold stress. Expression of cold-responsive genes was altered under cold stress after treated with SNP or PTIO plus L-NAME. In summary, our findings indicated that, as an important strategy to protect bermudagrass against cold stress, NO could maintain the stability of cell membrane, up-regulate the antioxidant enzymes activities, recover process of photosystem II (PSII and induce the expression of cold-responsive genes.

  1. Mechanisms involved in the association between periodontitis and complications in pregnancy.

    Directory of Open Access Journals (Sweden)

    Marcela eYang

    2015-01-01

    Full Text Available The association between periodontitis and gestation complications such as premature delivery, low weight at birth and preeclampsia has been suggested. Nevertheless, epidemiological data have shown contradictory data, mainly due to differences in clinical parameters of periodontitis assessment. Furthermore, differences in microbial composition and immune response between aggressive and chronic periodontitis are not addressed by these epidemiological studies. We aimed to review the current data on the association between gestation complications and periodontitis, and the mechanisms underlying this association. Shifts in the microbial composition of the subgingival biofilm may occur during pregnancy, leading to a potentially more hazardous microbial community. Pregnancy is characterized by physiological immune tolerance. However, the infection leads to a shift in maternal immune response to a pathogenic pro-inflammatory response, with production of inflammatory cytokines and toxic products. In women with periodontitis, the infected periodontal tissues may act as reservoirs of bacteria and their products which can disseminate to the fetus-placenta unit. In severe periodontitis patients, the infection agents and their products are able to activate inflammatory signaling pathways locally and in extra-oral sites, including the placenta-fetal unit, which may not only induce preterm labor, but also lead to preeclampsia and restrict intrauterine growth. Despite these evidences, the effectiveness of periodontal treatment in preventing gestational complications was still not established since it may be influenced by several factors such as severity of disease, composition of microbial community, treatment strategy, and period of treatment throughout pregnancy. This lack of scientific evidence does not exclude the need to control infection and inflammation in periodontitis patients during pregnancy, and treatment protocols should be validated.

  2. Enhanced spontaneous locomotor activity in bovine GH transgenic mice involves peripheral mechanisms.

    Science.gov (United States)

    Bohlooly-Y, M; Olsson, B; Gritli-Linde, A; Brusehed, O; Isaksson, O G; Ohlsson, C; Söderpalm, B; Törnell, J; Ola, B

    2001-10-01

    Clinical and experimental studies indicate a role for GH in mechanisms related to anhedonia/hedonia, psychic energy, and reward. Recently we showed that transgenic mice with general overexpression of bovine GH display increased spontaneous locomotor activity. In the present study, we investigated whether this behavioral change is owing to a direct action of GH in the central nervous system or to peripheral GH actions. A transgenic construct, containing the glial fibrillary acidic protein promoter directing specific expression of bovine GH to the central nervous system, was designed. The central nervous system-specific expression of bovine GH in the glial fibrillary acidic protein-bovine GH transgenic mice was confirmed, but no effect on spontaneous locomotor activity was observed. Serum bovine GH levels were increased in glial fibrillary acidic protein-bovine GH transgenic mice but clearly lower than in transgenic mice with general overexpression of bovine GH. In contrast to the transgenic mice with general overexpression of bovine GH, glial fibrillary acidic protein-bovine GH mice did not display any difference in serum IGF-I levels. The levels of free T(3) and the conversion of the free T(4) to free T(3) were only increased in transgenic mice with general overexpression of bovine GH, but serum corticosterone levels were similarly increased in both transgenic models. These results suggest that free T(3) and/or IGF-I, affecting dopamine and serotonin systems in the central nervous system, may mediate the enhanced locomotor activity observed in transgenic mice with general overexpression of bovine GH. PMID:11564723

  3. Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress

    Directory of Open Access Journals (Sweden)

    Yan M

    2016-02-01

    Full Text Available Ming Yan,1,* Yun Zhang,2,* Haiyan Qin,3 Kezhou Liu,1 Miao Guo,1 Yakun Ge,1 Mingen Xu,1 Yonghong Sun,4 Xiaoxiang Zheng4 1Department of Biomedical Engineering, College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 2Basic Medical Sciences, College of Medicine, Shaoxing University, Shaoxing, 3Department of Chemistry, Zhejiang University, 4Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Cadmium telluride quantum dots (CdTe QDs have been proposed to induce oxidative stress, which plays a crucial role in CdTe QDs-mediated mitochondrial-dependent apoptosis in human umbilical vein endothelial cells (HUVECs. However, the direct interactions of CdTe QDs with HUVECs and their potential impairment of other organelles like endoplasmic reticulum (ER in HUVECs are poorly understood. In this study, we reported that the negatively charged CdTe QDs (–21.63±0.91 mV, with good dispersity and fluorescence stability, were rapidly internalized via endocytosis by HUVECs, as the notable internalization could be inhibited up to 95.52% by energy depletion (NaN3/deoxyglucose or low temperature. The endocytosis inhibitors (methyl-β-cyclodextrin, genistein, sucrose, chlorpromazine, and colchicine dramatically decreased the uptake of CdTe QDs by HUVECs, suggesting that both caveolae/raft- and clathrin-mediated endocytosis were involved in the endothelial uptake of CdTe QDs. Using immunocytochemistry, a striking overlap of the internalized CdTe QDs and ER marker was observed, which indicates that QDs may be transported to ER. The CdTe QDs also caused remarkable ER stress responses in HUVECs, confirmed by significant dilatation of ER cisternae, upregulation of ER stress markers GRP78/GRP94, and

  4. Cellular basis of memory for addiction.

    Science.gov (United States)

    Nestler, Eric J

    2013-12-01

    DESPITE THE IMPORTANCE OF NUMEROUS PSYCHOSOCIAL FACTORS, AT ITS CORE, DRUG ADDICTION INVOLVES A BIOLOGICAL PROCESS: the ability of repeated exposure to a drug of abuse to induce changes in a vulnerable brain that drive the compulsive seeking and taking of drugs, and loss of control over drug use, that define a state of addiction. Here, we review the types of molecular and cellular adaptations that occur in specific brain regions to mediate addiction-associated behavioral abnormalities. These include alterations in gene expression achieved in part via epigenetic mechanisms, plasticity in the neurophysiological functioning of neurons and synapses, and associated plasticity in neuronal and synaptic morphology mediated in part by altered neurotrophic factor signaling. Each of these types of drug-induced modifications can be viewed as a form of "cellular or molecular memory." Moreover, it is striking that most addiction-related forms of plasticity are very similar to the types of plasticity that have been associated with more classic forms of "behavioral memory," perhaps reflecting the finite repertoire of adaptive mechanisms available to neurons when faced with environmental challenges. Finally, addiction-related molecular and cellular adaptations involve most of the same brain regions that mediate more classic forms of memory, consistent with the view that abnormal memories are important drivers of addiction syndromes. The goal of these studies which aim to explicate the molecular and cellular basis of drug addiction is to eventually develop biologically based diagnostic tests, as well as more effective treatments for addiction disorders. PMID:24459410

  5. The Vulnerability of Vessels Involved in the Role of Embolism and Hypoperfusion in the Mechanisms of Ischemic Cerebrovascular Diseases

    Directory of Open Access Journals (Sweden)

    Yong Peng Yu

    2016-01-01

    Full Text Available Accurate definition and better understanding of the mechanisms of stroke are crucial as this will guide the effective care and therapy. In this paper, we review the previous basic and clinical researches on the causes or mechanisms of ischemic cerebrovascular diseases (ICVD and interpret the correlation between embolism and hypoperfusion based on vascular stenosis and arterial intimal lesions. It was suggested that if there is no embolus (dynamic or in situ emboli, there might be no cerebral infarction. Three kinds of different clinical outcomes of TIA were theoretically interpreted based on its mechanisms. We suppose that there is a correlation between embolism and hypoperfusion, and which mechanisms (hypoperfusion or hypoperfusion induced microemboli playing the dominant role in each type of ICVD depends on the unique background of arterial intimal lesions (the vulnerability of vessels. That is to say, the vulnerability of vessels is involved in the role of embolism and hypoperfusion in the mechanisms of ischemic cerebrovascular diseases. This inference might enrich and provide better understandings for the underlying etiologies of ischemic cerebrovascular events.

  6. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1984-01-01

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens.

  7. The Chick as a Model for the Study of the Cellular Mechanisms and Potential Therapies for Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Radmila Mileusnic

    2010-01-01

    Full Text Available While animal experiments have contributed much to our understanding of the mechanisms of Alzheimer's disease (AD, their value in predicting the effectiveness of treatment strategies in clinical trials has remained controversial. The disparity between the results obtained in animal models and clinical trials may in part be explained by limitations of the models and species-specific differences. We propose that one trial passive avoidance in the day-old chick is a useful system to study AD because of the close sequence homologies of chick and human amyloid precursor protein (APP. In the chick, APP is essential for memory consolidation, and disrupting its synthesis or structure results in amnesia. RER, a tripeptide sequence corresponding to part of the growth domain of APP, can restore memory loss and act as a cognitive enhancer. We suggest that RER and its homologues may form the basis for potential pharmacological protection against memory loss in AD.

  8. Chromic-P32 phosphate treatment of implanted pancreatic carcinoma: Mechanism involved

    Institute of Scientific and Technical Information of China (English)

    Lu Liu; Guo-Sheng Feng; Hong Gao; Guan-Sheng Tong; Yu Wang; Wen Gao; Ying Huang; Cheng Li

    2005-01-01

    AIM: To study the effects of chromic-P32 phosphate (32p colloids) interstitial administration in Pc-3 implanted pancreatic carcinoma, and investigate its anticancer mechanism.METHODS: Ninety-eight tumor bearing nude mice werekilled at different time points after the injection of 32Pcolloids to the tumor core with observed radioactivity. The light microscopy, transmission electron microscopy (TEM) and immuno-histochemistry and flow cytometry were used to study the rates of tumor cell necrosis, proliferating cell nuclear antigen index, the micro vessel density (MVD). The changes of the biological response to the lymphatic transported 32p colloids in the inguinal lymph node (ILN) were dynamically observed, and the percentage of tumor cell apoptosis, and Apo2.7, caspase-3, Bcl-2, Baxrelated gene expression were observed too.RESULTS: The half-life of effective medication is 13 dafter injection of 32P colloids to the tumor stroma, in 1-6groups, the tumor cell necrosis rates were 20%, 45%,65%, 70%, 95% and 4%, respectively (F= 4.14-105.36, P<0.01). MVD were 38.5±4.0, 28.0±2.9, 17.0±2.9, 8.8±1.5,5.7±2.3 and 65.0±5.2 (t= 11.9-26.1, P<0.01), respectively.Under TEM fairly differentiated Pc-3 cells were found. Thirty days after medication, tumors were shrunk and dried with scabs detached, and those in control group increased in size prominently with plenty of hypodermic blood vessels. In all animals the ILN were enlarged but in medicated animals they appeared later and smaller than those in control group. The extent of irradiative injury in ILN was positively correlated to the dosage of medication. Typical tumor cell apoptosis could be found under TEM inanimals with intra-tumoral injection of low dosed 32P colloids. The peak of apoptosis occurred in 2.96 MBq group and 24 h after irradiation. In the course of irradiationinduced apoptosis, the value of Bcl-2/Bax was down regulated; Apo2.7 and caspase-3 protein expression were prominently increased dose dependently

  9. 涉诉信访终结机制研究%Research on Mechanism of Settling Petition Involving Lawsuit

    Institute of Scientific and Technical Information of China (English)

    宋春龙; 徐琦

    2012-01-01

    Mechanism of settling petition involving lawsuit is an important part to the system of solving of China. Due to problems in the practice, it's necessary to establish a complete system of As the first step on the ladder to the system of petition involving lawsuit, the mechanism of settling dispute re- this field. petition in- volving lawsuit needs to be systematized based on theories. Courts of each level have come up with different petition settling mechanisms, which can be served as practical support to the integration and improvement of this system.%涉诉信访制度是我国多元化解纷机制的重要组成部分,由于在实践中所存在的问题,有必要对其进行完整的制度构建。涉诉信访的终结机制作为打开涉诉信访制度的突破口,亟须系统化、理论化的构建。各级法院在实践中也总结出了不同的终结机制,为整个制度的整合与完整提供了实践支持。

  10. [How is the sense of smell connected? Cellular and molecular mechanisms guiding the development of the synaptic connections from the nose to the cortex (II)].

    Science.gov (United States)

    Garcia-Gonzalez, Diego; de Castro, Fernando

    2011-05-01

    As discussed in the first part of this review, the development of the olfactory system offers a series of fascinating peculiarities that make it one of the models that has been most widely studied in order to reach an understanding of the mechanisms involved in the development of the nervous system. In the first part we reviewed the different mechanisms based on contact (laminins, cell adhesion molecules, ephrins, etc.) and on secretion (semaphorins, slits, growth factors, etc.) that are involved in the formation of the synaptic connections among the olfactory epithelium, the olfactory bulb and the olfactory cortex. In this second part we will review the molecular mechanisms responsible for the intracortical connections in the main olfactory system, as well as the limited information available concerning the accessory olfactory system. We shall also review the mechanisms involved in the migration of the interneuron precursors from the sub-ventricular area of the forebrain to the olfactory bulb, which is another crucial event in the development of this system.

  11. Mechanism of toxicity of the branched-chain fatty acid phytanic acid, a marker of Refsum disease, in astrocytes involves mitochondrial impairment.

    Science.gov (United States)

    Reiser, Georg; Schönfeld, Peter; Kahlert, Stefan

    2006-01-01

    Phytanic acid is a saturated branched-chain fatty acid, which is formed by bacterial degradation of chlorophyll in the intestinal tract of ruminants. The methyl group in beta-position prevents degradation of phytanic acid by the beta-oxidation pathway. Therefore, degradation of phytanic acid is initiated by alpha-oxidation in peroxisomes. The inherited peroxisomal disorder Refsum disease is characterised by accumulation of phytanic acid. Unusually high concentrations of phytanic acid can be found in the plasma of Refsum disease patients, who suffer from neurodegeneration and muscle dystrophy. Phytanic acid has been suggested to be causally involved in the clinical symptoms. To elucidate the pathogenic mechanism, we investigated the influence of phytanic acid in rat hippocampal astrocytes by monitoring the cytosolic Ca(2+) concentration, the mitochondrial membrane potential (Deltapsi(m)), the generation of reactive oxygen species as well as the cellular ATP level. In response to phytanic acid (100 microM) cytosolic Ca(2+) was quickly increased. The phytanic acid-evoked Ca(2+) response was transient and involved activation of intracellular Ca(2+) stores. In isolated rat brain mitochondria, phytanic acid dissipated Deltapsi(m) in a reversible and dose-dependent manner. Moreover, phytanic acid released cytochrome c from mitochondria. Depending on the mitochondrial activity state, phytanic acid either stimulated or inhibited the electron flux within the respiratory chain. In addition, phytanic acid induced substantial generation of reactive oxygen species in isolated mitochondria as well as in intact cells. Phytanic acid caused cell death of astrocytes within a few hours of exposure. In conclusion, we suggest that phytanic acid initiates astrocyte cell death by activating the mitochondrial route of apoptosis.

  12. Cellular mechanisms for the treatment of chronic heart failure: the nitric oxide- and adenosine-dependent pathways.

    Science.gov (United States)

    Minamino, Tetsuo; Kitakaze, Masafumi

    2002-05-01

    Accumulated evidence suggests that several drugs proven to improve survival in patients with chronic heart failure (CHF) enhance endogenous nitric oxide (NO)- and/or adenosine-depend