WorldWideScience

Sample records for cellular mechanisms involved

  1. Statistical mechanics of cellular automata

    Wolfram, S.

    1983-01-01

    Cellular automata are used as simple mathematical models to investigate self-organization in statistical mechanics. A detailed analysis is given of ''elementary'' cellular automata consisting of a sequence of sites with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to p definite rules involving the values of its nearest neighbors. With simple initial configurations, the cellular automata either tend to homogeneous states, or generate self-similar patterns with fractal dimensions approx. =1.59 or approx. =1.69. With ''random'' initial configurations, the irreversible character of the cellular automaton evolution leads to several self-organization phenomena. Statistical properties of the structures generated are found to lie in two universality classes, independent of the details of the initial state or the cellular automaton rules. More complicated cellular automata are briefly considered, and connections with dynamical systems theory and the formal theory of computation are discussed

  2. Cellular mechanics and motility

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in

  3. The corticotropin-releasing hormone network and the hypothalamic-pituitary-adrenal axis: molecular and cellular mechanisms involved.

    Bonfiglio, Juan José; Inda, Carolina; Refojo, Damián; Holsboer, Florian; Arzt, Eduardo; Silberstein, Susana

    2011-01-01

    Corticotropin-releasing hormone (CRH) plays a key role in adjusting the basal and stress-activated hypothalamic-pituitary-adrenal axis (HPA). CRH is also widely distributed in extrahypothalamic circuits, where it acts as a neuroregulator to integrate the complex neuroendocrine, autonomic, and behavioral adaptive response to stress. Hyperactive and/or dysregulated CRH circuits are involved in neuroendocrinological disturbances and stress-related mood disorders such as anxiety and depression. This review describes the main physiological features of the CRH network and summarizes recent relevant information concerning the molecular mechanism of CRH action obtained from signal transduction studies using cells and wild-type and transgenic mice lines. Special focus is placed on the MAPK signaling pathways triggered by CRH through the CRH receptor 1 that plays an essential role in CRH action in pituitary corticotrophs and in specific brain structures. Recent findings underpin the concept of specific CRH-signaling pathways restricted to specific anatomical areas. Understanding CRH action at molecular levels will not only provide insight into the precise CRH mechanism of action, but will also be instrumental in identifying novel targets for pharmacological intervention in neuroendocrine tissues and specific brain areas involved in CRH-related disorders. Copyright © 2011 S. Karger AG, Basel.

  4. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes.

    Mohammad F Saeed

    2010-09-01

    Full Text Available Zaire ebolavirus (ZEBOV, a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new

  5. Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill cells of the mussel Mytilus galloprovincialis

    Katsumiti, A. [CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country (Spain); Gilliland, D. [EU Commission–Joint Research Centre, Institute of Health and Consumer Protection, NSB Unit, Ispra (Italy); Arostegui, I. [Department of Applied Mathematics, Statistics and Operations Research, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa (Spain); Cajaraville, M.P., E-mail: mirenp.cajaraville@ehu.es [CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country (Spain)

    2014-08-15

    Highlights: • CdS QDs were cytotoxic for mussel hemocytes and gill cells in vitro. • Ionic Cd was the most toxic form, followed by CdS QDs and bulk CdS. • CdS QDs altered oxidative balance and caused DNA damage in mussel cells. • CdS QDs caused a particle-specific immunostimulation on phagocytosis of hemocytes. • Conceptual models for cellular handling and toxicity of CdS QDs are proposed. - Abstract: CdS quantum dots (QDs) show a great promise for treatment and diagnosis of cancer and for targeted drug delivery, due to their size-tunable fluorescence and ease of functionalization for tissue targeting. In spite of their advantages it is important to determine if CdS QDs can exert toxicity on biological systems. In the present work, cytotoxicity of CdS QDs (5 nm) at a wide range of concentrations (0.001–100 mg Cd/L) was screened using neutral red (NR) and thiazolyl blue tetrazolium bromide (MTT) assays in isolated hemocytes and gill cells of mussels (Mytilus galloprovincialis). The mechanisms of action of CdS QDs were assessed at sublethal concentrations (0.31–5 mg Cd/L) in the same cell types through a series of functional in vitro assays: production of reactive oxygen species (ROS), catalase (CAT) activity, DNA damage, lysosomal acid phosphatase (AcP) activity, multixenobiotic resistance (MXR) transport activity, Na-K-ATPase activity (only in gill cells) and phagocytic activity and damage to actin cytoskeleton (only in hemocytes). Exposures to CdS QDs lasted for 24 h and were performed in parallel with exposures to bulk CdS and ionic Cd. Ionic Cd was the most toxic form to both cell types, followed by CdS QDs and bulk CdS. ROS production, DNA damage, AcP activity and MXR transport were significantly increased in both cell types exposed to the 3 forms of Cd. CAT activity increased in hemocytes exposed to the three forms of Cd while in gill cells only in those exposed to ionic Cd. No effects were found on hemocytes cytoskeleton integrity. Effects on

  6. Cellular mechanisms that control mistranslation

    Reynolds, Noah M; Lazazzera, Beth A; Ibba, Michael

    2010-01-01

    Mistranslation broadly encompasses the introduction of errors during any step of protein synthesis, leading to the incorporation of an amino acid that is different from the one encoded by the gene. Recent research has vastly enhanced our understanding of the mechanisms that control mistranslation...... at the molecular level and has led to the discovery that the rates of mistranslation in vivo are not fixed but instead are variable. In this Review we describe the different steps in translation quality control and their variations under different growth conditions and between species though a comparison...

  7. Molecular and cellular mechanisms of aortic stenosis.

    Yetkin, Ertan; Waltenberger, Johannes

    2009-06-12

    Calcific aortic stenosis is the most common cause of aortic valve replacement in developed countries, and this condition increases in prevalence with advancing age. The fibrotic thickening and calcification are common eventual endpoint in both non-rheumatic calcific and rheumatic aortic stenoses. New observations in human aortic valves support the hypothesis that degenerative valvular aortic stenosis is the result of active bone formation in the aortic valve, which may be mediated through a process of osteoblast-like differentiation in these tissues. Additionally histopathologic evidence suggests that early lesions in aortic valves are not just a disease process secondary to aging, but an active cellular process that follows the classical "response to injury hypothesis" similar to the situation in atherosclerosis. Although there are similarities with the risk factor and as well as with the process of atherogenesis, not all the patients with coronary artery disease or atherosclerosis have calcific aortic stenosis. This review mainly focuses on the potential vascular and molecular mechanisms involved in the pathogenesis of aortic valve stenosis. Namely extracellular matrix remodeling, angiogenesis, inflammation, and eventually osteoblast-like differentiation resulting in bone formation have been shown to play a role in the pathogenesis of calcific aortic stenosis. Several mediators related to underlying mechanisms, including growth factors especially transforming growth factor-beta1 and vascular endothelial growth factors, angiogenesis, cathepsin enzymes, adhesion molecules, bone regulatory proteins and matrix metalloproteinases have been demonstrated, however the target to be attacked is not defined yet.

  8. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties.

    Katira, Parag; Bonnecaze, Roger T; Zaman, Muhammad H

    2013-01-01

    Malignant transformation, though primarily driven by genetic mutations in cells, is also accompanied by specific changes in cellular and extra-cellular mechanical properties such as stiffness and adhesivity. As the transformed cells grow into tumors, they interact with their surroundings via physical contacts and the application of forces. These forces can lead to changes in the mechanical regulation of cell fate based on the mechanical properties of the cells and their surrounding environment. A comprehensive understanding of cancer progression requires the study of how specific changes in mechanical properties influences collective cell behavior during tumor growth and metastasis. Here we review some key results from computational models describing the effect of changes in cellular and extra-cellular mechanical properties and identify mechanistic pathways for cancer progression that can be targeted for the prediction, treatment, and prevention of cancer.

  9. Cellular Mechanisms of Somatic Stem Cell Aging

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  10. Cellular mechanisms of nociception in the frog

    Kuffler, D. P.; Lyfenko, Alla; Vyklický st., Ladislav; Vlachová, Viktorie

    2002-01-01

    Roč. 88, č. 4 (2002), s. 1843-1850 ISSN 0022-3077 R&D Projects: GA ČR GA305/00/1639; GA MŠk LN00B122 Grant - others:NATO(XX) Grant 977062 Institutional research plan: CEZ:AV0Z5011922 Keywords : cellular mechanisms of nociception * frog Subject RIV: FH - Neurology Impact factor: 3.743, year: 2002

  11. Molecular and cellular mechanisms of cadmium carcinogenesis

    Waisberg, Michael; Joseph, Pius; Hale, Beverley; Beyersmann, Detmar

    2003-01-01

    Cadmium is a heavy metal, which is widely used in industry, affecting human health through occupational and environmental exposure. In mammals, it exerts multiple toxic effects and has been classified as a human carcinogen by the International Agency for Research on Cancer. Cadmium affects cell proliferation, differentiation, apoptosis and other cellular activities. Cd 2+ does not catalyze Fenton-type reactions because it does not accept or donate electrons under physiological conditions, and it is only weakly genotoxic. Hence, indirect mechanisms are implicated in the carcinogenicity of cadmium. In this review multiple mechanisms are discussed, such as modulation of gene expression and signal transduction, interference with enzymes of the cellular antioxidant system and generation of reactive oxygen species (ROS), inhibition of DNA repair and DNA methylation, role in apoptosis and disruption of E-cadherin-mediated cell-cell adhesion. Cadmium affects both gene transcription and translation. The major mechanisms of gene induction by cadmium known so far are modulation of cellular signal transduction pathways by enhancement of protein phosphorylation and activation of transcription and translation factors. Cadmium interferes with antioxidant defense mechanisms and stimulates the production of reactive oxygen species, which may act as signaling molecules in the induction of gene expression and apoptosis. The inhibition of DNA repair processes by cadmium represents a mechanism by which cadmium enhances the genotoxicity of other agents and may contribute to the tumor initiation by this metal. The disruption of E-cadherin-mediated cell-cell adhesion by cadmium probably further stimulates the development of tumors. It becomes clear that there exist multiple mechanisms which contribute to the carcinogenicity of cadmium, although the relative weights of these contributions are difficult to estimate

  12. Cellular automata and statistical mechanical models

    Rujan, P.

    1987-01-01

    The authors elaborate on the analogy between the transfer matrix of usual lattice models and the master equation describing the time development of cellular automata. Transient and stationary properties of probabilistic automata are linked to surface and bulk properties, respectively, of restricted statistical mechanical systems. It is demonstrated that methods of statistical physics can be successfully used to describe the dynamic and the stationary behavior of such automata. Some exact results are derived, including duality transformations, exact mappings, disorder, and linear solutions. Many examples are worked out in detail to demonstrate how to use statistical physics in order to construct cellular automata with desired properties. This approach is considered to be a first step toward the design of fully parallel, probabilistic systems whose computational abilities rely on the cooperative behavior of their components

  13. Cellular mechanisms within the juxtaglomerular apparatus

    Briggs, J P; Skøtt, O; Schnermann, J

    1990-01-01

    Cl concentration at the macular densa. This change also results in inhibition of secretion of renin. The macula densa has a unique location near the terminal end of the thick ascending limb, where NaCl concentration is highly flow dependent. The cellular mechanisms by which changes in tubular fluid NaCl produce...... vasoconstriction and inhibition of renin secretion are unknown, but the anatomy of the juxtaglomerular apparatus strongly suggests that such responses may be mediated by the extraglomerular mesangial cells located in the polar cushion underlying the macula densa. Recent evidence suggests that interstitial chloride...

  14. A Channel Allocation Mechanism for Cellular Networks

    Chi-Hua Chen

    2017-04-01

    Full Text Available In cellular networks, call blocking causes lower customer satisfaction and economic loss. Therefore, the channel allocation for call block avoidance is an important issue. This study proposes a mechanism that considers the real-time traffic information (e.g., traffic flow and vehicle speed and the user behavior (e.g., call inter-arrival time and call holding time to analyze the adaptable number of communication calls in the specific cell for channel allocation. In experiments about call block probabilities (CBP, this study simulated two cases that are the situations of the whole day and traffic accident. The simulation results show that all CBPs in the scenario of whole day are less than 21.5% by using the proposed mechanism, which is better than using the static channel allocation (SCA mechanism. Moreover, all CBPs in the scenario of traffic accidents are less than 16.5% by using the proposed mechanism, which is better than using the SCA mechanism. Therefore, the proposed mechanism can decrease the number of CBPs effectively.

  15. Mechanisms and cellular functions of intramembrane proteases.

    Urban, Siniša

    2013-12-01

    The turn of the millennium coincided with the branding of a fundamentally different class of enzyme - proteases that reside immersed inside the membrane. This new field was the convergence of completely separate lines of research focused on cholesterol homeostasis, Alzheimer's disease, and developmental genetics. None intended their ultimate path, but soon became a richly-integrated fabric for an entirely new field: regulated intramembrane proteolysis. Our aim in this Special Issue is to focus on the ancient and nearly ubiquitous enzymes that catalyze this unexpected yet important reaction. The pace of progress has been dramatic, resulting in a rapidly-expanding universe of known cellular functions, and a paradigm shift in the biochemical understanding of these once heretical enzymes. More recently, the first therapeutic successes have been attained by targeting an intramembrane protease. We consider these advances and identify oncoming opportunities in four parts: growing spectra of cellular roles, insights into biochemical mechanisms, therapeutic strategies, and newly-emerging topics. Recent studies also expose challenges for the future, including non-linear relationships between substrate identification and physiological functions, and the need for potent and specific, not broad-class, inhibitors. © 2013.

  16. Mechanisms of cellular invasion by intracellular parasites.

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  17. Probabilistic cellular automata: Some statistical mechanical considerations

    Lebowitz, J.L.; Maes, C.; Speer, E.R.

    1990-01-01

    Spin systems evolving in continuous or discrete time under the action of stochastic dynamics are used to model phenomena as diverse as the structure of alloys and the functioning of neural networks. While in some cases the dynamics are secondary, designed to produce a specific stationary measure whose properties one is interested in studying, there are other cases in which the only available information is the dynamical rule. Prime examples of the former are computer simulations, via Glauber dynamics, of equilibrium Gibbs measures with a specified interaction potential. Examples of the latter include various types of majority rule dynamics used as models for pattern recognition and for error-tolerant computations. The present note discusses ways in which techniques found useful in equilibrium statistical mechanics can be applied to a particular class of models of the latter types. These are cellular automata with noise: systems in which the spins are updated stochastically at integer times, simultaneously at all sites of some regular lattice. These models were first investigated in detail in the Soviet literature of the late sixties and early seventies. They are now generally referred to as Stochastic or Probabilistic Cellular Automata (PCA), and may be considered to include deterministic automata (CA) as special limits. 16 refs., 3 figs

  18. Cellular and molecular mechanisms coordinating pancreas development.

    Bastidas-Ponce, Aimée; Scheibner, Katharina; Lickert, Heiko; Bakhti, Mostafa

    2017-08-15

    The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer. © 2017. Published by The Company of Biologists Ltd.

  19. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications.

    Silvestre, Jean-Sébastien; Smadja, David M; Lévy, Bernard I

    2013-10-01

    After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.

  20. Dynamics and mechanisms of quantum dot nanoparticle cellular uptake

    Telford William G

    2010-06-01

    Full Text Available Abstract Background The rapid growth of the nanotechnology industry and the wide application of various nanomaterials have raised concerns over their impact on the environment and human health. Yet little is known about the mechanism of cellular uptake and cytotoxicity of nanoparticles. An array of nanomaterials has recently been introduced into cancer research promising for remarkable improvements in diagnosis and treatment of the disease. Among them, quantum dots (QDs distinguish themselves in offering many intrinsic photophysical properties that are desirable for targeted imaging and drug delivery. Results We explored the kinetics and mechanism of cellular uptake of QDs with different surface coatings in two human mammary cells. Using fluorescence microscopy and laser scanning cytometry (LSC, we found that both MCF-7 and MCF-10A cells internalized large amount of QD655-COOH, but the percentage of endocytosing cells is slightly higher in MCF-7 cell line than in MCF-10A cell line. Live cell fluorescent imaging showed that QD cellular uptake increases with time over 40 h of incubation. Staining cells with dyes specific to various intracellular organelles indicated that QDs were localized in lysosomes. Transmission electron microscopy (TEM images suggested a potential pathway for QD cellular uptake mechanism involving three major stages: endocytosis, sequestration in early endosomes, and translocation to later endosomes or lysosomes. No cytotoxicity was observed in cells incubated with 0.8 nM of QDs for a period of 72 h. Conclusions The findings presented here provide information on the mechanism of QD endocytosis that could be exploited to reduce non-specific targeting, thereby improving specific targeting of QDs in cancer diagnosis and treatment applications. These findings are also important in understanding the cytotoxicity of nanomaterials and in emphasizing the importance of strict environmental control of nanoparticles.

  1. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging.

    Medkour, Younes; Svistkova, Veronika; Titorenko, Vladimir I

    2016-01-01

    Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging. Copyright © 2016. Published by Elsevier Inc.

  2. Cellular Transport Mechanisms of Cytotoxic Metallodrugs: An Overview beyond Cisplatin

    Sarah Spreckelmeyer

    2014-09-01

    Full Text Available The field of medicinal inorganic chemistry has grown consistently during the past 50 years; however, metal-containing coordination compounds represent only a minor proportion of drugs currently on the market, indicating that research in this area has not yet been thoroughly realized. Although platinum-based drugs as cancer chemotherapeutic agents have been widely studied, exact knowledge of the mechanisms governing their accumulation in cells is still lacking. However, evidence suggests active uptake and efflux mechanisms are involved; this may be involved also in other experimental metal coordination and organometallic compounds with promising antitumor activities in vitro and in vivo, such as ruthenium and gold compounds. Such knowledge would be necessary to elucidate the balance between activity and toxicity profiles of metal compounds. In this review, we present an overview of the information available on the cellular accumulation of Pt compounds from in vitro, in vivo and clinical studies, as well as a summary of reports on the possible accumulation mechanisms for different families of experimental anticancer metal complexes (e.g., Ru Au and Ir. Finally, we discuss the need for rationalization of the investigational approaches available to study metallodrug cellular transport.

  3. Stably Expressed Genes Involved in Basic Cellular Functions.

    Kejian Wang

    Full Text Available Stably Expressed Genes (SEGs whose expression varies within a narrow range may be involved in core cellular processes necessary for basic functions. To identify such genes, we re-analyzed existing RNA-Seq gene expression profiles across 11 organs at 4 developmental stages (from immature to old age in both sexes of F344 rats (n = 4/group; 320 samples. Expression changes (calculated as the maximum expression / minimum expression for each gene of >19000 genes across organs, ages, and sexes ranged from 2.35 to >109-fold, with a median of 165-fold. The expression of 278 SEGs was found to vary ≤4-fold and these genes were significantly involved in protein catabolism (proteasome and ubiquitination, RNA transport, protein processing, and the spliceosome. Such stability of expression was further validated in human samples where the expression variability of the homologous human SEGs was significantly lower than that of other genes in the human genome. It was also found that the homologous human SEGs were generally less subject to non-synonymous mutation than other genes, as would be expected of stably expressed genes. We also found that knockout of SEG homologs in mouse models was more likely to cause complete preweaning lethality than non-SEG homologs, corroborating the fundamental roles played by SEGs in biological development. Such stably expressed genes and pathways across life-stages suggest that tight control of these processes is important in basic cellular functions and that perturbation by endogenous (e.g., genetics or exogenous agents (e.g., drugs, environmental factors may cause serious adverse effects.

  4. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches

    Denning, Denise; Roos, Wouter H

    2016-01-01

    The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a

  5. Involvement of oxygen reactive species in the cellular response of carcinoma cells to irradiation

    Tulard, A.

    2004-06-01

    After a presentation of oxygen reactive species and their sources, the author describes the enzymatic and non-enzymatic anti-oxidative defenses, the physiological roles of oxygen reactive species, the oxidative stress, the water radiolysis, the anti-oxidative enzymes and the effects of ionizing radiations. The author then reports an investigation on the contribution of oxygen reactive species in the cellular response to irradiation, and an investigation on the influence of the breathing chain on the persistence of a radio-induced oxidative stress. He also reports a research on molecular mechanisms involved in the cellular radio-sensitivity

  6. Cellular Mechanisms of Action of Drug Abuse on Olfactory Neurons

    Thomas Heinbockel

    2015-12-01

    Full Text Available Cannabinoids (Δ9-tetrahydrocannabinol are the active ingredient of marijuana (cannabis which is the most commonly abused illicit drug in the USA. In addition to being known and used as recreational drugs, cannabinoids are produced endogenously by neurons in the brain (endocannabinoids and serve as important signaling molecules in the nervous system and the rest of the body. Cannabinoids have been implicated in bodily processes both in health and disease. Recent pharmacological and physiological experiments have described novel aspects of classic brain signaling mechanisms or revealed unknown mechanisms of cellular communication involving the endocannabinoid system. While several forms of signaling have been described for endocannabinoids, the most distinguishing feature of endocannabinoids is their ability to act as retrograde messengers in neural circuits. Neurons in the main olfactory bulb express high levels of cannabinoid receptors. Here, we describe the cellular mechanisms and function of this novel brain signaling system in regulating neural activity at synapses in olfactory circuits. Results from basic research have the potential to provide the groundwork for translating the neurobiology of drug abuse to the realm of the pharmacotherapeutic treatment of addiction, specifically marijuana substance use disorder.

  7. Cellular Mechanisms of Ciliary Length Control

    Jacob Keeling

    2016-01-01

    Full Text Available Cilia and flagella are evolutionarily conserved, membrane-bound, microtubule-based organelles on the surface of most eukaryotic cells. They play important roles in coordinating a variety of signaling pathways during growth, development, cell mobility, and tissue homeostasis. Defects in ciliary structure or function are associated with multiple human disorders called ciliopathies. These diseases affect diverse tissues, including, but not limited to the eyes, kidneys, brain, and lungs. Many processes must be coordinated simultaneously in order to initiate ciliogenesis. These include cell cycle, vesicular trafficking, and axonemal extension. Centrioles play a central role in both cell cycle progression and ciliogenesis, making the transition between basal bodies and mitotic spindle organizers integral to both processes. The maturation of centrioles involves a functional shift from cell division toward cilium nucleation which takes place concurrently with its migration and fusion to the plasma membrane. Several proteinaceous structures of the distal appendages in mother centrioles are required for this docking process. Ciliary assembly and maintenance requires a precise balance between two indispensable processes; so called assembly and disassembly. The interplay between them determines the length of the resulting cilia. These processes require a highly conserved transport system to provide the necessary substances at the tips of the cilia and to recycle ciliary turnover products to the base using a based microtubule intraflagellar transport (IFT system. In this review; we discuss the stages of ciliogenesis as well as mechanisms controlling the lengths of assembled cilia.

  8. Involvement of Sib Proteins in the Regulation of Cellular Adhesion in Dictyostelium discoideum▿ †

    Cornillon, Sophie; Froquet, Romain; Cosson, Pierre

    2008-01-01

    Molecular mechanisms ensuring cellular adhesion have been studied in detail in Dictyostelium amoebae, but little is known about the regulation of cellular adhesion in these cells. Here, we show that cellular adhesion is regulated in Dictyostelium, notably by the concentration of a cellular secreted factor accumulating in the medium. This constitutes a quorum-sensing mechanism allowing coordinated regulation of cellular adhesion in a Dictyostelium population. In order to understand the mechani...

  9. Pathogenesis of thyroid autoimmune disease: the role of cellular mechanisms.

    Ramos-Leví, Ana Maria; Marazuela, Mónica

    2016-10-01

    Hashimoto's thyroiditis (HT) and Graves' disease (GD) are two very common organ-specific autoimmune diseases which are characterized by circulating antibodies and lymphocyte infiltration. Although humoral and cellular mechanisms have been classically considered separately in the pathogenesis of autoimmune thyroid diseases (AITD), recent research suggests a close reciprocal relationship between these two immune pathways. Several B- and T-cell activation pathways through antigen-presenting cells (APCs) and cytokine production lead to specific differentiation of T helper (Th) and T regulatory (Treg) cells. This review will focus on the cellular mechanisms involved in the pathogenesis of AITD. Specifically, it will provide reasons for discarding the traditional simplistic dichotomous view of the T helper type 1 and 2 pathways (Th1/Th2) and will focus on the role of the recently characterized T cells, Treg and Th17 lymphocytes, as well as B lymphocytes and APCs, especially dendritic cells (DCs). Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Mechanisms and circumvention of cellular resistance to cisplatin.

    Hospers, Geesiena Alberdina Petronella

    1989-01-01

    Cisplatin (CDDP) is an active cytostatic agent. A limitation to its effectiveness initially or appearing during cystatic treatment is the occurrence of resistance. This thesis describes mechanisms wich are responsible for acquired cellular CDDP resistance. To investigate cellular CDDP resistance, a

  11. Symposium on molecular and cellular mechanisms of mutagenesis

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents

  12. Symposium on molecular and cellular mechanisms of mutagenesis

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents. (ERB)

  13. Cellular mechanisms in drug - radiation interaction

    Trott, K.R.

    1979-01-01

    Some cytotoxic drugs, especially those belonging to the group of antibiotics and antimetabolites, sensitize the cells having survived drug treatment to the subsequent irradiation by either increasing the slope of the radiation dose response curves or by decreasing extrapolation number. Bleomycin was found to interact with radiation in L-cells and FM3A cells, but not in HeLa-cells. The data with EMT-6 cells suggest that the interaction depends on drug dose: no interaction occurred after the exposure to bleomycin which killed only 20 - 40% of the cells; yet the exposure to bleomycin which killed 90% of the cells in addition sensitized the surviving cells by the DMF of 1.3. The sensitization found 24 hr after the exposure of HeLa cells to methotrexate was due to cell synchronization. Other cytostatic drugs were found to synchronize proliferating cells even better. Therefore, the fluctuation of radiosensitivity has been commonly observed after the termination of exposure to these drugs. Preirradiation may lead to the change in drug dose response curves. The recruitment of resting cells into cycle occurs hours or days later, in some irradiated normal and malignant tissues. Since many cytostatic drugs are far more active in proliferating cells than in resting cells, the recruitment after irradiation may lead to the sudden increase in drug sensitivity, days after the irradiation. No single, simple theory seems to exist to classify and predict the cellular response to combined modality treatment. (Yamashita, S.)

  14. Molecular and cellular mechanisms of pulmonary fibrosis

    2012-01-01

    Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease. PMID:22824096

  15. The cellular automaton interpretation of quantum mechanics

    't Hooft, Gerard

    2016-01-01

    This book presents the deterministic view of quantum mechanics developed by Nobel Laureate Gerard 't Hooft. Dissatisfied with the uncomfortable gaps in the way conventional quantum mechanics meshes with the classical world, 't Hooft has revived the old hidden variable ideas, but now in a much more systematic way than usual. In this, quantum mechanics is viewed as a tool rather than a theory. The book presents examples of models that are classical in essence, but can be analysed by the use of quantum techniques, and argues that even the Standard Model, together with gravitational interactions, might be viewed as a quantum mechanical approach to analysing a system that could be classical at its core. He shows how this approach, even though it is based on hidden variables, can be plausibly reconciled with Bell's theorem, and how the usual objections voiced against the idea of ‘superdeterminism' can be overcome, at least in principle. This framework elegantly explains - and automatically cures - the problems of...

  16. Cellular and molecular mechanisms of muscle atrophy

    Paolo Bonaldo

    2013-01-01

    Full Text Available Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. During muscle atrophy, proteolytic systems are activated, and contractile proteins and organelles are removed, resulting in the shrinkage of muscle fibers. Excessive loss of muscle mass is associated with poor prognosis in several diseases, including myopathies and muscular dystrophies, as well as in systemic disorders such as cancer, diabetes, sepsis and heart failure. Muscle loss also occurs during aging. In this paper, we review the key mechanisms that regulate the turnover of contractile proteins and organelles in muscle tissue, and discuss how impairments in these mechanisms can contribute to muscle atrophy. We also discuss how protein synthesis and degradation are coordinately regulated by signaling pathways that are influenced by mechanical stress, physical activity, and the availability of nutrients and growth factors. Understanding how these pathways regulate muscle mass will provide new therapeutic targets for the prevention and treatment of muscle atrophy in metabolic and neuromuscular diseases.

  17. Concomitant apoptosis and regeneration of liver cells as a mechanism of liver-tumor promotion by β-naphthoflavone involving TNFα-signaling due to oxidative cellular stress in rats

    Kuwata, Kazunori; Shibutani, Makoto; Hayashi, Hitomi; Shimamoto, Keisuke; Hayashi, Shim-Mo; Suzuki, Kazuhiko; Mitsumori, Kunitoshi

    2011-01-01

    β-Naphthoflavone (BNF) is a strong inducer of cytochrome P450 1A enzymes, and exerts liver tumor-promoting activity through enhancement of oxidative stress responses in rats. This study investigated the role of the tissue environment surrounding hepatocellular preneoplastic lesions in the early tumor-promotion stage by BNF, using enzymatically modified isoquercitrin (EMIQ) as an anti-oxidative chemopreventive agent. Male F344 rats were fed a diet containing BNF (0.5%) for 6 weeks, with or without EMIQ (0.2%) in the drinking water, 2 weeks after initiation with N-diethylnitrosamine, and were subjected to two-thirds partial hepatectomy 1 week after starting BNF-promotion. BNF-treatment increased concentrations of liver thiobarbituric acid-reactive substances, single liver cells expressing glutathione S-transferase placental form or heme oxygenase (HO)-1, and concomitant apoptosis and proliferation of liver cells. Transcript upregulation of anti-oxidative enzymes (Aldh1a1 and Nqo1), cell cycle-related molecules (Cdc20 and Cdkn2b) and inflammation-related molecules including proinflammatory cytokines (Ccl2, Col1a1, Il6, Nos2 and Serpine1) was also evident. Furthermore, BNF increased HO-1-expressing Kupffer cells and liver cells expressing tumor necrosis factor receptor 1 (TNFR1) and the TNFR1-associated death domain. Most of these BNF-induced fluctuations disappeared or were suppressed by EMIQ in conjunction with suppression of tumor-promotion. Tnf transcript levels with BNF were also suppressed by EMIQ. These results suggest that BNF-induced oxidative stress causes single liver cell toxicity, allowing subsequent concomitant apoptosis and regeneration involving inflammatory responses including TNFα-signaling, contributing to tumor promotion. Kupffer cells may act to protect against inflammatory stimuli induced as a result of oxidative cellular stress by BNF, causing proinflammatory cytokine level fluctuations.

  18. Control of Cellular Morphology by Mechanical Factors

    Thoumine, Olivier

    1996-11-01

    This short review deals with the influence of mechanical factors on eucaryotic cell morphology and structure. We classify these factors into two types: i) external forces (e.g. gravitational forces or hemodynamic stresses), which when applied experimentally allow characterization of passive mechanical properties; and ii) internal forces, e.g. generated by molecular motors or polymerization processes. Perturbation of one or more of these forces induces significant changes in cell shape, cytoskeleton and pericellular matrix organization. We describe these phenomena in view of current models. Cette brève revue traite de l'influence des facteurs mécaniques sur la morphologie et la structure des cellules eucaryotes. Nous classifions ces facteurs en deux catégories : i) les forces externes (par exemple les forces de gravitation et les contraintes hèmodynamiques) qui, imposées in vitro, permettent de caractériser les propriétés mécaniques passives ; et ii) les forces internes, par exemple celles générées par les moteurs moléculaires ou les processus de polymérisation. La perturbation de l'une ou de l'autre de ces forces provoque des changements significatifs de la morphologie cellulaire ainsi que l'organisation du cytosquelette et de la matrice péricellulaire. Nous décrivons ces phénomènes en fonction de modèles existants.

  19. Cellular phone interference with the operation of mechanical ventilators.

    Shaw, Cheryl I; Kacmarek, Robert M; Hampton, Rickey L; Riggi, Vincent; El Masry, Ashraf; Cooper, Jeffrey B; Hurford, William E

    2004-04-01

    To determine whether a cellular phone would interfere with the operation of mechanical ventilators. Laboratory study. University medical center. Fourteen mechanical ventilators. We evaluated change in operation and malfunction of the mechanical ventilators. The cellular phone (Nokia 6120i) was computer controlled, operating at 828.750 MHz analog modulation. It was operated at 16, 40, 100, 250, and 600 mW, 30 cm from the floor and 30, 15, and ventilator. Six of the 14 ventilators tested malfunctioned when a cellular phone at maximum power output was placed ventilating when the cellular phone at maximum power output was placed ventilator. One ventilator doubled the ventilatory rate and another increased the displayed tidal volume from 350 to 1033 mL. In one of the infant ventilators, displayed tidal volume increased from 21 to 100 mL. In another ventilator, the high respiratory rate alarm sounded but the rate had not changed. In a controlled laboratory setting, cellular phones placed in close proximity to some commercially available intensive care ventilators can cause malfunctions, including irrecoverable cessation of ventilation. This is most likely to occur if the cellular phone is or =3 feet from all medical devices. The current electromagnetic compatibility standards for mechanical ventilators are inadequate to prevent malfunction. Manufacturers should ensure that their products are not affected by wireless technology even when placed immediately next to the device.

  20. Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis.

    Olson, D K; Fröhlich, F; Farese, R V; Walther, T C

    2016-08-01

    Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2015. Published by Elsevier B.V.

  1. Biochemical and cellular mechanisms of low-dose effects

    Feinendegen, L.E.; Booz, J.; Muehlensiepen, H.

    1988-01-01

    The question of health effects from small radiation doses remains open. Individual cells, when being hit by single elemental doses - in low-dose irradiation - react acutely and temporarily by altering control of enzyme activity, as is demonstrated for the case of thymidine kinase. This response is not constant in that it provides a temporary protection of enzyme activity against a second irradiation, by a mechanism likely to be via improved detoxification of intracellular radicals. It must be considered that in the low-dose region radiation may also exert protection against other challenges involving radicals, causing a net beneficial effect by temporarily shielding the hit cell against radicals produced by metabolism. Since molecular alterations leading to late effects are considered a consequence of the initial cellular response, late effects from small radiation doses do not necessarily adhere to a linear dose-effect relationship. The reality of the linear relationship between the risk of late effects from high doses to small doses is an assumption, for setting dose limits, but it must not be taken for predicting health detriment from low doses. (author)

  2. Size effects in the mechanical behavior of cellular materials

    Tekoglu, C; Onck, PR

    Effective mechanical properties of cellular materials depend strongly on the specimen size to the cell size ratio. Experimental studies performed on aluminium foams show that under uniaxial compression, the stiffness of these materials falls below the corresponding bulk value, when the ratio of the

  3. Osmosensory mechanisms in cellular and systemic volume regulation

    Pedersen, Stine Helene Falsig; Kapus, András; Hoffmann, Else K

    2011-01-01

    Perturbations of cellular and systemic osmolarity severely challenge the function of all organisms and are consequently regulated very tightly. Here we outline current evidence on how cells sense volume perturbations, with particular focus on mechanisms relevant to the kidneys and to extracellular...

  4. Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties

    Stampfl, J.; Pettermann, H. E.; Liska, R.

    Biological materials (e.g., wood, trabecular bone, marine skeletons) rely heavily on the use of cellular architecture, which provides several advantages. (1) The resulting structures can bear the variety of "real life" load spectra using a minimum of a given bulk material, featuring engineering lightweight design principles. (2) The inside of the structures is accessible to body fluids which deliver the required nutrients. (3) Furthermore, cellular architectures can grow organically by adding or removing individual struts or by changing the shape of the constituting elements. All these facts make the use of cellular architectures a reasonable choice for nature. Using additive manufacturing technologies (AMT), it is now possible to fabricate such structures for applications in engineering and biomedicine. In this chapter, we present methods that allow the 3D computational analysis of the mechanical properties of cellular structures with open porosity. Various different cellular architectures including disorder are studied. In order to quantify the influence of architecture, the apparent density is always kept constant. Furthermore, it is shown that how new advanced photopolymers can be used to tailor the mechanical and functional properties of the fabricated structures.

  5. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration

    Jessica A. Simpkins

    2016-06-01

    Full Text Available Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling.

  6. The mechanisms involved at the cell level

    Leblanc, G.; Pourcher, Th.; Perron, B.; Guillain, F.; Quemeneur, E.; Fritsch, P.

    2003-01-01

    The mechanisms responsible at the cell level for inducing toxic reactions after contamination are as yet only imperfectly known. Work still needs to be done for both contaminants that have a biological role, such as iodine, and those that do not, such as cadmium, uranium and plutonium. In particular, these mechanisms bring into play, in biological membranes, carriers which are the physiological partners responsible for material exchange with the environment or inside the body. As they lack absolute selectivity, these carriers, which are involved in the assimilation and accumulation of vital mineral elements, also have the ability to transport toxic elements and isotopes. (authors)

  7. Introduction of transplantation tolerance after total lymphoid irradiation: cellular mechanisms

    Strober, S.; King, D.P.; Gottlieb, M.; Hoppe, R.T.; Kaplan, H.S.

    1981-01-01

    High-dose fractionated total lymphoid irradiation (TLI) is a safe, routine regimen used to treat patients with lymphoid malignancies. Although few side effects are associated with the regimen, a profound suppression of cell-mediated immunity is observed for several years after therapy, as judged by both in vivo and in vitro assays. A profound immunosuppression has also been observed in mice and rats given TLI. Recently, we have achieved similar results using TLI in nonmatched bone marrow transplantation in outbred dogs. The experimental work in animals and underlying cellular mechanisms are reviewed here

  8. Cellular studies and interaction mechanisms of extremely low frequency fields

    Liburdy, Robert P.

    1995-01-01

    Worldwide interest in the biological effects of ELF (extremely low frequency, level is to identify cellular responses to ELF fields, to develop a dose threshold for such interactions, and with such information to formulate and test appropriate interaction mechanisms. This review is selective and will discuss the most recent cellular studies directed at these goals which relate to power line, sinusoidal ELF fields. In these studies an interaction site at the cell membrane is by consensus a likely candidate, since changes in ion transport, ligand-receptor events such as antibody binding, and G protein activation have been reported. These changes strongly indicate that signal transduction (ST) can be influenced. Also, ELF fields are reported to influence enzyme activation, gene expression, protein synthesis, and cell proliferation, which are triggered by earlier ST events at the cell membrane. The concept of ELF fields altering early cell membrane events and thereby influencing intracellular cell function via the ST cascade is perhaps the most plausible biological framework currently being investigated for understanding ELF effects on cells. For example, the consequence of an increase due to ELF fields in mitogenesis, the final endpoint of the ST cascade, is an overall increase in the probability of mutagenesis and consequently cancer, according to the Ames epigenetic model of carcinogenesis. Consistent with this epigenetic mechanism and the ST pathway to carcinogenesis is recent evidence that ELF fields can alter breast cancer cell proliferation and can act as a copromoter in vitro. The most important dosimetric question being addressed currently is whether the electric (E) or the magnetic (B) field, or if combinations of static B and time-varying B fields represent an exposure metric for the cell. This question relates directly to understanding fundamental interaction mechanisms and to the development of a rationale for ELF dose threshold guidelines. The weight of

  9. Cellular and molecular mechanisms of metformin: an overview

    Viollet, Benoit; Guigas, Bruno; Sanz Garcia, Nieves; Leclerc, Jocelyne; Foretz, Marc; Andreelli, Fabrizio

    2012-01-01

    Considerable efforts have been made since the 1950s to better understand the cellular and molecular mechanisms of action of metformin, a potent antihyperglycemic agent now recommended as the first line oral therapy for type 2 diabetes (T2D). The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory-chain complex 1. In addition, the resulting decrease in hepatic energy status activates the AMP-activated protein kinase (AMPK), a cellular metabolic sensor, providing a generally accepted mechanism for metformin action on hepatic gluconeogenic program. The demonstration that the respiratory-chain complex 1, but not AMPK, is the primary target of metformin was recently strengthened by showing that the metabolic effect of the drug is preserved in liver-specific AMPK-deficient mice. Beyond its effect on glucose metabolism, metformin was reported to restore ovarian function in polycystic ovary syndrome, reduce fatty liver and to lower microvascular and macrovascular complications associated with T2D. Its use was also recently suggested as an adjuvant treatment for cancer or gestational diabetes, and for the prevention in pre-diabetic populations. These emerging new therapeutic areas for metformin will be reviewed together with recent data from pharmacogenetic studies linking genetic variations to drug response, a promising new step towards personalized medicine in the treatment of T2D. PMID:22117616

  10. Neuromodulation of hypoglossal motoneurons: cellular and developmental mechanisms.

    Bayliss, D A; Viana, F; Talley, E M; Berger, A J

    1997-11-01

    Hypoglossal motoneurons (HMs) in the caudal brainstem have a respiratory-related activity pattern and contribute to control of upper airway resistance. In this review, we focus primarily on signalling mechanisms utilized by neurotransmitters to enhance HM excitability. In particular, we consider: (1) the membrane depolarization induced by a number of different putative transmitters [thyrotropin-releasing hormone (TRH), serotonin (5-HT), norepinephrine (NE)]; and (2) the inhibition of a calcium-dependent spike after hyperpolarization (AHP) by 5-HT and its effect on firing behavior. Potential functional consequences on HM behavior of these different neurotransmitter effects is discussed. In addition, we describe postnatal changes in transmitter effects and suggest potential cellular mechanisms to explain those developmental changes. Most of the data discussed are derived from in vitro electrophysiological recordings performed in preparations from neonatal and adult rats.

  11. Active Cellular Mechanics and its Consequences for Animal Development

    Noll, Nicholas B.

    A central goal of developmental biology is to understand how an organism shapes itself, a process referred to as morphogenesis. While the molecular components critical to determining the initial body plan have been well characterized, the control of the subsequent dynamics of cellular rearrangements which ultimately shape the organism are far less understood. A major roadblock to a more complete picture of morphogenesis is the inability to measure tissue-scale mechanics throughout development and thus answer fundamental questions: How is the mechanical state of the cell regulated by local protein expression and global pattering? In what way does stress feedback onto the larger developmental program? In this dissertation, we begin to approach these questions through the introduction and analysis of a multi-scale model of epithelial mechanics which explicitly connects cytoskeletal protein activity to tissue-level stress. In Chapter 2, we introduce the discrete Active Tension Network (ATN) model of cellular mechanics. ATNs are tissues that satisfy two primary assumptions: that the mechanical balance of cells is dominated by cortical tension and that myosin actively remodels the actin cytoskeleton in a stress-dependent manner. Remarkably, the interplay of these features allows for angle-preserving, i.e. 'isogonal', dilations or contractions of local cell geometry that do not generate stress. Asymptotically this model is stabilized provided there is mechanical feedback on expression of myosin within the cell; we take this to be a strong prediction to be tested. The ATN model exposes a fundamental connection between equilibrium cell geometry and its underlying force network. In Chapter 3, we relax the tension-net approximation and demonstrate that at equilibrium, epithelial tissues with non-uniform pressure have non-trivial geometric constraints that imply the network is described by a weighted `dual' triangulation. We show that the dual triangulation encodes all

  12. Cellular Reparative Mechanisms of Mesenchymal Stem Cells for Retinal Diseases.

    Ding, Suet Lee Shirley; Kumar, Suresh; Mok, Pooi Ling

    2017-07-28

    The use of multipotent mesenchymal stem cells (MSCs) has been reported as promising for the treatment of numerous degenerative disorders including the eye. In retinal degenerative diseases, MSCs exhibit the potential to regenerate into retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Delivery of MSCs was found to improve retinal morphology and function and delay retinal degeneration. In this review, we revisit the therapeutic role of MSCs in the diseased eye. Furthermore, we reveal the possible cellular mechanisms and identify the associated signaling pathways of MSCs in reversing the pathological conditions of various ocular disorders such as age-related macular degeneration (AMD), retinitis pigmentosa, diabetic retinopathy, and glaucoma. Current stem cell treatment can be dispensed as an independent cell treatment format or with the combination of other approaches. Hence, the improvement of the treatment strategy is largely subjected by our understanding of MSCs mechanism of action.

  13. Neural and Cellular Mechanisms of Fear and Extinction Memory Formation

    Orsini, Caitlin A.; Maren, Stephen

    2012-01-01

    Over the course of natural history, countless animal species have evolved adaptive behavioral systems to cope with dangerous situations and promote survival. Emotional memories are central to these defense systems because they are rapidly acquired and prepare organisms for future threat. Unfortunately, the persistence and intrusion of memories of fearful experiences are quite common and can lead to pathogenic conditions, such as anxiety and phobias. Over the course of the last thirty years, neuroscientists and psychologists alike have attempted to understand the mechanisms by which the brain encodes and maintains these aversive memories. Of equal interest, though, is the neurobiology of extinction memory formation as this may shape current therapeutic techniques. Here we review the extant literature on the neurobiology of fear and extinction memory formation, with a strong focus on the cellular and molecular mechanisms underlying these processes. PMID:22230704

  14. Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields.

    Collard, J-F; Hinsenkamp, M

    2015-05-01

    We observed on different tissues and organisms a biological response after exposure to pulsed low frequency and low amplitude electric or electromagnetic fields but the precise mechanism of cell response remains unknown. The aim of this publication is to understand, using bioinformatics, the biological relevance of processes involved in the modification of gene expression. The list of genes analyzed was obtained after microarray protocol realized on cultures of human epidermal explants growing on deepidermized human skin exposed to a pulsed low frequency electric field. The directed acyclic graph on a WebGestalt Gene Ontology module shows six categories under the biological process root: "biological regulation", "cellular process", "cell proliferation", "death", "metabolic process" and "response to stimulus". Enriched derived categories are coherent with the type of in vitro culture, the stimulation protocol or with the previous results showing a decrease of cell proliferation and an increase of differentiation. The Kegg module on WebGestalt has highlighted "cell cycle" and "p53 signaling pathway" as significantly involved. The Kegg website brings out interactions between FoxO, MAPK, JNK, p53, p38, PI3K/Akt, Wnt, mTor or NF-KappaB. Some genes expressed by the stimulation are known to have an exclusive function on these pathways. Analyses performed with Pathway Studio linked cell proliferation, cell differentiation, apoptosis, cell cycle, mitosis, cell death etc. with our microarrays results. Medline citation generated by the software and the fold change variation confirms a diminution of the proliferation, activation of the differentiation and a less well-defined role of apoptosis or wound healing. Wnt and DKK functional classes, DKK1, MACF1, ATF3, MME, TXNRD1, and BMP-2 genes proposed in previous publications after a manual analysis are also highlighted with other genes after Pathway Studio automatic procedure. Finally, an analysis conducted on a list of genes

  15. Cellular packing, mechanical stress and the evolution of multicellularity

    Jacobeen, Shane; Pentz, Jennifer T.; Graba, Elyes C.; Brandys, Colin G.; Ratcliff, William C.; Yunker, Peter J.

    2018-03-01

    The evolution of multicellularity set the stage for sustained increases in organismal complexity1-5. However, a fundamental aspect of this transition remains largely unknown: how do simple clusters of cells evolve increased size when confronted by forces capable of breaking intracellular bonds? Here we show that multicellular snowflake yeast clusters6-8 fracture due to crowding-induced mechanical stress. Over seven weeks ( 291 generations) of daily selection for large size, snowflake clusters evolve to increase their radius 1.7-fold by reducing the accumulation of internal stress. During this period, cells within the clusters evolve to be more elongated, concomitant with a decrease in the cellular volume fraction of the clusters. The associated increase in free space reduces the internal stress caused by cellular growth, thus delaying fracture and increasing cluster size. This work demonstrates how readily natural selection finds simple, physical solutions to spatial constraints that limit the evolution of group size—a fundamental step in the evolution of multicellularity.

  16. Natural agents: cellular and molecular mechanisms of photoprotection.

    Afaq, Farrukh

    2011-04-15

    The skin is the largest organ of the body that produces a flexible and self-repairing barrier and protects the body from most common potentially harmful physical, environmental, and biological insults. Solar ultraviolet (UV) radiation is one of the major environmental insults to the skin and causes multi-tiered cellular and molecular events eventually leading to skin cancer. The past decade has seen a surge in the incidence of skin cancer due to changes in life style patterns that have led to a significant increase in the amount of UV radiation that people receive. Reducing excessive exposure to UV radiation is desirable; nevertheless this approach is not easy to implement. Therefore, there is an urgent need to develop novel strategies to reduce the adverse biological effects of UV radiation on the skin. A wide variety of natural agents have been reported to possess substantial skin photoprotective effects. Numerous preclinical and clinical studies have elucidated that natural agents act by several cellular and molecular mechanisms to delay or prevent skin cancer. In this review article, we have summarized and discussed some of the selected natural agents for skin photoprotection. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Sexual Experience in Female Rodents: Cellular Mechanisms and Functional Consequences

    Meisel, Robert L.; Mullins, Amanda J.

    2007-01-01

    The neurobiology of female sexual behavior has largely focused on mechanisms of hormone action on nerve cells and how these effects translate into the display of copulatory motor patterns. Of equal importance, though less studied, are some of the consequences of engaging in sexual behavior, including the rewarding properties of sexual interactions and how sexual experience alters copulatory efficiency. This review summarizes the effects of sexual experience on reward processes and copulation in female Syrian hamsters. Neural correlates of these sexual interactions include long-term cellular changes in dopamine transmission and postsynaptic signaling pathways related to neuronal plasticity (e.g., dendritic spine formation). Taken together, these studies suggest that sexual experience enhances the reinforcing properties of sexual behavior, which has the coincident outcome of increasing copulatory efficiency in a way that can increase reproductive success. PMID:16978593

  18. Cellular mechanisms of noise-induced hearing loss.

    Kurabi, Arwa; Keithley, Elizabeth M; Housley, Gary D; Ryan, Allen F; Wong, Ann C-Y

    2017-06-01

    Exposure to intense sound or noise can result in purely temporary threshold shift (TTS), or leave a residual permanent threshold shift (PTS) along with alterations in growth functions of auditory nerve output. Recent research has revealed a number of mechanisms that contribute to noise-induced hearing loss (NIHL). The principle cause of NIHL is damage to cochlear hair cells and associated synaptopathy. Contributions to TTS include reversible damage to hair cell (HC) stereocilia or synapses, while moderate TTS reflects protective purinergic hearing adaptation. PTS represents permanent damage to or loss of HCs and synapses. While the substrates of HC damage are complex, they include the accumulation of reactive oxygen species and the active stimulation of intracellular stress pathways, leading to programmed and/or necrotic cell death. Permanent damage to cochlear neurons can also contribute to the effects of NIHL, in addition to HC damage. These mechanisms have translational potential for pharmacological intervention and provide multiple opportunities to prevent HC damage or to rescue HCs and spiral ganglion neurons that have suffered injury. This paper reviews advances in our understanding of cellular mechanisms that contribute to NIHL and their potential for therapeutic manipulation. Published by Elsevier B.V.

  19. Ciona intestinalis notochord as a new model to investigate the cellular and molecular mechanisms of tubulogenesis.

    Denker, Elsa; Jiang, Di

    2012-05-01

    Biological tubes are a prevalent structural design across living organisms. They provide essential functions during the development and adult life of an organism. Increasing progress has been made recently in delineating the cellular and molecular mechanisms underlying tubulogenesis. This review aims to introduce ascidian notochord morphogenesis as an interesting model system to study the cell biology of tube formation, to a wider cell and developmental biology community. We present fundamental morphological and cellular events involved in notochord morphogenesis, compare and contrast them with other more established tubulogenesis model systems, and point out some unique features, including bipolarity of the notochord cells, and using cell shape changes and cell rearrangement to connect lumens. We highlight some initial findings in the molecular mechanisms of notochord morphogenesis. Based on these findings, we present intriguing problems and put forth hypotheses that can be addressed in future studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Neurobiological mechanisms involved in sleep bruxism.

    Lavigne, G J; Kato, T; Kolta, A; Sessle, B J

    2003-01-01

    Sleep bruxism (SB) is reported by 8% of the adult population and is mainly associated with rhythmic masticatory muscle activity (RMMA) characterized by repetitive jaw muscle contractions (3 bursts or more at a frequency of 1 Hz). The consequences of SB may include tooth destruction, jaw pain, headaches, or the limitation of mandibular movement, as well as tooth-grinding sounds that disrupt the sleep of bed partners. SB is probably an extreme manifestation of a masticatory muscle activity occurring during the sleep of most normal subjects, since RMMA is observed in 60% of normal sleepers in the absence of grinding sounds. The pathophysiology of SB is becoming clearer, and there is an abundance of evidence outlining the neurophysiology and neurochemistry of rhythmic jaw movements (RJM) in relation to chewing, swallowing, and breathing. The sleep literature provides much evidence describing the mechanisms involved in the reduction of muscle tone, from sleep onset to the atonia that characterizes rapid eye movement (REM) sleep. Several brainstem structures (e.g., reticular pontis oralis, pontis caudalis, parvocellularis) and neurochemicals (e.g., serotonin, dopamine, gamma aminobutyric acid [GABA], noradrenaline) are involved in both the genesis of RJM and the modulation of muscle tone during sleep. It remains unknown why a high percentage of normal subjects present RMMA during sleep and why this activity is three times more frequent and higher in amplitude in SB patients. It is also unclear why RMMA during sleep is characterized by co-activation of both jaw-opening and jaw-closing muscles instead of the alternating jaw-opening and jaw-closing muscle activity pattern typical of chewing. The final section of this review proposes that RMMA during sleep has a role in lubricating the upper alimentary tract and increasing airway patency. The review concludes with an outline of questions for future research.

  1. Characterizing cellular mechanical phenotypes with mechano-node-pore sensing

    Kim, Junghyun; Han, Sewoon; Lei, Andy; Miyano, Masaru; Bloom, Jessica; Srivastava, Vasudha; Stampfer, Martha M.; Gartner, Zev J.; LaBarge, Mark A.; Sohn, Lydia L.

    2018-01-01

    The mechanical properties of cells change with their differentiation, chronological age, and malignant progression. Consequently, these properties may be useful label-free biomarkers of various functional or clinically relevant cell states. Here, we demonstrate mechano-node-pore sensing (mechano-NPS), a multi-parametric single-cell-analysis method that utilizes a four-terminal measurement of the current across a microfluidic channel to quantify simultaneously cell diameter, resistance to compressive deformation, transverse deformation under constant strain, and recovery time after deformation. We define a new parameter, the whole-cell deformability index (wCDI), which provides a quantitative mechanical metric of the resistance to compressive deformation that can be used to discriminate among different cell types. The wCDI and the transverse deformation under constant strain show malignant MCF-7 and A549 cell lines are mechanically distinct from non-malignant, MCF-10A and BEAS-2B cell lines, and distinguishes between cells treated or untreated with cytoskeleton-perturbing small molecules. We categorize cell recovery time, ΔTr, as instantaneous (ΔTr ~ 0 ms), transient (ΔTr ≤ 40ms), or prolonged (ΔTr > 40ms), and show that the composition of recovery types, which is a consequence of changes in cytoskeletal organization, correlates with cellular transformation. Through the wCDI and cell-recovery time, mechano-NPS discriminates between sub-lineages of normal primary human mammary epithelial cells with accuracy comparable to flow cytometry, but without antibody labeling. Mechano-NPS identifies mechanical phenotypes that distinguishes lineage, chronological age, and stage of malignant progression in human epithelial cells. PMID:29780657

  2. Mitochondrial and cellular mechanisms for managing lipid excess

    Miguel A Aon

    2014-07-01

    Full Text Available Current scientific debates center on the impact of lipids and mitochondrial function on diverse aspects of human health, nutrition and disease, among them the association of lipotoxicity with the onset of insulin resistance in skeletal muscle, and with heart dysfunction in obesity and diabetes. Mitochondria play a fundamental role in aging and in prevalent acute or chronic diseases. Lipids are main mitochondrial fuels however these molecules can also behave as uncouplers and inhibitors of oxidative phosphorylation. Knowledge about the functional composition of these contradictory effects and their impact on mitochondrial-cellular energetics/redox status is incomplete.Cells store fatty acids (FAs as triacylglycerol and package them into cytoplasmic lipid droplets (LDs. New emerging data shows the LD as a highly dynamic storage pool of FAs that can be used for energy reserve. Lipid excess packaging into LDs can be seen as an adaptive response to fulfilling energy supply without hindering mitochondrial or cellular redox status and keeping low concentration of lipotoxic intermediates.Herein we review the mechanisms of action and utilization of lipids by mitochondria reported in liver, heart and skeletal muscle under relevant physiological situations, e.g. exercise. We report on perilipins, a family of proteins that associate with LDs in response to loading of cells with lipids. Evidence showing that in addition to physical contact, mitochondria and LDs exhibit metabolic interactions is presented and discussed. A hypothetical model of channeled lipid utilization by mitochondria is proposed. Direct delivery and channeled processing of lipids in mitochondria could represent a reliable and efficient way to maintain ROS within levels compatible with signaling while ensuring robust and reliable energy supply.

  3. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms.

    Stenmark, Kurt R; Fagan, Karen A; Frid, Maria G

    2006-09-29

    Chronic hypoxic exposure induces changes in the structure of pulmonary arteries, as well as in the biochemical and functional phenotypes of each of the vascular cell types, from the hilum of the lung to the most peripheral vessels in the alveolar wall. The magnitude and the specific profile of the changes depend on the species, sex, and the developmental stage at which the exposure to hypoxia occurred. Further, hypoxia-induced changes are site specific, such that the remodeling process in the large vessels differs from that in the smallest vessels. The cellular and molecular mechanisms vary and depend on the cellular composition of vessels at particular sites along the longitudinal axis of the pulmonary vasculature, as well as on local environmental factors. Each of the resident vascular cell types (ie, endothelial, smooth muscle, adventitial fibroblast) undergo site- and time-dependent alterations in proliferation, matrix protein production, expression of growth factors, cytokines, and receptors, and each resident cell type plays a specific role in the overall remodeling response. In addition, hypoxic exposure induces an inflammatory response within the vessel wall, and the recruited circulating progenitor cells contribute significantly to the structural remodeling and persistent vasoconstriction of the pulmonary circulation. The possibility exists that the lung or lung vessels also contain resident progenitor cells that participate in the remodeling process. Thus the hypoxia-induced remodeling of the pulmonary circulation is a highly complex process where numerous interactive events must be taken into account as we search for newer, more effective therapeutic interventions. This review provides perspectives on each of the aforementioned areas.

  4. Molecular and cellular mechanisms of aldosterone producing adenoma development

    Sheerazed eBoulkroun

    2015-06-01

    Full Text Available Primary aldosteronism (PA is the most common form of secondary hypertension with an estimated prevalence of ~10% in referred patients. PA occurs as a result of a dysregulation of the normal mechanisms controlling adrenal aldosterone production. It is characterized by hypertension with low plasma renin and elevated aldosterone and often associated with hypokalemia. The two major causes of PA are unilateral aldosterone producing adenoma (APA and bilateral adrenal hyperplasia, accounting together for ~95% of cases. In addition to the well-characterized effect of excess mineralocorticoids on blood pressure, high levels of aldosterone also have cardiovascular, renal and metabolic consequences. Hence, long-term consequences of PA include increased risk of coronary artery disease, myocardial infarction, heart failure and atrial fibrillation. Despite recent progress in the management of patients with PA, critical issues related to diagnosis, subtype differentiation and treatment of non-surgically correctable forms still persist. A better understanding of the pathogenic mechanisms of the disease should lead to the identification of more reliable diagnostic and prognostic biomarkers for a more sensitive and specific screening and new therapeutic options. In this review we will summarize our current knowledge on the molecular and cellular mechanisms of APA development. On one hand, we will discuss how various animal models have improved our understanding of the pathophysiology of excess aldosterone production. On the other hand, we will summarize the major advances made during the last few years in the genetics of APA due to transcriptomic studies and whole exome sequencing. The identification of recurrent and somatic mutations in genes coding for ion channels (KCNJ5 and CACNA1D and ATPases (ATP1A1 and ATP2B3 allowed highlighting the central role of calcium signaling in autonomous aldosterone production by the adrenal.

  5. Unraveling the cellular and molecular mechanisms of repetitive magnetic stimulation

    Florian eMüller-Dahlhaus

    2013-12-01

    Full Text Available Despite numerous clinical studies, which have investigated the therapeutic potential of repetitive transcranial magnetic stimulation (rTMS in various brain diseases, our knowledge of the cellular and molecular mechanisms underlying rTMS-based therapies remains limited. Thus, a deeper understanding of rTMS-induced neural plasticity is required to optimize current treatment protocols. Studies in small animals or appropriate in vitro preparations (including models of brain diseases provide highly useful experimental approaches in this context. State-of-the-art electrophysiological and live-cell imaging techniques that are well established in basic neuroscience can help answering some of the major questions in the field, such as (i which neural structures are activated during TMS, (ii how does rTMS induce Hebbian plasticity, and (iii are other forms of plasticity (e.g., metaplasticity, structural plasticity induced by rTMS? We argue that data gained from these studies will support the development of more effective and specific applications of rTMS in clinical practice.

  6. Cellular and molecular mechanisms of alcohol-induced osteopenia.

    Luo, Zhenhua; Liu, Yao; Liu, Yitong; Chen, Hui; Shi, Songtao; Liu, Yi

    2017-12-01

    Alcoholic beverages are widely consumed, resulting in a staggering economic cost in different social and cultural settings. Types of alcohol consumption vary from light occasional to heavy, binge drinking, and chronic alcohol abuse at all ages. In general, heavy alcohol consumption is widely recognized as a major epidemiological risk factor for chronic diseases and is detrimental to many organs and tissues, including bones. Indeed, recent findings demonstrate that alcohol has a dose-dependent toxic effect in promoting imbalanced bone remodeling. This imbalance eventually results in osteopenia, an established risk factor for osteoporosis. Decreased bone mass and strength are major hallmarks of osteopenia, which is predominantly attributed not only to inhibition of bone synthesis but also to increased bone resorption through direct and indirect pathways. In this review, we present knowledge to elucidate the epidemiology, potential pathogenesis, and major molecular mechanisms and cellular effects that underlie alcoholism-induced bone loss in osteopenia. Novel therapeutic targets for correcting alcohol-induced osteopenia are also reviewed, such as modulation of proinflammatory cytokines and Wnt and mTOR signaling and the application of new drugs.

  7. Mechanical characterization of disordered and anisotropic cellular monolayers

    Nestor-Bergmann, Alexander; Johns, Emma; Woolner, Sarah; Jensen, Oliver E.

    2018-05-01

    We consider a cellular monolayer, described using a vertex-based model, for which cells form a spatially disordered array of convex polygons that tile the plane. Equilibrium cell configurations are assumed to minimize a global energy defined in terms of cell areas and perimeters; energy is dissipated via dynamic area and length changes, as well as cell neighbor exchanges. The model captures our observations of an epithelium from a Xenopus embryo showing that uniaxial stretching induces spatial ordering, with cells under net tension (compression) tending to align with (against) the direction of stretch, but with the stress remaining heterogeneous at the single-cell level. We use the vertex model to derive the linearized relation between tissue-level stress, strain, and strain rate about a deformed base state, which can be used to characterize the tissue's anisotropic mechanical properties; expressions for viscoelastic tissue moduli are given as direct sums over cells. When the base state is isotropic, the model predicts that tissue properties can be tuned to a regime with high elastic shear resistance but low resistance to area changes, or vice versa.

  8. Molecular and Cellular Mechanisms of Shigella flexneri Dissemination.

    Agaisse, Hervé

    2016-01-01

    The intracellular pathogen Shigella flexneri is the causative agent of bacillary dysentery in humans. The disease is characterized by bacterial invasion of intestinal cells, dissemination within the colonic epithelium through direct spread from cell to cell, and massive inflammation of the intestinal mucosa. Here, we review the mechanisms supporting S. flexneri dissemination. The dissemination process primarily relies on actin assembly at the bacterial pole, which propels the pathogen throughout the cytosol of primary infected cells. Polar actin assembly is supported by polar expression of the bacterial autotransporter family member IcsA, which recruits the N-WASP/ARP2/3 actin assembly machinery. As motile bacteria encounter cell-cell contacts, they form plasma membrane protrusions that project into adjacent cells. In addition to the ARP2/3-dependent actin assembly machinery, protrusion formation relies on formins and myosins. The resolution of protrusions into vacuoles occurs through the collapse of the protrusion neck, leading to the formation of an intermediate membrane-bound compartment termed vacuole-like protrusions (VLPs). VLP formation requires tyrosine kinase and phosphoinositide signaling in protrusions, which relies on the integrity of the bacterial type 3 secretion system (T3SS). The T3SS is also required for escaping double membrane vacuoles through the activity of the T3SS translocases IpaB and IpaC, and the effector proteins VirA and IcsB. Numerous factors supporting envelope biogenesis contribute to IcsA exposure and maintenance at the bacterial pole, including LPS synthesis, membrane proteases, and periplasmic chaperones. Although less characterized, the assembly and function of the T3SS in the context of bacterial dissemination also relies on factors supporting envelope biogenesis. Finally, the dissemination process requires the adaptation of the pathogen to various cellular compartments through transcriptional and post-transcriptional mechanisms.

  9. Molecular and Cellular mechanisms of Shigella flexneri dissemination

    Herve eAgaisse

    2016-03-01

    Full Text Available The intracellular pathogen Shigella flexneri is the causative agent of bacillary dysentery in humans. The disease is characterized by bacterial invasion of intestinal cells, dissemination within the colonic epithelium through direct spread from cell to cell, and massive inflammation of the intestinal mucosa. Here, we review the mechanisms supporting S. flexneri dissemination. The dissemination process primarily relies on actin assembly at the bacterial pole, which propels the pathogen throughout the cytosol of primary infected cells. Polar actin assembly is supported by polar expression of the bacterial autotransporter family member IcsA, which recruits the N-WASP/ARP2/3 actin assembly machinery. As motile bacteria encounter cell-cell contacts, they form plasma membrane protrusions that project into adjacent cells. In addition to the ARP2/3-dependent actin assembly machinery, protrusion formation relies on formins and myosins. The resolution of protrusions into vacuoles occurs through the collapse of the protrusion neck, leading to the formation of an intermediate membrane-bound compartment termed vacuole-like protrusions (VLPs. VLP formation requires tyrosine kinase and phosphoinositide signaling in protrusions, which relies on the integrity of the bacterial type 3 secretion system (T3SS. The T3SS is also required for escaping double membrane vacuoles through the activity of the T3SS translocases IpaB and IpaC, and the effector proteins VirA and IcsB. Numerous factors supporting envelope biogenesis contribute to IcsA exposure and maintenance at the bacterial pole, including LPS synthesis, membrane proteases, and periplasmic chaperones. Although less characterized, the assembly and function of the T3SS in the context of bacterial dissemination also relies on factors supporting envelope biogenesis. Finally, the dissemination process requires the adaptation of the pathogen to various cellular compartments through transcriptional and post

  10. Cellular and Molecular Mechanisms in Perioperative Hepatic Protection: A Review of Current Interventions

    Zahra Talebi

    2017-05-01

    Full Text Available Liver is one of the most important organs needing great concern during the perioperative period. There are a number of different mechanisms that interact with liver cells and might affect their integrity and cell live. Though these mechanisms are not all the same, there is a great common point: all affect the metabolic pathways of the liver. Ischemia, anesthetic drug effects and other perioperative insults may affect the liver. Disturbance in an organ’s blood flow is an inherent part of diverse surgical procedures, which leads to lack of oxygen and nutrient supply. These ischemic periods can be particularly long in case of liver surgeries, such as resection of large hepatic tumors, management of hepatic trauma and liver transplant. Once the blood flow and oxygen supply are restored, the interruption of blood flow affects the oxygen dependent cells in liver, which require mitochondrial oxidative phosphorylation for their metabolism. Molecular mechanisms such as Redox status, ionic interchange disturbances as well as different mediators and cells like KC, SEC, dendritic cells, leukocytes, and lymphocytes, are involved in the process ultimately leading to cell death by apoptosis and necrosis. This review provides an overview on the cellular and molecular mechanisms involved in liver injuries, categorizing these mechanisms in 3 different classes: preoperative mechanisms, intraoperative mechanisms and postoperative mechanisms. Each of them are discussed in a different part of the manuscript

  11. Neural, Cellular and Molecular Mechanisms of Active Forgetting

    Medina, Jorge H.

    2018-01-01

    The neurobiology of memory formation attracts much attention in the last five decades. Conversely, the rules that govern and the mechanisms underlying forgetting are less understood. In addition to retroactive interference, retrieval-induced forgetting and passive decay of time, it has been recently demonstrated that the nervous system has a diversity of active and inherent processes involved in forgetting. In Drosophila, some operate mainly at an early stage of memory formation and involves dopamine (DA) neurons, specific postsynaptic DA receptor subtypes, Rac1 activation and induces rapid active forgetting. In mammals, others regulate forgetting and persistence of seemingly consolidated memories and implicate the activity of DA receptor subtypes and AMPA receptors in the hippocampus (HP) and related structures to activate parallel signaling pathways controlling active time-dependent forgetting. Most of them may involve plastic changes in synaptic and extrasynaptic receptors including specific removal of GluA2 AMPA receptors. Forgetting at longer timescales might also include changes in adult neurogenesis in the dentate gyrus (DG) of the HP. Therefore, based on relevance or value considerations neuronal circuits may regulate in a time-dependent manner what is formed, stored, and maintained and what is forgotten. PMID:29467630

  12. The Role of Instabilities on the Mechanical Response of Cellular Solids and Structures

    Kyriakides, S

    1997-01-01

    .... The relatively regular and periodic microstructure of these two-dimensional materials makes them excellent models for studying the mechanisms that govern the compressive response of cellular materials...

  13. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  14. Cytokine modulation by glucocorticoids: mechanisms and actions in cellular studies.

    Brattsand, R; Linden, M

    1996-01-01

    cascades, this means that steroid treatment can block expression of the subsequent cytokines. The blocked cytokine activity does not depend on a reduced cytokine receptor expression; in fact available in vitro investigations show that while the cytokine expression is blunted, its receptor is upregulated. The cellular studies presented here may represent the maximum potential of steroids to modulate cytokine expression in human mononuclear cells. It remains to be determined by clinical-experimental studies how effective cytokine modulation can be achieved in situ in inflamed bowel by systemic or by topical steroid therapy. Such studies may also answer whether a blocked cytokine production/action is the key or just a secondary mechanism behind the unique efficacy of steroids in active inflammatory bowel disease.

  15. Genomic interrogation of mechanism(s) underlying cellular responses to toxicants

    Amin, Rupesh P.; Hamadeh, Hisham K.; Bushel, Pierre R.; Bennett, Lee; Afshari, Cynthia A.; Paules, Richard S.

    2002-01-01

    Assessment of the impact of xenobiotic exposure on human health and disease progression is complex. Knowledge of mode(s) of action, including mechanism(s) contributing to toxicity and disease progression, is valuable for evaluating compounds. Toxicogenomics, the subdiscipline which merges genomics with toxicology, holds the promise to contributing significantly toward the goal of elucidating mechanism(s) by studying genome-wide effects of xenobiotics. Global gene expression profiling, revolutionized by microarray technology and a crucial aspect of a toxicogenomic study, allows measuring transcriptional modulation of thousands of genes following exposure to a xenobiotic. We use our results from previous studies on compounds representing two different classes of xenobiotics (barbiturate and peroxisome proliferator) to discuss the application of computational approaches for analyzing microarray data to elucidate mechanism(s) underlying cellular responses to toxicants. In particular, our laboratory demonstrated that chemical-specific patterns of gene expression can be revealed using cDNA microarrays. Transcript profiling provides discrimination between classes of toxicants, as well as, genome-wide insight into mechanism(s) of toxicity and disease progression. Ultimately, the expectation is that novel approaches for predicting xenobiotic toxicity in humans will emerge from such information

  16. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness

    Stewart-Hutchinson, P.J.; Hale, Christopher M.; Wirtz, Denis; Hodzic, Didier

    2008-01-01

    The evolutionary-conserved interactions between KASH and SUN domain-containing proteins within the perinuclear space establish physical connections, called LINC complexes, between the nucleus and the cytoskeleton. Here, we show that the KASH domains of Nesprins 1, 2 and 3 interact promiscuously with luminal domains of Sun1 and Sun2. These constructs disrupt endogenous LINC complexes as indicated by the displacement of endogenous Nesprins from the nuclear envelope. We also provide evidence that KASH domains most probably fit a pocket provided by SUN domains and that post-translational modifications are dispensable for that interaction. We demonstrate that the disruption of endogenous LINC complexes affect cellular mechanical stiffness to an extent that compares to the loss of mechanical stiffness previously reported in embryonic fibroblasts derived from mouse lacking A-type lamins, a mouse model of muscular dystrophies and cardiomyopathies. These findings support a model whereby physical connections between the nucleus and the cytoskeleton are mediated by interactions between diverse combinations of Sun proteins and Nesprins through their respective evolutionary-conserved domains. Furthermore, they emphasize, for the first time, the relevance of LINC complexes in cellular mechanical stiffness suggesting a possible involvement of their disruption in various laminopathies, a group of human diseases linked to mutations of A-type lamins

  17. Rapid construction of mechanically- confined multi- cellular structures using dendrimeric intercellular linker.

    Mo, Xuejun; Li, Qiushi; Yi Lui, Lena Wai; Zheng, Baixue; Kang, Chiang Huen; Nugraha, Bramasta; Yue, Zhilian; Jia, Rui Rui; Fu, Hong Xia; Choudhury, Deepak; Arooz, Talha; Yan, Jie; Lim, Chwee Teck; Shen, Shali; Hong Tan, Choon; Yu, Hanry

    2010-10-01

    Tissue constructs that mimic the in vivo cell-cell and cell-matrix interactions are especially useful for applications involving the cell- dense and matrix- poor internal organs. Rapid and precise arrangement of cells into functional tissue constructs remains a challenge in tissue engineering. We demonstrate rapid assembly of C3A cells into multi- cell structures using a dendrimeric intercellular linker. The linker is composed of oleyl- polyethylene glycol (PEG) derivatives conjugated to a 16 arms- polypropylenimine hexadecaamine (DAB) dendrimer. The positively charged multivalent dendrimer concentrates the linker onto the negatively charged cell surface to facilitate efficient insertion of the hydrophobic oleyl groups into the cellular membrane. Bringing linker- treated cells into close proximity to each other via mechanical means such as centrifugation and micromanipulation enables their rapid assembly into multi- cellular structures within minutes. The cells exhibit high levels of viability, proliferation, three- dimensional (3D) cell morphology and other functions in the constructs. We constructed defined multi- cellular structures such as rings, sheets or branching rods that can serve as potential tissue building blocks to be further assembled into complex 3D tissue constructs for biomedical applications. 2010 Elsevier Ltd. All rights reserved.

  18. Glucan: mechanisms involved in its radioprotective effect

    Patchen, M.L.; D'Alesandro, M.M.; Brook, I.; Blakely, W.F.; MacVittie, T.J.

    1987-01-01

    It has generally been accepted that most biologically derived agents that are radioprotective in the hemopoietic-syndrome dose range (eg, endotoxin, Bacillus Calmette Guerin, Corynebacterium parvum, etc) exert their beneficial properties by enhancing hemopoietic recovery and hence, by regenerating the host's ability to resist life-threatening opportunistic infections. However, using glucan as a hemopoietic stimulant/radioprotectant, we have demonstrated that host resistance to opportunistic infection is enhanced in these mice even prior to the detection of significant hemopoietic regeneration. This early enhanced resistance to microbial invasion in glucan-treated irradiated mice could be correlated with enhanced and/or prolonged macrophage (but not granulocyte) function. These results suggest that early after irradiation glucan may mediate its radioprotection by enhancing resistance to microbial invasion via mechanisms not necessarily predicated on hemopoietic recovery. In addition, preliminary evidence suggests that glucan can also function as an effective free-radical scavenger. Because macrophages have been shown to selectively phagocytize and sequester glucan, the possibility that these specific cells may be protected by virtue of glucan's scavenging ability is also suggested

  19. The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction

    Sorkin Adam M

    2006-05-01

    Full Text Available Abstract Background In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. Methods To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm2 for this study at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (μPIV experiments. Results Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. Conclusion The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable.

  20. Identification of human genes involved in cellular responses to ionizing radiation: molecular and cellular studies of gene encoding the p68 helicase in mammalian cells

    Menaa, F.

    2003-12-01

    Cells submitted to genotoxic factors -like IR- activate several and important mechanisms such as repair, cell cycle arrest or 'apoptosis' to maintain genetic integrity. So, the damaged cells will induce many and different genes. The human transcriptome analysis by 'SSH' method in a human breast carcinoma cell line MCF7 γ-irradiated versus not irradiated, allowed to identify about one hundred genes. Among of these genes, we have focused our study on a radio-induced gene encoding the p68 helicase. In the conditions of irradiation used, our results show that the kinetic and the regulation of this gene expression differs between the nature of radiations used. Indeed, in γ-irradiated mammalian cells, ATM, a protein kinase activated by DSB and IR, is required to induce quickly P68 gene via the important transcription factor p53 stabilized by IR. In the case of UVC-irradiated cells, the P68 gene induction is late and the intracellular signalling pathway that lead to this induction is independent from the p53 protein. Finally, we show that the p68 protein under-expression is responsible for an increased radiosensitivity of MCF7 cells. Consequently, we can postulate that the p68 protein is involved in cellular responses to radiations to reduce the increased radiosensitivity of cells exposed to γ-rays. (author)

  1. Cellular and molecular mechanisms of HIV-1 integration targeting.

    Engelman, Alan N; Singh, Parmit K

    2018-07-01

    Integration is central to HIV-1 replication and helps mold the reservoir of cells that persists in AIDS patients. HIV-1 interacts with specific cellular factors to target integration to interior regions of transcriptionally active genes within gene-dense regions of chromatin. The viral capsid interacts with several proteins that are additionally implicated in virus nuclear import, including cleavage and polyadenylation specificity factor 6, to suppress integration into heterochromatin. The viral integrase protein interacts with transcriptional co-activator lens epithelium-derived growth factor p75 to principally position integration within gene bodies. The integrase additionally senses target DNA distortion and nucleotide sequence to help fine-tune the specific phosphodiester bonds that are cleaved at integration sites. Research into virus-host interactions that underlie HIV-1 integration targeting has aided the development of a novel class of integrase inhibitors and may help to improve the safety of viral-based gene therapy vectors.

  2. Effects of Mechanical Properties on Tumor Invasion: Insights from a Cellular Model

    Li, YZ

    2014-08-01

    Understanding the regulating mechanism of tumor invasion is of crucial importance for both fundamental cancer research and clinical applications. Previous in vivo experiments have shown that invasive cancer cells dissociate from the primary tumor and invade into the stroma, forming an irregular invasive morphology. Although cell movements involved in tumor invasion are ultimately driven by mechanical forces of cell-cell interactions and tumor-host interactions, how these mechanical properties affect tumor invasion is still poorly understood. In this study, we use a recently developed two-dimensional cellular model to study the effects of mechanical properties on tumor invasion. We study the effects of cell-cell adhesions as well as the degree of degradation and stiffness of extracellular matrix (ECM). Our simulation results show that cell-cell adhesion relationship must be satisfied for tumor invasion. Increased adhesion to ECM and decreased adhesion among tumor cells result in invasive tumor behaviors. When this invasive behavior occurs, ECM plays an important role for both tumor morphology and the shape of invasive cancer cells. Increased stiffness and stronger degree of degradation of ECM promote tumor invasion, generating more aggressive tumor invasive morphologies. It can also generate irregular shape of invasive cancer cells, protruding towards ECM. The capability of our model suggests it a useful tool to study tumor invasion and might be used to propose optimal treatment in clinical applications.

  3. Simulating Flaring Events via an Intelligent Cellular Automata Mechanism

    Dimitropoulou, M.; Vlahos, L.; Isliker, H.; Georgoulis, M.

    2010-07-01

    We simulate flaring events through a Cellular Automaton (CA) model, in which, for the first time, we use observed vector magnetograms as initial conditions. After non-linear force free extrapolation of the magnetic field from the vector magnetograms, we identify magnetic discontinuities, using two alternative criteria: (1) the average magnetic field gradient, or (2) the normalized magnetic field curl (i.e. the current). Magnetic discontinuities are identified at the grid-sites where the magnetic field gradient or curl exceeds a specified threshold. We then relax the magnetic discontinuities according to the rules of Lu and Hamilton (1991) or Lu et al. (1993), i.e. we redistribute the magnetic field locally so that the discontinuities disappear. In order to simulate the flaring events, we consider several alternative scenarios with regard to: (1) The threshold above which magnetic discontinuities are identified (applying low, high, and height-dependent threshold values); (2) The driving process that occasionally causes new discontinuities (at randomly chosen grid sites, magnetic field increments are added that are perpendicular (or may-be also parallel) to the existing magnetic field). We address the question whether the coronal active region magnetic fields can indeed be considered to be in the state of self-organized criticality (SOC).

  4. Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications

    Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil

    2016-01-01

    The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.

  5. Lipoprotein(a: Cellular Effects and Molecular Mechanisms

    Kirsten Riches

    2012-01-01

    Full Text Available Lipoprotein(a (Lp(a is an independent risk factor for the development of cardiovascular disease (CVD. Indeed, individuals with plasma concentrations >20 mg/dL carry a 2-fold increased risk of developing CVD, accounting for ~25% of the population. Circulating levels of Lp(a are remarkably resistant to common lipid lowering therapies, and there are currently no robust treatments available for reduction of Lp(a apart from plasma apheresis, which is costly and labour intensive. The Lp(a molecule is composed of two parts, an LDL/apoB-100 core and a unique glycoprotein, apolipoprotein(a (apo(a, both of which can interact with components of the coagulation cascade, inflammatory pathways, and cells of the blood vessel wall (smooth muscle cells (SMC and endothelial cells (EC. Therefore, it is of key importance to determine the molecular pathways by which Lp(a exerts its influence on the vascular system in order to design therapeutics to target its cellular effects. This paper will summarise the role of Lp(a in modulating cell behaviour in all aspects of the vascular system including platelets, monocytes, SMC, and EC.

  6. Cellular mechanisms for presynaptic inhibition of sensory afferents

    Perrier, Jean-Francois Marie; delgado-lezama, rodolfo; Christensen, Rasmus Kordt

    It is well established that presynaptic inhibition of primary afferents involves the activation of GABAA receptors located on presynaptic terminals. However, the source of GABA remains unknown. In an integrated preparation of the spinal cord of the adult turtle, we evoked dorsal root potentials...

  7. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions.

    Wolfe, Annie; Phipps, Kara; Weitao, Tao

    2014-01-01

    DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.

  8. Mechanisms of Cellular Proteostasis: Insights from Single-Molecule Approaches

    Bustamante, Carlos J.; Kaiser, Christian M.; Maillard, Rodrigo A.; Goldman, Daniel H.; Wilson, Christian A.M.

    2015-01-01

    Cells employ a variety of strategies to maintain proteome homeostasis. Beginning during protein biogenesis, the translation machinery and a number of molecular chaperones promote correct de novo folding of nascent proteins even before synthesis is complete. Another set of molecular chaperones helps to maintain proteins in their functional, native state. Polypeptides that are no longer needed or pose a threat to the cell, such as misfolded proteins and aggregates, are removed in an efficient and timely fashion by ATP-dependent proteases. In this review, we describe how applications of single-molecule manipulation methods, in particular optical tweezers, are shedding new light on the molecular mechanisms of quality control during the life cycles of proteins. PMID:24895851

  9. Involvement of the iron regulatory protein from Eisenia andrei earthworms in the regulation of cellular iron homeostasis.

    Petra Procházková

    Full Text Available Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs of the 5'- or 3'-untranslated regions (UTR of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP. The earthworm IRE site in 5'-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant.

  10. Involvement of the Iron Regulatory Protein from Eisenia andrei Earthworms in the Regulation of Cellular Iron Homeostasis

    Procházková, Petra; Škanta, František; Roubalová, Radka; Šilerová, Marcela; Dvořák, Jiří; Bilej, Martin

    2014-01-01

    Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs) that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs) of the 5′- or 3′-untranslated regions (UTR) of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP). The earthworm IRE site in 5′-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant. PMID:25279857

  11. Testosterone deficiency syndrome: cellular and molecular mechanism of action.

    Carruthers, Malcolm

    2013-02-01

    There is virtually no correlation between what are generally accepted to be the symptoms of deficient androgen in men and levels of androgens as measured in the laboratory. Now that androgen deficiency is being shown to play a part in conditions as diverse as metabolic syndrome, diabetes, and coronary heart disease, a hypothesis is needed to explain this apparent discrepancy between measured androgen levels and our understanding of the symptoms of androgen deficiency. When the possible mechanisms for androgen actions are considered, one explanation emerges that androgen may act much like insulin in persons with type 2 diabetes mellitus: the degree of androgen resistance may be variable depending on the organs or systems considered. Therefore, the symptoms can result from altered or damaged synthesis of androgen synthesis or regulation, elevated androgen binding, a reduction in tissue response, or decreased as a result of polymorphism and aging. Genomic transcription and translation may also be affected. As with diabetes, in adult male androgen deficiency, it is suggested that the definition of androgen deficiency should be based on individual physiology, with the requirements of the individual at a particular stage of life setting the baseline against which any deficiency of androgens or androgen metabolites, either absolute or relative, is determined. This approach will affect the terminology, etiology, diagnosis, and treatment of androgen deficiency.

  12. Potential cellular receptors involved in hepatitis C virus entry into cells

    Muellhaupt Beat

    2005-04-01

    Full Text Available Abstract Hepatitis C virus (HCV infects hepatocytes and leads to permanent, severe liver damage. Since the genomic sequence of HCV was determined, progress has been made towards understanding the functions of the HCV-encoded proteins and identifying the cellular receptor(s responsible for adsorption and penetration of the virus particle into the target cells. Several cellular receptors for HCV have been proposed, all of which are associated with lipid and lipoprotein metabolism. This article reviews the cellular receptors for HCV and suggests a general model for HCV entry into cells, in which lipoproteins play a crucial role.

  13. Cellular mechanisms of cyclophosphamide-induced taste loss in mice

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J.

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system’s capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake. PMID:28950008

  14. Cellular mechanisms of cyclophosphamide-induced taste loss in mice.

    Nabanita Mukherjee

    Full Text Available Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system's capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake.

  15. Cellular mechanisms of cyclophosphamide-induced taste loss in mice.

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J; Delay, Eugene R

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system's capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake.

  16. Design and implementation of a novel mechanical testing system for cellular solids.

    Nazarian, Ara; Stauber, Martin; Müller, Ralph

    2005-05-01

    Cellular solids constitute an important class of engineering materials encompassing both man-made and natural constructs. Materials such as wood, cork, coral, and cancellous bone are examples of cellular solids. The structural analysis of cellular solid failure has been limited to 2D sections to illustrate global fracture patterns. Due to the inherent destructiveness of 2D methods, dynamic assessment of fracture progression has not been possible. Image-guided failure assessment (IGFA), a noninvasive technique to analyze 3D progressive bone failure, has been developed utilizing stepwise microcompression in combination with time-lapsed microcomputed tomographic imaging (microCT). This method allows for the assessment of fracture progression in the plastic region, where much of the structural deformation/energy absorption is encountered in a cellular solid. Therefore, the goal of this project was to design and fabricate a novel micromechanical testing system to validate the effectiveness of the stepwise IGFA technique compared to classical continuous mechanical testing, using a variety of engineered and natural cellular solids. In our analysis, we found stepwise compression to be a valid approach for IGFA with high precision and accuracy comparable to classical continuous testing. Therefore, this approach complements the conventional mechanical testing methods by providing visual insight into the failure propagation mechanisms of cellular solids. (c) 2005 Wiley Periodicals, Inc.

  17. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Jinpeng Qi

    Full Text Available Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR by using mathematical framework of kinetic theory of active particles (KTAP. Firstly, we focus on illustrating the profile of Cellular Repair System (CRS instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs and Repair Protein (RP generating, DSB-protein complexes (DSBCs synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  18. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi

    2011-01-01

    Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  19. Altered DNA methylation: a secondary mechanism involved in carcinogenesis.

    Goodman, Jay I; Watson, Rebecca E

    2002-01-01

    This review focuses on the role that DNA methylation plays in the regulation of normal and aberrant gene expression and on how, in a hypothesis-driven fashion, altered DNA methylation may be viewed as a secondary mechanism involved in carcinogenesis. Research aimed at discerning the mechanisms by which chemicals can transform normal cells into frank carcinomas has both theoretical and practical implications. Through an increased understanding of the mechanisms by which chemicals affect the carcinogenic process, we learn more about basic biology while, at the same time, providing the type of information required to make more rational safety assessment decisions concerning their actual potential to cause cancer under particular conditions of exposure. One key question is: does the mechanism of action of the chemical in question involve a secondary mechanism and, if so, what dose may be below its threshold?

  20. Cellular Mechanisms of Calcium-Mediated Triggered Activity

    Song, Zhen

    Life-threatening cardiac arrhythmias continue to pose a major health problem. Ventricular fibrillation, which is a complex form of electrical wave turbulence in the lower chambers of the heart, stops the heart from pumping and is the largest cause of natural death in the United States. Atrial fibrillation, a related form of wave turbulence in the upper heart chambers, is in turn the most common arrhythmia diagnosed in clinical practice. Despite extensive research to date, mechanisms of cardiac arrhythmias remain poorly understood. It is well established that both spatial disorder of the refractory period of heart cells and triggered activity (TA) jointly contribute to the initiation and maintenance of arrhythmias. TA broadly refers to the abnormal generation of a single or a sequence of abnormal excitation waves from a small submillimeter region of the heart in the interval of time between two normal waves generated by the heart's natural pacemaker (the sinoatrial node). TA has been widely investigated experimentally and occurs in several pathological conditions where the intracellular concentration of free Ca2+ ions in heart cells becomes elevated. Under such conditions, Ca2+ can be spontaneously released from intracellular stores, thereby driving an electrogenic current that exchanges 3Na+ ions for one Ca2+ ion across the cell membrane. This current in turn depolarizes the membrane of heart cells after a normal excitation. If this calcium-mediated "delayed after depolarization'' (DAD) is sufficiently large, it can generate an action potential. While the arrhythmogenic importance of spontaneous Ca2+ release and DADs is well appreciated, the conditions under which they occur in heart pathologies remain poorly understood. Calcium overload is only one factor among several other factors that can promote DADs, including sympathetic nerve stimulation, different expression levels of membrane ion channels and calcium handling proteins, and different mutations of those

  1. Cellular mRNA decay factors involved in the hepatitis C virus life cycle

    Mina Ibarra, Leonardo Bruno

    2010-01-01

    The group of positive strand RNA ((+)RNA) viruses includes numerous plant, animal and human pathogens such as the hepatitis C virus (HCV). Their viral genomes mimic cellular mRNAs, however, besides acting as messengers for translation of viral proteins, they also act as templates for viral replication. Since these two functions are mutually exclusive, a key step in the replication of all (+) RNA viruses is the regulated exit of the genomic RNAs from the cellular translation machinery to the v...

  2. Use of Computational Modeling to Evaluate Hypotheses About the Molecular and Cellular Mechanisms of Bystander Effects

    Zhao, Yuchao; Conolly, Rory B; Andersen, Melvin E.

    2006-11-21

    This report describes the development of a computational systems biology approach to evaluate the hypotheses of molecular and cellular mechanisms of adaptive response to low dose ionizing radiation. Our concept is that computational models of signaling pathways can be developed and linked to biologically based dose response models to evaluate the underlying molecular mechanisms which lead to adaptive response. For development of quantitatively accurate, predictive models, it will be necessary to describe tissues consisting of multiple cell types where the different types each contribute in their own way to the overall function of the tissue. Such a model will probably need to incorporate not only cell type-specific data but also spatial information on the architecture of the tissue and on intercellular signaling. The scope of the current model was more limited. Data obtained in a number of different biological systems were synthesized to describe a chimeric, “average” population cell. Biochemical signaling pathways involved in sensing of DNA damage and in the activation of cell cycle checkpoint controls and the apoptotic path were also included. As with any computational modeling effort, it was necessary to develop these simplified initial descriptions (models) that can be iteratively refined. This preliminary model is a starting point which, with time, can evolve to a level of refinement where large amounts of detailed biological information are synthesized and a capability for robust predictions of dose- and time-response behaviors is obtained.

  3. Mechanical and mechanobiological influences on bone fracture repair : identifying important cellular characteristics

    Isaksson, H.E.

    2007-01-01

    Fracture repair is a complex and multifactorial process, which involves a well-programmed series of cellular and molecular events that result in a combination of intramembranous and endochondral bone formation. The vast majority of fractures is treated successfully. They heal through ‘secondary

  4. Mitochondrial correlates of signaling processes involved with the cellular response to eimeria infection in broiler chickens

    Host cellular responses to coccidiosis infection are consistent with elements of apoptosis, autophagy, and necrosis. These processes are enhanced in the cell through cell-directed signaling or repressed through parasite-derived inhibitors of these processes favoring the survival of the parasite. Acr...

  5. Cellular and subcellular localization of flavin-monooxygenases involved in glucosinolate biosynthesis

    Li, Jing; Kristiansen, Kim A.; Hansen, Bjarne Gram

    2011-01-01

    the side chain modifications take place despite their importance. Hence, the spatial expression pattern of FMO(GS-OX1-5) genes in Arabidopsis was investigated by expressing green fluorescent protein (GFP) and β-glucuronidase (GUS) fusion genes controlled by FMO(GS-OX1-5) promoters. The cellular...

  6. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  7. The linearity of quantum mechanics from the perspective of Hamiltonian cellular automata

    Enrico Fermi, Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy))" data-affiliation=" (Dipartimento di Fisica Enrico Fermi, Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa (Italy))" >Elze, Hans-Thomas

    2014-01-01

    We discuss the action principle and resulting Hamiltonian equations of motion for a class of integer-valued cellular automata introduced recently [1]. Employing sampling theory, these deterministic finite-difference equations are mapped reversibly on continuum equations describing a set of bandwidth limited harmonic oscillators. They represent the Schrödinger equation. However, modifications reflecting the bandwidth limit are incorporated, i.e., the presence of a time (or length) scale. When this discreteness scale is taken to zero, the usual results are obtained. Thus, the linearity of quantum mechanics can be traced to the postulated action principle of such cellular automata and its conservation laws to discrete ones. The cellular automaton conservation laws are in one-to-one correspondence with those of the related quantum mechanical model, while admissible symmetries are not.

  8. [Motivation and Emotional States: Structural Systemic, Neurochemical, Molecular and Cellular Mechanisms].

    Bazyan, A S

    2016-01-01

    The structural, systemic, neurochemical, molecular and cellular mechanisms of organization and coding motivation and emotional states are describe. The GABA and glutamatergic synaptic systems of basal ganglia form a neural network and participate in the implementation of voluntary behavior. Neuropeptides, neurohormones and paracrine neuromodulators involved in the organization of motivation and emotional states, integrated with synaptic systems, controlled by neural networks and organizing goal-directed behavior. Structural centers for united and integrated of information in voluntary and goal-directed behavior are globus pallidus. Substantia nigra pars reticulata switches the information from corticobasal networks to thalamocortical networks, induces global dopaminergic (DA) signal and organize interaction of mesolimbic and nigostriatnoy DA systems controlled by prefrontal and motor cortex. Together with the motor cortex, substantia nigra displays information in the brainstem and spinal cord to implementation of behavior. Motivation states are formed in the interaction of neurohormonal and neuropeptide systems by monoaminergic systems of brain. Emotional states are formed by monoaminergic systems of the mid-brain, where the leading role belongs to the mesolimbic DA system. The emotional and motivation state of the encoded specific epigenetic molecular and chemical pattern of neuron.

  9. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes.

    Shen, Ding-Wu; Pouliot, Lynn M; Hall, Matthew D; Gottesman, Michael M

    2012-07-01

    Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis.

  10. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    Mierke, Claudia Tanja

    2013-01-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation. (paper)

  11. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    Mierke, Claudia Tanja

    2013-12-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.

  12. Pathogenic Mechanisms Involved in the Hematological Alterations of Arenavirus-induced Hemorrhagic Fevers

    Roberto G. Pozner

    2013-01-01

    Full Text Available Viral hemorrhagic fevers (VHFs caused by arenaviruses are acute diseases characterized by fever, headache, general malaise, impaired cellular immunity, eventual neurologic involvement, and hemostatic alterations that may ultimately lead to shock and death. The causes of the bleeding are still poorly understood. However, it is generally accepted that these causes are associated to some degree with impaired hemostasis, endothelial cell dysfunction and low platelet counts or function. In this article, we present the current knowledge about the hematological alterations present in VHF induced by arenaviruses, including new aspects on the underlying pathogenic mechanisms.

  13. Mechanisms of cellular synchronization in the vascular wall. Mechanisms of vasomotion

    Matchkov, Vladimir

    2010-01-01

    . The presence of chloride channels in virtually all living cells is an essential problem as well as the dependence of ion channel properties on the complex interaction of many cellular proteins. I was the first who coupled the endogenous chloride current to one of four known bestrophin isoforms. PCR and Western...

  14. Molecular and cellular mechanisms of hexavalent chromium-induced lung cancer: an updated perspective.

    Urbano, A M; Ferreira, L M R; Alpoim, M C

    2012-03-01

    For over a century, chromium (Cr) has found widespread industrial and commercial use, namely as a pigment, in the production of stainless steel and in chrome plating. The adverse health effects to the skin and respiratory tract of prolonged exposure to Cr have been known or suspected for a long time, but it was much more recently that the toxicity of this element was unequivocally attributed to its hexavalent state. Based on the combined results of extensive epidemiological studies, animal carcinogenicity studies and several types of other relevant data, authoritative regulatory agencies have found sufficient evidence to classify hexavalent chromium [Cr(VI)] compounds as encountered in the chromate production, chromate pigment production and chromium plating industries as carcinogenic to humans. Crucial for the development of novel strategies to prevent, detect and/or treat Cr(VI)-induced cancers is a detailed knowledge of the molecular and cellular mechanisms underlying these pathologies. Unfortunately, in spite of a considerable research effort, crucial facets of these mechanisms remain essentially unknown. This review is intended to provide a concise, integrated and critical perspective of the current state of knowledge concerning multiple aspects of Cr(VI) carcinogenesis. It will present recent theories of Cr(VI)-induced carcinogenesis and will include aspects not traditionally covered in other reviews, such as the possible involvement of the energy metabolism in this process. A brief discussion on the models that have been used in the studies of Cr(VI)-induced carcinogenicity will also be included, due to the impact of this parameter on the relevance of the results obtained.

  15. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

    Huppert, Jula; Closhen, Dorothea; Croxford, Andrew; White, Robin; Kulig, Paulina; Pietrowski, Eweline; Bechmann, Ingo; Becher, Burkhard; Luhmann, Heiko J; Waisman, Ari; Kuhlmann, Christoph R W

    2010-04-01

    Recently T-helper 17 (Th17) cells were demonstrated to disrupt the blood-brain barrier (BBB) by the action of IL-17A. The aim of the present study was to examine the mechanisms that underlie IL-17A-induced BBB breakdown. Barrier integrity was analyzed in the murine brain endothelial cell line bEnd.3 by measuring the electrical resistance values using electrical call impedance sensing technology. Furthermore, in-cell Western blots, fluorescence imaging, and monocyte adhesion and transendothelial migration assays were performed. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. IL-17A induced NADPH oxidase- or xanthine oxidase-dependent reactive oxygen species (ROS) production. The resulting oxidative stress activated the endothelial contractile machinery, which was accompanied by a down-regulation of the tight junction molecule occludin. Blocking either ROS formation or myosin light chain phosphorylation or applying IL-17A-neutralizing antibodies prevented IL-17A-induced BBB disruption. Treatment of mice with EAE using ML-7, an inhibitor of the myosin light chain kinase, resulted in less BBB disruption at the spinal cord and less infiltration of lymphocytes via the BBB and subsequently reduced the clinical characteristics of EAE. These observations indicate that IL-17A accounts for a crucial step in the development of EAE by impairing the integrity of the BBB, involving augmented production of ROS.-Huppert, J., Closhen, D., Croxford, A., White, R., Kulig, P., Pietrowski, E., Bechmann, I., Becher, B., Luhmann, H. J., Waisman, A., Kuhlmann, C. R. W. Cellular mechanisms of IL-17-induced blood-brain barrier disruption.

  16. PTH1 receptor is involved in mediating cellular response to long-chain polyunsaturated fatty acids.

    Jose Candelario

    Full Text Available The molecular pathways by which long chain polyunsaturated fatty acids (LCPUFA influence skeletal health remain elusive. Both LCPUFA and parathyroid hormone type 1 receptor (PTH1R are known to be involved in bone metabolism while any direct link between the two is yet to be established. Here we report that LCPUFA are capable of direct, PTH1R dependent activation of extracellular ligand-regulated kinases (ERK. From a wide range of fatty acids studied, varying in chain length, saturation, and position of double bonds, eicosapentaenoic (EPA and docosahexaenoic fatty acids (DHA caused the highest ERK phosphorylation. Moreover, EPA potentiated the effect of parathyroid hormone (PTH(1-34 in a superagonistic manner. EPA or DHA dependent ERK phosphorylation was inhibited by the PTH1R antagonist and by knockdown of PTH1R. Inhibition of PTH1R downstream signaling molecules, protein kinases A (PKA and C (PKC, reduced EPA and DHA dependent ERK phosphorylation indicating that fatty acids predominantly activate G-protein pathway and not the β-arrestin pathway. Using picosecond time-resolved fluorescence microscopy and a genetically engineered PTH1R sensor (PTH-CC, we detected conformational responses to EPA similar to those caused by PTH(1-34. PTH1R antagonist blocked the EPA induced conformational response of the PTH-CC. Competitive binding studies using fluorescence anisotropy technique showed that EPA and DHA competitively bind to and alter the affinity of PTH1 receptor to PTH(1-34 leading to a superagonistic response. Finally, we showed that EPA stimulates protein kinase B (Akt phosphorylation in a PTH1R-dependent manner and affects the osteoblast survival pathway, by inhibiting glucocorticoid-induced cell death. Our findings demonstrate for the first time that LCPUFAs, EPA and DHA, can activate PTH1R receptor at nanomolar concentrations and consequently provide a putative molecular mechanism for the action of fatty acids in bone.

  17. Induction of Osmoadaptive Mechanisms and Modulation of Cellular Physiology Help Bacillus licheniformis Strain SSA 61 Adapt to Salt Stress

    Paul, Sangeeta; Aggarwal, Chetana; Thakur, Jyoti Kumar; Bandeppa, G. S.; Khan, Md. Aslam; Pearson, Lauren M.; Babnigg, Gyorgy; Giometti, Carol S.; Joachimiak, Andrzej

    2015-01-06

    Bacillus licheniformis strain SSA 61, originally isolated from Sambhar salt lake, was observed to grow even in the presence of 25 % salt stress. Osmoadaptive mechanisms of this halotolerant B. licheniformis strain SSA 61, for long-term survival and growth under salt stress, were determined. Proline was the preferentially accumulated compatible osmolyte. There was also increased accumulation of antioxidants ascorbic acid and glutathione. Among the different antioxidative enzymes assayed, superoxide dismutase played the most crucial role in defense against salt-induced stress in the organism. Adaptation to stress by the organism involved modulation of cellular physiology at various levels. There was enhanced expression of known proteins playing essential roles in stress adaptation, such as chaperones DnaK and GroEL, and general stress protein YfkM and polynucleotide phosphorylase/polyadenylase. Proteins involved in amino acid biosynthetic pathway, ribosome structure, and peptide elongation were also overexpressed. Salt stress-induced modulation of expression of enzymes involved in carbon metabolism was observed. There was up-regulation of a number of enzymes involved in generation of NADH and NADPH, indicating increased cellular demand for both energy and reducing power.

  18. Determination of the mechanical properties of solid and cellular polymeric dosage forms by diametral compression.

    Blaesi, Aron H; Saka, Nannaji

    2016-07-25

    At present, the immediate-release solid dosage forms, such as the oral tablets and capsules, are granular solids. They release drug rapidly and have adequate mechanical properties, but their manufacture is fraught with difficulties inherent in processing particulate matter. Such difficulties, however, could be overcome by liquid-based processing. Therefore, we have recently introduced polymeric cellular (i.e., highly porous) dosage forms prepared from a melt process. Experiments have shown that upon immersion in a dissolution medium, the cellular dosage forms with polyethylene glycol (PEG) as excipient and with predominantly open-cell topology disintegrate by exfoliation, thus enabling rapid drug release. If the volume fraction of voids of the open-cell structures is too large, however, their mechanical strength is adversely affected. At present, the common method for determining the tensile strength of brittle, solid dosage forms (such as select granular forms) is the diametral compression test. In this study, the theory of diametral compression is first refined to demonstrate that the relevant mechanical properties of ductile and cellular solids (i.e., the elastic modulus and the yield strength) can also be extracted from this test. Diametral compression experiments are then conducted on PEG-based solid and cellular dosage forms. It is found that the elastic modulus and yield strength of the open-cell structures are about an order of magnitude smaller than those of the non-porous solids, but still are substantially greater than the stiffness and strength requirements for handling the dosage forms manually. This work thus demonstrates that melt-processed polymeric cellular dosage forms that release drug rapidly can be designed and manufactured to have adequate mechanical properties. Copyright © 2016. Published by Elsevier B.V.

  19. The Cellular and Molecular Mechanisms of Immuno-suppression by Human Type 1 Regulatory T cells

    Silvia eGregori

    2012-02-01

    Full Text Available The immuno-regulatory mechanisms of IL-10-producing type 1 regulatory T (Tr1 cells have been widely studied over the years. However, several recent discoveries have shed new light on the cellular and molecular mechanisms that human Tr1 cells use to control immune responses and induce tolerance. In this review we outline the well-known and newly discovered regulatory properties of human Tr1 cells and provide an in-depth comparison of the known suppressor mechanisms of Tr1 cells with FOXP3+ Treg. We also highlight the role that Tr1 cells play in promoting and maintaining tolerance in autoimmunity, allergy, and transplantation.

  20. The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation.

    Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Urbán, Patricia; Bogni, Alessia; Ponti, Jessica; Gioria, Sabrina; Kinsner-Ovaskainen, Agnieszka

    2017-06-26

    Significant progress of nanotechnology, including in particular biomedical and pharmaceutical applications, has resulted in a high number of studies describing the biological effects of nanomaterials. Moreover, a determination of so-called "critical quality attributes", that is specific physicochemical properties of nanomaterials triggering the observed biological response, has been recognised as crucial for the evaluation and design of novel safe and efficacious therapeutics. In the context of in vitro studies, a thorough physicochemical characterisation of nanoparticles (NPs), also in the biological medium, is necessary to allow a correlation with a cellular response. Following this concept, we examined whether the main and frequently reported characteristics of NPs such as size and the agglomeration state can influence the level and the mechanism of NP cellular internalization. We employed fluorescently-labelled 30 and 80 nm silicon dioxide NPs, both in agglomerated and non-agglomerated form. Using flow cytometry, transmission electron microscopy, the inhibitors of endocytosis and gene silencing we determined the most probable routes of cellular uptake for each form of tested silica NPs. We observed differences in cellular uptake depending on the size and the agglomeration state of NPs. Caveolae-mediated endocytosis was implicated particularly in the internalisation of well dispersed silica NPs but with an increase of the agglomeration state of NPs a combination of endocytic pathways with a predominant role of macropinocytosis was noted. We demonstrated that the agglomeration state of NPs is an important factor influencing the level of cell uptake and the mechanism of endocytosis of silica NPs.

  1. Mechanisms of cellular synchronization in the vascular wall. Mechanisms of vasomotion.

    Matchkov, Vladimir V

    2010-10-01

    membrane potential and cellular volume, as well as for body homeostasis. CaCCs are well characterized in vascular tissues but only at the functional level. The lack of their molecular structure makes it difficult to study the clinical significance of these channels. Based on patch clamp measurements of ion currents, I have previously characterized in SMCs a chloride current with unique properties. This chloride current activated by cGMP, has very high sensitivity to calcium and can be inhibited by low concentrations of zinc ions, while the traditional inhibitors of CaCCs affect this current only at very high concentrations. This cGMP-dependent, calcium-activated chloride current has a linear volt-age-dependence, which differs from previously characterized CaCCs, and it has characteristic anion permeability. This current has been detected in SMCs isolated from a number of different vascular beds but, importantly, it has not been detected in pulmonary arteries. Moreover, this current has been shown in SMCs isolated intestine indicating its broad distribution. Based on unique characteristics I have suggested that the cGMP-dependent calcium-activated chloride current can synchronize SMCs in the vascular wall and that bestrophin protein could be the molecular substrate for this current. Bestrophin has been characterized first as a gene in which mutations cause vitelliform macular dystrophy (VMD) or Best diseases. Based on heterologous expression it has been suggested that bestrophin is a chloride channel. This question is nevertheless controversial since caution should be taken in heterologous expression of calcium-activated chloride channel candidates. The presence of chloride channels in virtually all living cells is an essential problem as well as the dependence of ion channel properties on the complex interaction of many cellular proteins. I was the first who coupled the endogenous chloride current to one of four known bestrophin isoforms. PCR and Western blot studies on

  2. Mechanisms Involved in Exercise-Induced Cardioprotection: A Systematic Review

    Borges, Juliana Pereira; Lessa, Marcos Adriano

    2015-01-01

    Background Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditioning is still under debate. Objective To perform a systematic review of the studies that have addressed the mechanisms by which aerobic exercise promotes direct cardioprotection against ischemia and reperfusion injury. Methods A search was conducted using MEDLINE, Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde, and Scientific Electronic Library Online databases. Data were extracted in a standardized manner by two independent researchers, who were responsible for assessing the methodological quality of the studies. Results The search retrieved 78 studies; after evaluating the abstracts, 30 studies were excluded. The manuscripts of the remaining 48 studies were completely read and, of these, 20 were excluded. Finally, 28 studies were included in this systematic review. Conclusion On the basis of the selected studies, the following are potentially involved in the cardioprotective response to exercise: increased heat shock protein production, nitric oxide pathway involvement, increased cardiac antioxidant capacity, improvement in ATP-dependent potassium channel function, and opioid system activation. Despite all the previous investigations, further research is still necessary to obtain more consistent conclusions. PMID:25830711

  3. Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley

    Shirvanehdeh, Behrooz Darbani; Noeparvar, Shahin; Borg, Søren

    2016-01-01

    circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular...... protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes...... and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs’ functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear...

  4. Cellular and Molecular Mechanisms of Diabetic Atherosclerosis: Herbal Medicines as a Potential Therapeutic Approach

    Jinfan Tian

    2017-01-01

    Full Text Available An increasing number of patients diagnosed with diabetes mellitus eventually develop severe coronary atherosclerosis disease. Both type 1 and type 2 diabetes mellitus increase the risk of cardiovascular disease associated with atherosclerosis. The cellular and molecular mechanisms affecting the incidence of diabetic atherosclerosis are still unclear, as are appropriate strategies for the prevention and treatment of diabetic atherosclerosis. In this review, we discuss progress in the study of herbs as potential therapeutic agents for diabetic atherosclerosis.

  5. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects

    Varland, Sylvia; Osberg, Camilla; Arnesen, Thomas

    2015-01-01

    The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities. PMID:25914051

  6. Advanced in study of cellular and molecular mechanisms of radiation effects on central nervous system

    Zhang Wei; Tu Yu; Wang Lili

    2008-01-01

    Along with radiation treatment extensively applied, radiation injury also is valued gradually. The effect of radiation to the cellular and molecular of central nervous system (CNS) is a complicated and moderately advanced process and the mechanism is remains incompletely clear yet. Inquiring into the possible mechanism of the CNS including the injury and the restoration of neuron, neuroglia cells, endotheliocyte cell and blood-brain barrier and the molecular level of change induced by radiation, so as to provide beneficial thought for preventing and curing radiation injury clinically. Some neuroprotective strategies are also addressed in the review. (authors)

  7. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases.

    Kubben, Nard; Misteli, Tom

    2017-10-01

    Ageing is the predominant risk factor for many common diseases. Human premature ageing diseases are powerful model systems to identify and characterize cellular mechanisms that underpin physiological ageing. Their study also leads to a better understanding of the causes, drivers and potential therapeutic strategies of common diseases associated with ageing, including neurological disorders, diabetes, cardiovascular diseases and cancer. Using the rare premature ageing disorder Hutchinson-Gilford progeria syndrome as a paradigm, we discuss here the shared mechanisms between premature ageing and ageing-associated diseases, including defects in genetic, epigenetic and metabolic pathways; mitochondrial and protein homeostasis; cell cycle; and stem cell-regenerative capacity.

  8. [Russian/German contacts in discussion on cellular mechanisms of aging and lifespan (author's transl)].

    Duplenko, J K

    1980-01-01

    This is a brief review of the discussions which took place in natural literature at the end of XIX, and the beginning of XX century concerning the problems of cellular mechanism of aging, animal lifespan, death of metazoa and immortality of protozoa. The participation of German and Russian natural scientists in the discussion of cardinal gerontological questions is specially considered. The close relationship between the gerontological conceptions and the evolutionary ideas is emphasized. The author has established historical continuity of the above conceptions and modern evolutionary approaches to the predetermination of species' lifespan and mechanisms of aging.

  9. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching.

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged.

  10. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R.; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  11. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension

    Lewis, Amanda H; Grandl, Jörg

    2015-01-01

    Piezo1 ion channels mediate the conversion of mechanical forces into electrical signals and are critical for responsiveness to touch in metazoans. The apparent mechanical sensitivity of Piezo1 varies substantially across cellular environments, stimulating methods and protocols, raising the fundamental questions of what precise physical stimulus activates the channel and how its stimulus sensitivity is regulated. Here, we measured Piezo1 currents evoked by membrane stretch in three patch configurations, while simultaneously visualizing and measuring membrane geometry. Building on this approach, we developed protocols to minimize resting membrane curvature and tension prior to probing Piezo1 activity. We find that Piezo1 responds to lateral membrane tension with exquisite sensitivity as compared to other mechanically activated channels and that resting tension can drive channel inactivation, thereby tuning overall mechanical sensitivity of Piezo1. Our results explain how Piezo1 can function efficiently and with adaptable sensitivity as a sensor of mechanical stimulation in diverse cellular contexts. DOI: http://dx.doi.org/10.7554/eLife.12088.001 PMID:26646186

  12. Microenvironment is involved in cellular response to hydrostatic pressures during chondrogenesis of mesenchymal stem cells.

    Ye, Rui; Hao, Jin; Song, Jinlin; Zhao, Zhihe; Fang, Shanbao; Wang, Yating; Li, Juan

    2014-06-01

    Chondrocytes integrate numerous microenvironmental cues to mount physiologically relevant differentiation responses, and the regulation of mechanical signaling in chondrogenic differentiation is now coming into intensive focus. To facilitate tissue-engineered chondrogenesis by mechanical strategy, a thorough understanding about the interactional roles of chemical factors under mechanical stimuli in regulating chondrogenesis is in great need. Therefore, this study attempts to investigate the interaction of rat MSCs with their microenvironment by imposing dynamic and static hydrostatic pressure through modulating gaseous tension above the culture medium. Under dynamic pressure, chemical parameters (pH, pO2, and pCO2) were kept in homeostasis. In contrast, pH was remarkably reduced due to increased pCO2 under static pressure. MSCs under the dynamically pressured microenvironment exhibited a strong accumulation of GAG within and outside the alginate beads, while cells under the statically pressured environment lost newly synthesized GAG into the medium with a speed higher than its production. In addition, the synergic influence on expression of chondrogenic genes was more persistent under dynamic pressure than that under static pressure. This temporal contrast was similar to that of activation of endogenous TGF-β1. Taken altogether, it indicates that a loading strategy which can keep a homeostatic chemical microenvironment is preferred, since it might sustain the stimulatory effects of mechanical stimuli on chondrogenesis via activation of endogenous TGF-β1. © 2013 Wiley Periodicals, Inc.

  13. Cellular, molecular, and epigenetic mechanisms in non-associative conditioning: implications for pain and memory.

    Rahn, Elizabeth J; Guzman-Karlsson, Mikael C; David Sweatt, J

    2013-10-01

    Sensitization is a form of non-associative conditioning in which amplification of behavioral responses can occur following presentation of an aversive or noxious stimulus. Understanding the cellular and molecular underpinnings of sensitization has been an overarching theme spanning the field of learning and memory as well as that of pain research. In this review we examine how sensitization, both in the context of learning as well as pain processing, shares evolutionarily conserved behavioral, cellular/synaptic, and epigenetic mechanisms across phyla. First, we characterize the behavioral phenomenon of sensitization both in invertebrates and vertebrates. Particular emphasis is placed on long-term sensitization (LTS) of withdrawal reflexes in Aplysia following aversive stimulation or injury, although additional invertebrate models are also covered. In the context of vertebrates, sensitization of mammalian hyperarousal in a model of post-traumatic stress disorder (PTSD), as well as mammalian models of inflammatory and neuropathic pain is characterized. Second, we investigate the cellular and synaptic mechanisms underlying these behaviors. We focus our discussion on serotonin-mediated long-term facilitation (LTF) and axotomy-mediated long-term hyperexcitability (LTH) in reduced Aplysia systems, as well as mammalian spinal plasticity mechanisms of central sensitization. Third, we explore recent evidence implicating epigenetic mechanisms in learning- and pain-related sensitization. This review illustrates the fundamental and functional overlay of the learning and memory field with the pain field which argues for homologous persistent plasticity mechanisms in response to sensitizing stimuli or injury across phyla. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy.

    Pahk, Ki Joo; Gélat, Pierre; Sinden, David; Dhar, Dipok Kumar; Saffari, Nader

    2017-12-01

    The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  15. The Effects of Chronological Age on the Cellular Mechanics of Human Dermal Fibroblasts

    Pan, Z.; Hung, V.; Kambhampati, S.; Ge, S. R.; Rafailovich, M.; Ghosh, K.; Clark, R.; Liu, Y. J.; Nakamura, T.; Shu, X. Z.; Prestwich, G.

    2006-03-01

    It is often observed that older people display diminished wound healing abilities. Understanding of this phenomenon is important for many in vivo applications of tissue engineering. In this study, the cell mechanics of dermal fibroblasts from 25, 40 and 84 years old female subjects were compared. These cells were cultured on functionalized hyaluronic acid hydrogel substrates which emulated physiological conditions in dermal tissue. The deformation of the substrate caused by cellular traction forces was detected by tracing the displacement of fluorescent beads embedded in the substrate using Digital Image Speckle Correlation. Then cellular traction forces were quantitatively determined by Finite Element Method in a linear elastic model with a high spatial resolution. These results were correlated with auxiliary measurements of substrate modulus, cell modulus and migration. We found that with increasing age, the magnitude of the cellular traction forces diminished. Similarly, the ability of the cells to adapt to changes in the mechanical properties of their environment and migrate was also impaired. The interrelationship between these factors and wound healing will be discussed. This work is supported by NSF- MRSEC program.

  16. Molecular and cellular mechanisms of tight junction dysfunction in the irritable bowel syndrome.

    Cheng, Peng; Yao, Jianning; Wang, Chunfeng; Zhang, Lianfeng; Kong, Wuming

    2015-09-01

    The pathophysiological mechanisms of the irritable bowel syndrome (IBS), one of the most prevalent gastrointestinal disorders, are complex and have not been fully elucidated. The present study aimed to investigate the molecular and cellular mechanisms of tight junction (TJ) dysfunction in IBS. Intestinal tissues of IBS and non‑IBS patients were examined to observe cellular changes by cell chemical tracer electron microscopy and transmission electron microscopy, and intestinal claudin‑1 protein was detected by immunohistochemistry, western blot analysis and fluorescence quantitative polymerase chain reaction. Compared with the control group, TJ broadening and the tracer extravasation phenomenon were observed in the diarrhea‑predominant IBS group, and a greater number of neuroendocrine cells and mast cells filled with high‑density particles in the endocrine package pulp as well as a certain extent of vacuolization were present. The expression of claudin‑1 in diarrhea‑predominant IBS patients was decreased, while it was increased in constipation‑predominant IBS patients. In conclusion, the results of the present study indicated that changes in cellular structure and claudin‑1 levels were associated with Tjs in IBS.

  17. Cellular mechanisms of estradiol-mediated sexual differentiation of the brain.

    Wright, Christopher L; Schwarz, Jaclyn S; Dean, Shannon L; McCarthy, Margaret M

    2010-09-01

    Gonadal steroids organize the developing brain during a perinatal sensitive period and have enduring consequences for adult behavior. In male rodents testicular androgens are aromatized in neurons to estrogens and initiate multiple distinct cellular processes that ultimately determine the masculine phenotype. Within specific brain regions, overall cell number and dendritic morphology are the principal targets for hormonal organization. Recent advances have been made in elucidating the cellular mechanisms by which the neurological underpinnings of sexually dimorphic physiology and behavior are determined. These include estradiol-mediated prostaglandin synthesis, presynaptic release of glutamate, postsynaptic changes in glutamate receptors and changes in cell adhesion molecules. Sex differences in cell death are mediated by hormonal modulation of survival and death factors such as TNFalpha and Bcl-2/BAX. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Cellular and molecular mechanisms in malignant transformation of diploid rodent and human cells by radiation

    Borek, C.

    1985-01-01

    The development of cell culture systems has made it possible to probe into the effects of radiation at a cellular and molecular level, under defined conditions where homeostatic mechanisms do not prevail. Using in vitro systems free of host-medicated influences, one can assess qualitatively and quantitatively dose-related and time-dependent interactions of radiation with single cells and to evaluate the influences of agents that may enhance or inhibit the oncogenic potential of radiation. These systems are useful in pragmatic studies where dose response relationships and cancer risk estimates are assessed with particular focus on the low dose range of radiation where epidemiological and animal studies are limiting. The in vitro systems serve well also in mechanistic studies where cellular and molecular processes underlying transformation can be elucidated and where the role of modulating factors which determine the frequency and quality of these events can be investigated

  19. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations. PMID:25999313

  20. Identification of Circular RNAs From the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    Behrooz eDarbani

    2016-06-01

    Full Text Available RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts.Keywords: circular RNAs, coding and non-coding transcripts, leaves, seeds, transfer cells, micronutrients, mitochondria

  1. Mechanism(s) involved in opioid drug abuse modulation of HAND.

    Dutta, Raini; Roy, Sabita

    2012-07-01

    Drug abuse and HIV infection are interlinked. From the onset of the HIV/AIDS epidemic, the impact of illicit drug use on HIV disease progression has been a focus of many investigations. Both laboratory-based and epidemiological studies strongly indicate that drug abuse may exacerbate HIV disease progression and increase mortality and morbidity in these patients. Increase susceptibility to opportunistic infection has been implicated as one of the major causes for this detriment. Furthermore, opioids are known to elicit prevalence of neurodegenerative disorders in HIV-infected patients. Numerous authors have delineated various molecular as well as cellular mechanisms associated with neurological complications in these patients. This review gives an overview of these findings. Understanding the mechanisms will allow for the development of targeted therapies aimed at reducing the progression of neurocognitive decline in the drug abusing HIV infected individuals.

  2. Quantum-Mechanical Calculations on Molecular Substructures Involved in Nanosystems

    Beata Szefler

    2014-09-01

    Full Text Available In this review article, four ideas are discussed: (a aromaticity of fullerenes patched with flowers of 6-and 8-membered rings, optimized at the HF and DFT levels of theory, in terms of HOMA and NICS criteria; (b polybenzene networks, from construction to energetic and vibrational spectra computations; (c quantum-mechanical calculations on the repeat units of various P-type crystal networks and (d construction and stability evaluation, at DFTB level of theory, of some exotic allotropes of diamond D5, involved in hyper-graphenes. The overall conclusion was that several of the yet hypothetical molecular nanostructures herein described are serious candidates to the status of real molecules.

  3. Complement Involvement in Periodontitis: Molecular Mechanisms and Rational Therapeutic Approaches.

    Hajishengallis, George; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Lambris, John D

    2015-01-01

    The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis.

  4. Cellular and molecular effect of MEHP Involving LXRα in human fetal testis and ovary.

    Muczynski, Vincent; Lecureuil, Charlotte; Messiaen, Sébastien; Guerquin, Marie-Justine; N'tumba-Byn, Thierry; Moison, Delphine; Hodroj, Wassim; Benjelloun, Hinde; Baijer, Jan; Livera, Gabriel; Frydman, René; Benachi, Alexandra; Habert, René; Rouiller-Fabre, Virginie

    2012-01-01

    Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR) superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro. Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10(-4)M MEHP for 72 h in vitro. Transcriptional level of NRs and of downstream genes was then investigated using TLDA (TaqMan Low Density Array) and qPCR approaches. To determine whether somatic or germ cells of the testis are involved in the response to MEHP exposure, we developed a highly efficient cytometric germ cell sorting approach. In vitro exposure of fetal testes and ovaries to MEHP up-regulated the expression of LXRα, SREBP members and of downstream genes involved in the lipid and cholesterol synthesis in the whole gonad. In sorted testicular cells, this effect is only observable in somatic cells but not in the gonocytes. Moreover, the germ cell loss induced by MEHP exposure, that we previously described, is restricted to the male gonad as oogonia density is not affected in vitro. We evidenced for the first time that phthalate increases the levels of mRNA for LXRα, and SREBP members potentially deregulating lipids/cholesterol synthesis in human fetal gonads. Interestingly, this novel effect is observable in both male and female whereas the germ cell apoptosis is restricted to the male gonad. Furthermore, we presented here a novel and potentially very useful flow cytometric cell sorting method to analyse molecular changes in germ cells versus somatic cells.

  5. Cellular and molecular effect of MEHP Involving LXRα in human fetal testis and ovary.

    Vincent Muczynski

    Full Text Available Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro.Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10(-4M MEHP for 72 h in vitro. Transcriptional level of NRs and of downstream genes was then investigated using TLDA (TaqMan Low Density Array and qPCR approaches. To determine whether somatic or germ cells of the testis are involved in the response to MEHP exposure, we developed a highly efficient cytometric germ cell sorting approach. In vitro exposure of fetal testes and ovaries to MEHP up-regulated the expression of LXRα, SREBP members and of downstream genes involved in the lipid and cholesterol synthesis in the whole gonad. In sorted testicular cells, this effect is only observable in somatic cells but not in the gonocytes. Moreover, the germ cell loss induced by MEHP exposure, that we previously described, is restricted to the male gonad as oogonia density is not affected in vitro.We evidenced for the first time that phthalate increases the levels of mRNA for LXRα, and SREBP members potentially deregulating lipids/cholesterol synthesis in human fetal gonads. Interestingly, this novel effect is observable in both male and female whereas the germ cell apoptosis is restricted to the male gonad. Furthermore, we presented here a novel and potentially very useful flow cytometric cell sorting method to analyse molecular changes in germ cells versus somatic cells.

  6. Investigations into the involvement of NMDA mechanisms in recognition memory.

    Warburton, E Clea; Barker, Gareth R I; Brown, Malcom W

    2013-11-01

    This review will focus on evidence showing that NMDA receptor neurotransmission is critical for synaptic plasticity processes within brain regions known to be necessary for the formation of object recognition memories. The aim will be to provide evidence concerning NMDA mechanisms related to recognition memory processes and show that recognition memory for objects, places or associations between objects and places depends on NMDA neurotransmission within the perirhinal cortex, temporal association cortex medial prefrontal cortex and hippocampus. Administration of the NMDA antagonist AP5, selectively into each of these brain regions has revealed that the extent of the involvement NMDA receptors appears dependent on the type of information required to solve the recognition memory task; thus NMDA receptors in the perirhinal cortex are crucial for the encoding of long-term recognition memory for objects, and object-in-place associations, but not for short-term recognition memory or for retrieval. In contrast the hippocampus and medial prefrontal cortex are required for both long-term and short-term recognition memory for places or associations between objects and places, or for recognition memory tasks that have a temporal component. Such studies have therefore confirmed that the multiple brain regions make distinct contributions to recognition memory but in addition that more than one synaptic plasticity process must be involved. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. DMPD: Anti-inflammatory actions of PPAR ligands: new insights on cellular andmolecular mechanisms. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 17981503 Anti-inflammatory actions of PPAR ligands: new insights on cellular andmol...) (.html) (.csml) Show Anti-inflammatory actions of PPAR ligands: new insights on cellular andmolecular mech...anisms. PubmedID 17981503 Title Anti-inflammatory actions of PPAR ligands: new insight

  8. The Role of Mechanical Force in Molecular and Cellular during Orthodontic Tooth Movement

    Ida Bagus Narmada

    2012-10-01

    Full Text Available Application of mechanical force on abnormally positioned tooth, cause changes in tooth location and transmitted to the bone ia the periodontal ligament (PDL produce orthodontic tooth movement. This force application is further way that remodeling in the area occurs. In order to develop biological strategies for enhancing this movement of teeth in bone, the underlying mechanisms of bone resorption and apposition should be understood in detail. Analysis of gingival crevicular fluid (GCF may be a good means of examining the on going molecular and cellular process associated with gingival and bone turnover during orthodontic tooth movement. If it could be possible to biologically monitor and predict the outcome of orthodontic force, then the appliance management could be based on dividual tissue response and the effectiveness of the treatment could be improved and understanding their biology is critical to finding ways to modify bone biology to move teeth faster. The present article reviewed a short introduction to some mayors advanced mechanical force in molecular and cellular biology during orthodontic tooth movement.DOI: 10.14693/jdi.v15i3.30

  9. A new type of sandwich panel with periodic cellular metal cores and its mechanical performances

    Lim, Chae-Hong; Jeon, Insu; Kang, Ki-Ju

    2009-01-01

    Many studies have been performed on the mechanical properties and optimization of truss PCMs (periodic cellular metals), but those on the fabrication process, which is one of key factors determining the survivability of PCMs in the market, have been relatively limited. This study introduces a new idea on the fabrication of quasi Kagome truss cored sandwich panels, which is based on the expanded-metal process. And the mechanical behavior of the sandwich panels is to be evaluated. The mechanical strengths and failure mechanisms under compression and bending load are estimated based on elementary mechanics of materials, and the optimal design is derived. Its validity is proved by comparison with the results of experiments. The results showed that the new idea is promising with respect to all three requirements, i.e., the morphology, fabrication cost, and raw materials. The simple mechanical analysis was sufficiently effective and accurate for estimating the performance and failure mode of the sandwich panels. In the experiments, sandwich panel specimens of three different designs were compared in their bending behaviors to demonstrate sensitivity of geometric parameters. Namely, although all the designs had little difference in their load capacity-per-weight, the failure mechanisms and the behaviors after a peak load were totally different.

  10. Quantifying cellular mechanics and adhesion in renal tubular injury using single cell force spectroscopy.

    Siamantouras, Eleftherios; Hills, Claire E; Squires, Paul E; Liu, Kuo-Kang

    2016-05-01

    Tubulointerstitial fibrosis represents the major underlying pathology of diabetic nephropathy where loss of cell-to-cell adhesion is a critical step. To date, research has predominantly focussed on the loss of cell surface molecular binding events that include altered protein ligation. In the current study, atomic force microscopy single cell force spectroscopy (AFM-SCFS) was used to quantify changes in cellular stiffness and cell adhesion in TGF-β1 treated kidney cells of the human proximal tubule (HK2). AFM indentation of TGF-β1 treated HK2 cells showed a significant increase (42%) in the elastic modulus (stiffness) compared to control. Fluorescence microscopy confirmed that increased cell stiffness is accompanied by reorganization of the cytoskeleton. The corresponding changes in stiffness, due to F-actin rearrangement, affected the work of detachment by changing the separation distance between two adherent cells. Overall, our novel data quantitatively demonstrate a correlation between cellular elasticity, adhesion and early morphologic/phenotypic changes associated with tubular injury. Diabetes affects many patients worldwide. One of the long term problems is diabetic nephropathy. Here, the authors utilized atomic force microscopy single cell force spectroscopy (AFM- SCFS) to study cellular stiffness and cell adhesion after TGF1 treatment in human proximal tubule kidney cells. The findings would help further understand the overall disease mechanism in diabetic patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Cellular distribution and function of ion channels involved in transport processes in rat tracheal epithelium.

    Hahn, Anne; Faulhaber, Johannes; Srisawang, Lalita; Stortz, Andreas; Salomon, Johanna J; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank

    2017-06-01

    Transport of water and electrolytes in airway epithelia involves chloride-selective ion channels, which are controlled either by cytosolic Ca 2+ or by cAMP The contributions of the two pathways to chloride transport differ among vertebrate species. Because rats are becoming more important as animal model for cystic fibrosis, we have examined how Ca 2+ - dependent and cAMP- dependent Cl - secretion is organized in the rat tracheal epithelium. We examined the expression of the Ca 2+ -gated Cl - channel anoctamin 1 (ANO1), the cystic fibrosis transmembrane conductance regulator (CFTR) Cl - channel, the epithelial Na + channel ENaC, and the water channel aquaporin 5 (AQP5) in rat tracheal epithelium. The contribution of ANO1 channels to nucleotide-stimulated Cl - secretion was determined using the channel blocker Ani9 in short-circuit current recordings obtained from primary cultures of rat tracheal epithelial cells in Ussing chambers. We found that ANO1, CFTR and AQP5 proteins were expressed in nonciliated cells of the tracheal epithelium, whereas ENaC was expressed in ciliated cells. Among nonciliated cells, ANO1 occurred together with CFTR and Muc5b and, in addition, in a different cell type without CFTR and Muc5b. Bioelectrical studies with the ANO1-blocker Ani9 indicated that ANO1 mediated the secretory response to the nucleotide uridine-5'-triphosphate. Our data demonstrate that, in rat tracheal epithelium, Cl - secretion and Na + absorption are routed through different cell types, and that ANO1 channels form the molecular basis of Ca 2+ -dependent Cl - secretion in this tissue. These characteristic features of Cl - -dependent secretion reveal similarities and distinct differences to secretory processes in human airways. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes

    Eskhan, Asma Omar

    Atomic force microscopy has been used to quantify the adherence and mechanical properties of an array of L. monocytogenes strains and their surface biopolymers. First, eight L. monocytogenes strains that represented the two major lineages of the species were compared for their adherence and mechanics at cellular and molecular levels. Our results indicated that strains of lineage' II were characterized by higher adhesion and Young's moduli, longer and more rigid surface biopolymers and lower specific and nonspecific forces when compared to lineage' I strains. Additionally, adherence and mechanical properties of eight L. monocytogenes epidemic and environmental strains were probed. Our results pointed to that environmental and epidemic strains representative of a given lineage were similar in their adherence and mechanical properties when investigated at a cellular level. However, when the molecular properties of the strains were considered, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser and more flexible biopolymers compared to environmental strains. Second, the role of environmental pH conditions of growth on the adhesion and mechanics of a pathogenic L. monocytogenes EGDe was investigated. Our results pointed to a transition in the adhesion energies for cells cultured at pH 7. In addition, when the types of molecular forces that govern the adhesion were quantified using Poisson statistical approach and using a new proposed method, specific hydrogen-bond energies dominated the bacterial adhesion process. Such a finding is instrumental to researchers designing methods to control bacterial adhesion. Similarly, bacterial cells underwent a transition in their mechanical properties. We have shown that cells cultured at pH 7 were the most rigid compared to those cultured in lower or higher pH conditions of growth. Due to transitions observed in adherence and mechanics when cells were cultured at pH 7, we hypothesized that

  13. In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals

    Holland, Jason P; Bell, Stephen G; Wong, Luet-Lok; Dilworth, Jonathan R [Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA (United Kingdom); Giansiracusa, Jeffrey H [Department of Mathematics, Mathematical Institute, University of Oxford, 24-29 St Giles' , Oxford, OX1 3LB (United Kingdom)], E-mail: hollanj3@mskcc.org, E-mail: jasonpholland@gmail.com

    2009-04-07

    The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [{sup 60/62/64}Cu(II)ATSM] and [{sup 60/62/64}Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO{sub 2}-dependent in vitro cellular uptake and retention of [{sup 64}Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k{sub 1} = 9.8 {+-} 0.59 x 10{sup -4} s{sup -1} and k{sub 2} = 2.9 {+-} 0.17 x 10{sup -3} s{sup -1}), intracellular reduction (k{sub 3} = 5.2 {+-} 0.31 x 10{sup -2} s{sup -1}), reoxidation (k{sub 4} = 2.2 {+-} 0.13 mol{sup -1} dm{sup 3} s{sup -1}) and proton-mediated ligand dissociation (k{sub 5} = 9.0 {+-} 0.54 x 10{sup -5} s{sup -1}). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have

  14. Identifying the cellular mechanisms of symbiont-induced epithelial morphogenesis in the squid-Vibrio association.

    Koropatnick, Tanya; Goodson, Michael S; Heath-Heckman, Elizabeth A C; McFall-Ngai, Margaret

    2014-02-01

    The symbiotic association between the Hawaiian bobtail squid Euprymna scolopes and the luminous marine bacterium Vibrio fischeri provides a unique opportunity to study epithelial morphogenesis. Shortly after hatching, the squid host harvests bacteria from the seawater using currents created by two elaborate fields of ciliated epithelia on the surface of the juvenile light organ. After light organ colonization, the symbiont population signals the gradual loss of the ciliated epithelia through apoptosis of the cells, which culminates in the complete regression of these tissues. Whereas aspects of this process have been studied at the morphological, biochemical, and molecular levels, no in-depth analysis of the cellular events has been reported. Here we describe the cellular structure of the epithelial field and present evidence that the symbiosis-induced regression occurs in two steps. Using confocal microscopic analyses, we observed an initial epithelial remodeling, which serves to disable the function of the harvesting apparatus, followed by a protracted regression involving actin rearrangements and epithelial cell extrusion. We identified a metal-dependent gelatinolytic activity in the symbiont-induced morphogenic epithelial fields, suggesting the involvement of Zn-dependent matrix metalloproteinase(s) (MMP) in light organ morphogenesis. These data show that the bacterial symbionts not only induce apoptosis of the field, but also change the form, function, and biochemistry of the cells as part of the morphogenic program.

  15. Mechanisms and factors involved in hip injuries during frontal crashes.

    Yoganandan, N; Pintar, F A; Gennarelli, T A; Maltese, M R; Eppinger, R H

    2001-11-01

    This study was conducted to collect data and gain insights relative to the mechanisms and factors involved in hip injuries during frontal crashes and to study the tolerance of hip injuries from this type of loading. Unembalmed human cadavers were seated on a standard automotive seat (reinforced) and subjected to knee impact test to each lower extremity. Varying combinations of flexion and adduction/abduction were used for initial alignment conditions and pre-positioning. Accelerometers were fixed to the iliac wings and twelfth thoracic vertebral spinous process. A 23.4-kg padded pendulum impacted the knee at velocities ranging from 4.3 to 7.6 m/s. The impacting direction was along the anteroposterior axis, i.e., the global X-axis, in the body-fixed coordinate system. A load cell on the front of the pendulum recorded the impact force. Peak impact forces ranged from 2,450 to 10,950 N. The rate of loading ranged from 123 to 7,664 N/msec. The impulse values ranged from 12.4 to 31.9 Nsec. Injuries were not apparent in three tests. Eight tests resulted in trauma. Fractures involving the pelvis including the acetabulum and proximal femur occurred in five out of the eight tests, and distal femoral bone fracture occurred in one test. These results underscore the importance of leg pre-positioning and the orientation of the impacting axis to produce specific types of trauma to the pelvic region of the lower extremity.

  16. A cellular model of memory reconsolidation involves reactivation-induced destabilization and restabilization at the sensorimotor synapse in Aplysia.

    Lee, Sue-Hyun; Kwak, Chuljung; Shim, Jaehoon; Kim, Jung-Eun; Choi, Sun-Lim; Kim, Hyoung F; Jang, Deok-Jin; Lee, Jin-A; Lee, Kyungmin; Lee, Chi-Hoon; Lee, Young-Don; Miniaci, Maria Concetta; Bailey, Craig H; Kandel, Eric R; Kaang, Bong-Kiun

    2012-08-28

    The memory reconsolidation hypothesis suggests that a memory trace becomes labile after retrieval and needs to be reconsolidated before it can be stabilized. However, it is unclear from earlier studies whether the same synapses involved in encoding the memory trace are those that are destabilized and restabilized after the synaptic reactivation that accompanies memory retrieval, or whether new and different synapses are recruited. To address this issue, we studied a simple nonassociative form of memory, long-term sensitization of the gill- and siphon-withdrawal reflex in Aplysia, and its cellular analog, long-term facilitation at the sensory-to-motor neuron synapse. We found that after memory retrieval, behavioral long-term sensitization in Aplysia becomes labile via ubiquitin/proteasome-dependent protein degradation and is reconsolidated by means of de novo protein synthesis. In parallel, we found that on the cellular level, long-term facilitation at the sensory-to-motor neuron synapse that mediates long-term sensitization is also destabilized by protein degradation and is restabilized by protein synthesis after synaptic reactivation, a procedure that parallels memory retrieval or retraining evident on the behavioral level. These results provide direct evidence that the same synapses that store the long-term memory trace encoded by changes in the strength of synaptic connections critical for sensitization are disrupted and reconstructed after signal retrieval.

  17. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  18. Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins.

    Flavin, William P; Bousset, Luc; Green, Zachary C; Chu, Yaping; Skarpathiotis, Stratos; Chaney, Michael J; Kordower, Jeffrey H; Melki, Ronald; Campbell, Edward M

    2017-10-01

    Numerous pathological amyloid proteins spread from cell to cell during neurodegenerative disease, facilitating the propagation of cellular pathology and disease progression. Understanding the mechanism by which disease-associated amyloid protein assemblies enter target cells and induce cellular dysfunction is, therefore, key to understanding the progressive nature of such neurodegenerative diseases. In this study, we utilized an imaging-based assay to monitor the ability of disease-associated amyloid assemblies to rupture intracellular vesicles following endocytosis. We observe that the ability to induce vesicle rupture is a common feature of α-synuclein (α-syn) assemblies, as assemblies derived from WT or familial disease-associated mutant α-syn all exhibited the ability to induce vesicle rupture. Similarly, different conformational strains of WT α-syn assemblies, but not monomeric or oligomeric forms, efficiently induced vesicle rupture following endocytosis. The ability to induce vesicle rupture was not specific to α-syn, as amyloid assemblies of tau and huntingtin Exon1 with pathologic polyglutamine repeats also exhibited the ability to induce vesicle rupture. We also observe that vesicles ruptured by α-syn are positive for the autophagic marker LC3 and can accumulate and fuse into large, intracellular structures resembling Lewy bodies in vitro. Finally, we show that the same markers of vesicle rupture surround Lewy bodies in brain sections from PD patients. These data underscore the importance of this conserved endocytic vesicle rupture event as a damaging mechanism of cellular invasion by amyloid assemblies of multiple neurodegenerative disease-associated proteins, and suggest that proteinaceous inclusions such as Lewy bodies form as a consequence of continued fusion of autophagic vesicles in cells unable to degrade ruptured vesicles and their amyloid contents.

  19. Cellular and humoral factors involved in the response of rainbow trout gills to Ichthyophthirius multifiliis infections

    Olsen, Moonika Marana; Kania, Per Walter; Heinecke, Rasmus Demuth

    2011-01-01

    a significant down-regulating effect on genes incoding IgT, IgM, CD4, CD8, IFN-g, IL-8 and IL-22 in all groups. Immunohistochemistry, using monoclonal antibodies to detect cellular markers, demonstrated active involvement of CD8, MHC II, IgT and IgM positive cells in gill tissue. Putative T-cells (CD8 positive...... cells) were detected in the intraepithelial lymphoid tissue located at the base of gill filaments and in hyperplastic gill tissue but following infection a clear efflux of these cells was detected. MHC II positive cells were distributed across the gill filaments and accumulated in hyperplastic tissue...... in gill arterioles and the lamellar capillaries. The present work indicates an intensive activity and specialized function of immune cells (B-cells, T-cells and macrophages) and humoral elements such as immunoglobulins IgT and IgM which are orchestrated by cytokines in gill tissue reacting against I...

  20. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake

    Vaijayanthimala, Vairakkannu; Tzeng, Yan-Kai; Chang, Huan-Cheng; Li, Chung-Leung

    2009-01-01

    The labeling of cells with fluorescent nanoparticles is promising for various biomedical applications. The objective of this study is to evaluate the biocompatibility and the mechanism of the cellular uptake of fluorescent nanodiamonds (FNDs) in cancer cells (HeLa) and pre-adipocytes (3T3-L1). With flow cytometry and the use of a battery of metabolic and cytoskeletal inhibitors, we found that the mechanism of the FND uptake in both cells is by energy-dependent clathrin-mediated endocytosis. In addition, the surface charge of FND influences its cellular uptake, as the uptake of poly-L-lysine-coated FNDs is better than that of oxidative-acid-purified FNDs at the same concentration in regular medium with or without serum. We also confirm that the proliferative potential of FND-treated and untreated cells does not exhibit any significant differences when measured at bulk cultures, and more stringently at clonal cell density. Further biocompatibility studies indicate that the in vitro differentiation of 3T3-L1 pre-adipocytes and 489-2 osteoprogenitors is not affected by the FND treatment. Our results show that FNDs are biocompatible and ideal candidates for potential applications in human stem cell research.

  1. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake

    Vaijayanthimala, Vairakkannu; Tzeng, Yan-Kai; Chang, Huan-Cheng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Li, Chung-Leung, E-mail: hcchang@po.sinica.edu.t, E-mail: chungL@gate.sinica.edu.t [Genomics Research Center, Academia Sinica, Taipei 115, Taiwan (China)

    2009-10-21

    The labeling of cells with fluorescent nanoparticles is promising for various biomedical applications. The objective of this study is to evaluate the biocompatibility and the mechanism of the cellular uptake of fluorescent nanodiamonds (FNDs) in cancer cells (HeLa) and pre-adipocytes (3T3-L1). With flow cytometry and the use of a battery of metabolic and cytoskeletal inhibitors, we found that the mechanism of the FND uptake in both cells is by energy-dependent clathrin-mediated endocytosis. In addition, the surface charge of FND influences its cellular uptake, as the uptake of poly-L-lysine-coated FNDs is better than that of oxidative-acid-purified FNDs at the same concentration in regular medium with or without serum. We also confirm that the proliferative potential of FND-treated and untreated cells does not exhibit any significant differences when measured at bulk cultures, and more stringently at clonal cell density. Further biocompatibility studies indicate that the in vitro differentiation of 3T3-L1 pre-adipocytes and 489-2 osteoprogenitors is not affected by the FND treatment. Our results show that FNDs are biocompatible and ideal candidates for potential applications in human stem cell research.

  2. Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases

    Irina V. Kholodenko

    2017-01-01

    Full Text Available The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable.

  3. Effects of Matrix Alignment and Mechanical Constraints on Cellular Behavior in 3D Engineered Microtissues

    Bose, Prasenjit; Eyckmans, Jeroen; Chen, Christopher; Reich, Daniel

    The adhesion of cells to the extracellular matrix (ECM) plays a crucial role in a variety of cellular functions. The main building blocks of the ECM are 3D networks of fibrous proteins whose structure and alignments varies with tissue type. However, the impact of ECM alignment on cellular behaviors such as cell adhesion, spreading, extension and mechanics remains poorly understood. We present results on the development of a microtissue-based system that enables control of the structure, orientation, and degree of fibrillar alignment in 3D fibroblast-populated collagen gels. The tissues self-assemble from cell-laden collagen gels placed in micro-fabricated wells containing sets of elastic pillars. The contractile action of the cells leads to controlled alignment of the fibrous collagen, depending on the number and location of the pillars in each well. The pillars are elastic, and are utilized to measure the contractile forces of the microtissues, and by incorporating magnetic material in selected pillars, time-varying forces can be applied to the tissues for dynamic stimulation and measurement of mechanical properties. Results on the effects of varying pillar shape, spacing, location, and stiffness on microtissue organization and contractility will be presented. This work is supported by NSF CMMI-1463011.

  4. Resveratrol Inhibition of Cellular Respiration: New Paradigm for an Old Mechanism

    Luis Alberto Madrigal-Perez

    2016-03-01

    Full Text Available Resveratrol (3,4′,5-trihydroxy-trans-stilbene, RSV has emerged as an important molecule in the biomedical area. This is due to its antioxidant and health benefits exerted in mammals. Nonetheless, early studies have also demonstrated its toxic properties toward plant-pathogenic fungi of this phytochemical. Both effects appear to be opposed and caused by different molecular mechanisms. However, the inhibition of cellular respiration is a hypothesis that might explain both toxic and beneficial properties of resveratrol, since this phytochemical: (1 decreases the production of energy of plant-pathogenic organisms, which prevents their proliferation; (2 increases adenosine monophosphate/adenosine diphosphate (AMP/ADP ratio that can lead to AMP protein kinase (AMPK activation, which is related to its health effects, and (3 increases the reactive oxygen species generation by the inhibition of electron transport. This pro-oxidant effect induces expression of antioxidant enzymes as a mechanism to counteract oxidative stress. In this review, evidence is discussed that supports the hypothesis that cellular respiration is the main target of resveratrol.

  5. Antibody dependent cellular phagocytosis by macrophages is a novel mechanism of action of elotuzumab.

    Kurdi, Ahmed T; Glavey, Siobhan V; Bezman, Natalie A; Jhatakia, Amy; Guerriero, Jennifer L; Manier, Salomon; Moschetta, Michele; Mishima, Yuji; Roccaro, Aldo; Detappe, Alexandre; Liu, Chia-Jen; Sacco, Antonio; Huynh, Daisy; Tai, Yu-Tzu; Robbins, Michael D; Azzi, Jamil; Ghobrial, Irene M

    2018-04-13

    Elotuzumab, a recently approved antibody for the treatment of multiple myeloma (MM), has been shown to stimulate Fcγ receptor (FcγR)-mediated antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells towards myeloma cells. The modulatory effects of elotuzumab on other effector cells in the tumor microenvironment, however, has not been fully explored. Antibody dependent cellular phagocytosis (ADCP) is a mechanism by which macrophages contribute to anti-tumor potency of monoclonal antibodies. Herein, we studied the NK cell independent effect of elotuzumab on tumor associated macrophages (TAMs) using a xenograft tumor model deficient in NK and adaptive immune cells. We demonstrate significant anti-tumor efficacy of single agent elotuzumab in immunocompromised xenograft models of multiple myeloma, which is in part mediated by Fc-FcγR interaction of elotuzumab with macrophages. Elotuzumab is shown in this study to induce phenotypic activation of macrophages in-vivo and mediates ADCP of myeloma cells though a FcγR dependent manner in-vitro. Together, these findings propose a novel immune mediated mechanism by which elotuzumab exerts anti-myeloma activity and helps to provide rationale for combination therapies that can enhance macrophage activity. Copyright ©2018, American Association for Cancer Research.

  6. Involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells.

    Takahashi, Kaede; Fukushima, Kaori; Onishi, Yuka; Minami, Kanako; Otagaki, Shiho; Ishimoto, Kaichi; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2018-08-01

    Free fatty acid receptor 1 (FFA1) and FFA4 mediate a variety of biological responses through binding of medium- and long-chain free fatty acids. The aim of this study was to investigate an involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells. The long-term fluorouracil (5-FU) and cisplatin (CDDP) treated cells were generated from DLD1 cells (DLD-5FU and DLD-CDDP cells, respectively). FFAR1 expressions were lower in DLD-5FU and DLD-CDDP cells than in DLD1 cells. In contrast, DLD-5FU and DLD-CDDP cells showed the high FFAR4 expressions, compared with DLD1 cells. The cell motile activities of DLD-5FU and DLD-CDDP cells were reduced by GW9508 which is an agonist of FFA1 and FFA4. Moreover, GW1100, an antagonist of FFA1, inhibited the cell motile activities of DLD-5FU and DLD-CDDP cells. To evaluate whether FFA1 and FFA4 regulate the enhancement of cell motility, invasion and colony formation, highly migratory (hmDLD1) cells were established from DLD1 cells. FFAR1 expression was significantly higher in hmDLD1 cells than in DLD1 cells, but no change of FFAR4 expression was observed. The elevated cell motile and invasive activities and colony formation of hmDLD1 cells were suppressed by FFA1 inhibition. These results suggest that FFA1 and FFA4 are involved in the regulation of cellular functions during tumor progression in colon cancer DLD1 cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures

    Ravari, M R Karamooz; Kadkhodaei, M; Ghaei, A; Esfahani, S Nasr; Andani, M Taheri; Elahinia, M; Karaca, H

    2016-01-01

    Shape memory alloy (such as NiTi) cellular lattice structures are a new class of advanced materials with many potential applications. The cost of fabrication of these structures however is high. It is therefore necessary to develop modeling methods to predict the functional behavior of these alloys before fabrication. The main aim of the present study is to assess the effects of geometry, microstructural imperfections and material asymmetric response of dense shape memory alloys on the mechanical response of cellular structures. To this end, several cellular and dense NiTi samples are fabricated using a selective laser melting process. Both cellular and dense specimens were tested in compression in order to obtain their stress–strain response. For modeling purposes, a three -dimensional (3D) constitutive model based on microplane theory which is able to describe the material asymmetry was employed. Five finite element models based on unit cell and multi-cell methods were generated to predict the mechanical response of cellular lattices. The results show the considerable effects of the microstructural imperfections on the mechanical response of the cellular lattice structures. The asymmetric material response of the bulk material also affects the mechanical response of the corresponding cellular structure. (paper)

  8. Finite element analysis of the mechanical properties of cellular aluminium based on micro-computed tomography

    Veyhl, C.; Belova, I.V.; Murch, G.E.; Fiedler, T.

    2011-01-01

    Research highlights: → Elastic and plastic anisotropy is observed for both materials → Both show qualitatively similar characteristics with quantitative differences → Distinctly higher mechanical properties for closed-cell foam → The 'big' and 'small' models show good agreement for the closed-cell foam. - Abstract: In the present paper, the macroscopic mechanical properties of open-cell M-Pore sponge (porosity of 91-93%) and closed-cell Alporas foam (porosity of 80-86%) are investigated. The complex geometry of these cellular materials is scanned by micro-computed tomography and used in finite element (FE) analysis. The mechanical properties are determined by uni-axial compression simulations in three perpendicular directions (x-, y- and z-direction). M-Pore and Alporas exhibit the same qualitative mechanical characteristics but with quantitative differences. In both cases, strong anisotropy is observed for Young's modulus and the 0.002 offset yield stress. Furthermore, for the investigated relative density range a linear dependence between relative density and mechanical properties is found. Finally, a distinctly higher Young's modulus and 0.002 offset yield stress is observed for Alporas.

  9. The Molecular and Cellular Mechanisms of Axon Guidance in Mossy Fiber Sprouting

    Ryuta Koyama

    2018-05-01

    Full Text Available The question of whether mossy fiber sprouting is epileptogenic has not been resolved; both sprouting-induced recurrent excitatory and inhibitory circuit hypotheses have been experimentally (but not fully supported. Therefore, whether mossy fiber sprouting is a potential therapeutic target for epilepsy remains under debate. Moreover, the axon guidance mechanisms of mossy fiber sprouting have attracted the interest of neuroscientists. Sprouting of mossy fibers exhibits several uncommon axonal growth features in the basically non-plastic adult brain. For example, robust branching of axonal collaterals arises from pre-existing primary mossy fiber axons. Understanding the branching mechanisms in adulthood may contribute to axonal regeneration therapies in neuroregenerative medicine in which robust axonal re-growth is essential. Additionally, because granule cells are produced throughout life in the neurogenic dentate gyrus, it is interesting to examine whether the mossy fibers of newly generated granule cells follow the pre-existing trajectories of sprouted mossy fibers in the epileptic brain. Understanding these axon guidance mechanisms may contribute to neuron transplantation therapies, for which the incorporation of transplanted neurons into pre-existing neural circuits is essential. Thus, clarifying the axon guidance mechanisms of mossy fiber sprouting could lead to an understanding of central nervous system (CNS network reorganization and plasticity. Here, we review the molecular and cellular mechanisms of axon guidance in mossy fiber sprouting by discussing mainly in vitro studies.

  10. Cellular intrinsic mechanism affecting the outcome of AML treated with Ara-C in a syngeneic mouse model.

    Wenjun Zhao

    Full Text Available The mechanisms underlying acute myeloid leukemia (AML treatment failure are not clear. Here, we established a mouse model of AML by syngeneic transplantation of BXH-2 derived myeloid leukemic cells and developed an efficacious Ara-C-based regimen for treatment of these mice. We proved that leukemic cell load was correlated with survival. We also demonstrated that the susceptibility of leukemia cells to Ara-C could significantly affect the survival. To examine the molecular alterations in cells with different sensitivity, genome-wide expression of the leukemic cells was profiled, revealing that overall 366 and 212 genes became upregulated or downregulated, respectively, in the resistant cells. Many of these genes are involved in the regulation of cell cycle, cellular proliferation, and apoptosis. Some of them were further validated by quantitative PCR. Interestingly, the Ara-C resistant cells retained the sensitivity to ABT-737, an inhibitor of anti-apoptosis proteins, and treatment with ABT-737 prolonged the life span of mice engrafted with resistant cells. These results suggest that leukemic load and intrinsic cellular resistance can affect the outcome of AML treated with Ara-C. Incorporation of apoptosis inhibitors, such as ABT-737, into traditional cytotoxic regimens merits consideration for the treatment of AML in a subset of patients with resistance to Ara-C. This work provided direct in vivo evidence that leukemic load and intrinsic cellular resistance can affect the outcome of AML treated with Ara-C, suggesting that incorporation of apoptosis inhibitors into traditional cytotoxic regimens merits consideration for the treatment of AML in a subset of patients with resistance to Ara-C.

  11. Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells

    M. Saliani

    2016-01-01

    Full Text Available ZnO NPs (zinc oxide nanoparticles has generated significant scientific interest as a novel antibacterial and anticancer agent. Since oxidative stress is a critical determinant of ZnO NPs-induced damage, it is necessary to characterize their underlying mode of action. Different structural and physicochemical properties of ZnO NPs such as particle surface, size, shape, crystal structure, chemical position, and presence of metals can lead to changes in biological activities including ROS (reactive oxygen species production. However, there are some inconsistencies in the literature on the relation between the physicochemical features of ZnO NPs and their plausible oxidative stress mechanism. Herein, the possible oxidative stress mechanism of ZnO NPs was reviewed. This is worthy of further detailed evaluations in order to improve our understanding of vital NPs characteristics governing their toxicity. Therefore, this study focuses on the different reported oxidative stress paradigms induced by ZnO NPs including ROS generated by NPs, oxidative stress due to the NPs-cell interaction, and role of the particle dissolution in the oxidative damage. Also, this study tries to characterize and understand the multiple pathways involved in oxidative stress induced by ZnO NPs. Knowledge about different cellular signaling cascades stimulated by ZnO NPs lead to the better interpretation of the toxic influences induced by the cellular and acellular parameters. Regarding the potential benefits of toxic effects of ZnO NPs, in-depth evaluation of their toxicity mechanism and various effects of these nanoparticles would facilitate their implementation for biomedical applications.

  12. Functioning and nonfunctioning thyroid adenomas involve different molecular pathogenetic mechanisms.

    Tonacchera, M; Vitti, P; Agretti, P; Ceccarini, G; Perri, A; Cavaliere, R; Mazzi, B; Naccarato, A G; Viacava, P; Miccoli, P; Pinchera, A; Chiovato, L

    1999-11-01

    The molecular biology of follicular cell growth in thyroid nodules is still poorly understood. Because gain-of-function (activating) mutations of the thyroid-stimulating hormone receptor (TShR) and/or Gs alpha genes may confer TSh-independent growth advantage to neoplastic thyroid cells, we searched for somatic mutations of these genes in a series of hyperfunctioning and nonfunctioning follicular thyroid adenomas specifically selected for their homogeneous gross anatomy (single nodule in an otherwise normal thyroid gland). TShR gene mutations were identified by direct sequencing of exons 9 and 10 of the TShR gene in genomic DNA obtained from surgical specimens. Codons 201 and 227 of the Gs alpha gene were also analyzed. At histology, all hyperfunctioning nodules and 13 of 15 nonfunctioning nodules were diagnosed as follicular adenomas. Two nonfunctioning thyroid nodules, although showing a prevalent microfollicular pattern of growth, had histological features indicating malignant transformation (a minimally invasive follicular carcinoma and a focal papillary carcinoma). Activating mutations of the TShR gene were found in 12 of 15 hyperfunctioning follicular thyroid adenomas. In one hyperfunctioning adenoma, which was negative for TShR mutations, a mutation in codon 227 of the Gs alpha gene was identified. At variance with hyperfunctioning thyroid adenomas, no mutation of the TShR or Gs alpha genes was detected in nonfunctioning thyroid nodules. In conclusion, our findings clearly define a different molecular pathogenetic mechanism in hyperfunctioning and nonfunctioning follicular thyroid adenomas. Activation of the cAMP cascade, which leads to proliferation but maintains differentiation of follicular thyroid cells, typically occurs in hyperfunctioning thyroid adenomas. Oncogenes other than the TShR and Gs alpha genes are probably involved in nonfunctioning follicular adenomas.

  13. An examination of adaptive cellular protective mechanisms using a multi-stage carcinogenesis model

    Schollnberger, H.; Stewart, R. D.; Mitchel, R. E. J.; Hofmann, W.

    2004-01-01

    A multi-stage cancer model that describes the putative rate-limiting steps in carcinogenesis was developed and used to investigate the potential impact on lung cancer incidence of the hormesis mechanisms suggested by Feinendegen and Pollycove. In this deterministic cancer model, radiation and endogenous processes damage the DNA of target cells in the lung. Some fraction of the misrepaired our unrepaired DNA damage induces genomic instability and, ultimately, leads to the accumulation of malignant cells. The model accounts for cell birth and death processes. Ita also includes a rate of malignant transformation and a lag period for tumour formation. Cellular defence mechanisms are incorporated into the model by postulating dose and dose rate dependent radical scavenging. The accuracy of DNA damage repair also depends on dose and dose rate. Sensitivity studies were conducted to identify critical model inputs and to help define the shapes of the cumulative lung cancer incidence curves that may arise when dose and dose rate dependent cellular defence mechanisms are incorporated into a multi-stage cancer model. For lung cancer, both linear no-threshold (LNT) and non-LNT shaped responses can be obtained. The reported studied clearly show that it is critical to know whether or not and to what extent multiply damaged DNA sites are formed by endogenous processes. Model inputs that give rise to U-shaped responses are consistent with an effective cumulative lung cancer incidence threshold that may be as high as 300 mGy (4 mGy per year for 75 years). (Author) 11 refs

  14. Effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells investigated by atomic force microscopy.

    Li, Mi; Liu, LianQing; Xi, Ning; Wang, YueChao; Xiao, XiuBin; Zhang, WeiJing

    2015-09-01

    Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy (AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells.

  15. Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces.

    Ban, Ehsan; Franklin, J Matthew; Nam, Sungmin; Smith, Lucas R; Wang, Hailong; Wells, Rebecca G; Chaudhuri, Ovijit; Liphardt, Jan T; Shenoy, Vivek B

    2018-01-23

    Contractile cells can reorganize fibrous extracellular matrices and form dense tracts of fibers between neighboring cells. These tracts guide the development of tubular tissue structures and provide paths for the invasion of cancer cells. Here, we studied the mechanisms of the mechanical plasticity of collagen tracts formed by contractile premalignant acinar cells and fibroblasts. Using fluorescence microscopy and second harmonic generation, we quantified the collagen densification, fiber alignment, and strains that remain within the tracts after cellular forces are abolished. We explained these observations using a theoretical fiber network model that accounts for the stretch-dependent formation of weak cross-links between nearby fibers. We tested the predictions of our model using shear rheology experiments. Both our model and rheological experiments demonstrated that increasing collagen concentration leads to substantial increases in plasticity. We also considered the effect of permanent elongation of fibers on network plasticity and derived a phase diagram that classifies the dominant mechanisms of plasticity based on the rate and magnitude of deformation and the mechanical properties of individual fibers. Plasticity is caused by the formation of new cross-links if moderate strains are applied at small rates or due to permanent fiber elongation if large strains are applied over short periods. Finally, we developed a coarse-grained model for plastic deformation of collagen networks that can be employed to simulate multicellular interactions in processes such as morphogenesis, cancer invasion, and fibrosis. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Cellular Force Microscopy for in Vivo Measurements of Plant Tissue Mechanics1[W][OA

    Routier-Kierzkowska, Anne-Lise; Weber, Alain; Kochova, Petra; Felekis, Dimitris; Nelson, Bradley J.; Kuhlemeier, Cris; Smith, Richard S.

    2012-01-01

    Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM’s large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM’s ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis. PMID:22353572

  17. Micro-simulation of vehicle conflicts involving right-turn vehicles at signalized intersections based on cellular automata.

    Chai, C; Wong, Y D

    2014-02-01

    At intersection, vehicles coming from different directions conflict with each other. Improper geometric design and signal settings at signalized intersection will increase occurrence of conflicts between road users and results in a reduction of the safety level. This study established a cellular automata (CA) model to simulate vehicular interactions involving right-turn vehicles (as similar to left-turn vehicles in US). Through various simulation scenarios for four case cross-intersections, the relationships between conflict occurrences involving right-turn vehicles with traffic volume and right-turn movement control strategies are analyzed. Impacts of traffic volume, permissive right-turn compared to red-amber-green (RAG) arrow, shared straight-through and right-turn lane as well as signal setting are estimated from simulation results. The simulation model is found to be able to provide reasonable assessment of conflicts through comparison of existed simulation approach and observed accidents. Through the proposed approach, prediction models for occurrences and severity of vehicle conflicts can be developed for various geometric layouts and traffic control strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Coupling mechanisms between nucleosome assembly and the cellular response to DNA damage

    Lautrette, Aurelie

    2006-01-01

    Cells are continuously exposed to genotoxic stresses that induce a variety of DNA lesions. To protect their genome, cells have specific pathways that orchestrate the detection, signaling and repair of DNA damages. This work is dedicated to the characterization of such pathways that couple the DNA damage response to the assembly of chromatin, a complex that protects and regulates DNA accessibility. We have focused our study on two multifunctional proteins: Rad53, a central checkpoint kinase in the cellular response to DNA damage and Asf1, a histone chaperone involved in chromatin assembly. We have characterized in vitro the binding mode of Asf1 with Rad53 and Asfl with histones. This study is associated with the functional analysis of the role of these interactions in vivo in yeast cells. (author) [fr

  19. CNS autoimmune disease after Streptococcus pyogenes infections: animal models, cellular mechanisms and genetic factors

    Cutforth, Tyler; DeMille, Mellissa MC; Agalliu, Ilir; Agalliu, Dritan

    2016-01-01

    Streptococcus pyogenes infections have been associated with two autoimmune diseases of the CNS: Sydenham’s chorea (SC) and Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus infections (PANDAS). Despite the high frequency of pharyngeal streptococcus infections among children, only a small fraction develops SC or PANDAS. This suggests that several factors in combination are necessary to trigger autoimmune complications: specific S. pyogenes strains that induce a strong immune response toward the host nervous system; genetic susceptibility that predispose children toward an autoimmune response involving movement or tic symptoms; and multiple infections of the throat or tonsils that lead to a robust Th17 cellular and humoral immune response when untreated. In this review, we summarize the evidence for each factor and propose that all must be met for the requisite neurovascular pathology and behavioral deficits found in SC/PANDAS. PMID:27110222

  20. Role of Neuroinflammation in Amyotrophic Lateral Sclerosis: Cellular Mechanisms and Therapeutic Implications

    Jia Liu

    2017-08-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disease that affects upper motor neurons (MNs comprising the corticospinal tract and lower MNs arising from the brain stem nuclei and ventral roots of the spinal cord, leading to fatal paralysis. Currently, there are no effective therapies for ALS. Increasing evidence indicates that neuroinflammation plays an important role in ALS pathogenesis. The neuroinflammation in ALS is characterized by infiltration of lymphocytes and macrophages, activation of microglia and reactive astrocytes, as well as the involvement of complement. In this review, we focus on the key cellular players of neuroinflammation during the pathogenesis of ALS by discussing not only their detrimental roles but also their immunomodulatory actions. We will summarize the pharmacological therapies for ALS that target neuroinflammation, as well as recent advances in the field of stem cell therapy aimed at modulating the inflammatory environment to preserve the remaining MNs in ALS patients and animal models of the disease.

  1. The yeast mitogen-activated protein kinase Slt2 is involved in the cellular response to genotoxic stress

    Soriano-Carot María

    2012-02-01

    Full Text Available Abstract Background The maintenance of genomic integrity is essential for cell viability. Complex signalling pathways (DNA integrity checkpoints mediate the response to genotoxic stresses. Identifying new functions involved in the cellular response to DNA-damage is crucial. The Saccharomyces cerevisiae SLT2 gene encodes a member of the mitogen-activated protein kinase (MAPK cascade whose main function is the maintenance of the cell wall integrity. However, different observations suggest that SLT2 may also have a role related to DNA metabolism. Results This work consisted in a comprehensive study to connect the Slt2 protein to genome integrity maintenance in response to genotoxic stresses. The slt2 mutant strain was hypersensitive to a variety of genotoxic treatments, including incubation with hydroxyurea (HU, methylmetanosulfonate (MMS, phleomycin or UV irradiation. Furthermore, Slt2 was activated by all these treatments, which suggests that Slt2 plays a central role in the cellular response to genotoxic stresses. Activation of Slt2 was not dependent on the DNA integrity checkpoint. For MMS and UV, Slt2 activation required progression through the cell cycle. In contrast, HU also activated Slt2 in nocodazol-arrested cells, which suggests that Slt2 may respond to dNTP pools alterations. However, neither the protein level of the distinct ribonucleotide reductase subunits nor the dNTP pools were affected in a slt2 mutant strain. An analysis of the checkpoint function revealed that Slt2 was not required for either cell cycle arrest or the activation of the Rad53 checkpoint kinase in response to DNA damage. However, slt2 mutant cells showed an elongated bud and partially impaired Swe1 degradation after replicative stress, indicating that Slt2 could contribute, in parallel with Rad53, to bud morphogenesis control after genotoxic stresses. Conclusions Slt2 is activated by several genotoxic treatments and is required to properly cope with DNA damage. Slt

  2. Human Adenovirus Infection Causes Cellular E3 Ubiquitin Ligase MKRN1 Degradation Involving the Viral Core Protein pVII.

    Inturi, Raviteja; Mun, Kwangchol; Singethan, Katrin; Schreiner, Sabrina; Punga, Tanel

    2018-02-01

    Human adenoviruses (HAdVs) are common human pathogens encoding a highly abundant histone-like core protein, VII, which is involved in nuclear delivery and protection of viral DNA as well as in sequestering immune danger signals in infected cells. The molecular details of how protein VII acts as a multifunctional protein have remained to a large extent enigmatic. Here we report the identification of several cellular proteins interacting with the precursor pVII protein. We show that the cellular E3 ubiquitin ligase MKRN1 is a novel precursor pVII-interacting protein in HAdV-C5-infected cells. Surprisingly, the endogenous MKRN1 protein underwent proteasomal degradation during the late phase of HAdV-C5 infection in various human cell lines. MKRN1 protein degradation occurred independently of the HAdV E1B55K and E4orf6 proteins. We provide experimental evidence that the precursor pVII protein binding enhances MKRN1 self-ubiquitination, whereas the processed mature VII protein is deficient in this function. Based on these data, we propose that the pVII protein binding promotes MKRN1 self-ubiquitination, followed by proteasomal degradation of the MKRN1 protein, in HAdV-C5-infected cells. In addition, we show that measles virus and vesicular stomatitis virus infections reduce the MKRN1 protein accumulation in the recipient cells. Taken together, our results expand the functional repertoire of the HAdV-C5 precursor pVII protein in lytic virus infection and highlight MKRN1 as a potential common target during different virus infections. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing a wide range of diseases. To achieve pathogenicity, HAdVs have to counteract a variety of host cell antiviral defense systems, which would otherwise hamper virus replication. In this study, we show that the HAdV-C5 histone-like core protein pVII binds to and promotes self-ubiquitination of a cellular E3 ubiquitin ligase named MKRN1. This mutual interaction between the pVII and

  3. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho

    2015-06-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Mechanism of cellular uptake and impact of ferucarbotran on macrophage physiology.

    Chung-Yi Yang

    Full Text Available Superparamagnetic iron oxide (SPIO nanoparticles are contrast agents used for magnetic resonance imaging. Ferucarbotran is a clinically approved SPIO-coated carboxydextran with a diameter of about 45-60 nm. We investigated the mechanism of cellular uptake of Ferucarbotran with a cell model using the murine macrophage cell line Raw 264.7. We observed a dose-dependent uptake of these SPIO particles by spectrophotometer analysis and also a dose-dependent increase in the granularity of the macrophages as determined by flow cytometry. There was a linear correlation between the side scattering mean value and iron content (P<0.001, R(2 = 0. 8048. For evaluation of the endocytotic pathway of these ingested SPIO particles, different inhibitors of the endocytotic pathways were employed. There was a significant decrease of side scattering counts in the cells and a less significant change in signal intensity based on magnetic resonance in the phenylarsine oxide-treated macrophages. After labeling with SPIO particles, the macrophages showed an increase in the production of reactive oxygen species at 2, 24, and 48 h; a decrease in mitochondrial membrane potential at 24 h; and an increase in cell proliferation at 24 h. We concluded that Ferucarbotran was internalized into macrophages via the clathrin-mediated pathway and can change the cellular behavior of these cells after labeling.

  5. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress.

    Mohammed Saeed-Zidane

    Full Text Available Various environmental insults including diseases, heat and oxidative stress could lead to abnormal growth, functions and apoptosis in granulosa cells during ovarian follicle growth and oocyte maturation. Despite the fact that cells exposed to oxidative stress are responding transcriptionally, the potential release of transcripts associated with oxidative stress response into extracellular space through exosomes is not yet determined. Therefore, here we aimed to investigate the effect of oxidative stress in bovine granulosa cells in vitro on the cellular and exosome mediated defense mechanisms. Bovine granulosa cells were aspirated from ovarian follicles and cultured in DMEM/F-12 Ham culture medium supplemented with 10% exosome-depleted fetal bovine serum. In the first experiment sub-confluent cells were treated with 5 μM H2O2 for 40 min to induce oxidative stress. Thereafter, cells were subjected to ROS and mitochondrial staining, cell proliferation and cell cycle assays. Furthermore, gene and protein expression analysis were performed in H2O2-challenged versus control group 24 hr post-treatment using qRT-PCR and immune blotting or immunocytochemistry assay, respectively. Moreover, exosomes were isolated from spent media using ultracentrifugation procedure, and subsequently used for RNA isolation and qRT-PCR. In the second experiment, exosomes released by granulosa cells under oxidative stress (StressExo or those released by granulosa cells without oxidative stress (NormalExo were co-incubated with bovine granulosa cells in vitro to proof the potential horizontal transfer of defense molecules from exosomes to granulosa cells and investigate any phenotype changes. Exposure of bovine granulosa cells to H2O2 induced the accumulation of ROS, reduced mitochondrial activity, increased expression of Nrf2 and its downstream antioxidant genes (both mRNA and protein, altered the cell cycle transitions and induced cellular apoptosis. Granulosa cells

  6. Cellular Signal Mechanisms of Reward-Related Plasticity in the Hippocampus

    Masako Isokawa

    2012-01-01

    Full Text Available The hippocampus has the extraordinary capacity to process and store information. Consequently, there is an intense interest in the mechanisms that underline learning and memory. Synaptic plasticity has been hypothesized to be the neuronal substrate for learning. Ca2+ and Ca2+-activated kinases control cellular processes of most forms of hippocampal synapse plasticity. In this paper, I aim to integrate our current understanding of Ca2+-mediated synaptic plasticity and metaplasticity in motivational and reward-related learning in the hippocampus. I will introduce two representative neuromodulators that are widely studied in reward-related learning (e.g., ghrelin and endocannabinoids and show how they might contribute to hippocampal neuron activities and Ca2+-mediated signaling processes in synaptic plasticity. Additionally, I will discuss functional significance of these two systems and their signaling pathways for its relevance to maladaptive reward learning leading to addiction.

  7. Long-term potentiation in the amygdala: a cellular mechanism of fear learning and memory.

    Sigurdsson, Torfi; Doyère, Valérie; Cain, Christopher K; LeDoux, Joseph E

    2007-01-01

    Much of the research on long-term potentiation (LTP) is motivated by the question of whether changes in synaptic strength similar to LTP underlie learning and memory. Here we discuss findings from studies on fear conditioning, a form of associative learning whose neural circuitry is relatively well understood, that may be particularly suited for addressing this question. We first review the evidence suggesting that fear conditioning is mediated by changes in synaptic strength at sensory inputs to the lateral nucleus of the amygdala. We then discuss several outstanding questions that will be important for future research on the role of synaptic plasticity in fear learning. The results gained from these studies may shed light not only on fear conditioning, but may also help unravel more general cellular mechanisms of learning and memory.

  8. Using Cellular Proteins to Reveal Mechanisms of HIV Infection | Center for Cancer Research

    A vital step in HIV infection is the insertion of viral DNA into the genome of the host cell. In order for the insertion to occur, viral nucleic acid must be transported through the membrane that separates the main cellular compartment (the cytoplasm) from the nucleus, where the host DNA is located. Scientists are actively studying the mechanism used to transport viral DNA into the nucleus in the hopes of targeting this step with future anti-HIV treatments. Up to this point, researchers have identified some of the viral components that play a role in nuclear transport, but they have not determined how viral interactions with other molecules in the cell contribute to the process.

  9. Molecular mechanisms involved in Bacillus subtilis biofilm formation

    Mielich-Süss, Benjamin; Lopez, Daniel

    2014-01-01

    Summary Biofilms are the predominant lifestyle of bacteria in natural environments, and they severely impact our societies in many different fashions. Therefore, biofilm formation is a topic of growing interest in microbiology, and different bacterial models are currently studied to better understand the molecular strategies that bacteria undergo to build biofilms. Among those, biofilms of the soil-dwelling bacterium Bacillus subtilis are commonly used for this purpose. Bacillus subtilis biofilms show remarkable architectural features that are a consequence of sophisticated programs of cellular specialization and cell-cell communication within the community. Many laboratories are trying to unravel the biological role of the morphological features of biofilms, as well as exploring the molecular basis underlying cellular differentiation. In this review, we present a general perspective of the current state of knowledge of biofilm formation in B. subtilis. In particular, a special emphasis is placed on summarizing the most recent discoveries in the field and integrating them into the general view of these truly sophisticated microbial communities. PMID:24909922

  10. Conditional bistability, a generic cellular mnemonic mechanism for robust and flexible working memory computations.

    Rodriguez, Guillaume; Sarazin, Matthieu; Clemente, Alexandra; Holden, Stephanie; Paz, Jeanne T; Delord, Bruno

    2018-04-30

    Persistent neural activity, the substrate of working memory, is thought to emerge from synaptic reverberation within recurrent networks. However, reverberation models do not robustly explain fundamental dynamics of persistent activity, including high-spiking irregularity, large intertrial variability, and state transitions. While cellular bistability may contribute to persistent activity, its rigidity appears incompatible with persistent activity labile characteristics. Here, we unravel in a cellular model a form of spike-mediated conditional bistability that is robust, generic and provides a rich repertoire of mnemonic computations. Under asynchronous synaptic inputs of the awakened state, conditional bistability generates spiking/bursting episodes, accounting for the irregularity, variability and state transitions characterizing persistent activity. This mechanism has likely been overlooked because of the sub-threshold input it requires and we predict how to assess it experimentally. Our results suggest a reexamination of the role of intrinsic properties in the collective network dynamics responsible for flexible working memory. SIGNIFICANCE STATEMENT This study unravels a novel form of intrinsic neuronal property, i.e. conditional bistability. We show that, thanks of its conditional character, conditional bistability favors the emergence of flexible and robust forms of persistent activity in PFC neural networks, in opposition to previously studied classical forms of absolute bistability. Specifically, we demonstrate for the first time that conditional bistability 1) is a generic biophysical spike-dependent mechanism of layer V pyramidal neurons in the PFC and that 2) it accounts for essential neurodynamical features for the organisation and flexibility of PFC persistent activity (the large irregularity and intertrial variability of the discharge and its organization under discrete stable states), which remain unexplained in a robust fashion by current models

  11. Cellular Mechanisms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output

    Julia Schiemann

    2015-05-01

    Full Text Available Neuronal activity in primary motor cortex (M1 correlates with behavioral state, but the cellular mechanisms underpinning behavioral state-dependent modulation of M1 output remain largely unresolved. Here, we performed in vivo patch-clamp recordings from layer 5B (L5B pyramidal neurons in awake mice during quiet wakefulness and self-paced, voluntary movement. We show that L5B output neurons display bidirectional (i.e., enhanced or suppressed firing rate changes during movement, mediated via two opposing subthreshold mechanisms: (1 a global decrease in membrane potential variability that reduced L5B firing rates (L5Bsuppressed neurons, and (2 a coincident noradrenaline-mediated increase in excitatory drive to a subpopulation of L5B neurons (L5Benhanced neurons that elevated firing rates. Blocking noradrenergic receptors in forelimb M1 abolished the bidirectional modulation of M1 output during movement and selectively impaired contralateral forelimb motor coordination. Together, our results provide a mechanism for how noradrenergic neuromodulation and network-driven input changes bidirectionally modulate M1 output during motor behavior.

  12. Mechanism of cellular secretion studied by high resolution soft-x-ray microscopy

    Loo, B.W. Jr.; Meyer-Ilse, W.; Rothman, S.S.

    1997-01-01

    The secretion of proteins is a fundamental cellular process. The physical and biochemical mechanisms that underlie this process have been studied with the view that they can serve as a general model for how cells transport many different substances to and through their various compartments and to the external environment. In this work, the authors study the secretion of digestive enzymes by the acinar cell of the mammalian pancreas. This is the classical system for studying such processes. The proteins that digest food are stored in approximately micrometer sized vesicles, zymogen granules, within these cells. There are two explanations for how these proteins are transported from within the granules to the exterior of the cell during the process of secretion. One proposes that whole granules are lost from the cell in discrete events, and the other proposes that partial and gradual emptying of the granules accounts for protein secretion. Of course, both mechanisms may occur. The authors are attempting to assess to what degree each of these mechanisms account for protein secretion by the organ. In order to do so, the authors have been determining whether physical changes in the granules, such as mass loss, occur during secretion as the second model predicts, or if there is a simple reduction in the number of granules as predicted by the first model

  13. Optimization of the diabetic nephropathy treatment with attention to the special features of cellular inflammation mechanisms

    Тетяна Дмитрівна Щербань

    2016-02-01

    Full Text Available Aim. Optimization of the diabetic nephropathy (DN treatment in association with hypertonic disease (HD based on the study of neutrophil chain of pathogenic cellular mechanisms of these diseases development and the special features of its clinical course.Materials and methods. There were complexly examined 86 patients with HD associated with DN and 30 patients with isolated HD. The control group was formed by 30 practically healthy persons. The activity of NO-synthases in neutrophils was detected by Green colorimetric methods using Griess reagent. The expression of ІСАМ-1 (CD54, CD11b-integrin and inducible NO-synthase on neutrophils was detected by the indirect immunocytochemical method. Oxygen-depending activity of neutrophils was assessed in NBT-test.Results. Expression of adhesive molecules of CD54and CD11b-integrin on neutrophils of peripheral blood essentially increases (р <0,001 in patients with DN in association with HD comparing with isolated HD and the control group.At associated pathology on the background of high oxygen-depending activity of neutrophils its functional reserve decreases that results in intensification of inflammatory processes in kidneys (р<0,001.In comorbid patients chronization of pathological process results in imbalance of NO-synthases system in neutrophils: on the background of decrease of activity of constituent NO-synthases the expression and activity of inducible NO-synthase increase (р<0,001 .The use of L-arginine hydrochloride in the complex therapy of patients with DN associated with HD intensifies organoprotective effect of basal therapy, results in facilitation of the clinical course, decreases albuminuria, corrects the functional indices of neutrophils and diminishes imbalance in NO-synthases system.Conclusions. In patients with DN in association with HD the neutrophil chain of cellular inflammation mechanisms are activated: expression of adhesive molecules grows, oxygen-depending metabolism is

  14. Investigating the effects of ABC transporter-based acquired drug resistance mechanisms at the cellular and tissue scale.

    Liu, Cong; Krishnan, J; Xu, Xiao Yun

    2013-03-01

    In this paper we systematically investigate the effects of acquired drug resistance at the cellular and tissue scale, with a specific focus on ATP-binding cassette (ABC) transporter-based mechanisms and contrast this with other representative intracellular resistance mechanisms. This is done by developing in silico models wherein the drug resistance mechanism is overlaid on a coarse-grained description of apoptosis; these cellular models are coupled with interstitial drug transport, allowing for a transparent examination of the effect of acquired drug resistances at the tissue level. While ABC transporter-mediated resistance mechanisms counteract drug effect at the cellular level, its tissue-level effect is more complicated, revealing unexpected trends in tissue response as drug stimuli are systematically varied. Qualitatively different behaviour is observed in other drug resistance mechanisms. Overall the paper (i) provides insight into the tissue level functioning of a particular resistance mechanism, (ii) shows that this is very different from other resistance mechanisms of an apparently similar type, and (iii) demonstrates a concrete instance of how the functioning of a negative feedback based cellular adaptive mechanism can have unexpected higher scale effects.

  15. Structural-mechanical model of wax crystal networks—a mesoscale cellular solid approach

    Miyazaki, Yukihiro; Marangoni, Alejandro G

    2014-01-01

    Mineral waxes are widely used materials in industrial applications; however, the relationship between structure and mechanical properties is poorly understood. In this work, mineral wax-oil networks were characterized as closed-cell cellular solids, and differences in their mechanical response predicted from structural data. The systems studied included straight-chain paraffin wax (SW)-oil mixtures and polyethylene wax (PW)-oil mixtures. Analysis of cryogenic-SEM images of wax-oil networks allowed for the determination of the length (l) and thickness (t) of the wax cell walls as a function of wax mass fraction (Φ). A linear relationship between t/l and Φ (t/l ∼ Φ 0.89 ) suggested that wax-oil networks were cellular solids of the closed-cell type. However, the scaling behavior of the elastic modulus with the volume fraction of solids did not agree with theoretical predictions, yielding the same scaling exponent, μ = 0.84, for both waxes. This scaling exponent obtained from mechanical measurements could be predicted from the scaling behavior of the effective wax cell size as a function of wax mass fraction in oil obtained by cryogenic scanning electron microscopy. Microscopy studies allowed us to propose that wax-oil networks are structured as an ensemble of close-packed spherical cells filled with oil, and that it is the links between cells that yield under simple uniaxial compression. Thus, the Young’s moduli for the links between cells in SW and PW wax systems could be estimated as E L (SW) = 2.76 × 10 9 Pa and E L (PW) = 1.64 × 10 9 Pa, respectively. The structural parameter responsible for the observed differences in the mechanical strength between the two wax-oil systems is the size of the cells. Polyethylene wax has much smaller cell sizes than the straight chain wax and thus displays a higher Young’s modulus and yield stress. (papers)

  16. S1P-induced airway smooth muscle hyperresponsiveness and lung inflammation in vivo: molecular and cellular mechanisms.

    Roviezzo, F; Sorrentino, R; Bertolino, A; De Gruttola, L; Terlizzi, M; Pinto, A; Napolitano, M; Castello, G; D'Agostino, B; Ianaro, A; Sorrentino, R; Cirino, G

    2015-04-01

    Sphingosine-1-phosphate (S1P) has been shown to be involved in the asthmatic disease as well in preclinical mouse experimental models of this disease. The aim of this study was to understand the mechanism(s) underlying S1P effects on the lung. BALB/c, mast cell-deficient and Nude mice were injected with S1P (s.c.) on days 0 and 7. Functional, molecular and cellular studies were performed. S1P administration to BALB/c mice increased airway smooth muscle reactivity, mucus production, PGD2 , IgE, IL-4 and IL-13 release. These features were associated to a higher recruitment of mast cells to the lung. Mast cell-deficient Kit (W) (-sh/) (W) (-sh) mice injected with S1P did not display airway smooth muscle hyper-reactivity. However, lung inflammation and IgE production were still present. Treatment in vivo with the anti-CD23 antibody B3B4, which blocks IgE production, inhibited both S1P-induced airway smooth muscle reactivity in vitro and lung inflammation. S1P administration to Nude mice did not elicit airway smooth muscle hyper-reactivity and lung inflammation. Naïve (untreated) mice subjected to the adoptive transfer of CD4+ T-cells harvested from S1P-treated mice presented all the features elicited by S1P in the lung. S1P triggers a cascade of events that sequentially involves T-cells, IgE and mast cells reproducing several asthma-like features. This model may represent a useful tool for defining the role of S1P in the mechanism of action of currently-used drugs as well as in the development of new therapeutic approaches for asthma-like diseases. © 2014 The British Pharmacological Society.

  17. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK?

    Torstrick, F Brennan; Evans, Nathan T; Stevens, Hazel Y; Gall, Ken; Guldberg, Robert E

    2016-11-01

    Despite its widespread use in orthopaedic implants such as soft tissue fasteners and spinal intervertebral implants, polyetheretherketone (PEEK) often suffers from poor osseointegration. Introducing porosity can overcome this limitation by encouraging bone ingrowth; however, the corresponding decrease in implant strength can potentially reduce the implant's ability to bear physiologic loads. We have previously shown, using a single pore size, that limiting porosity to the surface of PEEK implants preserves strength while supporting in vivo osseointegration. However, additional work is needed to investigate the effect of pore size on both the mechanical properties and cellular response to PEEK. (1) Can surface porous PEEK (PEEK-SP) microstructure be reliably controlled? (2) What is the effect of pore size on the mechanical properties of PEEK-SP? (3) Do surface porosity and pore size influence the cellular response to PEEK? PEEK-SP was created by extruding PEEK through NaCl crystals of three controlled ranges: 200 to 312, 312 to 425, and 425 to 508 µm. Micro-CT was used to characterize the microstructure of PEEK-SP. Tensile, fatigue, and interfacial shear tests were performed to compare the mechanical properties of PEEK-SP with injection-molded PEEK (PEEK-IM). The cellular response to PEEK-SP, assessed by proliferation, alkaline phosphatase activity, vascular endothelial growth factor production, and calcium content of osteoblast, mesenchymal stem cell, and preosteoblast (MC3T3-E1) cultures, was compared with that of machined smooth PEEK and Ti6Al4V. Micro-CT analysis showed that PEEK-SP layers possessed pores that were 284 ± 35 µm, 341 ± 49 µm, and 416 ± 54 µm for each pore size group. Porosity and pore layer depth ranged from 61% to 69% and 303 to 391 µm, respectively. Mechanical testing revealed tensile strengths > 67 MPa and interfacial shear strengths > 20 MPa for all three pore size groups. All PEEK-SP groups exhibited > 50% decrease

  18. Molecular Dissection of The Cellular Mechanisms Involved In Nickel Hyperaccumulation in Plants; FINAL

    David E. Salt

    2002-01-01

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advantage of the remarkable ability of hyperaccumulating plants to concentrate metals from the soil and accumulate them in their harvestable, above-ground tissues. However, to make use of the valuable genetic resources identified in metal hyperaccumulating species, it will be necessary to transfer this material to high biomass rapidly growing crop plants. These plants would then be ideally suited to the phytoremediation process, having the ability to produce large amount of metal-rich plant biomass for rapid harvest and soil cleanup. Although progress is being made in understanding the genetic basis of metal hyperaccumulation a more complete understanding will be necessary before we can take full advantage of the genetic potential of these plants

  19. Molecular Dissection of The Cellular Mechanisms Involved In Nickel Hyperaccumulation in Plants

    David E. Salt

    2002-04-08

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advantage of the remarkable ability of hyperaccumulating plants to concentrate metals from the soil and accumulate them in their harvestable, above-ground tissues. However, to make use of the valuable genetic resources identified in metal hyperaccumulating species, it will be necessary to transfer this material to high biomass rapidly growing crop plants. These plants would then be ideally suited to the phytoremediation process, having the ability to produce large amount of metal-rich plant biomass for rapid harvest and soil cleanup. Although progress is being made in understanding the genetic basis of metal hyperaccumulation a more complete understanding will be necessary before we can take full advantage of the genetic potential of these plants.

  20. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes

    Poth, Jens M.; Fini, Mehdi A.; Olschewski, Andrea; El Kasmi, Karim C.; Stenmark, Kurt R.

    2014-01-01

    Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop “out-of-proportion” severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines (“second hit”) antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease. PMID:25416383

  1. Molecular and cellular mechanisms of muscle aging and sarcopenia and effects of electrical stimulation in seniors

    Laura Barberi

    2015-08-01

    Full Text Available The prolongation of skeletal muscle strength in aging and neuromuscular disease has been the objective of numerous studies employing a variety of approaches. It is generally accepted that cumulative failure to repair damage related to an overall decrease in anabolic processes is a primary cause of functional impairment in muscle. The functional performance of skeletal muscle tissues declines during post- natal life and it is compromised in different diseases, due to an alteration in muscle fiber composition and an overall decrease in muscle integrity as fibrotic invasions replace functional contractile tissue. Characteristics of skeletal muscle aging and diseases include a conspicuous reduction in myofiber plasticity (due to the progressive loss of muscle mass and in particular of the most powerful fast fibers, alteration in muscle-specific transcriptional mechanisms, and muscle atrophy. An early decrease in protein synthetic rates is followed by a later increase in protein degradation, to affect biochemical, physiological, and morphological parameters of muscle fibers during the aging process. Alterations in regenerative pathways also compromise the functionality of muscle tissues. In this review we will give an overview of the work on molecular and cellular mechanisms of aging and sarcopenia and the effects of electrical stimulation in seniors.

  2. Numerical Investigation on the Propagation Mechanism of Steady Cellular Detonations in Curved Channels

    Li Jian; Ning Jian-Guo; Zhao Hui; Wang Cheng; Hao Li

    2015-01-01

    The propagation mechanism of steady cellular detonations in curved channels is investigated numerically with a detailed chemical reaction mechanism. The numerical results demonstrate that as the radius of the curvature decreases, detonation fails near the inner wall due to the strong expansion effect. As the radius of the curvature increases, the detonation front near the inner wall can sustain an underdriven detonation. In the case where detonation fails, a transverse detonation downstream forms and re-initiates the quenched detonation as it propagates toward the inner wall. Two kinds of propagation modes exist as the detonation is propagating in the curved channel. One is that the detonation fails first, and then a following transverse detonation initiates the quenched detonation and this process repeats itself. The other one is that without detonation failure and re-initiation, a steady detonation exists which consists of an underdriven detonation front near the inner wall subject to the diffraction and an overdriven detonation near the outer wall subject to the compression. (paper)

  3. Mechanisms Involved in Nematode Control by Endophytic Fungi.

    Schouten, Alexander

    2016-08-04

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood but most likely multifactorial. This knowledge gap obstructs the progress regarding the development of endophytes or endophyte-derived constituents into biocontrol agents. In part, this may be caused by the fact that endophytic fungi form a rather heterogeneous group. By combining the knowledge of the currently characterized antagonistic endophytic fungi and their effects on nematode behavior and biology with the knowledge of microbial competition and induced plant defenses, the various mechanisms by which this nematode antagonism operates or may operate are discussed. Now that new technologies are becoming available and more accessible, the currently unresolved mechanisms can be studied in greater detail than ever before.

  4. Identification of cellular targets involved in cardiac failure caused by PKI in oncology: an approach combining pharmacovigilance and pharmacodynamics.

    Patras de Campaigno, Emilie; Bondon-Guitton, Emmanuelle; Laurent, Guy; Montastruc, Francois; Montastruc, Jean-Louis; Lapeyre-Mestre, Maryse; Despas, Fabien

    2017-07-01

    The aims of the present study were to evaluate the risk of cardiac failure (CF) associated with 15 anticancer protein kinase inhibitors (PKIs) through a case/noncase analysis and to identify which PK(s) and pathways are involved in PKI-induced CF. In order to evaluate the risk of CF, adjusted reporting odds ratios (aRORs) were calculated for the 15 anticancer PKIs in the World Health Organization safety report database (VigiBase®). We realised a literature review to identify 21 protein kinases (PKs) that were possibly involved in CF caused by PKIs. Pearson correlation coefficients (r) between aRORs and affinity data of the 15 PKIs for the 21 PKs were calculated to identify the cellular target most likely to be involved in PKI-induced CF. A total of 141 601 individual case safety reports (ICSRs) were extracted from VigiBase® for the following PKIs: afatinib, axitinib, bosutinib, crizotinib, dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, pazopanib, ruxolitinib, sorafenib, sunitinib and vandetanib. Among them, 2594 ICSRs concerned CF. The disproportionality analysis revealed that, for dasatinib, imatinib, bosutinib, sunitinib and nilotinib, disproportionality for CF was significantly higher than for other PKIs, with aRORs of 2.52 [95% CI 2.26, 2.82], 1.79 (95% CI 1.57, 2.03), 1.73 (95% CI 1.18, 2.54), 1.67 (95% CI 1.51, 1.84) and 1.38 (95% CI 1.18, 1.61), respectively. Significant values for correlation coefficients between the product of dissociation constant (pKd) and aROR were observed for two non-receptor protein kinases: ABL1 (non-phosphorylated and phosphorylated forms) and ABL2 protein kinases, with values of r = 0.83 (P = 0.0001), r = 0.75 (P = 0.0014) and r = 0.78 (P = 0.0006), respectively. We observed a higher disproportionality for CF with dasatinib, imatinib, bosutinib, sunitinib and nilotinib than with other PKIs. In addition, the study highlighted the role of ABL tyrosine kinases in CF caused by anticancer PKIs. © 2017 The British

  5. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities.

    Gajarsa, Jason J; Kloner, Robert A

    2011-01-01

    As more patients survive myocardial infarctions, the incidence of heart failure increases. After an infarction, the human heart undergoes a series of structural changes, which are governed by cellular and molecular mechanisms in a pathological metamorphosis termed "remodeling." This review will discuss the current developments in our understanding of these molecular and cellular events in remodeling and the various pharmacological, cellular and device therapies used to treat, and potentially retard, this condition. Specifically, this paper will examine the neurohormonal activity of the renin-angiotensin-aldosterone axis and its molecular effects on the heart. The emerging understanding of the extra-cellular matrix and the various active molecules within it, such as the matrix metalloproteinases, elicits new appreciation for their role in cardiac remodeling and as possible future therapeutic targets. Cell therapy with stem cells is another recent therapy with great potential in improving post-infarcted hearts. Lastly, the cellular and molecular effects of left ventricular assist devices on remodeling will be reviewed. Our increasing knowledge of the cellular and molecular mechanisms underlying cardiac remodeling enables us not only to better understand how our more successful therapies, like angiotensin-converting enzyme inhibitors, work, but also to explore new therapies of the future.

  6. Mechanisms Involved in Nematode Control by Endophytic Fungi

    Schouten, Sander

    2016-01-01

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood

  7. Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species

    Wells, Peter G.; Bhuller, Yadvinder; Chen, Connie S.; Jeng, Winnie; Kasapinovic, Sonja; Kennedy, Julia C.; Kim, Perry M.; Laposa, Rebecca R.; McCallum, Gordon P.; Nicol, Christopher J.; Parman, Toufan; Wiley, Michael J.; Wong, Andrea W.

    2005-01-01

    Developmental pathologies may result from endogenous or xenobiotic-enhanced formation of reactive oxygen species (ROS), which oxidatively damage cellular macromolecules and/or alter signal transduction. This minireview focuses upon several model drugs (phenytoin, thalidomide, methamphetamine), environmental chemicals (benzo[a]pyrene) and gamma irradiation to examine this hypothesis in vivo and in embryo culture using mouse, rat and rabbit models. Embryonic prostaglandin H synthases (PHSs) and lipoxygenases bioactivate xenobiotics to free radical intermediates that initiate ROS formation, resulting in oxidation of proteins, lipids and DNA. Oxidative DNA damage and embryopathies are reduced in PHS knockout mice, and in mice treated with PHS inhibitors, antioxidative enzymes, antioxidants and free radical trapping agents. Thalidomide causes embryonic DNA oxidation in susceptible (rabbit) but not resistant (mouse) species. Embryopathies are increased in mutant mice deficient in the antioxidative enzyme glucose-6-phosphate dehydrogenase (G6PD), or by glutathione (GSH) depletion, or inhibition of GSH peroxidase or GSH reductase. Inducible nitric oxide synthase knockout mice are partially protected. Inhibition of Ras or NF-kB pathways reduces embryopathies, implicating ROS-mediated signal transduction. Atm and p53 knockout mice deficient in DNA damage response/repair are more susceptible to xenobiotic or radiation embryopathies, suggesting a teratological role for DNA damage, consistent with enhanced susceptibility to methamphetamine in ogg1 knockout mice with deficient repair of oxidative DNA damage. Even endogenous embryonic oxidative stress carries a risk, since untreated G6PD- or ATM-deficient mice have increased embryopathies. Thus, embryonic processes regulating the balance of ROS formation, oxidative DNA damage and repair, and ROS-mediated signal transduction may be important determinants of teratological risk

  8. [Changes of the neuronal membrane excitability as cellular mechanisms of learning and memory].

    Gaĭnutdinov, Kh L; Andrianov, V V; Gaĭnutdinova, T Kh

    2011-01-01

    In the presented review given literature and results of own studies of dynamics of electrical characteristics of neurons, which change are included in processes both an elaboration of learning, and retention of the long-term memory. Literary datas and our results allow to conclusion, that long-term retention of behavioural reactions during learning is accompanied not only by changing efficiency of synaptic transmission, as well as increasing of excitability of command neurons of the defensive reflex. This means, that in the process of learning are involved long-term changes of the characteristics a membrane of certain elements of neuronal network, dependent from the metabolism of the cells. see text). Thou phenomena possible mark as cellular (electrophysiological) correlates of long-term plastic modifications of the behaviour. The analyses of having results demonstrates an important role of membrane characteristics of neurons (their excitability) and parameters an synaptic transmission not only in initial stage of learning, as well as in long-term modifications of the behaviour (long-term memory).

  9. Biological pathways and genetic mechanisms involved in social functioning.

    Ordoñana, Juan R; Bartels, Meike; Boomsma, Dorret I; Cella, David; Mosing, Miriam; Oliveira, Joao R; Patrick, Donald L; Veenhoven, Ruut; Wagner, Gert G; Sprangers, Mirjam A G

    2013-08-01

    To describe the major findings in the literature regarding associations between biological and genetic factors and social functioning, paying special attention to: (1) heritability studies on social functioning and related concepts; (2) hypothesized biological pathways and genetic variants that could be involved in social functioning, and (3) the implications of these results for quality-of-life research. A search of Web of Science and PubMed databases was conducted using combinations of the following keywords: genetics, twins, heritability, social functioning, social adjustment, social interaction, and social dysfunction. Variability in the definitions and measures of social functioning was extensive. Moderate to high heritability was reported for social functioning and related concepts, including prosocial behavior, loneliness, and extraversion. Disorders characterized by impairments in social functioning also show substantial heritability. Genetic variants hypothesized to be involved in social functioning are related to the network of brain structures and processes that are known to affect social cognition and behavior. Better knowledge and understanding about the impact of genetic factors on social functioning is needed to help us to attain a more comprehensive view of health-related quality-of-life (HRQOL) and will ultimately enhance our ability to identify those patients who are vulnerable to poor social functioning.

  10. New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide.

    Gamage, Dananjali; Thompson, Michael; Sutherland, Mark; Hirotsu, Naoki; Makino, Amane; Seneweera, Saman

    2018-04-02

    Rising atmospheric carbon dioxide concentration ([CO 2 ]) significantly influences plant growth, development and biomass. Increased photosynthesis rate, together with lower stomatal conductance, have been identified as the key factors that stimulate plant growth at elevated [CO 2 ] (e[CO 2 ]). However, variations in photosynthesis and stomatal conductance alone cannot fully explain the dynamic changes in plant growth. Stimulation of photosynthesis at e[CO 2 ] is always associated with post-photosynthetic secondary metabolic processes that include carbon and nitrogen metabolism, cell cycle functions and hormonal regulation. Most studies have focused on photosynthesis and stomatal conductance in response to e[CO 2 ], despite the emerging evidence of e[CO 2 ]'s role in moderating secondary metabolism in plants. In this review, we briefly discuss the effects of e[CO 2 ] on photosynthesis and stomatal conductance and then focus on the changes in other cellular mechanisms and growth processes at e[CO 2 ] in relation to plant growth and development. Finally, knowledge gaps in understanding plant growth responses to e[CO 2 ] have been identified with the aim of improving crop productivity under a CO 2 rich atmosphere. This article is protected by copyright. All rights reserved.

  11. Multiple Molecular and Cellular Mechanisms of Action of Lycopene in Cancer Inhibition

    Cristina Trejo-Solís

    2013-01-01

    Full Text Available Epidemiological studies suggest that including fruits, vegetables, and whole grains in regular dietary intake might prevent and reverse cellular carcinogenesis, reducing the incidence of primary tumours. Bioactive components present in food can simultaneously modulate more than one carcinogenic process, including cancer metabolism, hormonal balance, transcriptional activity, cell-cycle control, apoptosis, inflammation, angiogenesis and metastasis. Some studies have shown an inverse correlation between a diet rich in fruits, vegetables, and carotenoids and a low incidence of different types of cancer. Lycopene, the predominant carotenoid found in tomatoes, exhibits a high antioxidant capacity and has been shown to prevent cancer, as evidenced by clinical trials and studies in cell culture and animal models. In vitro studies have shown that lycopene treatment can selectively arrest cell growth and induce apoptosis in cancer cells without affecting normal cells. In vivo studies have revealed that lycopene treatment inhibits tumour growth in the liver, lung, prostate, breast, and colon. Clinical studies have shown that lycopene protects against prostate cancer. One of the main challenges in cancer prevention is the integration of new molecular findings into clinical practice. Thus, the identification of molecular biomarkers associated with lycopene levels is essential for improving our understanding of the mechanisms underlying its antineoplastic activity.

  12. Phytoplankton calcification as an effective mechanism to alleviate cellular calcium poisoning

    Müller, M. N.; Ramos, J. Barcelos e.; Schulz, K. G.; Riebesell, U.; Kaźmierczak, J.; Gallo, F.; Mackinder, L.; Li, Y.; Nesterenko, P. N.; Trull, T. W.; Hallegraeff, G. M.

    2015-11-01

    Marine phytoplankton have developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 μmol L-1 in the presence of seawater Ca2+ concentrations of 10 mmol L-1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, phytoplankton taxonomic groups appear to have evolved different strategies, which may affect their ability to cope with changes in seawater Ca2+ concentrations in their environment on geological timescales. For example, the Cretaceous (145 to 66 Ma), an era known for the high abundance of coccolithophores and the production of enormous calcium carbonate deposits, exhibited seawater calcium concentrations up to 4 times present-day levels. We show that calcifying coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica and Coccolithus braarudii) are able to maintain their relative fitness (in terms of growth rate and photosynthesis) at simulated Cretaceous seawater calcium concentrations, whereas these rates are severely reduced under these conditions in some non-calcareous phytoplankton species (Chaetoceros sp., Ceratoneis closterium and Heterosigma akashiwo). Most notably, this also applies to a non-calcifying strain of E. huxleyi which displays a calcium sensitivity similar to the non-calcareous species. We hypothesize that the process of calcification in coccolithophores provides an efficient mechanism to alleviate cellular calcium poisoning and thereby offered a potential key evolutionary advantage, responsible for the proliferation of coccolithophores during times of high seawater calcium concentrations. The exact function of calcification and the reason behind the highly ornate physical structures of coccoliths remain elusive.

  13. Phytoplankton calcification as an effective mechanism to prevent cellular calcium poisoning

    Müller, M. N.; Ramos, J. Barcelos e.; Schulz, K. G.; Riebesell, U.; Kaźmierczak, J.; Gallo, F.; Mackinder, L.; Li, Y.; Nesterenko, P. N.; Trull, T. W.; Hallegraeff, G. M.

    2015-08-01

    Marine phytoplankton has developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 μmol L-1 in the presence of seawater Ca2+ concentrations of 10 mmol L-1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, phytoplankton taxonomic groups appear to have evolved different strategies, which may affect their ability to cope with changes in seawater Ca2+ concentrations in their environment on geological time scales. For example, the Cretaceous (145 to 66 Ma ago), an era known for the high abundance of coccolithophores and the production of enormous calcium carbonate deposits, exhibited seawater calcium concentrations up to four times present-day levels. We show that calcifying coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica and Coccolithus braarudii) are able to maintain their relative fitness (in terms of growth rate and photosynthesis) at simulated Cretaceous seawater calcium concentrations, whereas these rates are severely reduced under these conditions in some non-calcareous phytoplankton species (Chaetoceros sp., Ceratoneis closterium and Heterosigma akashiwo). Most notably, this also applies to a non-calcifying strain of E. huxleyi which displays a calcium-sensitivity similar to the non-calcareous species. We hypothesize that the process of calcification in coccolithophores provides an efficient mechanism to prevent cellular calcium poisoning and thereby offered a potential key evolutionary advantage, responsible for the proliferation of coccolithophores during times of high seawater calcium concentrations.

  14. Involvement of thiol-based mechanisms in plant development.

    Rouhier, Nicolas; Cerveau, Delphine; Couturier, Jérémy; Reichheld, Jean-Philippe; Rey, Pascal

    2015-08-01

    Increasing knowledge has been recently gained regarding the redox regulation of plant developmental stages. The current state of knowledge concerning the involvement of glutathione, glutaredoxins and thioredoxins in plant development is reviewed. The control of the thiol redox status is mainly ensured by glutathione (GSH), a cysteine-containing tripeptide and by reductases sharing redox-active cysteines, glutaredoxins (GRXs) and thioredoxins (TRXs). Indeed, thiol groups present in many regulatory proteins and metabolic enzymes are prone to oxidation, ultimately leading to post-translational modifications such as disulfide bond formation or glutathionylation. This review focuses on the involvement of GSH, GRXs and TRXs in plant development. Recent studies showed that the proper functioning of root and shoot apical meristems depends on glutathione content and redox status, which regulate, among others, cell cycle and hormone-related processes. A critical role of GRXs in the formation of floral organs has been uncovered, likely through the redox regulation of TGA transcription factor activity. TRXs fulfill many functions in plant development via the regulation of embryo formation, the control of cell-to-cell communication, the mobilization of seed reserves, the biogenesis of chloroplastic structures, the metabolism of carbon and the maintenance of cell redox homeostasis. This review also highlights the tight relationships between thiols, hormones and carbon metabolism, allowing a proper development of plants in relation with the varying environment and the energy availability. GSH, GRXs and TRXs play key roles during the whole plant developmental cycle via their antioxidant functions and the redox-regulation of signaling pathways. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization.

    Checa, Sara; Rausch, Manuel K; Petersen, Ansgar; Kuhl, Ellen; Duda, Georg N

    2015-01-01

    Physical cues play a fundamental role in a wide range of biological processes, such as embryogenesis, wound healing, tumour invasion and connective tissue morphogenesis. Although it is well known that during these processes, cells continuously interact with the local extracellular matrix (ECM) through cell traction forces, the role of these mechanical interactions on large scale cellular and matrix organization remains largely unknown. In this study, we use a simple theoretical model to investigate cellular and matrix organization as a result of mechanical feedback signals between cells and the surrounding ECM. The model includes bi-directional coupling through cellular traction forces to deform the ECM and through matrix deformation to trigger cellular migration. In addition, we incorporate the mechanical contribution of matrix fibres and their reorganization by the cells. We show that a group of contractile cells will self-polarize at a large scale, even in homogeneous environments. In addition, our simulations mimic the experimentally observed alignment of cells in the direction of maximum stiffness and the building up of tension as a consequence of cell and fibre reorganization. Moreover, we demonstrate that cellular organization is tightly linked to the mechanical feedback loop between cells and matrix. Cells with a preference for stiff environments have a tendency to form chains, while cells with a tendency for soft environments tend to form clusters. The model presented here illustrates the potential of simple physical cues and their impact on cellular self-organization. It can be used in applications where cell-matrix interactions play a key role, such as in the design of tissue engineering scaffolds and to gain a basic understanding of pattern formation in organogenesis or tissue regeneration.

  16. Targeting Cellular Stress Mechanisms and Metabolic Homeostasis by Chinese Herbal Drugs for Neuroprotection

    Hsiao-Chien Ting

    2018-01-01

    Full Text Available Traditional Chinese medicine has been practiced for centuries in East Asia. Herbs are used to maintain health and cure disease. Certain Chinese herbs are known to protect and improve the brain, memory, and nervous system. To apply ancient knowledge to modern science, some major natural therapeutic compounds in herbs were extracted and evaluated in recent decades. Emerging studies have shown that herbal compounds have neuroprotective effects or can ameliorate neurodegenerative diseases. To understand the mechanisms of herbal compounds that protect against neurodegenerative diseases, we summarize studies that discovered neuroprotection by herbal compounds and compound-related mechanisms in neurodegenerative disease models. Those compounds discussed herein show neuroprotection through different mechanisms, such as cytokine regulation, autophagy, endoplasmic reticulum (ER stress, glucose metabolism, and synaptic function. The interleukin (IL-1β and tumor necrosis factor (TNF-α signaling pathways are inhibited by some compounds, thus attenuating the inflammatory response and protecting neurons from cell death. As to autophagy regulation, herbal compounds show opposite regulatory effects in different neurodegenerative models. Herbal compounds that inhibit ER stress prevent neuronal death in neurodegenerative diseases. Moreover, there are compounds that protect against neuronal death by affecting glucose metabolism and synaptic function. Since the progression of neurodegenerative diseases is complicated, and compound-related mechanisms for neuroprotection differ, therapeutic strategies may need to involve multiple compounds and consider the type and stage of neurodegenerative diseases.

  17. Kinetics and mechanisms of reactions involving small aromatic reactive intermediates

    Lin, M.C. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    Small aromatic radicals such as C{sub 6}H{sub 5}, C{sub 6}H{sub 5}O and C{sub 6}H{sub 4} are key prototype species of their homologs. C{sub 6}H{sub 5} and its oxidation product, C{sub 6}H{sub 5}O are believed to be important intermediates which play a pivotal role in hydrocarbon combustion, particularly with regard to soot formation. Despite their fundamental importance, experimental data on the reaction mechanisms and reactivities of these species are very limited. For C{sub 6}H{sub 5}, most kinetic data except its reactions with NO and NO{sub 2}, were obtained by relative rate measurements. For C{sub 6}H{sub 5}O, the authors have earlier measured its fragmentation reaction producing C{sub 5}H{sub 5} + CO in shock waves. For C{sub 6}H{sub 4}, the only rate constant measured in the gas phase is its recombination rate at room temperature. The authors have proposed to investigate systematically the kinetics and mechanisms of this important class of molecules using two parallel laser diagnostic techniques--laser resonance absorption (LRA) and resonance enhanced multiphoton ionization mass spectrometry (REMPI/MS). In the past two years, study has been focused on the development of a new multipass adsorption technique--the {open_quotes}cavity-ring-down{close_quotes} technique for kinetic applications. The preliminary results of this study appear to be quite good and the sensitivity of the technique is at least comparable to that of the laser-induced fluorescence method.

  18. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms.

    Vidal-Dupiol, Jeremie; Adjeroud, Mehdi; Roger, Emmanuel; Foure, Laurent; Duval, David; Mone, Yves; Ferrier-Pages, Christine; Tambutte, Eric; Tambutte, Sylvie; Zoccola, Didier; Allemand, Denis; Mitta, Guillaume

    2009-08-04

    Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28 degrees C to 32 degrees C over 15 days. A second control set kept at constant temperature (28 degrees C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress. Under thermal stress

  19. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    Tambutte Sylvie

    2009-08-01

    Full Text Available Abstract Background Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. Results In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28°C to 32°C over 15 days. A second control set kept at constant temperature (28°C. The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching and the non stressed states (control were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich. Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress

  20. Mechanisms and secondary factors involved in the induction of radiation transformation in vitro

    Little, J.B.

    1983-01-01

    The long term of this research program was to gain information concerning the mechanisms that determine the carcinogenic effects of ionizing radiation, particularly high LET radiation exposure. The experimental approach involves parallel studies of the induction of malignant transformation in BALB/3T3 cells and of specific gene mutations in human lymphoblastoid cells. Emphasis was on the biologic effects of internally incorporated Auger electron emitting radionuclides and the initiation of studies to determine the effects of low dose-rate neutron exposure. Auger electron irradiation sever as a model for high LET-type radiation effects and as an experimental tool for studying the effects of radiation at specific sites within the cell. Auger-emitting radiosotopes are commonly used in clinical nuclear medicine, rendering them a potential hazard to human populations. We examined the influence of cellular localization of Auger-emitting radionuclides and the spectrum of energy distribution in DNA on their mutagenic, cytogenetic, and transformational effects. The effects of 125 I (an energetic beta emitter) were compared. We studied the induction of cytogenetic changes by 125 I exposure of the cell membrane, as well as its potential to promote (enhance) transformation initiated by low dose external x-ray exposure. We will investigate the Relative Biological Effectiveness for mutagenesis and transformation of low doses of fast neutrons delivered continuously at variable low dose-rates. 34 refs., 1 tab

  1. Mechanisms involved in the development of diabetic retinopathy induced by oxidative stress.

    Guzman, David Calderón; Olguín, Hugo Juárez; García, Ernestina Hernández; Peraza, Armando Valenzuela; de la Cruz, Diego Zamora; Soto, Monica Punzo

    2017-01-01

    Diabetic retinopathy (DR) is one of the main complications in patients with diabetes and has been the leading cause of visual loss since 1990. Oxidative stress is a biological process resulting from excessive production of reactive oxygen species (ROS). This process contributes to the development of many diseases and disease complications. ROS interact with various cellular components to induce cell injury. Fortunately, there is an antioxidan t system that protects organisms against ROS. Indeed, when ROS exceed antioxidant capacity, the resulting cell injury can cause diverse physiological and pathological changes that could lead to a disease like DR. This paper reviews the possible mechanisms of common and novel biomarkers involved in the development of DR and explores how these biomarkers could be used to monitor the damage induced by oxidative stress in DR, which is a significant complication in people with diabetes. The poor control of glucemy in pacients with DB has been shown contribute to the development of complications in eyes as DR.

  2. Molecular mechanisms involved in the production of chromosomal aberrations. I

    Natarajan, A.T.; Obe, G.

    1978-01-01

    Chinese hamster ovary cells (CHO) were X-irradiated in G2 stage of the cell cycle and immediately treated, in the presence of inactivated Sendai virus, with Neurospora endonuclease (E.C. 3.1.4.), an enzyme which is specific for cleaving single-stranded DNA. With this treatment, the frequencies of all types of chromosome aberrations increased when compared to X-irradiated controls. These results are interpreted as due to the conversion of some of the X-ray induced single-stranded DNA breaks into double-strand breaks by this enzyme. Similar enhancement due to this enzyme was found following treatment with methyl methanesulfonate (MMS) and bleomycin, but not following UV and mitomycin C. Addition of Micrococcus endonuclease and Neurospora endonuclease to the cells did not alter the frequencies of aberrations induced by UV. The introduction of enzymes with specific DNA-repair function offers possibilities to probe into the molecular events involved in the formation of structural chromosome aberrations induced by different classes of physical and chemical mutagens. (Auth.)

  3. Human equilibrative nucleoside transporter-1 knockdown tunes cellular mechanics through epithelial-mesenchymal transition in pancreatic cancer cells.

    Yeonju Lee

    Full Text Available We report cell mechanical changes in response to alteration of expression of the human equilibrative nucleoside transporter-1 (hENT1, a most abundant and widely distributed plasma membrane nucleoside transporter in human cells and/or tissues. Modulation of hENT1 expression level altered the stiffness of pancreatic cancer Capan-1 and Panc 03.27 cells, which was analyzed by atomic force microscopy (AFM and correlated to microfluidic platform. The hENT1 knockdown induced reduction of cellular stiffness in both of cells up to 70%. In addition, cellular phenotypic changes such as cell morphology, migration, and expression level of epithelial-mesenchymal transition (EMT markers were observed after hENT1 knockdown. Cells with suppressed hENT1 became elongated, migrated faster, and had reduced E-cadherin and elevated N-cadherin compared to parental cells which are consistent with epithelial-mesenchymal transition (EMT. Those cellular phenotypic changes closely correlated with changes in cellular stiffness. This study suggests that hENT1 expression level affects cellular phenotype and cell elastic behavior can be a physical biomarker for quantify hENT1 expression and detect phenotypic shift. Furthermore, cell mechanics can be a critical tool in detecting disease progression and response to therapy.

  4. The use of global transcriptional analysis to reveal the biological and cellular events involved in distinct development phases of Trichophyton rubrum conidial germination

    Ding Guohui

    2007-04-01

    Full Text Available Abstract Background Conidia are considered to be the primary cause of infections by Trichophyton rubrum. Results We have developed a cDNA microarray containing 10250 ESTs to monitor the transcriptional strategy of conidial germination. A total of 1561 genes that had their expression levels specially altered in the process were obtained and hierarchically clustered with respect to their expression profiles. By functional analysis, we provided a global view of an important biological system related to conidial germination, including characterization of the pattern of gene expression at sequential developmental phases, and changes of gene expression profiles corresponding to morphological transitions. We matched the EST sequences to GO terms in the Saccharomyces Genome Database (SGD. A number of homologues of Saccharomyces cerevisiae genes related to signalling pathways and some important cellular processes were found to be involved in T. rubrum germination. These genes and signalling pathways may play roles in distinct steps, such as activating conidial germination, maintenance of isotropic growth, establishment of cell polarity and morphological transitions. Conclusion Our results may provide insights into molecular mechanisms of conidial germination at the cell level, and may enhance our understanding of regulation of gene expression related to the morphological construction of T. rubrum.

  5. The Potential Mechanism of ZFX Involvement in the Cell Growth

    Mahboube Ganji arjenaki

    2016-04-01

    Full Text Available Background:The zinc-finger X linked (ZFX gene encodes a transcription factor that acts as a regulator of self-renewal of stem cells. Due to the role of ZFX in cell growth, understanding ZFX protein-protein interactions helps to clarify its proper biological functions in signaling pathways. The aim of this study is to define ZFX protein-protein interactions and the role of ZFX in cell growth. Materials and Methods: The PIPs output includes three interacting proteins with ZFX: eukaryotic translation initiation factor 3 subunit I(EIF3I, eukaryotic translation initiation factor 3 subunit G(EIF3G and protein nuclear pore and COPII coat complex component homolog isoform 3 (SEC13L1. Results: As a cargo and transmembrane protein interacting with Sec13,eIF3I and eIF3G, ZFX mediates cargo sorting in COPII vesicles at ER exit sites. While traveling to cis-Golgi, eIF3I is phosphorylated by the mechanistic target of rapamycin (mTOR. Proteins transport by COPI vesicles to the nucleusouter site layer containing SEC13 via the contribution of microtubules. EIF3G and eIF3I interact with coatomer protein complex subunit beta 2 (COPB2 that helps to enclose ZFX in COPI vesicle. ZFX and eIF3G enter nucleolus where activation of transcription from pre rDNA genes occurs. Conclusion:We proposed a model in which ZFX is involved in cell growth by promoting the transcription of rDNA genes.

  6. Mechanisms involved in alternariol-induced cell cycle arrest

    Solhaug, A., E-mail: Anita.Solhaug@vetinst.no [Norwegian Veterinary Institute, Oslo (Norway); Vines, L.L. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Ivanova, L.; Spilsberg, B. [Norwegian Veterinary Institute, Oslo (Norway); Holme, J.A. [Norwegian Institute of Public Health, Division of Environmental Medicine, Oslo (Norway); Pestka, J. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Collins, A. [University of Oslo, Department of Nutrition, Faculty of Medicine, Oslo (Norway); Eriksen, G.S. [Norwegian Veterinary Institute, Oslo (Norway)

    2012-10-15

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15-30 {mu}M almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 {mu}M) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 {mu}M for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  7. Mechanisms involved in alternariol-induced cell cycle arrest

    Solhaug, A.; Vines, L.L.; Ivanova, L.; Spilsberg, B.; Holme, J.A.; Pestka, J.; Collins, A.; Eriksen, G.S.

    2012-01-01

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15–30 μM almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 μM) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 μM for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  8. Dietary administration of scallion extract effectively inhibits colorectal tumor growth: cellular and molecular mechanisms in mice.

    Palanisamy Arulselvan

    Full Text Available Colorectal cancer is a common malignancy and a leading cause of cancer death worldwide. Diet is known to play an important role in the etiology of colon cancer and dietary chemoprevention is receiving increasing attention for prevention and/or alternative treatment of colon cancers. Allium fistulosum L., commonly known as scallion, is popularly used as a spice or vegetable worldwide, and as a traditional medicine in Asian cultures for treating a variety of diseases. In this study we evaluated the possible beneficial effects of dietary scallion on chemoprevention of colon cancer using a mouse model of colon carcinoma (CT-26 cells subcutaneously inoculated into BALB/c mice. Tumor lysates were subjected to western blotting for analysis of key inflammatory markers, ELISA for analysis of cytokines, and immunohistochemistry for analysis of inflammatory markers. Metabolite profiles of scallion extracts were analyzed by LC-MS/MS. Scallion extracts, particularly hot-water extract, orally fed to mice at 50 mg (dry weight/kg body weight resulted in significant suppression of tumor growth and enhanced the survival rate of test mice. At the molecular level, scallion extracts inhibited the key inflammatory markers COX-2 and iNOS, and suppressed the expression of various cellular markers known to be involved in tumor apoptosis (apoptosis index, proliferation (cyclin D1 and c-Myc, angiogenesis (VEGF and HIF-1α, and tumor invasion (MMP-9 and ICAM-1 when compared with vehicle control-treated mice. Our findings may warrant further investigation of the use of common scallion as a chemopreventive dietary agent to lower the risk of colon cancer.

  9. SILICOMB PEEK Kirigami cellular structures: mechanical response and energy dissipation through zero and negative stiffness

    Virk, K; Marsh, M; Monti, A; Trehard, T; Hazra, K; Boba, K; Remillat, C D L; Scarpa, F; Farrow, I R

    2013-01-01

    The work describes the manufacturing, testing and parametric analysis of cellular structures exhibiting zero Poisson’s ratio-type behaviour, together with zero and negative stiffness effects. The cellular structures are produced in flat panels and curved configurations, using a combination of rapid prototyping techniques and Kirigami (Origami and cutting) procedures for PEEK (Polyether Ether Ketone) thermoplastic composites. The curved cellular configurations show remarkable large deformation behaviours, with zero and negative stiffness regimes depending also on the strain rate applied. These unusual stiffness characteristics lead to a large increase of energy absorption during cyclic tests. (paper)

  10. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    Kawano, Michinao; Ariyoshi, Wataru; Iwanaga, Kenjiro; Okinaga, Toshinori; Habu, Manabu; Yoshioka, Izumi; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2011-01-01

    Research highlights: → In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. → MG63 cells were incubated with BMP-2 and HA for various time periods. → Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. → HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and nuclear translocation

  11. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    Kawano, Michinao [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Iwanaga, Kenjiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Habu, Manabu [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Yoshioka, Izumi [Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan)

    2011-02-25

    Research highlights: {yields} In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. {yields} MG63 cells were incubated with BMP-2 and HA for various time periods. {yields} Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. {yields} HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and

  12. Cellular and molecular mechanisms of immunomodulation in the brain through environmental enrichment

    Singhal, Gaurav; Jaehne, Emily J.; Corrigan, Frances; Baune, Bernhard T.

    2014-01-01

    Recent studies on environmental enrichment (EE) have shown cytokines, cellular immune components [e.g., T lymphocytes, natural killer (NK) cells], and glial cells in causal relationship to EE in bringing out changes to neurobiology and behavior. The purpose of this review is to evaluate these neuroimmune mechanisms associated with neurobiological and behavioral changes in response to different EE methods. We systematically reviewed common research databases. After applying all inclusion and exclusion criteria, 328 articles remained for this review. Physical exercise (PE), a form of EE, elicits anti-inflammatory and neuromodulatory effects through interaction with several immune pathways including interleukin (IL)-6 secretion from muscle fibers, reduced expression of Toll-like receptors on monocytes and macrophages, reduced secretion of adipokines, modulation of hippocampal T cells, priming of microglia, and upregulation of mitogen-activated protein kinase phosphatase-1 in central nervous system. In contrast, immunomodulatory roles of other enrichment methods are not studied extensively. Nonetheless, studies showing reduction in the expression of IL-1β and tumor necrosis factor-α in response to enrichment with novel objects and accessories suggest anti-inflammatory effects of novel environment. Likewise, social enrichment, though considered a necessity for healthy behavior, results in immunosuppression in socially defeated animals. This has been attributed to reduction in T lymphocytes, NK cells and IL-10 in subordinate animals. EE through sensory stimuli has been investigated to a lesser extent and the effect on immune factors has not been evaluated yet. Discovery of this multidimensional relationship between immune system, brain functioning, and EE has paved a way toward formulating environ-immuno therapies for treating psychiatric illnesses with minimal use of pharmacotherapy. While the immunomodulatory role of PE has been evaluated extensively, more research

  13. Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms.

    Kelly L Robertson

    Full Text Available Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS, increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and

  14. The induction and regulation of radiogenic transformation in vitro: Cellular and molecular mechanisms

    Borek, C.

    1987-01-01

    Rodent and human cells in culture, transformed in vitro by ionizing radiation, ultraviolet light, or chemicals into malignant cells afford us the opportunity to probe into early and late events in the neoplastic process at a cellular and molecular level. Transformation can be regarded as an abnormal expression of cellular genes. The initiating agents disrupt the integrity of the genetic apparatus altering DNA in ways that result in the activation of cellular transforming genes (oncogenes) during some stage of the neoplastic process. Events associated with initiation and promotion may overlap to some degree, but in order for them to occur, cellular permissive conditions must prevail. Permissive factors include thyroid and steroid hormones, specific states of differentiation, certain stages in the cell cycle, specific genetic impairment, and inadequate antioxidants. Genetically susceptible cells require physiological states conducive to transformation. These may differ with age, tissue, and species and in part may be responsible for the observed lower sensitivity of human cells to transformation

  15. Recent Advances in the Cellular and Molecular Mechanisms of Hypothalamic Neuronal Glucose Detection.

    Fioramonti, Xavier; Chrétien, Chloé; Leloup, Corinne; Pénicaud, Luc

    2017-01-01

    The hypothalamus have been recognized for decades as one of the major brain centers for the control of energy homeostasis. This area contains specialized neurons able to detect changes in nutrients level. Among them, glucose-sensing neurons use glucose as a signaling molecule in addition to its fueling role. In this review we will describe the different sub-populations of glucose-sensing neurons present in the hypothalamus and highlight their nature in terms of neurotransmitter/neuropeptide expression. This review will particularly discuss whether pro-opiomelanocortin (POMC) neurons from the arcuate nucleus are directly glucose-sensing. In addition, recent observations in glucose-sensing suggest a subtle system with different mechanisms involved in the detection of changes in glucose level and their involvement in specific physiological functions. Several data point out the critical role of reactive oxygen species (ROS) and mitochondria dynamics in the detection of increased glucose. This review will also highlight that ATP-dependent potassium (K ATP ) channels are not the only channels mediating glucose-sensing and discuss the new role of transient receptor potential canonical channels (TRPC). We will discuss the recent advances in the determination of glucose-sensing machinery and propose potential line of research needed to further understand the regulation of brain glucose detection.

  16. Recent Advances in the Cellular and Molecular Mechanisms of Hypothalamic Neuronal Glucose Detection

    Xavier Fioramonti

    2017-11-01

    Full Text Available The hypothalamus have been recognized for decades as one of the major brain centers for the control of energy homeostasis. This area contains specialized neurons able to detect changes in nutrients level. Among them, glucose-sensing neurons use glucose as a signaling molecule in addition to its fueling role. In this review we will describe the different sub-populations of glucose-sensing neurons present in the hypothalamus and highlight their nature in terms of neurotransmitter/neuropeptide expression. This review will particularly discuss whether pro-opiomelanocortin (POMC neurons from the arcuate nucleus are directly glucose-sensing. In addition, recent observations in glucose-sensing suggest a subtle system with different mechanisms involved in the detection of changes in glucose level and their involvement in specific physiological functions. Several data point out the critical role of reactive oxygen species (ROS and mitochondria dynamics in the detection of increased glucose. This review will also highlight that ATP-dependent potassium (KATP channels are not the only channels mediating glucose-sensing and discuss the new role of transient receptor potential canonical channels (TRPC. We will discuss the recent advances in the determination of glucose-sensing machinery and propose potential line of research needed to further understand the regulation of brain glucose detection.

  17. A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution.

    Frédéric Boudon

    2015-01-01

    Full Text Available The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth.

  18. Cellular interactions of a lipid-based nanocarrier model with human keratinocytes: Unravelling transport mechanisms.

    Silva, Elisabete; Barreiros, Luísa; Segundo, Marcela A; Costa Lima, Sofia A; Reis, Salette

    2017-04-15

    Knowledge of delivery system transport through epidermal cell monolayer is vital to improve skin permeation and bioavailability. Recently, nanostructured lipid carriers (NLCs) have gained great attention for transdermal delivery due to their biocompatibility, high drug payload, occlusive properties and skin hydration effect. However, the nanocarriers transport related mechanisms in epidermal epithelial cells are not yet understood. In this research, the internalization and transport pathways of the NLCs across the epidermal epithelial cell monolayer (HaCaT cells) were investigated. The 250nm sized witepsol/miglyol NLCs, prepared by hot homogenization had reduced cytotoxicity and no effect on the integrity of cell membrane in human HaCaT keratinocytes. The internalization was time-, concentration- and energy-dependent, and the uptake of NLCs was a vesicle-mediated process by macropinocytosis and clathrin-mediated pathways. 3% of NLCs were found at the apical membrane side of the HaCaT monolayer through exocytosis mechanism. Additionally, the endoplasmic reticulum, Golgi apparatus and microtubules played crucial roles in the transport of NLCs out of HaCaT cells. NLCs were transported intact across the human keratinocytes monolayer, without disturbing the tight junction's structure. From the transcytosis data only approximately 12% of the internalized NLCs were passed from the apical to the basolateral side. The transcytosis of NLCs throughout the HaCaT cell monolayer towards the basolateral membrane side requires the involvement of the endoplasmic reticulum, Golgi apparatus and microtubules. Our findings may contribute to a systematic understanding of NLCs transport across epidermal epithelial cell monolayers and their optimization for clinical transdermal application. Transdermal drug delivery is a challenging and growing area of clinical application. Lipid nanoparticles such as nanostructured lipid carriers (NLCs) have gained wide interest for transdermal drug

  19. Cellular and molecular mechanisms of cigarette smoke-induced lung damage and prevention by vitamin C

    Roy Siddhartha

    2008-11-01

    Full Text Available Abstract Background Cigarette smoke-induced cellular and molecular mechanisms of lung injury are not clear. Cigarette smoke is a complex mixture containing long-lived radicals, including p-benzosemiquinone that causes oxidative damage. Earlier we had reported that oxidative protein damage is an initial event in smoke-induced lung injury. Considering that p-benzosemiquinone may be a causative factor of lung injury, we have isolated p-benzosemiquinone and compared its pathophysiological effects with cigarette smoke. Since vitamin C is a strong antioxidant, we have also determined the modulatory effect of vitamin C for preventing the pathophysiological events. Methods Vitamin C-restricted guinea pigs were exposed to cigarette smoke (5 cigarettes/day; 2 puffs/cigarette for 21 days with and without supplementation of 15 mg vitamin C/guinea pig/day. Oxidative damage, apoptosis and lung injury were assessed in vitro, ex vivo in A549 cells as well as in vivo in guinea pigs. Inflammation was measured by neutrophilia in BALF. p-Benzosemiquinone was isolated from freshly prepared aqueous extract of cigarette smoke and characterized by various physico-chemical methods, including mass, NMR and ESR spectroscopy. p-Benzosemiquinone-induced lung damage was examined by intratracheal instillation in guinea pigs. Lung damage was measured by increased air spaces, as evidenced by histology and morphometric analysis. Oxidative protein damage, MMPs, VEGF and VEGFR2 were measured by western blot analysis, and formation of Michael adducts using MALDI-TOF-MS. Apoptosis was evidenced by TUNEL assay, activation of caspase 3, degradation of PARP and increased Bax/Bcl-2 ratio using immunoblot analysis and confocal microscopy. Results Exposure of guinea pigs to cigarette smoke resulted in progressive protein damage, inflammation, apoptosis and lung injury up to 21 days of the experimental period. Administration of 15 mg of vitamin C/guinea pig/day prevented all these

  20. Olfactory stem cells, a new cellular model for studying molecular mechanisms underlying familial dysautonomia.

    Nathalie Boone

    Full Text Available BACKGROUND: Familial dysautonomia (FD is a hereditary neuropathy caused by mutations in the IKBKAP gene, the most common of which results in variable tissue-specific mRNA splicing with skipping of exon 20. Defective splicing is especially severe in nervous tissue, leading to incomplete development and progressive degeneration of sensory and autonomic neurons. The specificity of neuron loss in FD is poorly understood due to the lack of an appropriate model system. To better understand and modelize the molecular mechanisms of IKBKAP mRNA splicing, we collected human olfactory ecto-mesenchymal stem cells (hOE-MSC from FD patients. hOE-MSCs have a pluripotent ability to differentiate into various cell lineages, including neurons and glial cells. METHODOLOGY/PRINCIPAL FINDINGS: We confirmed IKBKAP mRNA alternative splicing in FD hOE-MSCs and identified 2 novel spliced isoforms also present in control cells. We observed a significant lower expression of both IKBKAP transcript and IKAP/hELP1 protein in FD cells resulting from the degradation of the transcript isoform skipping exon 20. We localized IKAP/hELP1 in different cell compartments, including the nucleus, which supports multiple roles for that protein. We also investigated cellular pathways altered in FD, at the genome-wide level, and confirmed that cell migration and cytoskeleton reorganization were among the processes altered in FD. Indeed, FD hOE-MSCs exhibit impaired migration compared to control cells. Moreover, we showed that kinetin improved exon 20 inclusion and restores a normal level of IKAP/hELP1 in FD hOE-MSCs. Furthermore, we were able to modify the IKBKAP splicing ratio in FD hOE-MSCs, increasing or reducing the WT (exon 20 inclusion:MU (exon 20 skipping ratio respectively, either by producing free-floating spheres, or by inducing cells into neural differentiation. CONCLUSIONS/SIGNIFICANCE: hOE-MSCs isolated from FD patients represent a new approach for modeling FD to better

  1. Experimental micro mechanics methods for conventional and negative Poisson's ratio cellular solids as Cosserat continua

    Lakes, R.

    1991-01-01

    Continuum representations of micromechanical phenomena in structured materials are described, with emphasis on cellular solids. These phenomena are interpreted in light of Cosserat elasticity, a generalized continuum theory which admits degrees of freedom not present in classical elasticity. These are the rotation of points in the material, and a couple per unit area or couple stress. Experimental work in this area is reviewed, and other interpretation schemes are discussed. The applicability of Cosserat elasticity to cellular solids and fibrous composite materials is considered as is the application of related generalized continuum theories. New experimental results are presented for foam materials with negative Poisson's ratios.

  2. The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation

    Roth, Caleb C.

    Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry

  3. Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory

    Hasselmo, Michael E.; Giocomo, Lisa M.; Yoshida, Motoharu

    2009-01-01

    Understanding the mechanisms of episodic memory requires linking behavioural data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within these brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in b...

  4. Mechanisms and Regulation of Intestinal Absorption of Water-soluble Vitamins: Cellular and Molecular Aspects

    Nexø, Ebba; Said, Hamid M

    2012-01-01

    The water-soluble vitamins represent a group of structurally and functionally unrelated compounds that share the common feature of being essential for normal cellular functions, growth, and development. With the exception of some endogenous production of niacin, human cells cannot synthesize...

  5. Complex I Disorders: Causes, Mechanisms, and Development of Treatment Strategies at the Cellular Level

    Valsecchi, Federica; Koopman, Werner J. H.; Manjeri, Ganesh R.; Rodenburg, Richard J.; Smeitink, Jan A. M.; Willems, Peter H. G. M.

    2010-01-01

    Mitochondrial oxidative phosphorylation (OXPHOS) represents the final step in the conversion of nutrients into cellular energy. Genetic defects in the OXPHOS system have an incidence between 1:5,000 and 1:10,000 live births. Inherited isolated deficiency of the first complex (CI) of this system, a multisubunit assembly of 45 different proteins,…

  6. Activation Mechanism of LRRK2 and Its Cellular Functions in Parkinson's Disease

    Rosenbusch, Katharina E.; Kortholt, Arjan

    2016-01-01

    Human LRRK2 (Leucine-Rich Repeat Kinase 2) has been associated with both familial and idiopathic Parkinson's disease (PD). Although several LRRK2 mediated pathways and interaction partners have been identified, the cellular functions of LRRK2 and LRRK2 mediated progression of PD are still only

  7. Endoplasmic reticulum quality control is involved in the mechanism of endoglin-mediated hereditary haemorrhagic telangiectasia.

    Bassam R Ali

    Full Text Available Hereditary haemorrhagic telangiectasia (HHT is an autosomal dominant genetic condition affecting the vascular system and is characterised by epistaxis, arteriovenous malformations and mucocutaneous and gastrointestinal telangiectases. This disorder affects approximately 1 in 8,000 people worldwide. Significant morbidity is associated with this condition in affected individuals, and anaemia can be a consequence of repeated haemorrhages from telangiectasia in the gut and nose. In the majority of the cases reported, the condition is caused by mutations in either ACVRL1 or endoglin genes, which encode components of the TGF-beta signalling pathway. Numerous missense mutations in endoglin have been reported as causative defects for HHT but the exact underlying cellular mechanisms caused by these mutations have not been fully established despite data supporting a role for the endoplasmic reticulum (ER quality control machinery. For this reason, we examined the subcellular trafficking of twenty-five endoglin disease-causing missense mutations. The mutant proteins were expressed in HeLa and HEK293 cell lines, and their subcellular localizations were established by confocal fluorescence microscopy alongside the analysis of their N-glycosylation profiles. ER quality control was found to be responsible in eight (L32R, V49F, C53R, V125D, A160D, P165L, I271N and A308D out of eleven mutants located on the orphan extracellular domain in addition to two (C363Y and C382W out of thirteen mutants in the Zona Pellucida (ZP domain. In addition, a single intracellular domain missense mutant was examined and found to traffic predominantly to the plasma membrane. These findings support the notion of the involvement of the ER's quality control in the mechanism of a significant number, but not all, missense endoglin mutants found in HHT type 1 patients. Other mechanisms including loss of interactions with signalling partners as well as adverse effects on functional

  8. Irregular bedtime and nocturnal cellular phone usage as risk factors for being involved in bullying: a cross-sectional survey of Japanese adolescents.

    Mamoru Tochigi

    Full Text Available PURPOSE: A number of studies have tried to identify risk factors for being involved in bullying in order to help developing preventive measures; however, to our knowledge, no study has investigated the effect of nocturnal lifestyle behavior such as sleep pattern or cellular phone usage. In the present study, we aimed to investigate the relationship between school bullying and sleep pattern or nocturnal cellular phone usage in adolescents. The effect of school size on school bullying was also examined. METHODS: Data from the cross-sectional survey of psychopathologies conducted for 19,436 Japanese students from 45 public junior high schools (7(th-9(th grade and 28 senior high schools (10(th-12(th grade were analyzed. RESULTS: Bullying status was significantly associated with irregular bedtime (OR = 1.23 and 1.41 for pure bullies and bully-victims, respectively and e-mail exchange or calling after lights-out (OR = 1.53 and 1.31 for pure bullies and bully-victims, respectively after controlling domestic violence and substance usage. In addition, school size was significantly associated with the increased risk of bullying in junior high school students (OR = 1.13 for bully-victims. CONCLUSIONS: The present results suggested that sleep pattern and nocturnal cellular phone usage might be risk factors for being involved in school bullying in adolescents. Although further accumulation of data is needed, progressive trend towards nocturnal lifestyle and increasing usage of cellular phone might impair the well-being of adolescents. School-based interventions for lifestyle including sleep pattern and cellular phone usage may be encouraged to reduce school bullying.

  9. Study of the mechanisms involved in the laser superficial hardening process of metallic alloys

    Silva, Edmara Marques Rodrigues da

    2001-01-01

    The laser superficial hardening process of a ferrous alloy (gray cast iron) and of an aluminum-silicon alloy was investigated in this work. These metallic alloys are used in the automobile industry for manufacturing cylinders and pistons, respectively. By application of individual pulses and single tracks, the involved mechanisms during the processing were studied. Variables such as energy density, power density, temporal width, beam diameter on the sample surface, atmosphere of the processing region, overlapping and scanning velocity. The hardened surface was characterized by optical and scanning electronic microscopy, dispersive energy microanalysis, X-ray mapping, X-ray diffraction, and measurements of roughness and Vickers microhardness. Depending on the processing parameters, it is possible to obtain different microstructures. The affected area of gray cast iron, can be hardened by remelting or transformation hardening (total or partial) if the reached temperature is higher or not that of melting temperature. Laser treatment originated new structures such as retained austenite, martensite and, occasionally, eutectic of cellular dendritic structure. Aluminum-silicon alloy does not have phase transformation in solid state, it can be hardened only by remelting. The increase of hardness is a function of the precipitation hardening process, which makes the silicon particles smaller and more disperse in the matrix. Maximal values of microhardness (700-1000 HV) were reached with the laser treatment in gray cast iron samples. The initial microhardness is of 242 HV. For aluminum-silicon alloy, the laser remelting increases the initial microhardness of 128 HV to the range of 160-320 HV. The found results give a new perspective for using the CLA/IPEN's laser in the heat treatment area. Besides providing a higher absorptivity to the materials, compared with the CO 2 laser, and optical fiber access, the superficial hardening with Nd:YAG laser, depending on the level of

  10. Epidemiological and genetic clues for molecular mechanisms involved in uterine leiomyoma development and growth.

    Commandeur, Arno E; Styer, Aaron K; Teixeira, Jose M

    2015-01-01

    Uterine leiomyomas (fibroids) are highly prevalent benign smooth muscle tumors of the uterus. In the USA, the lifetime risk for women developing uterine leiomyomas is estimated as up to 75%. Except for hysterectomy, most therapies or treatments often provide only partial or temporary relief and are not successful in every patient. There is a clear racial disparity in the disease; African-American women are estimated to be three times more likely to develop uterine leiomyomas and generally develop more severe symptoms. There is also familial clustering between first-degree relatives and twins, and multiple inherited syndromes in which fibroid development occurs. Leiomyomas have been described as clonal and hormonally regulated, but despite the healthcare burden imposed by the disease, the etiology of uterine leiomyomas remains largely unknown. The mechanisms involved in their growth are also essentially unknown, which has contributed to the slow progress in development of effective treatment options. A comprehensive PubMed search for and critical assessment of articles related to the epidemiological, biological and genetic clues for uterine leiomyoma development was performed. The individual functions of some of the best candidate genes are explained to provide more insight into their biological function and to interconnect and organize genes and pathways in one overarching figure that represents the current state of knowledge about uterine leiomyoma development and growth. In this review, the widely recognized roles of estrogen and progesterone in uterine leiomyoma pathobiology on the basis of clinical and experimental data are presented. This is followed by fundamental aspects and concepts including the possible cellular origin of uterine fibroids. The central themes in the subsequent parts are cytogenetic aberrations in leiomyomas and the racial/ethnic disparities in uterine fibroid biology. Then, the attributes of various in vitro and in vivo, human syndrome

  11. Modulation of the mechanical properties of ventricular extracellular matrix hydrogels with a carbodiimide crosslinker and investigation of their cellular compatibility

    Kyohei Fujita

    2018-01-01

    Full Text Available Hydrogels made from the cardiac extracellular matrix (ECM as two-dimensional (2D or 3D cell-culture substrates have beneficial biochemical effects on the differentiation of stem cells into cardiomyocytes. The mechanical properties of the substrates that match those of the host tissues have been identified as critical biophysical cues for coaxing the tissue-specific differentiation of stem cells. The objectives of the present study are (1 to fabricate hydrogels comprising pure ventricular ECM (vECM, (2 to make the gels possess mechanical properties similar to those of the decellularized ventricular tissue, and (3 to evaluate the cellular compatibility of the hydrogels. In order to achieve these aims, (1 a simplified protocol was developed to produce vECM solution easily and rapidly, (2 N-(3-Dimethylaminopropyl-N’-ethylcarbodiimide hydrochloride (EDAC was chosen to crosslink the hydrogels made from the vECM solution to enhance their mechanical properties and stabilize the microstructure of the gels, (3 rat embryonic fibroblasts or cardiomyocytes were cultured on these gels to determine the cellular compatibility of the gels. In particular, the nonlinearity and viscoelasticity of the gels were characterized quantitatively using a newly proposed nonlinear Kelvin model. The results showed that EDAC treatment allowed modulation of the mechanical properties of the gels to the same level as those of decellularized ventricular tissue in terms of the equilibrium elasticity and relaxation coefficient. Cell culture confirmed the cellular compatibility of the gels. Furthermore, an empirical relationship between the equilibrium elastic modulus of the gels and the vECM and EDAC concentrations was derived, which is important to tailor the mechanical properties of the gels. Finally, the influence of the mechanical properties of the gels on the behavior of cultured fibroblasts and cardiomyocytes was discussed.

  12. Development of a Mechanically Versatile Bioreactor System as a Cellular Microgravity Countermeasure for Regenerative Medicine Applications

    National Aeronautics and Space Administration — The primary objective of this research project is to develop a compact, mechanically versatile bioreactor capable of producing desired local mechanical environments...

  13. Bone marrow involvement in diffuse large B-cell lymphoma: correlation between FDG-PET uptake and type of cellular infiltrate

    Paone, Gaetano; Itti, Emmanuel; Lin, Chieh; Meignan, Michel; Haioun, Corinne; Dupuis, Jehan; Gaulard, Philippe

    2009-01-01

    To assess, in patients with diffuse large B-cell lymphoma (DLBCL), whether the low sensitivity of 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) for bone marrow assessment may be explained by histological characteristics of the cellular infiltrate. From a prospective cohort of 110 patients with newly diagnosed aggressive lymphoma, 21 patients with DLBCL had bone marrow involvement. Pretherapeutic FDG-PET images were interpreted visually and semiquantitatively, then correlated with the type of cellular infiltrate and known prognostic factors. Of these 21 patients, 7 (33%) had lymphoid infiltrates with a prominent component of large transformed lymphoid cells (concordant bone marrow involvement, CBMI) and 14 (67%) had lymphoid infiltrates composed of small cells (discordant bone marrow involvement, DBMI). Only 10 patients (48%) had abnormal bone marrow FDG uptake, 6 of the 7 with CBMI and 4 of the 14 with DBMI. Therefore, FDG-PET positivity in the bone marrow was significantly associated with CBMI, while FDG-PET negativity was associated with DBMI (Fisher's exact test, p=0.024). There were no significant differences in gender, age and overall survival between patients with CBMI and DBMI, while the international prognostic index was significantly higher in patients with CBMI. Our study suggests that in patients with DLBCL with bone marrow involvement bone marrow FDG uptake depends on two types of infiltrate, comprising small (DBMI) or large (CBMI) cells. This may explain the apparent low sensitivity of FDG-PET previously reported for detecting bone marrow involvement. (orig.)

  14. Systematic screen for mutants resistant to TORC1 inhibition in fission yeast reveals genes involved in cellular ageing and growth

    Charalampos Rallis

    2014-01-01

    Target of rapamycin complex 1 (TORC1, which controls growth in response to nutrients, promotes ageing in multiple organisms. The fission yeast Schizosaccharomyces pombe emerges as a valuable genetic model system to study TORC1 function and cellular ageing. Here we exploited the combinatorial action of rapamycin and caffeine, which inhibit fission yeast growth in a TORC1-dependent manner. We screened a deletion library, comprising ∼84% of all non-essential fission yeast genes, for drug-resistant mutants. This screen identified 33 genes encoding functions such as transcription, kinases, mitochondrial respiration, biosynthesis, intra-cellular trafficking, and stress response. Among the corresponding mutants, 5 showed shortened and 21 showed increased maximal chronological lifespans; 15 of the latter mutants showed no further lifespan increase with rapamycin and might thus represent key targets downstream of TORC1. We pursued the long-lived sck2 mutant with additional functional analyses, revealing that the Sck2p kinase functions within the TORC1 network and is required for normal cell growth, global protein translation, and ribosomal S6 protein phosphorylation in a nutrient-dependent manner. Notably, slow cell growth was associated with all long-lived mutants while oxidative-stress resistance was not.

  15. Molecular and cellular mechanisms of the age-dependency of opioid analgesia and tolerance

    Zhao Jing

    2012-05-01

    Full Text Available Abstract The age-dependency of opioid analgesia and tolerance has been noticed in both clinical observation and laboratory studies. Evidence shows that many molecular and cellular events that play essential roles in opioid analgesia and tolerance are actually age-dependent. For example, the expression and functions of endogenous opioid peptides, multiple types of opioid receptors, G protein subunits that couple to opioid receptors, and regulators of G protein signaling (RGS proteins change with development and age. Other signaling systems that are critical to opioid tolerance development, such as N-methyl-D-aspartic acid (NMDA receptors, also undergo age-related changes. It is plausible that the age-dependent expression and functions of molecules within and related to the opioid signaling pathways, as well as age-dependent cellular activity such as agonist-induced opioid receptor internalization and desensitization, eventually lead to significant age-dependent changes in opioid analgesia and tolerance development.

  16. Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory.

    Hasselmo, Michael E; Giocomo, Lisa M; Brandon, Mark P; Yoshida, Motoharu

    2010-12-31

    Understanding the mechanisms of episodic memory requires linking behavioral data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in behaving animals indicate episodic memory processes. Intracellular recording in these regions demonstrates specific cellular properties including resonance, membrane potential oscillations and bistable persistent spiking that could underlie the encoding and retrieval of episodic trajectories. A model presented here shows how intrinsic dynamical properties of neurons could mediate the encoding of episodic memories as complex spatiotemporal trajectories. The dynamics of neurons allow encoding and retrieval of unique episodic trajectories in multiple continuous dimensions including temporal intervals, personal location, the spatial coordinates and sensory features of perceived objects and generated actions, and associations between these elements. The model also addresses how cellular dynamics could underlie unit firing data suggesting mechanisms for coding continuous dimensions of space, time, sensation and action. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Genome-wide assessment of the carriers involved in the cellular uptake of drugs: a model system in yeast.

    Lanthaler, Karin; Bilsland, Elizabeth; Dobson, Paul D; Moss, Harry J; Pir, Pınar; Kell, Douglas B; Oliver, Stephen G

    2011-10-24

    The uptake of drugs into cells has traditionally been considered to be predominantly via passive diffusion through the bilayer portion of the cell membrane. The recent recognition that drug uptake is mostly carrier-mediated raises the question of which drugs use which carriers. To answer this, we have constructed a chemical genomics platform built upon the yeast gene deletion collection, using competition experiments in batch fermenters and robotic automation of cytotoxicity screens, including protection by 'natural' substrates. Using these, we tested 26 different drugs and identified the carriers required for 18 of the drugs to gain entry into yeast cells. As well as providing a useful platform technology, these results further substantiate the notion that the cellular uptake of pharmaceutical drugs normally occurs via carrier-mediated transport and indicates that establishing the identity and tissue distribution of such carriers should be a major consideration in the design of safe and effective drugs.

  18. A microfluidic-enabled mechanical microcompressor for the immobilization of live single- and multi-cellular specimens.

    Yan, Yingjun; Jiang, Liwei; Aufderheide, Karl J; Wright, Gus A; Terekhov, Alexander; Costa, Lino; Qin, Kevin; McCleery, W Tyler; Fellenstein, John J; Ustione, Alessandro; Robertson, J Brian; Johnson, Carl Hirschie; Piston, David W; Hutson, M Shane; Wikswo, John P; Hofmeister, William; Janetopoulos, Chris

    2014-02-01

    A microcompressor is a precision mechanical device that flattens and immobilizes living cells and small organisms for optical microscopy, allowing enhanced visualization of sub-cellular structures and organelles. We have developed an easily fabricated device, which can be equipped with microfluidics, permitting the addition of media or chemicals during observation. This device can be used on both upright and inverted microscopes. The apparatus permits micrometer precision flattening for nondestructive immobilization of specimens as small as a bacterium, while also accommodating larger specimens, such as Caenorhabditis elegans, for long-term observations. The compressor mount is removable and allows easy specimen addition and recovery for later observation. Several customized specimen beds can be incorporated into the base. To demonstrate the capabilities of the device, we have imaged numerous cellular events in several protozoan species, in yeast cells, and in Drosophila melanogaster embryos. We have been able to document previously unreported events, and also perform photobleaching experiments, in conjugating Tetrahymena thermophila.

  19. Cellular and circuit mechanisms maintain low spike co-variability and enhance population coding in somatosensory cortex

    Cheng eLy

    2012-03-01

    Full Text Available The responses of cortical neurons are highly variable across repeated presentations of a stimulus. Understanding this variability is critical for theories of both sensory and motor processing, since response variance affects the accuracy of neural codes. Despite this influence, the cellular and circuit mechanisms that shape the trial-to-trial variability of population responses remain poorly understood. We used a combination of experimental and computational techniques to uncover the mechanisms underlying response variability of populations of pyramidal (E cells in layer 2/3 of rat whisker barrel cortex. Spike trains recorded from pairs of E-cells during either spontaneous activity or whisker deflected responses show similarly low levels of spiking co-variability, despite large differences in network activation between the two states. We developed network models that show how spike threshold nonlinearities dilutes E-cell spiking co-variability during spontaneous activity and low velocity whisker deflections. In contrast, during high velocity whisker deflections, cancelation mechanisms mediated by feedforward inhibition maintain low E-cell pairwise co-variability. Thus, the combination of these two mechanisms ensure low E-cell population variability over a wide range of whisker deflection velocities. Finally, we show how this active decorrelation of population variability leads to a drastic increase in the population information about whisker velocity. The canonical cellular and circuit components of our study suggest that low network variability over a broad range of neural states may generalize across the nervous system.

  20. Differential Polymer Structure Tunes Mechanism of Cellular Uptake and Transfection Routes of Poly(β-amino ester) Polyplexes in Human Breast Cancer Cells

    Kim, Jayoung; Sunshine, Joel C.; Green, Jordan J.

    2013-01-01

    Successful gene delivery with non-viral particles has several barriers, including cellular uptake, endosomal escape, and nuclear transport. Understanding the mechanisms behind these steps is critical to enhancing the effectiveness of gene delivery. Polyplexes formed with poly(β-amino ester)s (PBAEs) have been shown to effectively transfer DNA to various cell types, but the mechanism of their cellular uptake has not been identified. This is the first study to evaluate the uptake mechanism of P...

  1. Relation of murine thoracic aortic structural and cellular changes with aging to passive and active mechanical properties.

    Wheeler, Jason B; Mukherjee, Rupak; Stroud, Robert E; Jones, Jeffrey A; Ikonomidis, John S

    2015-02-25

    Maintenance of the structure and mechanical properties of the thoracic aorta contributes to aortic function and is dependent on the composition of the extracellular matrix and the cellular content within the aortic wall. Age-related alterations in the aorta include changes in cellular content and composition of the extracellular matrix; however, the precise roles of these age-related changes in altering aortic mechanical function are not well understood. Thoracic aortic rings from the descending segment were harvested from C57BL/6 mice aged 6 and 21 months. Thoracic aortic diameter and wall thickness were higher in the old mice. Cellular density was reduced in the medial layer of aortas from the old mice; concomitantly, collagen content was higher in old mice, but elastin content was similar between young and old mice. Stress relaxation, an index of compliance, was reduced in aortas from old mice and correlated with collagen fraction. Contractility of the aortic rings following potassium stimulation was reduced in old versus young mice. Furthermore, collagen gel contraction by aortic smooth muscle cells was reduced with age. These results demonstrate that numerous age-related structural changes occurred in the thoracic aorta and were related to alterations in mechanical properties. Aortic contractility decreased with age, likely because of a reduction in medial cell number in addition to a smooth muscle contractile deficit. Together, these unique findings provide evidence that the age-related changes in structure and mechanical function coalesce to provide an aortic substrate that may be predisposed to aortopathies. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  2. Wallerian degeneration slow mouse neurons are protected against cell death caused by mechanisms involving mitochondrial electron transport dysfunction.

    Tokunaga, Shinji; Araki, Toshiyuki

    2012-03-01

    Ischemia elicits a variety of stress responses in neuronal cells, which result in cell death. wld(S) Mice bear a mutation that significantly delays Wallerian degeneration. This mutation also protects all neuronal cells against other types of stresses resulting in cell death, including ischemia. To clarify the types of stresses that neuronal cell bodies derived from wld(S) mice are protected from, we exposed primary cultured neurons derived from wld(S) mice to various components of hypoxic stress. We found that wld(S) mouse neurons are protected against cellular injury induced by reoxygenation following hypoxic stress. Furthermore, we found that wld(S) mouse neurons are protected against functional impairment of the mitochondrial electron transport chain. These data suggest that Wld(S) protein expression may provide protection against neuronal cell death caused by mechanisms involving mitochondrial electron transport dysfunction. Copyright © 2011 Wiley Periodicals, Inc.

  3. Antioxidant properties of Taraxacum officinale fruit extract are involved in the protective effect against cellular death induced by sodium nitroprusside in brain of rats.

    Colle, Dirleise; Arantes, Letícia Priscilla; Rauber, Ricardo; de Mattos, Sérgio Edgar Campos; Rocha, João Batista Teixeira da; Nogueira, Cristina Wayne; Soares, Félix Alexandre Antunes

    2012-07-01

    Taraxacum officinale Weber (Asteraceae), known as dandelion, is used for medicinal purposes due to its choleretic, diuretic, antitumor, antioxidant, antiinflammatory, and hepatoprotective properties. We sought to investigate the protective activity of T. officinale fruit extract against sodium nitroprusside (SNP)-induced decreased cellular viability and increased lipid peroxidation in the cortex, hippocampus, and striatum of rats in vitro. To explain the mechanism of the extract's antioxidant activity, its putative scavenger activities against NO, DPPH·, OH·, and H(2)O(2) were determined. Slices of cortex, hippocampus, and striatum were treated with 50 μM SNP and T. officinale fruit ethanolic extract (1-20 µg/mL) to determine cellular viability by MTT reduction assay. Lipid peroxidation was measure in cortical, hippocampal and striatal slices incubates with SNP (5 µM) and T. officinale fruit extract (1-20 µg/mL). We also determined the scavenger activities of T. officinale fruit extract against NO·, DPPH·, OH·, and H(2)O(2), as well as its iron chelating capacity. The extract (1, 5, 10, and 20 μg/mL) protected against SNP-induced decreases in cellular viability and increases in lipid peroxidation in the cortex, hippocampus, and striatum of rats. The extract had scavenger activity against DPPH· and NO· at low concentrations and was able to protect against H(2)O(2) and Fe(2+)-induced deoxyribose oxidation. T. officinale fruit extract has antioxidant activity and protects brain slices against SNP-induced cellular death. Possible mechanisms of action include its scavenger activities against reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are attributed to the presence of phenolic compounds in the extract.

  4. Psychiatric disorders and leukocyte telomere length: Underlying mechanisms linking mental illness with cellular aging.

    Lindqvist, Daniel; Epel, Elissa S; Mellon, Synthia H; Penninx, Brenda W; Révész, Dóra; Verhoeven, Josine E; Reus, Victor I; Lin, Jue; Mahan, Laura; Hough, Christina M; Rosser, Rebecca; Bersani, F Saverio; Blackburn, Elizabeth H; Wolkowitz, Owen M

    2015-08-01

    Many psychiatric illnesses are associated with early mortality and with an increased risk of developing physical diseases that are more typically seen in the elderly. Moreover, certain psychiatric illnesses may be associated with accelerated cellular aging, evidenced by shortened leukocyte telomere length (LTL), which could underlie this association. Shortened LTL reflects a cell's mitotic history and cumulative exposure to inflammation and oxidation as well as the availability of telomerase, a telomere-lengthening enzyme. Critically short telomeres can cause cells to undergo senescence, apoptosis or genomic instability, and shorter LTL correlates with poorer health and predicts mortality. Emerging data suggest that LTL may be reduced in certain psychiatric illnesses, perhaps in proportion to exposure to the psychiatric illnesses, although conflicting data exist. Telomerase has been less well characterized in psychiatric illnesses, but a role in depression and in antidepressant and neurotrophic effects has been suggested by preclinical and clinical studies. In this article, studies on LTL and telomerase activity in psychiatric illnesses are critically reviewed, potential mediators are discussed, and future directions are suggested. A deeper understanding of cellular aging in psychiatric illnesses could lead to re-conceptualizing them as systemic illnesses with manifestations inside and outside the brain and could identify new treatment targets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Mechanical behavior of cellular borosilicate glass with pressurized Ar-filled closed pores

    Wang Bo; Matsumaru, Koji; Yang Jianfeng; Fu Zhengyi; Ishizaki, Kozo

    2012-01-01

    High strength borosilicate foams were fabricated by melting glass powder under high-pressure argon gas and subsequent heat treatment of the glass bulk at atmospheric pressure. In the first step, borosilicate glass powder was melted at 1100 °C for 1 h by capsule-free hot isostatic pressing (HIPing) under a high gas pressure of 10–70 MPa. Pressurized Ar-filled spherical pores were introduced into the glass, and argon atoms were dissolved in the glass network structure. The expansion of argon-filled pores and the release of the dissolved Ar gas resulted in the formation of pressurized Ar-filled closed pores by isothermal heat treatment at 800 °C for 10 min. A high porosity of up to 80% with a bimodal distribution of micro-size cells was obtained for the resultant cellular borosilicate glass. By increasing the total gas pressure from 10 to 70 MPa, the compressive strength and the Young’s modulus were increased considerably from 15 to 52 MPa and from 4.1 to 12.6 GPa, respectively, which can be substantially attributed to the high collapse stress from the high enclosed gas pressure. The cellular glass with a high porosity showed a large failure strain under uniaxial compression.

  6. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low dose/low LET radiation

    Munira A Kadhim

    2010-03-05

    To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e., less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these “non-targeted” responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate radiation-induced genomic instability and bystander responses in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/H and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition on two non-targeted radiation responses in these models; the bystander effect and genomic instability, which we believe are closely related. We will specifically focus on the effects of low doses of low LET radiation, down to doses approaching a single electron traversal. Using conventional X-ray and γ-ray sources, novel dish separation and targeted irradiation approaches, we will be able to assess the role of genetic variation under various bystander conditions at doses down to a few electron tracks. Irradiations will be carried out using facilities in routine operation for bystander targeted studies. Mechanistic studies of instability and the bystander response in different cell lineages will focus initially on the role of cytokines which have been shown to be involved in bystander signaling and the initiation of instability. These studies also aim

  7. Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72.

    Lancaster, Graeme I; Febbraio, Mark A

    2005-01-01

    The heat shock proteins are a family of highly conserved proteins with critical roles in maintaining cellular homeostasis and in protecting the cell from stressful conditions. While the critical intracellular roles of heat shock proteins are undisputed, evidence suggests that the cell possess the necessary machinery to actively secrete specific heat shock proteins in response to cellular stress. In this review, we firstly discuss the evidence that physical exercise induces the release of heat shock protein 72 from specific tissues in humans. Importantly, it appears as though this release is the result of an active secretory process, as opposed to non-specific processes such as cell lysis. Next we discuss recent in vitro evidence that has identified a mechanistic basis for the observation that cellular stress induces the release of a specific subset of heat shock proteins. Importantly, while the classical protein secretory pathway does not seem to be involved in the stress-induced release of HSP72, we discuss the evidence that lipid-rafts and exosomes are important mediators of the stress-induced release of HSP72.

  8. Phyto-mediated nanostructured carriers based on dual vegetable actives involved in the prevention of cellular damage.

    Istrati, D; Lacatusu, I; Bordei, N; Badea, G; Oprea, O; Stefan, L M; Stan, R; Badea, N; Meghea, A

    2016-07-01

    The growing scientific interest in exploitation of vegetable bioactives has raised a number of questions regarding their imminent presence in pharmaceutical formulations. This study intends to demonstrate that a dual combination between vegetable oil (e.g. thistle oil, safflower oil, sea buckthorn oil) and a carrot extract represents an optimal approach to formulate safe carrier systems that manifest cell regeneration effect and promising antioxidant and anti-inflammatory activity. Inclusion of both natural actives into lipid carriers imparted a strong negative charge on the nanocarrier surface (up to -45mV) and displayed average sizes of 70nm to 140nm. The entrapment efficiency of carrot extract into nanostructured carriers ranged between 78.3 and 88.3%. The in vitro release study has demonstrated that the entrapment of the extract represents a viable way for an equilibrated release of carotenoids. Besides the excellent antioxidant properties (e.g. scavenging up to 98% of the free oxygen radicals), the results of cellular integrity (e.g. cell viability of 133%) recommend these nanocarriers based on dual carrot extract-bioactive oil as a promising trend for the treatment of certain disorders in which oxidative stress plays a prominent role. In addition, the lipid nanocarriers based on safflower oil and sea buckthorn oil demonstrated an anti-inflammatory effect on LPS induced THP-1 macrophages, by inhibiting the secretion of two pro-inflammatory cytokines, IL-6 and TNF-α. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The light gene of Drosophila melanogaster encodes a homologue of VPS41, a yeast gene involved in cellular-protein trafficking.

    Warner, T S; Sinclair, D A; Fitzpatrick, K A; Singh, M; Devlin, R H; Honda, B M

    1998-04-01

    Mutations in a number of genes affect eye colour in Drosophila melanogaster; some of these "eye-colour" genes have been shown to be involved in various aspects of cellular transport processes. In addition, combinations of viable mutant alleles of some of these genes, such as carnation (car) combined with either light (lt) or deep-orange (dor) mutants, show lethal interactions. Recently, dor was shown to be homologous to the yeast gene PEP3 (VPS18), which is known to be involved in intracellular trafficking. We have undertaken to extend our earlier work on the lt gene, in order to examine in more detail its expression pattern and to characterize its gene product via sequencing of a cloned cDNA. The gene appears to be expressed at relatively high levels in all stages and tissues examined, and shows strong homology to VPS41, a gene involved in cellular-protein trafficking in yeast and higher eukaryotes. Further genetic experiments also point to a role for lt in transport processes: we describe lethal interactions between viable alleles of lt and dor, as well as phenotypic interactions (reductions in eye pigment) between allels of lt and another eye-colour gene, garnet (g), whose gene product has close homology to a subunit of the human adaptor complex, AP-3.

  10. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts

    Kaneuji, Takeshi; Ariyoshi, Wataru; Okinaga, Toshinori; Toshinaga, Akihiro; Takahashi, Tetsu; Nishihara, Tatsuji

    2011-01-01

    Highlights: → Effect of compressive force on osteoblasts were examined. → Compressive force induced OPG expression and suppressed osteoclastogenesis. → This enhancement of OPG is dependent on Wnt/Ca2+ signal pathway. -- Abstract: Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0-10.0 g/cm 2 ) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-κB ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of IκBα, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca 2+ pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-κB) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt/Ca 2+ pathway.

  11. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela, E-mail: angela.pearson@iaf.inrs.ca

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs. Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.

  12. Identification of PM{sub 10} characteristics involved in cellular responses in human bronchial epithelial cells (Beas-2B)

    Van Den Heuvel, Rosette, E-mail: rosette.vandenheuvel@vito.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); Den Hond, Elly, E-mail: elly.denhond@wiv-isp.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); Govarts, Eva, E-mail: eva.govarts@vito.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); Colles, Ann, E-mail: ann.colles@vito.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); Koppen, Gudrun, E-mail: gudrun.koppen@vito.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); Staelens, Jeroen, E-mail: j.staelens@vmm.be [Flanders Environment Agency (VMM), Unit Air, Kronenburgstraat 45, 2000 Antwerp (Belgium); Mampaey, Maja, E-mail: maja.mampaey@lne.vlaanderen.be [LNE (Environment, Nature and Energy Department), Flemish Government, Koning Albert II-laan 20, 1000 Brussels (Belgium); Janssen, Nicole, E-mail: nicole.janssen@rivm.nl [National Institute for Public Health and the Environment (RIVM), P.O. Box, 2720 BA, Bilthoven (Netherlands); Schoeters, Greet, E-mail: greet.schoeters@vito.be [Flemish Institute for Technological Research (VITO), Environmental Risk and Health Unit, Boeretang 200, 2400 Mol (Belgium); University of Antwerp, Department of Biomedical Sciences, 2000 Antwerp (Belgium)

    2016-08-15

    single and multiple regression analyses. The reduction in cell viability was significantly correlated with BC, Cd and Pb. The induction of IL-8 in Beas-2B cells was significantly associated with Cu, Ni and Zn and endotoxin. Endotoxin levels explained 33% of the variance in IL-8 induction. A significant interaction between ambient temperature and endotoxin on the pro-inflammatory activity was seen. No association was found between OP and the cellular responses. This study supports the hypothesis that, on an equal mass basis, PM{sub 10} induced biological effects differ due to differences in PM{sub 10} characteristics. Metals (Cd, Cu, Ni and Zn), BC, and endotoxin were among the main determinants for the observed biological responses. - Highlights: • On an equal mass basis, PM{sub 10} sampled at an urban, rural and industrial site induced different cellular effects in Beas-2B. • Endotoxin levels and oxidative potential (OP) were analysed in the PM{sub 10} samples. • Black carbon, cadmium and lead were correlated with decreased cell viability. • Endotoxin levels explained the majority of the variance in il-8 induction. • Oxidatively damaged DNA was observed in all the samples.

  13. Phyto-mediated nanostructured carriers based on dual vegetable actives involved in the prevention of cellular damage

    Istrati, D.; Lacatusu, I.; Bordei, N.; Badea, G.; Oprea, O.; Stefan, L.M.; Stan, R.; Badea, N.; Meghea, A.

    2016-01-01

    The growing scientific interest in exploitation of vegetable bioactives has raised a number of questions regarding their imminent presence in pharmaceutical formulations. This study intends to demonstrate that a dual combination between vegetable oil (e.g. thistle oil, safflower oil, sea buckthorn oil) and a carrot extract represents an optimal approach to formulate safe carrier systems that manifest cell regeneration effect and promising antioxidant and anti-inflammatory activity. Inclusion of both natural actives into lipid carriers imparted a strong negative charge on the nanocarrier surface (up to − 45 mV) and displayed average sizes of 70 nm to 140 nm. The entrapment efficiency of carrot extract into nanostructured carriers ranged between 78.3 and 88.3%. The in vitro release study has demonstrated that the entrapment of the extract represents a viable way for an equilibrated release of carotenoids. Besides the excellent antioxidant properties (e.g. scavenging up to 98% of the free oxygen radicals), the results of cellular integrity (e.g. cell viability of 133%) recommend these nanocarriers based on dual carrot extract–bioactive oil as a promising trend for the treatment of certain disorders in which oxidative stress plays a prominent role. In addition, the lipid nanocarriers based on safflower oil and sea buckthorn oil demonstrated an anti-inflammatory effect on LPS induced THP-1 macrophages, by inhibiting the secretion of two pro-inflammatory cytokines, IL-6 and TNF-α. - Highlights: • Safety phyto-mediated nanostructured carriers (NLC) based on two kinds of bioactives • Carrot extract incorporation into nanostructured carriers ranged from 78 to 88.3%. • High antioxidant activity of NLC by scavenging up to 98% free oxygen radicals • Extract entrapment represents a viable way for an equilibrated release of carotenoids. • Remarkable regenerative effect of L929 cell, with a proliferation of 133.4%

  14. Phyto-mediated nanostructured carriers based on dual vegetable actives involved in the prevention of cellular damage

    Istrati, D.; Lacatusu, I.; Bordei, N.; Badea, G.; Oprea, O. [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No. 1, 011061 Bucharest (Romania); Stefan, L.M. [National Institute of Research and Development for Biological Sciences, Splaiul Independentei Street No. 296, 060031 Bucharest (Romania); Stan, R. [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No. 1, 011061 Bucharest (Romania); Badea, N., E-mail: nicoleta.badea@gmail.com [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No. 1, 011061 Bucharest (Romania); Meghea, A. [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No. 1, 011061 Bucharest (Romania)

    2016-07-01

    The growing scientific interest in exploitation of vegetable bioactives has raised a number of questions regarding their imminent presence in pharmaceutical formulations. This study intends to demonstrate that a dual combination between vegetable oil (e.g. thistle oil, safflower oil, sea buckthorn oil) and a carrot extract represents an optimal approach to formulate safe carrier systems that manifest cell regeneration effect and promising antioxidant and anti-inflammatory activity. Inclusion of both natural actives into lipid carriers imparted a strong negative charge on the nanocarrier surface (up to − 45 mV) and displayed average sizes of 70 nm to 140 nm. The entrapment efficiency of carrot extract into nanostructured carriers ranged between 78.3 and 88.3%. The in vitro release study has demonstrated that the entrapment of the extract represents a viable way for an equilibrated release of carotenoids. Besides the excellent antioxidant properties (e.g. scavenging up to 98% of the free oxygen radicals), the results of cellular integrity (e.g. cell viability of 133%) recommend these nanocarriers based on dual carrot extract–bioactive oil as a promising trend for the treatment of certain disorders in which oxidative stress plays a prominent role. In addition, the lipid nanocarriers based on safflower oil and sea buckthorn oil demonstrated an anti-inflammatory effect on LPS induced THP-1 macrophages, by inhibiting the secretion of two pro-inflammatory cytokines, IL-6 and TNF-α. - Highlights: • Safety phyto-mediated nanostructured carriers (NLC) based on two kinds of bioactives • Carrot extract incorporation into nanostructured carriers ranged from 78 to 88.3%. • High antioxidant activity of NLC by scavenging up to 98% free oxygen radicals • Extract entrapment represents a viable way for an equilibrated release of carotenoids. • Remarkable regenerative effect of L929 cell, with a proliferation of 133.4%.

  15. MECHANISMS OF DAMAGING EFFECT OF MANGENESE IN TOXIC CONCENTRATIONS ON CELLULAR AND SUBCELLULAR LEVELS

    Goncharenko A. V.

    2012-11-01

    Full Text Available Influence of subtoxic concentration of manganese chloride in dose equal to LD 50 on condition of plasmatic membranes (model: erythrocytes and functional activity of cell power (model: the isolated liver mitochondrion of rats was studied. It was established that manganese chloride in fixed concentration caused authentic augmentation of sorption capacity of erythrocytes towards alcian blue, influenced increasing of their spontaneous haemolysis and activation of peroxide oxidation of lipids. In experiment on the isolated mitochondrion it was proved that manganese chloride caused dissociation of an oxidizing phosphorusling and complete inhibition of respiration in concentrations of 3 and 4,5mM. These dependences testify that subtoxic concentration of manganese can damage the cell energy. Thus, this pilot research indicated damaging effect of manganese on cellular (erythrocytes and subcellular (mitochondrion levels which are realized through external functioning of membrane structures and deprived them from restoration.

  16. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls.

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T V; Alyethodi, Rafeeque R; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B

    2015-12-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly (P ATPase Β1, ATPase B2, and ATPase B3 is highly correlated (P ATPase beta family genes for cellular thermotolerance in cattle.

  17. Cellular and Molecular Mechanisms of 3,3′-Diindolylmethane in Gastrointestinal Cancer

    Soo Mi Kim

    2016-07-01

    Full Text Available Studies in humans have shown that 3,3′-diindolylmethane (DIM, which is found in cruciferous vegetables, such as cabbage and broccoli, is effective in the attenuation of gastrointestinal cancers. This review presents the latest findings on the use, targets, and modes of action of DIM for the treatment of human gastrointestinal cancers. DIM acts upon several cellular and molecular processes in gastrointestinal cancer cells, including apoptosis, autophagy, invasion, cell cycle regulation, metastasis, angiogenesis, and endoplasmic reticulum (ER stress. In addition, DIM increases the efficacy of other drugs or therapeutic chemicals when used in combinatorial treatment for gastrointestinal cancer. The studies to date offer strong evidence to support the use of DIM as an anticancer and therapeutic agent for gastrointestinal cancer. Therefore, this review provides a comprehensive understanding of the preventive and therapeutic properties of DIM in addition to its different perspective on the safety of DIM in clinical applications for the treatment of gastrointestinal cancers.

  18. Cellular Interrogation: Exploiting Cell-to-Cell Variability to Discriminate Regulatory Mechanisms in Oscillatory Signalling.

    Estrada, Javier; Andrew, Natalie; Gibson, Daniel; Chang, Frederick; Gnad, Florian; Gunawardena, Jeremy

    2016-07-01

    The molecular complexity within a cell may be seen as an evolutionary response to the external complexity of the cell's environment. This suggests that the external environment may be harnessed to interrogate the cell's internal molecular architecture. Cells, however, are not only nonlinear and non-stationary, but also exhibit heterogeneous responses within a clonal, isogenic population. In effect, each cell undertakes its own experiment. Here, we develop a method of cellular interrogation using programmable microfluidic devices which exploits the additional information present in cell-to-cell variation, without requiring model parameters to be fitted to data. We focussed on Ca2+ signalling in response to hormone stimulation, which exhibits oscillatory spiking in many cell types and chose eight models of Ca2+ signalling networks which exhibit similar behaviour in simulation. We developed a nonlinear frequency analysis for non-stationary responses, which could classify models into groups under parameter variation, but found that this question alone was unable to distinguish critical feedback loops. We further developed a nonlinear amplitude analysis and found that the combination of both questions ruled out six of the models as inconsistent with the experimentally-observed dynamics and heterogeneity. The two models that survived the double interrogation were mathematically different but schematically identical and yielded the same unexpected predictions that we confirmed experimentally. Further analysis showed that subtle mathematical details can markedly influence non-stationary responses under parameter variation, emphasising the difficulty of finding a "correct" model. By developing questions for the pathway being studied, and designing more versatile microfluidics, cellular interrogation holds promise as a systematic strategy that can complement direct intervention by genetics or pharmacology.

  19. A novel mechanism involved in the coupling of mitochondrial biogenesis to oxidative phosphorylation

    Jelena Ostojić

    2014-01-01

    Full Text Available Mitochondria are essential organelles that are central to a multitude of cellular processes, including oxidative phosphorylation (OXPHOS, which produces most of the ATP in animal cells. Thus it is important to understand not only the mechanisms and biogenesis of this energy production machinery but also how it is regulated in both physiological and pathological contexts. A recent study by Ostojić et al. [Cell Metabolism (2013 18, 567-577] has uncovered a regulatory loop by which the biogenesis of a major enzyme of the OXPHOS pathway, the respiratory complex III, is coupled to the energy producing activity of the mitochondria.

  20. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts

    Kaneuji, Takeshi [Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru; Okinaga, Toshinori; Toshinaga, Akihiro [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Takahashi, Tetsu [Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan)

    2011-04-29

    Highlights: {yields} Effect of compressive force on osteoblasts were examined. {yields} Compressive force induced OPG expression and suppressed osteoclastogenesis. {yields} This enhancement of OPG is dependent on Wnt/Ca2+ signal pathway. -- Abstract: Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0-10.0 g/cm{sup 2}) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-{kappa}B ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of I{kappa}B{alpha}, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca{sup 2+} pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-{kappa}B) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt

  1. Mechanisms of protective immunity against Schistosoma mansoni infection in mice vaccinated with irradiated cercariae. V. Anamnestic cellular and humoral responses following challenge infection

    Correa-Oliveira, R.; Sher, A.; James, S.L.

    1984-01-01

    Mice vaccinated with radiation-attenuated cercariae display low levels of cellular and humoral immune responses toward schistosomulum antigens, as measured in vitro by lymphocyte blastogenesis and quantitation of anti-larval antibodies by indirect immunofluorescence. Both responses wane with time after vaccination. However subsequent challenge infection provokes immune responses of classical anamnestic character, being both more rapid in appearance and of greater magnitude. Antigen responsive cells appear in lymph nodes draining the challenge site within 24 hours after infection. Both circulating anti-schistosomulum surface antibodies as well as cytophilic IgE anti-worm antigen antibodies increase substantially by 1 week after challenge. All of the anamnestic circulating antibodies belong to the IgG class. Those findings support the concept that vaccine-induced resistance to Schistosoma mansoni infection involves sensitized T and B lymphocytes, and point to the possible role of post-challenge anamnestic responses in the effector mechanism of parasite killing in this model

  2. The ROS-mediated activation of IL-6/STAT3 signaling pathway is involved in the 27-hydroxycholesterol-induced cellular senescence in nerve cells.

    Liu, Jiao; Liu, Yun; Chen, Juan; Hu, Chunyan; Teng, Mengying; Jiao, Kailin; Shen, Zhaoxia; Zhu, Dongmei; Yue, Jia; Li, Zhong; Li, Yuan

    2017-12-01

    The oxysterol 27-hydroxycholesterol (27HC) is a selective estrogen receptor modulator (SERMs), which like endogenous estrogen 17β-estradiol (E 2 ) induces the proliferation of ER-positive breast cancer cells in vitro. Interestingly, the observation that 27HC induces adverse effects in neural system, distinguishing it from E 2 . It has been suggested that high levels of circulating cholesterol increase the entry of 27HC into the brain, which may induce learning and memory impairment. Based on this evidence, 27HC may be associated with neurodegenerative processes and interrupted cholesterol homeostasis in the brain. However, the biological events that participate in this process remain largely elusive. In the present study, we demonstrated that 27HC induced apparent cellular senescence in nerve cells. Senescence-associated β-galactosidase (SA-β-Gal) assay revealed that 27HC induced senescence in both BV2 cells and PC12 cells. Furthermore, we demonstrated that 27HC promoted the accumulation of cellular reactive oxygen species (ROS) in nerve cells and subsequently activation of IL-6/STAT3 signaling pathway. Notably, treatment with the ROS scavenger N-acetylcysteine (NAC) markedly blocked 27HC-induced ROS production and activation of IL-6/STAT3 signaling pathway. Either blocking the generation of ROS or inhibition of IL-6/STAT3 both attenuated 27HC-induced cellular senescence. In sum, these findings not only suggested a mechanism whereby 27HC induced cellular senescence in nerve cells, but also helped to recognize the 27HC as a novel harmful factor in neurodegenerative diseases. Copyright © 2017. Published by Elsevier Ltd.

  3. Effects of Mechanical Properties on Tumor Invasion: Insights from a Cellular Model

    Li, YZ; Naveed, H; Liang, J; Xu, LX

    2014-01-01

    Understanding the regulating mechanism of tumor invasion is of crucial importance for both fundamental cancer research and clinical applications. Previous in vivo experiments have shown that invasive cancer cells dissociate from the primary tumor

  4. Cellular Mechanics of Primary Human Cervical Fibroblasts: Influence of Progesterone and a Pro-inflammatory Cytokine.

    Shukla, Vasudha; Barnhouse, Victoria; Ackerman, William E; Summerfield, Taryn L; Powell, Heather M; Leight, Jennifer L; Kniss, Douglas A; Ghadiali, Samir N

    2018-01-01

    The leading cause of neonatal mortality, pre-term birth, is often caused by pre-mature ripening/opening of the uterine cervix. Although cervical fibroblasts play an important role in modulating the cervix's extracellular matrix (ECM) and mechanical properties, it is not known how hormones, i.e., progesterone, and pro-inflammatory insults alter fibroblast mechanics, fibroblast-ECM interactions and the resulting changes in tissue mechanics. Here we investigate how progesterone and a pro-inflammatory cytokine, IL-1β, alter the biomechanical properties of human cervical fibroblasts and the fibroblast-ECM interactions that govern tissue-scale mechanics. Primary human fibroblasts were isolated from non-pregnant cervix and treated with estrogen/progesterone, IL-1β or both. The resulting changes in ECM gene expression, matrix remodeling, traction force generation, cell-ECM adhesion and tissue contractility were monitored. Results indicate that IL-1β induces a significant reduction in traction force and ECM adhesion independent of pre-treatment with progesterone. These cell level effects altered tissue-scale mechanics where IL-1β inhibited the contraction of a collagen gel over 6 days. Interestingly, progesterone treatment alone did not modulate traction forces or gel contraction but did result in a dramatic increase in cell-ECM adhesion. Therefore, the protective effect of progesterone may be due to altered adhesion dynamics as opposed to altered ECM remodeling.

  5. Behind the curtain: cellular mechanisms for allosteric modulation of calcium-sensing receptors

    Cavanaugh, Alice; Huang, Ying; Breitwieser, Gerda E

    2012-01-01

    Calcium-sensing receptors (CaSR) are integral to regulation of systemic Ca2+ homeostasis. Altered expression levels or mutations in CaSR cause Ca2+ handling diseases. CaSR is regulated by both endogenous allosteric modulators and allosteric drugs, including the first Food and Drug Administration-approved allosteric agonist, Cinacalcet HCl (Sensipar®). Recent studies suggest that allosteric modulators not only alter function of plasma membrane-localized CaSR, but regulate CaSR stability at the endoplasmic reticulum. This brief review summarizes our current understanding of the role of membrane-permeant allosteric agonists in cotranslational stabilization of CaSR, and highlights additional, indirect, signalling-dependent role(s) for membrane-impermeant allosteric drugs. Overall, these studies suggest that allosteric drugs act at multiple cellular organelles to control receptor abundance and hence function, and that drug hydrophobicity can bias the relative contributions of plasma membrane and intracellular organelles to CaSR abundance and signalling. LINKED ARTICLES This article is part of a themed section on the Molecular Pharmacology of G Protein-Coupled Receptors (GPCRs). To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-6. To view the 2010 themed section on the same topic visit http://onlinelibrary.wiley.com/doi/10.1111/bph.2010.159.issue-5/issuetoc PMID:21470201

  6. Life under Climate Change Scenarios: Sea Urchins’ Cellular Mechanisms for Reproductive Success

    Desislava Bögner

    2016-03-01

    Full Text Available Ocean Acidification (OA represents a major field of research and increased efforts are being made to elucidate its repercussions on biota. Species survival is ensured by successful reproduction, which may be threatened under detrimental environmental conditions, such as OA acting in synergy with other climate change related stressors. Achieving successful gametogenesis, fertilization, and the development of larvae into healthy juveniles and adults is crucial for the perpetuation of species and, thus, ecosystems’ functionality. The considerable vulnerability of the abovementioned developmental stages to the adverse conditions that future OA may impose has been shown in many species, including sea urchins which are commonly used due to the feasibility of their maintenance in captivity and the great amount of gametes that a mature adult is able to produce. In the present review, the latest knowledge about the impact of OA on various stages of the life cycle of sea urchins is summarized with remarks on the possible impact of other stressors. The cellular physiology of the gametes before, at fertilization and, at early development, is extensively described with a focus on the complex enzymatic machinery and the intracellular pH (pHi and Ca2+ homeostasis for their vulnerability when facing adverse conditions such as acidification, temperature variations, or hypoxia.

  7. Mechanism of Anti-glioblastoma Effect of Temzolomide Involved in ROS-Mediated SIRT 1 Pathway

    Yuan Jiang

    2014-03-01

    Full Text Available Objective: To explore the new molecular mechanism of anti-tumor effect of temzolomide (TMZon glioblastoma cell strain. Methods: MTT methods and Hoechst 33342 staining method were applied to determine the effect of TMZ on the proliferation and apoptosis of glioblastoma cell strains U251 and SHG44, while flow cytometry was used to detect the impact of TMZ on cellular cycles. Additionally, DCFH-DA probe was adopted to test intracellular reactive oxygen species (ROS level while Real-time PCR and Western blot tests were applied to determine the influence of TMZ on SIRT1 expression. Results: TMZ in different concentrations added into glioblastoma cell strain for 72 h could concentration-dependently inhibit the proliferation of glioblastoma cells, 100 μmol/L of which could also block cells in phase G2/M and improve cellular apoptosis. In addition, TMZ could evidently increase intracellular ROS level so as to activate SIRT1. Conclusion: The mechanism of anti-tumor effect of TMZ on glioblastoma may be associated with ROS-induced SIRT1 pathway, providing theoretical basis for the clinical efficacy of TMZ.

  8. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Chi, Huibo; Gu, Yan; Xu, Tingting; Cao, Feng

    2017-01-01

    To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH) nanosheets with active targeting to peptide transporter-1 (PepT-1) were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC) and retinal pigment epithelial (ARPE-19) cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. PMID:28280329

  9. Feeding Behavior of Aplysia: A Model System for Comparing Cellular Mechanisms of Classical and Operant Conditioning

    Baxter, Douglas A.; Byrne, John H.

    2006-01-01

    Feeding behavior of Aplysia provides an excellent model system for analyzing and comparing mechanisms underlying appetitive classical conditioning and reward operant conditioning. Behavioral protocols have been developed for both forms of associative learning, both of which increase the occurrence of biting following training. Because the neural…

  10. Analysis of bone architecture sensitivity for changes in mechanical loading, cellular activity, mechanotransduction, and tissue properties

    Cox, L.G.E.; Rietbergen, van B.; Donkelaar, van C.C.; Ito, K.

    2011-01-01

    Bone has an architecture which is optimized for its mechanical environment. In various conditions, this architecture is altered, and the underlying cause for this change is not always known. In the present paper, we investigated the sensitivity of the bone microarchitecture for four factors: changes

  11. Possible mechanisms involved in the vasorelaxant effect produced by clobenzorex in aortic segments of rats

    Lozano-Cuenca, J.; González-Hernández, A.; López-Canales, O.A.; Villagrana-Zesati, J.R.; Rodríguez-Choreão, J.D.; Morín-Zaragoza, R.; Castillo-Henkel, E.F.; López-Canales, J.S.

    2017-01-01

    Clobenzorex is a metabolic precursor of amphetamine indicated for the treatment of obesity. Amphetamines have been involved with cardiovascular side effects such as hypertension and pulmonary arterial hypertension. The aim of the present study was to investigate whether the direct application of 10?9?10?5 M clobenzorex on isolated phenylephrine-precontracted rat aortic rings produces vascular effects, and if so, what mechanisms may be involved. Clobenzorex produced an immediate concentration-...

  12. (Some) Cellular Mechanisms Influencing the Transcription of Human Endogenous Retrovirus, HERV-Fc1

    Laska, Magdalena Janina; Nissen, Kari Konstantin; Nexø, Bjørn Andersen

    2013-01-01

    DNA methylation and histone acetylation are epigenetic modifications that act as regulators of gene expression. DNA methylation is considered an important mechanism for silencing of retroelements in the mammalian genome. However, the methylation of human endogenous retroviruses (HERVs) is not well...... investigated. The aim of this study was to investigate the transcriptional potential of HERV-Fc1 proviral 5'LTR in more detail, and examined the specific influence of CpG methylation on this LTR in number of cell lines. Specifically, the role of demethylating chemicals e.g. 5-aza-2' deoxycytidine...... and Trichostatin-A, in inducing or reactivating expression of HERV-Fc1 specific sequences and the mechanisms were investigated. In our present study, 5-aza-dC is shown to be a powerful inducer of HERV-Fc1, and at the same time it strongly inhibits methylation of DNA. Treatment with this demethylating agent 5-aza...

  13. Mechanisms involved in the transport of mercuric ions in target tissues

    Bridges, Christy C.; Zalups, Rudolfs K.

    2016-01-01

    Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells. PMID:27422290

  14. Cellular mechanisms underlying the laxative effect of flavonol naringenin on rat constipation model.

    Zi-Huan Yang

    Full Text Available BACKGROUND & AIMS: Symptoms of constipation are extremely common, especially in the elderly. The present study aim to identify an efficacious treatment strategy for constipation by evaluating the secretion-promoting and laxative effect of a herbal compound, naringenin, on intestinal epithelial anion secretion and a rat constipation model, respectively. METHODS/PRINCIPAL FINDINGS: In isolated rat colonic crypts, mucosal addition of naringenin (100 microM elicited a concentration-dependent and sustained increase in the short-circuit current (I(SC, which could be inhibited in Cl- free solution or by bumetanide and DPC (diphenylamine-2-carboxylic acid, but not by DIDS (4, 4'- diisothiocyanatostilbene-2, 2'-disulfonic acid. Naringenin could increase intracellular cAMP content and PKA activity, consisted with that MDL-12330A (N-(Cis-2-phenyl-cyclopentyl azacyclotridecan-2-imine-hydrochloride pretreatment reduced the naringenin-induced I(SC. In addition, significant inhibition of the naringenin-induced I(SC by quinidine indicated that basolateral K+ channels were involved in maintaining this cAMP-dependent Cl- secretion. Naringenin-evoked whole cell current which exhibited a linear I-V relationship and time-and voltage- independent characteristics was inhibited by DPC, indicating that the cAMP activated Cl- conductance most likely CFTR (cystic fibrosis transmembrane conductance regulator was involved. In rat constipation model, administration of naringenin restored the level of fecal output, water content and mucus secretion compared to loperamide-administrated group. CONCLUSIONS: Taken together, our data suggest that naringenin could stimulate Cl- secretion in colonic epithelium via a signaling pathway involving cAMP and PKA, hence provide an osmotic force for subsequent colonic fluid secretion by which the laxative effect observed in the rat constipation model. Naringenin appears to be a novel alternative treatment strategy for constipation.

  15. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    Florea, Ana-Maria; Büsselberg, Dietrich

    2011-01-01

    Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects

  16. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    Florea, Ana-Maria [Department of Neuropathology, Heinrich-Heine University, Düsseldorf (Germany); Büsselberg, Dietrich, E-mail: dib2015@qatar-med.cornell.edu [Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha (Qatar)

    2011-03-15

    Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects.

  17. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.; Issitt, Theo; Ulyatt, Clare; Walker, John H.; Homer-Vanniasinkam, Shervanthi; Ponnambalam, Sreenivasan

    2012-01-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: ► Endothelial cells mount a stress response under conditions of low serum. ► Endothelial VEGFR levels are

  18. Integrated automated nanomanipulation and real-time cellular surface imaging for mechanical properties characterization

    Eslami, Sohrab; Zareian, Ramin; Jalili, Nader

    2012-10-01

    Surface microscopy of individual biological cells is essential for determining the patterns of cell migration to study the tumor formation or metastasis. This paper presents a correlated and effective theoretical and experimental technique to automatically address the biophysical and mechanical properties and acquire live images of biological cells which are of interest in studying cancer. In the theoretical part, a distributed-parameters model as the comprehensive representation of the microcantilever is presented along with a model of the contact force as a function of the indentation depth and mechanical properties of the biological sample. Analysis of the transfer function of the whole system in the frequency domain is carried out to characterize the stiffness and damping coefficients of the sample. In the experimental section, unlike the conventional atomic force microscope techniques basically using the laser for determining the deflection of microcantilever's tip, a piezoresistive microcantilever serving as a force sensor is implemented to produce the appropriate voltage and measure the deflection of the microcantilever. A micromanipulator robotic system is integrated with the MATLAB® and programmed in such a way to automatically control the microcantilever mounted on the tip of the micromanipulator to achieve the topography of biological samples including the human corneal cells. For this purpose, the human primary corneal fibroblasts are extracted and adhered on a sterilized culture dish and prepared to attain their topographical image. The proposed methodology herein allows an approach to obtain 2D quality images of cells being comparatively cost effective and extendable to obtain 3D images of individual cells. The characterized mechanical properties of the human corneal cell are furthermore established by comparing and validating the phase shift of the theoretical and experimental results of the frequency response.

  19. Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport.

    Reuter, Tanja Y; Medhurst, Annette L; Waisfisz, Quinten; Zhi, Yu; Herterich, Sabine; Hoehn, Holger; Gross, Hans J; Joenje, Hans; Hoatlin, Maureen E; Mathew, Christopher G; Huber, Pia A J

    2003-10-01

    Mutations in one of at least eight different genes cause bone marrow failure, chromosome instability, and predisposition to cancer associated with the rare genetic syndrome Fanconi anemia (FA). The cloning of seven genes has provided the tools to study the molecular pathway disrupted in Fanconi anemia patients. The structure of the genes and their gene products provided few clues to their functional role. We report here the use of 3 FA proteins, FANCA, FANCC, and FANCG, as "baits" in the hunt for interactors to obtain clues for FA protein functions. Using five different human cDNA libraries we screened 36.5x10(6) clones with the technique of the yeast two-hybrid system. We identified 69 proteins which have not previously been linked to the FA pathway as direct interactors of FANCA, FANCC, or FANCG. Most of these proteins are associated with four functional classes including transcription regulation (21 proteins), signaling (13 proteins), oxidative metabolism (10 proteins), and intracellular transport (11 proteins). Interaction with 6 proteins, DAXX, Ran, IkappaBgamma, USP14, and the previously reported SNX5 and FAZF, was additionally confirmed by coimmunoprecipitation and/or colocalization studies. Taken together, our data strongly support the hypothesis that FA proteins are functionally involved in several complex cellular pathways including transcription regulation, cell signaling, oxidative metabolism, and cellular transport.

  20. Tetracapsuloides bryosalmonae infection affects the expression of genes involved in cellular signal transduction and iron metabolism in the kidney of the brown trout Salmo trutta.

    Kumar, Gokhlesh; Sarker, Subhodeep; Menanteau-Ledouble, Simon; El-Matbouli, Mansour

    2015-06-01

    Tetracapsuloides bryosalmonae is an enigmatic endoparasite which causes proliferative kidney disease in various species of salmonids in Europe and North America. The life cycle of the European strain of T. bryosalmonae generally completes in an invertebrate host freshwater bryozoan and vertebrate host brown trout (Salmo trutta) Linnaeus, 1758. Little is known about the gene expression in the kidney of brown trout during the developmental stages of T. bryosalmonae. In the present study, quantitative real-time PCR was applied to quantify the target genes of interest in the kidney of brown trout at different time points of T. bryosalmonae development. PCR primers specific for target genes were designed and optimized, and their gene expression levels were quantified in the cDNA kidney samples using SYBR Green Supermix. Expression of Rab GDP dissociation inhibitor beta, integral membrane protein 2B, NADH dehydrogenase 1 beta subcomplex subunit 6, and 26S protease regulatory subunit S10B were upregulated significantly in infected brown trout, while the expression of the ferritin M middle subunit was downregulated significantly. These results suggest that host genes involved in cellular signal transduction, proteasomal activities, including membrane transporters and cellular iron storage, are differentially upregulated or downregulated in the kidney of brown trout during parasite development. The gene expression pattern of infected renal tissue may support the development of intraluminal sporogonic stages of T. bryosalmonae in the renal tubular lumen of brown trout which may facilitate the release of viable parasite spores to transmit to the invertebrate host bryozoan.

  1. Mecanismos envolvidos na cicatrização: uma revisão Mechanisms involved in wound healing: a revision

    Carlos Aberto Balbino

    2005-03-01

    Full Text Available Os mecanismos envolvidos no processo de reparo de tecidos estão revisados nesse trabalho. O processo de cicatrização ocorre fundamentalmente em três fases: inflamação, formação de tecido de granulação e deposição de matriz extracelular e remodelação. Os eventos celulares e tissulares de cada uma dessas fases estão descritos e discutidos. Os mediadores químicos estão correlacionados com os eventos do processo de cicatrização e as células envolvidas. Especial ênfase é dada à participação dos fatores de crescimento.The mechanisms involved in tissue repair are revised. The wound healing process occurs basically in three phases: inflammation, formation of granulating tissue and extracellular tissue deposition, and tissue remodeling. The cellular and tissue events of each phase are described and discussed. The chemical mediators and their interplay with the wound healing events and cells involved are also discussed. However, especial attention was given to the role played by the growth factors in the tissue repair process.

  2. Cellular uptake mechanism and comparative evaluation of antineoplastic effects of paclitaxel–cholesterol lipid emulsion on triple-negative and non-triple-negative breast cancer cell lines

    Ye J

    2016-08-01

    Full Text Available Jun Ye,1,2 Xuejun Xia,1,2 Wujun Dong,1,2 Huazhen Hao,1,2 Luhua Meng,1,2 Yanfang Yang,1,2 Renyun Wang,1,2 Yuanfeng Lyu,3 Yuling Liu1,2 1State Key Laboratory of Bioactive Substance and Function of Natural Medicines, 2Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 3School of Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China Abstract: There is no effective clinical therapy for triple-negative breast cancers (TNBCs, which have high low-density lipoprotein (LDL requirements and express relatively high levels of LDL receptors (LDLRs on their membranes. In our previous study, a novel lipid emulsion based on a paclitaxel–cholesterol complex (PTX-CH Emul was developed, which exhibited improved safety and efficacy for the treatment of TNBC. To date, however, the cellular uptake mechanism and intracellular trafficking of PTX-CH Emul have not been investigated. In order to offer powerful proof for the therapeutic effects of PTX-CH Emul, we systematically studied the cellular uptake mechanism and intracellular trafficking of PTX-CH Emul and made a comparative evaluation of antineoplastic effects on TNBC (MDA-MB-231 and non-TNBC (MCF7 cell lines through in vitro and in vivo experiments. The in vitro antineoplastic effects and in vivo tumor-targeting efficiency of PTX-CH Emul were significantly more enhanced in MDA-MB-231-based models than those in MCF7-based models, which was associated with the more abundant expression profile of LDLR in MDA-MB-231 cells. The results of the cellular uptake mechanism indicated that PTX-CH Emul was internalized into breast cancer cells through the LDLR-mediated internalization pathway via clathrin-coated pits, localized in lysosomes, and then released into the cytoplasm, which was consistent with the internalization pathway and intracellular trafficking of native

  3. Evidence for the involvement of MC4 receptors in the central mechanisms of opioid antinociception

    Starowicz, Katarzyna

    2005-01-01

    The data described in this thesis extend general knowledge of the involvement of the MC4 receptor in mechanisms of analgesia. The following aspects outlined below constitute novel information. Firstly, the MC4R localization in the DRG is demonstrated. The MC4 receptor was assumed to exist

  4. Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injury

    Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injuryHenriquez, A.1, Snow, S.2, Miller, D1.,Schladweiler, M.2 and Kodavanti, U2.1 Curriculum in Toxicology, UNC, Chapel Hill, NC. 2 EPHD/NHEERL, US EPA, RTP, Durham, NC. ...

  5. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells

    Mays, R.W.; Siemers, K.A.; Fritz, B.A.; Lowe, A.W.; van Meer, G.; Nelson, W.J.

    1995-01-01

    We have studied mechanisms involved in generating a polarized distribution of Na/K-ATPase in the basal-lateral membrane of two clones of MDCK II cells. Both clones exhibit polarized distributions of marker proteins of the apical and basal-lateral membranes, including Na/K-ATPase, at steady state.

  6. The Effect of Structural Design on Mechanical Properties and Cellular Response of Additive Manufactured Titanium Scaffolds

    Jan Wieding

    2012-08-01

    Full Text Available Restoration of segmental defects in long bones remains a challenging task in orthopedic surgery. Although autologous bone is still the ‘Gold Standard’ because of its high biocompatibility, it has nevertheless been associated with several disadvantages. Consequently, artificial materials, such as calcium phosphate and titanium, have been considered for the treatment of bone defects. In the present study, the mechanical properties of three different scaffold designs were investigated. The scaffolds were made of titanium alloy (Ti6Al4V, fabricated by means of an additive manufacturing process with defined pore geometry and porosities of approximately 70%. Two scaffolds exhibited rectangular struts, orientated in the direction of loading. The struts for the third scaffold were orientated diagonal to the load direction, and featured a circular cross-section. Material properties were calculated from stress-strain relationships under axial compression testing. In vitro cell testing was undertaken with human osteoblasts on scaffolds fabricated using the same manufacturing process. Although the scaffolds exhibited different strut geometry, the mechanical properties of ultimate compressive strength were similar (145–164 MPa and in the range of human cortical bone. Test results for elastic modulus revealed values between 3.7 and 6.7 GPa. In vitro testing demonstrated proliferation and spreading of bone cells on the scaffold surface.

  7. The cytotoxicity of polycationic iron oxide nanoparticles: Common endpoint assays and alternative approaches for improved understanding of cellular response mechanism

    Hoskins Clare

    2012-04-01

    Our findings indicate that common in vitro cell endpoint assays do not give detailed and complete information on cellular state and it is essential to explore novel approaches and carry out more in-depth studies to elucidate cellular response mechanism to magnetic nanoparticles.

  8. Effects of nitric oxide on magnocellular neurons of the supraoptic nucleus involve multiple mechanisms

    M.P. da Silva

    2014-02-01

    Full Text Available Physiological evidence indicates that the supraoptic nucleus (SON is an important region for integrating information related to homeostasis of body fluids. Located bilaterally to the optic chiasm, this nucleus is composed of magnocellular neurosecretory cells (MNCs responsible for the synthesis and release of vasopressin and oxytocin to the neurohypophysis. At the cellular level, the control of vasopressin and oxytocin release is directly linked to the firing frequency of MNCs. In general, we can say that the excitability of these cells can be controlled via two distinct mechanisms: 1 the intrinsic membrane properties of the MNCs themselves and 2 synaptic input from circumventricular organs that contain osmosensitive neurons. It has also been demonstrated that MNCs are sensitive to osmotic stimuli in the physiological range. Therefore, the study of their intrinsic membrane properties became imperative to explain the osmosensitivity of MNCs. In addition to this, the discovery that several neurotransmitters and neuropeptides can modulate their electrical activity greatly increased our knowledge about the role played by the MNCs in fluid homeostasis. In particular, nitric oxide (NO may be an important player in fluid balance homeostasis, because it has been demonstrated that the enzyme responsible for its production has an increased activity following a hypertonic stimulation of the system. At the cellular level, NO has been shown to change the electrical excitability of MNCs. Therefore, in this review, we focus on some important points concerning nitrergic modulation of the neuroendocrine system, particularly the effects of NO on the SON.

  9. Onset of lipoprotein-supported steroidogenesis in differentiating granulosa cells of rats: cellular events involved in mediating FSH-enhanced uptake of low-density lipoproteins

    Foster, J.D.

    1987-01-01

    Luteal cells use lipoproteins as the main source of cholesterol in steroidogenesis. However, little is known about the mechanisms underlying hormonal control of lipoprotein uptake. Thus, the authors tested the hypothesis that FSH and androgens regulate low density lipoprotein (LDL)-supported steroidogenesis in maturing granulosa cells by affecting receptor-mediated endocytosis of LDL at a cellular level. For this, immature ovarian granulosa cells were cultured with or without hormones, compactin (de novo synthesis inhibitor), or unlabeled or labeled ( 125 I or gold particles) LDL. Nonhormone-treated cultures produced little progestin; FSH and FSH/androstenedione stimulated steroid secretion. Progestin production by hormone-, but not nonhormone-, treated cultures was decreased by compactin, suggesting that de novo synthesis provided sterol for steroidogenesis. EM quantitation of cells exposed to gold-LDL at 37 0 C revealed that, compared to nonhormone-treated cells, FSH-treated cells (1) bound and internalized more gold-LDL, (2) had a smaller percentage of gold-LDL at their surfaces, (3) displayed a faster apparent rate of LDL internalization and delivery to lysosomes, and (4) contained more gold-labeled lysosomes. Data from biochemical studies in which 125 I-LDL was used supported the morphological findings. In conclusion, this study demonstrates that FSH has important effects at the cellular level on LDL uptake, which seem to underlie the striking increase in progestin production accompanying granulosa cell differentiation

  10. Auxin apical control of the auxin polar transport and its oscillation - a suggested cellular transduction mechanism

    Tomasz J. Wodzicki

    2014-01-01

    Full Text Available The proposed hypothesis concerns the transduction of auxin molecular signals arriving from the apoplast at the plasma membrane or recognized by the proteineous receptors of the responding cell, to the concentration gradients oscillating in the supracellular space, associated usually with the specific plant growth and differentiation. Acting as an agonist from outside the target cell auxin stimulates in this cell: (1 the liberation of auxin from the cytosolic pool of its conjugates directly into the basipetal efflux; (2 the synthesis of new auxin which restores the cytosolic reserve of auxin conjugates. The functioning of such a system may be effective in a series of processes initiated by the changing concentration of cytosolic calcium. The hypothesis suggests a molecular mechanism for the development and effective operation of the morphogenetic field in the supracellular space of the plant body, such as the field resulting from auxin waves discovered in cambium.

  11. Education on invasive mechanical ventilation involving intensive care nurses: a systematic review.

    Guilhermino, Michelle C; Inder, Kerry J; Sundin, Deborah

    2018-03-26

    Intensive care unit nurses are critical for managing mechanical ventilation. Continuing education is essential in building and maintaining nurses' knowledge and skills, potentially improving patient outcomes. The aim of this study was to determine whether continuing education programmes on invasive mechanical ventilation involving intensive care unit nurses are effective in improving patient outcomes. Five electronic databases were searched from 2001 to 2016 using keywords such as mechanical ventilation, nursing and education. Inclusion criteria were invasive mechanical ventilation continuing education programmes that involved nurses and measured patient outcomes. Primary outcomes were intensive care unit mortality and in-hospital mortality. Secondary outcomes included hospital and intensive care unit length of stay, length of intubation, failed weaning trials, re-intubation incidence, ventilation-associated pneumonia rate and lung-protective ventilator strategies. Studies were excluded if they excluded nurses, patients were ventilated for less than 24 h, the education content focused on protocol implementation or oral care exclusively or the outcomes were participant satisfaction. Quality was assessed by two reviewers using an education intervention critical appraisal worksheet and a risk of bias assessment tool. Data were extracted independently by two reviewers and analysed narratively due to heterogeneity. Twelve studies met the inclusion criteria for full review: 11 pre- and post-intervention observational and 1 quasi-experimental design. Studies reported statistically significant reductions in hospital length of stay, length of intubation, ventilator-associated pneumonia rates, failed weaning trials and improvements in lung-protective ventilation compliance. Non-statistically significant results were reported for in-hospital and intensive care unit mortality, re-intubation and intensive care unit length of stay. Limited evidence of the effectiveness of

  12. Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis.

    Hsiao, I-Lun; Hsieh, Yi-Kong; Wang, Chu-Fang; Chen, I-Chieh; Huang, Yuh-Jeen

    2015-03-17

    The so-called "Trojan-horse" mechanism, in which nanoparticles are internalized within cells and then release high levels of toxic ions, has been proposed as a behavior in the cellular uptake of Ag nanoparticles (AgNPs). While several reports claim to have proved this mechanism by measuring AgNPs and Ag ions (I) in cells, it cannot be fully proven without examining those two components in both intra- and extracellular media. In our study, we found that even though cells take up AgNPs similarly to (microglia (BV-2)) or more rapidly than (astrocyte (ALT)) Ag (I), the ratio of AgNPs to total Ag (AgNPs+Ag (I)) in both cells was lower than that in outside media. It could be explained that H2O2, a major intracellular reactive oxygen species (ROS), reacts with AgNPs to form more Ag (I). Moreover, the major speciation of Ag (I) in cells was Ag(cysteine) and Ag(cysteine)2, indicating the possible binding of monomer cysteine or vital thiol proteins/peptides to Ag ions. Evidence we found indicates that the Trojan-horse mechanism really exists.

  13. Sesquiterpene lactones: Mechanism of antineoplastic activity; relationship of cellular glutathione to cytotoxicity; and disposition

    Grippo, A.A.

    1987-01-01

    Helenalin, a sesquiterpene lactone, inhibited the growth of P388 lymphocytic and L1210 lymphoid leukemia, and Ehrlich ascites and KB carcinoma cells. The L1210 leukemia cells were most sensitive to the cytotoxic effects of helenalin. Helenalin's antineoplastic effects were due to inhibition of DNA synthesis by suppressing the activities of enzymes involved in this biosynthetic pathway; i.e., IMP dehydrogenase, ribonucleoside diphosphate reductase, thioredoxin complex, GSH disulfide oxidoreductase and DNA polymerase α activities. The relationship of reduced glutathione (GSH) to the cytotoxic effects of helanalin was evaluated. L1210 cells, which were more sensitive to helenalin's toxicity, contained lower basal concentrations of GSH. Helenalin decreased the concentration of reduced glutathione in both L1210 and P388 leukemia cells. Concurrent administration of helanalin with agents reported to raise GSH concentrations did not substantially effect GSH levels, nor were survival times of tumor-bearing mice enhanced. Following intraperitoneal administration of 3 H-plenolin, no radioactive drug and/or metabolite was sequestered in the organs of BDF 1 mice. Approximately 50% of 3 H-plenolin and/or its metabolites were eliminated via urine while lesser amounts of radioactive drug and/or metabolites were eliminated in the feces

  14. [Cellular mechanism of the generation of spontaneous activity in gastric muscle].

    Nakamura, Eri; Kito, Yoshihiko; Fukuta, Hiroyasu; Yanai, Yoshimasa; Hashitani, Hikaru; Yamamoto, Yoshimichi; Suzuki, Hikaru

    2004-03-01

    In gastric smooth muscles, interstitial cells of Cajal (ICC) might be the pacemaker cells of spontaneous activities since ICC are rich in mitochondria and are connected with smooth muscle cells via gap junctions. Several types of ICC are distributed widely in the stomach wall. A group of ICC distributed in the myenteric layer (ICC-MY) were the pacemaker cells of gastrointestinal smooth muscles. Pacemaker potentials were generated in ICC-MY, and the potentials were conducted to circular smooth muscles to trigger slow waves and also conducted to longitudinal muscles to form follower potentials. In circular muscle preparations, interstitial cells distributed within muscle bundles (ICC-IM) produced unitary potentials, which were conducted to circular muscles to form slow potentials by summation. In mutant mice lacking inositol trisphosphate (IP(3)) receptor, slow waves were absent in gastric smooth muscles. The generation of spontaneous activity was impaired by the inhibition of Ca(2+)-release from internal stores through IP(3) receptors, inhibition of mitochondrial Ca(2+)-handling with proton pump inhibitors, and inhibition of ATP-sensitive K(+)-channels at the mitochondrial inner membrane. These results suggested that mitochondrial Ca(2+)-handling causes the generation of spontaneous activity in pacemaker cells. Possible involvement of protein kinase C (PKC) in the Ca(2+) signaling system was also suggested.

  15. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low

    Kadhim, Munira A

    2012-08-22

    The above studies will provide fundamental mechanistic information relating genetic predisposition to important low dose phenomena, and will aid in the development of Department of Energy policy, as well as radiation risk policy for the public and the workplace. We believe the proposed studies accurately reflect the goals of the DOE low dose program. To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e. less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these "non-targeted responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate non-targeted effects of ionizing radiation with a focus on the induction of genomic instability (GI) in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/CaH and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition in these models on genomic instability. We will specifically focus on the effects of low doses of low LET radiation, down to the dose of 10mGy (0.01Gy) X-rays. Using conventional X-ray and we will be able to assess the role of genetic variation under various conditions at a range of doses down to the very low dose of 0.01Gy. Irradiations will be carried out using facilities in routine operation for such studies. Mechanistic studies of instability in different cell

  16. Linking Cellular Mechanisms to Behavior: Entorhinal Persistent Spiking and Membrane Potential Oscillations May Underlie Path Integration, Grid Cell Firing, and Episodic Memory

    Michael E. Hasselmo

    2008-01-01

    Full Text Available The entorhinal cortex plays an important role in spatial memory and episodic memory functions. These functions may result from cellular mechanisms for integration of the afferent input to entorhinal cortex. This article reviews physiological data on persistent spiking and membrane potential oscillations in entorhinal cortex then presents models showing how both these cellular mechanisms could contribute to properties observed during unit recording, including grid cell firing, and how they could underlie behavioural functions including path integration. The interaction of oscillations and persistent firing could contribute to encoding and retrieval of trajectories through space and time as a mechanism relevant to episodic memory.

  17. Uncoupling of oxidative phosphorylation by curcumin: Implication of its cellular mechanism of action

    Lim, Han Wern; Lim, Hwee Ying [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260 (Singapore); Wong, Kim Ping, E-mail: bchsitkp@nus.edu.sg [Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260 (Singapore)

    2009-11-06

    Curcumin is a phytochemical isolated from the rhizome of turmeric. Recent reports have shown curcumin to have antioxidant, anti-inflammatory and anti-tumor properties as well as affecting the 5'-AMP activated protein kinase (AMPK), mTOR and STAT-3 signaling pathways. We provide evidence that curcumin acts as an uncoupler. Well-established biochemical techniques were performed on isolated rat liver mitochondria in measuring oxygen consumption, F{sub 0}F{sub 1}-ATPase activity and ATP biosynthesis. Curcumin displays all the characteristics typical of classical uncouplers like fccP and 2,4-dinitrophenol. In addition, at concentrations higher than 50 {mu}M, curcumin was found to inhibit mitochondrial respiration which is a characteristic feature of inhibitory uncouplers. As a protonophoric uncoupler and as an activator of F{sub 0}F{sub 1}-ATPase, curcumin causes a decrease in ATP biosynthesis in rat liver mitochondria. The resulting change in ATP:AMP could disrupt the phosphorylation status of the cell; this provides a possible mechanism for its activation of AMPK and its downstream mTOR and STAT-3 signaling.

  18. The axolotl limb blastema: cellular and molecular mechanisms driving blastema formation and limb regeneration in tetrapods

    McCusker, Catherine; Bryant, Susan V.

    2015-01-01

    Abstract The axolotl is one of the few tetrapods that are capable of regenerating complicated biological structures, such as complete limbs, throughout adulthood. Upon injury the axolotl generates a population of regeneration‐competent limb progenitor cells known as the blastema, which will grow, establish pattern, and differentiate into the missing limb structures. In this review we focus on the crucial early events that occur during wound healing, the neural−epithelial interactions that drive the formation of the early blastema, and how these mechanisms differ from those of other species that have restricted regenerative potential, such as humans. We also discuss how the presence of cells from the different axes of the limb is required for the continued growth and establishment of pattern in the blastema as described in the polar coordinate model, and how this positional information is reprogrammed in blastema cells during regeneration. Multiple cell types from the mature limb stump contribute to the blastema at different stages of regeneration, and we discuss the contribution of these types to the regenerate with reference to whether they are “pattern‐forming” or “pattern‐following” cells. Lastly, we explain how an engineering approach will help resolve unanswered questions in limb regeneration, with the goal of translating these concepts to developing better human regenerative therapies. PMID:27499868

  19. Uncoupling of oxidative phosphorylation by curcumin: Implication of its cellular mechanism of action

    Lim, Han Wern; Lim, Hwee Ying; Wong, Kim Ping

    2009-01-01

    Curcumin is a phytochemical isolated from the rhizome of turmeric. Recent reports have shown curcumin to have antioxidant, anti-inflammatory and anti-tumor properties as well as affecting the 5'-AMP activated protein kinase (AMPK), mTOR and STAT-3 signaling pathways. We provide evidence that curcumin acts as an uncoupler. Well-established biochemical techniques were performed on isolated rat liver mitochondria in measuring oxygen consumption, F 0 F 1 -ATPase activity and ATP biosynthesis. Curcumin displays all the characteristics typical of classical uncouplers like fccP and 2,4-dinitrophenol. In addition, at concentrations higher than 50 μM, curcumin was found to inhibit mitochondrial respiration which is a characteristic feature of inhibitory uncouplers. As a protonophoric uncoupler and as an activator of F 0 F 1 -ATPase, curcumin causes a decrease in ATP biosynthesis in rat liver mitochondria. The resulting change in ATP:AMP could disrupt the phosphorylation status of the cell; this provides a possible mechanism for its activation of AMPK and its downstream mTOR and STAT-3 signaling.

  20. Cellular mechanism underlying formaldehyde-stimulated Cl- secretion in rat airway epithelium.

    Yu-Li Luo

    Full Text Available BACKGROUND: Recent studies suggest that formaldehyde (FA could be synthesized endogeneously and transient receptor potential (TRP channel might be the sensor of FA. However, the physiological significance is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: The present study investigated the FA induced epithelial Cl(- secretion by activation of TRPV-1 channel located in the nerve ending fiber. Exogenously applied FA induced an increase of I(SC in intact rat trachea tissue but not in the primary cultured epithelial cells. Western blot and immunofluorescence analysis identified TRPV-1 expression in rat tracheal nerve ending. Capsazepine (CAZ, a TRPV-1 specific antagonist significantly blocked the I(SC induced by FA. The TRPV-1 agonist capsaicin (Cap induced an increase of I(SC, which was similar to the I(SC induced by FA. L-703606, an NK-1 specific inhibitor and propranolol, an adrenalin β receptor inhibitor significantly abolished the I(SC induced by FA or Cap. In the ion substitute analysis, FA could not induce I(SC in the absence of extracelluar Cl(-. The I(SC induced by FA could be blocked by the non-specific Cl(- channel inhibitor DPC and the CFTR specific inhibitor CFTR(i-172, but not by the Ca(2+-activated Cl(- channel inhibitor DIDS. Furthermore, both forskolin, an agonist of adenylate cyclase (AC and MDL-12330A, an antagonist of AC could block FA-induced I(SC. CONCLUSION: Our results suggest that FA-induced epithelial I(SC response is mediated by nerve, involving the activation of TRPV-1 and release of adrenalin as well as substance P.

  1. HAMLET kills tumor cells by an apoptosis-like mechanism--cellular, molecular, and therapeutic aspects.

    Svanborg, Catharina; Agerstam, Helena; Aronson, Annika; Bjerkvig, Rolf; Düringer, Caroline; Fischer, Walter; Gustafsson, Lotta; Hallgren, Oskar; Leijonhuvud, Irene; Linse, Sara; Mossberg, Ann-Kristin; Nilsson, Hanna; Pettersson, Jenny; Svensson, Malin

    2003-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex that induces apoptosis-like death in tumor cells, but leaves fully differentiated cells unaffected. This review summarizes the information on the in vivo effects of HAMLET in patients and tumor models on the tumor cell biology, and on the molecular characteristics of the complex. HAMLET limits the progression of human glioblastomas in a xenograft model and removes skin papillomas in patients. This broad anti-tumor activity includes >40 different lymphomas and carcinomas and apoptosis is independent of p53 or bcl-2. In tumor cells HAMLET enters the cytoplasm, translocates to the perinuclear area, and enters the nuclei where it accumulates. HAMLET binds strongly to histones and disrupts the chromatin organization. In the cytoplasm, HAMLET targets ribosomes and activates caspases. The formation of HAMLET relies on the propensity of alpha-lactalbumin to alter its conformation when the strongly bound Ca2+ ion is released and the protein adopts the apo-conformation that exposes a new fatty acid binding site. Oleic acid (C18:1,9 cis) fits this site with high specificity, and stabilizes the altered protein conformation. The results illustrate how protein folding variants may be beneficial, and how their formation in peripheral tissues may depend on the folding change and the availability of the lipid cofactor. One example is the acid pH in the stomach of the breast-fed child that promotes the formation of HAMLET. This mechanism may contribute to the protective effect of breastfeeding against childhood tumors. We propose that HAMLET should be explored as a novel approach to tumor therapy.

  2. Structures and mechanism of dipeptidyl peptidases 8 and 9, important players in cellular homeostasis and cancer.

    Ross, Breyan; Krapp, Stephan; Augustin, Martin; Kierfersauer, Reiner; Arciniega, Marcelino; Geiss-Friedlander, Ruth; Huber, Robert

    2018-02-13

    Dipeptidyl peptidases 8 and 9 are intracellular N-terminal dipeptidyl peptidases (preferentially postproline) associated with pathophysiological roles in immune response and cancer biology. While the DPP family member DPP4 is extensively characterized in molecular terms as a validated therapeutic target of type II diabetes, experimental 3D structures and ligand-/substrate-binding modes of DPP8 and DPP9 have not been reported. In this study we describe crystal and molecular structures of human DPP8 (2.5 Å) and DPP9 (3.0 Å) unliganded and complexed with a noncanonical substrate and a small molecule inhibitor, respectively. Similar to DPP4, DPP8 and DPP9 molecules consist of one β-propeller and α/β hydrolase domain, forming a functional homodimer. However, they differ extensively in the ligand binding site structure. In intriguing contrast to DPP4, where liganded and unliganded forms are closely similar, ligand binding to DPP8/9 induces an extensive rearrangement at the active site through a disorder-order transition of a 26-residue loop segment, which partially folds into an α-helix (R-helix), including R160/133, a key residue for substrate binding. As vestiges of this helix are also seen in one of the copies of the unliganded form, conformational selection may contributes to ligand binding. Molecular dynamics simulations support increased flexibility of the R-helix in the unliganded state. Consistently, enzyme kinetics assays reveal a cooperative allosteric mechanism. DPP8 and DPP9 are closely similar and display few opportunities for targeted ligand design. However, extensive differences from DPP4 provide multiple cues for specific inhibitor design and development of the DPP family members as therapeutic targets or antitargets.

  3. Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration1[W][OA

    Vivancos, Pedro Diaz; Driscoll, Simon P.; Bulman, Christopher A.; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H.

    2011-01-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway. PMID:21757634

  4. Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration.

    Vivancos, Pedro Diaz; Driscoll, Simon P; Bulman, Christopher A; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H

    2011-09-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway.

  5. Molecular and cellular mechanisms of vitamin D3 protection in experimental prednisolone-induced osteoporosis

    I.O. Shymanskyi

    2017-08-01

    Full Text Available Background. Osteoporosis is the most common side effect of glucocorticoid (GC therapy. Vitamin D is known to play a crucial role in bone remodeling, but the precise molecular mechanisms of its action on GC-induced impairments of cytokine systems, in particular RANK (receptor activator of nuclear factor kappa-B/RANKL (RANK ligand/OPG (osteoprotegerin, are still controversial. Thus, the purpose of the study was to evaluate GC-induced changes in the RANK/RANKL/OPG system and osteocalcin synthesis in rat bone depending on vitamin D bioavailability and vitamin D receptor (VDR expression. Materials and methods. Female Wistar rats received prednisolone (5 mg/kg b.w. with or without 100 IU of vitamin D3 (for 30 days. The levels of VDR, osteocalcin, RANK, RANKL and OPG in bone tissue were determined by western blotting. Blood serum 25OHD was assayed by enzyme-linked immunosorbent assay. The levels of Ca2+, Pi, activity of alkaline phosphatase (AP and its bone isoenzyme were determined using spectrophotometry. Results. Prednisolone significantly lowered 25OHD content in the blood serum and VDR level in bone tissue that has been accompanied by an elevation of the AP bone isoenzyme activity in the blood serum, hypocalcemia and hypophosphatemia. A significant decrease in the expression of osteocalcin, a well-known marker of bone formation, was also observed. GC-induced disturbances in vitamin D status led to a reduction of the RANK and OPG level, while RANKL level was unaffected. Vitamin D3 administration restored 25OHD and VDR levels that resulted in amelioration of GC-induced changes in bone tissue and normalization of mineral metabolism through elevation of RANK, OPG and osteocalcin levels. Conclusions. Prednisolone-induced imbalance in the RANK/RANKL/OPG and osteocalcin systems is related to the reduction of vitamin D bioavailability and impairments in VDR signaling. Thus, normalization of vitamin D bioavailability might be perspective in reducing the

  6. Mechanisms involved in the intestinal digestion and absorption of dietary vitamin A.

    Harrison, E H; Hussain, M M

    2001-05-01

    Dietary retinyl esters are hydrolyzed in the intestine by the pancreatic enzyme, pancreatic triglyceride lipase (PTL), and intestinal brush border enzyme, phospholipase B. Recent work on the carboxylester lipase (CEL) knockout mouse suggests that CEL may not be involved in dietary retinyl ester digestion. The possible roles of the pancreatic lipase-related proteins (PLRP) 1 and 2 and other enzymes require further investigation. Unesterified retinol is taken up by the enterocytes, perhaps involving both diffusion and protein-mediated facilitated transport. Once in the cell, retinol is complexed with cellular retinol-binding protein type 2 (CRBP2) and the complex serves as a substrate for reesterification of the retinol by the enzyme lecithin:retinol acyltransferase (LRAT). Retinol not bound to CRBP2 is esterified by acyl-CoA acyltransferase (ARAT). The retinyl esters are incorporated into chylomicrons, intestinal lipoproteins that transport other dietary lipids such as triglycerides, phospholipids, and cholesterol. Chylomicrons containing newly absorbed retinyl esters are then secreted into the lymph.

  7. The mechanisms involved at the cell level; Les mecanismes mis en jeu au niveau cellulaire

    Leblanc, G.; Pourcher, Th.; Perron, B. [Nice Univ., Dir. des Sciences du Vivant, Dept. de Biologie Joliot-Curie, 06 (France); Guillain, F. [CEA Grenoble, Dir. des Sciences du Vivant, 38 (France); Quemeneur, E. [CEA Marcoule, Dir. des Sciences du Vivant, 30 (France); Fritsch, P. [CEA Bruyeres le Chatel, Dir. des Sciences du Vivant, 91 (France)

    2003-07-01

    The mechanisms responsible at the cell level for inducing toxic reactions after contamination are as yet only imperfectly known. Work still needs to be done for both contaminants that have a biological role, such as iodine, and those that do not, such as cadmium, uranium and plutonium. In particular, these mechanisms bring into play, in biological membranes, carriers which are the physiological partners responsible for material exchange with the environment or inside the body. As they lack absolute selectivity, these carriers, which are involved in the assimilation and accumulation of vital mineral elements, also have the ability to transport toxic elements and isotopes. (authors)

  8. Cellular and Molecular Mechanisms of Anterior Chamber-Associated Immune Deviation (ACAID: What We Have Learned from Knockout Mice

    Julie Vendomèle

    2017-11-01

    Full Text Available Anterior chamber-associated immune deviation (ACAID is a well-known phenomenon that can occur after an antigen is introduced without any danger signal into the anterior chamber of a murine eye. It is reported to lead to an antigen-specific immune deviation throughout the body. Despite the relatively little evidence of this phenomenon in humans, it has been suggested as a potential prophylactic strategy in allograft rejections and in several autoimmune diseases. Cellular and molecular mechanisms of ACAID have been explored in different murine models mainly as proofs of concept, first by direct analyses of immune components in normal immunocompetent settings and by cell transfer experiments. Later, use of knockout (KO mice has helped considerably to decipher ACAID mechanisms. However, several factors raise questions about the reliability and validity of studies using KO murine models. This mini-review summarizes results obtained with KO mice and discusses their advantages, their potential weaknesses, and their potential methods for further progress.

  9. Involvement of translation and transcription processes into neurophysiological mechanisms of long-term memory reconsolidation.

    Kozyrev, S A; Nikitin, V P

    2013-03-01

    We studied the involvement of translation and transcription processes into behavioral and neuronal mechanisms of reconsolidation of the long-term memory of the conditioned taste aversion in edible snails. Injection of cycloheximide (an inhibitor of protein synthesis) to the snails in 48 h after training combined with subsequent reminder and presentation of the conditional stimulus resulted in the development of persistent amnesia and depression of the responses of the defensive behavior command neurons LPl1 and RPl1 to the conditional stimulus. Injection of mRNA synthesis inhibitors actinomycin D or DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidasole) in 48 h after conditioning with subsequent reminding procedure produced no effects on memory retention and on the responses of the command neurons to the conditional stimulus. The study suggests that the proteins translated from previously synthesized and stored mRNA were involved in the mechanisms of reconsolidation of the memory responsible for conditioned taste aversion.

  10. Effects and mechanisms of 3α,5α,-THP on emotion, motivation, and reward functions involving pregnane xenobiotic receptor

    Cheryl A Frye

    2012-01-01

    Full Text Available Progestogens [progesterone (P4 and its products] play fundamental roles in the development and/or function of the central nervous system during pregnancy. We, and others, have investigated the role of pregnane neurosteroids for a plethora of functional effects beyond their pro-gestational processes. Emerging findings regarding the effects, mechanisms, and sources of neurosteroids have challenged traditional dogma about steroid action. How the P4 metabolite and neurosteroid, 3α-hydroxy-5α-pregnan-20-one (3α,5α-THP, influences cellular functions and behavioral processes involved in emotion/affect, motivation, and reward, is the focus of the present review. To further understand these processes, we have utilized an animal model assessing the effects, mechanisms, and sources of 3α,5α-THP. In the ventral tegmental area (VTA, 3α,5α-THP has actions to facilitate affective, and motivated, social behaviors through non-traditional targets, such as GABA, glutamate, and dopamine receptors. 3α,5α-THP levels in the midbrain VTA both facilitate, and/or are enhanced by, affective and social behavior. The pregnane xenobiotic receptor (PXR mediates the production of, and/or metabolism to, various neurobiological factors. PXR is localized to the midbrain VTA of rats. The role of PXR to influence 3α,5α-THP production from central biosynthesis, and/or metabolism of peripheral P4, in the VTA, as well as its role to facilitate, or be increased by, affective/social behaviors is under investigation. Investigating novel behavioral functions of 3α,5α-THP extends our knowledge of the neurobiology of progestogens, relevant for affective/social behaviors, and their connections to systems that regulate affect and motivated processes, such as those important for stress regulation and neuropsychiatric disorders (anxiety, depression, schizophrenia, drug dependence. Thus, further understanding of 3α,5α-THP’s role and mechanisms to enhance affective and motivated

  11. Evidence that BDNF regulates heart rate by a mechanism involving increased brainstem parasympathetic neuron excitability

    Wan, Ruiqian; Weigand, Letitia A.; Bateman, Ryan; Griffioen, Kathleen; Mendelowitz, David; Mattson, Mark P.

    2014-01-01

    Autonomic control of heart rate is mediated by cardioinhibitory parasympathetic cholinergic neurons located in the brainstem and stimulatory sympathetic noradrenergic neurons. During embryonic development the survival and cholinergic phenotype of brainstem autonomic neurons is promoted by brain-derived neurotrophic factor (BDNF). We now provide evidence that BDNF regulates heart rate by a mechanism involving increased brainstem cardioinhibitory parasympathetic activity. Mice with a BDNF haplo...

  12. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Chi H

    2017-02-01

    Full Text Available Huibo Chi,1,2,* Yan Gu,1,* Tingting Xu,1 Feng Cao1 1Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 2State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH nanosheets with active targeting to peptide transporter-1 (PepT-1 were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC and retinal pigment epithelial (ARPE-19 cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. Keywords: LDH nanoparticles, LDH nanosheets, ocular drug delivery, human corneal epithelial primary cell, retinal pigment cell, ARPE-19, active targeting

  13. Induction of Nrf2-mediated cellular defenses and alteration of phase I activities as mechanisms of chemoprotective effects of coffee in the liver.

    Cavin, C; Marin-Kuan, M; Langouët, S; Bezençon, C; Guignard, G; Verguet, C; Piguet, D; Holzhäuser, D; Cornaz, R; Schilter, B

    2008-04-01

    Coffee consumption has been associated with a significant decrease in the risk of developing chronic diseases such as Parkinson disease, diabetes type-2 and several types of cancers (e.g. colon, liver). In the present study, a coffee-dependent induction of enzymes involved in xenobiotic detoxification processes was observed in rat liver and primary hepatocytes. In addition, coffee was found to induce the mRNA and protein expression of enzymes involved in cellular antioxidant defenses. These inductions were correlated with the activation of the Nrf2 transcription factor as shown using an ARE-reporter luciferase assay. The induction of detoxifying enzymes GSTs and AKR is compatible with a protection against both genotoxicity and cytotoxicity of aflatoxin B1 (AFB1). This hypothesis was confirmed in in vitro and ex vivo test systems, where coffee reduced both AFB1-DNA and protein adducts. Interestingly, coffee was also found to inhibit cytochrome CYP1A1/2, indicating that other mechanisms different from a stimulation of detoxification may also play a significant role in the chemoprotective effects of coffee. Further investigations in either human liver cell line and primary hepatocytes indicated that the chemoprotective effects of coffee against AFB1 genotoxicity are likely to be of relevance for humans. These data strongly suggest that coffee may protect against the adverse effects of AFB1. In addition, the coffee-mediated stimulation of the Nrf2-ARE pathway resulting in increased endogenous defense mechanisms against electrophilic but also oxidative insults further support that coffee may be associated with a protection against various types of chemical stresses.

  14. Involvement of three mechanisms in the alteration of cytokine responses by sodium methyldithiocarbamate

    Pruett, Stephen B.; Fan, Ruping; Zheng, Qiang

    2006-01-01

    Sodium methyldithiocarbamate (SMD) is the third most abundantly used conventional pesticide in the U.S. We recently reported that it alters the induction of cytokine production mediated though Toll-like receptor (TLR) 4 at relevant dosages in mice. Its chemical properties and evidence from the literature suggest thee potential mechanisms of action for this compound. It could either act as a free radical scavenger (by means of its free S - group) or promote oxidation by breaking down to form methylisothiocyanate, which can deplete glutathione. It is a potent copper chelator and may affect the availability of copper to a number of copper-dependent enzymes (including some signaling molecules). SMD induces a classical neuroendocrine stress response characterized by elevated serum corticosterone concentrations, which could affect cytokine production. Although each of these mechanisms could potentially contribute to altered cytokine responses, direct evidence is lacking. The present study was conducted to obtain such evidence. The role of redox balance was investigated by pretreating mice with N-acetyl cysteine (NAC), which increases cellular glutathione concentrations, before administration of SMD. NAC exacerbated the SMD-induced suppression of IL-12 and the SMD-induced enhancement of IL-10 in the serum. The role of copper chelation was investigated by comparing the effects of SMD with an equimolar dose to SMD that was administered in the form of a copper chelation complex. Addition of copper significantly decreased the action of SMD on IL-12 production but not on IL-10 production. The role of the stress response was investigated by pretreating mice with antagonists of corticosterone and catecholamines. This treatment partially prevented the action of SMD on IL-10 and IL-12 in the peritoneal fluid. The results suggest that all of the proposed mechanisms have some role in the alteration of cytokine production by SMD

  15. Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety

    Brenes, J.C.; Broiz, A.C.; Bassi, G.S.; Schwarting, R.K.W.; Brandão, M.L.

    2012-01-01

    Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by Y -aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 µL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG

  16. Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety

    Brenes, J.C. [Experimental and Physiological Psychology, Philipps-University of Marburg, Marburg (Germany); Broiz, A.C.; Bassi, G.S. [Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP (Brazil); Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Schwarting, R.K.W. [Experimental and Physiological Psychology, Philipps-University of Marburg, Marburg (Germany); Brandão, M.L. [Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP (Brazil); Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-03-09

    Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by {sub Y}-aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 µL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG.

  17. Inferring Growth Control Mechanisms in Growing Multi-cellular Spheroids of NSCLC Cells from Spatial-Temporal Image Data.

    Jagiella, Nick; Müller, Benedikt; Müller, Margareta; Vignon-Clementel, Irene E; Drasdo, Dirk

    2016-02-01

    We develop a quantitative single cell-based mathematical model for multi-cellular tumor spheroids (MCTS) of SK-MES-1 cells, a non-small cell lung cancer (NSCLC) cell line, growing under various nutrient conditions: we confront the simulations performed with this model with data on the growth kinetics and spatial labeling patterns for cell proliferation, extracellular matrix (ECM), cell distribution and cell death. We start with a simple model capturing part of the experimental observations. We then show, by performing a sensitivity analysis at each development stage of the model that its complexity needs to be stepwise increased to account for further experimental growth conditions. We thus ultimately arrive at a model that mimics the MCTS growth under multiple conditions to a great extent. Interestingly, the final model, is a minimal model capable of explaining all data simultaneously in the sense, that the number of mechanisms it contains is sufficient to explain the data and missing out any of its mechanisms did not permit fit between all data and the model within physiological parameter ranges. Nevertheless, compared to earlier models it is quite complex i.e., it includes a wide range of mechanisms discussed in biological literature. In this model, the cells lacking oxygen switch from aerobe to anaerobe glycolysis and produce lactate. Too high concentrations of lactate or too low concentrations of ATP promote cell death. Only if the extracellular matrix density overcomes a certain threshold, cells are able to enter the cell cycle. Dying cells produce a diffusive growth inhibitor. Missing out the spatial information would not permit to infer the mechanisms at work. Our findings suggest that this iterative data integration together with intermediate model sensitivity analysis at each model development stage, provide a promising strategy to infer predictive yet minimal (in the above sense) quantitative models of tumor growth, as prospectively of other tissue

  18. Pathophysiology of major depressive disorder: mechanisms involved in etiology are not associated with clinical progression.

    Verduijn, J; Milaneschi, Y; Schoevers, R A; van Hemert, A M; Beekman, A T F; Penninx, B W J H

    2015-09-29

    Meta-analyses support the involvement of different pathophysiological mechanisms (inflammation, hypothalamic-pituitary (HPA)-axis, neurotrophic growth and vitamin D) in major depressive disorder (MDD). However, it remains unknown whether dysregulations in these mechanisms are more pronounced when MDD progresses toward multiple episodes and/or chronicity. We hypothesized that four central pathophysiological mechanisms of MDD are not only involved in etiology, but also associated with clinical disease progression. Therefore, we expected to find increasingly more dysregulation across consecutive stages of MDD progression. The sample from the Netherlands Study of Depression and Anxiety (18-65 years) consisted of 230 controls and 2333 participants assigned to a clinical staging model categorizing MDD in eight stages (0, 1A, 1B, 2, 3A, 3B, 3C and 4), from familial risk at MDD (stage 0) to chronic MDD (stage 4). Analyses of covariance examined whether pathophysiological mechanism markers (interleukin (IL)-6, C-reactive protein (CRP), cortisol, brain-derived neurotrophic factor and vitamin D) showed a linear trend across controls, those at risk for MDD (stages 0, 1A and 1B), and those with full-threshold MDD (stages 2, 3A, 3B, 3C and 4). Subsequently, pathophysiological differences across separate stages within those at risk and with full-threshold MDD were examined. A linear increase of inflammatory markers (CRP P=0.026; IL-6 P=0.090), cortisol (P=0.025) and decrease of vitamin D (P<0.001) was found across the entire sample (for example, from controls to those at risk and those with full-threshold MDD). Significant trends of dysregulations across stages were present in analyses focusing on at-risk individuals (IL-6 P=0.050; cortisol P=0.008; vitamin D P<0.001); however, no linear trends were found in dysregulations for any of the mechanisms across more progressive stages of full-threshold MDD. Our results support that the examined pathophysiological mechanisms are

  19. Metabolomics Reveals New Mechanisms for Pathogenesis in Barth Syndrome and Introduces Novel Roles for Cardiolipin in Cellular Function.

    Yana Sandlers

    Full Text Available Barth Syndrome is the only known Mendelian disorder of cardiolipin remodeling, with characteristic clinical features of cardiomyopathy, skeletal myopathy, and neutropenia. While the primary biochemical defects of reduced mature cardiolipin and increased monolysocardiolipin are well-described, much of the downstream biochemical dysregulation has not been uncovered, and biomarkers are limited. In order to further expand upon the knowledge of the biochemical abnormalities in Barth Syndrome, we analyzed metabolite profiles in plasma from a cohort of individuals with Barth Syndrome compared to age-matched controls via 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry. A clear distinction between metabolite profiles of individuals with Barth Syndrome and controls was observed, and was defined by an array of metabolite classes including amino acids and lipids. Pathway analysis of these discriminating metabolites revealed involvement of mitochondrial and extra-mitochondrial biochemical pathways including: insulin regulation of fatty acid metabolism, lipid metabolism, biogenic amine metabolism, amino acid metabolism, endothelial nitric oxide synthase signaling, and tRNA biosynthesis. Taken together, this data indicates broad metabolic dysregulation in Barth Syndrome with wide cellular effects.

  20. Cellular mechanisms underlying the inhibitory effect of flufenamic acid on chloride secretion in human intestinal epithelial cells

    Pawin Pongkorpsakol

    2017-06-01

    Full Text Available Intestinal Cl− secretion is involved in the pathogenesis of secretory diarrheas including cholera. We recently demonstrated that flufenamic acid (FFA suppressed Vibrio cholerae El Tor variant-induced intestinal fluid secretion via mechanisms involving AMPK activation and NF-κB-suppression. The present study aimed to investigate the effect of FFA on transepithelial Cl− secretion in human intestinal epithelial (T84 cells. FFA inhibited cAMP-dependent Cl− secretion in T84 cell monolayers with IC50 of ∼8 μM. Other fenamate drugs including tolfenamic acid, meclofenamic acid and mefenamic acid exhibited the same effect albeit with lower potency. FFA also inhibited activities of CFTR, a cAMP-activated apical Cl− channel, and KCNQ1/KCNE3, a cAMP-activated basolateral K+ channel. Mechanisms of CFTR inhibition by FFA did not involve activation of its negative regulators. Interestingly, FFA inhibited Ca2+-dependent Cl− secretion with IC50 of ∼10 μM. FFA inhibited activities of Ca2+-activated Cl− channels and KCa3.1, a Ca2+-activated basolateral K+ channels, but had no effect on activities of Na+–K+–Cl− cotransporters and Na+–K+ ATPases. These results indicate that FFA inhibits both cAMP and Ca2+-dependent Cl− secretion by suppressing activities of both apical Cl− channels and basolateral K+ channels. FFA and other fenamate drugs may be useful in the treatment of secretory diarrheas.

  1. Phytoremediation potential of the novel atrazine tolerant Lolium multiflorum and studies on the mechanisms involved

    Merini, Luciano J.; Bobillo, Cecilia; Cuadrado, Virginia; Corach, Daniel; Giulietti, Ana M.

    2009-01-01

    Atrazine impact on human health and the environment have been extensively studied. Phytoremediation emerged as a low cost, environmental friendly biotechnological solution for atrazine pollution in soil and water. In vitro atrazine tolerance assays were performed and Lolium multiflorum was found as a novel tolerant species, able to germinate and grow in the presence of 1 mg kg -1 of the herbicide. L. multiflorum presented 20% higher atrazine removal capacity than the natural attenuation, with high initial degradation rate in microcosms. The mechanisms involved in atrazine tolerance such as mutation in psbA gene, enzymatic detoxification via P 450 or chemical hydrolysis through benzoxazinones were evaluated. It was demonstrated that atrazine tolerance is conferred by enhanced enzymatic detoxification via P 450 . Due to its atrazine degradation capacity in soil and its agronomical properties, L. multiflorum is a candidate for designing phytoremediation strategies for atrazine contaminated agricultural soils, especially those involving run-off avoiding. - Finding of a novel atrazine-tolerant species, as a potential candidate for phytoremediating herbicide-contaminated agriculture soils and elucidation of the mechanisms involved in tolerance.

  2. Phytoremediation potential of the novel atrazine tolerant Lolium multiflorum and studies on the mechanisms involved

    Merini, Luciano J. [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina); Bobillo, Cecilia [Servicio de Huellas Digitales Geneticas, Facultad de Farmacia y Bioquimica, Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires, Junin 956, BS As (Argentina); Cuadrado, Virginia [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina); Corach, Daniel [Servicio de Huellas Digitales Geneticas, Facultad de Farmacia y Bioquimica, Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires, Junin 956, BS As (Argentina); Giulietti, Ana M., E-mail: agiule@ffyb.uba.a [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina)

    2009-11-15

    Atrazine impact on human health and the environment have been extensively studied. Phytoremediation emerged as a low cost, environmental friendly biotechnological solution for atrazine pollution in soil and water. In vitro atrazine tolerance assays were performed and Lolium multiflorum was found as a novel tolerant species, able to germinate and grow in the presence of 1 mg kg{sup -1} of the herbicide. L. multiflorum presented 20% higher atrazine removal capacity than the natural attenuation, with high initial degradation rate in microcosms. The mechanisms involved in atrazine tolerance such as mutation in psbA gene, enzymatic detoxification via P{sub 450} or chemical hydrolysis through benzoxazinones were evaluated. It was demonstrated that atrazine tolerance is conferred by enhanced enzymatic detoxification via P{sub 450}. Due to its atrazine degradation capacity in soil and its agronomical properties, L. multiflorum is a candidate for designing phytoremediation strategies for atrazine contaminated agricultural soils, especially those involving run-off avoiding. - Finding of a novel atrazine-tolerant species, as a potential candidate for phytoremediating herbicide-contaminated agriculture soils and elucidation of the mechanisms involved in tolerance.

  3. New aspects of cellular thallium uptake: Tl+-Na+-2Cl--cotransport is the central mechanism of ion uptake

    Sessler, M.J.; Maul, F.D.; Hoer, G.; Munz, D.L.; Geck, P.

    1986-01-01

    Cellular uptake mechanisms of 201 Tl + were studied in Ehrlich mouse ascites tumor cells. 201 Tl + phases the cell membrane of tumor cells using three transport systems: the ATPase, the Tl + -Na + -2Cl - -cotransport, and the Ca ++ -dependent ion channel. In the case of 201 Tl + the main route for entering the cells was the cotransport, its importance increasing with the age of the cells; in parallel, the ATPase activity was reduced. In contrast, the transport capacities of the ATPase and the cotransport were of the same magnitude in the case of 42 K + and 86 Rb + . This change in ion distribution was not brought about by varying velocity relations but by changing the number of transport systems in the cell membrane. There was no relationship between transport rates and diameters of the ions. 201 Tl + distribution is proportional to that of K + with a higher intracellular concentration of about 30%. Under physiological conditions the cotransport was reversible suggesting the ability to regulate steady state during varying extracellular ion concentrations. Cells and medium were two compartments, kinetically seen. Due to the significant difference of transport capacities between the three systems with the respective ions the term ''potassium-thallium-analogy'' may be misleading as it erroneously assumes identical uptake conditions. (orig.) [de

  4. An apolipoprotein-enriched biomolecular corona switches the cellular uptake mechanism and trafficking pathway of lipid nanoparticles.

    Digiacomo, L; Cardarelli, F; Pozzi, D; Palchetti, S; Digman, M A; Gratton, E; Capriotti, A L; Mahmoudi, M; Caracciolo, G

    2017-11-16

    Following exposure to biological milieus (e.g. after systemic administration), nanoparticles (NPs) get covered by an outer biomolecular corona (BC) that defines many of their biological outcomes, such as the elicited immune response, biodistribution, and targeting abilities. In spite of this, the role of BC in regulating the cellular uptake and the subcellular trafficking properties of NPs has remained elusive. Here, we tackle this issue by employing multicomponent (MC) lipid NPs, human plasma (HP) and HeLa cells as models for nanoformulations, biological fluids, and target cells, respectively. By conducting confocal fluorescence microscopy experiments and image correlation analyses, we quantitatively demonstrate that the BC promotes a neat switch of the cell entry mechanism and subsequent intracellular trafficking, from macropinocytosis to clathrin-dependent endocytosis. Nano-liquid chromatography tandem mass spectrometry identifies apolipoproteins as the most abundant components of the BC tested here. Interestingly, this class of proteins target the LDL receptors, which are overexpressed in clathrin-enriched membrane domains. Our results highlight the crucial role of BC as an intrinsic trigger of specific NP-cell interactions and biological responses and set the basis for a rational exploitation of the BC for targeted delivery.

  5. Cellular and Molecular Mechanisms in Vascular Smooth Muscle Cells by which Total Saponin Extracted from Tribulus Terrestris Protects Against Artherosclerosis

    Mengquan Li

    2013-11-01

    Full Text Available Background/Aims: Total saponin extracted from Tribulus terrestris (TSETT has been reported to protect against atherosclerosis. We here investigate the cellular and molecular mechanisms of TSETT underlying protection against atherosclerosis. Methods: Cell proliferation was measured with Methyl thiazolyl tetrazolium (MTT; Intracellular H2O2 was measured with DCFH-DA, a fluorescent dye; Intracellular free Ca2+ was measured with a confocal laser scanning microscopy; Genes expression was measured with gene array and real-time quantitative polymerase chain reaction (RT-PCR; Phosphorylation of extracellular signal-regulated kinase 1/2 (phospho-ERK1/2 was measured with cell-based enzyme-linked immunosorbent assay (ELISA and western blotting. Results: TSETT significantly suppressed the increase in cells proliferation induced by angiotensin II, significantly suppressed the increase in the intracellular production of H2O2 induced by angiotensin II, significantly inhibited the increase in intracellular free Ca2+ induced by H2O2, significantly inhibited the increase in phospho-ERK1/2 induced by angiotensin II; significantly inhibited the increase in mRNA expression of c-fos, c-jun and pkc-α induced by angiotensin II. Conclusion: These findings provide a new insight into the antiatherosclerotic properties of TSETT and provide a pharmacological basis for the clinical application of TSETT in anti-atherosclerosis.

  6. Cellular and molecular mechanisms in vascular smooth muscle cells by which total saponin extracted from Tribulus terrestris protects against artherosclerosis.

    Li, Mengquan; Guan, Yue; Liu, Jiaqi; Zhai, Fengguo; Zhang, Xiuping; Guan, Lixin

    2013-01-01

    Total saponin extracted from Tribulus terrestris (TSETT) has been reported to protect against atherosclerosis. We here investigate the cellular and molecular mechanisms of TSETT underlying protection against atherosclerosis. Cell proliferation was measured with Methyl thiazolyl tetrazolium (MTT); Intracellular H2O2 was measured with DCFH-DA, a fluorescent dye; Intracellular free Ca(2+) was measured with a confocal laser scanning microscopy; Genes expression was measured with gene array and real-time quantitative polymerase chain reaction (RT-PCR); Phosphorylation of extracellular signal-regulated kinase 1/2 (phospho-ERK1/2) was measured with cell-based enzyme-linked immunosorbent assay (ELISA) and western blotting. TSETT significantly suppressed the increase in cells proliferation induced by angiotensin II, significantly suppressed the increase in the intracellular production of H2O2 induced by angiotensin II, significantly inhibited the increase in intracellular free Ca(2+) induced by H2O2, significantly inhibited the increase in phospho-ERK1/2 induced by angiotensin II; significantly inhibited the increase in mRNA expression of c-fos, c-jun and pkc-α induced by angiotensin II. These findings provide a new insight into the antiatherosclerotic properties of TSETT and provide a pharmacological basis for the clinical application of TSETT in anti-atherosclerosis. © 2013 S. Karger AG, Basel.

  7. Suppression of cellular immunity by head and neck irradiation. Precipitating factors and reparative mechanisms in an experimental model

    Gray, W.C.; Hasslinger, B.J.; Suter, C.M.; Blanchard, C.L.; Goldstein, A.L.; Chretien, P.B.

    1986-01-01

    A model was developed in C 3 H mice to investigate the immunosuppressive effects of head and neck irradiation and to explore mechanisms for repair of the defects. Mice receiving 1200 rad (12 Gy) of head and neck irradiation showed significant depression of delayed-type hypersensitivity, peripheral blood lymphocyte counts, spleen cell counts, and spleen cell production of interleukin-2. Treatment with optimal dosages of thymosin alpha 1 (T alpha-1) produced significant increases in all of these values, in some instances to levels higher than in the nonirradiated controls. In identical experiments with mice irradiated to a portal limited to the pelvic region, T alpha-1 induced only partial remission of the abnormalities. The dose response of T alpha-1 with head and neck irradiation showed a relatively limited dose range for immune restoration, a finding that warrants similar determinations in clinical trials with immunomodulating agents. The results suggest a potential clinical usefulness of T alpha-1 and also interleukin-2 in restoring cellular immunity after irradiation for head and neck cancers. The model appears to be useful for investigating immunomodulating agents before they are clinically evaluated as adjuvants with head and neck irradiation regimens

  8. Clustering mechanism of oxocarboxylic acids involving hydration reaction: Implications for the atmospheric models

    Liu, Ling; Kupiainen-Määttä, Oona; Zhang, Haijie; Li, Hao; Zhong, Jie; Kurtén, Theo; Vehkamäki, Hanna; Zhang, Shaowen; Zhang, Yunhong; Ge, Maofa; Zhang, Xiuhui; Li, Zesheng

    2018-06-01

    The formation of atmospheric aerosol particles from condensable gases is a dominant source of particulate matter in the boundary layer, but the mechanism is still ambiguous. During the clustering process, precursors with different reactivities can induce various chemical reactions in addition to the formation of hydrogen bonds. However, the clustering mechanism involving chemical reactions is rarely considered in most of the nucleation process models. Oxocarboxylic acids are common compositions of secondary organic aerosol, but the role of oxocarboxylic acids in secondary organic aerosol formation is still not fully understood. In this paper, glyoxylic acid, the simplest and the most abundant atmospheric oxocarboxylic acid, has been selected as a representative example of oxocarboxylic acids in order to study the clustering mechanism involving hydration reactions using density functional theory combined with the Atmospheric Clusters Dynamic Code. The hydration reaction of glyoxylic acid can occur either in the gas phase or during the clustering process. Under atmospheric conditions, the total conversion ratio of glyoxylic acid to its hydration reaction product (2,2-dihydroxyacetic acid) in both gas phase and clusters can be up to 85%, and the product can further participate in the clustering process. The differences in cluster structures and properties induced by the hydration reaction lead to significant differences in cluster formation rates and pathways at relatively low temperatures.

  9. Mechanisms involved in metformin action in the treatment of polycystic ovary syndrome.

    Motta, A B

    2009-01-01

    The N, N' dimethyl-biguanide : Metformin is an antidiabetic drug that increases glucose utilization in insulin-sensitive tissues. As Polycystic Ovary Syndrome (PCOS) and diabetes share some altered parameters-such as abnormal glucose: insulin ratio, altered lipidic metabolism and insulin-resistance syndrome- the use of metformin has become increasingly accepted and widespread in the treatment of PCOS. Currently, metformin is used to induce ovulation and during early pregnancy in PCOS patients, however, a complete knowledge of the metformin action has not been achieved yet. This review describes beyond the classical reproductive action of metformin and explores other benefits of the drug. In addition, the present work discusses the molecular mechanisms involved further than the classical pathway that involves the AMP-activated protein kinase.

  10. Absorption of Carotenoids and Mechanisms Involved in Their Health-Related Properties.

    Cervantes-Paz, Braulio; Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús

    Carotenoids participate in the normal metabolism and function of the human body. They are involved in the prevention of several diseases, especially those related to the inflammation syndrome. Their main mechanisms of action are associated to their potent antioxidant activity and capacity to regulate the expression of specific genes and proteins. Recent findings suggest that carotenoid metabolites may explain several processes where the participation of their parent carotenoids was unclear. The health benefits of carotenoids strongly depend on their absorption and transformation during gastrointestinal digestion. The estimation of the 'bioaccessibility' of carotenoids through in vitro models have made possible the evaluation of the effect of a large number of factors on key stages of carotenoid digestion and intestinal absorption. The bioaccessibility of these compounds allows us to have a clear idea of their potential bioavailability, a term that implicitly involves the biological activity of these compounds.

  11. Cellular determinants involving mitochondrial dysfunction, oxidative stress and apoptosis correlate with the synergic cytotoxicity of epigallocatechin-3-gallate and menadione in human leukemia Jurkat T cells.

    Tofolean, Ioana Teodora; Ganea, Constanta; Ionescu, Diana; Filippi, Alexandru; Garaiman, Alexandru; Goicea, Alexandru; Gaman, Mihnea-Alexandru; Dimancea, Alexandru; Baran, Irina

    2016-01-01

    We have investigated the growth-suppressive action of epigallocatechin-3-gallate (EGCG) on human leukemia Jurkat T cells. Results show a strong correlation between the dose-dependent reduction of clonogenic survival following acute EGCG treatments and the EGCG-induced decline of the mitochondrial level of Ca(2+). The cell killing ability of EGCG was synergistically enhanced by menadione. In addition, the cytotoxic effect of EGCG applied alone or in combination with menadione was accompanied by apoptosis induction. We also observed that in acute treatments EGCG displays strong antioxidant properties in the intracellular milieu, but concurrently triggers some oxidative stress generating mechanisms that can fully develop on a longer timescale. In parallel, EGCG dose-dependently induced mitochondrial depolarization during exposure, but this condition was subsequently reversed to a persistent hyperpolarized mitochondrial state that was dependent on the activity of respiratory Complex I. Fluorimetric measurements suggest that EGCG is a mitochondrial Complex III inhibitor and indicate that EGCG evokes a specific cellular fluorescence with emission at 400nm and two main excitation bands (at 330nm and 350nm) that may originate from a mitochondrial supercomplex containing dimeric Complex III and dimeric ATP-synthase, and therefore could provide a valuable means to characterize the functional properties of the respiratory chain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Epigenetic mechanisms in the development of memory and their involvement in certain neurological diseases.

    Rosales-Reynoso, M A; Ochoa-Hernández, A B; Juárez-Vázquez, C I; Barros-Núñez, P

    Today, scientists accept that the central nervous system of an adult possesses considerable morphological and functional flexibility, allowing it to perform structural remodelling processes even after the individual is fully developed and mature. In addition to the vast number of genes participating in the development of memory, different known epigenetic mechanisms are involved in normal and pathological modifications to neurons and therefore also affect the mechanisms of memory development. This study entailed a systematic review of biomedical article databases in search of genetic and epigenetic factors that participate in synaptic function and memory. The activation of gene expression in response to external stimuli also occurs in differentiated nerve cells. Neural activity induces specific forms of synaptic plasticity that permit the creation and storage of long-term memory. Epigenetic mechanisms play a key role in synaptic modification processes and in the creation and development of memory. Changes in these mechanisms result in the cognitive and memory impairment seen in neurodegenerative diseases (Alzheimer disease, Huntington disease) and in neurodevelopmental disorders (Rett syndrome, fragile X, and schizophrenia). Nevertheless, results obtained from different models are promising and point to potential treatments for some of these diseases. Copyright © 2013 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Differential polymer structure tunes mechanism of cellular uptake and transfection routes of poly(β-amino ester) polyplexes in human breast cancer cells.

    Kim, Jayoung; Sunshine, Joel C; Green, Jordan J

    2014-01-15

    Successful gene delivery with nonviral particles has several barriers, including cellular uptake, endosomal escape, and nuclear transport. Understanding the mechanisms behind these steps is critical to enhancing the effectiveness of gene delivery. Polyplexes formed with poly(β-amino ester)s (PBAEs) have been shown to effectively transfer DNA to various cell types, but the mechanism of their cellular uptake has not been identified. This is the first study to evaluate the uptake mechanism of PBAE polyplexes and the dependence of cellular uptake on the end group and molecular weight of the polymer. We synthesized three different analogues of PBAEs with the same base polymer poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) (B4S4) but with small changes in the end group or molecular weight. We quantified the uptake and transfection efficiencies of the pDNA polyplexes formulated from these polymers in hard-to-transfect triple negative human breast cancer cells (MDA-MB 231). All polymers formed positively charged (10-17 mV) nanoparticles of ∼200 nm in size. Cellular internalization of all three formulations was inhibited the most (60-90% decrease in cellular uptake) by blocking caveolae-mediated endocytosis. Greater inhibition was shown with polymers that had a 1-(3-aminopropyl)-4-methylpiperazine end group (E7) than the others with a 2-(3-aminopropylamino)-ethanol end group (E6) or higher molecular weight. However, caveolae-mediated endocytosis was generally not as efficient as clathrin-mediated endocytosis in leading to transfection. These findings indicate that PBAE polyplexes can be used to transfect triple negative human breast cancer cells and that small changes to the same base polymer can modulate their cellular uptake and transfection routes.

  14. Antinociceptive Activity of Methanol Extract of Muntingia calabura Leaves and the Mechanisms of Action Involved

    M. H. Mohd. Sani

    2012-01-01

    Full Text Available Muntingia calabura L. (family Elaeocarpaceae has been traditionally used to relieve various pain-related ailments. The present study aimed to determine the antinociceptive activity of methanol extract of M. calabura leaves (MEMC and to elucidate the possible mechanism of antinociception involved. The in vivo chemicals (acetic acid-induced abdominal constriction and formalin-, capsaicin-, glutamate-, serotonin-induced paw licking test and thermal (hot plate test models of nociception were used to evaluate the extract antinociceptive activity. The extract (100, 250, and 500 mg/kg was administered orally 60 min prior to subjection to the respective test. The results obtained demonstrated that MEMC produced significant (P<0.05 antinociceptive response in all the chemical- and thermal-induced nociception models, which was reversed after pretreatment with 5 mg/kg naloxone, a non-selective opioid antagonist. Furthermore, pretreatment with L-arginine (a nitric oxide (NO donor, NG-nitro-L-arginine methyl esters (L-NAME; an inhibitor of NO synthase (NOS, methylene blue (MB; an inhibitor of cyclic-guanosine monophosphate (cGMP pathway, or their combination also caused significant (P<0.05 change in the intensity of the MEMC antinociception. In conclusion, the MEMC antinociceptive activity involves activation of the peripheral and central mechanisms, and modulation via, partly, the opioid receptors and NO/cGMP pathway.

  15. Mechanisms involved in the chemical inhibition of the Eosin-sensitized photooxidation of trypsin

    Rizzuto, F.; Spikes, J.D.

    1975-01-01

    A large series of compounds was screened for ability to protect trypsin from eosin-sensitized photodynamic inactivation. Eosin-sensitized photooxidation reactions of this type typically proceed via the triplet state of the dye and often involve singlet state oxygen as the oxidizing entity. In order to determine the mechanisms by which trypsin is protected from photoinactivation, a number of good protective agents (inhibitors) and some non-protective agents were selected for more detailed flash photolysis studies. Good inhibitors such as p-phenylenediamine, n-propyl gallate, serotonin creatinine sulfate and p-toluenediamine competed efficiently with oxygen and with trypsin for reaction with the triplet state of eosin. The inhibitors were shown to quench triplet eosin to the ground state and/or reduce triplet eosin to form the semireduced eosin radical and an oxidized form of the inhibitor. In the latter case, oxidized inhibitor could react by a reverse electron transfer reaction with the semireduced eosin radical to regenerate ground state eosin and the inhibitor. The good inhibitors also competed effectively with trypsin for oxidation by semioxidized eosin, thus giving another possible protective mechanism. Non-inhibitors such as halogen ions and the paramagnetic ions Co/sup + +/, Cu/sup + +/ and Mn/sup + +/ reacted only slowly with triplet and with semioxidized eosin. The primary pathway for the eosin-sensitized photooxidation of trypsin at pH 8.0 involved singlet oxygen, although semioxidized eosin may also participate.

  16. Mechanisms and neuronal networks involved in reactive and proactive cognitive control of interference in working memory.

    Irlbacher, Kerstin; Kraft, Antje; Kehrer, Stefanie; Brandt, Stephan A

    2014-10-01

    Cognitive control can be reactive or proactive in nature. Reactive control mechanisms, which support the resolution of interference, start after its onset. Conversely, proactive control involves the anticipation and prevention of interference prior to its occurrence. The interrelation of both types of cognitive control is currently under debate: Are they mediated by different neuronal networks? Or are there neuronal structures that have the potential to act in a proactive as well as in a reactive manner? This review illustrates the way in which integrating knowledge gathered from behavioral studies, functional imaging, and human electroencephalography proves useful in answering these questions. We focus on studies that investigate interference resolution at the level of working memory representations. In summary, different mechanisms are instrumental in supporting reactive and proactive control. Distinct neuronal networks are involved, though some brain regions, especially pre-SMA, possess functions that are relevant to both control modes. Therefore, activation of these brain areas could be observed in reactive, as well as proactive control, but at different times during information processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The cellular endosomal sorting complex required for transport pathway is not involved in avian metapneumovirus budding in a virus-like-particle expression system.

    Weng, Yuejin; Lu, Wuxun; Harmon, Aaron; Xiang, Xiaoxiao; Deng, Qiji; Song, Minxun; Wang, Dan; Yu, Qingzhong; Li, Feng

    2011-05-01

    Avian metapneumovirus (AMPV) is a paramyxovirus that principally causes respiratory disease and egg production drops in turkeys and chickens. Together with its closely related human metapneumovirus (HMPV), they comprise the genus Metapneumovirus in the family Paramyxoviridae. Little is currently known about the mechanisms involved in the budding of metapneumovirus. By using AMPV as a model system, we showed that the matrix (M) protein by itself was insufficient to form virus-like-particles (VLPs). The incorporation of M into VLPs was shown to occur only when both the viral nucleoprotein (N) and the fusion (F) proteins were co-expressed. Furthermore, we provided evidence indicating that two YSKL and YAGL segments encoded within the M protein were not a functional late domain, and the endosomal sorting complex required for transport (ESCRT) machinery was not involved in metapneumovirus budding, consistent with a recent observation that human respiratory syncytial virus, closely related to HMPV, uses an ESCRT-independent budding mechanism. Taken together, these results suggest that metapneumovirus budding is independent of the ESCRT pathway and the minimal budding machinery described here will aid our future understanding of metapneumovirus assembly and egress.

  18. Possible mechanisms involved in the vasorelaxant effect produced by clobenzorex in aortic segments of rats.

    Lozano-Cuenca, J; González-Hernández, A; López-Canales, O A; Villagrana-Zesati, J R; Rodríguez-Choreão, J D; Morín-Zaragoza, R; Castillo-Henkel, E F; López-Canales, J S

    2017-08-07

    Clobenzorex is a metabolic precursor of amphetamine indicated for the treatment of obesity. Amphetamines have been involved with cardiovascular side effects such as hypertension and pulmonary arterial hypertension. The aim of the present study was to investigate whether the direct application of 10-9-10-5 M clobenzorex on isolated phenylephrine-precontracted rat aortic rings produces vascular effects, and if so, what mechanisms may be involved. Clobenzorex produced an immediate concentration-dependent vasorelaxant effect at the higher concentrations (10-7.5-10-5 M). The present outcome was not modified by 10-6 M atropine (an antagonist of muscarinic acetylcholine receptors), 3.1×10-7 M glibenclamide (an ATP-sensitive K+ channel blocker), 10-3 M 4-aminopyridine (4-AP; a voltage-activated K+ channel blocker), 10-5 M indomethacin (a prostaglandin synthesis inhibitor), 10-5 M clotrimazole (a cytochrome P450 inhibitor) or 10-5 M cycloheximide (a general protein synthesis inhibitor). Contrarily, the clobenzorex-induced vasorelaxation was significantly attenuated (Pclobenzorex on phenylephrine-precontracted rat aortic rings involved stimulation of the NO/cGMP/PKG/Ca2+-activated K+ channel pathway.

  19. Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications.

    Logan, Randall; Funk, Ryan S; Axcell, Erick; Krise, Jeffrey P

    2012-08-01

    Many commercially available, weakly basic drugs have been shown to be lysosomotropic, meaning they are subject to extensive sequestration in lysosomes through an ion trapping-type mechanism. The extent of lysosomal trapping of a drug is an important therapeutic consideration because it can influence both activity and pharmacokinetic disposition. The administration of certain drugs can alter lysosomes such that their accumulation capacity for co-administered and/or secondarily administered drugs is altered. In this review the authors explore what is known regarding the mechanistic basis for drug-drug interactions involving lysosomes. Specifically, the authors address the influence of drugs on lysosomal pH, volume and lipid processing. Many drugs are known to extensively accumulate in lysosomes and significantly alter their structure and function; however, the therapeutic and toxicological implications of this remain controversial. The authors propose that drug-drug interactions involving lysosomes represent an important potential source of variability in drug activity and pharmacokinetics. Most evaluations of drug-drug interactions involving lysosomes have been performed in cultured cells and isolated tissues. More comprehensive in vivo evaluations are needed to fully explore the impact of this drug-drug interaction pathway on therapeutic outcomes.

  20. Novel mechanisms of sildenafil in pulmonary hypertension involving cytokines/chemokines, MAP kinases and Akt.

    Tamas Kiss

    Full Text Available Pulmonary arterial hypertension (PH is associated with high mortality due to right ventricular failure and hypoxia, therefore to understand the mechanism by which pulmonary vascular remodeling initiates these processes is very important. We used a well-characterized monocrotaline (MCT-induced rat PH model, and analyzed lung morphology, expression of cytokines, mitogen-activated protein kinase (MAPK phosphorylation, and phosphatidylinositol 3-kinase-Akt (PI-3k-Akt pathway and nuclear factor (NF-κB activation in order to elucidate the mechanisms by which sildenafil's protective effect in PH is exerted. Besides its protective effect on lung morphology, sildenafil suppressed multiple cytokines involved in neutrophil and mononuclear cells recruitment including cytokine-induced neutrophil chemoattractant (CINC-1, CINC-2α/β, tissue inhibitor of metalloproteinase (TIMP-1, interleukin (IL-1α, lipopolysaccharide induced CXC chemokine (LIX, monokine induced by gamma interferon (MIG, macrophage inflammatory protein (MIP-1α, and MIP-3α. NF-κB activation and phosphorylation were also attenuated by sildenafil. Furthermore, sildenafil reduced extracellular signal-regulated kinase (ERK1/2 and p38 MAPK activation while enhanced activation of the cytoprotective Akt pathway in PH. These data suggest a beneficial effect of sildenafil on inflammatory and kinase signaling mechanisms that substantially contribute to its protective effects, and may have potential implications in designing future therapeutic strategies in the treatment of pulmonary hypertension.

  1. An overview of potential molecular mechanisms involved in VSMC phenotypic modulation.

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Yan-Qin; Wang, Xu; Pi, Yan; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-02-01

    The fully differentiated medial vascular smooth muscle cells (VSMCs) of mature vessels keep quiescent and contractile. However, VSMC can exhibit the plasticity in phenotype switching from a differentiated and contractile phenotype to a dedifferentiated state in response to alterations in local environmental cues, which is called phenotypic modulation or switching. Distinguishing from its differentiated state expressing more smooth muscle (SM)-specific/selective proteins, the phenotypic modulation in VSMC is characterized by an increased rate of proliferation, migration, synthesis of extracellular matrix proteins and decreased expression of SM contractile proteins. Although it has been well demonstrated that phenotypic modulation of VSMC contributes to the occurrence and progression of many proliferative vascular diseases, little is known about the details of the molecular mechanisms of VSMC phenotypic modulation. Growing evidence suggests that variety of molecules including microRNAs, cytokines and biochemical factors, membrane receptors, ion channels, cytoskeleton and extracellular matrix play important roles in controlling VSMC phenotype. The focus of the present review is to provide an overview of potential molecular mechanisms involved in VSMC phenotypic modulation in recent years. To clarify VSMC differentiation and phenotypic modulation mechanisms will contribute to producing cell-based therapeutic interventions for aberrant VSMC differentiation-related diseases.

  2. Molecular mechanisms of drug resistance and tumor promotion involving mammalian ribonucleotide reductase

    Choy, B.B.K.

    1991-01-01

    Mammalian ribonucleotide reductase is a highly regulated, rate-limiting activity responsible for converting ribonucleoside diphosphates to the deoxyribonucleotide precursors of DNA. The enzyme consists of two nonidentical proteins called M1 and M2, both of which are required for activity. Hydroxyurea is an antitumor agent which inhibits ribonucleotide reductase by interacting with the M2 component specifically at a unique tyrosyl free radical. Studies were conducted on a series of drug resistant mouse cell lines, selected by a step-wise procedure for increasing levels of resistance to the cytotoxic effects of hydroxyurea. Each successive drug selection step leading to the isolation of highly resistant cells was accompanied by stable elevations in cellular resistance and ribonucleotide reductase activity. The drug resistant cell lines exhibited gene amplification of the M2 gene, elevated M2 mRNA, and M2 protein. In addition to M2 gene amplification, posttranscriptional modulation also occurred during the drug selection. Studies of the biosynthesis rates with exogenously added iron suggest a role for iron in regulating the level of M2 protein when cells are cultured in the presence of hydroxyurea. The hydroxyurea-inactivated ribonucleotide reductase protein M2 has a destabilized iron centre, which readily releases iron. Altered expression of ferritin appears to be required for the development of hydroxyurea resistance in nammalian cells. The results show an interesting relationship between the expressions of ribonucleotide reductase and ferritin. The phorbol ester tumor promoter, TPA, is also able to alter the expression of M2. TPA was able to induce M2 mRNA levels transiently up to 18-fold within 1/2 hour. This rapid and large elevation of ribonucleotide reductase suggests that the enzyme may play a role in tumor promotion. Studies of the M2 promoter region were undertaken to better understand the mechanism of TPA induction of M2.

  3. Involvement of two uptake mechanisms of gold and iron oxide nanoparticles in a co-exposure scenario using mouse macrophages

    Dimitri Vanhecke

    2017-11-01

    Full Text Available Little is known about the simultaneous uptake of different engineered nanoparticle types, as it can be expected in our daily life. In order to test such co-exposure effects, murine macrophages (J774A.1 cell line were incubated with gold (AuNPs and iron oxide nanoparticles (FeOxNPs either alone or combined. Environmental scanning electron microscopy revealed that single NPs of both types bound within minutes on the cell surface but with a distinctive difference between FeOxNPs and AuNPs. Uptake analysis studies based on laser scanning microscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry revealed intracellular appearance of both NP types in all exposure scenarios and a time-dependent increase. This increase was higher for both AuNPs and FeOxNPs during co-exposure. Cells treated with endocytotic inhibitors recovered after co-exposure, which additionally hinted that two uptake mechanisms are involved. Cross-talk between uptake pathways is relevant for toxicological studies: Co-exposure acts as an uptake accelerant. If the goal is to maximize the cellular uptake, e.g., for the delivery of pharmaceutical agents, this can be beneficial. However, co-exposure should also be taken into account in the case of risk assessment of occupational settings. The demonstration of co-exposure-invoked pathway interactions reveals that synergetic nanoparticle effects, either positive or negative, must be considered for nanotechnology and nanomedicine in particular to develop to its full potential.

  4. The asymmetric binding of PGC-1α to the ERRα and ERRγ nuclear receptor homodimers involves a similar recognition mechanism.

    Maria Takacs

    Full Text Available PGC-1α is a crucial regulator of cellular metabolism and energy homeostasis that functionally acts together with the estrogen-related receptors (ERRα and ERRγ in the regulation of mitochondrial and metabolic gene networks. Dimerization of the ERRs is a pre-requisite for interactions with PGC-1α and other coactivators, eventually leading to transactivation. It was suggested recently (Devarakonda et al that PGC-1α binds in a strikingly different manner to ERRγ ligand-binding domains (LBDs compared to its mode of binding to ERRα and other nuclear receptors (NRs, where it interacts directly with the two ERRγ homodimer subunits.Here, we show that PGC-1α receptor interacting domain (RID binds in an almost identical manner to ERRα and ERRγ homodimers. Microscale thermophoresis demonstrated that the interactions between PGC-1α RID and ERR LBDs involve a single receptor subunit through high-affinity, ERR-specific L3 and low-affinity L2 interactions. NMR studies further defined the limits of PGC-1α RID that interacts with ERRs. Consistent with these findings, the solution structures of PGC-1α/ERRα LBDs and PGC-1α/ERRγ LBDs complexes share an identical architecture with an asymmetric binding of PGC-1α to homodimeric ERR.These studies provide the molecular determinants for the specificity of interactions between PGC-1α and the ERRs, whereby negative cooperativity prevails in the binding of the coactivators to these receptors. Our work indicates that allosteric regulation may be a general mechanism controlling the binding of the coactivators to homodimers.

  5. Neuroprotective effect of novel cognitive enhancer noopept on AD-related cellular model involves the attenuation of apoptosis and tau hyperphosphorylation.

    Ostrovskaya, Rita U; Vakhitova, Yulia V; Kuzmina, Uliyana Sh; Salimgareeva, Milyausha Kh; Zainullina, Liana F; Gudasheva, Tatiana A; Vakhitov, Vener A; Seredenin, Sergey B

    2014-08-06

    Noopept (N-phenyl-acetyl-L-prolylglycine ethyl ester) was constructed as a dipeptide analog of the standard cognition enhancer, piracetam. Our previous experiments have demonstrated the cognition restoring effect of noopept in several animal models of Alzheimer disease (AD). Noopept was also shown to prevent ionic disbalance, excitotoxicity, free radicals and pro-inflammatory cytokines accumulation, and neurotrophine deficit typical for different kinds of brain damages, including AD. In this study, we investigated the neuroprotective action of noopept on cellular model of AD, Aβ 25-35-induced toxicity in PC12 cells and revealed the underlying mechanisms. The neuroprotective effect of noopept (added to the medium at 10 μM concentration, 72 hours before Аβ 25-35) was studied on Аβ 25-35-induced injury (5 μM for 24 h) in PC12 cells. The ability of drug to protect the impairments of cell viability, calcium homeostasis, ROS level, mitochondrial function, tau phosphorylation and neurite outgrowth caused by Аβ 25-35 were evaluated. Following the exposure of PC12 cells to Аβ 25-35 an increase of the level of ROS, intracellular calcium, and tau phosphorylation at Ser396 were observed; these changes were accompanied by a decrease in cell viability and an increase of apoptosis. Noopept treatment before the amyloid-beta exposure improved PC12 cells viability, reduced the number of early and late apoptotic cells, the levels of intracellular reactive oxygen species and calcium and enhanced the mitochondrial membrane potential. In addition, pretreatment of PC12 cell with noopept significantly attenuated tau hyperphosphorylation at Ser396 and ameliorated the alterations of neurite outgrowth evoked by Аβ25-35. Taken together, these data provide evidence that novel cognitive enhancer noopept protects PC12 cell against deleterious actions of Aβ through inhibiting the oxidative damage and calcium overload as well as suppressing the mitochondrial apoptotic pathway

  6. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Massi, Paola [Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan (Italy); Valenti, Marta; Solinas, Marta; Parolaro, Daniela [Department of Structural and Functional Biology, Section of Pharmacology, Center of Neuroscience, University of Insubria, Via A. da Giussano 10, 20152 Busto Arsizio, Varese (Italy)

    2010-05-26

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  7. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Massi, Paola; Valenti, Marta; Solinas, Marta; Parolaro, Daniela

    2010-01-01

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells

  8. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Paola Massi

    2010-05-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  9. Biomechanics of cellular solids.

    Gibson, Lorna J

    2005-03-01

    Materials with a cellular structure are widespread in nature and include wood, cork, plant parenchyma and trabecular bone. Natural cellular materials are often mechanically efficient: the honeycomb-like microstructure of wood, for instance, gives it an exceptionally high performance index for resisting bending and buckling. Here we review the mechanics of a wide range of natural cellular materials and examine their role in lightweight natural sandwich structures (e.g. iris leaves) and natural tubular structures (e.g. plant stems or animal quills). We also describe two examples of engineered biomaterials with a cellular structure, designed to replace or regenerate tissue in the body.

  10. Possible mechanisms involved in the vasorelaxant effect produced by clobenzorex in aortic segments of rats

    J. Lozano-Cuenca

    Full Text Available Clobenzorex is a metabolic precursor of amphetamine indicated for the treatment of obesity. Amphetamines have been involved with cardiovascular side effects such as hypertension and pulmonary arterial hypertension. The aim of the present study was to investigate whether the direct application of 10–9–10–5 M clobenzorex on isolated phenylephrine-precontracted rat aortic rings produces vascular effects, and if so, what mechanisms may be involved. Clobenzorex produced an immediate concentration-dependent vasorelaxant effect at the higher concentrations (10–7.5–10–5 M. The present outcome was not modified by 10–6 M atropine (an antagonist of muscarinic acetylcholine receptors, 3.1×10–7 M glibenclamide (an ATP-sensitive K+ channel blocker, 10–3 M 4-aminopyridine (4-AP; a voltage-activated K+ channel blocker, 10–5 M indomethacin (a prostaglandin synthesis inhibitor, 10–5 M clotrimazole (a cytochrome P450 inhibitor or 10–5 M cycloheximide (a general protein synthesis inhibitor. Contrarily, the clobenzorex-induced vasorelaxation was significantly attenuated (P<0.05 by 10–5 M L-NAME (a direct inhibitor of nitric oxide synthase, 10–7 M ODQ (an inhibitor of nitric oxide-sensitive guanylyl cyclase, 10–6 M KT 5823 (an inhibitor of protein kinase G, 10–2 M TEA (a Ca2+-activated K+ channel blocker and non-specific voltage-activated K+ channel blocker and 10–7 M apamin plus 10–7 M charybdotoxin (blockers of small- and large-conductance Ca2+-activated K+ channels, respectively, and was blocked by 8×10–2 M potassium (a high concentration and removal of the vascular endothelium. These results suggest that the direct vasorelaxant effect by clobenzorex on phenylephrine-precontracted rat aortic rings involved stimulation of the NO/cGMP/PKG/Ca2+-activated K+ channel pathway.

  11. A host defense mechanism involving CFTR-mediated bicarbonate secretion in bacterial prostatitis.

    Chen Xie

    Full Text Available BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(- and HCO(3(-, in mediating prostate HCO(3(- secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II, along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3(- content (>50 mM, rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3(- on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3(- secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3(- secretion may be up-regulated in prostatitis as a host defense mechanism.

  12. A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel

    Andrew P. Wojtovich

    2013-03-01

    Full Text Available Opening of BK-type Ca2+ activated K+ channels protects the heart against ischemia-reperfusion (IR injury. However, the location of BK channels responsible for cardioprotection is debated. Herein we confirmed that openers of the SLO1 BK channel, NS1619 and NS11021, were protective in a mouse perfused heart model of IR injury. As anticipated, deletion of the Slo1 gene blocked this protection. However, in an isolated cardiomyocyte model of IR injury, protection by NS1619 and NS11021 was insensitive to Slo1 deletion. These data suggest that protection in intact hearts occurs by a non-cardiomyocyte autonomous, SLO1-dependent, mechanism. In this regard, an in-situ assay of intrinsic cardiac neuronal function (tachycardic response to nicotine revealed that NS1619 preserved cardiac neurons following IR injury. Furthermore, blockade of synaptic transmission by hexamethonium suppressed cardioprotection by NS1619 in intact hearts. These results suggest that opening SLO1 protects the heart during IR injury, via a mechanism that involves intrinsic cardiac neurons. Cardiac neuronal ion channels may be useful therapeutic targets for eliciting cardioprotection.

  13. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms

    Carlo Travaglini-Allocatelli

    2013-01-01

    Full Text Available Cytochromes c (Cyt c are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i heme translocation and delivery, (ii apoCyt thioreductive pathway, and (iii apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.

  14. Involvement of adrenergic and serotonergic nervous mechanisms in allethrin-induced tremors in mice.

    Nishimura, M; Obana, N; Yagasaki, O; Yanagiya, I

    1984-05-01

    Oral or intravenous administration of allethrin, a synthetic derivative of the pirethrin-based insecticides, produces neurotoxic symptoms consisting of mild salivation, hyperexcitability, tremors and convulsions which result in death. Intracerebroventricular injection of allethrin to mouse at about one-nineth the dose of intravenous administration, produced qualitatively identical but less prominent symptoms, indicating that at least some of the symptoms may be originated in the central nervous system. To investigate the mechanism of action of the compound, we studied the ability of agents which alter neurotransmission to prevent or potentiate the effect of convulsive doses of technical grade (15.5% cis, 84.5% trans) allethrin. Intraperitoneal pretreatment with drugs which block noradrenergic receptors or norepinephrine synthesis, such as pentobarbital, chlorpromazine, phentolamine, phenoxybenzamine and reserpine, depressed the tremor induced by allethrin. The inhibitory effect of reserpine was reversed by phenylephrine. Both the serotonergic blocker, methysergide, and the serotonin depletor, rho-chlorphenylalanine, potentiated the effect of allethrin. The potentiating effect of methysergide was antagonized by 5-hydroxytryptamine. However, intracerebroventricular administration of methysergide was ineffective in potentiating the effect of allethrin. alpha 2- and beta-adrenoceptor blockers, muscarinic antagonists, GABA mimenergics and morphine had no effect. These results suggest that allethrin produces its neurotoxic responses in mice by acting on the brain and spinal levels. Furthermore, adrenergic excitatory and serotonergic inhibitory mechanisms may be involved in the neural pathway through which the allethrin-induced tremor is evoked.

  15. Effect and possible mechanism of monocyte-derived VEGF on monocyte-endothelial cellular adhesion after electrical burns.

    Ruan, Qiongfang; Zhao, Chaoli; Ye, Ziqing; Ruan, Jingjing; Xie, Qionghui; Xie, Weiguo

    2015-06-01

    One of the major obstacles in the treatment of severe electrical burns is properly handling the resulting uncontrolled inflammation. Such inflammation often causes secondary injury and necrosis, thus complicating patient outcomes. Vascular endothelial grow factor (VEGF) has emerged as an important mediator for the recruitment of monocytes to the site inflammation. This study was designed to explore the effects and possible mechanism of VEGF on monocyte-endothelial cellular adhesion. To do so, we used a cultured human monocytic cell line (THP-1) that was stimulated with serum derived from rats that had received electrical burns. Serum was obtained from rats that had received electrical burns. Both the VEGF and soluble flt-1 (sflt-1) concentrations of the serum were determined by double-antibody sandwich ELISA. The concentrations of VEGF, sflt-1, and TNF-α obtained from the cell-free cultured supernatant of THP-1 cells that had been exposed to the serum were then determined by double-antibody sandwich ELISA. Serum-stimulated THP-1 cells were added to wells with a monolayer of endothelial cells to detect the level of monocyte-endothelial cells adhesion. Finally, the state of phosphorylation of AKT was determined by Western blotting. Both in vivo and in vitro studies showed that compared to controls, the levels of VEGF were significantly increased after electrical burns. This increased was accompanied by a reduction of sflt-1 levels. Furthermore, the serum of rats that had received electrical burns was able to both activate monocytes to secrete TNF-α and enhance monocyte-endothelial cell adhesion. Treatment with the serum also resulted in an up-regulation of the phosphorylation of AKT, but had no effect on the total levels of AKT. Phosphatidylinositide 3-kinases (PI3K) inhibition decreased the number of THP-1 cells that were adhered to endothelial cells. Finally, sequestering VEGF with sflt-1 was able to reduce the effect on monocyte-endothelial cells adhesion by

  16. Early differential cell death and survival mechanisms initiate and contribute to the development of OPIDN: A study of molecular, cellular, and anatomical parameters

    Damodaran, T.V.; Attia, M.K.; Abou-Donia, M.B.

    2011-01-01

    Organophosphorus-ester induced delayed neurotoxicity (OPIDN) is a neurodegenerative disorder characterized by ataxia progressing to paralysis with a concomitant central and peripheral, distal axonapathy. Diisopropylphosphorofluoridate (DFP) produces OPIDN in the chicken that results in mild ataxia in 7–14 days and severe paralysis as the disease progresses with a single dose. White leghorn layer hens were treated with DFP (1.7 mg/kg, sc) after prophylactic treatment with atropine (1 mg/kg, sc) in normal saline and eserine (1 mg/kg, sc) in dimethyl sulfoxide. Control groups were treated with vehicle propylene glycol (0.1 ml/kg, sc), atropine in normal saline and eserine in dimethyl sulfoxide. The hens were euthanized at different time points such as 1, 2, 5, 10 and 20 days, and the tissues from cerebrum, midbrain, cerebellum, brainstem and spinal cord were quickly dissected and frozen for mRNA (northern) studies. Northern blots were probed with BCL2, GADD45, beta actin, and 28S RNA to investigate their expression pattern. Another set of hens was treated for a series of time points and perfused with phosphate buffered saline and fixative for histological studies. Various staining protocols such as Hematoxylin and Eosin (H and E); Sevier-Munger; Cresyl echt Violet for Nissl substance; and Gallocynin stain for Nissl granules were used to assess various patterns of cell death and degenerative changes. Complex cell death mechanisms may be involved in the neuronal and axonal degeneration. These data indicate altered and differential mRNA expressions of BCL2 (anti apoptotic gene) and GADD45 (DNA damage inducible gene) in various tissues. Increased cell death and other degenerative changes noted in the susceptible regions (spinal cord and cerebellum) than the resistant region (cerebrum), may indicate complex molecular pathways via altered BCL2 and GADD45 gene expression, causing the homeostatic imbalance between cell survival and cell death mechanisms. Semi quantitative

  17. Global Rebalancing of Cellular Resources by Pleiotropic Point Mutations Illustrates a Multi-scale Mechanism of Adaptive Evolution

    Utrilla, José; O'Brien, Edward J.; Chen, Ke

    2016-01-01

    Pleiotropic regulatory mutations affect diverse cellular processes, posing a challenge to our understanding of genotype-phenotype relationships across multiple biological scales. Adaptive laboratory evolution (ALE) allows for such mutations to be found and characterized in the context of clear se...

  18. p16(INK4a suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms.

    Yuanyuan Li

    2011-02-01

    Full Text Available Although caloric restriction (CR has been shown to increase lifespan in various animal models, the mechanisms underlying this phenomenon have not yet been revealed. We developed an in vitro system to mimic CR by reducing glucose concentration in cell growth medium which excludes metabolic factors and allows assessment of the effects of CR at the cellular and molecular level. We monitored cellular proliferation of normal WI-38, IMR-90 and MRC-5 human lung fibroblasts and found that glucose restriction (GR can inhibit cellular senescence and significantly extend cellular lifespan compared with cells receiving normal glucose (NG in the culture medium. Moreover, GR decreased expression of p16(INK4a (p16, a well-known senescence-related gene, in all of the tested cell lines. Over-expressed p16 resulted in early replicative senescence in glucose-restricted cells suggesting a crucial role of p16 regulation in GR-induced cellular lifespan extension. The decreased expression of p16 was partly due to GR-induced chromatin remodeling through effects on histone acetylation and methylation of the p16 promoter. GR resulted in an increased expression of SIRT1, a NAD-dependent histone deacetylase, which has positive correlation with CR-induced longevity. The elevated SIRT1 was accompanied by enhanced activation of the Akt/p70S6K1 signaling pathway in response to GR. Furthermore, knockdown of SIRT1 abolished GR-induced p16 repression as well as Akt/p70S6K1 activation implying that SIRT1 may affect p16 repression through direct deacetylation effects and indirect regulation of Akt/p70S6K1 signaling. Collectively, these results provide new insights into interactions between epigenetic and genetic mechanisms on CR-induced longevity that may contribute to anti-aging approaches and also provide a general molecular model for studying CR in vitro in mammalian systems.

  19. Inhibition of cAMP-activated intestinal chloride secretion by diclofenac: cellular mechanism and potential application in cholera.

    Pongkorpsakol, Pawin; Pathomthongtaweechai, Nutthapoom; Srimanote, Potjanee; Soodvilai, Sunhapas; Chatsudthipong, Varanuj; Muanprasat, Chatchai

    2014-09-01

    Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84) cells with IC50 of ∼ 20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl- current showed that diclofenac reversibly inhibited CFTR Cl- channel activity (IC50 ∼ 10 µM) via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na(+)-K(+) ATPases and Na(+)-K(+)-Cl- cotransporters, but inhibited cAMP-activated basolateral K(+) channels with IC50 of ∼ 3 µM. In addition, diclofenac suppressed Ca(2+)-activated Cl- channels, inwardly rectifying Cl- channels, and Ca(2+)-activated basolateral K(+) channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment) had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT)-induced Cl- secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg) reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼ 70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca(2+)-activated Cl- secretion by inhibiting both apical Cl- channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal

  20. Inhibition of cAMP-activated intestinal chloride secretion by diclofenac: cellular mechanism and potential application in cholera.

    Pawin Pongkorpsakol

    2014-09-01

    Full Text Available Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84 cells with IC50 of ∼ 20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl- current showed that diclofenac reversibly inhibited CFTR Cl- channel activity (IC50 ∼ 10 µM via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na(+-K(+ ATPases and Na(+-K(+-Cl- cotransporters, but inhibited cAMP-activated basolateral K(+ channels with IC50 of ∼ 3 µM. In addition, diclofenac suppressed Ca(2+-activated Cl- channels, inwardly rectifying Cl- channels, and Ca(2+-activated basolateral K(+ channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT-induced Cl- secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼ 70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca(2+-activated Cl- secretion by inhibiting both apical Cl- channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal

  1. The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity

    Gordillo, Miriam; Vega, Hugo; Trainer, Alison H.; Hou, Fajian; Sakai, Norio; Luque, Ricardo; Kayserili, Hülya; Basaran, Seher; Skovby, Flemming; Hennekam, Raoul C. M.; Uzielli, Maria L. Giovannucci; Schnur, Rhonda E.; Manouvrier, Sylvie; Chang, Susan; Blair, Edward; Hurst, Jane A.; Forzano, Francesca; Meins, Moritz; Simola, Kalle O. J.; Raas-Rothschild, Annick; Schultz, Roger A.; McDaniel, Lisa D.; Ozono, Keiichi; Inui, Koji; Zou, Hui; Jabs, Ethylin Wang

    2008-01-01

    Roberts syndrome/SC phocomelia (RBS) is an autosomal recessive disorder with growth retardation, craniofacial abnormalities and limb reduction. Cellular alterations in RBS include lack of cohesion at the heterochromatic regions around centromeres and the long arm of the Y chromosome, reduced growth

  2. QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance.

    Klein, Anthony; Houtin, Hervé; Rond, Céline; Marget, Pascal; Jacquin, Françoise; Boucherot, Karen; Huart, Myriam; Rivière, Nathalie; Boutet, Gilles; Lejeune-Hénaut, Isabelle; Burstin, Judith

    2014-06-01

    Avoidance mechanisms and intrinsic resistance are complementary strategies to improve winter frost tolerance and yield potential in field pea. The development of the winter pea crop represents a major challenge to expand plant protein production in temperate areas. Breeding winter cultivars requires the combination of freezing tolerance as well as high seed productivity and quality. In this context, we investigated the genetic determinism of winter frost tolerance and assessed its genetic relationship with yield and developmental traits. Using a newly identified source of frost resistance, we developed a population of recombinant inbred lines and evaluated it in six environments in Dijon and Clermont-Ferrand between 2005 and 2010. We developed a genetic map comprising 679 markers distributed over seven linkage groups and covering 947.1 cM. One hundred sixty-one quantitative trait loci (QTL) explaining 9-71 % of the phenotypic variation were detected across the six environments for all traits measured. Two clusters of QTL mapped on the linkage groups III and one cluster on LGVI reveal the genetic links between phenology, morphology, yield-related traits and frost tolerance in winter pea. QTL clusters on LGIII highlighted major developmental gene loci (Hr and Le) and the QTL cluster on LGVI explained up to 71 % of the winter frost damage variation. This suggests that a specific architecture and flowering ideotype defines frost tolerance in winter pea. However, two consistent frost tolerance QTL on LGV were independent of phenology and morphology traits, showing that different protective mechanisms are involved in frost tolerance. Finally, these results suggest that frost tolerance can be bred independently to seed productivity and quality.

  3. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    Wang, Jun; Cao, Hui; Wang, Hongjie; Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli; Xiang, Ming

    2015-01-01

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4 + CD25 + Foxp3 + regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation

  4. Targeting GLI by GANT61 involves mechanisms dependent on inhibition of both transcription and DNA licensing.

    Zhang, Ruowen; Wu, Jiahui; Ferrandon, Sylvain; Glowacki, Katie J; Houghton, Janet A

    2016-12-06

    The GLI genes are transcription factors and in cancers are oncogenes, aberrantly and constitutively activated. GANT61, a specific GLI inhibitor, has induced extensive cytotoxicity in human models of colon cancer. The FOXM1 promoter was determined to be a transcriptional target of GLI1. In HT29 cells, inhibition of GLI1 binding at the GLI consensus sequence by GANT61 led to inhibited binding of Pol II, the pause-release factors DSIF, NELF and p-TEFb. The formation of R-loops (RNA:DNA hybrids, ssDNA), were reduced by GANT61 at the FOXM1 promoter. Pretreatment of HT29 cells with α-amanitin reduced GANT61-induced γH2AX foci. Co-localization of GLI1 and BrdU foci, inhibited by GANT61, indicated GLI1 and DNA replication to be linked. By co-immunoprecipitation and confocal microscopy, GLI1 co-localized with the DNA licensing factors ORC4, CDT1, and MCM2. Significant co-localization of GLI1 and ORC4 was inhibited by GANT61, and enrichment of ORC4 occurred at the GLI binding site in the FOXM1 promoter. CDT1 was found to be a transcription target of GLI1. Overexpression of CDT1 in HT29 and SW480 cells reduced GANT61-induced cell death, gH2AX foci, and cleavage of caspase-3. Data demonstrate involvement of transcription and of DNA replication licensing factors by non-transcriptional and transcriptional mechanisms in the GLI-dependent mechanism of action of GANT61.

  5. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    Wang, Jun [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan (China); Cao, Hui [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wang, Hongjie [Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL (United States); Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Xiang, Ming, E-mail: xiangming@mails.tjmu.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2015-06-15

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation.

  6. Involvement of metabolites in early defense mechanism of oil palm (Elaeis guineensis Jacq.) against Ganoderma disease.

    Nusaibah, S A; Siti Nor Akmar, A; Idris, A S; Sariah, M; Mohamad Pauzi, Z

    2016-12-01

    Understanding the mechanism of interaction between the oil palm and its key pathogen, Ganoderma spp. is crucial as the disease caused by this fungal pathogen leads to a major loss of revenue in leading palm oil producing countries in Southeast Asia. Here in this study, we assess the morphological and biochemical changes in Ganoderma disease infected oil palm seedling roots in both resistant and susceptible progenies. Rubber woodblocks fully colonized by G. boninense were applied as a source of inoculum to artificially infect the roots of resistant and susceptible oil palm progenies. Gas chromatography-mass spectrometry was used to measure an array of plant metabolites in 100 resistant and susceptible oil palm seedling roots treated with pathogenic Ganoderma boninense fungus. Statistical effects, univariate and multivariate analyses were used to identify key-Ganoderma disease associated metabolic agitations in both resistant and susceptible oil palm root tissues. Ganoderma disease related defense shifts were characterized based on (i) increased antifungal activity in crude extracts, (ii) increased lipid levels, beta- and gamma-sitosterol particularly in the resistant progeny, (iii) detection of heterocyclic aromatic organic compounds, benzo [h] quinoline, pyridine, pyrimidine (iv) elevation in antioxidants, alpha- and beta-tocopherol (iv) degraded cortical cell wall layers, possibly resulting from fungal hydrolytic enzyme activity needed for initial penetration. The present study suggested that plant metabolites mainly lipids and heterocyclic aromatic organic metabolites could be potentially involved in early oil palm defense mechanism against G. boninense infection, which may also highlight biomarkers for disease detection, treatment, development of resistant variety and monitoring. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. The Influence of Receptor-Mediated Interactions on Reaction-Diffusion Mechanisms of Cellular Self-organisation

    Klika, Václav

    2011-11-10

    Understanding the mechanisms governing and regulating self-organisation in the developing embryo is a key challenge that has puzzled and fascinated scientists for decades. Since its conception in 1952 the Turing model has been a paradigm for pattern formation, motivating numerous theoretical and experimental studies, though its verification at the molecular level in biological systems has remained elusive. In this work, we consider the influence of receptor-mediated dynamics within the framework of Turing models, showing how non-diffusing species impact the conditions for the emergence of self-organisation. We illustrate our results within the framework of hair follicle pre-patterning, showing how receptor interaction structures can be constrained by the requirement for patterning, without the need for detailed knowledge of the network dynamics. Finally, in the light of our results, we discuss the ability of such systems to pattern outside the classical limits of the Turing model, and the inherent dangers involved in model reduction. © 2011 Society for Mathematical Biology.

  8. Poly (ADP-Ribose) Polymerase is Involved in the Repair of DNA Damage Due to Sulfur Mustard by a Mechanism Other Than DNA Ligase I Activation

    Bhat, K. Ramachandra; Benton, Betty J; Ray, Radharaman

    2004-01-01

    Poly (ADP-ribose) polymerase (PARP) modulates several cellular functional proteins by a mechanism in which the proteins are poly-ADP-ribosylated by transferring the ADP-ribose moieties from the enzyme substrate NAD+ to the proteins...

  9. Towards a Better Understanding of the Molecular Mechanisms Involved in Sunlight-Induced Melanoma

    Williams Mandy

    2005-01-01

    Full Text Available Although much less prevalent than its nonmelanoma skin cancer counterparts, cutaneous malignant melanoma (CMM is the most lethal human skin cancer. Epidemiological and biological studies have established a strong link between lifetime exposure to ultraviolet (UV light, particularly sunburn in childhood, and the development of melanoma. However, the specific molecular targets of this environmental carcinogen are not known. Data obtained from genetic and molecular studies over the last few years have identified the INK4a/ARF locus as the “gatekeeper” melanoma suppressor, encoding two tumour suppressor proteins in human, p16 INK4a and p14 ARF . Recent developments in molecular biotechnology and research using laboratory animals have made a significant gene breakthrough identifying the components of the p16 INK4a /Rb pathway as the principal and rate-limiting targets of UV radiation actions in melanoma formation. This review summarizes the current knowledge of the molecular mechanisms involved in melanoma development and its relationship to sunlight UV radiation.

  10. Mechanisms involved in alleviation of intestinal inflammation by bifidobacterium breve soluble factors.

    Elise Heuvelin

    Full Text Available OBJECTIVES: Soluble factors released by Bifidobacterium breve C50 (Bb alleviate the secretion of pro-inflammatory cytokines by immune cells, but their effect on intestinal epithelium remains elusive. To decipher the mechanisms accounting for the cross-talk between bacteria/soluble factors and intestinal epithelium, we measured the capacity of the bacteria, its conditioned medium (Bb-CM and other Gram(+ commensal bacteria to dampen inflammatory chemokine secretion. METHODS: TNFalpha-induced chemokine (CXCL8 secretion and alteration of NF-kappaB and AP-1 signalling pathways by Bb were studied by EMSA, confocal microscopy and western blotting. Anti-inflammatory capacity was also tested in vivo in a model of TNBS-induced colitis in mice. RESULTS: Bb and Bb-CM, but not other commensal bacteria, induced a time and dose-dependent inhibition of CXCL8 secretion by epithelial cells driven by both AP-1 and NF-kappaB transcription pathways and implying decreased phosphorylation of p38-MAPK and IkappaB-alpha molecules. In TNBS-induced colitis in mice, Bb-CM decreased the colitis score and inflammatory cytokine expression, an effect reproduced by dendritic cell conditioning with Bb-CM. CONCLUSIONS: Bb and secreted soluble factors contribute positively to intestinal homeostasis by attenuating chemokine production. The results indicate that Bb down regulate inflammation at the epithelial level by inhibiting phosphorylations involved in inflammatory processes and by protective conditioning of dendritic cells.

  11. Interfacial Mechanics Analysis of a Brittle Coating–Ductile Substrate System Involved in Thermoelastic Contact

    Chi Zhang

    2017-02-01

    Full Text Available In this paper, interfacial stress analysis for a brittle coating/ductile substrate system, which is involved in a sliding contact with a rigid ball, is presented. By combining interface mechanics theory and the image point method, stress and displacement responses within a coated material for normal load, tangential load, and thermal load are obtained; further, the Green’s functions are established. The effects of coating thickness, friction coefficient, and a coating’s thermoelastic properties on the interfacial shear stress, τxz, and transverse stress, σxx, distributions are discussed in detail. A phenomenon, where interfacial shear stress tends to be relieved by frictional heating, is found in the case of a coating material’s thermal expansion coefficient being less than a substrate material’s thermal expansion coefficient. Additionally, numerical results show that distribution of interfacial stress can be altered and, therefore, interfacial damage can be modified by adjusting a coating’s structural parameters and thermoelastic properties.

  12. Involvement of Sodium Nitroprusside (SNP in the Mechanism That Delays Stem Bending of Different Gerbera Cultivars

    Aung H. Naing

    2017-11-01

    Full Text Available Longevity of cut flowers of many gerbera cultivars (Gerbera jamesonii is typically short because of stem bending; hence, stem bending that occurs during the early vase life period is a major problem in gerbera. Here, we investigated the effects of sodium nitroprusside (SNP on the delay of stem bending in the gerbera cultivars, Alliance, Rosalin, and Bintang, by examining relative fresh weight, bacterial density in the vase solution, transcriptional analysis of a lignin biosynthesis gene, antioxidant activity, and xylem blockage. All three gerbera cultivars responded to SNP by delaying stem bending, compared to the controls; however, the responses were dose- and cultivar-dependent. Among the treatments, SNP at 20 mg L-1 was the best to delay stem bending in Alliance, while dosages of 10 and 5 mg L-1 were the best for Rosalin and Bintang, respectively. However, stem bending in Alliance and Rosalin was faster than in Bintang, indicating a discrepancy influenced by genotype. According to our analysis of the role of SNP in the delay of stem bending, the results revealed that SNP treatment inhibited bacterial growth and xylem blockage, enhanced expression levels of a lignin biosynthesis gene, and maintained antioxidant activities. Therefore, it is suggested that the cause of stem bending is associated with the above-mentioned parameters and SNP is involved in the mechanism that delays stem bending in the different gerbera cultivars.

  13. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms : Involvement of JNK and ERK MAP kinases

    Conde de la Rosa, L; Schoemaker, MH; Vrenken, TE; Buist-Homan, M; Havinga, R; Jansen, PLM; Moshage, H

    Background/Aims: In liver diseases, reactive oxygen species (ROS) are involved in cell death and liver injury, but the mechanisms are not completely elucidated. To elucidate the mechanisms of hepatocyte cell death induced by the ROS superoxide anions and hydrogen peroxide, primary cultures of

  14. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases

    Conde de la Rosa, Laura; Schoemaker, Marieke H.; Vrenken, Titia E.; Buist-Homan, Manon; Havinga, Rick; Jansen, Peter L. M.; Moshage, Han

    2006-01-01

    BACKGROUND/AIMS: In liver diseases, reactive oxygen species (ROS) are involved in cell death and liver injury, but the mechanisms are not completely elucidated. To elucidate the mechanisms of hepatocyte cell death induced by the ROS superoxide anions and hydrogen peroxide, primary cultures of

  15. Mechanism involved in trichloroethylene-induced liver cancer: Importance to environmental cleanup. 1998 annual progress report

    Bull, R.J.; Miller, J.H.; Sasser, L.B.; Schultz, I.R.; Thrall, B.D.

    1998-01-01

    'The objective of this project is to develop critical data for changing risk-based clean-up standards for trichloroethylene (TCE). The project is organized around two interrelated tasks: Task 1 addresses the tumorigenic and dosimetry issues for the metabolites of TCE that produce liver cancer in mice, dichloroacetate (DCA) and trichloroacetate (TCA). Early work had suggested that TCA was primarily responsible for TCE-induced liver tumors, but several, more mechanistic observations suggest that DCA may play a prominent role. This task is aimed at determining the basis for the selection hypothesis and seeks to prove that this mode of action is responsible for TCE-induced tumors. This project will supply the basic dose-response data from which low-dose extrapolations would be made. Task 2 seeks specific evidence that TCA and DCA are capable of promoting the growth of spontaneously initiated cells from mouse liver, in vitro. The data provide the clearest evidence that both metabolites act by a mechanism of selection rather than mutation. These data are necessary to select between a linear (i.e. no threshold) and non-linear low-dose extrapolation model. As of May of 1998, this research has identified two plausible modes of action by which TCE produces liver tumors in mice. These modes of action do not require the compounds to be mutagenic. The bulk of the experimental evidence suggests that neither TCE nor the two hepatocarcinogenic metabolites of TCE are mutagenic. The results from the colony formation assay clearly establish that both of these metabolites cause colony growth from initiated cells that occur spontaneously in the liver of B 6 C 3 F 1 mice, although the phenotypes of the colonies differ in the same manner as tumors differ, in vivo. In the case of DCA, a second mechanism may occur at a lower dose involving the release of insulin. This observation is timely as it was recently reported that occupational exposures to trichloroethylene results in 2 to 4-fold

  16. DNA-Destabilizing Agents as an Alternative Approach for Targeting DNA: Mechanisms of Action and Cellular Consequences

    Gaëlle Lenglet

    2010-01-01

    Full Text Available DNA targeting drugs represent a large proportion of the actual anticancer drug pharmacopeia, both in terms of drug brands and prescription volumes. Small DNA-interacting molecules share the ability of certain proteins to change the DNA helix's overall organization and geometrical orientation via tilt, roll, twist, slip, and flip effects. In this ocean of DNA-interacting compounds, most stabilize both DNA strands and very few display helix-destabilizing properties. These types of DNA-destabilizing effect are observed with certain mono- or bis-intercalators and DNA alkylating agents (some of which have been or are being developed as cancer drugs. The formation of locally destabilized DNA portions could interfere with protein/DNA recognition and potentially affect several crucial cellular processes, such as DNA repair, replication, and transcription. The present paper describes the molecular basis of DNA destabilization, the cellular impact on protein recognition, and DNA repair processes and the latter's relationships with antitumour efficacy.

  17. Early-life stress impacts the developing hippocampus and primes seizure occurrence: cellular, molecular, and epigenetic mechanisms

    Huang, Li-Tung

    2014-01-01

    Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can affect the development of the hypothalamic-pituitary-adrenal (HPA) axis, and cause cellular and molecular changes in the developing hippocampus that can result in neurobehavioral changes later in life. Epidemiological data implicate stress as a cause of seizures in both children and adults. Emerging evidence indicates that both prenatal and postnatal stress can prime the developing brain for seizures and an increase in epileptogenesis. This article reviews the cellular and molecular changes encountered during prenatal and postnatal stress, and assesses the possible link between these changes and increases in seizure occurrence and epileptogenesis in the developing hippocampus. In addititon, the priming effect of prenatal and postnatal stress for seizures and epileptogenesis is discussed. Finally, the roles of epigenetic modifications in hippocampus and HPA axis programming, early-life stress, and epilepsy are discussed. PMID:24574961

  18. Cellular prion protein is required for neuritogenesis: fine-tuning of multiple signaling pathways involved in focal adhesions and actin cytoskeleton dynamics

    Alleaume-Butaux A

    2013-07-01

    Full Text Available Aurélie Alleaume-Butaux,1,2 Caroline Dakowski,1,2 Mathéa Pietri,1,2 Sophie Mouillet-Richard,1,2 Jean-Marie Launay,3,4 Odile Kellermann,1,2 Benoit Schneider1,2 1INSERM, UMR-S 747, 2Paris Descartes University, Sorbonne Paris Cité, UMR-S 747, 3Public Hospital of Paris, Department of Biochemistry, INSERM UMR-S 942, Lariboisière Hospital, Paris, France; 4Pharma Research Department, Hoffmann La Roche Ltd, Basel, Switzerland Abstract: Neuritogenesis is a dynamic phenomenon associated with neuronal differentiation that allows a rather spherical neuronal stem cell to develop dendrites and axon, a prerequisite for the integration and transmission of signals. The acquisition of neuronal polarity occurs in three steps: (1 neurite sprouting, which consists of the formation of buds emerging from the postmitotic neuronal soma; (2 neurite outgrowth, which represents the conversion of buds into neurites, their elongation and evolution into axon or dendrites; and (3 the stability and plasticity of neuronal polarity. In neuronal stem cells, remodeling and activation of focal adhesions (FAs associated with deep modifications of the actin cytoskeleton is a prerequisite for neurite sprouting and subsequent neurite outgrowth. A multiple set of growth factors and interactors located in the extracellular matrix and the plasma membrane orchestrate neuritogenesis by acting on intracellular signaling effectors, notably small G proteins such as RhoA, Rac, and Cdc42, which are involved in actin turnover and the dynamics of FAs. The cellular prion protein (PrPC, a glycosylphosphatidylinositol (GPI-anchored membrane protein mainly known for its role in a group of fatal neurodegenerative diseases, has emerged as a central player in neuritogenesis. Here, we review the contribution of PrPC to neuronal polarization and detail the current knowledge on the signaling pathways fine-tuned by PrPC to promote neurite sprouting, outgrowth, and maintenance. We emphasize that Pr

  19. Confocal imaging of whole vertebrate embryos reveals novel insights into molecular and cellular mechanisms of organ development

    Hadel, Diana M.; Keller, Bradley B.; Sandell, Lisa L.

    2014-03-01

    Confocal microscopy has been an invaluable tool for studying cellular or sub-cellular biological processes. The study of vertebrate embryology is based largely on examination of whole embryos and organs. The application of confocal microscopy to immunostained whole mount embryos, combined with three dimensional (3D) image reconstruction technologies, opens new avenues for synthesizing molecular, cellular and anatomical analysis of vertebrate development. Optical cropping of the region of interest enables visualization of structures that are morphologically complex or obscured, and solid surface rendering of fluorescent signal facilitates understanding of 3D structures. We have applied these technologies to whole mount immunostained mouse embryos to visualize developmental morphogenesis of the mammalian inner ear and heart. Using molecular markers of neuron development and transgenic reporters of neural crest cell lineage we have examined development of inner ear neurons that originate from the otic vesicle, along with the supporting glial cells that derive from the neural crest. The image analysis reveals a previously unrecognized coordinated spatial organization between migratory neural crest cells and neurons of the cochleovestibular nerve. The images also enable visualization of early cochlear spiral nerve morphogenesis relative to the developing cochlea, demonstrating a heretofore unknown association of neural crest cells with extending peripheral neurite projections. We performed similar analysis of embryonic hearts in mouse and chick, documenting the distribution of adhesion molecules during septation of the outflow tract and remodeling of aortic arches. Surface rendering of lumen space defines the morphology in a manner similar to resin injection casting and micro-CT.

  20. Cosserat modeling of cellular solids

    Onck, P.R.

    Cellular solids inherit their macroscopic mechanical properties directly from the cellular microstructure. However, the characteristic material length scale is often not small compared to macroscopic dimensions, which limits the applicability of classical continuum-type constitutive models. Cosserat

  1. Study of the Genes and Mechanism Involved in the Radioadaptive Response

    Dasgupta, Pushan R.

    2009-01-01

    The radioadaptive response is a phenomenon where exposure to a prior low dose of radiation reduces the level of damage induced by a subsequent high radiation dose. The molecular mechanism behind this is still not well understood. Learning more about the radioadaptive response is critical for long duration spaceflight since astronauts are exposed to low levels of cosmic radiation. The micronucleus assay was used to measure the level of damage caused by radiation. Although cells which were not washed with phosphate buffered saline (PBS) after a low priming dose of 5cGy did not show adaptation to the challenge dose, washing the cells with PBS and giving the cells fresh media after the low dose did allow radioadaptation to occur. This is consistent with the results of a previous publication by another research group. In the present study, genes involved in DNA damage signaling and the oxidative stress response were studied using RT PCR techniques in order to look at changes in expression level after the low dose with or without washing. Our preliminary results indicate that upregulation of oxidative stress response genes ANGPTL7, NCF2, TTN, and SRXN1 may be involved in the radioadaptive response. The low dose of radiation alone was found to activate the oxidative stress response genes GPR156 and MTL5, whereas, washing the cells alone caused relatively robust upregulation of the oxidative stress response genes DUSP1 and PTGS2. Washing after the priming dose showed some changes in the expression level of several DNA damage signaling genes. In addition, we studied whether washing the cells after the priming dose has an effect on the level of nitric oxide in both the media and cells, since nitric oxide levels are known to increase in the media of the cells after a high dose of radiation only if the cells were already exposed to a low priming dose. Based on this preliminary study, we propose that washing the cells after priming exposure actually eliminates some factor

  2. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    Sagai Masaru

    2011-12-01

    moderate oxidative stress. Recently these concepts have become widely accepted. The versatility of ozone in treating vascular and degenerative diseases as well as skin lesions, hernial disc and primary root carious lesions in children is emphasized. Further researches able to elucidate whether the mechanisms of action of ozone therapy involve nuclear transcription factors, such as Nrf2, NFAT, AP-1, and HIF-1α are warranted.

  3. Microarray Analysis of the Molecular Mechanism Involved in Parkinson’s Disease

    Cheng Tan

    2018-01-01

    Full Text Available Purpose. This study aimed to investigate the underlying molecular mechanisms of Parkinson’s disease (PD by bioinformatics. Methods. Using the microarray dataset GSE72267 from the Gene Expression Omnibus database, which included 40 blood samples from PD patients and 19 matched controls, differentially expressed genes (DEGs were identified after data preprocessing, followed by Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway enrichment analyses. Protein-protein interaction (PPI network, microRNA- (miRNA- target regulatory network, and transcription factor- (TF- target regulatory networks were constructed. Results. Of 819 DEGs obtained, 359 were upregulated and 460 were downregulated. Two GO terms, “rRNA processing” and “cytoplasm,” and two KEGG pathways, “metabolic pathways” and “TNF signaling pathway,” played roles in PD development. Intercellular adhesion molecule 1 (ICAM1 was the hub node in the PPI network; hsa-miR-7-5p, hsa-miR-433-3p, and hsa-miR-133b participated in PD pathogenesis. Six TFs, including zinc finger and BTB domain-containing 7A, ovo-like transcriptional repressor 1, GATA-binding protein 3, transcription factor dp-1, SMAD family member 1, and quiescin sulfhydryl oxidase 1, were related to PD. Conclusions. “rRNA processing,” “cytoplasm,” “metabolic pathways,” and “TNF signaling pathway” were key pathways involved in PD. ICAM1, hsa-miR-7-5p, hsa-miR-433-3p, hsa-miR-133b, and the abovementioned six TFs might play important roles in PD development.

  4. The effects of matrix inhomogeneities on the cellular mechanical environment in tissue-engineered cartilage : an in silico investigation

    Khoshgoftar, M.; Wilson, W.; Ito, K.; Donkelaar, van C.C.

    2014-01-01

    Mechanical stimulation during cartilage tissue-engineering (TE) enhances extracellular matrix (ECM) synthesis and thereby improves the mechanical properties of TE cartilage. Generally, these mechanical stimuli are of a fixed magnitude. However, as a result of ECM synthesis and spatial variations

  5. The effects of matrix inhomogeneities on the cellular mechanical environment in tissue-engineered cartilage: an in silico investigation

    Khoshgoftar, M.; Wilson, W.; Ito, K.; Donkelaar, C.C. van

    2014-01-01

    Mechanical stimulation during cartilage tissue-engineering enhances extracellular matrix (ECM) synthesis and thereby improves the mechanical properties of tissue engineered (TE) cartilage. Generally, these mechanical stimuli are of a fixed magnitude. However, as a result of ECM synthesis and spatial

  6. Kinetics of cellular transformation and competing precipitation mechanisms during sub-eutectoid annealing of U10Mo alloys

    Jana, Saumyadeep; Devaraj, Arun; Kovarik, Libor; Arey, Bruce W.; Sweet, Lucas E.; Varga, Tamas; Lavender, Curt A.; Joshi, Vineet V.

    2017-11-01

    Transformation kinetics of metastable body-centered cubic γ-UMo phase in U-10 wt.percent Mo alloy during annealing at sub-eutectoid temperatures of 500C and 400C has been determined as a function of time using detailed microstructural characterization by scanning electron microscopy, X-ray diffraction analysis, scanning transmission electron microscopy, and atom probe tomography. Based on the results, we found that the phase transformation is initiated by cellular transformation at both the temperatures, which results in formation of a lamellar microstructure along prior γ-UMo grain boundaries.

  7. The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity

    Gordillo, M.; Vega, H.; Trainer, A.H.

    2008-01-01

    Roberts syndrome/SC phocomelia (RBS) is an autosomal recessive disorder with growth retardation, craniofacial abnormalities and limb reduction. Cellular alterations in RBS include lack of cohesion at the heterochromatic regions around centromeres and the long arm of the Y chromosome, reduced growth...... and nonsense mutations associated with decreased levels of mRNA and absence of protein. We found decreased proliferation capacity in RBS cell lines associated with cell death, but not with increased cell cycle duration, which could be a factor in the development of phocomelia and cleft palate in RBS...

  8. Cellular and Molecular Mechanisms of the Production of Free Radicals during Exercise and Their Function on Skeletal Muscles

    2017-06-01

    Full Text Available Physical activity is an integral part of human life. Among significant biological changes during physical activity are increase of metabolism and production of free radicals. Free radical can be defined as molecule or molecular fragments containing unpaired electron in the outer orbital, which react with nearby molecules to obtain stability. These highly reactive molecules have various deleterious effects, such as reduced force generation and increased muscle atrophy. There is evidence that ROS produced during exercise has positive adaptation effects. ROS production leads to increased expression of the anti-oxidants. These molecules, by neutralizing free radicals, neutralize the negative effects of ROS. In addition, exercise-induced ROS leads to the expression of PGC-1α  protein, having a significant impact on various aspects of cell metabolism, mitochondrial biogenesis and cellular respiration as well as metabolism of fat and glucose. This paper provides an overview of the evidence to date on the effects of ROS on exercising muscle. These aspects include the sources of ROS, their positive and negative cellular effects,  role of antioxidants, and ROS-dependent adaptations of muscle cells in response to physical exercise

  9. Mechanisms involved in the psychological distress of Black Caribbeans in the United States

    Govia, Ishtar O.

    The mental health of ethnic minorities in the United States is of urgent concern. The accelerated growth of groups of ethnic minorities and immigrants in the United States and the stressors to which they are exposed, implores academic researchers to investigate more deeply health disparities and the factors that exacerbate or minimize such inequalities. This dissertation attended to that concern. It used data from the National Survey of American Life (NSAL), the first survey with a national representative sample of Black Caribbeans, to explore mechanisms that involved in the psychological distress of Black Caribbeans in the United States. In a series of three studies, the dissertation investigated the role and consequence of (1) chronic discrimination, immigration factors, and closeness to ethnic and racial groups; (2) personal control and social support; and (3) family relations and social roles in the psychological distress of Black Caribbeans. Study 1 examined how the associations between discrimination and psychological distress were buffered or exacerbated by closeness to ethnic group and closeness to racial group. It also examined how these associations differed depending on immigration factors. Results indicated that the buffering or exacerbating effect of ethnic and racial group closeness varied according to the type of discrimination (subtle or severe) and were more pronounced among those born in the United States. Using the stress process framework, Study 2 tested moderation and mediation models of the effects of social support and personal control in the association between discrimination and distress. Results from a series of analyses on 579 respondents suggested that personal control served as a mediator in this relationship and that emotional support exerted a direct distress deterring function. Study 3 investigated sex differences in the associations between social roles, intergenerational family relationship perceptions and distress. Results

  10. A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-α

    Dickinson Bryony A

    2009-06-01

    Full Text Available Abstract Background Long-term depression (LTD in the hippocampus can be induced by activation of different types of G-protein coupled receptors, in particular metabotropic glutamate receptors (mGluRs and muscarinic acethycholine receptors (mAChRs. Since mGluRs and mAChRs activate the same G-proteins and isoforms of phospholipase C (PLC, it would be expected that these two forms of LTD utilise the same molecular mechanisms. However, we find a distinct mechanism of LTD involving GRIP and liprin-α. Results Whilst both forms of LTD require activation of tyrosine phosphatases and involve internalisation of AMPARs, they use different molecular interactions. Specifically, mAChR-LTD, but not mGluR-LTD, is blocked by peptides that inhibit the binding of GRIP to the AMPA receptor subunit GluA2 and the binding of GRIP to liprin-α. Thus, different receptors that utilise the same G-proteins can regulate AMPAR trafficking and synaptic efficacy via distinct molecular mechanisms. Conclusion Our results suggest that mAChR-LTD selectively involves interactions between GRIP and liprin-α. These data indicate a novel mechanism of synaptic plasticity in which activation of M1 receptors results in AMPAR endocytosis, via a mechanism involving interactions between GluA2, GRIP and liprin-α.

  11. Research on the comparison of extension mechanism of cellular automaton based on hexagon grid and rectangular grid

    Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie

    2009-10-01

    Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of

  12. Mechanisms of motor recovery after subtotal spinal cord injury: insights from the study of mice carrying a mutation (WldS) that delays cellular responses to injury.

    Zhang, Z; Guth, L; Steward, O

    1998-01-01

    Partial lesions of the mammalian spinal cord result in an immediate motor impairment that recovers gradually over time; however, the cellular mechanisms responsible for the transient nature of this paralysis have not been defined. A unique opportunity to identify those injury-induced cellular responses that mediate the recovery of function has arisen from the discovery of a unique mutant strain of mice in which the onset of Wallerian degeneration is dramatically delayed. In this strain of mice (designated WldS for Wallerian degeneration, slow), many of the cellular responses to spinal cord injury are also delayed. We have used this experimental animal model to evaluate possible causal relationships between these delayed cellular responses and the onset of functional recovery. For this purpose, we have compared the time course of locomotor recovery in C57BL/6 (control) mice and in WldS (mutant) mice by hemisecting the spinal cord at T8 and evaluating locomotor function at daily postoperative intervals. The time course of locomotor recovery (as determined by the Tarlov open-field walking procedure) was substantially delayed in mice carrying the WldS mutation: C57BL/6 control mice began to stand and walk within 6 days (mean Tarlov score of 4), whereas mutant mice did not exhibit comparable locomotor function until 16 days postoperatively. (a) The rapid return of locomotor function in the C57BL/6 mice suggests that the recovery resulted from processes of functional plasticity rather than from regeneration or collateral sprouting of nerve fibers. (b) The marked delay in the return of locomotor function in WldS mice indicates that the processes of neuroplasticity are induced by degenerative changes in the damaged neurons. (c) These strains of mice can be effectively used in future studies to elucidate the specific biochemical and physiological alterations responsible for inducing functional plasticity and restoring locomotor function after spinal cord injury.

  13. Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa

    Kharazmi, A

    1991-01-01

    Pseudomonas aeruginosa, an extracellular opportunistic pathogen, utilizes two major mechanisms to evade the host defence system. One of these mechanisms is the production of a large number of extracellular products, such as proteases, toxins, and lipases. The two proteases, alkaline protease and ...

  14. Influence of TiO{sub 2} nanoparticles on cellular antioxidant defense and its involvement in genotoxicity in HepG2 cells

    Petkovic, Jana; Zegura, Bojana; Filipic, Metka, E-mail: metka.filipic@nib.si [Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, SI-1000 Ljubljana (Slovenia)

    2011-07-06

    We investigated the effects of two types of TiO{sub 2} nanoparticles (<25 nm anatase, TiO{sub 2}-An; <100 nm rutile, TiO{sub 2}-Ru) on cellular antioxidant defense in HepG2 cells. We previously showed that in HepG2 cells, TiO{sub 2} nanoparticles are not toxic, although they induce oxidative DNA damage, production of intracellular reactive oxygen species, and up-regulation of mRNA expression of DNA-damage-responsive genes (p53, p21, gadd45{alpha} and mdm2). In the present study, we measured changes in mRNA expression of several antioxidant enzymes: catalase, superoxide dismutase, glutathione peroxidase, nitric oxide synthase, glutathione reductase and glutamate-cysteine ligase. As reduced glutathione has a central role in cellular antioxidant defense, we determined the effects of TiO{sub 2} nanoparticles on changes in the intracellular glutathione content. To confirm a role for glutathione in protection against TiO{sub 2}-nanoparticle-induced DNA damage, we compared the extent of TiO{sub 2}-nanoparticle-induced DNA damage in HepG2 cells that were glutathione depleted with buthionine-(S,R)-sulfoximine pretreatment and in nonglutathione-depleted cells. Our data show that both types of TiO{sub 2} nanoparticles up-regulate mRNA expression of oxidative-stress-related genes, with TiO{sub 2}-Ru being a stronger inducer than TiO{sub 2}-An. Both types of TiO{sub 2} nanoparticles also induce dose-dependent increases in intracellular glutathione levels, and in glutathione-depleted cells, TiO{sub 2}-nanoparticle-induced DNA damage was significantly greater than in nonglutathione-depleted cells. Interestingly, the glutathione content and the extent of DNA damage were significantly higher in TiO{sub 2}-An- than TiO{sub 2}-Ru-exposed cells. Thus, we show that TiO{sub 2} nanoparticles cause activation of cellular antioxidant processes, and that intracellular glutathione has a critical role in defense against this TiO{sub 2}-nanoparticle-induced DNA damage.

  15. [Mechanisms and secondary factors involved in the induction of radiation transformation in vitro]: Comprehensive progress report

    Little, J.B.

    1986-01-01

    We have previously shown that 125 Iododeoxyuridine ( 125 IdUrd) and 3 H-thymidine are more effective than x-rays in inducing malignant transformation when the results are normalized for survival. We have now observed a similar phenomenon for the induction of specific gene mutations in TK6 human lymphoblastoid cells. The results of parallel transformation experiments with tritiated water suggest that the enhanced efficiency of 3 H-thymidine as compared with x-rays is due to a higher RBE of the tritium beta particle for mutagenesis and transformation, rather than to the fact that the radioactive decay occurs within the DNA molecule. Studies of the cell cycle specificity for the induction of cell killing and mutagenesis by 125 IdUrd indicate that late S-phase cells are more radiosensitive than early S-phase cells to the localized deposition of energy characteristic of 125 I decay. Cellular localization studies have shown that 125 I decay must occur in close proximity to cellular DNA in order to produce mutations; 125 IdUrd was very mutagenic in cells which incorporated it into DNA, but not in cells in which it remained in the acid soluble pool. Unexpectedly, a similar result has emerged from preliminary experiments with 131 I (an energetic beta/gamma emitter); virtually no cytotoxicity or mutagenicity was observed when 131 IdUrd in the cells was not incorporated into DNA. These preliminary results suggest that, unlike 3 H-Thymidine, the biological effects of the two radioiodine-labeled nucleotide precursors may result largely from a transmutation/fragmentation effect. On the other hand, a low though significant frequency of transformation was associated with cell membrane exposure from 125 I-labeled sodium iodide. 11 refs., 6 figs., 1 tab

  16. Inhibition of cellular efflux pumps involved in multi xenobiotic resistance (MXR) in echinoid larvae as a possible mode of action for increased ecotoxicological risk of mixtures

    Drs Anselmo, H.M.R.; Berg, van den J.H.J.; Rietjens, I.; Murk, A.J.

    2012-01-01

    In marine organisms the multi xenobiotic resistance (MXR) mechanism via e.g. P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) is an important first line of defense against contaminants by pumping contaminants out of the cells. If compounds would impair the MXR mechanism, this

  17. Cellular gravity

    F.C. Gruau; J.T. Tromp (John)

    1999-01-01

    textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on

  18. Overexpression of FurA in Anabaena sp. PCC 7120 reveals new targets for this regulator involved in photosynthesis, iron uptake and cellular morphology.

    González, Andrés; Bes, M Teresa; Barja, François; Peleato, M Luisa; Fillat, María F

    2010-11-01

    Previous genomic analyses of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 have identified three ferric uptake regulator (Fur) homologs with low sequence identities and probably different functions in the cell. FurA is a constitutive protein that shares the highest homology with Fur from heterotrophic bacteria and appears to be essential for in vitro growth. In this study, we have analysed the effects of FurA overexpression on the Anabaena sp. phenotype and investigated which of the observed alterations were directly operated by FurA. Overexpression of the regulator led to changes in cellular morphology, resulting in shorter filaments with rounded cells of different sizes. The furA-overexpressing strain showed a slower photoautotrophic growth and a marked decrease in the oxygen evolution rate. Overexpression of the regulator also decreased both catalase and superoxide dismutase activities, but did not lead to an increase in the levels of intracellular reactive oxygen species. By combining phenotypic studies, reverse transcription-PCR analyses and electrophoretic mobility shift assays, we identified three novel direct targets of FurA, including genes encoding a siderophore outer membrane transporter (schT), bacterial actins (mreBCD) and the PSII reaction center protein D1 (psbA). The affinity of FurA for these novel targets was markedly affected by the absence of divalent metal ions, confirming previous evidence of a critical role for the metal co-repressor in the function of the regulator in vivo. The results unravel new cellular processes modulated by FurA, supporting its role as a global transcriptional regulator in Anabaena sp. PCC 7120.

  19. A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures

    Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.

    2014-01-01

    While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.

  20. Swarming mechanisms in the yellow fever mosquito: aggregation pheromones involved in the mating behavior of Aedes aegypti

    Mosquitoes of various species mate in swarms comprised of tens to thousands flying males. Yet little information is known about mosquito swarming mechanism. Discovering chemical cues involved in mosquito biology leads to better adaptation of disease control interventions. In this study, we aimed ...

  1. Mechanical properties and cellular response of novel electrospun nanofibers for ligament tissue engineering: Effects of orientation and geometry.

    Pauly, Hannah M; Kelly, Daniel J; Popat, Ketul C; Trujillo, Nathan A; Dunne, Nicholas J; McCarthy, Helen O; Haut Donahue, Tammy L

    2016-08-01

    Electrospun nanofibers are a promising material for ligamentous tissue engineering, however weak mechanical properties of fibers to date have limited their clinical usage. The goal of this work was to modify electrospun nanofibers to create a robust structure that mimics the complex hierarchy of native tendons and ligaments. The scaffolds that were fabricated in this study consisted of either random or aligned nanofibers in flat sheets or rolled nanofiber bundles that mimic the size scale of fascicle units in primarily tensile load bearing soft musculoskeletal tissues. Altering nanofiber orientation and geometry significantly affected mechanical properties; most notably aligned nanofiber sheets had the greatest modulus; 125% higher than that of random nanofiber sheets; and 45% higher than aligned nanofiber bundles. Modifying aligned nanofiber sheets to form aligned nanofiber bundles also resulted in approximately 107% higher yield stresses and 140% higher yield strains. The mechanical properties of aligned nanofiber bundles were in the range of the mechanical properties of the native ACL: modulus=158±32MPa, yield stress=57±23MPa and yield strain=0.38±0.08. Adipose derived stem cells cultured on all surfaces remained viable and proliferated extensively over a 7 day culture period and cells elongated on nanofiber bundles. The results of the study suggest that aligned nanofiber bundles may be useful for ligament and tendon tissue engineering based on their mechanical properties and ability to support cell adhesion, proliferation, and elongation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting.

    Murr, L E; Amato, K N; Li, S J; Tian, Y X; Cheng, X Y; Gaytan, S M; Martinez, E; Shindo, P W; Medina, F; Wicker, R B

    2011-10-01

    Total knee replacement implants consisting of a Co-29Cr-6Mo alloy femoral component and a Ti-6Al-4V tibial component are the basis for the additive manufacturing of novel solid, mesh, and foam monoliths using electron beam melting (EBM). Ti-6Al-4V solid prototype microstructures were primarily α-phase acicular platelets while the mesh and foam structures were characterized by α(')-martensite with some residual α. The Co-29Cr-6Mo containing 0.22% C formed columnar (directional) Cr(23)C(6) carbides spaced ~2 μm in the build direction, while HIP-annealed Co-Cr alloy exhibited an intrinsic stacking fault microstructure. A log-log plot of relative stiffness versus relative density for Ti-6Al-4V and Co-29Cr-6Mo open-cellular mesh and foams resulted in a fitted line with a nearly ideal slope, n = 2.1. A stress shielding design graph constructed from these data permitted mesh and foam implant prototypes to be fabricated for compatible bone stiffness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Different cellular response mechanisms contribute to the length-dependent cytotoxicity of multi-walled carbon nanotubes

    Liu, Dun; Wang, Lijun; Wang, Zhigang; Cuschieri, Alfred

    2012-07-01

    To date, there has not been an agreement on the best methods for the characterisation of multi-walled carbon nanotube (MWCNT) toxicity. The length of MWCNTs has been identified as a factor in in vitro and in vivo studies, in addition to their purity and biocompatible coating. Another unresolved issue relates to the variable toxicity of MWCNTs on different cell types. The present study addressed the effects of MWCNTs' length on mammalian immune and epithelial cancer cells RAW264.7 and MCF-7, respectively. Our data confirm that MWCNTs induce cytotoxicity in a length- and cell type-dependent manner. Whereas, longer (3 to 14 μm) MWCNTs exert high toxicity, especially to RAW264.7 cells, shorter (1.5 μm) MWCNTs are significantly less cytotoxic. These findings confirm that the degree of biocompatibility of MWCNTs is closely related to their length and that immune cells appear to be more susceptible to damage by MWCNTs. Our study also indicates that MWCNT nanotoxicity should be analysed for various components of cellular response, and cytotoxicity data should be validated by the use of more than one assay system. Results from chromogenic-based assays should be confirmed by trypan blue exclusion.

  4. Kinetic study of the interaction of glutathione with four antitumor disulfides: possible mechanism for cellular glutathione depletion.

    Kirkpatrick, D L

    1989-01-01

    The reactions between the cellular tripeptide, glutathione (GSH) and four disulfide derivatives of 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) (compounds 1-4) were studied kinetically. The decyl and phenyl derivatives of 6-MP and 6-TG were reacted with GSH in phosphate buffer (pH 7.4 or 6.0) at 25.0 degrees C and were monitored spectrophotometrically by observing the release of 6-MP and 6-TG. Second order kinetics were observed, with rate constants of 142, 564, 4174 and 429 M-1 s-1 being measured for compounds 1-4, respectively. When the reactions were carried out in the presence of GSH-S-transferase the rates were enhanced 1.3-5.4 times those observed in the absence of enzyme. Products of the reactions were isolated by chromatography and tentatively identified by TLC or fast atom bombardment mass spectrometry. It was observed that GSH reacted with each disulfide in a 1:1 manner, forming a mixed disulfide between GSH and decanethiol or thiophenol while releasing 6-MP or 6-TG. It was concluded that the reported depletion of GSH from EMT6 cells after exposure to these disulfides could be due to their reaction with GSH, and the formation of the mixed disulfides.

  5. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells.

    Zhang, Jie; Liu, Dan; Zhang, Mengjun; Sun, Yuqi; Zhang, Xiaojun; Guan, Guannan; Zhao, Xiuli; Qiao, Mingxi; Chen, Dawei; Hu, Haiyang

    2016-01-01

    Polyamidoamine dendrimers, which can deliver drugs and genetic materials to resistant cells, are attracting increased research attention, but their transportation behavior in resistant cells remains unclear. In this paper, we performed a systematic analysis of the cellular uptake, intracellular transportation, and efflux of PAMAM-NH2 dendrimers in multidrug-resistant breast cancer cells (MCF-7/ADR cells) using sensitive breast cancer cells (MCF-7 cells) as the control. We found that the uptake rate of PAMAM-NH2 was much lower and exocytosis of PAMAM-NH2 was much greater in MCF-7/ADR cells than in MCF-7 cells due to the elimination of PAMAM-NH2 from P-glycoprotein and the multidrug resistance-associated protein in MCF-7/ADR cells. Macropinocytosis played a more important role in its uptake in MCF-7/ADR cells than in MCF-7 cells. PAMAM-NH2 aggregated and became more degraded in the lysosomal vesicles of the MCF-7/ADR cells than in those of the MCF-7 cells. The endoplasmic reticulum and Golgi complex were found to participate in the exocytosis rather than endocytosis process of PAMAM-NH2 in both types of cells. Our findings clearly showed the intracellular transportation process of PAMAM-NH2 in MCF-7/ADR cells and provided a guide of using PAMAM-NH2 as a drug and gene vector in resistant cells.

  6. Molecular mechanism for the involvement of nuclear receptor FXR in HBV-associated hepatocellular carcinoma

    Yong-dong Niu

    2011-08-01

    Full Text Available Farnesoid X receptor (FXR, also termed nuclear receptor NR1H4 is critically involved in the regulation of nascent bile formation and bile acid enterohepatic circulation. FXR and bile acids have been shown to play roles in liver regeneration and inflammatory responses. There is increasing evidence suggesting that FXR and the FXR signaling pathway are involved in the pathophysiology of a wide range of liver diseases, such as viral hepatitis, cirrhosis, and hepatocellular carcinoma (HCC. Here we discuss the latest discoveries of FXR functions with relevance to bile acid metabolism and HBV-associated HCC. More specifically, the goal of this review is to discuss the roles of FXR and bile acids in regulating HBV replication and how disregulation of the FXR-bile acid signaling pathway is involved in HBV-associated hepatocarcinogenesis.

  7. Task Group 7B: Cellular and Molecular Mechanisms of Biological Aging: The Roles of Nature, Nurture and Chance in the Maintenance of Human Healthspan

    Weier, Heinz-Ulrich; Arya, Suresh; Grant, Christine; Miller, Linda; Ono, Santa Jeremy; Patil, Chris; Shay, Jerry; Topol, Eric; Torry, Michael; Weier, Heinz-Ulrich G.; Tse, Iris; Lin, Su-Ju; Miller, Richard

    2007-11-14

    The degree to which an individual organism maintains healthspan and lifespan is a function of complex interactions between genetic inheritance ('nature'), environment, including cultural inheritance (nurture) and stochastic events ('luck' or 'chance'). This task group will focus upon the role of chance because it is so poorly understood and because it appears to be of major importance in the determination of individual variations in healthspan and lifespan within species. The major factor determining variations in healthspan and lifespan between species is genetic inheritance. Broader aspects of cellular and molecular mechanisms of biological aging will also be considered, given their importance for understanding the cellular and molecular basis of successful aging. The task force will consider the cellular and molecular basis for nature, nurture and chance in healthspan and life span determination. On the basis of comparisons between identical and non-identical twins, geneticists have estimated that genes control no more than about a quarter of the inter-individual differences in lifespan (Herskind 1996). Twin studies of very old individuals, however, show substantially greater genetic contributions to Healthspan (McClearn 2004; Reed 2003). The environment clearly plays an important role in the length and the quality of life. Tobacco smoke, for example has the potential to impact upon multiple body systems in ways that appear to accelerate the rates at which those systems age (Bernhard 2007). To document the role of chance events on aging, one must rigorously control both the genetic composition of an organism and its environment. This has been done to a remarkable degree in a species of nematodes, Caenorhabditis elegans (Vanfleteren 1998). The results confirm hundreds of previous studies with a wide range of species, especially those with inbred rodents housed under apparently identical but less well controlled environments. One

  8. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor

    List, K; Høyer-Hansen, G; Rønne, E

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or interfer......Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance......) can be employed as a highly useful tool to characterize the inhibitory mechanism of specific antagonist antibodies. Two inhibitory antibodies against uPAR, mAb R3 and mAb R5, were shown to exhibit competitive and non-competitive inhibition, respectively, of ligand binding to the receptor. The former...

  9. The Role and Mechanisms of Action of Glucocorticoid Involvement in Memory Storage

    Sandi, Carmen

    1998-01-01

    Adrenal steroid hormones modulate learning and memory processes by interacting with specific glucocorticoid receptors at different brain areas. In this article, certain components of the physiological response to stress elicited by learning situations are proposed to form an integral aspect of the neurobiological mechanism underlying memory formation. By reviewing the work carried out in different learning models in chicks (passive avoidance learning) and rats (spatial orientation in the Morris water maze and contextual fear conditioning), a role for brain corticosterone action through the glucocorticoid receptor type on the mechanisms of memory consolidation is hypothesized. Evidence is also presented to relate post-training corticosterone levels to the strength of memory storage. Finally, the possible molecular mechanisms that might mediate the influences of glucocorticoids in synaptic plasticity subserving long-term memory formation are considered, mainly by focusing on studies implicating a steroid action through (i) glutamatergic transmission and (ii) cell adhesion molecules. PMID:9920681

  10. Involvement of stress-activated protein kinase in the cellular response to 1-beta-D-arabinofuranosylcytosine and other DNA-damaging agents.

    Saleem, A; Datta, R; Yuan, Z M; Kharbanda, S; Kufe, D

    1995-12-01

    The cellular response to 1-beta-D-arabinofuranosylcytosine (ara-C) includes activation of Jun/AP-1, induction of c-jun transcription, and programmed cell death. The stress-activated protein (SAP) kinases stimulate the transactivation function of c-jun by amino terminal phosphorylation. The present work demonstrates that ara-C activates p54 SAP kinase. The finding that SAP kinase is also activated by alkylating agents (mitomycin C and cisplatinum) and the topoisomerase I inhibitor 9-amino-camptothecin supports DNA damage as an initial signal in this cascade. The results demonstrate that ara-C also induces binding of SAP kinase to the SH2/SH3-containing adapter protein Grb2. SAP kinase binds to the SH3 domains of Grb2, while interaction of the p85 alpha-subunit of phosphatidylinositol 3-kinase complex. The results also demonstrate that ara-C treatment is associated with inhibition of lipid and serine kinase activities of PI 3-kinase. The potential significance of the ara-C-induced interaction between SAP kinase and PI 3-kinase is further supported by the demonstration that Wortmannin, an inhibitor of PI 3-kinase, stimulates SAP kinase activity. The finding that Wortmannin treatment is also associated with internucleosomal DNA fragmentation may support a potential link between PI 3-kinase and regulation of both SAP kinase and programmed cell death.

  11. Epigenetics and Cellular Metabolism

    Wenyi Xu; Fengzhong Wang; Zhongsheng Yu; Fengjiao Xin

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the proce...

  12. Modeling cellular systems

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  13. Up-date on neuro-immune mechanisms involved in allergic and non-allergic rhinitis

    van Gerven, L.; Boeckxstaens, G.; Hellings, P.

    2012-01-01

    Non-allergic rhinitis (NAR) is a common disorder, which can be defined as chronic nasal inflammation, independent of systemic IgE-mediated mechanisms. Symptoms of NAR patients mimic those of allergic rhinitis (AR) patients. However, AR patients can easily be diagnosed with skin prick test or

  14. Understanding the molecular mechanisms involved in the interfacial self-healing of supramolecular rubbers

    Bose, R.K.; Garcia Espallargas, S.J.; Van der Zwaag, S.

    2013-01-01

    Supramolecular rubbers based on 2-aminoethylimidazolidone and fatty acids with epoxy crosslinks have been shown to self-heal via multiple hydrogen bonding sites. In this work, several tools are used to investigate the molecular mechanisms taking place at the interface to understand cohesive healing

  15. Nitric oxide is involved in the down-regulation of sost expression induced by mechanical loading

    Delgado-Calle, J.; Riancho, J.A.; Klein-Nulend, J.

    2014-01-01

    Mechanical stimulation reduces sclerostin expression in rodents. However, few data are available about the effect of physical stimuli in human systems. Recently we observed that the demethylating agent AzadC induces SOST expression in bone cells. This allowed us in this study to explore the effect

  16. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis.

    Loor, Gabriel; Kondapalli, Jyothisri; Schriewer, Jacqueline M; Chandel, Navdeep S; Vanden Hoek, Terry L; Schumacker, Paul T

    2010-12-15

    Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, whereas other studies implicate the activation of the mitochondrial permeability transition pore as the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, whereas it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetylcysteine and exogenous glutathione or by overexpression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells overexpressing Cu,Zn-SOD or Mn-SOD. Overexpression of antiapoptotic Bcl-X(L) protected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D, or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochrome c, Bax/Bak, caspase-9, and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure.

    Olav Christophersen

    2012-02-01

    damaged tissues, especially in the intestines, and 4 by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome are given for illustration of the

  18. Extending in silico mechanism-of-action analysis by annotating targets with pathways: application to cellular cytotoxicity readouts.

    Liggi, Sonia; Drakakis, Georgios; Koutsoukas, Alexios; Cortes-Ciriano, Isidro; Martínez-Alonso, Patricia; Malliavin, Thérèse E; Velazquez-Campoy, Adrian; Brewerton, Suzanne C; Bodkin, Michael J; Evans, David A; Glen, Robert C; Carrodeguas, José Alberto; Bender, Andreas

    2014-01-01

    An in silico mechanism-of-action analysis protocol was developed, comprising molecule bioactivity profiling, annotation of predicted targets with pathways and calculation of enrichment factors to highlight targets and pathways more likely to be implicated in the studied phenotype. The method was applied to a cytotoxicity phenotypic endpoint, with enriched targets/pathways found to be statistically significant when compared with 100 random datasets. Application on a smaller apoptotic set (10 molecules) did not allowed to obtain statistically relevant results, suggesting that the protocol requires modification such as analysis of the most frequently predicted targets/annotated pathways. Pathway annotations improved the mechanism-of-action information gained by target prediction alone, allowing a better interpretation of the predictions and providing better mapping of targets onto pathways.

  19. "Coding" and "Decoding": hypothesis for the regulatory mechanism involved in heparan sulfate biosynthesis.

    Zhang, Xu; Wang, Fengshan; Sheng, Juzheng

    2016-06-16

    Heparan sulfate (HS) is widely distributed in mammalian tissues in the form of HS proteoglycans, which play essential roles in various physiological and pathological processes. In contrast to the template-guided processes involved in the synthesis of DNA and proteins, HS biosynthesis is not believed to involve a template. However, it appears that the final structure of HS chains was strictly regulated. Herein, we report research based hypothesis that two major steps, namely "coding" and "decoding" steps, are involved in the biosynthesis of HS, which strictly regulate its chemical structure and biological activity. The "coding" process in this context is based on the distribution of sulfate moieties on the amino groups of the glucosamine residues in the HS chains. The sulfation of these amine groups is catalyzed by N-deacetylase/N-sulfotransferase, which has four isozymes. The composition and distribution of sulfate groups and iduronic acid residues on the glycan chains of HS are determined by several other modification enzymes, which can recognize these coding sequences (i.e., the "decoding" process). The degree and pattern of the sulfation and epimerization in the HS chains determines the extent of their interactions with several different protein factors, which further influences their biological activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. 2013 Russell Ross memorial lecture in vascular biology: cellular and molecular mechanisms of diabetes mellitus-accelerated atherosclerosis.

    Bornfeldt, Karin E

    2014-04-01

    Adults with diabetes mellitus are much more likely to have cardiovascular disease than those without diabetes mellitus. Genetically engineered mouse models have started to provide important insight into the mechanisms whereby diabetes mellitus promotes atherosclerosis. Such models have demonstrated that diabetes mellitus promotes formation of atherosclerotic lesions, progression of lesions into advanced hemorrhaged lesions, and that it prevents lesion regression. The proatherosclerotic effects of diabetes mellitus are driven in part by the altered function of myeloid cells. The protein S100A9 and the receptor for advanced glycation end-products are important modulators of the effect of diabetes mellitus on myelopoiesis, which might promote monocyte accumulation in lesions. Furthermore, myeloid cell expression of the enzyme acyl-CoA synthetase 1 (ACSL1), which converts long-chain fatty acids into their acyl-CoA derivatives, has emerged as causal to diabetes mellitus-induced lesion initiation. The protective effects of myeloid ACSL1-deficiency in diabetic mice, but not in nondiabetic mice, indicate that myeloid cells are activated by diabetes mellitus through mechanisms that play minor roles in the absence of diabetes mellitus. The roles of reactive oxygen species and insulin resistance in diabetes mellitus-accelerated atherosclerosis are also discussed, primarily in relation to endothelial cells. Translational studies addressing whether the mechanisms identified in mouse models are equally important in humans with diabetes mellitus will be paramount.

  1. Dual inhibition of γ-oryzanol on cellular melanogenesis: inhibition of tyrosinase activity and reduction of melanogenic gene expression by a protein kinase A-dependent mechanism.

    Jun, Hee-jin; Lee, Ji Hae; Cho, Bo-Ram; Seo, Woo-Duck; Kang, Hang-Won; Kim, Dong-Woo; Cho, Kang-Jin; Lee, Sung-Joon

    2012-10-26

    The in vitro effects on melanogenesis of γ-oryzanol (1), a rice bran-derived phytosterol, were investigated. The melanin content in B16F1 cells was significantly and dose-dependently reduced (-13% and -28% at 3 and 30 μM, respectively). Tyrosinase enzyme activity was inhibited by 1 both in a cell-free assay and when analyzed based on the measurement of cellular tyrosinase activity. Transcriptome analysis was performed to investigate the biological pathways altered by 1, and it was found that gene expression involving protein kinase A (PKA) signaling was markedly altered. Subsequent analyses revealed that 1 stimulation in B16 cells reduced cytosolic cAMP concentrations, PKA activity (-13% for cAMP levels and -40% for PKA activity), and phosphorylation of the cAMP-response element binding protein (-57%), which, in turn, downregulated the expression of microphthalmia-associated transcription factor (MITF; -59% for mRNA and -64% for protein), a key melanogenic gene transcription factor. Accordingly, tyrosinase-related protein 1 (TRP-1; -69% for mRNA and -82% for protein) and dopachrome tautomerase (-51% for mRNA and -92% for protein) in 1-stimulated B16F1 cells were also downregulated. These results suggest that 1 has dual inhibitory activities for cellular melanogenesis by inhibiting tyrosinase enzyme activity and reducing MITF and target genes in the PKA-dependent pathway.

  2. Study of mechanism involved in synthesis of graphene oxide and reduced graphene oxide from graphene nanoplatelets

    Sharma, Bhasha; Shekhar, Shashank; Malik, Parul; Jain, Purnima

    2018-06-01

    Graphene, a wonder material has inspired quest among researchers due to its numerous applications and exceptional properties. This paper highlights the mechanism and chemistry behind the fabrication of graphene oxide by using phosphoric acid. Chemical functionalization is of prime importance which avoids agglomeration of nanoparticles to attain inherent properties. As non-homogeneous dispersion limits its utilization due to interfacial interactions which restrict reactive sites to produce intercalated network. Thus, chemically functionalized graphene leads to stable dispersion and enhances thermal, mechanical and electrical properties of the resultant polymer composite materials. Solubility of graphene in aqueous solution is the major issue because graphene is hydrophobic, to rectify this oxygen containing hydrophilic groups must be introduced to make it compatible and this can be attained by covalent functionalization. Among all nanofiller GO has shown average particle size i.e. 95 nm and highest surface charge density. The characteristic changes were estimated using Raman spectra.

  3. Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

    Kehrmann, Angela; Truong, Ha; Repenning, Antje; Boger, Regina; Klein-Hitpass, Ludger; Pascheberg, Ulrich; Beckmann, Alf; Opalka, Bertram; Kleine-Lowinski, Kerstin

    2013-01-01

    The fusion between human tumorigenic cells and normal human diploid fibroblasts results in non-tumorigenic hybrid cells, suggesting a dominant role for tumor suppressor genes in the generated hybrid cells. After long-term cultivation in vitro, tumorigenic segregants may arise. The loss of tumor suppressor genes on chromosome 11q13 has been postulated to be involved in the induction of the tumorigenic phenotype of human papillomavirus (HPV)18-positive cervical carcinoma cells and their derived tumorigenic hybrid cells after subcutaneous injection in immunocompromised mice. The aim of this study was the identification of novel cellular genes that may contribute to the suppression of the tumorigenic phenotype of non-tumorigenic hybrid cells in vivo. We used cDNA microarray technology to identify differentially expressed cellular genes in tumorigenic HPV18-positive hybrid and parental HeLa cells compared to non-tumorigenic HPV18-positive hybrid cells. We detected several as yet unknown cellular genes that play a role in cell differentiation, cell cycle progression, cell-cell communication, metastasis formation, angiogenesis, antigen presentation, and immune response. Apart from the known differentially expressed genes on 11q13 (e.g., phosphofurin acidic cluster sorting protein 1 (PACS1) and FOS ligand 1 (FOSL1 or Fra-1)), we detected novel differentially expressed cellular genes located within the tumor suppressor gene region (e.g., EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) and leucine rich repeat containing 32 (LRRC32) (also known as glycoprotein-A repetitions predominant (GARP)) that may have potential tumor suppressor functions in this model system of non-tumorigenic and tumorigenic HeLa x fibroblast hybrid cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Stimulation of the human immunodeficiency virus type 1 enhancer by the human T-cell leukemia virus type I tax gene product involves the action of inducible cellular proteins.

    Böhnlein, E; Siekevitz, M; Ballard, D W; Lowenthal, J W; Rimsky, L; Bogérd, H; Hoffman, J; Wano, Y; Franza, B R; Greene, W C

    1989-04-01

    The human immunodeficiency virus type 1 (HIV-1) preferentially infects CD4+ T lymphocytes and may exist as a latent provirus within these cells for extended periods. The transition to a productive retroviral infection results in T-cell death and clinically may lead to the acquired immune deficiency syndrome. Accelerated production of infectious HIV-1 virions appears to be closely linked to a heightened state of T-cell activation. The transactivator (Tax) protein of the type I human T-cell leukemia virus (HTLV-I) can produce such an activated T-cell phenotype and augments activity of the HIV-1 long terminal repeat. One Tax-responsive region within the HIV-1 long terminal repeat has been mapped to a locus composed of two 10-base-pair direct repeats sharing homology with the binding site for the eucaryotic transcription factor NF-kappaB (GGGACTTTCC). Tax-expressing Jurkat T cells contain one or more inducible cellular proteins that specifically associate with the HIV-1 enhancer at these binding sites. Microscale DNA affinity precipitation assays identified a Tax-inducible 86-kilodalton protein, HIVEN86A, as one of these HIV-1 enhancer-binding factors. The interaction of HIVEN86A, and presumably other cellular proteins, with the HIV-1 enhancer appears functionally important as oligonucleotides corresponding to this enhancer were sufficient to impart Tax inducibility to an unresponsive heterologous promoter. These findings suggest that the Tax-inducible cellular protein HIVEN86A plays an important role in the transcriptional activation of the HIV-1 enhancer. These specific protein-DNA interactions may also be important for the transition of HIV-1 from a latent to a productive mode of infection. Furthermore, these findings highlight an intriguing biological interplay between HTLV-1 and HIV-1 through a cellular transcriptional pathway that is normally involved in T-cell activation and growth.

  5. Involvement of epigenetic mechanisms in the development of posttraumatic stress disorder

    Tomaž Zupanc

    2012-03-01

    victims with no childhood abuse were found. It was suggested that changes in glucocorticoid system are mediated by tissue-specific changes in gene expression. Recent studies suggest that epigenetic mechanisms may play an important role in the interplay between stress exposure and genetic vulnerability. Conclusions: Integrating epigenetics into a model that permits prior experience to have a central role in determining individual differences is also consistent with a developmental perspective of PTSD vulnerability.

  6. Molecular mechanisms involved in the bidirectional relationship between diabetes mellitus and periodontal disease

    Harpreet Singh Grover

    2013-01-01

    Full Text Available Both diabetes and periodontitis are chronic diseases. Diabetes has many adverse effects on the periodontium, and conversely periodontitis may have deleterious effects further aggravating the condition in diabetics. The potential common pathophysiologic pathways include those associated with inflammation, altered host responses, altered tissue homeostasis, and insulin resistance. This review examines the relationship that exists between periodontal diseases and diabetes mellitus with a focus on potential common pathophysiologic mechanisms.

  7. Phenanthrene causes ocular developmental toxicity in zebrafish embryos and the possible mechanisms involved

    Huang, Lixing; Wang, Chonggang; Zhang, Youyu; Wu, Meifang; Zuo, Zhenghong

    2013-01-01

    Highlights: • Phe exposure caused obvious morphological changes in the retina. • Phe exposure caused apoptosis and reduction of cell proliferation in the retina. • Phe causes ocular toxicity might be via the AhR/Zeb1/Mitf/Pax6 signaling pathway. • AhR is a repressor of Zeb1. -- Abstract: Recent studies show that polycyclic aromatic hydrocarbons (PAHs) may be a candidate cause of developmental defects of the retina, but the mechanism is still unclear. We evaluated the mechanism(s) underlying PAH-induced retinal development defects due to exposure to environmental concentrations of Phenanthrene (Phe) in zebrafish. We found that exposure to environmental concentrations of Phe caused obvious morphological changes, developmental retardation, apoptosis, and reduction of cell proliferation in the retina. Our results indicated that Phe could cause visual system developmental defects. Phe exposure up-regulated aryl hydrocarbon receptor (AhR) and microphthalmia-associated transcription factor (Mtif) expression, and down-regulated zinc finger E-box binding homeobox 1 (Zeb1) and paired box 6 (Pax6). Moreover, we demonstrated that AhR was a repressor of Zeb1. We propose that Phe's ocular toxicity is mediated by up-regulating AhR, which then down-regulates Zeb1, in turn inducing Mitf expression while inhibiting Pax6 expression

  8. Factor VII deficiency: Unveiling the cellular and molecular mechanisms underlying three model alterations of the enzyme catalytic domain.

    Chollet, Maria Eugenia; Andersen, Elisabeth; Skarpen, Ellen; Myklebust, Christiane F; Koehler, Christian; Morth, Jens Preben; Chuansumrit, Ampaiwan; Pinotti, Mirko; Bernardi, Francesco; Thiede, Bernd; Sandset, Per Morten; Skretting, Grethe

    2018-03-01

    Activated factor (F) VII is a vitamin K-dependent glycoprotein that initiates blood coagulation upon interaction with tissue factor. FVII deficiency is the most common of the rare congenital bleeding disorders. While the mutational pattern has been extensively characterized, the pathogenic molecular mechanisms of mutations, particularly at the intracellular level, have been poorly defined. Here, we aimed at elucidating the mechanisms underlying altered FVII biosynthesis in the presence of three mutation types in the catalytic domain: a missense change, a microdeletion and a frameshift/elongation, associated with severe or moderate to severe phenotypes. Using CHO-K1 cells transiently transfected with expression vectors containing the wild-type FVII cDNA (FVIIwt) or harboring the p.I289del, p.G420V or p.A354V-p.P464Hfs mutations, we found that the secretion of the FVII mutants was severely decreased compared to FVIIwt. The synthesis rate of the mutants was slower than the FVIIwt and delayed, and no degradation of the FVII mutants by proteasomes, lysosomes or cysteine proteases was observed. Confocal immunofluorescence microscopy studies showed that FVII variants were localized into the endoplasmic reticulum (ER) but were not detectable within the Golgi apparatus. These findings suggested that a common pathogenic mechanism, possibly a defective folding of the mutant proteins, was triggered by the FVII mutations. The misfolded state led to impaired trafficking of these proteins causing ER retention, which would explain the low to very low FVII plasma levels observed in patients carrying these mutations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cellular La protein shields nonsegmented negative-strand RNA viral leader RNA from RIG-I and enhances virus growth by diverse mechanisms.

    Bitko, Vira; Musiyenko, Alla; Bayfield, Mark A; Maraia, Richard J; Barik, Sailen

    2008-08-01

    The La antigen (SS-B) associates with a wide variety of cellular and viral RNAs to affect gene expression in multiple systems. We show that La is the major cellular protein found to be associated with the abundant 44-nucleotide viral leader RNA (leRNA) early after infection with respiratory syncytial virus (RSV), a nonsegmented negative-strand RNA virus. Consistent with this, La redistributes from the nucleus to the cytoplasm in RSV-infected cells. Upon RNA interference knockdown of La, leRNA is redirected to associate with the RNA-binding protein RIG-I, a known activator of interferon (IFN) gene expression, and this is accompanied by the early induction of IFN mRNA. These results suggest that La shields leRNA from RIG-I, abrogating the early viral activation of type I IFN. We mapped the leRNA binding function to RNA recognition motif 1 of La and showed that while wild-type La greatly enhanced RSV growth, a La mutant defective in RSV leRNA binding also did not support RSV growth. Comparative studies of RSV and Sendai virus and the use of IFN-negative Vero cells indicated that La supports the growth of nonsegmented negative-strand RNA viruses by both IFN suppression and a potentially novel IFN-independent mechanism.

  10. Inhibition of cAMP-Activated Intestinal Chloride Secretion by Diclofenac: Cellular Mechanism and Potential Application in Cholera

    Pongkorpsakol, Pawin; Pathomthongtaweechai, Nutthapoom; Srimanote, Potjanee; Soodvilai, Sunhapas; Chatsudthipong, Varanuj; Muanprasat, Chatchai

    2014-01-01

    Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84) cells with IC50 of ∼ 20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell...

  11. A novel embryological theory of autism causation involving endogenous biochemicals capable of initiating cellular gene transcription: a possible link between twelve autism risk factors and the autism 'epidemic'.

    King, Chiara R

    2011-05-01

    Human alpha-fetoprotein is a pregnancy-associated protein with an undetermined physiological role. As human alpha-fetoprotein binds retinoids and inhibits estrogen-dependent cancer cell proliferation, and because retinoic acid (a retinol metabolite) and estradiol (an estrogen) can both initiate cellular gene transcription, it is hypothesized here that alpha-fetoprotein functions during critical gestational periods to prevent retinoic acid and maternal estradiol from inappropriately stimulating gene expression in developing brain regions which are sensitive to these chemicals. Prenatal/maternal factors linked to increased autism risk include valproic acid, thalidomide, alcohol, rubella, cytomegalovirus, depression, schizophrenia, obsessive-compulsive disorder, autoimmune disease, stress, allergic reaction, and hypothyroidism. It will be shown how each of these risk factors may initiate expression of genes which are sensitive to retinoic acid and/or estradiol - whether by direct promotion or by reducing production of alpha-fetoprotein. It is thus hypothesized here that autism is not a genetic disorder, but is rather an epigenetic disruption in brain development caused by gestational exposure to chemicals and/or conditions which either inhibit alpha-fetoprotein production or directly promote retinoic acid-sensitive or estradiol-sensitive gene expression. This causation model leads to potential chemical explanations for autistic brain morphology, the distinct symptomatology of Asperger's syndrome, and the differences between high-functioning and low-functioning autism with regard to mental retardation, physical malformation, and sex ratio. It will be discussed how folic acid may cause autism under the retinoic acid/estradiol model, and the history of prenatal folic acid supplementation will be shown to coincide with the history of what is popularly known as the autism epidemic. It is thus hypothesized here that prenatal folic acid supplementation has contributed to the

  12. Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model

    Li, Xin; Li, Xingang; Xiao, Yao; Jia, Bin

    2016-06-01

    Real traffic is heterogeneous with car and truck. Due to mechanical restrictions, the car and the truck have different limited deceleration capabilities, which are important factors in safety driving. This paper extends the single lane safety driving (SD) model with limited deceleration capability to two-lane SD model, in which car-truck heterogeneous traffic is considered. A car has a larger limited deceleration capability while a heavy truck has a smaller limited deceleration capability as a result of loaded goods. Then the safety driving conditions are different as the types of the following and the leading vehicles vary. In order to eliminate the well-known plug in heterogeneous two-lane traffic, it is assumed that heavy truck has active deceleration behavior when the heavy truck perceives the forming plug. The lane-changing decisions are also determined by the safety driving conditions. The fundamental diagram, spatiotemporal diagram, and lane-changing frequency were investigated to show the effect of mechanical restriction on heterogeneous traffic flow. It was shown that there would be still three traffic phases in heterogeneous traffic condition; the active deceleration of the heavy truck could well eliminate the plug; the lane-changing frequency was low in synchronized flow; the flow and velocity would decrease as the proportion of heavy truck grows or the limited deceleration capability of heavy truck drops; and the flow could be improved with lane control measures.

  13. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms.

    Kloosterman, Wigard P; Tavakoli-Yaraki, Masoumeh; van Roosmalen, Markus J; van Binsbergen, Ellen; Renkens, Ivo; Duran, Karen; Ballarati, Lucia; Vergult, Sarah; Giardino, Daniela; Hansson, Kerstin; Ruivenkamp, Claudia A L; Jager, Myrthe; van Haeringen, Arie; Ippel, Elly F; Haaf, Thomas; Passarge, Eberhard; Hochstenbach, Ron; Menten, Björn; Larizza, Lidia; Guryev, Victor; Poot, Martin; Cuppen, Edwin

    2012-06-28

    Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs) on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system

    Berrendero, Fernando; Robledo, Patricia; Trigo, José Manuel; Martín-García, Elena; Maldonado, Rafael

    2010-01-01

    Nicotine is the primary component of tobacco that maintains the smoking habit and develops addiction. The adaptive changes of nicotinic acetylcholine receptors produced by repeated exposure to nicotine play a crucial role in the establishment of dependence. However, other neurochemical systems also participate in the addictive effects of nicotine including glutamate, cannabinoids, GABA and opioids. This review will cover the involvement of these neurotransmitters in nicotine addictive properties, with a special emphasis on the endogenous opioid system. Thus, endogenous enkephalins and beta-endorphins acting on mu-opioid receptors are involved in nicotine rewarding effects, whereas opioid peptides derived from prodynorphin participate in nicotine aversive responses. An upregulation of mu-opioid receptors has been reported after chronic nicotine treatment that could counteract the development of nicotine tolerance, whereas the downregulation induced on kappa-opioid receptors seems to facilitate nicotine tolerance. Endogenous enkephalins acting on mu-opioid receptors also play a role in the development of physical dependence to nicotine. In agreement with these actions of the endogenous opioid system, the opioid antagonist naltrexone has shown to be effective for smoking cessation in certain subpopulations of smokers. PMID:20170672

  15. A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein

    Ekberg, Kira; Palmgren, Michael; Veierskov, Bjarke

    2010-01-01

    The activity of many P-type ATPases is found to be regulated by interacting proteins or autoinhibitory elements located in N- or C-terminal extensions. An extended C terminus of fungal and plant P-type plasma membrane H+-ATPases has long been recognized to be part of a regulatory apparatus....... This identifies the first group of P-type ATPases for which both ends of the polypeptide chain constitute regulatory domains, which together contribute to the autoinhibitory apparatus. This suggests an intricate mechanism of cis-regulation with both termini of the protein communicating to obtain the necessary...

  16. Comparison of the cellular transport mechanism of cationic, star-shaped polymers and liposomes in HaCat cells

    Luo H

    2017-02-01

    Full Text Available Heng-Cong Luo,1,2,* Na Li,1,* Li Yan,1 Kai-jin Mai,3 Kan Sun,1 Wei Wang,1 Guo-Juan Lao,1 Chuan Yang,1 Li-Ming Zhang,3 Meng Ren1 1Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen University, Guangzhou, People’s Republic of China; 2Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China; 3School of Materials Science and Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Several biological barriers must be overcome to achieve efficient nonviral gene delivery. These barriers include target cell uptake, lysosomal degradation, and dissociation from the carrier. In this study, we compared the differences in the uptake mechanism of cationic, star-shaped polymer/MMP-9siRNA complexes (β-CD-(D37/MMP-9siRNA complexes: polyplexes and commercial liposome/MMP-9siRNA complexes (Lipofectamine® 2000/MMP-9siRNA complexes: liposomes. The uptake pathway and transfection efficiency of the polyplexes and liposomes were determined by fluorescence microscopy, flow cytometry, and reverse transcriptase-polymerase chain reaction. The occurrence of intracellular processing was assessed by confocal laser scanning microscopy. Endosomal acidification inhibitors were used to explore the endosomal escape mechanisms of the polyplexes and lysosomes. We concluded that the polyplexes were internalized by non-caveolae- and non-clathrin-mediated pathways, with no lysosomal trafficking, thereby inducing successful transfection, while the majority of liposomes were internalized by clathrin-dependent endocytosis (CDE, caveolae-mediated endocytosis, and macropinocytosis, and only CDE induced successful transfection. Liposomes might escape more quickly than polyplexes, and

  17. A study of the mechanism of action of pyridoxal isonicotinoyl hydrazone at the cellular level using reticulocytes loaded with non-heme 59Fe

    Huang, A.R.; Ponka, P.; McGill Univ., Montreal, Quebec; Jewish General Hospital, Montreal, Quebec

    1983-01-01

    Pyridoxal isonicotinoyl hydrazone (PIH) has recently been identified as a new iron chelating agent with a high degree of iron mobilizing activity in vitro and in vivo which makes this compound a candidate drug in the treatment of iron overload. This study was undertaken to elucidate the mechanism of action of the iron mobilizing activity of PIH at the cellular level. An in vitro system of rabbit reticulocytes with a high level of non-heme 59 Fe was used as a model of iron overload. The effects of various biochemical and physiological manoeuvers on the mobilization of 59 Fe by PIH from the cells were studied. The fate of [ 14 C]-PIH in the in vitro system was also studied. Studies were also carried out using a crude mitochondrial fraction. (orig./AJ)

  18. Mechanisms Involved in Secondary Cardiac Dysfunction in Animal Models of Trauma and Hemorrhagic Shock.

    Wilson, Nick M; Wall, Johanna; Naganathar, Veena; Brohi, Karim; De'Ath, Henry D

    2017-10-01

    Clinical evidence reveals the existence of a trauma-induced secondary cardiac injury (TISCI) that is associated with poor patient outcomes. The mechanisms leading to TISCI in injured patients are uncertain. Conversely, animal models of trauma hemorrhage have repeatedly demonstrated significant cardiac dysfunction following injury, and highlighted mechanisms through which this might occur. The aim of this review was to provide an overview of the animal studies describing TISCI and its pathophysiology.Basic science models of trauma show evidence of innate immune system activation via Toll-like receptors, the exact protagonists of which remain unclear. Shortly following trauma and hemorrhage, cardiomyocytes upregulate gene regulatory protein and inflammatory molecule expression including nuclear factor kappa beta, tumor necrosis factor alpha, and interleukin-6. This is associated with expression of membrane bound adhesion molecules and chemokines leading to marked myocardial leukocyte infiltration. This cell activation and infiltration is linked to a rise in enzymes that cause oxidative and nitrative stress and subsequent protein misfolding within cardiomyocytes. Such protein damage may lead to reduced contractility and myocyte apoptosis. Other molecules have been identified as cardioprotective following injury. These include p38 mitogen-activated protein kinases and heat shock proteins.The balance between increasing damaging mediators and a reduction in cardio-protective molecules appears to define myocardial function following trauma. Exogenous therapeutics have been trialled in rodents with promising abilities to favorably alter this balance, and subsequently lead to improved cardiac function.

  19. Intersections of pathways involving biotin and iron relative to therapeutic mechanisms for progressive multiple sclerosis.

    Heidker, Rebecca M; Emerson, Mitchell R; LeVine, Steven M

    2016-12-01

    While there are a variety of therapies for relapsing remitting multiple sclerosis (MS), there is a lack of treatments for progressive MS. An early study indicated that high dose biotin therapy has beneficial effects in approximately 12-15% of patients with progressive MS. The mechanisms behind the putative improvements seen with biotin therapy are not well understood, but have been postulated to include: 1) improving mitochondrial function which is impaired in MS, 2) increasing synthesis of lipids and cholesterol to facilitate remyelination, and 3) affecting gene expression. We suggest one reason that a greater percentage of patients with MS didn't respond to biotin therapy is the inaccessibility or lack of other nutrients, such as iron. In addition to biotin, iron (or heme) is necessary for energy production, biosynthesis of cholesterol and lipids, and for some protective mechanisms. Both biotin and iron are required for myelination during development, and by inference, remyelination. However, iron can also play a role in the pathology of MS. Increased deposition of iron can occur in some CNS structures possibly promoting oxidative damage while low iron levels can occur in other areas. Thus, the potential, detrimental effects of iron need to be considered together with the need for iron to support metabolic demands associated with repair and/or protective processes. We propose the optimal utilization of iron may be necessary to maximize the beneficial effects of biotin. This review will examine the interactions between biotin and iron in pathways that may have therapeutic or pathogenic implications for MS.

  20. Possible Mechanisms Involved in Attenuation of Lipopolysaccharide-Induced Memory Deficits by Methyl Jasmonate in Mice.

    Eduviere, Anthony Taghogho; Umukoro, Solomon; Adeoluwa, Olusegun A; Omogbiya, Itivere Adrian; Aluko, Oritoke Modupe

    2016-12-01

    This present study was carried out to investigate the likely mechanisms by which methyl jasmonate (MJ), 'an agent widely used in aromatherapy for neurological disorders, attenuates lipopolysaccharide (LPS)-induced memory deficits in mice. Mice were given intraperitoneal administration of LPS (250 µg/kg) alone or in combination with MJ (10-40 mg/kg), donepezil, DP (1 mg/kg), or vehicle for 7 successive days. Thereafter, memory was assessed using object recognition test (ORT). Acetylcholinesterase and myeloperoxidase activities were estimated in brain tissue homogenates. Brain levels of nitric oxide and markers of oxidative stress as well as histopathologic changes of the prefrontal cortex and cornu ammonis 1 (CA1) of the hippocampal region were also assessed. MJ (10-40 mg/kg) attenuated LPS-induced memory impairment in ORT. Moreover, the increased brain activities of acetylcholinesterase and myeloperoxidase enzymes were suppressed by MJ when compared with control (p memory deficits via mechanisms related to inhibition of acetylcholinesterase, myeloperoxidase, oxidative stress and neuronal degeneration.

  1. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    Fry, R.J.M.

    1984-01-01

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens

  2. Report on NCI symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. II. Cellular and animal models

    Fry, R.J.M.

    1984-01-01

    The point at which the common final pathway for induction of cancer by chemical carcinogens and ionizing radiation has not been identified. Although common molecular targets are suggested by recent findings about the role of oncogenes, the mechanism by which the deposition of radiation energy and the formation of adducts or other DNA lesions induced by chemicals affects the changes in the relevant targets may be quite different. The damage to DNA that plays no part in the transformation events, but that influences the stability of the genome, and therefore, the probability of subsequent changes that influence tumorigenesis may be more readily induced by some agents than others. Similarly, the degree of cytotoxic effects that disrupt tissue integrity and increase the probability of expression of initiated cells may be dependent on the type of carcinogen. Also, evidence was presented that repair of the initial lesions could be demonstrated after exposure to low-LET radiation but not after exposure to chemical carcinogens.

  3. Cellular function and adhesion mechanisms of human bone marrow mesenchymal stem cells on multi-walled carbon nanotubes.

    Kroustalli, Anthoula A; Kourkouli, Souzana N; Deligianni, Despina D

    2013-12-01

    Multiwalled carbon nanotubes (MWCNTs) are considered to be excellent reinforcements for biorelated applications, but, before being incorporated into biomedical devices, their biocompatibility need to be investigated thoroughly. We investigated the ability of films of pristine MWCNTs to influence human mesenchymal stem cells' proliferation, morphology, and differentiation into osteoblasts. Moreover, the selective integrin subunit expression and the adhesion mechanism to the substrate were evaluated on the basis of adherent cell number and adhesion strength, following the treatment of cells with blocking antibodies to a series of integrin subunits. Results indicated that MWCNTs accelerated cell differentiation to a higher extent than tissue culture plastic, even in the absence of additional biochemical inducing agents. The pre-treatment with anti-integrin antibodies decreased number of adherent cells and adhesion strength at 4-60%, depending on integrin subunit. These findings suggest that pristine MWCNTs represent a suitable reinforcement for bone tissue engineering scaffolds.

  4. Application of microscopy methods to the understanding of mechanisms involved in ilmenite reduction by hydrogen

    De Vries, M.; Grey, I.; Fitzgerald, J.

    2003-01-01

    Full text: Titania pigment is one of the major drivers of the mineral sands industry with production of over 4 million tpa in 2002 for paints, plastics, paper and ceramics applications. The main feedstock for titania pigment production is ilmenite, FeTiO 3 . It is used either directly or after it has been upgraded to a higher titania content. The major commercial upgrading processes are electro smelting (titania slag) or high temperature char reduction followed by iron removal (synthetic rutile SR). Future ilmenite upgrading processes are likely to use low temperature hydrogen reduction according to reaction, followed by aeration of the metallic iron and acid leaching to produce a high grade SR (Nicholson et al, 2000). The commercial application of such a process requires a detailed knowledge of the kinetics of reaction. FeTiO 3 + H 2 = Fe(m) + TiO 2 + H 2 O. The kinetics of ilmenite reduction has been studied at CSIRO Minerals using a specially designed thermogravimetric apparatus built around a Cahn pressurised symmetrical beam balance. The kinetics have been measured as a function of different operating parameters such as temperature, gas velocity and pressure. The parameters were set so as to minimise mass transport effects and increase chemical reaction control and to ensure the reduction kinetics are outside the gas starvation region. Small samples were used that had been sintered at close to melting point to form large grains with low unconnected porosity. High flow rates of reactant gas were also used. The application of a range of microscopy techniques to the reduced samples at various stages of reaction conversion has been critical to the development of an understanding of the reaction mechanisms. From analysis of TEM, IFESEM and optical microscopy results it appears that initially, chemical reaction is rate controlling at the surface and as the reaction proceeds topochemically inwards then diffusion mechanisms increase their control. Reaction proceeds

  5. Cellular regulation of the structure and function of aortic valves

    Ismail El-Hamamsy

    2010-01-01

    Full Text Available The aortic valve was long considered a passive structure that opens and closes in response to changes in transvalvular pressure. Recent evidence suggests that the aortic valve performs highly sophisticated functions as a result of its unique microscopic structure. These functions allow it to adapt to its hemodynamic and mechanical environment. Understanding the cellular and molecular mechanisms involved in normal valve physiology is essential to elucidate the mechanisms behind valve disease. We here review the structure and developmental biology of aortic valves; we examine the role of its cellular parts in regulating its function and describe potential pathophysiological and clinical implications.

  6. Some mechanisms involved in the radiosensitization of E. coli B/r by paracetamol

    Shenoy, M A; Gopalakrishna, K [Bhabha Atomic Research Centre, Bombay (India). Biology and Agriculture Div.

    1977-06-01

    Paracetamol, a widely-used analgesic and antipyretic drug, sensitized E.coli B/r to /sup 60/Co gamma rays under hypoxic conditions. Part of the sensitizing effect has been shown to be due to an electron adduct of the drug. Paracetamol inhibited both post-irradiation DNA and protein syntheses. The targets involved in the inhibition of post-irradiation DNA synthesis have been shown to be different in the presence of the sensitizer. Increased DNA degradation after irradiation was also observed when E.coli B/r were irradiated in the presence of the drug. The presence of paracetamol during hypoxic irradiation of E.coli B/r resulted in the enhancement of DNA single-strand scissions with no apparent effect on their rejoining.

  7. Some mechanisms involved in the radiosensitization of E.coli B/r by paracetamol

    Shenoy, M.A.; Gopalakrishna, K.

    1977-01-01

    Paracetamol, a widely-used analgesic and antipyretic drug, sensitized E.coli B/r to 60 Co gamma-rays under hypoxic conditions. Part of the sensitizing effect has been shown to be due to an electron adduct of the drug. Paracetamol inhibited both post-irradiation DNA and protein syntheses. The targets involved in the inhibition of post-irradiation DNA synthesis have been shown to be different in the presence of the sensitizer. Increased DNA degradation after irradiation was also observed when E.coli B/r were irradiated in the presence of the drug. The presence of paracetamol during hypoxic irradiation of E.coli B/r resulted in the enhancement of DNA single-strand scissions with no apparent effect on their rejoining. (author)

  8. Mechanisms of pH-Sensitivity and Cellular Internalization of PEOz-b-PLA Micelles with Varied Hydrophilic/Hydrophobic Ratios and Intracellular Trafficking Routes and Fate of the Copolymer.

    Wang, Dishi; Zhou, Yanxia; Li, Xinru; Qu, Xiaoyou; Deng, Yunqiang; Wang, Ziqi; He, Chuyu; Zou, Yang; Jin, Yiguang; Liu, Yan

    2017-03-01

    pH-responsive polymeric micelles have shown promise for the targeted and intracellular delivery of antitumor agents. The present study aimed to elucidate the possible mechanisms of pH-sensitivity and cellular internalization of PEOz-b-PLA micelles in detail, further unravel the effect of hydrophilic/hydrophobic ratio of the micelles on their cellular internalization, and examine the intracellular trafficking routes and fate of PEOz-b-PLA after internalization of the micelles. The results of variations in the size and Zeta potential of PEOz-b-PLA micelles and cross-sectional area of PEOz-b-PLA molecules with pH values suggested that electrostatic repulsion between PEOz chains resulting from ionization of the tertiary amide groups along PEOz chain at pH lower than its pK a was responsible for pH-sensitivity of PEOz-b-PLA micelles. Furthermore, the studies on internalization of PEOz-b-PLA micelles by MCF-7 cells revealed that the uptake of PEOz-b-PLA micelles was strongly influenced by their structural features, and showed that PEOz-b-PLA micelles with hydrophilic/hydrophobic ratio of 1.7-2.0 exhibited optimal cellular uptake. No evident alteration in cellular uptake of PEOz-b-PLA micelles was detected by flow cytometry upon the existence of EIPA and chlorpromazine. However, the intracellular uptake of the micelles in the presence of MβCD and genistein was effectively inhibited. Hence, the internalization of such micelles by MCF-7 cells appeared to proceed mainly through caveolae/lipid raft-mediated endocytosis without being influenced by their hydrophilic/hydrophobic ratio. Confocal micrographs revealed that late endosomes, mitochondria and endoplasmic reticulum were all involved in the intracellular trafficking of PEOz-b-PLA copolymers following their internalization via endocytosis, and then part of them was excreted from tumor cells to extracellular medium. These findings provided valuable information for developing desired PEOz-b-PLA micelles to improve their

  9. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the

  10. Potassium channel and NKCC cotransporter involvement in ocular refractive control mechanisms.

    Sheila G Crewther

    Full Text Available Myopia affects well over 30% of adult humans globally. However, the underlying physiological mechanism is little understood. This study tested the hypothesis that ocular growth and refractive compensation to optical defocus can be controlled by manipulation of potassium and chloride ion-driven transretinal fluid movements to the choroid. Chicks were raised with +/-10D or zero power optical defocus rendering the focal plane of the eye in front of, behind, or at the level of the retinal photoreceptors respectively. Intravitreal injections of barium chloride, a non-specific inhibitor of potassium channels in the retina and RPE or bumetanide, a selective inhibitor of the sodium-potassium-chloride cotransporter were made, targeting fluid control mechanisms. Comparison of refractive compensation to 5 mM Ba(2+ and 10(-5 M bumetanide compared with control saline injected eyes shows significant change for both positive and negative lens defocus for Ba(2+ but significant change only for negative lens defocus with bumetanide (Rx(SAL(-10D = -8.6 +/- .9 D; Rx(Ba2+(-10D = -2.9 +/- .9 D; Rx(Bum(-10D = -2.9 +/- .9 D; Rx(SAL(+10D = +8.2 +/- .9 D; Rx(Ba2+(+10D = +2.8 +/- 1.3 D; Rx(Bum(+10D = +8.0 +/- .7 D. Vitreous chamber depths showed a main effect for drug conditions with less depth change in response to defocus shown for Ba(2+ relative to Saline, while bumetanide injected eyes showed a trend to increased depth without a significant interaction with applied defocus. The results indicate that both K channels and the NKCC cotransporter play a role in refractive compensation with NKCC blockade showing far more specificity for negative, compared with positive, lens defocus. Probable sites of action relevant to refractive control include the apical retinal pigment epithelium membrane and the photoreceptor/ON bipolar synapse. The similarities between the biometric effects of NKCC inhibition and biometric reports of the blockade of the retinal ON response, suggest a

  11. The Effects Radiation on Cellular Components of the Immune

    Zubaidah-Alatas

    2001-01-01

    The immune system describes the body's ability to defend itself against various foreign intruders named as antigens by calling on an immune mechanism. Antigens penetration into body activate the body's immune system that may be humoral response, cellular response, or both. The immune response is primarily mediated by two cell types, lymphocyte and macrophage. This paper will discuss the cellular component of immune system and the radiation effects on various cells involved in system. Moreover, the effects of radiation on humoral and cellular responses and the relation among immunity, cancer and radiotherapy are also described. (author)

  12. Cellular and Molecular Basis of Cerebellar Development

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  13. Opioidergic mechanisms are not involved in the antihyperalgesic effects of carbamazepine and oxcarbazepine.

    Stepanovic-Petrovic, Radica M; Tomic, M A; Vuckovic, S M; Ugresic, N D; Prostran, M S; Boskovic, B

    2007-04-01

    The mechanisms of the analgesic action of carbamazepine and oxcarbazepine, in particular the role of opioid receptors, have not been established precisely. The systemic effects of naloxone, an opioid receptor antagonist, on the antihyperalgesic effects of carbamazepine and oxcarbazepine were examined in the model of inflammatory hyperalgesia induced by the intraplantar (i.pl.) administration of concanavaline A (Con A, 0.8 mg/paw) into the rat hind paw. Naloxone (3 mg/kg; i.p.) did not alter the antihyperalgesic effects of either carbamazepine or oxcarbazepine. These results indicate that the opioid system of pain modulation does not play a significant role in the antihyperalgesic effects of carbamazepine and oxcarbazepine.

  14. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system.

    Kibria, Golam; Hatakeyama, Hiroto; Harashima, Hideyoshi

    2014-01-01

    Multidrug resistance (MDR), the principal mechanism by which many cancers develop resistance to chemotherapy, is one of the major obstacles to the successful clinical treatment of various types of cancer. Several key regulators are responsible for mediating MDR, a process that renders chemotherapeutic drugs ineffective in the internal organelles of target cells. A nanoparticulate drug delivery system (DDS) is a potentially promising tool for circumventing such MDR, which can be achieved by targeting tumor cells themselves or tumor endothelial cells that support the survival of MDR cancer cells. The present article discusses key factors that are responsible for MDR in cancer cells, with a specific focus on the application of DDS to overcome MDR via the use of chemotherapy or macromolecules.

  15. Anticonvulsants Teratogenic Mechanism Involves Alteration of Bioelectrically-controlled Processes in the Embryo. A hypothesis

    Hernández-Díaz, Sonia; Levin, Michael

    2014-01-01

    Maternal use of anticonvulsants during the first trimester of pregnancy has been associated with an elevated risk of major congenital malformations in the offspring. Whether the increased risk is caused by the specific pharmacological mechanisms of certain anticonvulsants, the underlying epilepsy, or common genetic or environmental risk factors shared by epilepsy and malformations is controversial. We hypothesize that anticonvulsant therapies during pregnancy that attain more successful inhibition of neurotransmission might lead to both better seizure control in the mother and stronger alteration of bioelectrically-controlled processes in the embryo that result in structural malformations. If our theory were correct, development of pharmaceuticals that do not alter cell resting transmembrane voltage levels could result in safer drugs. PMID:24815983

  16. Intrauterine infection/inflammation during pregnancy and offspring brain damages: Possible mechanisms involved

    Golan Hava

    2004-04-01

    Full Text Available Abstract Intrauterine infection is considered as one of the major maternal insults during pregnancy. Intrauterine infection during pregnancy could lead to brain damage of the developmental fetus and offspring. Effects on the fetal, newborn, and adult central nervous system (CNS may include signs of neurological problems, developmental abnormalities and delays, and intellectual deficits. However, the mechanisms or pathophysiology that leads to permanent brain damage during development are complex and not fully understood. This damage may affect morphogenic and behavioral phenotypes of the developed offspring, and that mice brain damage could be mediated through a final common pathway, which includes over-stimulation of excitatory amino acid receptor, over-production of vascularization/angiogenesis, pro-inflammatory cytokines, neurotrophic factors and apoptotic-inducing factors.

  17. Mechanisms involved in growth inhibition induced by clofibrate in hepatoma cells

    Muzio, Giuliana; Maggiora, Marina; Trombetta, Antonella; Martinasso, Germana; Reffo, Patrizia; Colombatto, Sebastiano; Canuto, Rosa Angela

    2003-01-01

    Low concentrations of some peroxisome proliferators have been found to decrease apoptosis in rat liver cells, whereas higher but pharmacological concentrations have been found to inhibit cell proliferation or to induce apoptosis in human and rat hepatoma cells. The highly deviated JM2 rat hepatoma cell line was used to examine the mechanisms underlying the inhibitory effect on cell proliferation. Clofibrate chiefly inhibited cell proliferation in these cells. Parallel to the decrease in cell proliferation there was an increase of peroxisome proliferator activated receptor (PPAR) gamma and of protein phosphatase 2A, whose importance was confirmed, respectively, by using antisense oliginucleotides (AS-ODN) or okadaic acid. The increase of protein phosphatase 2A induced by PPARgamma caused a decrease of MAPK, an intracellular signaling transduction pathway, as shown by evaluation of Erk1,2 and c-myc. In light of these results, clofibrate, like conventional synthetic ligands of PPARgamma, may be regarded as a possible prototype anti-tumour drug

  18. Mechanisms Involved in Thromboxane A2-induced Vasoconstriction of Rat Intracavernous Small Penile Arteries

    Grann, Martin; Comerma Steffensen, Simon Gabriel; Arcanjo, Daniel Dias Rufino

    2015-01-01

    relaxation in rat mesenteric arteries. Our findings suggest that U46619 contraction depends on Ca2+ influx through L-type and TRP channels, and ROCKdependent mechanisms in penile arteries. Inhibition of the ROCK pathway is a potential approach for the treatment of erectile dysfunction associated......Diabetes is associated with erectile dysfunction and with hypercontractility in erectile tissue and this is in part ascribed to increased formation of thromboxane. Rho kinase (ROCK) is a key regulator of calcium sensitization and contraction in vascular smooth muscle. This study investigated...... the role of calcium and ROCK in contraction evoked by activation of the thromboxane receptors. Rat intracavernous penile arteries were mounted for isometric tension and intracellular calcium ([Ca2+]i) recording and corpus cavernosum for measurements of MYPT1 phosphorylation. In penile arteries, U46619...

  19. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage.

    Gaut, Carrie; Sugaya, Kiminobu

    2015-01-01

    Articular cartilage defects often progress to osteoarthritis, which negatively impacts quality of life for millions of people worldwide and leads to high healthcare expenditures. Tissue engineering approaches to osteoarthritis have concentrated on proliferation and differentiation of stem cells by activation and suppression of signaling pathways, and by using a variety of scaffolding techniques. Recent studies indicate a key role of environmental factors in the differentiation of mesenchymal stem cells to mature cartilage-producing chondrocytes. Therapeutic approaches that consider environmental regulation could optimize chondrogenesis protocols for regeneration of articular cartilage. This review focuses on the effect of scaffold structure and composition, mechanical stress and hypoxia in modulating mesenchymal stem cell fate and the current use of these environmental factors in tissue engineering research.

  20. Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders

    Alline C. Campos

    2017-05-01

    Full Text Available Beneficial effects of cannabidiol (CBD have been described for a wide range of psychiatric disorders, including anxiety, psychosis, and depression. The mechanisms responsible for these effects, however, are still poorly understood. Similar to clinical antidepressant or atypical antipsychotic drugs, recent findings clearly indicate that CBD, either acutely or repeatedly administered, induces plastic changes. For example, CBD attenuates the decrease in hippocampal neurogenesis and dendrite spines density induced by chronic stress and prevents microglia activation and the decrease in the number of parvalbumin-positive GABA neurons in a pharmacological model of schizophrenia. More recently, it was found that CBD modulates cell fate regulatory pathways such as autophagy and others critical pathways for neuronal survival in neurodegenerative experimental models, suggesting the potential benefit of CBD treatment for psychiatric/cognitive symptoms associated with neurodegeneration. These changes and their possible association with CBD beneficial effects in psychiatric disorders are reviewed here.

  1. Molecular mechanisms involved in adaptive responses to radiation, UV light, and heat

    Takahashi, Akihisa; Ohnishi, Takeo

    2009-01-01

    Viable organisms recognize and respond to environmental changes or stresses. When these environmental changes and their responses by organisms are extreme, they can limit viability. However, organisms can adapt to these different stresses by utilizing different possible responses via signal transduction pathways when the stress is not lethal. In particular, prior mild stresses can provide some aid to prepare organisms for subsequent more severe stresses. These adjustments or adaptations for future stresses have been called adaptive responses. These responses are present in bacteria, plants and animals. The following review covers recent research which can help describe or postulate possible mechanisms which may be active in producing adaptive responses to radiation, ultraviolet light, and heat. (author)