de Wit, Bernard; Reys, Valentin
2017-12-01
Supergravity with eight supercharges in a four-dimensional Euclidean space is constructed at the full non-linear level by performing an off-shell time-like reduction of five-dimensional supergravity. The resulting four-dimensional theory is realized off-shell with the Weyl, vector and tensor supermultiplets and a corresponding multiplet calculus. Hypermultiplets are included as well, but they are themselves only realized with on-shell supersymmetry. We also briefly discuss the non-linear supermultiplet. The off-shell reduction leads to a full understanding of the Euclidean theory. A complete multiplet calculus is presented along the lines of the Minkowskian theory. Unlike in Minkowski space, chiral and anti-chiral multiplets are real and supersymmetric actions are generally unbounded from below. Precisely as in the Minkowski case, where one has different formulations of Poincaré supergravity upon introducing different compensating supermultiplets, one can also obtain different versions of Euclidean supergravity.
Gómez, Daviel; Hernández, L Ázaro; Yabor, Lourdes; Beemster, Gerrit T S; Tebbe, Christoph C; Papenbrock, Jutta; Lorenzo, José Carlos
2018-03-15
Plant scientists usually record several indicators in their abiotic factor experiments. The common statistical management involves univariate analyses. Such analyses generally create a split picture of the effects of experimental treatments since each indicator is addressed independently. The Euclidean distance combined with the information of the control treatment could have potential as an integrating indicator. The Euclidean distance has demonstrated its usefulness in many scientific fields but, as far as we know, it has not yet been employed for plant experimental analyses. To exemplify the use of the Euclidean distance in this field, we performed an experiment focused on the effects of mannitol on sugarcane micropropagation in temporary immersion bioreactors. Five mannitol concentrations were compared: 0, 50, 100, 150 and 200 mM. As dependent variables we recorded shoot multiplication rate, fresh weight, and levels of aldehydes, chlorophylls, carotenoids and phenolics. The statistical protocol which we then carried out integrated all dependent variables to easily identify the mannitol concentration that produced the most remarkable integral effect. Results provided by the Euclidean distance demonstrate a gradually increasing distance from the control in function of increasing mannitol concentrations. 200 mM mannitol caused the most significant alteration of sugarcane biochemistry and physiology under the experimental conditions described here. This treatment showed the longest statistically significant Euclidean distance to the control treatment (2.38). In contrast, 50 and 100 mM mannitol showed the lowest Euclidean distances (0.61 and 0.84, respectively) and thus poor integrated effects of mannitol. The analysis shown here indicates that the use of the Euclidean distance can contribute to establishing a more integrated evaluation of the contrasting mannitol treatments.
Repaglinide at a cellular level
Krogsgaard Thomsen, M; Bokvist, K; Høy, M
2002-01-01
To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in ra...
Spacetime and Euclidean geometry
Brill, Dieter; Jacobson, Ted
2006-04-01
Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the spacetime Pythagoras theorem.
Cellular-based sea level gauge
Desai, R.G.P.; Joseph, A.
treaties with greater transparency. Among the various communication technologies used for real-time transmission of sea-level data are the wired telephone connection, VHF/UHF transceivers, satellite transmit terminals and cellular connectivity. Wired... telephone connections are severely susceptible to loss of connectivity during natural disasters such as storm surges, primarily because of telephone line breakage. Communication via VHF/UHF transceivers is limited by line-of-sight distance between...
Trudeau, Richard J
1986-01-01
How unique and definitive is Euclidean geometry in describing the "real" space in which we live? Richard Trudeau confronts the fundamental question of truth and its representation through mathematical models in The Non-Euclidean Revolution. First, the author analyzes geometry in its historical and philosophical setting; second, he examines a revolution every bit as significant as the Copernican revolution in astronomy and the Darwinian revolution in biology; third, on the most speculative level, he questions the possibility of absolute knowledge of the world. Trudeau writes in a lively, entertaining, and highly accessible style. His book provides one of the most stimulating and personal presentations of a struggle with the nature of truth in mathematics and the physical world. A portion of the book won the Pólya Prize, a distinguished award from the Mathematical Association of America. "Trudeau meets the challenge of reaching a broad audience in clever ways...(The book) is a good addition to our literature o...
Draisma, J.; Horobet, E.; Ottaviani, G.; Sturmfels, B.; Thomas, R.R.; Zhi, L.; Watt, M.
2014-01-01
The nearest point map of a real algebraic variety with respect to Euclidean distance is an algebraic function. For instance, for varieties of low rank matrices, the Eckart-Young Theorem states that this map is given by the singular value decomposition. This article develops a theory of such nearest
Coxeter, HSM
1965-01-01
This textbook introduces non-Euclidean geometry, and the third edition adds a new chapter, including a description of the two families of 'mid-lines' between two given lines and an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, and other new material.
Kulczycki, Stefan
2008-01-01
This accessible approach features two varieties of proofs: stereometric and planimetric, as well as elementary proofs that employ only the simplest properties of the plane. A short history of geometry precedes a systematic exposition of the principles of non-Euclidean geometry.Starting with fundamental assumptions, the author examines the theorems of Hjelmslev, mapping a plane into a circle, the angle of parallelism and area of a polygon, regular polygons, straight lines and planes in space, and the horosphere. Further development of the theory covers hyperbolic functions, the geometry of suff
Hoffman, Kenneth
2007-01-01
Developed for an introductory course in mathematical analysis at MIT, this text focuses on concepts, principles, and methods. Its introductions to real and complex analysis are closely formulated, and they constitute a natural introduction to complex function theory.Starting with an overview of the real number system, the text presents results for subsets and functions related to Euclidean space of n dimensions. It offers a rigorous review of the fundamentals of calculus, emphasizing power series expansions and introducing the theory of complex-analytic functions. Subsequent chapters cover seq
Non-euclidean simplex optimization
Silver, G.L.
1977-01-01
Geometric optimization techniques useful for studying chemical equilibrium traditionally rely upon principles of euclidean geometry, but such algorithms may also be based upon principles of a non-euclidean geometry. The sequential simplex method is adapted to the hyperbolic plane, and application of optimization to problems such as the potentiometric titration of plutonium is suggested
Micrononcasual Euclidean wave functions
Enatsu, H.; Takenaka, A.; Okazaki, M.
1978-01-01
A theory which describes the internal attributes of hadrons in terms of space-time wave functions is presented. In order to develop the theory on the basis of a rather realistic model, covariant wave equations are first derived for the deuteron, in which the co-ordinates of the centre of mass of two nucleons can be defined unambiguously. Then the micro-noncasual behaviour of virtual mesons mediating between the two nucleons is expressed by means of wave functions depending only on the relative Euclidean co-ordinates with respect to the centre of mass of the two nucleons; the wave functions are assumed to obey the 0 4 and SU 2 x SU 2 groups. The properties of the wave functions under space inversion, time reversal and particle-antiparticle conjugation are investigated. It is found that the internal attributes of the mesons, such as spin, isospin, strangeness, intrinsic parity, charge parity and G-parity are explained consistently. The theory is applicable also to the case of baryons
Level Set Structure of an Integrable Cellular Automaton
Taichiro Takagi
2010-03-01
Full Text Available Based on a group theoretical setting a sort of discrete dynamical system is constructed and applied to a combinatorial dynamical system defined on the set of certain Bethe ansatz related objects known as the rigged configurations. This system is then used to study a one-dimensional periodic cellular automaton related to discrete Toda lattice. It is shown for the first time that the level set of this cellular automaton is decomposed into connected components and every such component is a torus.
Fast Exact Euclidean Distance (FEED) Transformation
Schouten, Theo; Kittler, J.; van den Broek, Egon; Petrou, M.; Nixon, M.
2004-01-01
Fast Exact Euclidean Distance (FEED) transformation is introduced, starting from the inverse of the distance transformation. The prohibitive computational cost of a naive implementation of traditional Euclidean Distance Transformation, is tackled by three operations: restriction of both the number
Ideas of space. Euclidean, non-Euclidean and relativistic
Gray, J
1979-01-01
An historical and chronological account of mathematics is presented in which familiarity with simple equations and elements of trigonometry is needed but no specialist knowledge is assumed although difficult problems are discussed. By discussion of the difficulties and confusions it is hoped to understand mathematics as a dynamic activity. Beginning with early Greek mathematics, the Eastern legacy and the transition to deductive and geometric thinking the problem of parallels is then encountered and discussed. The second part of the book takes the story from Wallis, Saccheri and Lambert through to its resolution by Gauss, Lobachevskii, Bolyai, Riemann and Bettrami. The background of the 19th century theory of surfaces is given. The third part gives an account of Einstein's theories based on what has gone before, moving from a Newtonian-Euclidean picture to an Einsteinian-nonEuclidean one. A brief account of gravitation, the nature of space and black holes concludes the book.
Euclidean geometry and its subgeometries
Specht, Edward John; Calkins, Keith G; Rhoads, Donald H
2015-01-01
In this monograph, the authors present a modern development of Euclidean geometry from independent axioms, using up-to-date language and providing detailed proofs. The axioms for incidence, betweenness, and plane separation are close to those of Hilbert. This is the only axiomatic treatment of Euclidean geometry that uses axioms not involving metric notions and that explores congruence and isometries by means of reflection mappings. The authors present thirteen axioms in sequence, proving as many theorems as possible at each stage and, in the process, building up subgeometries, most notably the Pasch and neutral geometries. Standard topics such as the congruence theorems for triangles, embedding the real numbers in a line, and coordinatization of the plane are included, as well as theorems of Pythagoras, Desargues, Pappas, Menelaus, and Ceva. The final chapter covers consistency and independence of axioms, as well as independence of definition properties. There are over 300 exercises; solutions to many of the...
Variational submanifolds of Euclidean spaces
Krupka, D.; Urban, Z.; Volná, J.
2018-03-01
Systems of ordinary differential equations (or dynamical forms in Lagrangian mechanics), induced by embeddings of smooth fibered manifolds over one-dimensional basis, are considered in the class of variational equations. For a given non-variational system, conditions assuring variationality (the Helmholtz conditions) of the induced system with respect to a submanifold of a Euclidean space are studied, and the problem of existence of these "variational submanifolds" is formulated in general and solved for second-order systems. The variational sequence theory on sheaves of differential forms is employed as a main tool for the analysis of local and global aspects (variationality and variational triviality). The theory is illustrated by examples of holonomic constraints (submanifolds of a configuration Euclidean space) which are variational submanifolds in geometry and mechanics.
Introduction to non-Euclidean geometry
Wolfe, Harold E
2012-01-01
One of the first college-level texts for elementary courses in non-Euclidean geometry, this concise, readable volume is geared toward students familiar with calculus. A full treatment of the historical background explores the centuries-long efforts to prove Euclid's parallel postulate and their triumphant conclusion. Numerous original exercises form an integral part of the book.Topics include hyperbolic plane geometry and hyperbolic plane trigonometry, applications of calculus to the solutions of some problems in hyperbolic geometry, elliptic plane geometry and trigonometry, and the consistenc
Random walks in Euclidean space
Varjú, Péter Pál
2012-01-01
Consider a sequence of independent random isometries of Euclidean space with a previously fixed probability law. Apply these isometries successively to the origin and consider the sequence of random points that we obtain this way. We prove a local limit theorem under a suitable moment condition and a necessary non-degeneracy condition. Under stronger hypothesis, we prove a limit theorem on a wide range of scales: between e^(-cl^(1/4)) and l^(1/2), where l is the number of steps.
Phylogenetic trees and Euclidean embeddings.
Layer, Mark; Rhodes, John A
2017-01-01
It was recently observed by de Vienne et al. (Syst Biol 60(6):826-832, 2011) that a simple square root transformation of distances between taxa on a phylogenetic tree allowed for an embedding of the taxa into Euclidean space. While the justification for this was based on a diffusion model of continuous character evolution along the tree, here we give a direct and elementary explanation for it that provides substantial additional insight. We use this embedding to reinterpret the differences between the NJ and BIONJ tree building algorithms, providing one illustration of how this embedding reflects tree structures in data.
Mapping organism expression levels at cellular resolution in developing Drosophila
Knowles, David W.; Keranen, Soile; Biggin, Mark D.; Sudar, Damir
2002-05-01
The development of an animal embryo is orchestrated by a network of genetically determined, temporal and spatial gene expression patterns that determine the animals final form. To understand such networks, we are developing novel quantitative optical imaging techniques to map gene expression levels at cellular and sub-cellular resolution within pregastrula Drosophila. Embryos at different stages of development are labeled for total DNA and specific gene products using different fluorophors and imaged in 3D with confocal microscopy. Innovative steps have been made which allow the DNA-image to be automatically segmented to produce a morphological mask of the individual nuclear boundaries. For each stage of development an average morphology is chosen to which images from different embryo are compared. The morphological mask is then used to quantify gene-product on a per nuclei basis. What results is an atlas of the relative amount of the specific gene product expressed within the nucleus of every cell in the embryo at the various stages of development. We are creating a quantitative database of transcription factor and target gene expression patterns in wild-type and factor mutant embryos with single cell resolution. Our goal is to uncover the rules determining how patterns of gene expression are generated.
Noncommutative products of Euclidean spaces
Dubois-Violette, Michel; Landi, Giovanni
2018-05-01
We present natural families of coordinate algebras on noncommutative products of Euclidean spaces R^{N_1} × _R R^{N_2} . These coordinate algebras are quadratic ones associated with an R -matrix which is involutive and satisfies the Yang-Baxter equations. As a consequence, they enjoy a list of nice properties, being regular of finite global dimension. Notably, we have eight-dimensional noncommutative euclidean spaces R4 × _R R4 . Among these, particularly well behaved ones have deformation parameter u \\in S^2 . Quotients include seven spheres S7_u as well as noncommutative quaternionic tori TH_u = S^3 × _u S^3 . There is invariance for an action of {{SU}}(2) × {{SU}}(2) on the torus TH_u in parallel with the action of U(1) × U(1) on a `complex' noncommutative torus T^2_θ which allows one to construct quaternionic toric noncommutative manifolds. Additional classes of solutions are disjoint from the classical case.
Cellular chromophores and signaling in low level light therapy
Hamblin, Michael R.; Demidova-Rice, Tatiana N.
2007-02-01
The use of low levels of visible or near infrared light (LLLT) for reducing pain, inflammation and edema, promoting healing of wounds, deeper tissues and nerves, and preventing tissue damage by reducing cellular apoptosis has been known for almost forty years since the invention of lasers. Originally thought to be a peculiar property of laser light (soft or cold lasers), the subject has now broadened to include photobiomodulation and photobiostimulation using non-coherent light. Despite many reports of positive findings from experiments conducted in vitro, in animal models and in randomized controlled clinical trials, LLLT remains controversial. This likely is due to two main reasons; firstly the biochemical mechanisms underlying the positive effects are incompletely understood, and secondly the complexity of rationally choosing amongst a large number of illumination parameters such as wavelength, fluence, power density, pulse structure and treatment timing has led to the publication of a number of negative studies as well as many positive ones. In recent years major advances have been made in understanding the mechanisms that operate at the cellular and tissue levels during LLLT. Mitochondria are thought to be the main site for the initial effects of light and specifically cytochrome c oxidase that has absorption peaks in the red and near infrared regions of the electromagnetic spectrum matches the action spectra of LLLT effects. The discovery that cells employ nitric oxide (NO) synthesized in the mitochondria by neuronal nitric oxide synthase, to regulate respiration by competitive binding to the oxygen binding of cytochrome c oxidase, now suggests how LLLT can affect cell metabolism. If LLLT photodissociates inhibitory NO from cytochrome c oxidase, this would explain increased ATP production, modulation of reactive oxygen species, reduction and prevention of apoptosis, stimulation of angiogenesis, increase of blood flow and induction of transcription factors. In
Euclidean distance degrees of real algebraic groups
Baaijens, J.A.; Draisma, J.
2015-01-01
We study the problem of finding, in a real algebraic matrix group, the matrix closest to a given data matrix. We do so from the algebro-geometric perspective of Euclidean distance degrees. We recover several classical results; and among the new results that we prove is a formula for the Euclidean
Euclidean distance degrees of real algebraic groups
Baaijens, J.A.; Draisma, J.
2014-01-01
We study the problem of finding, in a real algebraic matrix group, the matrix closest to a given data matrix. We do so from the algebro-geometric perspective of Euclidean distance degrees. We recover several classical results; and among the new results that we prove is a formula for the Euclidean
Smolders, R; Bervoets, L; De Coen, W; Blust, R
2004-05-01
Organisms exposed to suboptimal environments incur a cost of dealing with stress in terms of metabolic resources. The total amount of energy available for maintenance, growth and reproduction, based on the biochemical analysis of the energy budget, may provide a sensitive measure of stress in an organism. While the concept is clear, linking cellular or biochemical responses to the individual and population or community level remains difficult. The aim of this study was to validate, under field conditions, using cellular energy budgets [i.e. changes in glycogen-, lipid- and protein-content and mitochondrial electron transport system (ETS)] as an ecologically relevant measurement of stress by comparing these responses to physiological and organismal endpoints. Therefore, a 28-day in situ bioassay with zebra mussels (Dreissena polymorpha) was performed in an effluent-dominated stream. Five locations were selected along the pollution gradient and compared with a nearby (reference) site. Cellular Energy Allocation (CEA) served as a biomarker of cellular energetics, while Scope for Growth (SFG) indicated effects on a physiological level and Tissue Condition Index and wet tissue weight/dry tissue weight ratio were used as endpoints of organismal effects. Results indicated that energy budgets at a cellular level of biological organization provided the fastest and most sensitive response and energy budgets are a relevant currency to extrapolate cellular effects to higher levels of biological organization within the exposed mussels.
Smolders, R.; Bervoets, L.; Coen, W. de; Blust, R.
2004-01-01
Organisms exposed to suboptimal environments incur a cost of dealing with stress in terms of metabolic resources. The total amount of energy available for maintenance, growth and reproduction, based on the biochemical analysis of the energy budget, may provide a sensitive measure of stress in an organism. While the concept is clear, linking cellular or biochemical responses to the individual and population or community level remains difficult. The aim of this study was to validate, under field conditions, using cellular energy budgets [i.e. changes in glycogen-, lipid- and protein-content and mitochondrial electron transport system (ETS)] as an ecologically relevant measurement of stress by comparing these responses to physiological and organismal endpoints. Therefore, a 28-day in situ bioassay with zebra mussels (Dreissena polymorpha) was performed in an effluent-dominated stream. Five locations were selected along the pollution gradient and compared with a nearby (reference) site. Cellular Energy Allocation (CEA) served as a biomarker of cellular energetics, while Scope for Growth (SFG) indicated effects on a physiological level and Tissue Condition Index and wet tissue weight/dry tissue weight ratio were used as endpoints of organismal effects. Results indicated that energy budgets at a cellular level of biological organization provided the fastest and most sensitive response and energy budgets are a relevant currency to extrapolate cellular effects to higher levels of biological organization within the exposed mussels. - Exposure of zebra mussels along a pollution gradient has adverse effects on the cellular energy allocation, and results can be linked with higher levels of biological organization
Smolders, R.; Bervoets, L.; Coen, W. de; Blust, R
2004-05-01
Organisms exposed to suboptimal environments incur a cost of dealing with stress in terms of metabolic resources. The total amount of energy available for maintenance, growth and reproduction, based on the biochemical analysis of the energy budget, may provide a sensitive measure of stress in an organism. While the concept is clear, linking cellular or biochemical responses to the individual and population or community level remains difficult. The aim of this study was to validate, under field conditions, using cellular energy budgets [i.e. changes in glycogen-, lipid- and protein-content and mitochondrial electron transport system (ETS)] as an ecologically relevant measurement of stress by comparing these responses to physiological and organismal endpoints. Therefore, a 28-day in situ bioassay with zebra mussels (Dreissena polymorpha) was performed in an effluent-dominated stream. Five locations were selected along the pollution gradient and compared with a nearby (reference) site. Cellular Energy Allocation (CEA) served as a biomarker of cellular energetics, while Scope for Growth (SFG) indicated effects on a physiological level and Tissue Condition Index and wet tissue weight/dry tissue weight ratio were used as endpoints of organismal effects. Results indicated that energy budgets at a cellular level of biological organization provided the fastest and most sensitive response and energy budgets are a relevant currency to extrapolate cellular effects to higher levels of biological organization within the exposed mussels. - Exposure of zebra mussels along a pollution gradient has adverse effects on the cellular energy allocation, and results can be linked with higher levels of biological organization.
Euclidean supersymmetry, twisting and topological sigma models
Hull, C.M.; Lindstroem, U.; Santos, L. Melo dos; Zabzine, M.; Unge, R. von
2008-01-01
We discuss two dimensional N-extended supersymmetry in Euclidean signature and its R-symmetry. For N = 2, the R-symmetry is SO(2) x SO(1, 1), so that only an A-twist is possible. To formulate a B-twist, or to construct Euclidean N = 2 models with H-flux so that the target geometry is generalised Kahler, it is necessary to work with a complexification of the sigma models. These issues are related to the obstructions to the existence of non-trivial twisted chiral superfields in Euclidean superspace.
Local algebras in Euclidean quantum field theory
Guerra, Francesco.
1975-06-01
The general structure of the local observable algebras of Euclidean quantum field theory is described, considering the very simple examples of the free scalar field, the vector meson field, and the electromagnetic field. The role of Markov properties, and the relations between Euclidean theory and Hamiltonian theory in Minkowski space-time are especially emphasized. No conflict appears between covariance (in the Euclidean sense) and locality (in the Markov sense) on one hand and positive definiteness of the metric on the other hand [fr
Learning Euclidean Embeddings for Indexing and Classification
Athitsos, Vassilis; Alon, Joni; Sclaroff, Stan; Kollios, George
2004-01-01
BoostMap is a recently proposed method for efficient approximate nearest neighbor retrieval in arbitrary non-Euclidean spaces with computationally expensive and possibly non-metric distance measures...
The elements of non-Euclidean geometry
Sommerville, D MY
2012-01-01
Renowned for its lucid yet meticulous exposition, this classic allows students to follow the development of non-Euclidean geometry from a fundamental analysis of the concept of parallelism to more advanced topics. 1914 edition. Includes 133 figures.
Scaling limits of Euclidean quantum fields
Enss, V.
1981-01-01
The author studies the long-distance and short-distance behaviour of generalized random processes which arise in Euclidean Boson field theories. Among them are Wick-polynomials of free fields and P(PHI) 2 -models. (Auth.)
Axioms for Euclidean Green's functions. Pt. 2
Osterwalder, K.; Schrader, R.
1975-01-01
We give new (necessary and) sufficient conditions for Euclidean Green's functions to have analytic continuations to a relativistic field theory. These results extend and correct a previous paper. (orig.) [de
Constructive curves in non-Euclidean planes
Horváth, Ákos G.
2016-01-01
In this paper we overview the theory of conics and roulettes in four non-Euclidean planes. We collect the literature about these classical concepts, from the eighteenth century to the present, including papers available only on arXiv. The comparison of the four non-Euclidean planes, in terms of the known results on conics and roulettes, reflects only the very subjective view of the author.
Classical geometry Euclidean, transformational, inversive, and projective
Leonard, I E; Liu, A C F; Tokarsky, G W
2014-01-01
Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which p
Euclidean scalar field theory in the bilocal approximation
Nagy, S.; Polonyi, J.; Steib, I.
2018-04-01
The blocking step of the renormalization group method is usually carried out by restricting it to fluctuations and to local blocked action. The tree-level, bilocal saddle point contribution to the blocking, defined by the infinitesimal decrease of the sharp cutoff in momentum space, is followed within the three dimensional Euclidean ϕ6 model in this work. The phase structure is changed, new phases and relevant operators are found, and certain universality classes are restricted by the bilocal saddle point.
Dynamic hyperbolic geometry: building intuition and understanding mediated by a Euclidean model
Moreno-Armella, Luis; Brady, Corey; Elizondo-Ramirez, Rubén
2018-05-01
This paper explores a deep transformation in mathematical epistemology and its consequences for teaching and learning. With the advent of non-Euclidean geometries, direct, iconic correspondences between physical space and the deductive structures of mathematical inquiry were broken. For non-Euclidean ideas even to become thinkable the mathematical community needed to accumulate over twenty centuries of reflection and effort: a precious instance of distributed intelligence at the cultural level. In geometry education after this crisis, relations between intuitions and geometrical reasoning must be established philosophically, rather than taken for granted. One approach seeks intuitive supports only for Euclidean explorations, viewing non-Euclidean inquiry as fundamentally non-intuitive in nature. We argue for moving beyond such an impoverished approach, using dynamic geometry environments to develop new intuitions even in the extremely challenging setting of hyperbolic geometry. Our efforts reverse the typical direction, using formal structures as a source for a new family of intuitions that emerge from exploring a digital model of hyperbolic geometry. This digital model is elaborated within a Euclidean dynamic geometry environment, enabling a conceptual dance that re-configures Euclidean knowledge as a support for building intuitions in hyperbolic space-intuitions based not directly on physical experience but on analogies extending Euclidean concepts.
Human more complex than mouse at cellular level.
Alexander E Vinogradov
Full Text Available The family of transcription factors with the C2H2 zinc finger domain is expanding in the evolution of vertebrates, reaching its highest numbers in the mammals. The question arises: whether an increased amount of these transcription factors is related to embryogenesis, nervous system, pathology or more of them are expressed in individual cells? Among mammals, the primates have a more complex anatomical structure than the rodents (e.g., brain. In this work, I show that a greater number of C2H2-ZF genes are expressed in the human cells than in the mouse cells. The effect is especially pronounced for C2H2-ZF genes accompanied with the KRAB domain. The relative difference between the numbers of C2H2-ZF(-KRAB genes in the human and mouse cellular transcriptomes even exceeds their difference in the genomes (i.e. a greater subset of existing in the genome genes is expressed in the human cellular transcriptomes compared to the mouse transcriptomes. The evolutionary turnover of C2H2-ZF(-KRAB genes acts in the direction of the revealed phenomenon, i.e. gene duplication and loss enhances the difference in the relative number of C2H2-ZF(-KRAB genes between human and mouse cellular transcriptomes. A higher amount of these genes is expressed in the brain and embryonic cells (compared with other tissues, whereas a lower amount--in the cancer cells. It is specifically the C2H2-ZF transcription factors whose repertoire is poorer in the cancer and richer in the brain (other transcription factors taken together do not show this trend. These facts suggest that increase of anatomical complexity is accompanied by a more complex intracellular regulation involving these transcription factors. Malignization is associated with simplification of this regulation. These results agree with the known fact that human cells are more resistant to oncogenic transformation than mouse cells. The list of C2H2-ZF genes whose suppression might be involved in malignization is provided.
Fuzzy Euclidean wormholes in de Sitter space
Chen, Pisin; Hu, Yao-Chieh; Yeom, Dong-han, E-mail: pisinchen@phys.ntu.edu.tw, E-mail: r04244003@ntu.edu.tw, E-mail: innocent.yeom@gmail.com [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China)
2017-07-01
We investigate Euclidean wormholes in Einstein gravity with a massless scalar field in de Sitter space. Euclidean wormholes are possible due to the analytic continuation of the time as well as complexification of fields, where we need to impose the classicality after the Wick-rotation to the Lorentzian signatures. For some parameters, wormholes are preferred than Hawking-Moss instantons, and hence wormholes can be more fundamental than Hawking-Moss type instantons. Euclidean wormholes can be interpreted in three ways: (1) classical big bounce, (2) either tunneling from a small to a large universe or a creation of a collapsing and an expanding universe from nothing, and (3) either a transition from a contracting to a bouncing phase or a creation of two expanding universes from nothing. These various interpretations shed some light on challenges of singularities. In addition, these will help to understand tensions between various kinds of quantum gravity theories.
β-Amyloid pathogenesis: Chemical properties versus cellular levels
Tiwari, Manish Kumar; Kepp, Kasper Planeta
2016-01-01
Although genetic Aβ variants cause early-onset Alzheimer's disease, literature reports on Aβ properties are heterogeneous, obscuring molecular mechanisms, as illustrated by recent failures of Aβ-level targeting trials. Thus, we combined available data on Aβ levels and ratios, aggregation propensi...
Lorentz violations and Euclidean signature metrics
Barbero G, J. Fernando; Villasenor, Eduardo J.S.
2003-01-01
We show that the families of effective actions considered by Jacobson et al. to study Lorentz invariance violations contain a class of models that represent pure general relativity with a Euclidean signature. We also point out that some members of this family of actions preserve Lorentz invariance in a generalized sense
Majorization in Euclidean Geometry and Beyond
Fiedler, Miroslav
2015-01-01
Roč. 466, 1 February (2015), s. 233-240 ISSN 0024-3795 Institutional support: RVO:67985807 Keywords : Majorization * Doubly stochastic matrix * Euclidean simplex * Star * Regular simplex * Volume of a simplex Subject RIV: BA - General Mathematics Impact factor: 0.965, year: 2015
Cold exposure lowers energy expenditure at the cellular level.
Park, Seyeon; Chun, Sohyun; Kim, Danuh
2013-06-01
Mitochondrial function is intimately involved in various metabolic processes and is therefore essential to maintain cell viability. Of particular importance is the fact that mitochondrial membrane potential (ΔΨm ) is coupled with oxidative phosphorylation to drive adenosine triphosphate (ATP) synthesis. We have examined the effects of cold temperature stress on ΔΨm and the role of cold temperature receptor expression on ΔΨm . Human bronchial endothelial cell line, BEAS-2B, and human embryonic kidney, HEK293, cell line were transfected with the gene for cold temperature responsive receptor protein TRPM8 or TRPA1, and exposed to cold temperature. ΔΨm was monitored using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazoyl carbocyanine iodide derivative (JC-10), a ΔΨm probe. While cold temperatures significantly increased ΔΨm and mitochondrial ATP levels in cells transfected with temperature responsive receptor TRPM8 or TRPA1, no change was noted in wild-type cells. Moreover, the change in ΔΨm and ATP level was a dynamic process. ΔΨm was raised to peak levels within 10 min of cold exposure, followed by a return to baseline levels at 30 min. Our findings suggest that cold temperature exposure increased mitochondrial ΔΨm via a mechanism involving cold temperature receptors. © 2013 International Federation for Cell Biology.
Cellular thiol levels and aerobic radiosensitization by BSO
Varnes, M.E.; Biaglow, J.E.; Roizin-Towle, L.; Hall, E.J.
1984-01-01
It has been previously shown that pretreatment of A549 human lung carcinoma cells and V79 cells with BSO results in enhancement of the aerobic radiation response. The authors and others have found that addition of either N-acetylcysteine (NAC) or the radioprotector WR-2721 to BSO-treated cells, just prior to irradiation, results in a return to control levels of aerobic sensitivity. NAC and WR-2721 have no effect on the aerobic response of control cells. Reversal of the BSO effect appears unrelated to intracellular thiol levels, since neither NAC nor WR-2721 replenish NPSH within the time that the reversal of the radiation effect is observed. In addition, NAC and WR-2721 must be present during irradiation in order to reverse the BSO sensitization. The authors are continuing to investigate the phenomenon of BSO-induced aerobic sensitization and its reversal, with particular emphasis on the role of membrane thiols and pyridine nucleotide reducing species in radiation response
Saveliev, M.V.
1983-01-01
In the framework of the algebraic approach a construction of exactly integrable two-dimensional Riemannian manifolds embedded into enveloping Euclidean (pseudo-Euclidean) space Rsub(N) of an arbitrary dimension is presented. The construction is based on a reformulation of the Gauss, Peterson-Codazzi and Ricci equations in the form of a Lax-type representation in two-dimensional space. Here the Lax pair operators take the values in algebra SO(N)
A linear-time algorithm for Euclidean feature transform sets
Hesselink, Wim H.
2007-01-01
The Euclidean distance transform of a binary image is the function that assigns to every pixel the Euclidean distance to the background. The Euclidean feature transform is the function that assigns to every pixel the set of background pixels with this distance. We present an algorithm to compute the
Euclidean wormholes with minimally coupled scalar fields
Ruz, Soumendranath; Modak, Bijan; Debnath, Subhra; Sanyal, Abhik Kumar
2013-01-01
A detailed study of quantum and semiclassical Euclidean wormholes for Einstein's theory with a minimally coupled scalar field has been performed for a class of potentials. Massless, constant, massive (quadratic in the scalar field) and inverse (linear) potentials admit the Hawking and Page wormhole boundary condition both in the classically forbidden and allowed regions. An inverse quartic potential has been found to exhibit a semiclassical wormhole configuration. Classical wormholes under a suitable back-reaction leading to a finite radius of the throat, where the strong energy condition is satisfied, have been found for the zero, constant, quadratic and exponential potentials. Treating such classical Euclidean wormholes as an initial condition, a late stage of cosmological evolution has been found to remain unaltered from standard Friedmann cosmology, except for the constant potential which under the back-reaction produces a term like a negative cosmological constant. (paper)
Calculus and analysis in Euclidean space
Shurman, Jerry
2016-01-01
The graceful role of analysis in underpinning calculus is often lost to their separation in the curriculum. This book entwines the two subjects, providing a conceptual approach to multivariable calculus closely supported by the structure and reasoning of analysis. The setting is Euclidean space, with the material on differentiation culminating in the inverse and implicit function theorems, and the material on integration culminating in the general fundamental theorem of integral calculus. More in-depth than most calculus books but less technical than a typical analysis introduction, Calculus and Analysis in Euclidean Space offers a rich blend of content to students outside the traditional mathematics major, while also providing transitional preparation for those who will continue on in the subject. The writing in this book aims to convey the intent of ideas early in discussion. The narrative proceeds through figures, formulas, and text, guiding the reader to do mathematics resourcefully by marshaling the skil...
Euclidean fields: vector mesons and photons
Loffelholz, J.
1979-01-01
Free transverse vector fields of mass >= 0 are studied. The model is related to the usual free vector meson and electromagnetic quantum field theories by extension of the field operators from transverse to arbitrary test functions. The one-particle states in transverse gauge and their localization are described. Reflexion positivity is proved and derived are free Feynman-Kac-Nelson formulas. An Euclidean approach to a photon field in a spherical world using dilatation covariance and inversions is given
Matrices and Graphs in Euclidean Geometry
Fiedler, Miroslav
2005-01-01
Roč. 14, - (2005), s. 51-58 E-ISSN 1081-3810 R&D Projects: GA AV ČR IAA1030302 Institutional research plan: CEZ:AV0Z10300504 Keywords : Euclidean space * Gram matrix * biorthogonal bases * simplex * interior angle * Steiner circumscribed ellipsoid * right simplex Subject RIV: BA - General Mathematics http://www.math.technion.ac.il/iic/ ela / ela -articles/14.html
Hubble expansion in a Euclidean framework
Alfven, H.
1979-01-01
There now seems to be strong evidence for a non-cosmological interpretation of the QSO redshift - in any case, so strong that it is of interest to investigate the consequences. The purpose of this paper is to construct a model of the Hubble expansion which is as far as possible from the conventional Big Bang model without coming in conflict with any well-established observational results (while introducing no new laws of physics). This leads to an essentially Euclidean metagalactic model (see Table I) with very little mass outside one-third or half of the Hubble radius. The total kinetic energy of the Hubble expansion need only to be about 5% of the rest mass energy. Present observations support backwards in time extrapolation of the Hubble expansion to a 'minimum size galaxy' Rsub(m), which may have any value in 0 26 cm. Other arguments speak in favor of a size close to the upper value, say Rsub(m) = 10 26 cm (Table II). As this size is probably about 100 times the Schwarzschild limit, an essentially Euclidean description is allowed. The kinetic energy of the Hubble expansion may derive from an intense QSO-like activity in the minimum size metagalaxy, with an energy release corresponding to the annihilation of a few solar masses per galaxy per year. Some of the conclusions based on the Big Bang hypothesis are criticized and in several cases alternative interpretations are suggested. A comparison between the Euclidean and the conventional models is given in Table III. (orig.)
Exploring Concepts of Geometry not Euclidean
Luiz Ambrozi
2016-02-01
Full Text Available With this article we intend to propose different situations of teaching and learning, how they can be applied in schools, mediated by the use of concrete materials and Geogebra software, emphasizing the use of technology in the classroom, that this proposal has the role of assisting in the conceptualization and identification of elements of non-Euclidean geometry. In addition, this short course is designed to be a time of current and continuing education for teachers, with activities to be developed with dynamic geometry and based on the theory of Conceptual Fields of Vergnaud.
Bochner-Riesz means on Euclidean spaces
Lu, Shanzhen
2013-01-01
This book mainly deals with the Bochner-Riesz means of multiple Fourier integral and series on Euclidean spaces. It aims to give a systematical introduction to the fundamental theories of the Bochner-Riesz means and important achievements attained in the last 50 years. For the Bochner-Riesz means of multiple Fourier integral, it includes the Fefferman theorem which negates the Disc multiplier conjecture, the famous Carleson-Sjölin theorem, and Carbery-Rubio de Francia-Vega's work on almost everywhere convergence of the Bochner-Riesz means below the critical index. For the Bochner-Riesz means o
Euclidean approach to the inflationary universe
Hawking, S.W.
1983-01-01
The aim of this article is to show how the Euclidean approach can be used to study the inflationary universe. Although this formulation may appear counterintuitive in some respects, it has the advantage that it defines a definite quantum state and provides a framework for calculating quantities of interest such as correlation functions or tunnelling probabilities. By contrast, in the more usual approach in real Lorentzian spacetime, it is not so clear what the quantum state should be or how to evaluate such quantities. (author)
Broadband invisibility by non-Euclidean cloaking.
Leonhardt, Ulf; Tyc, Tomás
2009-01-02
Invisibility and negative refraction are both applications of transformation optics where the material of a device performs a coordinate transformation for electromagnetic fields. The device creates the illusion that light propagates through empty flat space, whereas in physical space, light is bent around a hidden interior or seems to run backward in space or time. All of the previous proposals for invisibility require materials with extreme properties. Here we show that transformation optics of a curved, non-Euclidean space (such as the surface of a virtual sphere) relax these requirements and can lead to invisibility in a broad band of the spectrum.
Non-Euclidean Geometry and Gravitation
Stavroulakis N.
2006-04-01
Full Text Available A great deal of misunderstandings and mathematical errors are involved in the currently accepted theory of the gravitational field generated by an isotropic spherical mass. The purpose of the present paper is to provide a short account of the rigorous mathematical theory and exhibit a new formulation of the problem. The solution of the corresponding equations of gravitation points out several new and unusual features of the stationary gravitational field which are related to the non-Euclidean structure of the space. Moreover it precludes the black hole from being a mathematical and physical notion.
Rodríguez Velásquez, Javier Oswaldo
2014-01-01
Full Text Available Background: Pathological interpretation of cellular form in cervical cytology is very important for preven- tion of cervical cancer. The methods most frequently used for assessment of this test have reproducibility and inter-observer variability problems. Objective: To make fractal and Euclidean measure- ments to mathematically diagnose normal and pre- malignant cells of cervical squamous epithelium. Methodology: 21 cells with normal, ASCUS or LSIL diagnosis according to the Bethesda system were assessed. Fractal and Euclidean geometric measures of three mathematical objects were calculated: cyto- plasm, nucleus and whole cell. Mathematical propor- tions between these measurements were calculated in order to compare them with conventional classification methods. Results: It was found that the nuclear border measures calculated with the 2-pixel grill and the surface measures could mathematically and objectively differentiate normal cells from the pre-malignant ones (ASCUS and LSIL. Conclusions: An objective and reproducible diagnos- tic method was developed; it allows to identify the evolution towards malignant cellular states based on simultaneous fractal and Euclidean measures, estab- lishing the severity level of ASCUS and LSIL cells.
Texture classification using non-Euclidean Minkowski dilation
Florindo, Joao B.; Bruno, Odemir M.
2018-03-01
This study presents a new method to extract meaningful descriptors of gray-scale texture images using Minkowski morphological dilation based on the Lp metric. The proposed approach is motivated by the success previously achieved by Bouligand-Minkowski fractal descriptors on texture classification. In essence, such descriptors are directly derived from the morphological dilation of a three-dimensional representation of the gray-level pixels using the classical Euclidean metric. In this way, we generalize the dilation for different values of p in the Lp metric (Euclidean is a particular case when p = 2) and obtain the descriptors from the cumulated distribution of the distance transform computed over the texture image. The proposed method is compared to other state-of-the-art approaches (such as local binary patterns and textons for example) in the classification of two benchmark data sets (UIUC and Outex). The proposed descriptors outperformed all the other approaches in terms of rate of images correctly classified. The interesting results suggest the potential of these descriptors in this type of task, with a wide range of possible applications to real-world problems.
Dual-Level Game-Based Energy Efficiency and Fairness for Green Cellular Networks
Sungwook Kim
2016-01-01
Full Text Available In the recent decades, cellular networks have revolutionized the way of next generation communication networks. However, due to the global climate change, reducing the energy consumption of cellular infrastructures is an important and urgent problem. In this study, we propose a novel two-level cooperative game framework for improving the energy efficiency and fairness in cellular networks. For the energy efficiency, base stations (BSs constantly monitor the current traffic load and cooperate with each other to maximize the energy saving. For the energy fairness, renewable energy can be shared dynamically while ensuring the fairness among BSs. To achieve an excellent cellular network performance, the concepts of the Raiffa Bargaining Solution and Jain’s fairness are extended and practically applied to our dual-level cooperative game model. Through system level simulations, the proposed scheme is evaluated and compared with other existing schemes. The simulation results show that our two-level game approach outperforms the existing schemes in providing a better fair-efficient system performance.
Uniform Page Migration Problem in Euclidean Space
Amanj Khorramian
2016-08-01
Full Text Available The page migration problem in Euclidean space is revisited. In this problem, online requests occur at any location to access a single page located at a server. Every request must be served, and the server has the choice to migrate from its current location to a new location in space. Each service costs the Euclidean distance between the server and request. A migration costs the distance between the former and the new server location, multiplied by the page size. We study the problem in the uniform model, in which the page has size D = 1 . All request locations are not known in advance; however, they are sequentially presented in an online fashion. We design a 2.75 -competitive online algorithm that improves the current best upper bound for the problem with the unit page size. We also provide a lower bound of 2.732 for our algorithm. It was already known that 2.5 is a lower bound for this problem.
Statistical mechanics, gravity, and Euclidean theory
Fursaev, Dmitri V.
2002-01-01
A review of computations of free energy for Gibbs states on stationary but not static gravitational and gauge backgrounds is given. On these backgrounds wave equations for free fields are reduced to eigenvalue problems which depend non-linearly on the spectral parameter. We present a method to deal with such problems. In particular, we demonstrate how some results of the spectral theory of second-order elliptic operators, such as heat kernel asymptotics, can be extended to a class of non-linear spectral problems. The method is used to trace down the relation between the canonical definition of the free energy based on summation over the modes and the covariant definition given in Euclidean quantum gravity. As an application, high-temperature asymptotics of the free energy and of the thermal part of the stress-energy tensor in the presence of rotation are derived. We also discuss statistical mechanics in the presence of Killing horizons where canonical and Euclidean theories are related in a non-trivial way
On the scaling limits in the Euclidean (quantum) field theory
Gielerak, R.
1983-01-01
The author studies the concept of scaling limits in the context of the constructive field theory. He finds that the domain of attraction of a free massless Euclidean scalar field in the two-dimensional space time contains almost all Euclidean self-interacting models of quantum fields so far constructed. The renormalized scaling limit of the Wick polynomials of several self-interacting Euclidean field theory models are shown to be the same as in the free field theory. (Auth.)
Founding Gravitation in 4D Euclidean Space-Time Geometry
Winkler, Franz-Guenter
2010-01-01
The Euclidean interpretation of special relativity which has been suggested by the author is a formulation of special relativity in ordinary 4D Euclidean space-time geometry. The natural and geometrically intuitive generalization of this view involves variations of the speed of light (depending on location and direction) and a Euclidean principle of general covariance. In this article, a gravitation model by Jan Broekaert, which implements a view of relativity theory in the spirit of Lorentz and Poincare, is reconstructed and shown to fulfill the principles of the Euclidean approach after an appropriate reinterpretation.
Quantum Biology at the Cellular Level - elements of the research program
Bordonaro, Michael; Ogryzko, Vasily
2013-01-01
Quantum Biology is emerging as a new field at the intersection between fundamental physics and biology, promising novel insights into the nature and origin of biological order. We discuss several elements of QBCL (Quantum Biology at Cellular Level), a research program designed to extend the reach of quantum concepts to higher than molecular levels of biological organization. Key words. decoherence, macroscopic superpositions, basis-dependence, formal superposition, non-classical correlations,...
Upregulation of cellular glutathione levels in human ABCB5- and murine Abcb5-transfected cells.
Kondo, Shingo; Hongama, Keita; Hanaya, Kengo; Yoshida, Ryota; Kawanobe, Takaaki; Katayama, Kazuhiro; Noguchi, Kohji; Sugimoto, Yoshikazu
2015-12-15
Previously, we have demonstrated that human ABCB5 is a full-sized ATP-binding cassette transporter that shares strong homology with ABCB1/P-glycoprotein. ABCB5-transfected cells showed resistance to taxanes and anthracyclines. Herein, we further screened ABCB5 substrates, and explored the mechanism of resistance. Sensitivity of the cells to test compounds was evaluated using cell growth inhibition assay. Cellular levels of buthionine sulfoximine (BSO), glutathione and amino acids were measured using HPLC and an enzyme-based assay. Cellular and vesicular transport of glutathione was evaluated by a radiolabeled substrate. Expression levels of glutathione-metabolizing enzymes were assessed by RT-PCR. Human ABCB5-transfected 293/B5-11 cells and murine Abcb5-transfected 293/mb5-8 cells showed 6.5- and 14-fold higher resistance to BSO than the mock-transfected 293/mock cells, respectively. BSO is an inhibitor of gamma-glutamylcysteine ligase (GCL), which is a key enzyme of glutathione synthesis. 293/B5-11 and 293/mb5-8 cells also showed resistance to methionine sulfoximine, another GCL inhibitor. A cellular uptake experiment revealed that BSO accumulation in 293/B5-11 and 293/mb5-8 cells was similar to that in 293/mock cells, suggesting that BSO is not an ABCB5 substrate. The cellular glutathione content in 293/B5-11 and 293/mb5-8 cells was significantly higher than that in 293/mock cells. Evaluation of the BSO effect on the cellular glutathione content showed that compared with 293/mock cells the BSO concentration required for a 50 % reduction in glutathione content in 293/B5-11 and 293/mb5-8 cells was approximately 2- to 3-fold higher. This result suggests that the BSO resistance of the ABCB5- and Abcb5-transfected cells can be attributed to the reduced effect of BSO on the transfectants. Cellular and vesicular transport assays showed that the transport of radiolabeled glutathione in 293/B5-11 cells was similar to that in 293/mock cells. The mRNA expression of genes
Euclidean supergravity and multi-centered solutions
W.A. Sabra
2017-04-01
Full Text Available In ungauged supergravity theories, the no-force condition for BPS states implies the existence of stable static multi-centered solutions. The first solutions to Einstein–Maxwell theory with a positive cosmological constant describing an arbitrary number of charged black holes were found by Kastor and Traschen. Generalisations to five and higher dimensional theories were obtained by London. Multi-centered solutions in gauged supergravity, even with time-dependence allowed, have yet to be constructed. In this letter we construct supersymmetry-preserving multi-centered solutions for the case of D=5, N=2 Euclidean gauged supergravity coupled to an arbitrary number of vector multiplets. Higher dimensional Einstein–Maxwell multi-centered solutions are also presented.
Euclidean Monte Carlo simulation of nuclear interactions
Montvay, Istvan; Bonn Univ.; Urbach, Carsten
2011-05-01
We present an exploratory study of chiral effective theories of nuclei with methods adopted from lattice quantum chromodynamics (QCD). We show that the simulations in the Euclidean path integral approach are feasible and that we can determine the energy of the two nucleon state. By varying the parameters and the simulated volumes phase shifts can be determined in principle and hopefully tuned to their physical values in the future. The physical cut-off of the theory is realised by blocking of the lattice fields. By keeping this physical cut-off fixed in physical units the lattice cut-off can be changed and in this way the lattice artefacts can be eliminated. (orig.)
Non-Euclidean spacetime structure and the two-slit experiment
El Naschie, M.S.
2005-01-01
A simple mathematical model for the two-slit experiment is given to account for the wave-particle duality. Subsequently, the various solutions are interpreted via the experimental evidence as a property of the underlying non-Euclidean spacetime topology and geometry at the quantum level
The relation between Euclidean and Lorentzian 2D quantum gravity
Ambjørn, J.; Correia, J.; Kristjansen, C.; Loll, R.
1999-01-01
Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a
Euclidean null controllability of perturbed infinite delay systems with ...
Euclidean null controllability of perturbed infinite delay systems with limited control. ... Open Access DOWNLOAD FULL TEXT ... The results are established by placing conditions on the perturbation function which guarantee that, if the linear control base system is completely Euclidean controllable, then the perturbed system ...
Euclidean null controllability of nonlinear infinite delay systems with ...
Sufficient conditions for the Euclidean null controllability of non-linear delay systems with time varying multiple delays in the control and implicit derivative are derived. If the uncontrolled system is uniformly asymptotically stable and if the control system is controllable, then the non-linear infinite delay system is Euclidean null ...
Euclidean null controllability of linear systems with delays in state ...
Sufficient conditions are developed for the Euclidean controllability of linear systems with delay in state and in control. Namely, if the uncontrolled system is uniformly asymptotically stable and the control equation proper, then the control system is Euclidean null controllable. Journal of the Nigerian Association of ...
High performance cellular level agent-based simulation with FLAME for the GPU.
Richmond, Paul; Walker, Dawn; Coakley, Simon; Romano, Daniela
2010-05-01
Driven by the availability of experimental data and ability to simulate a biological scale which is of immediate interest, the cellular scale is fast emerging as an ideal candidate for middle-out modelling. As with 'bottom-up' simulation approaches, cellular level simulations demand a high degree of computational power, which in large-scale simulations can only be achieved through parallel computing. The flexible large-scale agent modelling environment (FLAME) is a template driven framework for agent-based modelling (ABM) on parallel architectures ideally suited to the simulation of cellular systems. It is available for both high performance computing clusters (www.flame.ac.uk) and GPU hardware (www.flamegpu.com) and uses a formal specification technique that acts as a universal modelling format. This not only creates an abstraction from the underlying hardware architectures, but avoids the steep learning curve associated with programming them. In benchmarking tests and simulations of advanced cellular systems, FLAME GPU has reported massive improvement in performance over more traditional ABM frameworks. This allows the time spent in the development and testing stages of modelling to be drastically reduced and creates the possibility of real-time visualisation for simple visual face-validation.
Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level
CADIOU , Hervé; AOUDE , Imad; Tazir , Bassim; Molinas , Adrien; Forbes Fenech , Claire; Meunier , Nicolas; Grosmaitre , Xavier
2014-01-01
Mammalian olfactory sensory neurons (OSNs) form the primary elements of the olfactory system. Inserted in the olfactory mucosa lining of the nasal cavity, they are exposed to the environment and their lifespan is brief. Several reports say that OSNs are regularly regenerated during the entire life and that odorant environment affects the olfactory epithelium. However, little is known about the impact of the odorant environment on OSNs at the cellular level and more precisely in the context of...
Extended supersymmetry in four-dimensional Euclidean space
McKeon, D.G.C.; Sherry, T.N.
2000-01-01
Since the generators of the two SU(2) groups which comprise SO(4) are not Hermitian conjugates of each other, the simplest supersymmetry algebra in four-dimensional Euclidean space more closely resembles the N=2 than the N=1 supersymmetry algebra in four-dimensional Minkowski space. An extended supersymmetry algebra in four-dimensional Euclidean space is considered in this paper; its structure resembles that of N=4 supersymmetry in four-dimensional Minkowski space. The relationship of this algebra to the algebra found by dimensionally reducing the N=1 supersymmetry algebra in ten-dimensional Euclidean space to four-dimensional Euclidean space is examined. The dimensional reduction of N=1 super Yang-Mills theory in ten-dimensional Minkowski space to four-dimensional Euclidean space is also considered
Walwyn, Amy L.; Navarro, Daniel J.
2010-01-01
An experiment is reported comparing human performance on two kinds of visually presented traveling salesperson problems (TSPs), those reliant on Euclidean geometry and those reliant on city block geometry. Across multiple array sizes, human performance was near-optimal in both geometries, but was slightly better in the Euclidean format. Even so,…
Referent 3D tumor model at cellular level in radionuclide therapy
Spaic, R.; Ilic, R.D.; Petrovic, B.J.
2002-01-01
Aim Conventional internal dosimetry has a lot of limitations because of tumor dose nonuniformity. The best approach for absorbed dose at cellular level for different tumors in radionuclide therapy calculation is Monte Carlo method. The purpose of this study is to introduce referent tumor 3D model at cellular level for Monte Carlo simulation study in radionuclide therapy. Material and Methods The moment when tumor is detectable and when same therapy can start is time period in which referent 3D tumor model at cellular level was defined. In accordance with tumor growth rate at that moment he was a sphere with same radius (10 000 μm). In that tumor there are cells or cluster of cells, which are randomly distributed spheres. Distribution of cells/cluster of cells can be calculated from histology data but it was assumed that this distribution is normal with the same mean value and standard deviation (100±50 mm). Second parameter, which was selected to define referent tumor, is volume density of cells (30%). In this referent tumor there are no necroses. Stroma is defined as space between spheres with same concentration of materials as in spheres. Results: Referent tumor defined on this way have about 2,2 10 5 cells or cluster of cells random distributed. Using this referent 3D tumor model and for same concentration of radionuclides (1:100) and energy of beta emitters (1000 keV) which are homogeneously distributed in labeled cells absorbed dose for all cells was calculated. Simulations are done using FOTELP Monte Carlo code, which is modified for this purposes. Results of absorbed dose in cells are given in numerical values (1D distribution) and as the images (2D or 3D distributions). Conclusion Geometrical module for Monte Carlo simulation study can be standardized by introducing referent 3D tumor model at cellular level. This referent 3D tumor model gives most realistic presentation of different tumors at the moment of their detectability. Referent 3D tumor model at
Processed fruit juice ready to drink: screening acute toxicity at the cellular level
Erick Leal da Silva
2017-06-01
Full Text Available The present study evaluated the acute toxicity at the cellular level of processed juice ready for consumption Orange and Grape flavors, produced by five companies with significant influence on the food market of South American countries, especially in Brazil. This evaluation was performed in root meristem cells of Allium cepa L., at the exposure times of 24 and 48 hours, directly with marketed liquid preparations. Based on the results, it was found that fruit juices, of all companies considered, promoted significant antiproliferative effect to root meristems at the exposure time of 24 hours and resulted in at both exposure times, statistically significant number of mitotic spindle changes and chromosomal breaks. Therefore, under the study conditions, all juice samples analyzed were cytotoxic, genotoxic and mutagenic to root meristem cells. These results indicate that such beverages have relevant potential to cause cellular disorders and, thus, need to be evaluated more fully in more complex test systems, as those in rodents, and then establish specific toxicity at the cellular level of these juices and ensure the well-being of those who consume them.
Real-time reporting and internet-accessible cellular based coastal sea level gauge
Desai, R.G.P.; Joseph, A.; Agarvadekar, Y.; Mehra, P.; Dabholkar, N.; Parab, A.; Gouveia, A.D.; Tengali, S.
as on the receiving- side. This adds to the hardware cost as well as software overheads on the receiving- side to check the data integrity for transmission errors. The main benefit of cellular connectivity with GPRS technology is that it utilizes radio resources only...-level data communication systems for the benefit the coastal communities and the local administrators (Joseph and Prabhudesai, 2005). Further, real-time sea-level data would form an important input to storm-surge predictive models and warning systems. Given...
The effect of cellular carotenoid levels in micrococcus luteus on resistance to gamma radiation
Al-Wandawi, K. H.
2000-01-01
In the present study, a biological system was developed to link the cellular carotenoid levels to Gamma radiation resistance in bacteria for the frst time. thus, in a non-photosynrhetic bacterium, in Micrococcus Luteus an inverse relationship was found between the increase in diphenylamine (DPA) concentration (5.25 μg/ml culture) and the polar cellular carotenoid pigments (C-45 and C-50 carotenoids and their glucosides). It was also found that irradiation of cells with different carotenoid concentrations with doses of γ-radiation in the range of (0.2500 gray) under oxic, air and hypoxic conditions showed that carotenoid pigments offer no significant protection as they usually do in case of visible light. (author).15 refs., 5 figs., 3 tabs
Spinors in euclidean field theory, complex structures and discrete symmetries
Wetterich, C.
2011-01-01
We discuss fermions for arbitrary dimensions and signature of the metric, with special emphasis on euclidean space. Generalized Majorana spinors are defined for d=2,3,4,8,9mod8, independently of the signature. These objects permit a consistent analytic continuation of Majorana spinors in Minkowski space to euclidean signature. Compatibility of charge conjugation with complex conjugation requires for euclidean signature a new complex structure which involves a reflection in euclidean time. The possible complex structures for Minkowski and euclidean signature can be understood in terms of a modulo two periodicity in the signature. The concepts of a real action and hermitean observables depend on the choice of the complex structure. For a real action the expectation values of all hermitean multi-fermion observables are real. This holds for arbitrary signature, including euclidean space. In particular, a chemical potential is compatible with a real action for the euclidean theory. We also discuss the discrete symmetries of parity, time reversal and charge conjugation for arbitrary dimension and signature.
Within-host spatiotemporal dynamics of plant virus infection at the cellular level.
Nicolas Tromas
2014-02-01
Full Text Available A multicellular organism is not a monolayer of cells in a flask; it is a complex, spatially structured environment, offering both challenges and opportunities for viruses to thrive. Whereas virus infection dynamics at the host and within-cell levels have been documented, the intermediate between-cell level remains poorly understood. Here, we used flow cytometry to measure the infection status of thousands of individual cells in virus-infected plants. This approach allowed us to determine accurately the number of cells infected by two virus variants in the same host, over space and time as the virus colonizes the host. We found a low overall frequency of cellular infection (<0.3, and few cells were coinfected by both virus variants (<0.1. We then estimated the cellular contagion rate (R, the number of secondary infections per infected cell per day. R ranged from 2.43 to values not significantly different from zero, and generally decreased over time. Estimates of the cellular multiplicity of infection (MOI, the number of virions infecting a cell, were low (<1.5. Variance of virus-genotype frequencies increased strongly from leaf to cell levels, in agreement with a low MOI. Finally, there were leaf-dependent differences in the ease with which a leaf could be colonized, and the number of virions effectively colonizing a leaf. The modeling of infection patterns suggests that the aggregation of virus-infected cells plays a key role in limiting spread; matching the observation that cell-to-cell movement of plant viruses can result in patches of infection. Our results show that virus expansion at the between-cell level is restricted, probably due to the host environment and virus infection itself.
Quaternion analyticity and conformally Kaehlerian structure in Euclidean gravity
Guersey, F.; Chia-Hsiung Tze
1984-01-01
Starting from the fact that the d = 4 Euclidean flat spacetime is conformally related to the Kaehler manifold H 2 xS 2 , we show the Euclidean Schwarzschild metric to be conformally related to another Kaehler manifold M 2 xS 2 with M 2 being conformal to H 2 in two dimensions. Both metrics which are conformally Kaehlerian, are form-invariant under the infinite parameter Fueter group, the Euclidean counterpart of Milne's group of clock regraduation. The associated Einstein's equations translate into Fueter's quaternionic analyticity. The latter leads to an infinite number of local continuity equations. (orig.)
X-ray micro-tomography for investigations of brain tissues on cellular level
Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Zanette, Irene; Zdora, Marie-Christine; Bikis, Christos; Hipp, Alexander; Hieber, Simone E.; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert
2016-10-01
X-ray imaging in absorption contrast mode is well established for hard tissue visualization. However, performance for lower density materials is limited due to a reduced contrast. Our aim is three-dimensional (3D) characterization of micro-morphology of human brain tissues down to (sub-)cellular resolution within a laboratory environment. Using the laboratory-based microtomography (μCT) system nanotom m (GE Sensing and Inspection Technologies GmbH, Wunstorf, Germany) and synchrotron radiation at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK), we have acquired 3D data with a resolution down to 0.45 μm for visualization of a human cerebellum specimen down to cellular level. We have shown that all selected modalities, namely laboratory-based absorption contrast micro-tomography (LBμCT), synchrotron radiation based in-line single distance phase contrast tomography (SDPR) and synchrotron radiation based single-grating interferometry (GI), can reach cellular resolution for tissue samples with a size in the mm-range. The results are discussed qualitatively in comparison to optical microscopy of haematoxylin and eosin (HE) stained sections. As phase contrast yields to a better data quality for soft tissues and in order to overcome restrictions of limited beamline access for phase contrast measurements, we have equipped the μCT system nanotom m with a double-grating phase contrast set-up. Preliminary experimental results of a knee sample consisting of a bony part and a cartilage demonstrate that phase contrast data exhibits better quality compared to absorption contrast. Currently, the set-up is under adjustment. It is expected that cellular resolution would also be achieved. The questions arise (1) what would be the quality gain of laboratory-based phase contrast in comparison to laboratory-based absorption contrast tomography and (2) could laboratory-based phase contrast data provide comparable results to synchrotron radiation based
New solutions of euclidean SU(2) gauge theory
Khan, I.
1983-08-01
New solutions of the Euclidean SU(2) gauge theory having finite field strength everywhere are presented. The solutions are self dual or antidual and constitute a two-parameter family which includes the instantons. (author)
PERBANDINGAN EUCLIDEAN DISTANCE DENGAN CANBERRA DISTANCE PADA FACE RECOGNITION
Sendhy Rachmat Wurdianarto
2014-08-01
Full Text Available Perkembangan ilmu pada dunia komputer sangatlah pesat. Salah satu yang menandai hal ini adalah ilmu komputer telah merambah pada dunia biometrik. Arti biometrik sendiri adalah karakter-karakter manusia yang dapat digunakan untuk membedakan antara orang yang satu dengan yang lainnya. Salah satu pemanfaatan karakter / organ tubuh pada setiap manusia yang digunakan untuk identifikasi (pengenalan adalah dengan memanfaatkan wajah. Dari permasalahan diatas dalam pengenalan lebih tentang aplikasi Matlab pada Face Recognation menggunakan metode Euclidean Distance dan Canberra Distance. Model pengembangan aplikasi yang digunakan adalah model waterfall. Model waterfall beriisi rangkaian aktivitas proses yang disajikan dalam proses analisa kebutuhan, desain menggunakan UML (Unified Modeling Language, inputan objek gambar diproses menggunakan Euclidean Distance dan Canberra Distance. Kesimpulan yang dapat ditarik adalah aplikasi face Recognation menggunakan metode euclidean Distance dan Canverra Distance terdapat kelebihan dan kekurangan masing-masing. Untuk kedepannya aplikasi tersebut dapat dikembangkan dengan menggunakan objek berupa video ataupun objek lainnya. Kata kunci : Euclidean Distance, Face Recognition, Biometrik, Canberra Distance
On the invariant theory of Weingarten surfaces in Euclidean space
Ganchev, Georgi; Mihova, Vesselka
2010-01-01
On any Weingarten surface in Euclidean space (strongly regular or rotational), we introduce locally geometric principal parameters and prove that such a surface is determined uniquely up to a motion by a special invariant function, which satisfies a natural nonlinear partial differential equation. This result can be interpreted as a solution to the Lund-Regge reduction problem for Weingarten surfaces in Euclidean space. We apply this theory to fractional-linear Weingarten surfaces and obtain the nonlinear partial differential equations describing them.
Smith, G.T.; Hubner, K.F.; Goodman, M.M.; Stubbs, J.B.
1992-01-01
Positron emission tomography (PET) has been used to measure tissue radiotracer concentration in vivo. Radiochemical distribution can be determined with compartmental model analysis. A two compartment model describes the kinetics of N-13 ammonia ( 13 NH 3 ) in the myocardium. The model consists of a vascular space, Q 1 and a space for 13 NH 3 bound within the tissue, Q 2 . Differential equations for the model can be written: X(t) = AX(t) + BU( t), Y(t)= CX(t)+ DU(t) (1) where X(t) is a column vector [Q 1 (t); Q 2 (t)], U(t) is the arterial input activity measured from the left ventricular blood pool, and Y(t) is the measured tissue activity using PET. Matrices A, B, C, and D are dependent on physiological parameters describing the kinetics of 13 NH 3 in the myocardium. Estimated parameter matrices in Equation 1 have been validated in dog experiments by measuring myocardial perfusion with dynamic PET scanning and intravenous injection of 13 NH 3 . Tracer concentrations for each compartment can be calculated by direct integration of Equation 1. If the cellular level distribution of each compartment is known, the concentration of tracer within the intracellular and extracellular space can be determined. Applications of this type of modeling include parameter estimation for measurement of physiological processes, organ level dosimetry, and determination of cellular radiotracer distribution
Quantum biology at the cellular level--elements of the research program.
Bordonaro, Michael; Ogryzko, Vasily
2013-04-01
Quantum biology is emerging as a new field at the intersection between fundamental physics and biology, promising novel insights into the nature and origin of biological order. We discuss several elements of QBCL (quantum biology at cellular level) - a research program designed to extend the reach of quantum concepts to higher than molecular levels of biological organization. We propose a new general way to address the issue of environmentally induced decoherence and macroscopic superpositions in biological systems, emphasizing the 'basis-dependent' nature of these concepts. We introduce the notion of 'formal superposition' and distinguish it from that of Schroedinger's cat (i.e., a superposition of macroscopically distinct states). Whereas the latter notion presents a genuine foundational problem, the former one contradicts neither common sense nor observation, and may be used to describe cellular 'decision-making' and adaptation. We stress that the interpretation of the notion of 'formal superposition' should involve non-classical correlations between molecular events in a cell. Further, we describe how better understanding of the physics of Life can shed new light on the mechanism driving evolutionary adaptation (viz., 'Basis-Dependent Selection', BDS). Experimental tests of BDS and the potential role of synthetic biology in closing the 'evolvability mechanism' loophole are also discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Choi, Joon-Seok; Lee, Cheol-Koo
2013-01-01
Highlights: •CR decreases total ROS and mitochondrial superoxide during the chronological aging. •CR does not affect the levels of oxidative damage on protein and DNA. •CR contributes extension of chronological lifespan by maintenance of ATP level -- Abstract: The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeast by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA
Choi, Joon-Seok; Lee, Cheol-Koo, E-mail: cklee2005@korea.ac.kr
2013-09-13
Highlights: •CR decreases total ROS and mitochondrial superoxide during the chronological aging. •CR does not affect the levels of oxidative damage on protein and DNA. •CR contributes extension of chronological lifespan by maintenance of ATP level -- Abstract: The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeast by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA.
Biased discriminant euclidean embedding for content-based image retrieval.
Bian, Wei; Tao, Dacheng
2010-02-01
With many potential multimedia applications, content-based image retrieval (CBIR) has recently gained more attention for image management and web search. A wide variety of relevance feedback (RF) algorithms have been developed in recent years to improve the performance of CBIR systems. These RF algorithms capture user's preferences and bridge the semantic gap. However, there is still a big room to further the RF performance, because the popular RF algorithms ignore the manifold structure of image low-level visual features. In this paper, we propose the biased discriminative Euclidean embedding (BDEE) which parameterises samples in the original high-dimensional ambient space to discover the intrinsic coordinate of image low-level visual features. BDEE precisely models both the intraclass geometry and interclass discrimination and never meets the undersampled problem. To consider unlabelled samples, a manifold regularization-based item is introduced and combined with BDEE to form the semi-supervised BDEE, or semi-BDEE for short. To justify the effectiveness of the proposed BDEE and semi-BDEE, we compare them against the conventional RF algorithms and show a significant improvement in terms of accuracy and stability based on a subset of the Corel image gallery.
Catoni, Francesco; Cannata, Roberto; Zampetti, Paolo
2005-08-01
The Riemann and Lorentz constant curvature surfaces are investigated from an Euclidean point of view. The four surfaces (constant positive and constant negative curvatures with definite and non-definite fine elements) are represented as surfaces in a Riemannian or in a particular semi-Riemannian flat space and it is shown that the complex and the hyperbolic numbers allow to obtain the same equations for the corresponding Riemann and Lorentz surfaces, respectively. Moreover it is shown that the geodesics on the Lorentz surfaces states, from a physical point of view, a link between curvature and fields. This result is obtained just as a consequence of the space-time geometrical symmetry, without invoking the famous Einstein general relativity postulate [it
Goncharenko A. V.
2012-11-01
Full Text Available Influence of subtoxic concentration of manganese chloride in dose equal to LD 50 on condition of plasmatic membranes (model: erythrocytes and functional activity of cell power (model: the isolated liver mitochondrion of rats was studied. It was established that manganese chloride in fixed concentration caused authentic augmentation of sorption capacity of erythrocytes towards alcian blue, influenced increasing of their spontaneous haemolysis and activation of peroxide oxidation of lipids. In experiment on the isolated mitochondrion it was proved that manganese chloride caused dissociation of an oxidizing phosphorusling and complete inhibition of respiration in concentrations of 3 and 4,5mM. These dependences testify that subtoxic concentration of manganese can damage the cell energy. Thus, this pilot research indicated damaging effect of manganese on cellular (erythrocytes and subcellular (mitochondrion levels which are realized through external functioning of membrane structures and deprived them from restoration.
Krueger, W B; Kolodziej, B J
1976-01-01
Both atomic absorption spectrophotometry (AAS) and neutron activation analysis have been utilized to determine cellular Cu levels in Bacillus megaterium ATCC 19213. Both methods were selected for their sensitivity to detection of nanogram quantities of Cu. Data from both methods demonstrated identical patterms of Cu uptake during exponenetial growth and sporulation. Late exponential phase cells contained less Cu than postexponential t2 cells while t5 cells contained amounts equivalent to exponential cells. The t11 phase-bright forespore containing cells had a higher Cu content than those of earlier time periods, and the free spores had the highest Cu content. Analysis of the culture medium by AAS corroborated these data by showing concomitant Cu uptake during exponential growth and into t2 postexponential phase of sporulation. From t2 to t4, Cu egressed from the cells followed by a secondary uptake during the maturation of phase-dark forespores into phase-bright forespores (t6--t9).
Localization, kinetics and metabolism of labelled monoclonal antibodies on a cellular level
Steinstraesser, A.; Kuhlmann, L.; Zimmer, M.; Schwarz, A.
1988-01-01
In order to gain insight into the mechanisms, the localization, kinetics and metabolism of preparations labelled with 131 J and 111 In were examined on a cellular level. Micro-autoradiography for histological assessment of the storage tissue in the organs was complemented by cytological examination methods for assessing the extent of internalisation of the antibodies, and the metabolism of the antibodies in the cytosol fraction could be followed up by chromatography. One of the major results is that even with the complete antibody, accumulation in the liver cells proceeds very rapidly and protein degradation is practically completed within twenty-four hours. In the tumor, however, internalisation plays a minor part (about 80 p.c. of the antibodies remain bound to the membrane). Rapid accumulation of the antibodies by the tubulus epithelium of the kidney causes the intensive image of the renal scintiscan. (orig./MG) [de
Detection of interferon alpha protein reveals differential levels and cellular sources in disease.
Rodero, Mathieu P; Decalf, Jérémie; Bondet, Vincent; Hunt, David; Rice, Gillian I; Werneke, Scott; McGlasson, Sarah L; Alyanakian, Marie-Alexandra; Bader-Meunier, Brigitte; Barnerias, Christine; Bellon, Nathalia; Belot, Alexandre; Bodemer, Christine; Briggs, Tracy A; Desguerre, Isabelle; Frémond, Marie-Louise; Hully, Marie; van den Maagdenberg, Arn M J M; Melki, Isabelle; Meyts, Isabelle; Musset, Lucile; Pelzer, Nadine; Quartier, Pierre; Terwindt, Gisela M; Wardlaw, Joanna; Wiseman, Stewart; Rieux-Laucat, Frédéric; Rose, Yoann; Neven, Bénédicte; Hertel, Christina; Hayday, Adrian; Albert, Matthew L; Rozenberg, Flore; Crow, Yanick J; Duffy, Darragh
2017-05-01
Type I interferons (IFNs) are essential mediators of antiviral responses. These cytokines have been implicated in the pathogenesis of autoimmunity, most notably systemic lupus erythematosus (SLE), diabetes mellitus, and dermatomyositis, as well as monogenic type I interferonopathies. Despite a fundamental role in health and disease, the direct quantification of type I IFNs has been challenging. Using single-molecule array (Simoa) digital ELISA technology, we recorded attomolar concentrations of IFNα in healthy donors, viral infection, and complex and monogenic interferonopathies. IFNα protein correlated well with functional activity and IFN-stimulated gene expression. High circulating IFNα levels were associated with increased clinical severity in SLE patients, and a study of the cellular source of IFNα protein indicated disease-specific mechanisms. Measurement of IFNα attomolar concentrations by digital ELISA will enhance our understanding of IFN biology and potentially improve the diagnosis and stratification of pathologies associated with IFN dysregulation. © 2017 Rodero et al.
The Euclidean three-point function in loop and perturbative gravity
Rovelli, Carlo; Zhang Mingyi
2011-01-01
We compute the leading order of the three-point function in loop quantum gravity, using the vertex expansion of the Euclidean version of the new spin foam dynamics, in the region of γ < 1. We find results consistent with Regge calculus in the limit γ → 0, j → ∞. We also compute the tree-level three-point function of perturbative quantum general relativity in position space and discuss the possibility of directly comparing the two results.
Wang, Yiping; Cheng, Xiangdong; Samma, Muhammad Kaleem; Kung, Sam K P; Lee, Clement M; Chiu, Sung Kay
2018-06-01
c-Myc is a highly pleiotropic transcription factor known to control cell cycle progression, apoptosis, and cellular transformation. Normally, ectopic expression of c-Myc is associated with promoting cell proliferation or triggering cell death via activating p53. However, it is not clear how the levels of c-Myc lead to different cellular responses. Here, we generated a series of stable RPE cell clones expressing c-Myc at different levels, and found that consistent low level of c-Myc induced cellular senescence by activating AP4 in post-confluent RPE cells, while the cells underwent cell death at high level of c-Myc. In addition, high level of c-Myc could override the effect of AP4 on cellular senescence. Further knockdown of AP4 abrogated senescence-like phenotype in cells expressing low level of c-Myc, and accelerated cell death in cells with medium level of c-Myc, indicating that AP4 was required for cellular senescence induced by low level of c-Myc.
MEDOF - MINIMUM EUCLIDEAN DISTANCE OPTIMAL FILTER
Barton, R. S.
1994-01-01
The Minimum Euclidean Distance Optimal Filter program, MEDOF, generates filters for use in optical correlators. The algorithm implemented in MEDOF follows theory put forth by Richard D. Juday of NASA/JSC. This program analytically optimizes filters on arbitrary spatial light modulators such as coupled, binary, full complex, and fractional 2pi phase. MEDOF optimizes these modulators on a number of metrics including: correlation peak intensity at the origin for the centered appearance of the reference image in the input plane, signal to noise ratio including the correlation detector noise as well as the colored additive input noise, peak to correlation energy defined as the fraction of the signal energy passed by the filter that shows up in the correlation spot, and the peak to total energy which is a generalization of PCE that adds the passed colored input noise to the input image's passed energy. The user of MEDOF supplies the functions that describe the following quantities: 1) the reference signal, 2) the realizable complex encodings of both the input and filter SLM, 3) the noise model, possibly colored, as it adds at the reference image and at the correlation detection plane, and 4) the metric to analyze, here taken to be one of the analytical ones like SNR (signal to noise ratio) or PCE (peak to correlation energy) rather than peak to secondary ratio. MEDOF calculates filters for arbitrary modulators and a wide range of metrics as described above. MEDOF examines the statistics of the encoded input image's noise (if SNR or PCE is selected) and the filter SLM's (Spatial Light Modulator) available values. These statistics are used as the basis of a range for searching for the magnitude and phase of k, a pragmatically based complex constant for computing the filter transmittance from the electric field. The filter is produced for the mesh points in those ranges and the value of the metric that results from these points is computed. When the search is concluded, the
Entropy, extremality, euclidean variations, and the equations of motion
Dong, Xi; Lewkowycz, Aitor
2018-01-01
We study the Euclidean gravitational path integral computing the Rényi entropy and analyze its behavior under small variations. We argue that, in Einstein gravity, the extremality condition can be understood from the variational principle at the level of the action, without having to solve explicitly the equations of motion. This set-up is then generalized to arbitrary theories of gravity, where we show that the respective entanglement entropy functional needs to be extremized. We also extend this result to all orders in Newton's constant G N , providing a derivation of quantum extremality. Understanding quantum extremality for mixtures of states provides a generalization of the dual of the boundary modular Hamiltonian which is given by the bulk modular Hamiltonian plus the area operator, evaluated on the so-called modular extremal surface. This gives a bulk prescription for computing the relative entropies to all orders in G N . We also comment on how these ideas can be used to derive an integrated version of the equations of motion, linearized around arbitrary states.
Flexible intuitions of Euclidean geometry in an Amazonian indigene group
Izard, Véronique; Pica, Pierre; Spelke, Elizabeth S.; Dehaene, Stanislas
2011-01-01
Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian geometry map onto intuitions of space that are present in all humans, even in the absence of formal mathematical education. Our tests probed intuitions of points, lines, and surfaces in participants from an indigene group in the Amazon, the Mundurucu, as well as adults and age-matched children controls from the United States and France and younger US children without education in geometry. The responses of Mundurucu adults and children converged with that of mathematically educated adults and children and revealed an intuitive understanding of essential properties of Euclidean geometry. For instance, on a surface described to them as perfectly planar, the Mundurucu's estimations of the internal angles of triangles added up to ∼180 degrees, and when asked explicitly, they stated that there exists one single parallel line to any given line through a given point. These intuitions were also partially in place in the group of younger US participants. We conclude that, during childhood, humans develop geometrical intuitions that spontaneously accord with the principles of Euclidean geometry, even in the absence of training in mathematics. PMID:21606377
Energy-Efficient Crowdsensing of Human Mobility and Signal Levels in Cellular Networks
Foremski, Paweł; Gorawski, Michał; Grochla, Krzysztof; Polys, Konrad
2015-01-01
The paper presents a practical application of the crowdsensing idea to measure human mobility and signal coverage in cellular networks. Currently, virtually everyone is carrying a mobile phone, which may be used as a sensor to gather research data by measuring, e.g., human mobility and radio signal levels. However, many users are unwilling to participate in crowdsensing experiments. This work begins with the analysis of the barriers for engaging people in crowdsensing. A survey showed that people who agree to participate in crowdsensing expect a minimum impact on their battery lifetime and phone usage habits. To address these requirements, this paper proposes an application for measuring the location and signal strength data based on energy-efficient GPS tracking, which allows one to perform the measurements of human mobility and radio signal levels with minimum energy utilization and without any engagement of the user. The method described combines measurements from the accelerometer with effective management of the GPS to monitor the user mobility with the decrease in battery lifetime by approximately 20%. To show the applicability of the proposed platform, the sample results of signal level distribution and coverage maps gathered for an LTE network and representing human mobility are shown. PMID:26340633
The non-Euclidean revolution with an introduction by H.S.M. Coxeter
Trudeau, Richard J
2001-01-01
How unique and definitive is Euclidean geometry in describing the "real" space in which we live? Richard Trudeau confronts the fundamental question of truth and its representation through mathematical models in The Non-Euclidean Revolution. First, the author analyzes geometry in its historical and philosophical setting; second, he examines a revolution every bit as significant as the Copernican revolution in astronomy and the Darwinian revolution in biology; third, on the most speculative level, he questions the possibility of absolute knowledge of the world. Trudeau writes in a lively, entertaining, and highly accessible style. His book provides one of the most stimulating and personal presentations of a struggle with the nature of truth in mathematics and the physical world. A portion of the book won the Pólya Prize, a distinguished award from the Mathematical Association of America.
Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation.
Irwin, Michael R; Wang, Minge; Campomayor, Capella O; Collado-Hidalgo, Alicia; Cole, Steve
2006-09-18
Inflammation is associated with increased risk of cardiovascular disorders, arthritis, diabetes mellitus, and mortality. The effects of sleep loss on the cellular and genomic mechanisms that contribute to inflammatory cytokine activity are not known. In 30 healthy adults, monocyte intracellular proinflammatory cytokine production was repeatedly assessed during the day across 3 baseline periods and after partial sleep deprivation (awake from 11 pm to 3 am). We analyzed the impact of sleep loss on transcription of proinflammatory cytokine genes and used DNA microarray analyses to characterize candidate transcription-control pathways that might mediate the effects of sleep loss on leukocyte gene expression. In the morning after a night of sleep loss, monocyte production of interleukin 6 and tumor necrosis factor alpha was significantly greater compared with morning levels following uninterrupted sleep. In addition, sleep loss induced a more than 3-fold increase in transcription of interleukin 6 messenger RNA and a 2-fold increase in tumor necrosis factor alpha messenger RNA. Bioinformatics analyses suggested that the inflammatory response was mediated by the nuclear factor kappaB inflammatory signaling system as well as through classic hormone and growth factor response pathways. Sleep loss induces a functional alteration of the monocyte proinflammatory cytokine response. A modest amount of sleep loss also alters molecular processes that drive cellular immune activation and induce inflammatory cytokines; mapping the dynamics of sleep loss on molecular signaling pathways has implications for understanding the role of sleep in altering immune cell physiologic characteristics. Interventions that target sleep might constitute new strategies to constrain inflammation with effects on inflammatory disease risk.
Some nonunitary, indecomposable representations of the Euclidean algebra e(3)
Douglas, Andrew; De Guise, Hubert
2010-01-01
The Euclidean group E(3) is the noncompact, semidirect product group E(3)≅R 3 x SO(3). It is the Lie group of orientation-preserving isometries of three-dimensional Euclidean space. The Euclidean algebra e(3) is the complexification of the Lie algebra of E(3). We construct three distinct families of finite-dimensional, nonunitary representations of e(3) and show that each representation is indecomposable. The representations of the first family are explicitly realized as subspaces of the polynomial ring F[X,Y,Z] with the action of e(3) given by differential operators. The other families are constructed via duals and tensor products of the representations within the first family. We describe subrepresentations, quotients and duals of these indecomposable representations.
Growth Modeling of Human Mandibles using Non-Euclidean Metrics
Hilger, Klaus Baggesen; Larsen, Rasmus; Wrobel, Mark
2003-01-01
From a set of 31 three-dimensional CT scans we model the temporal shape and size of the human mandible. Each anatomical structure is represented using 14851 semi-landmarks, and mapped into Procrustes tangent space. Exploratory subspace analyses are performed leading to linear models of mandible...... shape evolution in Procrustes space. The traditional variance analysis results in a one-dimensional growth model. However, working in a non-Euclidean metric results in a multimodal model with uncorrelated modes of biological variation. The applied non-Euclidean metric is governed by the correlation...... structure of the estimated noise in the data. The generative models are compared, and evaluated on the basis of a cross validation study. The new non-Euclidean analysis is completely data driven. It not only gives comparable results w.r.t. to previous studies of the mean modelling error, but in addition...
Multimodal imaging of the human knee down to the cellular level
Schulz, G.; Götz, C.; Müller-Gerbl, M.; Zanette, I.; Zdora, M.-C.; Khimchenko, A.; Deyhle, H.; Thalmann, P.; Müller, B.
2017-06-01
Computed tomography reaches the best spatial resolution for the three-dimensional visualization of human tissues among the available nondestructive clinical imaging techniques. Nowadays, sub-millimeter voxel sizes are regularly obtained. Regarding investigations on true micrometer level, lab-based micro-CT (μCT) has become gold standard. The aim of the present study is firstly the hierarchical investigation of a human knee post mortem using hard X-ray μCT and secondly a multimodal imaging using absorption and phase contrast modes in order to investigate hard (bone) and soft (cartilage) tissues on the cellular level. After the visualization of the entire knee using a clinical CT, a hierarchical imaging study was performed using the lab-system nanotom® m. First, the entire knee was measured with a pixel length of 65 μm. The highest resolution with a pixel length of 3 μm could be achieved after extracting cylindrically shaped plugs from the femoral bones. For the visualization of the cartilage, grating-based phase contrast μCT (I13-2, Diamond Light Source) was performed. With an effective voxel size of 2.3 μm it was possible to visualize individual chondrocytes within the cartilage.
Tian, Shengke; Xie, Ruohan; Wang, Haixin; Hu, Yan; Hou, Dandi; Liao, Xingcheng; Brown, Patrick H.; Yang, Hongxia; Lin, Xianyong; Labavitch, John M.; Lu, Lingli
2017-04-01
Sedum alfredii is one of a few plant species known to hyperaccumulate cadmium (Cd). Uptake, localization, and tolerance of Cd at cellular levels in shoots were compared in hyperaccumulating (HE) and non-hyperaccumulating (NHE) ecotypes of Sedum alfredii. X-ray fluorescence images of Cd in stems and leaves showed only a slight Cd signal restricted within vascular bundles in the NHEs, while enhanced localization of Cd, with significant tissue- and age-dependent variations, was detected in HEs. In contrast to the vascular-enriched Cd in young stems, parenchyma cells in leaf mesophyll, stem pith and cortex tissues served as terminal storage sites for Cd sequestration in HEs. Kinetics of Cd transport into individual leaf protoplasts of the two ecotypes showed little difference in Cd accumulation. However, far more efficient storage of Cd in vacuoles was apparent in HEs. Subsequent analysis of cell viability and hydrogen peroxide levels suggested that HE protoplasts exhibited higher resistance to Cd than those of NHE protoplasts. These results suggest that efficient sequestration into vacuoles, as opposed to rapid transport into parenchyma cells, is a pivotal process in Cd accumulation and homeostasis in shoots of HE S. alfredii. This is in addition to its efficient root-to-shoot translocation of Cd.
What if? Exploring the multiverse through Euclidean wormholes
Bouhmadi-López, Mariam; Krämer, Manuel; Morais, João; Robles-Pérez, Salvador
2017-10-01
We present Euclidean wormhole solutions describing possible bridges within the multiverse. The study is carried out in the framework of third quantisation. The matter content is modelled through a scalar field which supports the existence of a whole collection of universes. The instanton solutions describe Euclidean solutions that connect baby universes with asymptotically de Sitter universes. We compute the tunnelling probability of these processes. Considering the current bounds on the energy scale of inflation and assuming that all the baby universes are nucleated with the same probability, we draw some conclusions about which universes are more likely to tunnel and therefore undergo a standard inflationary era.
What if? Exploring the multiverse through Euclidean wormholes
Bouhmadi-Lopez, Mariam; Kraemer, Manuel; Morais, Joao; Robles-Perez, Salvador
2017-01-01
We present Euclidean wormhole solutions describing possible bridges within the multiverse. The study is carried out in the framework of third quantisation. The matter content is modelled through a scalar field which supports the existence of a whole collection of universes. The instanton solutions describe Euclidean solutions that connect baby universes with asymptotically de Sitter universes. We compute the tunnelling probability of these processes. Considering the current bounds on the energy scale of inflation and assuming that all the baby universes are nucleated with the same probability, we draw some conclusions about which universes are more likely to tunnel and therefore undergo a standard inflationary era. (orig.)
What if? Exploring the multiverse through Euclidean wormholes
Bouhmadi-Lopez, Mariam [University of the Basque Country UPV/EHU, Department of Theoretical Physics, Bilbao (Spain); Ikerbasque, Basque Foundation for Science, Bilbao (Spain); Kraemer, Manuel [University of Szczecin, Institute of Physics, Szczecin (Poland); Morais, Joao [University of the Basque Country UPV/EHU, Department of Theoretical Physics, Bilbao (Spain); Robles-Perez, Salvador [Instituto de Fisica Fundamental, CSIC, Madrid (Spain); Estacion Ecologica de Biocosmologia, Medellin (Spain)
2017-10-15
We present Euclidean wormhole solutions describing possible bridges within the multiverse. The study is carried out in the framework of third quantisation. The matter content is modelled through a scalar field which supports the existence of a whole collection of universes. The instanton solutions describe Euclidean solutions that connect baby universes with asymptotically de Sitter universes. We compute the tunnelling probability of these processes. Considering the current bounds on the energy scale of inflation and assuming that all the baby universes are nucleated with the same probability, we draw some conclusions about which universes are more likely to tunnel and therefore undergo a standard inflationary era. (orig.)
Irundika H K Dias
Full Text Available The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 (. - by the nicotinamide adenine dinucleotide (NADPH oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2, a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients' neutrophils exhibit a low reduced glutathione (GSH/oxidised glutathione (GSSG ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC, and modifier (GCLM subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 (. - production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis.
Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level.
Cadiou, Hervé; Aoudé, Imad; Tazir, Bassim; Molinas, Adrien; Fenech, Claire; Meunier, Nicolas; Grosmaitre, Xavier
2014-04-02
Mammalian olfactory sensory neurons (OSNs) form the primary elements of the olfactory system. Inserted in the olfactory mucosa lining of the nasal cavity, they are exposed to the environment and their lifespan is brief. Several reports say that OSNs are regularly regenerated during the entire life and that odorant environment affects the olfactory epithelium. However, little is known about the impact of the odorant environment on OSNs at the cellular level and more precisely in the context of early postnatal olfactory exposure. Here we exposed MOR23-green fluorescent protein (GFP) and M71-GFP mice to lyral or acetophenone, ligands for MOR23 or M71, respectively. Daily postnatal exposure to lyral induces plasticity in the population of OSNs expressing MOR23. Their density decreases after odorant exposure, whereas the amount of MOR23 mRNA and protein remain stable in the whole epithelium. Meanwhile, quantitative PCR indicates that each MOR23 neuron has higher levels of olfactory receptor transcripts and also expresses more CNGA2 and phosphodiesterase 1C, fundamental olfactory transduction pathway proteins. Transcript levels return to baseline after 4 weeks recovery. Patch-clamp recordings reveal that exposed MOR23 neurons respond to lyral with higher sensitivity and broader dynamic range while the responses' kinetics were faster. These effects are specific to the odorant-receptor pair lyral-MOR23: there was no effect of acetophenone on MOR23 neurons and no effect of acetophenone and lyral on the M71 population. Together, our results clearly demonstrate that OSNs undergo specific anatomical, molecular, and functional adaptation when chronically exposed to odorants in the early stage of life.
Dias, Irundika H K; Chapple, Ian L C; Milward, Mike; Grant, Melissa M; Hill, Eric; Brown, James; Griffiths, Helen R
2013-01-01
The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN) to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 (. -) by the nicotinamide adenine dinucleotide (NADPH) oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients' neutrophils exhibit a low reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC), and modifier (GCLM) subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 (. -) production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis.
Leptin Levels Are Higher in Whole Compared to Skim Human Milk, Supporting a Cellular Contribution.
Kugananthan, Sambavi; Lai, Ching Tat; Gridneva, Zoya; Mark, Peter J; Geddes, Donna T; Kakulas, Foteini
2016-11-08
Human milk (HM) contains a plethora of metabolic hormones, including leptin, which is thought to participate in the regulation of the appetite of the developing infant. Leptin in HM is derived from a combination of de novo mammary synthesis and transfer from the maternal serum. Moreover, leptin is partially lipophilic and is also present in HM cells. However, leptin has predominately been measured in skim HM, which contains neither fat nor cells. We optimised an enzyme-linked immunosorbent assay for leptin measurement in both whole and skim HM and compared leptin levels between both HM preparations collected from 61 lactating mothers. Whole HM leptin ranged from 0.2 to 1.47 ng/mL, whilst skim HM leptin ranged from 0.19 to 0.9 ng/mL. Whole HM contained, on average, 0.24 ± 0.01 ng/mL more leptin than skim HM ( p < 0.0001, n = 287). No association was found between whole HM leptin and fat content ( p = 0.17, n = 287), supporting a cellular contribution to HM leptin. No difference was found between pre- and post-feed samples (whole HM: p = 0.29, skim HM: p = 0.89). These findings highlight the importance of optimising HM leptin measurement and assaying it in whole HM to accurately examine the amount of leptin received by the infant during breastfeeding.
Leptin Levels Are Higher in Whole Compared to Skim Human Milk, Supporting a Cellular Contribution
Sambavi Kugananthan
2016-11-01
Full Text Available Human milk (HM contains a plethora of metabolic hormones, including leptin, which is thought to participate in the regulation of the appetite of the developing infant. Leptin in HM is derived from a combination of de novo mammary synthesis and transfer from the maternal serum. Moreover, leptin is partially lipophilic and is also present in HM cells. However, leptin has predominately been measured in skim HM, which contains neither fat nor cells. We optimised an enzyme-linked immunosorbent assay for leptin measurement in both whole and skim HM and compared leptin levels between both HM preparations collected from 61 lactating mothers. Whole HM leptin ranged from 0.2 to 1.47 ng/mL, whilst skim HM leptin ranged from 0.19 to 0.9 ng/mL. Whole HM contained, on average, 0.24 ± 0.01 ng/mL more leptin than skim HM (p < 0.0001, n = 287. No association was found between whole HM leptin and fat content (p = 0.17, n = 287, supporting a cellular contribution to HM leptin. No difference was found between pre- and post-feed samples (whole HM: p = 0.29, skim HM: p = 0.89. These findings highlight the importance of optimising HM leptin measurement and assaying it in whole HM to accurately examine the amount of leptin received by the infant during breastfeeding.
Tricia McKeever
Full Text Available BACKGROUND: Lower lung function is associated with an elevated systemic white cell count in men. However, these observations have not been demonstrated in a representative population that includes females and may be susceptible to confounding by recent airway infections or recent cigarette smoking. We tested the hypothesis that lung function is inversely associated with systemic white cell count in a population-based study. METHODS: The study population consisted adults aged 17-90+ years who participated in the Third National Health and Nutrition Examination Survey who did not report a recent cough, cold or acute illness in a non-smoking and smoking population. RESULTS: In non-smoking adults with the highest quintile of the total white cell count had a FEV(1 125.3 ml lower than those in the lowest quintile (95% confidence interval CI: -163.1 to -87.5. Adults with the highest quintile of the total white cell count had a FVC 151.1 ml lower than those in the lowest quintile (95% confidence interval CI: -195.0 to -107.2. Similar associations were observed for granulocytes, mononuclear cells and lymphocytes. In current smokers, similar smaller associations observed for total white cell count, granulocytes and mononuclear cells. CONCLUSIONS: Systemic cellular inflammation levels are inversely associated with lung function in a population of both non-smokers and smokers without acute illnesses. This may contribute to the increased mortality observed in individuals with a higher baseline white cell count.
Combined phase and X-Ray fluorescence imaging at the sub-cellular level
Kosior, Ewelina
2013-01-01
This work presents some recent developments in the field of hard X-ray imaging applied to biomedical research. As the discipline is evolving quickly, new questions appear and the list of needs becomes bigger. Some of them are dealt with in this manuscript. It has been shown that the ID22NI beamline of the ESRF can serve as a proper experimental setup to investigate diverse aspects of cellular research. Together with its high spatial resolution, high flux and high energy range the experimental setup provides bigger field of view, is less sensitive to radiation damages (while taking phase contrast images) and suits well chemical analysis with emphasis on endogenous metals (Zn, Fe, Mn) but also with a possibility for exogenous one's like these found in nanoparticles (Au, Pt, Ag) study. Two synchrotron-based imaging techniques, fluorescence and phase contrast imaging were used in this research project. They were correlated with each other on a number of biological cases, from bacteria E.coli to various cells (HEK 293, PC12, MRC5VA, red blood cells). The explorations made in the chapter 5 allowed preparation of more established and detailed analysis, described in the next chapter where both techniques, X-ray fluorescence and phase contrast imaging, were exploited in order to access absolute metal projected mass fraction in a whole cell. The final image presents for the first time true quantitative information at the sub-cellular level, not biased by the cell thickness. Thus for the first time a fluorescence map serves as a complete quantitative image of a cell without any risk of misinterpretation. Once both maps are divided by each other pixel by pixel (fluorescence map divided by the phase map) they present a complete and final result of the metal (Zn in this work) projected mass fraction in ppm of dry weight. For the purpose of this calculation the analysis was extended to calibration (non-biological) samples. Polystyrene spheres of a known diameter and known
NQO1-dependent redox cycling of idebenone: effects on cellular redox potential and energy levels.
Roman H Haefeli
Full Text Available Short-chain quinones are described as potent antioxidants and in the case of idebenone have already been under clinical investigation for the treatment of neuromuscular disorders. Due to their analogy to coenzyme Q10 (CoQ10, a long-chain quinone, they are widely regarded as a substitute for CoQ10. However, apart from their antioxidant function, this provides no clear rationale for their use in disorders with normal CoQ10 levels. Using recombinant NAD(PH:quinone oxidoreductase (NQO enzymes, we observed that contrary to CoQ10 short-chain quinones such as idebenone are good substrates for both NQO1 and NQO2. Furthermore, the reduction of short-chain quinones by NQOs enabled an antimycin A-sensitive transfer of electrons from cytosolic NAD(PH to the mitochondrial respiratory chain in both human hepatoma cells (HepG2 and freshly isolated mouse hepatocytes. Consistent with the substrate selectivity of NQOs, both idebenone and CoQ1, but not CoQ10, partially restored cellular ATP levels under conditions of impaired complex I function. The observed cytosolic-mitochondrial shuttling of idebenone and CoQ1 was also associated with reduced lactate production by cybrid cells from mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS patients. Thus, the observed activities separate the effectiveness of short-chain quinones from the related long-chain CoQ10 and provide the rationale for the use of short-chain quinones such as idebenone for the treatment of mitochondrial disorders.
What does the Euclidean pseudoparticle do in Minkowski space
Ju, I.
1978-08-01
Self dual pseudoparticle solutions for the classical Yang--Mills field equation with finite action have been constructed in Minkowski space. It is shown that the topological structures apparent in Euclidean space are no longer present in Minkowski space. Topological charges become fractional leading to the unquantized axial charge violation in the process involving fermions. 17 references
Euclidean self-dual Yang-Mills field configurations
Sartori, G.
1980-01-01
The determination of a large class of regular and singular Euclidean self-dual Yang-Mills field configurations is reduced to the solution of a set of linear algebraic equations. The matrix of the coefficients is a polynomial functions of x and the rules for its construction are elementary. (author)
The toroidal Hausdorff dimension of 2d Euclidean quantum gravity
Ambjorn, Jan; Budd, Timothy George
2013-01-01
The lengths of shortest non-contractible loops are studied numerically in 2d Euclidean quantum gravity on a torus coupled to conformal field theories with central charge less than one. We find that the distribution of these geodesic lengths displays a scaling in agreement with a Hausdorff dimension...
Algebraic Methods for Counting Euclidean Embeddings of Rigid Graphs
I.Z. Emiris; E.P. Tsigaridas; A. Varvitsiotis (Antonios); E.R. Gasner
2009-01-01
textabstract The study of (minimally) rigid graphs is motivated by numerous applications, mostly in robotics and bioinformatics. A major open problem concerns the number of embeddings of such graphs, up to rigid motions, in Euclidean space. We capture embeddability by polynomial systems
Timed Fast Exact Euclidean Distance (tFEED) maps
Kehtarnavaz, Nasser; Schouten, Theo E.; Laplante, Philip A.; Kuppens, Harco; van den Broek, Egon
2005-01-01
In image and video analysis, distance maps are frequently used. They provide the (Euclidean) distance (ED) of background pixels to the nearest object pixel. In a naive implementation, each object pixel feeds its (exact) ED to each background pixel; then the minimum of these values denotes the ED to
Optimal Embeddings of Distance Regular Graphs into Euclidean Spaces
F. Vallentin (Frank)
2008-01-01
htmlabstractIn this paper we give a lower bound for the least distortion embedding of a distance regular graph into Euclidean space. We use the lower bound for finding the least distortion for Hamming graphs, Johnson graphs, and all strongly regular graphs. Our technique involves semidefinite
The Euclidean distance degree of an algebraic variety
Draisma, J.; Horobet, E.; Ottaviani, G.; Sturmfels, B.; Thomas, R.R.
2013-01-01
The nearest point map of a real algebraic variety with respect to Euclidean distance is an algebraic function. For instance, for varieties of low rank matrices, the Eckart-Young Theorem states that this map is given by the singular value decomposition. This article develops a theory of such nearest
The Euclidean distance degree of an algebraic variety
Draisma, J.; Horobet, E.; Ottaviani, G.; Sturmfels, B.; Thomas, R.R.
The nearest point map of a real algebraic variety with respect to Euclidean distance is an algebraic function. For instance, for varieties of low-rank matrices, the Eckart–Young Theorem states that this map is given by the singular value decomposition. This article develops a theory of such nearest
Fisher type inequalities for Euclidean t-designs
Delsarte, Ph.; Seidel, J.J.
1989-01-01
The notion of a Euclidean t-design is analyzed in the framework of appropriate inner product spaces of polynomial functions. Some Fisher type inequalities are obtained in a simple manner by this method. The same approach is used to deal with certain analogous combinatorial designs.
Superconvergent perturbation theory for euclidean scalar field theories
Ushveridze, A.G.
1984-01-01
It is shown that the bare (unrenormalized) correlation functions in the euclidean scalar field theories can be expanded in a series whose terms, being computable in a relatively simple way, are free from ultraviolet and infrared divergencies. This series is convergent (divergent) for finite (infinite) values of the correlation functions. (orig.)
Improvement in quality testing of Braille printer output with Euclidean ...
This paper focuses on quality testing of Braille printed paper using calibrated camera by detecting dots and measuring the Euclidean distances between them with equal gap, vertically and horizontally. For higher accuracy, camera calibration is essential to observe a planar checker board pattern from different distances and ...
The Role of Structure in Learning Non-Euclidean Geometry
Asmuth, Jennifer A.
2009-01-01
How do people learn novel mathematical information that contradicts prior knowledge? The focus of this thesis is the role of structure in the acquisition of knowledge about hyperbolic geometry, a non-Euclidean geometry. In a series of three experiments, I contrast a more holistic structure--training based on closed figures--with a mathematically…
Euclidean Primes Have the Minimum Number of Primitive Roots
Křížek, Michal; Somer, L.
2008-01-01
Roč. 12, č. 1 (2008), s. 121-127 ISSN 0972-5555 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : Euclidean primes * Fermat primes * Sophie Germain primes Subject RIV: BA - General Mathematics
Pricing Patterns of Cellular Phones and Phonecalls: A Segment-Level Analysis
Dipak C. Jain; Eitan Muller; Naufel J. Vilcassim
1999-01-01
One expectation of the U.S. Federal Communications Commission (FCC) in the early stages of the cellular communications industry was that the presence of two licensees in each market would ensure competition, and thereby result in declining prices over time for both cellular phones (handsets) and phonecalls. However, industry observers have noted recently that although the price of handsets has declined over time, the price of the phonecalls has not. We investigate this interesting pricing iss...
Efficient gamma index calculation using fast Euclidean distance transform
Chen Mingli; Lu Weiguo; Chen Quan; Ruchala, Kenneth; Olivera, Gustavo [TomoTherapy Inc., 1240 Deming Way, Madison, WI 53717 (United States)], E-mail: wlu@tomotherapy.com
2009-04-07
The gamma index is a tool for dose distribution comparison. It combines both dose difference (DD) and distance to agreement (DTA) into a single quantity. Though it is an effective measure, making up for the inadequacy of DD or DTA alone, its calculation can be very time-consuming. For a k-D space with N quantization levels in each dimension, the complexity of the exhaustive search is O(N{sup 2k}). In this work, we proposed an efficient method that reduces the complexity from O(N{sup 2k}) to O(N{sup k}M), where M is the number of discretized dose values and is comparable to N. More precisely, by embedding the reference dose distribution in a (k+1)-D spatial-dose space, we can use fast Euclidean distance transform with linear complexity to obtain a table of gamma indices evaluated over a range of the (k+1)-D spatial-dose space. Then, to obtain gamma indices for the test dose distribution, it requires only table lookup with complexity O(N{sup k}). Such a table can also be used for other test dose distributions as long as the reference dose distribution is the same. Simulations demonstrated the efficiency of our proposed method. The speedup for 3D gamma index calculation is expected to be on the order of tens of thousands (from O(N{sup 6}) to O(N{sup 3}M)) if N is a few hundreds, which makes clinical usage of the 3D gamma index feasible. A byproduct of the gamma index table is that the gradient of the gamma index with respect to either the spatial or dose dimension can be easily derived. The gradient can be used to identify the main causes of the discrepancy from the reference distribution at any dose point in the test distribution or incorporated in treatment planning and machine parameter optimization.
Brown, Joseph N.; Ortiz, Gabriel M.; Angel, Thomas E.; Jacobs, Jon M.; Gritsenko, Marina A.; Chan, Eric Y.; Purdy, David E.; Murnane, Robert D.; Larsen, Kay; Palermo, Robert E.; Shukla, Anil K.; Clauss, Therese RW; Katze, Michael G.; McCune, Joseph M.; Smith, Richard D.
2012-05-11
Morphine has long been known to have immunosuppressive properties in vivo, but the molecular and immunologic changes induced by it are incompletely understood. As a prelude to understanding how these changes might interact with lentiviral infection in vivo, animals from two non-human primate (NHP) species [African green monkey (AGMs) and pigtailed macaque (PTs)] were provided morphine and studied using a systems biology approach. Biological specimens were obtained from multiple sources (e.g., lymph node, colon, cerebrospinal fluid (CSF), and peripheral blood) before and after the administration of morphine (titrated up to a maximum dose of 5 mg/kg over a period of 20 days). Cellular immune, plasma cytokine, and proteome changes were measured and morphine-induced changes in these parameters were assessed on an inter-organ, inter-individual, and inter-species basis. In both species, morphine was associated with decreased levels of (Ki-67+) T cell activation but with only minimal changes in overall T cell counts, neutrophil counts, and NK cells counts. While changes in T cell maturation were observed, these varied across the various tissue/fluid compartments studied. Proteomic analysis revealed a morphine-induced suppressive effect in the lymph node, with decreased abundance of protein mediators involved in the functional categories of energy metabolism, signaling, and maintenance of cell structure. These findings have relevance for understanding the impact of heroin addiction and the opioids used to treat addiction as well as on the interplay between opioid abuse and the response to infection with agents such as the human immunodeficiency virus, type 1 (HIV).
CBFA1 and topoisomerase I mRNA levels decline during cellular aging of human trabecular osteoblasts
Christiansen, Mette; Kveiborg, M.; Kassem, M.
2000-01-01
In order to understand the reasons for age-related impairment of the function of bone forming osteoblasts, we have examined the steady-state mRNA levels of the transcription factor CBFA1 and topoisomerase I during cellular aging of normal human trabecular osteoblasts, by the use of semiquantitati...
Biharmonic Submanifolds with Parallel Mean Curvature Vector in Pseudo-Euclidean Spaces
Fu, Yu, E-mail: yufudufe@gmail.com [Dongbei University of Finance and Economics, School of Mathematics and Quantitative Economics (China)
2013-12-15
In this paper, we investigate biharmonic submanifolds in pseudo-Euclidean spaces with arbitrary index and dimension. We give a complete classification of biharmonic spacelike submanifolds with parallel mean curvature vector in pseudo-Euclidean spaces. We also determine all biharmonic Lorentzian surfaces with parallel mean curvature vector field in pseudo-Euclidean spaces.
Biharmonic Submanifolds with Parallel Mean Curvature Vector in Pseudo-Euclidean Spaces
Fu, Yu
2013-01-01
In this paper, we investigate biharmonic submanifolds in pseudo-Euclidean spaces with arbitrary index and dimension. We give a complete classification of biharmonic spacelike submanifolds with parallel mean curvature vector in pseudo-Euclidean spaces. We also determine all biharmonic Lorentzian surfaces with parallel mean curvature vector field in pseudo-Euclidean spaces
Valsecchi, Federica; Koopman, Werner J. H.; Manjeri, Ganesh R.; Rodenburg, Richard J.; Smeitink, Jan A. M.; Willems, Peter H. G. M.
2010-01-01
Mitochondrial oxidative phosphorylation (OXPHOS) represents the final step in the conversion of nutrients into cellular energy. Genetic defects in the OXPHOS system have an incidence between 1:5,000 and 1:10,000 live births. Inherited isolated deficiency of the first complex (CI) of this system, a multisubunit assembly of 45 different proteins,…
A study of the biological effects of rare earth elements at cellular level using nuclear techniques
Feng Zhihui; Wang Xi; Zhang Sunxi; An Lizhi; Zhang Jingxia; Yao Huiying
2001-01-01
Objective: To investigate the biological effects and the effecting mechanisms of rare earth elements La, Gd and Ce on cultured rat cells. Methods: The biological effects of La 3+ on cultured rat cells and the subcellular distribution of La and Gd and Ce, and the inflow of 45 Ca 2+ into the cells and total cellular calcium were measured by isotopic tracing, Proton Induced X Ray Emission Analysis (PIXE) and the techniques of biochemistry and cellular biology. Results: La 3+ at the concentration of 10- 10( or 10 -9 ) - 10 -6 mol/L significantly increased quantity of incorporation of 3 H-TdR into DNA, total cellular protein and the activity of succinic dehydrogenase of mitochondria. The cell cycle analysis showed that the proportions of cells in S phase were accordingly increased acted by La 3+ at above range of concentration. But these values were significantly decreased when concentration of La 3+ raised to 10 -4 - 10 -3 mol/L. It was further discovered that La, Gd and Ce distributed mostly in the nuclei, and then in membranes. Gd and Ce also promoted the inflow of 45 Ca 2+ into the cells and increased the total calcium content in cells. Conclusions: 1) La 3+ at a wide concentration range of 10 -10 ( or 10 -9 ) - 10 -6 mol/L promotes proliferation of cultured rat cells, but at even higher concentration (10 -4 - 10 -3 mol/L) shows cellular toxicity, and there is a striking dose-effect relationship. 2) La, Gd and Ce can enter the cells and mainly distribute in the nuclei. 3) Gd and Ce can promote the inflow of extracellular Ca 2+ into the cells and increase total cellular calcium
Euclidean to Minkowski Bethe-Salpeter amplitude and observables
Carbonell, J.; Frederico, T.; Karmanov, V.A.
2017-01-01
We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)
Tunneling in expanding Universe: Euclidean and Hamiltonian approaches
Goncharov, A.S.; Linde, A.D.
1986-01-01
The theory of the false vacuum decay in de Sitter space and in the inflationary Universe, and also the theory of the Universe creation ''from nothing'' are discussed. This explained why tunneling in the inflationary Universe differs from that in de Sitter space and cannot be exactly homogeneous. It is shown that in several important cases the Euclidean approach should be considerably modified or is absolutely inapplicable for the description of tunneling in the expanding Universe and of the process of the quantum creation of the Universe. The Hamiltonian approach to the theory of tunneling in expanding Universe is developed. The results obtained by this method are compared with the results obtained by the Euclidean approach
Euclidean to Minkowski Bethe-Salpeter amplitude and observables
Carbonell, J. [Universite Paris-Sud, IN2P3-CNRS, Institut de Physique Nucleaire, Orsay Cedex (France); Frederico, T. [Instituto Tecnologico de Aeronautica, DCTA, Sao Jose dos Campos (Brazil); Karmanov, V.A. [Lebedev Physical Institute, Moscow (Russian Federation)
2017-01-15
We propose a method to reconstruct the Bethe-Salpeter amplitude in Minkowski space given the Euclidean Bethe-Salpeter amplitude - or alternatively the light-front wave function - as input. The method is based on the numerical inversion of the Nakanishi integral representation and computing the corresponding weight function. This inversion procedure is, in general, rather unstable, and we propose several ways to considerably reduce the instabilities. In terms of the Nakanishi weight function, one can easily compute the BS amplitude, the LF wave function and the electromagnetic form factor. The latter ones are very stable in spite of residual instabilities in the weight function. This procedure allows both, to continue the Euclidean BS solution in the Minkowski space and to obtain a BS amplitude from a LF wave function. (orig.)
General Nth order integrals of motion in the Euclidean plane
Post, S; Winternitz, P
2015-01-01
The general form of an integral of motion that is a polynomial of order N in the momenta is presented for a Hamiltonian system in two-dimensional Euclidean space. The classical and the quantum cases are treated separately, emphasizing both the similarities and the differences between the two. The main application will be to study Nth order superintegrable systems that allow separation of variables in the Hamilton–Jacobi and Schrödinger equations, respectively. (paper)
Optimal recovery of linear operators in non-Euclidean metrics
Osipenko, K Yu [Moscow State Aviation Technological University, Moscow (Russian Federation)
2014-10-31
The paper looks at problems concerning the recovery of operators from noisy information in non-Euclidean metrics. A number of general theorems are proved and applied to recovery problems for functions and their derivatives from the noisy Fourier transform. In some cases, a family of optimal methods is found, from which the methods requiring the least amount of original information are singled out. Bibliography: 25 titles.
Change of Measure between Light Travel Time and Euclidean Distances
Heymann Y.
2013-04-01
Full Text Available The problem of cosmological distances is approached using a method based on the propagation of light in an expanding Universe. From the chan ge of measure between Light Travel Time and Euclidean Distances, a formula is deri ved to compute distances as a function of redshift. This formula is identical to Matti g’s formula (with q 0 = 1 / 2 which is based on Friedmann’s equations of general relativi ty.
Exact Boson-Fermion Duality on a 3D Euclidean Lattice
Chen, Jing-Yuan; Son, Jun Ho; Wang, Chao; Raghu, S.
2018-01-01
The idea of statistical transmutation plays a crucial role in descriptions of the fractional quantum Hall effect. However, a recently conjectured duality between a critical boson and a massless two-component Dirac fermion extends this notion to gapless systems. This duality sheds light on highly nontrivial problems such as the half-filled Landau level, the superconductor-insulator transition, and surface states of strongly coupled topological insulators. Although this boson-fermion duality has undergone many consistency checks, it has remained unproven. We describe the duality in a nonperturbative fashion using an exact UV mapping of partition functions on a 3D Euclidean lattice.
Folding of non-Euclidean curved shells
Bende, Nakul; Evans, Arthur; Innes-Gold, Sarah; Marin, Luis; Cohen, Itai; Santangelo, Christian; Hayward, Ryan
2015-03-01
Origami-based folding of 2D sheets has been of recent interest for a variety of applications ranging from deployable structures to self-folding robots. Though folding of planar sheets follows well-established principles, folding of curved shells involves an added level of complexity due to the inherent influence of curvature on mechanics. In this study, we use principles from differential geometry and thin shell mechanics to establish fundamental rules that govern folding of prototypical creased shells. In particular, we show how the normal curvature of a crease line controls whether the deformation is smooth or discontinuous, and investigate the influence of shell thickness and boundary conditions. We show that snap-folding of shells provides a route to rapid actuation on time-scales dictated by the speed of sound. The simple geometric design principles developed can be applied at any length-scale, offering potential for bio-inspired soft actuators for tunable optics, microfluidics, and robotics. This work was funded by the National Science Foundation through EFRI ODISSEI-1240441 with additional support to S.I.-G. through the UMass MRSEC DMR-0820506 REU program.
Riggio Cristina
2009-01-01
Full Text Available Abstract In this article, a carbon nanotube (CNT array-based system combined with a polymer thin film is proposed as an effective drug release device directly at cellular level. The polymeric film embedded in the CNT array is described and characterized in terms of release kinetics, while in vitro assays on PC12 cell line have been performed in order to assess the efficiency and functionality of the entrapped agent (neural growth factor, NGF. PC12 cell differentiation, following incubation on the CNT array embedding the alginate delivery film, demonstrated the effectiveness of the proposed solution. The achieved results indicate that polymeric technology could be efficiently embedded in CNT array acting as drug delivery system at cellular level. The implication of this study opens several perspectives in particular in the field of neurointerfaces, combining several functions into a single platform.
BmNHR96 participate BV entry of BmN-SWU1 cells via affecting the cellular cholesterol level.
Dong, Xiao-Long; Liu, Tai-Hang; Wang, Wei; Pan, Cai-Xia; Du, Guo-Yu; Wu, Yun-Fei; Pan, Min-Hui; Lu, Cheng
2017-01-22
B.mori nucleopolyhedrovirus (BmNPV), which produces BV and ODV two virion phenotypes in its life cycle, caused the amount of economic loss in sericulture. But the mechanism of its infection was still unclear. In this study we characterized B.mori nuclear hormone receptor 96 (BmNHR96) as a NHR96 family member, which was localized in the nucleus. We also found BmNHR96 over-expression could enhance the entry of BV as well as cellular cholesterol level. Furthermore, we validated that BmNHR96 increased membrane fusion mediated by GP64, which could probably promote BV-infection. In summary, our study suggested that BmNHR96 plays an important role in BV infection and this function probably actualized by affecting cellular cholesterol level, and our results provided insights to the mechanisms of BV-infection of B.mori. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhou, Yongjin; Wang, Lei; Yang, Fan; Lin, Xinping; Zhang, Sufang; Zhao, Zongbao K.
2011-01-01
NAD (NAD+) and its reduced form (NADH) are omnipresent cofactors in biological systems. However, it is difficult to determine the extremes of the cellular NAD(H) level in live cells because the NAD+ level is tightly controlled by a biosynthesis regulation mechanism. Here, we developed a strategy to determine the extreme NAD(H) levels in Escherichia coli cells that were genetically engineered to be NAD+ auxotrophic. First, we expressed the ntt4 gene encoding the NAD(H) transporter in the E. co...
Butz, Nicole; Ruetz, Stephan; Natt, Francois; Hall, Jonathan; Weiler, Jan; Mestan, Juergen; Ducarre, Monique; Grossenbacher, Rita; Hauser, Patrick; Kempf, Dominique; Hofmann, Francesco
2005-01-01
Ubiquitin-mediated degradation of the cyclin-dependent kinase inhibitor p27 Kip1 was shown to be required for the activation of key cyclin-dependent kinases, thereby triggering the onset of DNA replication and cell cycle progression. Although the SCF Skp2 ubiquitin ligase has been reported to mediate p27 Kip1 degradation, the nature of the human ubiquitin-conjugating enzyme involved in this process has not yet been determined at the cellular level. Here, we show that antisense oligonucleotides targeting the human ubiquitin-conjugating enzyme Cdc34 downregulate its expression, inhibit the degradation of p27 Kip1 , and prevent cellular proliferation. Elevation of p27 Kip1 protein level is found to be the sole requirement for the inhibition of cellular proliferation induced upon downregulation of Cdc34. Indeed, reducing the expression of p27 Kip1 with a specific antisense oligonucleotide is sufficient to reverse the anti-proliferative phenotype elicited by the Cdc34 antisense. Furthermore, downregulation of Cdc34 is found to specifically increase the abundance of the SCF Skp2 ubiquitin ligase substrate p27 Kip1 , but has no concomitant effect on the level of IkBα and β-catenin, which are known substrates of a closely related SCF ligase
Stewart, R. [University of Washington (United States)
2016-06-15
Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological
Stewart, R.
2016-01-01
Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological
An Optimized Three-Level Design of Decoder Based on Nanoscale Quantum-Dot Cellular Automata
Seyedi, Saeid; Navimipour, Nima Jafari
2018-03-01
Quantum-dot Cellular Automata (QCA) has been potentially considered as a supersede to Complementary Metal-Oxide-Semiconductor (CMOS) because of its inherent advantages. Many QCA-based logic circuits with smaller feature size, improved operating frequency, and lower power consumption than CMOS have been offered. This technology works based on electron relations inside quantum-dots. Due to the importance of designing an optimized decoder in any digital circuit, in this paper, we design, implement and simulate a new 2-to-4 decoder based on QCA with low delay, area, and complexity. The logic functionality of the 2-to-4 decoder is verified using the QCADesigner tool. The results have shown that the proposed QCA-based decoder has high performance in terms of a number of cells, covered area, and time delay. Due to the lower clock pulse frequency, the proposed 2-to-4 decoder is helpful for building QCA-based sequential digital circuits with high performance.
Continuum-level modelling of cellular adhesion and matrix production in aggregates.
Geris, Liesbet; Ashbourn, Joanna M A; Clarke, Tim
2011-05-01
Key regulators in tissue-engineering processes such as cell culture and cellular organisation are the cell-cell and cell-matrix interactions. As mathematical models are increasingly applied to investigate biological phenomena in the biomedical field, it is important, for some applications, that these models incorporate an adequate description of cell adhesion. This study describes the development of a continuum model that represents a cell-in-gel culture system used in bone-tissue engineering, namely that of a cell aggregate embedded in a hydrogel. Cell adhesion is modelled through the use of non-local (integral) terms in the partial differential equations. The simulation results demonstrate that the effects of cell-cell and cell-matrix adhesion are particularly important for the survival and growth of the cell population and the production of extracellular matrix by the cells, concurring with experimental observations in the literature.
Hierarchical random cellular neural networks for system-level brain-like signal processing.
Kozma, Robert; Puljic, Marko
2013-09-01
Sensory information processing and cognition in brains are modeled using dynamic systems theory. The brain's dynamic state is described by a trajectory evolving in a high-dimensional state space. We introduce a hierarchy of random cellular automata as the mathematical tools to describe the spatio-temporal dynamics of the cortex. The corresponding brain model is called neuropercolation which has distinct advantages compared to traditional models using differential equations, especially in describing spatio-temporal discontinuities in the form of phase transitions. Phase transitions demarcate singularities in brain operations at critical conditions, which are viewed as hallmarks of higher cognition and awareness experience. The introduced Monte-Carlo simulations obtained by parallel computing point to the importance of computer implementations using very large-scale integration (VLSI) and analog platforms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Morales Quinteros, Luis; Bringué Roque, Josep; Kaufman, David; Artigas Raventós, Antonio
2018-02-24
Important recent insights have emerged regarding the cellular and molecular role of carbon dioxide (CO 2 ) and the effects of hypercapnia. The latter may have beneficial effects in patients with acute lung injury, affording reductions in pulmonary inflammation, lessened oxidative alveolar damage, and the regulation of innate immunity and host defenses by inhibiting the expression of inflammatory cytokines. However, other studies suggest that CO 2 can have deleterious effects upon the lung, reducing alveolar wound repair in lung injury, decreasing the rate of reabsorption of alveolar fluid, and inhibiting alveolar cell proliferation. Clearly, hypercapnia has both beneficial and harmful consequences, and it is important to determine the net effect under specific conditions. The purpose of this review is to describe the immunological and physiological effects of carbon dioxide, considering their potential consequences in patients with acute respiratory failure. Copyright © 2018 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.
Spinors and supersymmetry in four-dimensional Euclidean space
McKeon, D.G.C.; Sherry, T.N.
2001-01-01
Spinors in four-dimensional Euclidean space are treated using the decomposition of the Euclidean space SO(4) symmetry group into SU(2)xSU(2). Both 2- and 4-spinor representations of this SO(4) symmetry group are shown to differ significantly from the corresponding spinor representations of the SO(3, 1) symmetry group in Minkowski space. The simplest self conjugate supersymmetry algebra allowed in four-dimensional Euclidean space is demonstrated to be an N=2 supersymmetry algebra which resembles the N=2 supersymmetry algebra in four-dimensional Minkowski space. The differences between the two supersymmetry algebras gives rise to different representations; in particular an analysis of the Clifford algebra structure shows that the momentum invariant is bounded above by the central charges in 4dE, while in 4dM the central charges bound the momentum invariant from below. Dimensional reduction of the N=1 SUSY algebra in six-dimensional Minkowski space (6dM) to 4dE reproduces our SUSY algebra in 4dE. This dimensional reduction can be used to introduce additional generators into the SUSY algebra in 4dE. Well known interpolating maps are used to relate the N=2 SUSY algebra in 4dE derived in this paper to the N=2 SUSY algebra in 4dM. The nature of the spinors in 4dE allows us to write an axially gauge invariant model which is shown to be both Hermitian and anomaly-free. No equivalent model exists in 4dM. Useful formulae in 4dE are collected together in two appendixes
Convergent perturbation expansions for Euclidean quantum field theory
Mack, G.; Pordt, A.
1984-09-01
Mayer perturbation theory is designed to provide computable convergent expansions which permit calculation of Greens functions in Euclidean Quantum Field Theory to arbitrary accuracy, including 'nonperturbative' contributions from large field fluctuations. Here we describe the expansions at the example of 3-dimensional lambdaphi 4 -theory (in continuous space). They are not essentially more complicated than standard perturbation theory. The n-th order term is expressed in terms of 0(n)-dimensional integrals, and is of order lambda 4 if 4k-3<=n<=4k. (orig.)
Euclidean D-branes and higher-dimensional gauge theory
Acharya, B.S.; Figueroa-O'Farrill, J.M.; Spence, B.; O'Loughlin, M.
1997-07-01
We consider euclidean D-branes wrapping around manifolds of exceptional holonomy in dimensions seven and eight. The resulting theory on the D-brane-that is, the dimensional reduction of 10-dimensional supersymmetric Yang-Mills theory-is a cohomological field theory which describes the topology of the moduli space of instantons. The 7-dimensional theory is an N T =2 (or balanced) cohomological theory given by an action potential of Chern-Simons type. As a by-product of this method, we construct a related cohomological field theory which describes the monopole moduli space on a 7-manifold of G 2 holonomy. (author). 22 refs, 3 tabs
The G_Newton --> 0 Limit of Euclidean Quantum Gravity
Smolin, Lee
1992-01-01
Using the Ashtekar formulation, it is shown that the G_{Newton} --> 0 limit of Euclidean or complexified general relativity is not a free field theory, but is a theory that describes a linearized self-dual connection propagating on an arbitrary anti-self-dual background. This theory is quantized in the loop representation and, as in the full theory, an infinite dimnensional space of exact solutions to the constraint is found. An inner product is also proposed. The path integral is constructed...
Multi-stability in folded shells: non-Euclidean origami
Evans, Arthur
2015-03-01
Both natural and man-made structures benefit from having multiple mechanically stable states, from the quick snapping motion of hummingbird beaks to micro-textured surfaces with tunable roughness. Rather than discuss special fabrication techniques for creating bi-stability through material anisotropy, in this talk I will present several examples of how folding a structure can modify the energy landscape and thus lead to multiple stable states. Using ideas from origami and differential geometry, I will discuss how deforming a non-Euclidean surface can be done either continuously or discontinuously, and explore the effects that global constraints have on the ultimate stability of the surface.
ILUCG algorithm which minimizes in the Euclidean norm
Petravic, M.; Kuo-Petravic, G.
1978-07-01
An algroithm is presented which solves sparse systems of linear equations of the form Ax = Y, where A is non-symmetric, by the Incomplete LU Decomposition-Conjugate Gradient (ILUCG) method. The algorithm minimizes the error in the Euclidean norm vertical bar x/sub i/ - x vertical bar 2 , where x/sub i/ is the solution vector after the i/sup th/ iteration and x the exact solution vector. The results of a test on one real problem indicate that the algorithm is likely to be competitive with the best existing algorithms of its type
A Class of Weingarten Surfaces in Euclidean 3-Space
Yu Fu
2013-01-01
Full Text Available The class of biconservative surfaces in Euclidean 3-space 3 are defined in (Caddeo et al., 2012 by the equation A(grad H=-H grad H for the mean curvature function H and the Weingarten operator A. In this paper, we consider the more general case that surfaces in 3 satisfying A(grad H=kH grad H for some constant k are called generalized bi-conservative surfaces. We show that this class of surfaces are linear Weingarten surfaces. We also give a complete classification of generalized bi-conservative surfaces in 3.
A strong coupling simulation of Euclidean quantum gravity
Berg, B.; Hamburg Univ.
1984-12-01
Relying on Regge calculus a systematic numerical investigation of models of 4d Euclidean gravity is proposed. The scale a = 1 0 is set by fixing the expectation value of a length. Possible universality of such models is discussed. The strong coupling limit is defined by taking Planck mass msub(p) -> 0 (in units of 1 0 -1 ). The zero order approximation msub(p) = 0 is called 'fluctuating space' and investigated numerically in two 4d models. Canonical dimensions are realized and both models give a negative expectation value for the scalar curvature density. (orig.)
Alfazari, Ali S; Al-Dabbagh, Bayan; Al-Dhaheri, Wafa; Taha, Mazen S; Chebli, Ahmad A; Fontagnier, Eva M; Koutoubi, Zaher; Kochiyi, Jose; Karam, Sherif M; Souid, Abdul-Kader
2015-01-01
AIM: To measure biochemical parameters in stomach biopsies and test their suitability as diagnostic biomarkers for gastritis and precancerous lesions. METHODS: Biopsies were obtained from the stomachs of two groups of patients (n = 40) undergoing fiber-optic endoscopy due to upper gastrointestinal symptoms. In the first group (n = 17), only the corpus region was examined. Biopsies were processed for microscopic examination and measurement of mitochondrial O2 consumption (cellular respiration), cellular adenosine triphosphate (ATP), glutathione (GSH), and caspase activity. In the second group of patients (n = 23), both corpus and antral regions were studied. Some biopsies were processed for microscopic examination, while the others were used for measurements of cellular respiration and GSH level. RESULTS: Microscopic examinations of gastric corpus biopsies from 17 patients revealed normal mucosae in 8 patients, superficial gastritis in 7 patients, and chronic atrophic gastritis in 1 patient. In patients with normal histology, the rate (mean ± SD) of cellular respiration was 0.17 ± 0.02 μmol/L O2 min-1 mg-1, ATP content was 487 ± 493 pmol/mg, and GSH was 469 ± 98 pmol/mg. Caspase activity was detected in 3 out of 8 specimens. The values of ATP and caspase activity were highly variable. The presence of superficial gastritis had insignificant effects on the measured biomarkers. In the patient with atrophic gastritis, cellular respiration was high and ATP was relatively low, suggesting uncoupling oxidative phosphorylation. In the second cohort of patients, the examined biopsies showed either normal or superficial gastritis. The rate of cellular respiration (O2. μmol/L min-1 mg-1) was slightly higher in the corpus than the antrum (0.18 ± 0.05 vs 0.15 ± 0.04, P = 0.019). The value of GSH was about the same in both tissues (310 ± 135 vs 322 ± 155, P = 0.692). CONCLUSION: The corpus mucosa was metabolically more active than the antrum tissue. The data in this
CytoSpectre: a tool for spectral analysis of oriented structures on cellular and subcellular levels.
Kartasalo, Kimmo; Pölönen, Risto-Pekka; Ojala, Marisa; Rasku, Jyrki; Lekkala, Jukka; Aalto-Setälä, Katriina; Kallio, Pasi
2015-10-26
Orientation and the degree of isotropy are important in many biological systems such as the sarcomeres of cardiomyocytes and other fibrillar structures of the cytoskeleton. Image based analysis of such structures is often limited to qualitative evaluation by human experts, hampering the throughput, repeatability and reliability of the analyses. Software tools are not readily available for this purpose and the existing methods typically rely at least partly on manual operation. We developed CytoSpectre, an automated tool based on spectral analysis, allowing the quantification of orientation and also size distributions of structures in microscopy images. CytoSpectre utilizes the Fourier transform to estimate the power spectrum of an image and based on the spectrum, computes parameter values describing, among others, the mean orientation, isotropy and size of target structures. The analysis can be further tuned to focus on targets of particular size at cellular or subcellular scales. The software can be operated via a graphical user interface without any programming expertise. We analyzed the performance of CytoSpectre by extensive simulations using artificial images, by benchmarking against FibrilTool and by comparisons with manual measurements performed for real images by a panel of human experts. The software was found to be tolerant against noise and blurring and superior to FibrilTool when analyzing realistic targets with degraded image quality. The analysis of real images indicated general good agreement between computational and manual results while also revealing notable expert-to-expert variation. Moreover, the experiment showed that CytoSpectre can handle images obtained of different cell types using different microscopy techniques. Finally, we studied the effect of mechanical stretching on cardiomyocytes to demonstrate the software in an actual experiment and observed changes in cellular orientation in response to stretching. CytoSpectre, a versatile, easy
Non-Euclidean geometry and curvature two-dimensional spaces, volume 3
Cannon, James W
2017-01-01
This is the final volume of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. Einstein showed how to interpret gravity as the dynamic response to the curvature of space-time. Bill Thurston showed us that non-Euclidean geometries and curvature are essential to the understanding of low-dimensional spaces. This third and final volume aims to give the reader a firm intuitive understanding of these concepts in dimension 2. The volume first demonstrates a number of the most important properties of non-Euclidean geometry by means of simple infinite graphs that approximate that geometry. This is followed by a long chapter taken from lectures the author gave at MSRI, wh...
Speckle Suppression by Weighted Euclidean Distance Anisotropic Diffusion
Fengcheng Guo
2018-05-01
Full Text Available To better reduce image speckle noise while also maintaining edge information in synthetic aperture radar (SAR images, we propose a novel anisotropic diffusion algorithm using weighted Euclidean distance (WEDAD. Presented here is a modified speckle reducing anisotropic diffusion (SRAD method, which constructs a new edge detection operator using weighted Euclidean distances. The new edge detection operator can adaptively distinguish between homogenous and heterogeneous image regions, effectively generate anisotropic diffusion coefficients for each image pixel, and filter each pixel at different scales. Additionally, the effects of two different weighting methods (Gaussian weighting and non-linear weighting of de-noising were analyzed. The effect of different adjustment coefficient settings on speckle suppression was also explored. A series of experiments were conducted using an added noise image, GF-3 SAR image, and YG-29 SAR image. The experimental results demonstrate that the proposed method can not only significantly suppress speckle, thus improving the visual effects, but also better preserve the edge information of images.
On the Schroedinger representation of the Euclidean quantum field theory
Semmler, U.
1987-04-01
The theme of the present thesis is the Schroedinger representation of the Euclidean quantum field theory: We define the time development of the quantum field states as functional integral in a novel, mathematically precise way. In the following we discuss the consequences which result from this approach to the Euclidean quantum field theory. Chapter 1 introduces the theory of abstract Wiener spaces which is here proved as suitable mathematical tool for the treatment of the physical problems. In chapter 2 the diffusion theory is formulated in the framework of abstract Wiener spaces. In chapter 3 we define the field functional ψ 5 u, t 7 as functional integral, determine the functional differential equation which ψ satisfies (Schroedinger equation), and summarize the consequences resulting from this. Chapter 4 is dedicated to the attempt to determine the kernel of the time-development operator, by the knowledge of which the time development of each initial state is fixed. In chapter 5 the consequences of the theory presented in chapter 3 and 4 are discussed by means of simple examples. In chapter 6 the renormalization which results for the φ 4 potential from the definition of the functional integral in chapter 3 is calculated up to the first-order perturbation theory, and it is shown that the problems in the Symanzik renormalization procedure can be removed. (orig./HSI) [de
Euclidean and Minkowski space formulations of linearized gravitational potential in various gauges
Lim, S.C.
1979-01-01
We show that there exists a unitary map connecting linearized theories of gravitational potential in vacuum, formulated in various covariant gauges and noncovariant radiation gauge. The free Euclidean gravitational potentials in covariant gauges satisfy the Markov property of Nelson, but are nonreflexive. For the noncovariant radiation gauge, the corresponding Euclidean field is reflexive but it only satisfies the Markov property with respect to special half spaces. The Feynman--Kac--Nelson formula is established for the Euclidean gravitational potential in radiation gauge
Isometric immersions and embeddings of locally Euclidean metrics in R2
Sabitov, I Kh
1999-01-01
This paper deals with the problem of isometric immersions and embeddings of two-dimensional locally Euclidean metrics in the Euclidean plane. We find explicit formulae for the immersions of metrics defined on a simply connected domain and a number of sufficient conditions for the existence of isometric embeddings. In the case when the domain is multiply connected we find necessary conditions for the existence of isometric immersions and classify the cases when the metric admits no isometric immersion in the Euclidean plane
Misa Agustino, M. J.; Alvarez-Folgueras, M.; Jorge-Mora, M. T.; Jorge Barreiro, F. J.; Ares Pena, F. J.; Lleiro, J.; Lopez Martin, M. E.
2011-01-01
In this study we analyzed the cellular stress levels achieved by heat shock proteins (HSP) 90 and 70 in rat thyroid tissue after exposure to radio waves in TWG experimental system. Parallel measurements of body stress in animals by rectal temperature probes allow us to determine whether there is any interaction between temperature increases and cellular stress.
Preterm labor--modeling the uterine electrical activity from cellular level to surface recording.
Rihana, S; Marque, C
2008-01-01
Uterine electrical activity is correlated to the appearance of uterine contractions. forceful contractions appear at the end of term. Therefore, understanding the genesis and the propagation of uterine electrical activity may provide an efficient tool to diagnose preterm labor. Moreover, the control of uterine excitability seems to have important consequences in the control of preterm labor. Modeling the electrical activity in uterine tissue is thus an important step in understanding physiological uterine contractile mechanisms and to permit uterine EMG simulation. Our model presented in this paper, incorporates ion channel models at the cell level, the reaction diffusion equations at the tissue level and the spatiotemporal integration at the uterine EMG reconstructed level. This model validates some key physiological observation hypotheses concerning uterine excitability and propagation.
Kishida, Takumi; Akiyoshi, Kenji; Erdenedalai, Erdenebat; Enhetomuru, Anu; Imai, Shoji; Oyama, Yasuo
2018-09-01
The aim of this study was to investigate the effects of dibromoacetonitrile (DBAN), a by-product in water bacterial control, at sublethal concentrations on rat thymocytes, by using a cytometric technique with appropriate fluorescent dyes. By using this method, the possibility that DBAN induces cellular actions related to oxidative stress was assessed. DBAN reduced the content of cellular nonprotein thiols under Zn 2+ -free conditions. It elevated the intracellular level of Zn 2+ , being independent from external Zn 2+ . DBAN increased cell vulnerability to the cytotoxic action of hydrogen peroxide. These actions of DBAN were likely related to oxidative stress. DBAN is formed by the reaction of bromides and chlorinated oxidants during water disinfection. Hydrolysis of 2,2-dibromo-3-nitrilopropionamide, an antimicrobial used in hydraulic fracturing fluids for production of shale gas and oil, produces DBAN. Therefore, the concern regarding the levels of DBAN in industrial water systems is necessary to avoid the environmental risk to humans and wild mammals. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pinak, Miroslav
2003-11-01
The workshop ''International Workshop on Radiation Risk and its Origin at Molecular and Cellular Level'' was held at The Tokai Research Establishment, Japan Atomic Energy Research Institute, on the 6th and 7th of February 2003. The Laboratory of Radiation Risk Analysis of JAERI organized it. This international workshop attracted scientists from several different scientific areas, including radiation physics, radiation biology, molecular biology, crystallography of biomolecules, modeling and bio-informatics. Several foreign and domestic keynote speakers addresses the very fundamental areas of radiation risk and tried to establish a link between the fundamental studies at the molecular and cellular level and radiation damages at the organism. The symposium consisted of 13 oral lectures, 10 poster presentations and panel discussion. The 108 participants attended the workshop. This publication comprises of proceedings of oral and poster presentations where available. For the rest of contributions the abstracts or/and selections of presentation materials are shown instead. The 5 papers are indexed individually. (J.P.N.)
Antioxidant factors, nitric oxide levels, and cellular damage in leprosy patients
Taysa Ribeiro Schalcher
2013-09-01
Full Text Available Introduction The immune response caused by Mycobacterium leprae is a risk factor for the development of oxidative stress (OS in leprosy patients. This study aimed to assess OS in leprosy patients before the use of a multidrug therapy. Methods We evaluated the nitric oxide (NO concentration; antioxidant capacity; levels of malondialdehyde, methemoglobin and reduced glutathione; and the activity of catalase and superoxide dismutase (SOD in leprosy patients. Results We observed lower SOD activity in these leprosy patients; however, the NO levels and antioxidant capacity were increased. Conclusions The infectious process in response to M. leprae could primarily be responsible for the OS observed in these patients.
Efficient Uplink Modeling for Dynamic System-Level Simulations of Cellular and Mobile Networks
Lobinger Andreas
2010-01-01
Full Text Available A novel theoretical framework for uplink simulations is proposed. It allows investigations which have to cover a very long (real- time and which at the same time require a certain level of accuracy in terms of radio resource management, quality of service, and mobility. This is of particular importance for simulations of self-organizing networks. For this purpose, conventional system level simulators are not suitable due to slow simulation speeds far beyond real-time. Simpler, snapshot-based tools are lacking the aforementioned accuracy. The runtime improvements are achieved by deriving abstract theoretical models for the MAC layer behavior. The focus in this work is long term evolution, and the most important uplink effects such as fluctuating interference, power control, power limitation, adaptive transmission bandwidth, and control channel limitations are considered. Limitations of the abstract models will be discussed as well. Exemplary results are given at the end to demonstrate the capability of the derived framework.
Bedalov, Antonio; Hirao, Maki; Posakony, Jeffrey; Nelson, Melisa; Simon, Julian A.
2003-01-01
Nicotine adenine dinucleotide (NAD+) performs key roles in electron transport reactions, as a substrate for poly(ADP-ribose) polymerase and NAD+-dependent protein deacetylases. In the latter two processes, NAD+ is consumed and converted to ADP-ribose and nicotinamide. NAD+ levels can be maintained by regeneration of NAD+ from nicotinamide via a salvage pathway or by de novo synthesis of NAD+ from tryptophan. Both pathways are conserved from yeast to humans. We describe a critical role of the ...
SLE as a Mating of Trees in Euclidean Geometry
Holden, Nina; Sun, Xin
2018-05-01
The mating of trees approach to Schramm-Loewner evolution (SLE) in the random geometry of Liouville quantum gravity (LQG) has been recently developed by Duplantier et al. (Liouville quantum gravity as a mating of trees, 2014. arXiv:1409.7055). In this paper we consider the mating of trees approach to SLE in Euclidean geometry. Let {η} be a whole-plane space-filling SLE with parameter {κ > 4} , parameterized by Lebesgue measure. The main observable in the mating of trees approach is the contour function, a two-dimensional continuous process describing the evolution of the Minkowski content of the left and right frontier of {η} . We prove regularity properties of the contour function and show that (as in the LQG case) it encodes all the information about the curve {η} . We also prove that the uniform spanning tree on {Z^2} converges to SLE8 in the natural topology associated with the mating of trees approach.
Complex networks in the Euclidean space of communicability distances
Estrada, Ernesto
2012-06-01
We study the properties of complex networks embedded in a Euclidean space of communicability distances. The communicability distance between two nodes is defined as the difference between the weighted sum of walks self-returning to the nodes and the weighted sum of walks going from one node to the other. We give some indications that the communicability distance identifies the least crowded routes in networks where simultaneous submission of packages is taking place. We define an index Q based on communicability and shortest path distances, which allows reinterpreting the “small-world” phenomenon as the region of minimum Q in the Watts-Strogatz model. It also allows the classification and analysis of networks with different efficiency of spatial uses. Consequently, the communicability distance displays unique features for the analysis of complex networks in different scenarios.
Reduction of product platform complexity by vectorial Euclidean algorithm
Navarrete, Israel Aguilera; Guzman, Alejandro A. Lozano
2013-01-01
In traditional machine, equipment and devices design, technical solutions are practically independent, thus increasing designs cost and complexity. Overcoming this situation has been tackled just using designer's experience. In this work, a product platform complexity reduction is presented based on a matrix representation of technical solutions versus product properties. This matrix represents the product platform. From this matrix, the Euclidean distances among technical solutions are obtained. Thus, the vectorial distances among technical solutions are identified in a new matrix of order of the number of technical solutions identified. This new matrix can be reorganized in groups with a hierarchical structure, in such a way that modular design of products is now more tractable. As a result of this procedure, the minimum vector distances are found thus being possible to identify the best technical solutions for the design problem raised. Application of these concepts is shown with two examples.
Curvature-driven morphing of non-Euclidean shells
Pezzulla, Matteo; Stoop, Norbert; Jiang, Xin; Holmes, D. P.
2017-05-01
We investigate how thin structures change their shape in response to non-mechanical stimuli that can be interpreted as variations in the structure's natural curvature. Starting from the theory of non-Euclidean plates and shells, we derive an effective model that reduces a three-dimensional stimulus to the natural fundamental forms of the mid-surface of the structure, incorporating expansion, or growth, in the thickness. Then, we apply the model to a variety of thin bodies, from flat plates to spherical shells, obtaining excellent agreement between theory and numerics. We show how cylinders and cones can either bend more or unroll, and eventually snap and rotate. We also study the nearly isometric deformations of a spherical shell and describe how this shape change is ruled by the geometry of a spindle. As the derived results stem from a purely geometrical model, they are general and scalable.
Buckling transition and boundary layer in non-Euclidean plates.
Efrati, Efi; Sharon, Eran; Kupferman, Raz
2009-07-01
Non-Euclidean plates are thin elastic bodies having no stress-free configuration, hence exhibiting residual stresses in the absence of external constraints. These bodies are endowed with a three-dimensional reference metric, which may not necessarily be immersible in physical space. Here, based on a recently developed theory for such bodies, we characterize the transition from flat to buckled equilibrium configurations at a critical value of the plate thickness. Depending on the reference metric, the buckling transition may be either continuous or discontinuous. In the infinitely thin plate limit, under the assumption that a limiting configuration exists, we show that the limit is a configuration that minimizes the bending content, among all configurations with zero stretching content (isometric immersions of the midsurface). For small but finite plate thickness, we show the formation of a boundary layer, whose size scales with the square root of the plate thickness and whose shape is determined by a balance between stretching and bending energies.
Defects and boundary layers in non-Euclidean plates
Gemmer, J A; Venkataramani, S C
2012-01-01
We investigate the behaviour of non-Euclidean plates with constant negative Gaussian curvature using the Föppl–von Kármán reduced theory of elasticity. Motivated by recent experimental results, we focus on annuli with a periodic profile. We prove rigorous upper and lower bounds for the elastic energy that scales like the thickness squared. In particular we show that are only two types of global minimizers—deformations that remain flat and saddle shaped deformations with isolated regions of stretching near the edge of the annulus. We also show that there exist local minimizers with a periodic profile that have additional boundary layers near their lines of inflection. These additional boundary layers are a new phenomenon in thin elastic sheets and are necessary to regularize jump discontinuities in the azimuthal curvature across lines of inflection. We rigorously derive scaling laws for the width of these boundary layers as a function of the thickness of the sheet. (paper)
Geometry through history Euclidean, hyperbolic, and projective geometries
Dillon, Meighan I
2018-01-01
Presented as an engaging discourse, this textbook invites readers to delve into the historical origins and uses of geometry. The narrative traces the influence of Euclid’s system of geometry, as developed in his classic text The Elements, through the Arabic period, the modern era in the West, and up to twentieth century mathematics. Axioms and proof methods used by mathematicians from those periods are explored alongside the problems in Euclidean geometry that lead to their work. Students cultivate skills applicable to much of modern mathematics through sections that integrate concepts like projective and hyperbolic geometry with representative proof-based exercises. For its sophisticated account of ancient to modern geometries, this text assumes only a year of college mathematics as it builds towards its conclusion with algebraic curves and quaternions. Euclid’s work has affected geometry for thousands of years, so this text has something to offer to anyone who wants to broaden their appreciation for the...
Euclidean mirrors: enhanced vacuum decay from reflected instantons
Akal, Ibrahim; Moortgat-Pick, Gudrid
2018-05-01
We study the tunnelling of virtual matter–antimatter pairs from the quantum vacuum in the presence of a spatially uniform, time-dependent electric background composed of a strong, slow field superimposed with a weak, rapid field. After analytic continuation to Euclidean spacetime, we obtain from the instanton equations two critical points. While one of them is the closing point of the instanton path, the other serves as an Euclidean mirror which reflects and squeezes the instanton. It is this reflection and shrinking which is responsible for an enormous enhancement of the vacuum pair production rate. We discuss how important features of two different mechanisms can be analysed and understood via such a rotation in the complex plane. (a) Consistent with previous studies, we first discuss the standard assisted mechanism with a static strong field and certain weak fields with a distinct pole structure in order to show that the reflection takes place exactly at the poles. We also discuss the effect of possible sub-cycle structures. We extend this reflection picture then to weak fields which have no poles present and illustrate the effective reflections with explicit examples. An additional field strength dependence for the rate occurs in such cases. We analytically compute the characteristic threshold for the assisted mechanism given by the critical combined Keldysh parameter. We discuss significant differences between these two types of fields. For various backgrounds, we present the contributing instantons and perform analytical computations for the corresponding rates treating both fields nonperturbatively. (b) In addition, we also study the case with a nonstatic strong field which gives rise to the assisted dynamical mechanism. For different strong field profiles we investigate the impact on the critical combined Keldysh parameter. As an explicit example, we analytically compute the rate by employing the exact reflection points. The validity of the predictions
Euclidean mirrors. Enhanced vacuum decay from reflected instantons
Akal, Ibrahim [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Moortgat-Pick, Gudrid [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2017-06-15
We study the tunneling of virtual matter-antimatter pairs from the quantum vacuum in the presence of a spatially uniform temporal electric background composed of of a strong slow field superimposed with a weak rapid field. After analytic continuation to Euclidean spacetime we obtain from the instanton equations two critical points. While one of them is the closing point of the instanton path, the other serves as an Euclidean mirror which reflects and squeezes the instanton. It is this reflection and shrinking which is responsible for an enormous enhancement of the vacuum pair production rate. We discuss how important features of this mechanism can be analysed and understood via such a rotation in the complex plane. Consistent with previous studies, we consider certain examples where we apply weak fields with a distinct pole structure in order to show that the reflection takes place exactly at the poles. We also discuss the effect of possible sub-cycle structures. We extend this reflection picture to fields which have no poles present and illustrate the effective reflections with explicit examples. An additional field strength dependence for the rate occurs in such cases. We analytically compute the characteristic threshold for this mechanism given by the critical combined Keldysh parameter. We discuss significant differences between these two types of fields. For various backgrounds, we present the contributing instantons and perform analytical computations for the corresponding rates treating both fields nonperturbatively. The validity of the results is confirmed by numerical computations. Considering different profiles for the strong field, we also discuss its impact on the critical combined Keldysh parameter.
Ganapathi, R.; Schmidt, H.; Grabowski, D.; Melia, M.; Ratliff, N.
1988-01-01
The role of the calmodulin inhibitor trifluoperazine (TFP) in modulating the cellular levels and cytotoxicity in vitro and antitumour effects in vivo of doxorubicin (DOX), was evaluated in progressively DOX-resistant (5- to 40-fold) sublines of B16-BL6 mouse melanoma. In parental-sensitive B16-BL6 cells treated for 3 h, the IC50 of DOX was 0.1 microgram ml-1, and a less than 2-fold enhancement in DOX cell kill in the presence of a noncytotoxic concentration of 5 microM TFP was observed. However, in the DOX-resistant sublines, the IC50 was 0.7 to 5.0 micrograms ml-1 DOX in the absence of 5 microM TFP and 0.3 to 0.7 microgram ml-1 DOX in the presence of 5 microM TFP. The 2- to 7.5-fold decrease in the IC50 of DOX in the presence of 5 microM TFP, was dependent on the level of DOX-resistance in the various sublines. Compared to parental-sensitive cells, a 2-fold decrease in DOX-accumulation was evident only in the 40-fold DOX-resistant subline. Further, maximal enhancement (50%) of cellular DOX accumulation in the presence of 5 microM TFP was observed only in the 40-fold resistant cells treated with 5.0 micrograms ml-1 DOX. Retention of DOX in the 40-fold resistant subline was only 20% lower than similarly treated sensitive cells, and the inclusion of TFP increased DOX retention less than 10-15%. Antitumour studies in mice with experimental pulmonary metastases revealed that although DOX and DOX plus TFP had similar antitumour activity with the parental sensitive B16-BL6 cells, the combination of DOX plus TFP was significantly more effective than DOX alone with the DOX-resistant sublines. No overt toxicity was observed in normal mice treated with doses of TFP, DOX or DOX plus TFP used for in vivo chemotherapy studies. Results from this study suggest that gross cellular DOX levels do not appear to correlate with the magnitude of resistance, and the effects of TFP in modulating DOX resistance is possibly due to mechanisms other than mere alterations in cellular drug
Fillingame, R H; Jorstad, C M; Morris, D R
1975-01-01
There are large increases in cellular levels of the polyamines spermidine and spermine in lymphocytes induced to transform by concanavalin A. The anti-leukemic agent methylglyoxal bis(guanylhydrazone) (MGBG) blocks synthesis of these polyamines by inhibiting S-adenosylmethionine decarboxylase. Previous results showed that when cells are activated in the presence of MGBG the synthesis and processing of RNA, as well as protein synthesis, proceed as in the absence of the drug. In contrast, the incorporation of [methyl-3H]thymidine into DNA and the rate of entry of the cells into mitosis are inhibited by 60% in the presence of MGBG. Several experiments suggest that MGBG inhibits cell proliferation by directly blocking polyamine synthesis and not by an unrelated pharmacological effect: (1) the inhibitory action of MGBG is reversed by exogenously added spermidine or spermine; (2) inhibition of DNA synthesis by MGBG shows the same dose-response curve as does inhibition of spermidine and spermine synthesis; and (3) if MGBG is added to cells which have been allowed to accumulate their maximum complement of polyamines, there is no inhibition of thymidine incorporation. MGBG-treated and control cultures initiate DNA synthesis at the same time and show the same percentage of labeled cells by autoradiography. Therefore, it appears that in the absence of increased cellular levels of polyamines, lymphocytes progress normally from G0 through G1 and into S-phase. Furthermore, these experiments suggest that the increased levels of spermidine and spermine generally seen in rapidly proliferating eukaryotic systems are necessary for enhanced rates of DNA replication. PMID:1060087
Zenab Akhtari
2015-01-01
Full Text Available Background: Regarding to the important anti-inflammatory role of IL10 during inflammation process and hyperalgesia and edema variation during CFA-induced arthritis and also the increase of Spinal mu opioid receptor (mOR expression, in this study researchers investigate the role of serum IL10 level on mOR expression and edema and hyperalgesia variation during different stages of Complete Freund`s Adjuvant (CFA - induced arthritis in male Wistar rats. Materials and Methods: Mono-arthritis was induced by CFA and inflammatory symptoms (hyperalgesia and edema were assessed on 0, 3, 7, 14th and 21st days of study. Anti-IL10 was administered during the 21 days of study in different experimental groups. mOR expression were detected by western blotting on 0, 3,7, 14th and 21st days of study. Data was analyzed by SPSS statistical software version 19 with using one way ANOVA (post hoc Tokey's. Results: Our results showed that anti-IL10 administration in AA group (Adjuvant Arthritis caused an increase in the paw volume and hyperalgesia until 21st of study. Our study stated that there were no significant differences in spinal mOR expression between AA and AA+anti-IL10rats. Conclusion: Our study confirmed that anti-IL10administration caused to hyperalgesia and edema during AA inflammation. Also these findings suggested that mOR expression increased in chronic phase of AA inflammation, however an increase in the level of spinal mu opioid receptor (mOR expression during AA inflammation is not mediated directly via the effect of serum IL-10.
Large parallel volumes of finite and compact sets in d-dimensional Euclidean space
Kampf, Jürgen; Kiderlen, Markus
The r-parallel volume V (Cr) of a compact subset C in d-dimensional Euclidean space is the volume of the set Cr of all points of Euclidean distance at most r > 0 from C. According to Steiner’s formula, V (Cr) is a polynomial in r when C is convex. For finite sets C satisfying a certain geometric...
Three Dimensional Fast Exact Euclidean Distance (3D-FEED) Maps
Latecki, L.J.; Schouten, Theo E.; Mount, D.M.; Kuppens, Harco C.; Wu, A.Y.; van den Broek, Egon
2006-01-01
In image and video analysis, distance maps are frequently used. They provide the (Euclidean) distance (ED) of background pixels to the nearest object pixel. Recently, the Fast Exact Euclidean Distance (FEED) transformation was launched. In this paper, we present the three dimensional (3D) version of
Uniqueness of Gibbs states and global Markov property for Euclidean fields
Albeverio, S.; Hoeegh-Krohn, R.
1981-01-01
The authors briefly discuss the proof of the uniqueness of solutions of the DLR equations (uniqueness of Gibbs states) in the class of regular generalized random fields (in the sense of having second moments bounded by those of some Euclidean field), for the Euclidean fields with trigonometric interaction. (Auth.)
Non-euclidean simplex optimization. [Application to potentiometric titration of Pu
Silver, G.L.
1977-08-15
Geometric optimization techniques useful for studying chemical equilibrium traditionally rely upon principles of euclidean geometry, but such algorithms may also be based upon principles of a non-euclidean geometry. The sequential simplex method is adapted to the hyperbolic plane, and application of optimization to problems such as the potentiometric titration of plutonium is suggested.
Squared Euclidean distance: a statistical test to evaluate plant community change
Raymond D. Ratliff; Sylvia R. Mori
1993-01-01
The concepts and a procedure for evaluating plant community change using the squared Euclidean distance (SED) resemblance function are described. Analyses are based on the concept that Euclidean distances constitute a sample from a population of distances between sampling units (SUs) for a specific number of times and SUs. With different times, the distances will be...
Tinnitus: pathology of synaptic plasticity at the cellular and system levels
Matthieu J Guitton
2012-03-01
Full Text Available Despite being more and more common, and having a high impact on the quality of life of sufferers, tinnitus does not yet have a cure. This has been mostly the result of limited knowledge of the biological mechanisms underlying this adverse pathology. However, the last decade has witnessed tremendous progress in our understanding on the pathophysiology of tinnitus. Animal models have demonstrated that tinnitus is a pathology of neural plasticity, and has two main components: a molecular, peripheral component related to the initiation phase of tinnitus; and a system-level, central component related to the long-term maintenance of tinnitus. Using the most recent experimental data and the molecular/system dichotomy as a framework, we describe here the biological basis of tinnitus. We then discuss these mechanisms from an evolutionary perspective, highlighting similarities with memory. Finally, we consider how these discoveries can translate into therapies, and we suggest operative strategies to design new and effective combined therapeutic solutions using both pharmacological (local and systemic and behavioral tools (e.g., using tele-medicine and virtual reality settings.
Humphreys, Kathryn L; Esteves, Kyle; Zeanah, Charles H; Fox, Nathan A; Nelson, Charles A; Drury, Stacy S
2016-12-30
Studies examining the association between early adversity and longitudinal changes in telomere length within the same individual are rare, yet are likely to provide novel insight into the subsequent lasting effects of negative early experiences. We sought to examine the association between institutional care history and telomere shortening longitudinally across middle childhood and into adolescence. Buccal DNA was collected 2-4 times, between the ages of 6 and 15 years, in 79 children enrolled in the Bucharest Early Intervention Project (BEIP), a longitudinal study exploring the impact of early institutional rearing on child health and development. Children with a history of early institutional care (n=50) demonstrated significantly greater telomere shortening across middle childhood and adolescence compared to never institutionalized children (n=29). Among children with a history of institutional care, randomization to high quality foster care was not associated with differential telomere attrition across development. Cross-sectional analysis of children randomized to the care as usual group indicated shorter telomere length was associated with greater percent of the child's life spent in institutional care up to age 8. These results suggest that early adverse care from severe psychosocial deprivation may be embedded at the molecular genetic level through accelerated telomere shortening. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Radio-adaptation: cellular and molecular features of a response to low levels of ionizing radiation
Rigaud, O.
1998-01-01
It is well established that sublethal doses of DNA damaging agents induce protective mechanisms against a subsequent high dose treatment ; for instance, the phenomenon of radio-adaptation in the case of ionizing radiations. Since the early observation described in 1984, numerous studies have confirmed the radio-adaptive response in terms of reduction of chromosomal breaks for varied biological models in vitro and in vivo. Evidence for an adaptive response against the induction of gene mutations and the lethal effect is clearly demonstrated. This paper reviews the experimental results describing various aspects of these adaptive responses expressed on these different biological end-points. The molecular mechanism underlying radio-adaptation still remains nuclear. The development of this phenomenon requires de novo synthesis of transcripts and proteins during the time interval between the two doses. Some data are consistent with the hypotheses that these gene products would be involved in the activation of DNA repair pathways and antioxidant systems. However, a major question still remains unanswered; indeed, it is not clear whether or not the radio-adaptation could affect the estimation of cancer risk related with low level exposure to ionizing radiation, a major concern in radioprotection. Until such data are available, it is yet unwise to evoke the beneficial effects of radio-adaptation. (authors)
Zhou, Yongjin; Wang, Lei; Yang, Fan; Lin, Xinping; Zhang, Sufang; Zhao, Zongbao K.
2011-01-01
NAD (NAD+) and its reduced form (NADH) are omnipresent cofactors in biological systems. However, it is difficult to determine the extremes of the cellular NAD(H) level in live cells because the NAD+ level is tightly controlled by a biosynthesis regulation mechanism. Here, we developed a strategy to determine the extreme NAD(H) levels in Escherichia coli cells that were genetically engineered to be NAD+ auxotrophic. First, we expressed the ntt4 gene encoding the NAD(H) transporter in the E. coli mutant YJE001, which had a deletion of the nadC gene responsible for NAD+ de novo biosynthesis, and we showed NTT4 conferred on the mutant strain better growth in the presence of exogenous NAD+. We then constructed the NAD+-auxotrophic mutant YJE003 by disrupting the essential gene nadE, which is responsible for the last step of NAD+ biosynthesis in cells harboring the ntt4 gene. The minimal NAD+ level was determined in M9 medium in proliferating YJE003 cells that were preloaded with NAD+, while the maximal NAD(H) level was determined by exposing the cells to high concentrations of exogenous NAD(H). Compared with supplementation of NADH, cells grew faster and had a higher intracellular NAD(H) level when NAD+ was fed. The intracellular NAD(H) level increased with the increase of exogenous NAD+ concentration, until it reached a plateau. Thus, a minimal NAD(H) level of 0.039 mM and a maximum of 8.49 mM were determined, which were 0.044× and 9.6× those of wild-type cells, respectively. Finally, the potential application of this strategy in biotechnology is briefly discussed. PMID:21742902
Disruption of Hox9,10,11 function results in cellular level lineage infidelity in the kidney.
Drake, Keri A; Adam, Mike; Mahoney, Robert; Potter, S Steven
2018-04-20
Hox genes are important regulators of development. The 39 mammalian Hox genes have considerable functional overlap, greatly confounding their study. In this report, we generated mice with multiple combinations of paralogous and flanking Abd-B Hox gene mutations to investigate functional redundancies in kidney development. The resulting mice developed a number of kidney abnormalities, including hypoplasia, agenesis, and severe cysts, with distinct Hox functions observed in early metanephric kidney formation and nephron progenitor maintenance. Most surprising, however, was that extensive removal of Hox shared function in these kidneys resulted in cellular level lineage infidelity. Strikingly, mutant nephron tubules consisted of intermixed cells with proximal tubule, loop of Henle, and collecting duct identities, with some single cells expressing markers associated with more than one nephron segment. These results indicate that Hox genes are required for proper lineage selection/maintenance and full repression of genes involved in cell fate restriction in the developing kidney.
Hofer, Annette; Noe, Natalie; Tischner, Christin; Kladt, Nikolay; Lellek, Veronika; Schauß, Astrid; Wenz, Tina
2014-05-01
Previous studies have demonstrated a therapeutic benefit of pharmaceutical PGC-1α activation in cellular and murine model of disorders linked to mitochondrial dysfunction. While in some cases, this effect seems to be clearly associated with boosting of mitochondrial function, additional alterations as well as tissue- and cell-type-specific effects might play an important role. We initiated a comprehensive analysis of the effects of potential PGC-1α-activating drugs and pharmaceutically targeted the PPAR (bezafibrate, rosiglitazone), AMPK (AICAR, metformin) and Sirt1 (resveratrol) pathways in HeLa cells, neuronal cells and PGC-1α-deficient MEFs to get insight into cell type specificity and PGC-1α dependence of their working action. We used bezafibrate as a model drug to assess the effect on a tissue-specific level in a murine model. Not all analyzed drugs activate the PGC pathway or alter mitochondrial protein levels. However, they all affect supramolecular assembly of OXPHOS complexes and OXPHOS protein stability. In addition, a clear drug- and cell-type-specific influence on several cellular stress pathways as well as on post-translational modifications could be demonstrated, which might be relevant to fully understand the action of the analyzed drugs in the disease state. Importantly, the effect on the activation of mitochondrial biogenesis and stress response program upon drug treatment is PGC-1α dependent in MEFs demonstrating not only the pleiotropic effects of this molecule but points also to the working mechanism of the analyzed drugs. The definition of the action spectrum of the different drugs forms the basis for a defect-specific compensation strategy and a future personalized therapeutic approach.
A general Euclidean connection for so(n,m) lie algebra and the algebraic approach to scattering
Ionescu, R.A.
1994-11-01
We obtain a general Euclidean connection for so(n,m). This Euclidean connection allows an algebraic derivation of the S matrix and it reduces to the known one in suitable circumstances. (author). 8 refs
Muhammed eJamsheer K
2015-09-01
Full Text Available Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1 signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response towards energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response.
Jessica M. V. Pino
2017-05-01
Full Text Available Iron is an essential micronutrient for several physiological functions, including the regulation of dopaminergic neurotransmission. On the other hand, both iron, and dopamine can affect the folding and aggregation of proteins related with neurodegenerative diseases, such as cellular prion protein (PrPC and α-synuclein, suggesting that deregulation of iron homeostasis and the consequential disturbance of dopamine metabolism can be a risk factor for conformational diseases. These proteins, in turn, are known to participate in the regulation of iron and dopamine metabolism. In this study, we evaluated the effects of dietary iron restriction on brain ferritin levels, dopamine metabolism, and the expression levels of PrPC and α-synuclein. To achieve this goal, C57BL/6 mice were fed with iron restricted diet (IR or with normal diet (CTL for 1 month. IR reduced iron and ferritin levels in liver. Ferritin reduction was also observed in the hippocampus. However, in the striatum of IR group, ferritin level was increased, suggesting that under iron-deficient condition, each brain area might acquire distinct capacity to store iron. Increased lipid peroxidation was observed only in hippocampus of IR group, where ferritin level was reduced. IR also generated discrete results regarding dopamine metabolism of distinct brain regions: in striatum, the level of dopamine metabolites (DOPAC and HVA was reduced; in prefrontal cortex, only HVA was increased along with the enhanced MAO-A activity; in hippocampus, no alterations were observed. PrPC levels were increased only in the striatum of IR group, where ferritin level was also increased. PrPC is known to play roles in iron uptake. Thus, the increase of PrPC in striatum of IR group might be related to the increased ferritin level. α-synuclein was not altered in any regions. Abnormal accumulation of ferritin, increased MAO-A activity or lipid peroxidation are molecular features observed in several neurological
Hasegawa, Sumitaka; Maruyama, Kouichi; Takenaka, Hikaru; Furukawa, Takako; Saga, Tsuneo
2009-08-18
The recent success with small fish as an animal model of cancer with the aid of fluorescence technique has attracted cancer modelers' attention because it would be possible to directly visualize tumor cells in vivo in real time. Here, we report a medaka model capable of allowing the observation of various cell behaviors of transplanted tumor cells, such as cell proliferation and metastasis, which were visualized easily in vivo. We established medaka melanoma (MM) cells stably expressing GFP and transplanted them into nonirradiated and irradiated medaka. The tumor cells were grown at the injection sites in medaka, and the spatiotemporal changes were visualized under a fluorescence stereoscopic microscope at a cellular-level resolution, and even at a single-cell level. Tumor dormancy and metastasis were also observed. Interestingly, in irradiated medaka, accelerated tumor growth and metastasis of the transplanted tumor cells were directly visualized. Our medaka model provides an opportunity to visualize in vivo tumor cells "as seen in a culture dish" and would be useful for in vivo tumor cell biology.
Tofani, Santi
2015-01-01
Literature on magnetic fields (MF) and gene expression, as well as on DNA damage, supports the hypothesis that electromagnetic energy may act at atomic level influencing genetic stability. According to quantum physics, MF act on the interconversion of singlet and triplet spin states, and therefore on genetic instability, activating oxidative processes connected to biological free radicals formation, particularly ROS. In the above frame, the results of in vitro and in vivo laboratory trials have been analyzed. The use of a static MF amplitude modulated by 50 Hz MF, with a time average total intensity of 5.5 mT, has been shown to influence tumor cell functions such as cell proliferation, apoptosis, p53 expression, inhibition of tumor growth and prolongation of survival in animals, evidence that MF can be more effective than chemotherapy (cyclophosphamide) in inhibiting metastatic spread and growth, having synergistic activity with chemotherapy (Cis-platin), and no observable side effects or toxicity in animals or in humans. The beneficial biological/clinical effects observed, without any adverse effects, have been confirmed by various authors and augur well for the potentiality of this new approach to treat genetically based diseases like cancer. Further studies are needed to develop a quantum physics approach to biology, allowing a stable bridge to be built between atomic and cellular levels, therefore developing quantum biology.
Non-Euclidean Geometry, Nontrivial Topology and Quantum Vacuum Effects
Yurii A. Sitenko
2018-01-01
Full Text Available Space out of a topological defect of the Abrikosov–Nielsen–Olesen (ANO vortex type is locally flat but non-Euclidean. If a spinor field is quantized in such a space, then a variety of quantum effects are induced in the vacuum. On the basis of the continuum model for long-wavelength electronic excitations originating in the tight-binding approximation for the nearest-neighbor interaction of atoms in the crystal lattice, we consider quantum ground-state effects in Dirac materials with two-dimensional monolayer structures warped into nanocones by a disclination; the nonzero size of the disclination is taken into account, and a boundary condition at the edge of the disclination is chosen to ensure self-adjointness of the Dirac–Weyl Hamiltonian operator. We show that the quantum ground-state effects are independent of the disclination size, and we find circumstances in which they are independent of parameters of the boundary condition.
Euclidean quantum field theory and the Hawking effect
Lapedes, A.S.
1978-01-01
Complex analytic continuation in a time variable in order to define a Feynman propagator is investigated in a general relativistic context. When external electric fields are present a complex analytic continuation in the electric charge is also introduced. The new Euclidean formalism is checked by reproducing Schwinger's special relativistic result for pair creation by an external, homogenous, electric field, and then applied to the Robinson-Bertotti universe. The Robinson-Bertotti universe, although unphysical, provides an interesting theoretical laboratory in which to investigate quantum effects, much as the unphysical Taub-NUT (Newman-Unti-Tamburino) universe does for purely classical general relativity. A conformally related problem of pair creation by a supercritically charged nucleus is also considered, and a sensible resolution is obtained to this classic problem. The essential mathematical point throughout is the use of the Feynman path-integral form of the propagator to motivate replacing hyperbolic equations by elliptic equations. The unique, bounded solution for the elliptic Green's function is then analytically continued back to physical values to define the Feynman Green's function
Euclidean supersymmetric solutions with the self-dual Weyl tensor
Masato Nozawa
2017-07-01
Full Text Available We explore the Euclidean supersymmetric solutions admitting the self-dual gauge field in the framework of N=2 minimal gauged supergravity in four dimensions. According to the classification scheme utilizing the spinorial geometry or the bilinears of Killing spinors, the general solution preserves one quarter of supersymmetry and is described by the Przanowski–Tod class with the self-dual Weyl tensor. We demonstrate that there exists an additional Killing spinor, provided the Przanowski–Tod metric admits a Killing vector that commutes with the principal one. The proof proceeds by recasting the metric into another Przanowski–Tod form. This formalism enables us to show that the self-dual Reissner–Nordström–Taub–NUT–AdS metric possesses a second Killing spinor, which has been missed over many years. We also address the supersymmetry when the Przanowski–Tod space is conformal to each of the self-dual ambi-toric Kähler metrics. It turns out that three classes of solutions are all reduced to the self-dual Carter family, by virtue of the nondegenerate Killing–Yano tensor.
Numerical evaluation of tensor Feynman integrals in Euclidean kinematics
Gluza, J.; Kajda [Silesia Univ., Katowice (Poland). Inst. of Physics; Riemann, T.; Yundin, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2010-10-15
For the investigation of higher order Feynman integrals, potentially with tensor structure, it is highly desirable to have numerical methods and automated tools for dedicated, but sufficiently 'simple' numerical approaches. We elaborate two algorithms for this purpose which may be applied in the Euclidean kinematical region and in d=4-2{epsilon} dimensions. One method uses Mellin-Barnes representations for the Feynman parameter representation of multi-loop Feynman integrals with arbitrary tensor rank. Our Mathematica package AMBRE has been extended for that purpose, and together with the packages MB (M. Czakon) or MBresolve (A. V. Smirnov and V. A. Smirnov) one may perform automatically a numerical evaluation of planar tensor Feynman integrals. Alternatively, one may apply sector decomposition to planar and non-planar multi-loop {epsilon}-expanded Feynman integrals with arbitrary tensor rank. We automatized the preparations of Feynman integrals for an immediate application of the package sectordecomposition (C. Bogner and S. Weinzierl) so that one has to give only a proper definition of propagators and numerators. The efficiency of the two implementations, based on Mellin-Barnes representations and sector decompositions, is compared. The computational packages are publicly available. (orig.)
Malytina, Y. V.; Sements, T. N.; Semina, O. V.; Mosin, A. F.; Kabakov, A.
2004-01-01
It was previously shown on heat shock protein (Hsp)-over expressing cell lines that the increased intracellular content of Hsp 70 or Hsp27 is associated with the elevated radioresistance. However, it was so far unknown whether the in vivo Fsp induction by stressful preconditioning can confer radioprotection at the tissue and cellular levels. In the present study, we examined how the in vivo up-regulation of the Hsp expression in response to mild whole body hyperthermia (42 degrees C, 10 min) in mice changes susceptibility of their bone marrow stem cells and thymocytes to subsequent gamma-irradiation. to assess the expectable contribution of stress-inducible Hsp we used injections with Quercetin, a flavonoid inhibiting the stress-responsive Hsp induction. The results demonstrate that the bone marrow stem cells and thymocytes from heat-preconditioned mice were more radioresistant than those from the non-preconditioned animals. the radioprotection was well manifested if mice or their isolated thymocytes were irradiated 18-25 h after the in vivo hyperthermia. This delayed radioprotection resulting from the heat preconditioning was suppressed in Quercetin-injected mice. The revealed correlation between the intracellular Hsp accumulation and the acquired Quercetin-sensitive radioprotection suggests a beneficial role of Hsps as of endogenous radioprotectors. Our finding discovers new ways for artificial modulation of effects of irradiation on target cells via manipulating the Hsp expression. (Author) 17 refs
Asymptotic analysis of fundamental solutions of Dirac operators on even dimensional Euclidean spaces
Arai, A.
1985-01-01
We analyze the short distance asymptotic behavior of some quantities formed out of fundamental solutions of Dirac operators on even dimensional Euclidean spaces with finite dimensional matrix-valued potentials. (orig.)
Variational estimates for the mass gap of SU(2) Euclidean lattice gauge theory
Hari Dass, N.D.
1984-10-01
The purpose of this letter is to report on the progress made in our understanding of series expansions for the masses in lattice gauge theories by the application of variational techniques to the Euclidean SU(2) lattice gauge theory. (Auth.)
Zeyer, Karina A; Reinhardt, Dieter P
2015-01-01
Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1. Copyright © 2015 Elsevier B.V. All rights reserved.
Afrin, Rehana; Zohora, Umme Salma; Uehara, Hironori; Watanabe-Nakayama, Takahiro; Ikai, Atsushi
2009-01-01
The atomic force microscope (AFM) is a versatile tool for imaging, force measurement and manipulation of proteins, DNA, and living cells basically at the single molecular level. In the cellular level manipulation, extraction, and identification of mRNA's from defined loci of a cell, insertion of plasmid DNA and pulling of membrane proteins, for example, have been reported. In this study, AFM was used to create holes at defined loci on the cell membrane for the investigation of viability of the cells after hole creation, visualization of intracellular structure through the hole and for targeted gene delivery into living cells. To create large holes with an approximate diameter of 5-10 microm, a phospholipase A(2) coated bead was added to the AFM cantilever and the bead was allowed to touch the cell surface for approximately 5-10 min. The evidence of hole creation was obtained mainly from fluorescent image of Vybrant DiO labeled cell before and after the contact with the bead and the AFM imaging of the contact area. In parallel, cells with a hole were imaged by AFM to reveal intracellular structures such as filamentous structures presumably actin fibers and mitochondria which were identified with fluorescent labeling with rhodamine 123. Targeted gene delivery was also attempted by inserting an AFM probe that was coated with the Monster Green Fluorescent Protein phMGFP Vector for transfection of the cell. Following targeted transfection, the gene expression of green fluorescent protein (GFP) was observed and confirmed by the fluorescence microscope. Copyright (c) 2009 John Wiley & Sons, Ltd.
Hye-Rim Lee
2016-01-01
Full Text Available Despite the susceptibility to frequent intrinsic and extrinsic injuries, especially in the inner zone, the meniscus does not heal spontaneously owing to its poor vascularity. In this study, the effect of platelet-rich plasma (PRP, containing various growth factors, on meniscal mechanisms was examined under normal and post-traumatic inflammatory conditions. Isolated primary meniscal cells of New Zealand white (NZW rabbits were incubated for 3, 10, 14 and 21 days with PRP(−, 10% PRP (PRP(+, IL(+ or IL(+PRP(+. The meniscal cells were collected and examined using reverse-transcription polymerase chain reaction (RT-PCR. Culture media were examined by immunoblot analyses for matrix metalloproteinases (MMP catabolic molecules. PRP containing growth factors improved the cellular viability of meniscal cells in a concentration-dependent manner at Days 1, 4 and 7. However, based on RT-PCR, meniscal cells demonstrated dedifferentiation, along with an increase in type I collagen in the PRP(+ and in IL(+PRP(+. In PRP(+, the aggrecan expression levels were lower than in the PRP(− until Day 21. The protein levels of MMP-1 and MMP-3 were higher in each PRP group, i.e., PRP(+ and IL(+PRP(+, at each culture time. A reproducible 2-mm circular defect on the meniscus of NZW rabbit was used to implant fibrin glue (control or PRP in vivo. After eight weeks, the lesions in the control and PRP groups were occupied with fibrous tissue, but not with meniscal cells. This study shows that PRP treatment of the meniscus results in an increase of catabolic molecules, especially those related to IL-1α-induced inflammation, and that PRP treatment for an in vivo meniscus injury accelerates fibrosis, instead of meniscal cartilage.
Euclidean action for vacuum decay in a de Sitter universe
Balek, V.; Demetrian, M.
2005-01-01
The behavior of the action of the instantons describing vacuum decay in a de Sitter is investigated. For a near-to-limit instanton (a Coleman-de Luccia instanton close to some Hawking-Moss instanton) we find approximate formulas for the Euclidean action by expanding the scalar field and the metric of the instanton in the powers of the scalar field amplitude. The order of the magnitude of the correction to the Hawking-Moss action depends on the order of the instanton (the number of crossings of the barrier by the scalar field): for instantons of odd and even orders the correction is of the fourth and third order in the scalar field amplitude, respectively. If a near-to-limit instanton of the first order exists in a potential with the curvature at the top of the barrier greater than 4x(Hubble constant) 2 , which is the case if the fourth derivative of the potential at the top of the barrier is greater than some negative limit value, the action of the instanton is less than the Hawking-Moss action and, consequently, the instanton determines the outcome of the vacuum decay if no other Coleman-de Luccia instanton is admitted by the potential. A numerical study shows that for the quartic potential the physical mode of the vacuum decay is given by the Coleman-de Luccia instanton of the first order also in the region of parameters in which the potential admits two instantons of the second order
Manton, Jonathan H.
2012-01-01
The Newton iteration is a popular method for minimising a cost function on Euclidean space. Various generalisations to cost functions defined on manifolds appear in the literature. In each case, the convergence rate of the generalised Newton iteration needed establishing from first principles. The present paper presents a framework for generalising iterative methods from Euclidean space to manifolds that ensures local convergence rates are preserved. It applies to any (memoryless) iterative m...
Classical and quantum integrability of 2D dilaton gravities in Euclidean space
Bergamin, L; Grumiller, D; Kummer, W; Vassilevich, D V
2005-01-01
Euclidean dilaton gravity in two dimensions is studied exploiting its representation as a complexified first order gravity model. All local classical solutions are obtained. A global discussion reveals that for a given model only a restricted class of topologies is consistent with the metric and the dilaton. A particular case of string motivated Liouville gravity is studied in detail. Path integral quantization in generic Euclidean dilaton gravity is performed non-perturbatively by analogy to the Minkowskian case
Euclidean Geometry Codes, minimum weight words and decodable error-patterns using bit-flipping
Høholdt, Tom; Justesen, Jørn; Jonsson, Bergtor
2005-01-01
We determine the number of minimum wigth words in a class of Euclidean Geometry codes and link the performance of the bit-flipping decoding algorithm to the geometry of the error patterns.......We determine the number of minimum wigth words in a class of Euclidean Geometry codes and link the performance of the bit-flipping decoding algorithm to the geometry of the error patterns....
Linearization of Euclidean Norm Dependent Inequalities Applied to Multibeam Satellites Design
Camino , Jean-Thomas; Artigues , Christian; Houssin , Laurent; Mourgues , Stéphane
2016-01-01
Euclidean norm computations over continuous variables appear naturally in the constraints or in the objective of many problems in the optimization literature, possibly defining non-convex feasible regions or cost functions. When some other variables have discrete domains, it positions the problem in the challenging Mixed Integer Nonlinear Programming (MINLP) class. For any MINLP where the nonlinearity is only present in the form of inequality constraints involving the Euclidean norm, we propo...
General Rotational Surfaces in Pseudo-Euclidean 4-Space with Neutral Metric
Aleksieva, Yana; Milousheva, Velichka; Turgay, Nurettin Cenk
2016-01-01
We define general rotational surfaces of elliptic and hyperbolic type in the pseudo-Euclidean 4-space with neutral metric which are analogous to the general rotational surfaces of C. Moore in the Euclidean 4-space. We study Lorentz general rotational surfaces with plane meridian curves and give the complete classification of minimal general rotational surfaces of elliptic and hyperbolic type, general rotational surfaces with parallel normalized mean curvature vector field, flat general rotati...
Zheng, Nan; Lian, Bin; Du, Wenwen; Xu, Guobing; Ji, Jiafu
2018-01-01
Paclitaxel-loaded polymeric micelles (PTX-PM) are commonly used as tumor-targeted nanocarriers and display outstanding antitumor features in clinic, but its accumulation and distribution in vitro are lack of investigation. It is probably due to the complex micellar system and its low concentration at the cellular or subcellular levels. In this study, we developed an improved extraction method, which was a combination of mechanical disruption and liquid-liquid extraction (LLE), to extract the total PTX from micelles in the cell lysate and subcellular compartments. An ultra-performance liquid chromatography tandem mass spectroscopy (UPLC-MS/MS) method was optimized to detect the low concentration of PTX at cellular and subcellular levels simultaneously, using docetaxel as internal standard (IS). The method was proved to release PTX totally from micelles (≥95.93%) with a consistent and reproducible extraction recovery (≥75.04%). Good linearity was obtained at concentrations ranging from 0.2 to 20ng/mL. The relative error (RE%) for accuracy varied from 0.68 to 7.56%, and the intra- and inter-precision (relative standard deviation, RSD%) was less than 8.64% and 13.14%, respectively. This method was fully validated and successfully applied to the cellular uptake and distribution study of PTX-loaded PLGA-PEG micelles in human breast cancer cells (MCF-7). Copyright © 2017 Elsevier B.V. All rights reserved.
Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Mostafa Charmi
2010-06-01
Full Text Available Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this paper is to assess the possible substitution of the geodesic metric with the Log-Euclidean one to reduce the computational cost of a statistical surface evolution algorithm. Materials and Methods: We incorporated the Log-Euclidean metric in the statistical surface evolution algorithm framework. To achieve this goal, the statistics and gradients of diffusion tensor images were defined using the Log-Euclidean metric. Numerical implementation of the segmentation algorithm was performed in the MATLAB software using the finite difference techniques. Results: In the statistical surface evolution framework, the Log-Euclidean metric was able to discriminate the torus and helix patterns in synthesis datasets and rat spinal cords in biological phantom datasets from the background better than the Euclidean and J-divergence metrics. In addition, similar results were obtained with the geodesic metric. However, the main advantage of the Log-Euclidean metric over the geodesic metric was the dramatic reduction of computational cost of the segmentation algorithm, at least by 70 times. Discussion and Conclusion: The qualitative and quantitative results have shown that the Log-Euclidean metric is a good substitute for the geodesic metric when using a statistical surface evolution algorithm in DTIs segmentation.
Marion Le Coadic
Full Text Available Dictyostelium discoideum has largely been used to study phagocytosis and intracellular killing of bacteria. Previous studies have shown that Phg1A, Kil1 and Kil2 proteins are necessary for efficient intracellular killing of Klebsiella bacteria. Here we show that in phg1a KO cells, cellular levels of lysosomal glycosidases and lysozyme are decreased, and lysosomal pH is increased. Surprisingly, overexpression of Kil1 restores efficient killing in phg1a KO cells without correcting these lysosomal anomalies. Conversely, kil1 KO cells are defective for killing, but their enzymatic content and lysosomal pH are indistinguishable from WT cells. The killing defect of phg1a KO cells can be accounted for by the observation that in these cells the stability and the cellular amount of Kil1 are markedly reduced. Since Kil1 is the only sulfotransferase characterized in Dictyostelium, an (unidentified sulfated factor, defective in both phg1a and kil1 KO cells, may play a key role in intracellular killing of Klebsiella bacteria. In addition, Phg1B plays a redundant role with Phg1A in controlling cellular amounts of Kil1 and intracellular killing. Finally, cellular levels of Kil1 are unaffected in kil2 KO cells, and Kil1 overexpression does not correct the killing defect of kil2 KO cells, suggesting that Kil2 plays a distinct role in intracellular killing.
Hajime Matsui
2017-12-01
Full Text Available In this study, we consider codes over Euclidean domains modulo their ideals. In the first half of the study, we deal with arbitrary Euclidean domains. We show that the product of generator matrices of codes over the rings mod a and mod b produces generator matrices of all codes over the ring mod a b , i.e., this correspondence is onto. Moreover, we show that if a and b are coprime, then this correspondence is one-to-one, i.e., there exist unique codes over the rings mod a and mod b that produce any given code over the ring mod a b through the product of their generator matrices. In the second half of the study, we focus on the typical Euclidean domains such as the rational integer ring, one-variable polynomial rings, rings of Gaussian and Eisenstein integers, p-adic integer rings and rings of one-variable formal power series. We define the reduced generator matrices of codes over Euclidean domains modulo their ideals and show their uniqueness. Finally, we apply our theory of reduced generator matrices to the Hecke rings of matrices over these Euclidean domains.
Epileptic Seizure Detection with Log-Euclidean Gaussian Kernel-Based Sparse Representation.
Yuan, Shasha; Zhou, Weidong; Wu, Qi; Zhang, Yanli
2016-05-01
Epileptic seizure detection plays an important role in the diagnosis of epilepsy and reducing the massive workload of reviewing electroencephalography (EEG) recordings. In this work, a novel algorithm is developed to detect seizures employing log-Euclidean Gaussian kernel-based sparse representation (SR) in long-term EEG recordings. Unlike the traditional SR for vector data in Euclidean space, the log-Euclidean Gaussian kernel-based SR framework is proposed for seizure detection in the space of the symmetric positive definite (SPD) matrices, which form a Riemannian manifold. Since the Riemannian manifold is nonlinear, the log-Euclidean Gaussian kernel function is applied to embed it into a reproducing kernel Hilbert space (RKHS) for performing SR. The EEG signals of all channels are divided into epochs and the SPD matrices representing EEG epochs are generated by covariance descriptors. Then, the testing samples are sparsely coded over the dictionary composed by training samples utilizing log-Euclidean Gaussian kernel-based SR. The classification of testing samples is achieved by computing the minimal reconstructed residuals. The proposed method is evaluated on the Freiburg EEG dataset of 21 patients and shows its notable performance on both epoch-based and event-based assessments. Moreover, this method handles multiple channels of EEG recordings synchronously which is more speedy and efficient than traditional seizure detection methods.
Lutsenko, L A; Tulakin, A V; Egorova, A M; Mikhailova, O M; Gvozdeva, L L; Chigryay, E K
The purpose of this study was to give the description of harmful effects of the impact of electromagnetic radiations from base stations of cellular communication as the most common sources of radio frequencies of electromagnetic fields in the environment. The highest values of the energy flux density were measured on the roofs of houses where antennas are installed - more than 10 pW/cm. The lowest values were recorded in inside premises with expositions of 0.1-1 pW/cm. In the close location of the railway station to the base stations of the cellular communication there was seen a cumulative effect. There are proposed both new safe hygienic approaches to the control for the safety of the work of base station and protective measures.
Chen Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D.; Costa, Max
2005-01-01
Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1α). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic
Thomas Staubitz
2017-06-01
Full Text Available Programming tasks are an important part of teaching computer programming as they foster students to develop essential programming skills and techniques through practice. The design of educational problems plays a crucial role in the extent to which the experiential knowledge is imparted to the learner both in terms of quality and quantity. Badly designed tasks have been known to put-off students from practicing programming. Hence, there is a need for carefully designed problems. Cellular Automata programming lends itself as a very suitable candidate among problems designed for programming practice. In this paper, we describe how various types of problems can be designed using concepts from Cellular Automata and discuss the features which make them good practice problems with regard to instructional pedagogy. We also present a case study on a Cellular Automata programming exercise used in a MOOC on Test Driven Development using JUnit, and discuss the automated evaluation of code submissions and the feedback about the reception of this exercise by participants in this course. Finally, we suggest two ideas to facilitate an easier approach of creating such programming exercises.
Des Rosiers, M.H.; Descarries, Laurent
1978-01-01
Vascular perfusion of all products required for primary fixation, postfixation, dehydration and embedding of nervous tissue in Epon permits radio-autographic detection of radioactivity accumulated in the central nervous system after intravenous injection of [ 3 H]deoxyglucose. This histological technique should allow application of the deoxyglucose method at cellular if not subcellular level, since a high proportion of the tracer appears to be retained in situ in specimens adequately preserved for light and electron microscope radio-autography [fr
On the Convergence and Law of Large Numbers for the Non-Euclidean Lp -Means
George Livadiotis
2017-05-01
Full Text Available This paper describes and proves two important theorems that compose the Law of Large Numbers for the non-Euclidean L p -means, known to be true for the Euclidean L 2 -means: Let the L p -mean estimator, which constitutes the specific functional that estimates the L p -mean of N independent and identically distributed random variables; then, (i the expectation value of the L p -mean estimator equals the mean of the distributions of the random variables; and (ii the limit N → ∞ of the L p -mean estimator also equals the mean of the distributions.
Intrinsic Regularization in a Lorentz invariant non-orthogonal Euclidean Space
Tornow, Carmen
2006-01-01
It is shown that the Lorentz transformations can be derived for a non-orthogonal Euclidean space. In this geometry one finds the same relations of special relativity as the ones known from the orthogonal Minkowski space. In order to illustrate the advantage of a non-orthogonal Euclidean metric the two-point Green’s function at x = 0 for a self-interacting scalar field is calculated. In contrast to the Minkowski space the one loop mass correction derived from this function gives a convergent r...
Scalar Green's functions in an Euclidean space with a conical-type line singularity
Guimaraes, M.E.X.; Linet, B.
1994-01-01
In an Euclidean space with a conical-type line singularity, we determine the Green's function for a charged massive scalar field interacting with a magnetic flux running through the line singularity. We give an integral expression of the Green's function and a local form in the neighbourhood of the point source, where it is the sum of the usual Green's function in Euclidean space and a regular term. As an application, we derive the vacuum energy-momentum tensor in the massless case for an arbitrary magnetic flux. (orig.)
Products of Snowflaked Euclidean Lines Are Not Minimal for Looking Down
Joseph Matthieu
2017-11-01
Full Text Available We show that products of snowflaked Euclidean lines are not minimal for looking down. This question was raised in Fractured fractals and broken dreams, Problem 11.17, by David and Semmes. The proof uses arguments developed by Le Donne, Li and Rajala to prove that the Heisenberg group is not minimal for looking down. By a method of shortcuts, we define a new distance d such that the product of snowflaked Euclidean lines looks down on (RN , d, but not vice versa.
Boukhalfa-Heniche, Fatima-Zohra; Hernández, Belén; Gaillard, Stéphane; Coïc, Yves-Marie; Huynh-Dinh, Tam; Lecouvey, Marc; Seksek, Olivier; Ghomi, Mahmoud
2004-04-15
Optical spectroscopic techniques such as CD, Raman scattering, and fluorescence imaging allowed us to analyze the complex formation and vectorization of a single-stranded 20-mer phosphorothioate oligodeoxynucleotide with a 15-mer amphipathic peptide at molecular and cellular levels. Different solvent mixtures (methanol and water) and molecular ratios of peptide/oligodeoxynucleotide complexes were tested in order to overcome the problems related to solubility. Optimal conditions for both spectroscopic and cellular experiments were obtained with the molecular ratio peptide/oligodeoxynucleotide equal to 21:4, corresponding to a 7:5 ratio for their respective +/- charge ratio. At the molecular level, CD and Raman spectra were consistent with a alpha-helix conformation of the peptide in water or in a methanol-water mixture. The presence of methanol increased considerably the solubility of the peptide without altering its alpha-helix conformation, as evidenced by CD and Raman spectroscopies. UV absorption melting profile of the oligodeoxynucleotide gave rise to a flat melting profile, corresponding to its random structure in solution. Raman spectra of oligodeoxynucleotide/peptide complexes could only be studied in methanol/water mixture solutions. Drastic changes observed in Raman spectra have undoubtedly shown: (a) the perturbation occurred in the peptide secondary structure, and (b) possible interaction between the lysine residues of the peptide and the oligodeoxynucleotide. At the cellular level, the complex was prepared in a mixture of 10% methanol and 90% cell medium. Cellular uptake in optimal conditions for the oligodeoxynucleotide delivery with low cytotoxicity was controlled by fluorescence imaging allowing to specifically locate the compacted oligonucleotide labeled with fluorescein at its 5'-terminus with the peptide into human glioma cells after 1 h of incubation at 37 degrees C. Copyright 2004 Wiley Periodicals, Inc.
May, Christian P; Kolokotroni, Eleni; Stamatakos, Georgios S; Büchler, Philippe
2011-10-01
Modeling of tumor growth has been performed according to various approaches addressing different biocomplexity levels and spatiotemporal scales. Mathematical treatments range from partial differential equation based diffusion models to rule-based cellular level simulators, aiming at both improving our quantitative understanding of the underlying biological processes and, in the mid- and long term, constructing reliable multi-scale predictive platforms to support patient-individualized treatment planning and optimization. The aim of this paper is to establish a multi-scale and multi-physics approach to tumor modeling taking into account both the cellular and the macroscopic mechanical level. Therefore, an already developed biomodel of clinical tumor growth and response to treatment is self-consistently coupled with a biomechanical model. Results are presented for the free growth case of the imageable component of an initially point-like glioblastoma multiforme tumor. The composite model leads to significant tumor shape corrections that are achieved through the utilization of environmental pressure information and the application of biomechanical principles. Using the ratio of smallest to largest moment of inertia of the tumor material to quantify the effect of our coupled approach, we have found a tumor shape correction of 20% by coupling biomechanics to the cellular simulator as compared to a cellular simulation without preferred growth directions. We conclude that the integration of the two models provides additional morphological insight into realistic tumor growth behavior. Therefore, it might be used for the development of an advanced oncosimulator focusing on tumor types for which morphology plays an important role in surgical and/or radio-therapeutic treatment planning. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard
2011-01-01
Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.
Srivastava, P.N.; Sharan, R.N.; Pozzi, L.
1983-01-01
Damage at cellular level is measured using colony forming units in spleen (CFU-S) technique while that at subcellular level by DNA unwinding technique. The damage is monitored up to four generations in Swiss albino mice. The results show drastically reduced colony forming ability in mice bone marrow cells (BMC). On plotting survival fractions (percent of control) for BMC against generations of mice, the plateau is found around 50% survival. The role of DNA in colony forming ability of BMC is tested. The results indicate that, at least, initial impairment of colony ability is not DNA dependent but related to some other factor(s)
On Euclidean connections for su(1,1), suq(1,1) and the algebraic approach to scattering
Ionescu, R.A.
1994-11-01
We obtain a general Euclidean connection for su(1,1) and suq(1,1) algebras. Our Euclidean connection allows an algebraic derivation for the S matrix. These algebraic S matrices reduce to the known ones in suitable circumstances. Also, we obtain a map between su(1,1) and su q (1,1) representations. (author). 8 refs
Akhtar, L.H.; Gorham, J.; Siddiqui, S.Z.; Jamil, M.; Arshad, M.
2002-01-01
Salinity affects the physiological and biochemical processes of the plants in a variety of ways. In this manuscript, variability in plant, with respect to salinity-tolerance and morphological adaptations in plants for salinity-tolerance, have been discussed. Salinity effects on growth of plants, cell membranes, proteins, sugars, nucleic acids, starch, cell sap, transpiration, stomatal conductance, pollen viability, Co/sub 2/ assimilation, chlorophyll, photosynthesis and enzymes have been reviewed. Proline and glycinebetaine accumulation, localisation in the cell and their physiological role under salt-stress has been presented. Cellular mechanism of salt-tolerance and role of calcium in salt-stress have been reviewed. The possible approaches to deal with all types of stresses have been suggested. (author)
Lowery, Colin A; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan; Lively, Jenny M; Cravatt, Benjamin F; Miller, Samuel I; Kaufmann, Gunnar F; Janda, Kim D
2013-07-25
Small molecule probes have been used extensively to explore biologic systems and elucidate cellular signaling pathways. In this study, we use an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering unrecognized processes regulated by AI-2-based quorum-sensing (QS), a mechanism of bacterial intercellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intercellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chaurand, Pierre; Cornett, Dale S; Angel, Peggi M; Caprioli, Richard M
2011-02-01
Significant progress in instrumentation and sample preparation approaches have recently expanded the potential of MALDI imaging mass spectrometry to the analysis of phospholipids and other endogenous metabolites naturally occurring in tissue specimens. Here we explore some of the requirements necessary for the successful analysis and imaging of phospholipids from thin tissue sections of various dimensions by MALDI time-of-flight mass spectrometry. We address methodology issues relative to the imaging of whole-body sections such as those cut from model laboratory animals, sections of intermediate dimensions typically prepared from individual organs, as well as the requirements for imaging areas of interests from these sections at a cellular scale spatial resolution. We also review existing limitations of MALDI imaging MS technology relative to compound identification. Finally, we conclude with a perspective on important issues relative to data exploitation and management that need to be solved to maximize biological understanding of the tissue specimen investigated.
The positive action conjecture and asymptotically euclidean metrics in quantum gravity
Gibbons, G.W.; Pope, C.N.
1979-01-01
The positive action conjecture requires that the action of any asymptotically Euclidean 4-dimensional Riemannian metric be positive, vanishing if and only if the space is flat. Because any Ricci flat, asymptotically Euclidean metric has zero action and is local extremum of the action which is a local minimum at flat space, the conjecture requires that there are no Ricci flat asymptotically Euclidean metrics other than flat space, which would establish that flat space is the only local minimum. We prove this for metrics on R 4 and a large class of more complicated topologies and for self-dual metrics. We show that if Rsupμsubμ >= 0 there are no bound states of the Dirac equation and discuss the relevance to possible baryon non-conserving processes mediated by gravitational instantons. We conclude that these are forbidden in the lowest stationary phase approximation. We give a detailed discussion of instantons invariant under an SU(2) or SO(3) isometry group. We find all regular solutions, none of which is asymptotically Euclidean and all of which possess a further Killing vector. In an appendix we construct an approximate self-dual metric on K3 - the only simply connected compact manifold which admits a self-dual metric. (orig.) [de
Usability Evaluation of an Augmented Reality System for Teaching Euclidean Vectors
Martin-Gonzalez, Anabel; Chi-Poot, Angel; Uc-Cetina, Victor
2016-01-01
Augmented reality (AR) is one of the emerging technologies that has demonstrated to be an efficient technological tool to enhance learning techniques. In this paper, we describe the development and evaluation of an AR system for teaching Euclidean vectors in physics and mathematics. The goal of this pedagogical tool is to facilitate user's…
Rooij, van I.; Stege, U.; Schactman, A.
2003-01-01
Recently there has been growing interest among psychologists in human performance on the Euclidean traveling salesperson problem (E-TSP). A debate has been initiated on what strategy people use in solving visually presented E-TSP instances. The most prominent hypothesis is the convex-hull
Pordt, A.
1985-10-01
The author describes the Mayer expansion in Euclidean lattice field theory by comparing it with the statistical mechanics of polymer systems. In this connection he discusses the Borel summability and the analyticity of the activities on the lattice. Furthermore the relations between renormalization and the Mayer expansion are considered. (HSI)
Fast Exact Euclidean Distance (FEED): A new class of adaptable distance transforms
Schouten, Theo E.; van den Broek, Egon
2014-01-01
A new unique class of foldable distance transforms of digital images (DT) is introduced, baptized: Fast Exact Euclidean Distance (FEED) transforms. FEED class algorithms calculate the DT starting directly from the definition or rather its inverse. The principle of FEED class algorithms is
Fast Exact Euclidean Distance (FEED) : A new class of adaptable distance transforms
Schouten, Theo E.; van den Broek, Egon L.
2014-01-01
A new unique class of foldable distance transforms of digital images (DT) is introduced, baptized: Fast Exact Euclidean Distance (FEED) transforms. FEED class algorithms calculate the DT startingdirectly from the definition or rather its inverse. The principle of FEED class algorithms is introduced,
Loci of points in the Euclidean plane are deter- mined from ...
Loci of points in the Euclidean plane are deter- mined from prescribed relations of the points with given points, and/or, lines. The depen- dence of these relations on parameters lead to the differential equations representing the fam- ily of loci under concern. Incidentally most of the differential equations thus obtained are non ...
Faster exact algorithms for computing Steiner trees in higher dimensional Euclidean spaces
Fonseca, Rasmus; Brazil, Marcus; Winter, Pawel
The Euclidean Steiner tree problem asks for a network of minimum total length interconnecting a finite set of points in d-dimensional space. For d ≥ 3, only one practical algorithmic approach exists for this problem --- proposed by Smith in 1992. A number of refinements of Smith's algorithm have...
Characterizations of Space Curves According to Bishop Darboux Vector in Euclidean 3-Space E3
Huseyin KOCAYIGIT; Ali OZDEMIR
2014-01-01
In this paper, we obtained some characterizations of space curves according to Bihop frame in Euclidean 3-space E3 by using Laplacian operator and Levi-Civita connection. Furthermore, we gave the general differential equations which characterize the space curves according to the Bishop Darboux vector and the normal Bishop Darboux vector.
F.C. Gruau; J.T. Tromp (John)
1999-01-01
textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on
Bradshaw, C. [Stockholm University (Sweden); Abdul Meseh, D.; Alasawi, H.; Qiang, M.; Nascimento, F. [Dept of Ecology, Environment and Plant Sciences (Sweden)
2014-07-01
A major challenge in evaluating the risks of radiation to organisms is that radioactive substances often co-occur with other contaminants in the environment. The combined effects of multiple contaminants is poorly understood, particularly where radiation is involved, but mixture toxicity can give rise to synergistic, antagonistic or additive effects. The challenge of understanding mixture toxicity in a radiation context is the focus of one of the work packages of the STAR EU Network of Excellence in Radioecology, of which this study is a part. This paper presents results from an experiment where the green micro-alga Pseudokirchneriella subcapitata was exposed to both acute external gamma irradiation and the toxic metal cadmium (Cd) (over 72 hours); the experiment had a fully factorial design with 4 gamma doses and 4 Cd concentrations. The endpoints measured were chosen to reflect subcellular, cellular and population-level effects: antioxidant enzyme expression; membrane damage; protein, vitamin and pigment content of the cells; individual cell biomass and growth; population growth (biomass per ml and cells per ml). Preliminary results suggest effects of both Cd and gamma on some of the cellular and subcellular endpoints such as thiamine (vitamin B1) and chlorophyll concentrations in the cells, and individual cell biomass. In some cases interactive effects of the combined Cd and gamma treatments were seen, and these appeared to be dose level dependent. This lack of a consistent pattern of interactive mixture toxicity effects across the endpoints measured means that such effects would be very hard to predict in a risk assessment context. The lack of measurable effects at the population level was probably due to the short experimental duration (72 hours). Other experiments in our research group on the same micro-alga species that have looked at longer term effects (weeks) have shown that effects may not manifest themselves until at least a week after an acute gamma
Elkind, M.M.; Bedford, J.; Benjamin, S.A.; Waldren, C.A. (Colorado State Univ., Fort Collins, CO (USA)); Gotchy, R.L. (Science Applications International Corp., McLean, VA (USA))
1990-10-01
A study was undertaken by five radiation scientists to examine the feasibility of reducing the uncertainties in the estimation of risk due to protracted low doses of ionizing radiation. In addressing the question of feasibility, a review was made by the study group: of the cellular, molecular, and mammalian radiation data that are available; of the way in which altered oncogene properties could be involved in the loss of growth control that culminates in tumorigenesis; and of the progress that had been made in the genetic characterizations of several human and animal neoplasms. On the basis of this analysis, the study group concluded that, at the present time, it is feasible to mount a program of radiation research directed at the mechanism(s) of radiation-induced cancer with special reference to risk of neoplasia due to protracted, low doses of sparsely ionizing radiation. To implement a program of research, a review was made of the methods, techniques, and instruments that would be needed. This review was followed by a survey of the laboratories and institutions where scientific personnel and facilities are known to be available. A research agenda of the principal and broad objectives of the program is also discussed. 489 refs., 21 figs., 14 tabs.
Elkind, M.M.; Bedford, J.; Benjamin, S.A.; Waldren, C.A.; Gotchy, R.L.
1990-10-01
A study was undertaken by five radiation scientists to examine the feasibility of reducing the uncertainties in the estimation of risk due to protracted low doses of ionizing radiation. In addressing the question of feasibility, a review was made by the study group: of the cellular, molecular, and mammalian radiation data that are available; of the way in which altered oncogene properties could be involved in the loss of growth control that culminates in tumorigenesis; and of the progress that had been made in the genetic characterizations of several human and animal neoplasms. On the basis of this analysis, the study group concluded that, at the present time, it is feasible to mount a program of radiation research directed at the mechanism(s) of radiation-induced cancer with special reference to risk of neoplasia due to protracted, low doses of sparsely ionizing radiation. To implement a program of research, a review was made of the methods, techniques, and instruments that would be needed. This review was followed by a survey of the laboratories and institutions where scientific personnel and facilities are known to be available. A research agenda of the principal and broad objectives of the program is also discussed. 489 refs., 21 figs., 14 tabs
Yang, Jing; Wang, Cheng; Cai, Gan; Dong, Xiaona
2016-10-01
The incidence and mortality rate of the primary liver cancer are very high and its postoperative metastasis and recurrence have become important factors to the prognosis of patients. Circulating tumor cells (CTC), as a new tumor marker, play important roles in the early diagnosis and individualized treatment. This paper presents an effective method to distinguish liver cancer based on the cellular scattering spectrum, which is a non-fluorescence technique based on the fiber confocal microscopic spectrometer. Combining the principal component analysis (PCA) with back propagation (BP) neural network were utilized to establish an automatic recognition model for backscatter spectrum of the liver cancer cells from blood cell. PCA was applied to reduce the dimension of the scattering spectral data which obtained by the fiber confocal microscopic spectrometer. After dimensionality reduction by PCA, a neural network pattern recognition model with 2 input layer nodes, 11 hidden layer nodes, 3 output nodes was established. We trained the network with 66 samples and also tested it. Results showed that the recognition rate of the three types of cells is more than 90%, the relative standard deviation is only 2.36%. The experimental results showed that the fiber confocal microscopic spectrometer combining with the algorithm of PCA and BP neural network can automatically identify the liver cancer cell from the blood cells. This will provide a better tool for investigating the metastasis of liver cancers in vivo, the biology metabolic characteristics of liver cancers and drug transportation. Additionally, it is obviously referential in practical application.
van Mil, M.H.W.; Boerwinkel, D.J.; Waarlo, A.J.
2013-01-01
Although molecular-level details are part of the upper-secondary biology curriculum in most countries, many studies report that students fail to connect molecular knowledge to phenomena at the level of cells, organs and organisms. Recent studies suggest that students lack a framework to reason about
van Mil, Marc H. W.; Boerwinkel, Dirk Jan; Waarlo, Arend Jan
2013-01-01
Although molecular-level details are part of the upper-secondary biology curriculum in most countries, many studies report that students fail to connect molecular knowledge to phenomena at the level of cells, organs and organisms. Recent studies suggest that students lack a framework to reason about complex systems to make this connection. In this…
Koturbash, Igor; Loree, Jonathan; Kutanzi, Kristy; Koganow, Clayton; Pogribny, Igor; Kovalchuk, Olga
2008-01-01
Purpose: It is well accepted that irradiated cells may 'forward' genome instability to nonirradiated neighboring cells, giving rise to the 'bystander effect' phenomenon. Although bystander effects were well studied by using cell cultures, data for somatic bystander effects in vivo are relatively scarce. Methods and Materials: We set out to analyze the existence and molecular nature of bystander effects in a radiation target-organ spleen by using a mouse model. The animal's head was exposed to X-rays while the remainder of the body was completely protected by a medical-grade shield. Using immunohistochemistry, we addressed levels of DNA damage, cellular proliferation, apoptosis, and p53 protein in the spleen of control animals and completely exposed and head-exposed/body bystander animals. Results: We found that localized head radiation exposure led to the induction of bystander effects in the lead-shielded distant spleen tissue. Namely, cranial irradiation led to increased levels of DNA damage and p53 expression and also altered levels of cellular proliferation and apoptosis in bystander spleen tissue. The observed bystander changes were not caused by radiation scattering and were observed in two different mouse strains; C57BL/6 and BALB/c. Conclusion: Our study proves that bystander effects occur in the distant somatic organs on localized exposures. Additional studies are required to characterize the nature of an enigmatic bystander signal and analyze the long-term persistence of these effects and possible contribution of radiation-induced bystander effects to secondary radiation carcinogenesis
Unruh, Eckehardt; Hansen, Peter-Diedrich
Hemocytes are the primary defence of the Blue Mussel against invading microorganisms and foreign particles. The hemocytes of mussels as part of the immune system of invertebrates has not been studied so far in space. The choice of the phagocytes from invertebrates is justified by the claim to study the universal validity of innate immune responses. The hemocytes of mussels have a lot in common with macrophages of higher organisms. They are able to detect the presence of microorganisms and kill these microorganisms by phagocytosis. The phagocy-tosis related production of ROS will be stimulated with opsonised zymosan. The hemocytes will be stored frozen and reconstituted in-flight for the experiment. The signals of the im-muno cellular responses are translated into luminescence as a rapid optical reporter system. The primary aim of Triplelux B is to investigate under space flight conditions the effect of microgravity on the ability of isolated Blue Mussel hemocytes to perform phagocytosis. As a secondery objectiv, the results expected will allow to conclude whether the observed responses are caused by microgravity and/or radiation (change in permeability, endpoints in genotoxicity: DNA unwinding). The TRIPLELUX-B Experiment contributes to risk assessment concerning immunotoxicity under space flight conditions. The components of the fully automated AEC (Advanced Experimental Containment) will be demonstrated. The AEC of the TRIPLELUX-B experiment will contribute to a real time operational monitoring for immunotoxicity testing for earth. Blue mussels have been used repeatedly for monitoring imunotoxicity and genotoxicity in coastal waters. Based on the AEC an automatet measuring device will allow "real time monitoring" providing observations of immunotoxicity in coastal and inland waters.
Rotjanakunnatam, Boonthida; Chayaburakul, Kanokporn
2018-01-01
The aims of this research study was to develop the conceptual instructional design with the Inquiry-Based Instruction Model (IBIM) of secondary students at the 10th grade level on Digestion System and Cellular Degradation issue using both oxygen and oxygen-degrading cellular nutrients were designed instructional model with a sample size of 45 secondary students at the 10th Grade level. Data were collected by asking students to do a questionnaire pre and post learning processes. The questionnaire consists of two main parts that composed of students' perception questionnaire and the questionnaire that asked the question answer concept for the selected questionnaire. The 10-item Conceptual Thinking Test (CTT) was assessed students' conceptual thinking evaluation that it was covered in two main concepts, namely; Oxygen degradation nutrients and degradation nutrients without oxygen. The data by classifying students' answers into 5 groups and measuring them in frequency and a percentage of students' performances of their learning pre and post activities with the Inquiry-Based Instruction Model were analyzed as a tutorial. The results of this research found that: After the learning activities with the IBIM, most students developed concepts of both oxygen and oxygen-degrading cellular nutrients in the correct, complete and correct concept, and there are a number of students who have conceptual ideas in the wrong concept, and no concept was clearly reduced. However, the results are still found that; some students have some misconceptions, such as; the concept of direction of electron motion and formation of the ATP of bioactivities of life. This cause may come from the nature of the content, the complexity, the continuity, the movement, and the time constraints only in the classroom. Based on this research, it is suggested that some students may take some time, and the limited time in the classroom to their learning activity with content creation content binding and
Morlon, Helene; Fortin, Claude; Floriani, Magali; Adam, Christelle; Garnier-Laplace, Jacqueline; Boudou, Alain
2005-01-01
The toxicity of selenium in aquatic ecosystems is mainly linked to its uptake and biotransformation by micro-organisms, and its subsequent transfer upwards into the food chain. Thus, organisms at low trophic level, such as algae, play a crucial role. The aim of our study was to investigate the biological effects of selenite on Chlamydomonas reinhardtii, both at the sub-cellular level (effect on ultrastructure) and at the population level (effect on growth). The cells were grown under batch culture conditions in well-defined media and exposed to waterborne selenite at concentrations up to 500 μM; i.e. up to lethal conditions. Based on the relationship between Se concentration and cell density achieved after a 96 h exposure period, an EC 50 of 80 μM with a 95% confidence interval ranging between 64 and 98 μM was derived. No adaptation mechanisms were observed: the same toxicity was quantified for algae pre-contaminated with Se. The inhibition of growth was linked to impairments observed at the sub-cellular level. The intensity of the ultrastructural damages caused by selenite exposure depended on the level and duration of exposure. Observations by TEM suggested chloroplasts as the first target of selenite cytotoxicity, with effects on the stroma, thylakoids and pyrenoids. At higher concentrations, we could observe an increase in the number and volume of starch grains. For cells collected at 96 h, electron-dense granules were observed. Energy-dispersive X-ray microanalysis revealed that these granules contained selenium and were also rich in calcium and phosphorus. This study confirms that the direct toxicity of selenite on the phytoplankton biomass is not likely to take place at concentrations found in the environment. At higher concentrations, the link between effects at the sub-cellular and population levels, the over-accumulation of starch, and the formation of dense granules containing selenium are reported for the first time in the literature for a
High-throughput screening for compounds that modulate the cellular c-di-GMP level in bacteria
Groizeleau, Julie; Andersen, Jens Bo; Givskov, Michael
2017-01-01
. The secondary messenger c-di-GMP is a positive regulator of biofilm formation in many clinically relevant bacteria, and it is assumed that drugs that lower the intracellular level of c-di-GMP will force biofilm bacteria into a more treatable planktonic lifestyle. We describe a protocol for high......-throughput screening of chemical libraries for compounds that lower the c-di-GMP level in bacteria, and potentially can serve as lead compounds in the development of novel biofilm dismantling drugs....
van Mil, Marc H. W.; Postma, Paulien A.; Boerwinkel, Dirk Jan; Klaassen, Kees; Waarlo, Arend Jan
2016-01-01
Although learning about DNA, RNA, and proteins is part of the upper secondary biology curriculum in most countries, many studies report that students fail to connect molecular knowledge to phenomena at the higher level of cells, organs, and organisms. As a result, many students use memorization and rote learning as a coping strategy when presented…
Hansen, M.C.; Nielsen, A.K.; Molin, Søren
2001-01-01
obtained by these techniques are compared between experiments in which differences in growth rates, strains, or stress treatments occur, the normalization procedure may have a significant impact on the results. In this report we present a solution to the normalization problem in RNA slot blotting...... the relative level of rRNA per cell, and slot blotting to rRNA probes, which estimates the level of rRNA per extracted total RNA, the amount of RNA per cell was calculated in a series of heat shock experiments with the gram-positive bacterium Lactococcus lactis. It was found that the level of rRNA per cell...... decreased to 30% in the course of the heat shock. This lowered ribosome level led to a decrease in the total RNA content, resulting in a gradually increasing overestimation of the mRNA levels throughout the experiment. Using renormalized cellular mRNA levels, the HrcA-mediated regulation of the genes...
Low-dimensional geometry from euclidean surfaces to hyperbolic knots
Bonahon, Francis
2009-01-01
The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory o...
Singular Minkowski and Euclidean solutions for SU(2) Yang-Mills theory
Singleton, D.
1996-01-01
In this paper it is examined a solution to the SU(2) Yang-Mills-Higgs system, which is a trivial mathematical extension of recently discovered Schwarzschild- like solutions (Singleton D., Phys. Rev. D, 51 (1955) 5911). Physically, however, this new solution has drastically different properties from the Schwarzschild-like solutions. It is also studied a new classical solution for Euclidean SU(2) Yang-Mills theory. Again this new solution is a mathematically trivial extension of the Belavin-Polyakov-Schwartz-Tyupkin (BPST) (Belavin A. A. et al., Phys. Lett. B, 59 (1975) 85) instanton, but is physically very different. Unlike the usual instanton solution, the present solution is singular on a sphere of arbitrary radius in Euclidean space. Both of these solutions are infinite-energy solutions, so their practical value is somewhat unclear. However, they may be useful in exploring some of the mathematical aspects of classical Yang-Mills theory
Statistical 2D and 3D shape analysis using Non-Euclidean Metrics
Larsen, Rasmus; Hilger, Klaus Baggesen; Wrobel, Mark Christoph
2002-01-01
We address the problem of extracting meaningful, uncorrelated biological modes of variation from tangent space shape coordinates in 2D and 3D using non-Euclidean metrics. We adapt the maximum autocorrelation factor analysis and the minimum noise fraction transform to shape decomposition. Furtherm......We address the problem of extracting meaningful, uncorrelated biological modes of variation from tangent space shape coordinates in 2D and 3D using non-Euclidean metrics. We adapt the maximum autocorrelation factor analysis and the minimum noise fraction transform to shape decomposition....... Furthermore, we study metrics based on repated annotations of a training set. We define a way of assessing the correlation between landmarks contrary to landmark coordinates. Finally, we apply the proposed methods to a 2D data set consisting of outlines of lungs and a 3D/(4D) data set consisting of sets...
Membrane paradigm and entropy of black holes in the Euclidean action approach
Lemos, Jose P. S.; Zaslavskii, Oleg B.
2011-01-01
The membrane paradigm approach to black holes fixes in the vicinity of the event horizon a fictitious surface, the stretched horizon, so that the spacetime outside remains unchanged and the spacetime inside is vacuum. Using this powerful method, several black hole properties have been found and settled, such as the horizon's viscosity, electrical conductivity, resistivity, as well as other properties. On the other hand, the Euclidean action approach to black hole spacetimes has been very fruitful in understanding black hole entropy. Combining both the Euclidean action and membrane paradigm approaches, a direct derivation of the black hole entropy is given. In the derivation, it is considered that the only fields present are the gravitational and matter fields, with no electric field.
A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications
M. Revathy
2015-01-01
Full Text Available Low-density parity-check (LDPC codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax, and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures.
A Low-Complexity Euclidean Orthogonal LDPC Architecture for Low Power Applications.
Revathy, M; Saravanan, R
2015-01-01
Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures.
Structure functions at small xBj in a Euclidean field theory approach
Hebecker, A.; Meggiolaro, E.; Nachtmann, O.
2000-01-01
The small-x Bj limit of deep inelastic scattering is related to the high-energy limit of the forward Compton amplitude in a familiar way. We show that the analytic continuation of this amplitude in the energy variable is calculable from a matrix element in Euclidean field theory. This matrix element can be written as a Euclidean functional integral in an effective field theory. Its effective Lagrangian has a simple expression in terms of the original Lagrangian. The functional integral expression obtained can, at least in principle, be evaluated using genuinely non-perturbative methods, e.g., on the lattice. Thus, a fundamentally new approach to the long-standing problem of structure functions at very small x Bj seems possible. We give arguments that the limit x Bj →0 corresponds to a critical point of the effective field theory where the correlation length becomes infinite in one direction
Modelling non-Euclidean movement and landscape connectivity in highly structured ecological networks
Sutherland, Christopher; Fuller, Angela K.; Royle, J. Andrew
2015-01-01
Movement is influenced by landscape structure, configuration and geometry, but measuring distance as perceived by animals poses technical and logistical challenges. Instead, movement is typically measured using Euclidean distance, irrespective of location or landscape structure, or is based on arbitrary cost surfaces. A recently proposed extension of spatial capture-recapture (SCR) models resolves this issue using spatial encounter histories of individuals to calculate least-cost paths (ecological distance: Ecology, 94, 2013, 287) thereby relaxing the Euclidean assumption. We evaluate the consequences of not accounting for movement heterogeneity when estimating abundance in highly structured landscapes, and demonstrate the value of this approach for estimating biologically realistic space-use patterns and landscape connectivity.
From Euclidean to Minkowski space with the Cauchy-Riemann equations
Gimeno-Segovia, Mercedes; Llanes-Estrada, Felipe J.
2008-01-01
We present an elementary method to obtain Green's functions in non-perturbative quantum field theory in Minkowski space from Green's functions calculated in Euclidean space. Since in non-perturbative field theory the analytical structure of amplitudes often is unknown, especially in the presence of confined fields, dispersive representations suffer from systematic uncertainties. Therefore, we suggest to use the Cauchy-Riemann equations, which perform the analytical continuation without assuming global information on the function in the entire complex plane, but only in the region through which the equations are solved. We use as example the quark propagator in Landau gauge quantum chromodynamics, which is known from lattice and Dyson-Schwinger studies in Euclidean space. The drawback of the method is the instability of the Cauchy-Riemann equations against high-frequency noise,which makes it difficult to achieve good accuracy. We also point out a few curious details related to the Wick rotation. (orig.)
Huang, A.R.; Ponka, P.; McGill Univ., Montreal, Quebec; Jewish General Hospital, Montreal, Quebec
1983-01-01
Pyridoxal isonicotinoyl hydrazone (PIH) has recently been identified as a new iron chelating agent with a high degree of iron mobilizing activity in vitro and in vivo which makes this compound a candidate drug in the treatment of iron overload. This study was undertaken to elucidate the mechanism of action of the iron mobilizing activity of PIH at the cellular level. An in vitro system of rabbit reticulocytes with a high level of non-heme 59 Fe was used as a model of iron overload. The effects of various biochemical and physiological manoeuvers on the mobilization of 59 Fe by PIH from the cells were studied. The fate of [ 14 C]-PIH in the in vitro system was also studied. Studies were also carried out using a crude mitochondrial fraction. (orig./AJ)
Cellular decomposition in vikalloys
Belyatskaya, I.S.; Vintajkin, E.Z.; Georgieva, I.Ya.; Golikov, V.A.; Udovenko, V.A.
1981-01-01
Austenite decomposition in Fe-Co-V and Fe-Co-V-Ni alloys at 475-600 deg C is investigated. The cellular decomposition in ternary alloys results in the formation of bcc (ordered) and fcc structures, and in quaternary alloys - bcc (ordered) and 12R structures. The cellular 12R structure results from the emergence of stacking faults in the fcc lattice with irregular spacing in four layers. The cellular decomposition results in a high-dispersion structure and magnetic properties approaching the level of well-known vikalloys [ru
Romanofsky, Robert R.
2010-01-01
The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.
El-Shamy, E.; Sallam, M. H.
2010-01-01
Inosine has been used for treatment of various diseases and disorders in medicine. Modulator effect of inosine against γ radiation-induced histological alterations in testis, reduced glutathione (GSH), lipid peroxidation (LPO), acid and alkaline phosphatases activities (AP and ALP) and chromosomal aberrations (CA) in mice was studied at various experimental intervals between 1 and 30 days. Mice exposed to 8 Gy γ-rays showed acute radiation sickness including marked testis histological changes and chromosomal aberrations (CA) in bone marrow cells with 100 % mortality within 22 days. When inosine was given orally at a dose of 80 mg/ kg body wt for 15 consecutive days after exposure to γ-rays, death in radiation + inosine group was reduced to 70 % at 30 days. The radiation - dose reduction factor (DRF) was 1.43. There was significantly lesser degree of damage to testis tissue architecture and various cell populations including spermatogonia, spermatids and leydig cells. Correspondingly, a significant decrease in the LPO and increase in the GSH levels were observed in testis of radiation + inosine group. Similarly, a significant decrease in level of AP and increase in level of ALP were observed. Inosine treatment significantly prevented γ-rays-induced CA frequency in bone marrow cells.
An excursion through elementary mathematics, volume ii euclidean geometry
Caminha Muniz Neto, Antonio
2018-01-01
This book provides a comprehensive, in-depth overview of elementary mathematics as explored in Mathematical Olympiads around the world. It expands on topics usually encountered in high school and could even be used as preparation for a first-semester undergraduate course. This second volume covers Plane Geometry, Trigonometry, Space Geometry, Vectors in the Plane, Solids and much more. As part of a collection, the book differs from other publications in this field by not being a mere selection of questions or a set of tips and tricks that applies to specific problems. It starts from the most basic theoretical principles, without being either too general or too axiomatic. Examples and problems are discussed only if they are helpful as applications of the theory. Propositions are proved in detail and subsequently applied to Olympic problems or to other problems at the Olympic level. The book also explores some of the hardest problems presented at National and International Mathematics Olympiads, as well as many...
Marrot, L; Belaidi, J P; Chaubo, C; Meunier, J R; Perez, P; Agapakis-Causse, C
1998-09-01
Skin cancers are among the most common human cancers and have an increasing incidence. The ultraviolet radiation components of sunlight play a major role in skin tumor induction and development. Cellular DNA has been identified as a target for most of the biological effects of UV, and the induction of photodamage is considered as the initiating step of photocarcinogenesis. Thus, effective photoprotection of DNA against harmful overex-posure to solar UV is a critical issue. The efficiency of a sunscreen is usually tested with respect to its ability to prevent skin erythema, but conceivably, more data are required at the molecular and cellular level in order to ascertain protection against photocarcinogenic risk. In the present study, we define a strategy based on the use of various in vitro models and solar-simulated light to evaluate photodamage and photoprotection: -Supercoiled circular plasmid DNA for detection of structural alterations. -The yeast Saccharomyces cerevisiae to evaluate cytotoxicity and genotoxicity. -The single-cell gel electrophoresis or comet assay to determine DNA damage and DNA repair in human keratinocytes. -p53 expression as a hallmark for genotoxic stress. -Induction of pigmentation in human melanocytes. In conditions where light source, spectrum and control of radiation delivery were precisely defined, we have demonstrated that the wide spectrum UVA sunscreen Mexoryl SX protects from the cytotoxicity and genotoxicity of solar UV.
Dasgupta, I.
1998-01-01
We discuss new bounce-like (but non-time-reversal-invariant) solutions to Euclidean equations of motion, which we dub boomerons. In the Euclidean path integral approach to quantum theories, boomerons make an imaginary contribution to the vacuum energy. The fake vacuum instability can be removed by cancelling boomeron contributions against contributions from time reversed boomerons (anti-boomerons). The cancellation rests on a sign choice whose significance is not completely understood in the path integral method. (orig.)
Eleonora Patsenker
2015-03-01
Full Text Available The endocannabinoid (EC system is implicated in many chronic liver diseases, including hepatitis C viral (HCV infection. Cannabis consumption is associated with fibrosis progression in patients with chronic hepatitis C (CHC, however, the role of ECs in the development of CHC has never been explored. To study this question, anandamide (AEA and 2-arachidonoyl glycerol (2-AG were quantified in samples of HCV patients and healthy controls by gas and liquid chromatography mass spectrometry. Fatty acid amide hydrolase (FAAH and monoaclyglycerol lipase (MAGL activity was assessed by [3H]AEA and [3H]2-AG hydrolysis, respectively. Gene expression and cytokine release were assayed by TaqMan PCR and ELISpot, respectively. AEA and 2-AG levels were increased in plasma of HCV patients, but not in liver tissues. Hepatic FAAH and MAGL activity was not changed. In peripheral blood mononuclear cells (PBMC, ECs inhibited IFN-γ, TNF-α, and IL-2 secretion. Inhibition of IL-2 by endogenous AEA was stronger in PBMC from HCV patients. In hepatocytes, 2-AG induced the expression of IL-6, -17A, -32 and COX-2, and enhanced activation of hepatic stellate cells (HSC co-cultivated with PBMC from subjects with CHC. In conclusion, ECs are increased in plasma of patients with CHC and might reveal immunosuppressive and profibrogenic effects.
Tong, Winghang; Sourbier, Carole; Kovtunovych, Gennadiy; Jeong, Suhyoung; Vira, Manish A.; Ghosh, Manik Chandra; Romero, Vladimir Valera; Sougrat, Rachid; Vaulont, Sophie; Viollet, Benoî t; Kim, Yeongsang; Lee, Sunmin; Trepel, Jane B.; Srinivasan, Ramaprasad; Bratslavsky, Gennady; Yang, Youfeng; Linehan, William Marston; Rouault, Tracey A.
2011-01-01
Inactivation of the TCA cycle enzyme, fumarate hydratase (FH), drives a metabolic shift to aerobic glycolysis in FH-deficient kidney tumors and cell lines from patients with hereditary leiomyomatosis renal cell cancer (HLRCC), resulting in decreased levels of AMP-activated kinase (AMPK) and p53 tumor suppressor, and activation of the anabolic factors, acetyl-CoA carboxylase and ribosomal protein S6. Reduced AMPK levels lead to diminished expression of the DMT1 iron transporter, and the resulting cytosolic iron deficiency activates the iron regulatory proteins, IRP1 and IRP2, and increases expression of the hypoxia inducible factor HIF-1α, but not HIF-2α. Silencing of HIF-1α or activation of AMPK diminishes invasive activities, indicating that alterations of HIF-1α and AMPK contribute to the oncogenic growth of FH-deficient cells. © 2011 Elsevier Inc.
Tong, Winghang
2011-09-01
Inactivation of the TCA cycle enzyme, fumarate hydratase (FH), drives a metabolic shift to aerobic glycolysis in FH-deficient kidney tumors and cell lines from patients with hereditary leiomyomatosis renal cell cancer (HLRCC), resulting in decreased levels of AMP-activated kinase (AMPK) and p53 tumor suppressor, and activation of the anabolic factors, acetyl-CoA carboxylase and ribosomal protein S6. Reduced AMPK levels lead to diminished expression of the DMT1 iron transporter, and the resulting cytosolic iron deficiency activates the iron regulatory proteins, IRP1 and IRP2, and increases expression of the hypoxia inducible factor HIF-1α, but not HIF-2α. Silencing of HIF-1α or activation of AMPK diminishes invasive activities, indicating that alterations of HIF-1α and AMPK contribute to the oncogenic growth of FH-deficient cells. © 2011 Elsevier Inc.
Hildebrand, C.E.; Walters, R.A.
1977-01-01
Progress is reported on the following research projects: chromatin structure; the use of circular synthetic polydeoxynucleotides as substrates for the study of DNA repair enzymes; human cellular kinetic response following exposure to DNA-interactive compounds; histone phosphorylation and chromatin structure in cell proliferation; photoaddition products induced in chromatin by uv light; pollutants and genetic information transfer; altered RNA metabolism as a function of cadmium accumulation and intracellular distribution in cultured cells; and thymidylate chromophore destruction by water free radicals
Yu, P.
2007-01-01
Studying the secondary structure of proteins leads to an understanding of the components that make up a whole protein, and such an understanding of the structure of the whole protein is often vital to understanding its digestive behaviour and nutritive value in animals. The main protein secondary structures are the α-helix and β-sheet. The percentage of these two structures in protein secondary structures influences protein nutritive value, quality and digestive behaviour. A high percentage of β-sheet structure may partly cause a low access to gastrointestinal digestive enzymes, which results in a low protein value. The objectives of the present study were to use advanced synchrotron-based Fourier transform IR (S-FTIR) microspectroscopy as a new approach to reveal the molecular chemistry of the protein secondary structures of feed tissues affected by heat-processing within intact tissue at a cellular level, and to quantify protein secondary structures using multicomponent peak modelling Gaussian and Lorentzian methods, in relation to protein digestive behaviours and nutritive value in the rumen, which was determined using the Cornell Net Carbohydrate Protein System. The synchrotron-based molecular chemistry research experiment was performed at the National Synchrotron Light Source at Brookhaven National Laboratory, US Department of Energy. The results showed that, with S-FTIR microspectroscopy, the molecular chemistry, ultrastructural chemical make-up and nutritive characteristics could be revealed at a high ultraspatial resolution (∼10 μm). S-FTIR microspectroscopy revealed that the secondary structure of protein differed between raw and roasted golden flaxseeds in terms of the percentages and ratio of α-helixes and β-sheets in the mid-IR range at the cellular level. By using multicomponent peak modelling, the results show that the roasting reduced (P <0.05) the percentage of α-helixes (from 47.1% to 36.1%: S-FTIR absorption intensity), increased the
Perceval, Olivier; Couillard, Yves; Pinel-Alloul, Bernadette; Giguere, Anik; Campbell, Peter G.C.
2004-01-01
The use of biomarkers to assess the impacts of contaminants on aquatic ecosystems has noticeably increased over the past few years. Few of these studies, however, have contributed to the prediction of ecologically significant effects (i.e., at the population or community levels). The present field study was designed to evaluate the potential of metallothionein (MT) and sub-cellular metal partitioning measurements for predicting toxic effects at higher levels of the biological organization in freshwater bivalves (Pyganodon grandis) chronically exposed to Cd. For that purpose, we quantitatively sampled P. grandis populations in the littoral zone of nine lakes on the Precambrian Canadian Shield during two consecutive summers (1998 and 1999); lakes were characterized by contrasting Cd levels but similar trophic status. We tested relationships between the population status of P. grandis (i.e., growth parameters, density, biomass, secondary production, turnover ratio and cumulative fecundity) and (i) ambient Cd concentrations, (ii) sub-organismal responses (MT concentrations in the gill cytosol of individuals and Cd concentrations in three metal-ligand pools identified as M-HMW, the high molecular weight pool, M-MT, the metallothionein-like pool and M-LMW, the low molecular weight pool) and (iii) ecological confounding factors (food resources, presence of host fishes for the obligatory parasitic larval stage of P. grandis). Our results show that littoral density, live weight, dry viscera biomass, production and cumulative fecundity decreased with increasing concentrations of the free-cadmium ion in the environment (Pearson's r ranging from -0.63 to -0.78). On the other hand, theoretical maximum shell lengths (L ∞ ) in our populations were related to both the dissolved Ca concentration and food quality (sestonic C and N concentrations). Overall, Cd concentrations in the gill cytosolic HMW pool of the individual molluscs were the biomarker response that was most
Supersymmetry on a euclidean spacetime lattice 1. A target theory with four supercharges
Cohen, Andrew G.; Kaplan, David B.; Katz, Emanuel; Uensal, Mithat
2003-01-01
We formulate a euclidean spacetime lattice whose continuum limit is (2,2) supersymmetric Yang-Mills theory in two dimensions, a theory which possesses four supercharges and an anomalous global chiral symmetry. The lattice action respects one exact supersymmetry, which allows the target theory to emerge in the continuum limit without fine-tuning. Our method exploits an orbifold construction described previously for spatial lattices in Minkowski space, and can be generalized to more complicated theories with additional supersymmetry and more spacetime dimensions. (author)
Steiner tree heuristic in the Euclidean d-space using bottleneck distances
Lorenzen, Stephan Sloth; Winter, Pawel
2016-01-01
Some of the most efficient heuristics for the Euclidean Steiner minimal tree problem in the d-dimensional space, d ≥2, use Delaunay tessellations and minimum spanning trees to determine small subsets of geometrically close terminals. Their low-cost Steiner trees are determined and concatenated...... in a greedy fashion to obtain a low cost tree spanning all terminals. The weakness of this approach is that obtained solutions are topologically related to minimum spanning trees. To avoid this and to obtain even better solutions, bottleneck distances are utilized to determine good subsets of terminals...
The stochastic versus the Euclidean approach to quantum fields on a static space-time
De Angelis, G.F.; de Falco, D.
1986-01-01
Equations are presented which modify the definition of the Gaussian field in the Rindler chart in order to make contact with the Wightman state, the Hartle-Hawking state, and the Euclidean field. By taking Ornstein-Uhlenbeck processes the authors have chosen, in the sense of stochastic mechanics, to place precisely the Fulling modes in their harmonic oscillator ground state. In this respect, together with the periodicity of Minkowski space-time, the authors observe that the covariance of the Ornstein-Uhlenbeck process can be obtained by analytical continuation of the Wightman function of the harmonic oscillator at zero temperature
Constant curvature black holes in Einstein AdS gravity: Euclidean action and thermodynamics
Guilleminot, Pablo; Olea, Rodrigo; Petrov, Alexander N.
2018-03-01
We compute the Euclidean action for constant curvature black holes (CCBHs), as an attempt to associate thermodynamic quantities to these solutions of Einstein anti-de Sitter (AdS) gravity. CCBHs are gravitational configurations obtained by identifications along isometries of a D -dimensional globally AdS space, such that the Riemann tensor remains constant. Here, these solutions are interpreted as extended objects, which contain a (D -2 )-dimensional de-Sitter brane as a subspace. Nevertheless, the computation of the free energy for these solutions shows that they do not obey standard thermodynamic relations.
Absence of even-integer ζ-function values in Euclidean physical quantities in QCD
Jamin, Matthias; Miravitllas, Ramon
2018-04-01
At order αs4 in perturbative quantum chromodynamics, even-integer ζ-function values are present in Euclidean physical correlation functions like the scalar quark correlation function or the scalar gluonium correlator. We demonstrate that these contributions cancel when the perturbative expansion is expressed in terms of the so-called C-scheme coupling αˆs which has recently been introduced in Ref. [1]. It is furthermore conjectured that a ζ4 term should arise in the Adler function at order αs5 in the MS ‾-scheme, and that this term is expected to disappear in the C-scheme as well.
Meng, Weizhi; Li, Wenjuan; Wang, Yu
2017-01-01
and healthcare personnel. The underlying network architecture to support such devices is also referred to as medical smartphone networks (MSNs). Similar to other networks, MSNs also suffer from various attacks like insider attacks (e.g., leakage of sensitive patient information by a malicious insider......). In this work, we focus on MSNs and design a trust-based intrusion detection approach through Euclidean distance-based behavioral profiling to detect malicious devices (or called nodes). In the evaluation, we collaborate with healthcare organizations and implement our approach in a real simulated MSN...
Green's functions in Bianchi type-I spaces. Relation between Minkowski and Euclidean approaches
Bukhbinder, I.L.; Kirillova, E.N.
1988-01-01
A theory is considered for a free scalar field with a conformal connection in a curved space-time with a Bianchi type-I metric. A representation is obtained for the Green's function G∼ in in in the form of an integral of a Schwinger-DeWitt kernel along a contour in a plane of complex-valued proper time. It is shown how as transition may be accomplished from Green's functions in space with the Euclidean signature to Green's functions in space with Minkowski signature and vice versa
Hashimoto, Ayako; Ohkura, Katsuma; Takahashi, Masakazu; Kizu, Kumiko; Narita, Hiroshi; Enomoto, Shuichi; Miyamae, Yusaku; Masuda, Seiji; Nagao, Masaya; Irie, Kazuhiro; Ohigashi, Hajime; Andrews, Glen K; Kambe, Taiho
2015-12-01
Dietary zinc deficiency puts human health at risk, so we explored strategies for enhancing zinc absorption. In the small intestine, the zinc transporter ZIP4 functions as an essential component of zinc absorption. Overexpression of ZIP4 protein increases zinc uptake and thereby cellular zinc levels, suggesting that food components with the ability to increase ZIP4 could potentially enhance zinc absorption via the intestine. In the present study, we used mouse Hepa cells, which regulate mouse Zip4 (mZip4) in a manner indistinguishable from that in intestinal enterocytes, to screen for suitable food components that can increase the abundance of ZIP4. Using this ZIP4-targeting strategy, two such soybean extracts were identified that were specifically able to decrease mZip4 endocytosis in response to zinc. These soybean extracts also effectively increased the abundance of apically localized mZip4 in transfected polarized Caco2 and Madin-Darby canine kidney cells and, moreover, two apically localized mZip4 acrodermatitis enteropathica mutants. Soybean components were purified from one extract and soyasaponin Bb was identified as an active component that increased both mZip4 protein abundance and zinc levels in Hepa cells. Finally, we confirmed that soyasaponin Bb is capable of enhancing cell surface endogenous human ZIP4 in human cells. Our results suggest that ZIP4 targeting may represent a new strategy to improve zinc absorption in humans. © 2015 Authors; published by Portland Press Limited.
Dakua, Sarada Prasad; Abinahed, Julien; Al-Ansari, Abdulla
2015-04-01
Liver segmentation continues to remain a major challenge, largely due to its intense complexity with surrounding anatomical structures (stomach, kidney, and heart), high noise level and lack of contrast in pathological computed tomography (CT) data. We present an approach to reconstructing the liver surface in low contrast CT. The main contributions are: (1) a stochastic resonance-based methodology in discrete cosine transform domain is developed to enhance the contrast of pathological liver images, (2) a new formulation is proposed to prevent the object boundary, resulting from the cellular automata method, from leaking into the surrounding areas of similar intensity, and (3) a level-set method is suggested to generate intermediate segmentation contours from two segmented slices distantly located in a subject sequence. We have tested the algorithm on real datasets obtained from two sources, Hamad General Hospital and medical image computing and computer-assisted interventions grand challenge workshop. Various parameters in the algorithm, such as [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text], play imperative roles, thus their values are precisely selected. Both qualitative and quantitative evaluation performed on liver data show promising segmentation accuracy when compared with ground truth data reflecting the potential of the proposed method.
Hu, Weiming; Li, Xi; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen; Zhang, Zhongfei
2012-12-01
Object appearance modeling is crucial for tracking objects, especially in videos captured by nonstationary cameras and for reasoning about occlusions between multiple moving objects. Based on the log-euclidean Riemannian metric on symmetric positive definite matrices, we propose an incremental log-euclidean Riemannian subspace learning algorithm in which covariance matrices of image features are mapped into a vector space with the log-euclidean Riemannian metric. Based on the subspace learning algorithm, we develop a log-euclidean block-division appearance model which captures both the global and local spatial layout information about object appearances. Single object tracking and multi-object tracking with occlusion reasoning are then achieved by particle filtering-based Bayesian state inference. During tracking, incremental updating of the log-euclidean block-division appearance model captures changes in object appearance. For multi-object tracking, the appearance models of the objects can be updated even in the presence of occlusions. Experimental results demonstrate that the proposed tracking algorithm obtains more accurate results than six state-of-the-art tracking algorithms.
Constraint algebra in Smolin's G →0 limit of 4D Euclidean gravity
Varadarajan, Madhavan
2018-05-01
Smolin's generally covariant GNewton→0 limit of 4d Euclidean gravity is a useful toy model for the study of the constraint algebra in loop quantum gravity (LQG). In particular, the commutator between its Hamiltonian constraints has a metric dependent structure function. While a prior LQG-like construction of nontrivial anomaly free constraint commutators for the model exists, that work suffers from two defects. First, Smolin's remarks on the inability of the quantum dynamics to generate propagation effects apply. Second, the construction only yields the action of a single Hamiltonian constraint together with the action of its commutator through a continuum limit of corresponding discrete approximants; the continuum limit of a product of two or more constraints does not exist. Here, we incorporate changes in the quantum dynamics through structural modifications in the choice of discrete approximants to the quantum Hamiltonian constraint. The new structure is motivated by that responsible for propagation in an LQG-like quantization of paramatrized field theory and significantly alters the space of physical states. We study the off shell constraint algebra of the model in the context of these structural changes and show that the continuum limit action of multiple products of Hamiltonian constraints is (a) supported on an appropriate domain of states, (b) yields anomaly free commutators between pairs of Hamiltonian constraints, and (c) is diffeomorphism covariant. Many of our considerations seem robust enough to be applied to the setting of 4d Euclidean gravity.
Atamurat Kuchkarov
2016-01-01
Full Text Available We consider pursuit and evasion differential games of a group of m pursuers and one evader on manifolds with Euclidean metric. The motions of all players are simple, and maximal speeds of all players are equal. If the state of a pursuer coincides with that of the evader at some time, we say that pursuit is completed. We establish that each of the differential games (pursuit or evasion is equivalent to a differential game of m groups of countably many pursuers and one group of countably many evaders in Euclidean space. All the players in any of these groups are controlled by one controlled parameter. We find a condition under which pursuit can be completed, and if this condition is not satisfied, then evasion is possible. We construct strategies for the pursuers in pursuit game which ensure completion the game for a finite time and give a formula for this time. In the case of evasion game, we construct a strategy for the evader.
Two-stage sparse coding of region covariance via Log-Euclidean kernels to detect saliency.
Zhang, Ying-Ying; Yang, Cai; Zhang, Ping
2017-05-01
In this paper, we present a novel bottom-up saliency detection algorithm from the perspective of covariance matrices on a Riemannian manifold. Each superpixel is described by a region covariance matrix on Riemannian Manifolds. We carry out a two-stage sparse coding scheme via Log-Euclidean kernels to extract salient objects efficiently. In the first stage, given background dictionary on image borders, sparse coding of each region covariance via Log-Euclidean kernels is performed. The reconstruction error on the background dictionary is regarded as the initial saliency of each superpixel. In the second stage, an improvement of the initial result is achieved by calculating reconstruction errors of the superpixels on foreground dictionary, which is extracted from the first stage saliency map. The sparse coding in the second stage is similar to the first stage, but is able to effectively highlight the salient objects uniformly from the background. Finally, three post-processing methods-highlight-inhibition function, context-based saliency weighting, and the graph cut-are adopted to further refine the saliency map. Experiments on four public benchmark datasets show that the proposed algorithm outperforms the state-of-the-art methods in terms of precision, recall and mean absolute error, and demonstrate the robustness and efficiency of the proposed method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Luo, Qingming; Gong, Hui; Yuan, Jing; Li, Xiangning; Li, Anan; Xu, Tonghui
2017-02-01
Deciphering the fine morphology and precise location of neurons and neural circuits are crucial to enhance our understanding of brain function and diseases. Traditionally, we have to map brain images to coarse axial-sampling planar reference atlases to orient neural structures. However, this means might fail to orient neural projections at single-cell resolution due to position errors resulting from individual differences at the cellular level. Here, we present a high-throughput imaging method that can automatically obtain the fine morphologies and precise locations of both neurons and circuits, employing wide-field large-volume tomography to acquire three-dimensional images of thick tissue and implementing real-time soma counterstaining to obtain cytoarchitectonic landmarks during the imaging process. The reconstruction and orientation of brain-wide neural circuits at single-neuron resolution can be accomplished for the same mouse brain without additional counterstains or image registration. Using our method, mouse brain imaging datasets of multiple type-specific neurons and circuits were successfully acquired, demonstrating the versatility. The results show that the simultaneous acquisition of labeled neural structures and cytoarchitecture reference at single-neuron resolution in the same brain greatly facilitates precise tracing of long-range projections and accurate locating of nuclei. Our method provides a novel and effective tool for application in studies on genetic dissection, brain function and the pathology of the nervous system.
Wu, A Y; Rosenfeld, A
1983-10-01
A cellular pyramid is an exponentially tapering stack of arrays of processors (cells), where each cell is connected to its neighbors (siblings) on its own level, to a parent on the level above, and to its children on the level below. It is shown that in some situations, if information flows top-down only, from fathers to sons, then a cellular pyramid may be no faster than a one-level cellular array; but it may be possible to use simpler cells in the pyramid case. 23 references.
Mendez, Juan
2000-01-01
... of cellular life tipically lost in cancer. In order to unravel the molecular mechanisms of human DNA replication in normal and cancer cells, we have started a search for human DNA sequences that serve as replicators", this is, binding sites...
Lambert Marie-Ève
2012-06-01
Full Text Available Abstract Background Porcine reproductive and respiratory syndrome (PRRS is a viral disease that has a major economic impact for the swine industry. Its control is mostly directed towards preventing its spread which requires a better understanding of the mechanisms of transmission of the virus between herds. The objectives of this study were to describe the genetic diversity and to assess the correlation among genetic, Euclidean and temporal distances and ownership to better understand pathways of transmission. Results A cross-sectional study was conducted on sites located in a high density area of swine production in Quebec. Geographical coordinates (longitude/latitude, date of submission and ownership were obtained for each site. ORF5 sequencing was attempted on PRRSV positive sites. Proportion of pairwise combinations of strains having ≥98% genetic homology were analysed according to Euclidean distances and ownership. Correlations between genetic, Euclidean and temporal distances and ownership were assessed using Mantel tests on continuous and binary matrices. Sensitivity of the correlations between genetic and Euclidean as well as temporal distances was evaluated for different Euclidean and temporal distance thresholds. An ORF5 sequence was identified for 132 of the 176 (75% PRRSV positive sites; 122 were wild-type strains. The mean (min-max genetic, Euclidean and temporal pairwise distances were 11.6% (0–18.7, 15.0 km (0.04-45.7 and 218 days (0–852, respectively. Significant positive correlations were observed between genetic and ownership, genetic and Euclidean and between genetic and temporal binary distances. The relationship between genetic and ownership suggests either common sources of animals or semen, employees, technical services or vehicles, whereas that between genetic and Euclidean binary distances is compatible with area spread of the virus. The latter correlation was observed only up to 5 km. Conclusions This study
Yungang Xu
Full Text Available Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN, a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max, due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs, in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional
Superintegrability in two-dimensional Euclidean space and associated polynomial solutions
Kalnins, E.G.; Miller, W. Jr; Pogosyan, G.S.
1996-01-01
In this work we examine the basis functions for those classical and quantum mechanical systems in two dimensions which admit separation of variables in at least two coordinate systems. We do this for the corresponding systems defined in Euclidean space and on the two dimensional sphere. We present all of these cases from a unified point of view. In particular, all of the spectral functions that arise via variable separation have their essential features expressed in terms of their zeros. The principal new results are the details of the polynomial base for each of the nonsubgroup base, not just the subgroup cartesian and polar coordinate case, and the details of the structure of the quadratic algebras. We also study the polynomial eigenfunctions in elliptic coordinates of the N-dimensional isotropic quantum oscillator. 28 refs., 1 tab
Clear evidence of a continuum theory of 4D Euclidean simplicial quantum gravity
Egawa, H.S.; Horata, S.; Yukawa, T.
2002-01-01
Four-dimensional (4D) simplicial quantum gravity coupled to both scalar fields (N X ) and gauge fields (N A ) has been studied using Monte-Carlo simulations. The matter dependence of the string susceptibility exponent γ (4) is estimated. Furthermore, we compare our numerical results with Background-Metric-Independent (BMI) formulation conjectured to describe the quantum field theory of gravity in 4D. The numerical results suggest that the 4D simplicial quantum gravity is related to the conformal gravity in 4D. Therefore, we propose a phase structure in detail with adding both scalar and gauge fields and discuss the possibility and the property of a continuum theory of 4D Euclidean simplicial quantum gravity
Bayesian Approach to Spectral Function Reconstruction for Euclidean Quantum Field Theories
Burnier, Yannis; Rothkopf, Alexander
2013-11-01
We present a novel approach to the inference of spectral functions from Euclidean time correlator data that makes close contact with modern Bayesian concepts. Our method differs significantly from the maximum entropy method (MEM). A new set of axioms is postulated for the prior probability, leading to an improved expression, which is devoid of the asymptotically flat directions present in the Shanon-Jaynes entropy. Hyperparameters are integrated out explicitly, liberating us from the Gaussian approximations underlying the evidence approach of the maximum entropy method. We present a realistic test of our method in the context of the nonperturbative extraction of the heavy quark potential. Based on hard-thermal-loop correlator mock data, we establish firm requirements in the number of data points and their accuracy for a successful extraction of the potential from lattice QCD. Finally we reinvestigate quenched lattice QCD correlators from a previous study and provide an improved potential estimation at T=2.33TC.
Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges
Pereira, A. D.; Sobreiro, R. F.; Sorella, S. P.
2016-10-01
In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi: 10.1103/PhysRevD.92.045039 arXiv:1506.06995 [hep-th], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions.
Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges
Pereira, A.D.; Sobreiro, R.F.; Sorella, S.P.
2016-01-01
In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi:10.1103/PhysRevD.92.045039. arXiv:1506.06995 [hepth], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions. (orig.)
Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges
Pereira, A.D. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam (Germany); UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); Sobreiro, R.F. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Sorella, S.P. [UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil)
2016-10-15
In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi:10.1103/PhysRevD.92.045039. arXiv:1506.06995 [hepth], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions. (orig.)
Hadronic vacuum polarization in QCD and its evaluation in Euclidean spacetime
de Rafael, Eduardo
2017-07-01
We discuss a new technique to evaluate integrals of QCD Green's functions in the Euclidean based on their Mellin-Barnes representation. We present as a first application the evaluation of the lowest order hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon 1/2 (gμ-2 )HVP≡aμHVP . It is shown that with a precise determination of the slope and curvature of the HVP function at the origin from lattice QCD (LQCD), one can already obtain a result for aμHVP which may serve as a test of the determinations based on experimental measurements of the e+e- annihilation cross section into hadrons.
New results on embeddings of polyhedra and manifolds in Euclidean spaces
Repovs, D; Skopenkov, A B
1999-01-01
The aim of this survey is to present several classical results on embeddings and isotopies of polyhedra and manifolds in R m . We also describe the revival of interest in this beautiful branch of topology and give an account of new results, including an improvement of the Haefliger-Weber theorem on the completeness of the deleted product obstruction to embeddability and isotopy of highly connected manifolds in R m (Skopenkov) as well as the unimprovability of this theorem for polyhedra (Freedman, Krushkal, Teichner, Segal, Skopenkov, and Spiez) and for manifolds without the necessary connectedness assumption (Skopenkov). We show how algebraic obstructions (in terms of cohomology, characteristic classes, and equivariant maps) arise from geometric problems of embeddability in Euclidean spaces. Several classical and modern results on completeness or incompleteness of these obstructions are stated and proved. By these proofs we illustrate classical and modern tools of geometric topology (engulfing, the Whitney trick, van Kampen and Casson finger moves, and their generalizations)
Euler numbers of four-dimensional rotating black holes with the Euclidean signature
Ma Zhengze
2003-01-01
For a black hole's spacetime manifold in the Euclidean signature, its metric is positive definite and therefore a Riemannian manifold. It can be regarded as a gravitational instanton and a topological characteristic which is the Euler number to which it is associated. In this paper we derive a formula for the Euler numbers of four-dimensional rotating black holes by the integral of the Euler density on the spacetime manifolds of black holes. Using this formula, we obtain that the Euler numbers of Kerr and Kerr-Newman black holes are 2. We also obtain that the Euler number of the Kerr-Sen metric in the heterotic string theory with one boost angle nonzero is 2, which is in accordance with its topology
Derivatives, forms and vector fields on the κ-deformed Euclidean space
Dimitrijevic, Marija; Moeller, Lutz; Tsouchnika, Efrossini
2004-01-01
The model of κ-deformed space is an interesting example of a noncommutative space, since it allows a deformed symmetry. In this paper, we present new results concerning different sets of derivatives on the coordinate algebra of κ-deformed Euclidean space. We introduce a differential calculus with two interesting sets of one-forms and higher-order forms. The transformation law of vector fields is constructed in accordance with the transformation behaviour of derivatives. The crucial property of the different derivatives, forms and vector fields is that in an n-dimensional spacetime there are always n of them. This is the key difference with respect to conventional approaches, in which the differential calculus is (n + 1)-dimensional. This work shows that derivative-valued quantities such as derivative-valued vector fields appear in a generic way on noncommutative spaces
Solution for a bipartite Euclidean traveling-salesman problem in one dimension
Caracciolo, Sergio; Di Gioacchino, Andrea; Gherardi, Marco; Malatesta, Enrico M.
2018-05-01
The traveling-salesman problem is one of the most studied combinatorial optimization problems, because of the simplicity in its statement and the difficulty in its solution. We characterize the optimal cycle for every convex and increasing cost function when the points are thrown independently and with an identical probability distribution in a compact interval. We compute the average optimal cost for every number of points when the distance function is the square of the Euclidean distance. We also show that the average optimal cost is not a self-averaging quantity by explicitly computing the variance of its distribution in the thermodynamic limit. Moreover, we prove that the cost of the optimal cycle is not smaller than twice the cost of the optimal assignment of the same set of points. Interestingly, this bound is saturated in the thermodynamic limit.
Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue
Marcotte, Christopher D.; Grigoriev, Roman O.
2015-01-01
This paper investigates the properties of unstable single-spiral wave solutions arising in the Karma model of two-dimensional cardiac tissue. In particular, we discuss how such solutions can be computed numerically on domains of arbitrary shape and study how their stability, rotational frequency, and spatial drift depend on the size of the domain as well as the position of the spiral core with respect to the boundaries. We also discuss how the breaking of local Euclidean symmetry due to finite size effects as well as the spatial discretization of the model is reflected in the structure and dynamics of spiral waves. This analysis allows identification of a self-sustaining process responsible for maintaining the state of spiral chaos featuring multiple interacting spirals
Unstable spiral waves and local Euclidean symmetry in a model of cardiac tissue.
Marcotte, Christopher D; Grigoriev, Roman O
2015-06-01
This paper investigates the properties of unstable single-spiral wave solutions arising in the Karma model of two-dimensional cardiac tissue. In particular, we discuss how such solutions can be computed numerically on domains of arbitrary shape and study how their stability, rotational frequency, and spatial drift depend on the size of the domain as well as the position of the spiral core with respect to the boundaries. We also discuss how the breaking of local Euclidean symmetry due to finite size effects as well as the spatial discretization of the model is reflected in the structure and dynamics of spiral waves. This analysis allows identification of a self-sustaining process responsible for maintaining the state of spiral chaos featuring multiple interacting spirals.
Linear embeddings of finite-dimensional subsets of Banach spaces into Euclidean spaces
Robinson, James C
2009-01-01
This paper treats the embedding of finite-dimensional subsets of a Banach space B into finite-dimensional Euclidean spaces. When the Hausdorff dimension of X − X is finite, d H (X − X) k are injective on X. The proof motivates the definition of the 'dual thickness exponent', which is the key to proving that a prevalent set of such linear maps have Hölder continuous inverse when the box-counting dimension of X is finite and k > 2d B (X). A related argument shows that if the Assouad dimension of X − X is finite and k > d A (X − X), a prevalent set of such maps are bi-Lipschitz with logarithmic corrections. This provides a new result for compact homogeneous metric spaces via the Kuratowksi embedding of (X, d) into L ∞ (X)
Euclidean scalar Green function in a higher dimensional global monopole space-time
Bezerra de Mello, E.R.
2002-01-01
We construct the explicit Euclidean scalar Green function associated with a massless field in a higher dimensional global monopole space-time, i.e., a (1+d)-space-time with d≥3 which presents a solid angle deficit. Our result is expressed in terms of an infinite sum of products of Legendre functions with Gegenbauer polynomials. Although this Green function cannot be expressed in a closed form, for the specific case where the solid angle deficit is very small, it is possible to develop the sum and obtain the Green function in a more workable expression. Having this expression it is possible to calculate the vacuum expectation value of some relevant operators. As an application of this formalism, we calculate the renormalized vacuum expectation value of the square of the scalar field, 2 (x)> Ren , and the energy-momentum tensor, μν (x)> Ren , for the global monopole space-time with spatial dimensions d=4 and d=5
A relationship between scalar Green functions on hyperbolic and Euclidean Rindler spaces
Haba, Z
2007-01-01
We derive a formula connecting in any dimension the Green function on the (D + 1)-dimensional Euclidean Rindler space and the one for a minimally coupled scalar field with a mass m in the D-dimensional hyperbolic space. The relation takes a simple form in the momentum space where the Green functions are equal at the momenta (p 0 , p) for Rindler and (m,p-hat) for hyperbolic space with a simple additive relation between the squares of the mass and the momenta. The formula has applications to finite temperature Green functions, Green functions on the cone and on the (compactified) Milne spacetime. Analytic continuations and interacting quantum fields are briefly discussed
Euclidean scalar Green's functions near the black hole and black brane horizons
Haba, Z
2009-01-01
We discuss approximations of the Riemannian geometry near the horizon. If a (D + 1)-dimensional manifold N has a bifurcate Killing horizon then we approximate N by a product of the two-dimensional Rindler space R 2 and a (D - 1)-dimensional Riemannian manifold M. We obtain approximate formulae for scalar Green's functions. We study the behavior of the Green's functions near the horizon and their dimensional reduction. We show that if M is compact then the Green's function near the horizon can be approximated by the Green's function of the two-dimensional quantum field theory. The correction term is exponentially small away from the horizon. We extend the results to black brane solutions of supergravity in 10 and 11 dimensions. The near-horizon geometry can be approximated by N=AdS p xS q . We discuss the Euclidean Green's functions on N and their behavior near the horizon.
Humm, J.L.; Chin, L.M.
1989-01-01
Radiation dose is a useful predictive parameter for describing radiation toxicity in conventional radiotherapy. Traditionally, in vitro radiation biology dose-effect relations are expressed in the form of cell survival curves, a semilog plot of cell survival versus dose. However, the characteristic linear or linear quadratic survival curve shape, for high- and low-LET radiations respectively, is only strictly valid when the radiation dose is uniform across the entire target population. With an external beam of 60 Co gamma rays or x-rays, a uniform field may be readily achievable. When radionuclides are incorporated into a cell milieu, several new problems emerge which can result in a departure from uniformity in energy deposition throughout a cell population. This nonuniformity can have very important consequences for the shape of the survival curve. Cases in which perturbations of source uniformity may arise include: 1. Elemental sources may equilibrate in the cell medium with partition coefficients between the extracellular, cytosol, and nuclear compartments. The effect of preferential cell internalization or binding to cell membrane of some radionuclides can increase or decrease the slope of the survival curve. 2. Radionuclides bound to antibodies, hormones, metabolite precursors, etc., may result in a source localization pattern characteristic of the carrier agent, i.e., the sources may bind to cell surface receptors or antigens, be internalized, bind to secreted antigen concentrated around a fraction of the cell population, or become directly incorporated into the cell DNA. We propose to relate the distribution of energy deposition in cell nuclei to biological correlates of cellular inactivation. The probability of each cell's survival is weighted by its individual radiation burden, and the summation of these probabilities for the cell population can be used to predict the number or fraction of cell survivors
Septa Cahyani
2018-04-01
Full Text Available The human ability to recognize a variety of objects, however complex the object, is the special ability that humans possess. Any normal human will have no difficulty in recognizing handwriting objects between an author and another author. With the rapid development of digital technology, the human ability to recognize handwriting objects has been applied in a program known as Computer Vision. This study aims to create identification system different types of handwriting capital letters that have different sizes, thickness, shape, and tilt (distinctive features in handwriting using Linear Discriminant Analysis (LDA and Euclidean Distance methods. LDA is used to obtain characteristic characteristics of the image and provide the distance between the classes becomes larger, while the distance between training data in one class becomes smaller, so that the introduction time of digital image of handwritten capital letter using Euclidean Distance becomes faster computation time (by searching closest distance between training data and data testing. The results of testing the sample data showed that the image resolution of 50x50 pixels is the exact image resolution used for data as much as 1560 handwritten capital letter data compared to image resolution 25x25 pixels and 40x40 pixels. While the test data and training data testing using the method of 10-fold cross validation where 1404 for training data and 156 for data testing showed identification of digital image handwriting capital letter has an average effectiveness of the accuracy rate of 75.39% with the average time computing of 0.4199 seconds.
Chibber, R.
1985-01-01
As a first step in gaining an understanding of the relative cellular effects of the transition metal/nitroimidazole complexes the authors have examined the effect of radiation given to cells in the presence of metal complexes not containing a nitroimidazole ligand. The compounds used in the cellular work are a series of Rh(II) carboxylates, cisplatin and JM8 (CBDCA, cis-diammine-1, 1-cyclobutane dicarboxylate platinum (II)). In radiation chemical experiments, Rh(II) acetate and cisplatin were chosen to represent model systems. Results from these radiation chemical and cellular experiments then allow interpretation of the changes in biological response caused by these agents, which are discussed in terms of the mechanism(s) thought to be operative in radiosensitization. (author)
Ait-Haddou, Rachid
2015-01-01
We show that the best degree reduction of a given polynomial P from degree n to m with respect to the discrete (Formula presented.)-norm is equivalent to the best Euclidean distance of the vector of h-Bézier coefficients of P from the vector
Robert M. Yamaleev
2013-01-01
Full Text Available The hyperbolic cosines and sines theorems for the curvilinear triangle bounded by circular arcs of three intersecting circles are formulated and proved by using the general complex calculus. The method is based on a key formula establishing a relationship between exponential function and the cross-ratio. The proofs are carried out on Euclidean plane.
Haba, Z.
1981-01-01
In the usual models of Euclidean field theory the Schwinger functions are moments of a positive measure. In this paper the author discusses the basic properties of the measure μ, i.e. properties of the sample paths of the random field. (Auth.)
Mohanty, Sankhya; Hattel, Jesper Henri
2016-01-01
. A multilevel optimization strategy is adopted using a customized genetic algorithm developed for optimizing cellular scanning strategy for selective laser melting, with an objective of reducing residual stresses and deformations. The resulting thermo-mechanically optimized cellular scanning strategies......, a calibrated, fast, multiscale thermal model coupled with a 3D finite element mechanical model is used to simulate residual stress formation and deformations during selective laser melting. The resulting reduction in thermal model computation time allows evolutionary algorithm-based optimization of the process...
Capri, M.A.L.; Lemes, V.E.R.; Sobreiro, R.F.; Sorella, S.P.; Dudal, D.; Verschelde, H.; Gracey, J.A.
2006-01-01
The ghost condensate abc c b c c > is considered together with the gluon condensate μ 2 > in SU(2) Euclidean Yang-Mills theories quantized in the Landau gauge. The vacuum polarization ceases to be transverse due to the nonvanishing condensate abc c b c c >. The gluon propagator itself remains transverse. By polarization effects, this ghost condensate induces then a splitting in the gluon mass parameter, which is dynamically generated through μ 2 >. The obtained effective masses are real when μ 2 > is included in the analysis. In the absence of μ 2 >, the already known result that the ghost condensate induces effective tachyonic masses is recovered. At the one-loop level, we find that the effective diagonal mass becomes smaller than the off-diagonal one. This might serve as an indication for some kind of Abelian dominance in the Landau gauge, similar to what happens in the maximal Abelian gauge
Human biomarkers are comprised of compounds from cellular metabolism, oxidative stress, and the microbiome of bacteria in the gut, genitourinary, and pulmonary tracts. When we examine patterns in human biomarkers to discern human health state or diagnose specific diseases, it is...
Osseiran, Sam; Roider, Elisabeth M.; Wang, Hequn; Suita, Yusuke; Murphy, Michael; Fisher, David E.; Evans, Conor L.
2017-12-01
Chemical sun filters are commonly used as active ingredients in sunscreens due to their efficient absorption of ultraviolet (UV) radiation. Yet, it is known that these compounds can photochemically react with UV light and generate reactive oxygen species and oxidative stress in vitro, though this has yet to be validated in vivo. One label-free approach to probe oxidative stress is to measure and compare the relative endogenous fluorescence generated by cellular coenzymes nicotinamide adenine dinucleotides and flavin adenine dinucleotides. However, chemical sun filters are fluorescent, with emissive properties that contaminate endogenous fluorescent signals. To accurately distinguish the source of fluorescence in ex vivo skin samples treated with chemical sun filters, fluorescence lifetime imaging microscopy data were processed on a pixel-by-pixel basis using a non-Euclidean separation algorithm based on Mahalanobis distance and validated on simulated data. Applying this method, ex vivo samples exhibited a small oxidative shift when exposed to sun filters alone, though this shift was much smaller than that imparted by UV irradiation. Given the need for investigative tools to further study the clinical impact of chemical sun filters in patients, the reported methodology may be applied to visualize chemical sun filters and measure oxidative stress in patients' skin.
Algorithm for cellular reprogramming.
Ronquist, Scott; Patterson, Geoff; Muir, Lindsey A; Lindsly, Stephen; Chen, Haiming; Brown, Markus; Wicha, Max S; Bloch, Anthony; Brockett, Roger; Rajapakse, Indika
2017-11-07
The day we understand the time evolution of subcellular events at a level of detail comparable to physical systems governed by Newton's laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology. With data-guided frameworks we can develop better predictions about, and methods for, control over specific biological processes and system-wide cell behavior. Here we describe an approach for optimizing the use of transcription factors (TFs) in cellular reprogramming, based on a device commonly used in optimal control. We construct an approximate model for the natural evolution of a cell-cycle-synchronized population of human fibroblasts, based on data obtained by sampling the expression of 22,083 genes at several time points during the cell cycle. To arrive at a model of moderate complexity, we cluster gene expression based on division of the genome into topologically associating domains (TADs) and then model the dynamics of TAD expression levels. Based on this dynamical model and additional data, such as known TF binding sites and activity, we develop a methodology for identifying the top TF candidates for a specific cellular reprogramming task. Our data-guided methodology identifies a number of TFs previously validated for reprogramming and/or natural differentiation and predicts some potentially useful combinations of TFs. Our findings highlight the immense potential of dynamical models, mathematics, and data-guided methodologies for improving strategies for control over biological processes. Copyright © 2017 the Author(s). Published by PNAS.
Molecular and Cellular Signaling
Beckerman, Martin
2005-01-01
A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...
Keenan, Alexandra B; Jenkins, Sherry L; Jagodnik, Kathleen M; Koplev, Simon; He, Edward; Torre, Denis; Wang, Zichen; Dohlman, Anders B; Silverstein, Moshe C; Lachmann, Alexander; Kuleshov, Maxim V; Ma'ayan, Avi; Stathias, Vasileios; Terryn, Raymond; Cooper, Daniel; Forlin, Michele; Koleti, Amar; Vidovic, Dusica; Chung, Caty; Schürer, Stephan C; Vasiliauskas, Jouzas; Pilarczyk, Marcin; Shamsaei, Behrouz; Fazel, Mehdi; Ren, Yan; Niu, Wen; Clark, Nicholas A; White, Shana; Mahi, Naim; Zhang, Lixia; Kouril, Michal; Reichard, John F; Sivaganesan, Siva; Medvedovic, Mario; Meller, Jaroslaw; Koch, Rick J; Birtwistle, Marc R; Iyengar, Ravi; Sobie, Eric A; Azeloglu, Evren U; Kaye, Julia; Osterloh, Jeannette; Haston, Kelly; Kalra, Jaslin; Finkbiener, Steve; Li, Jonathan; Milani, Pamela; Adam, Miriam; Escalante-Chong, Renan; Sachs, Karen; Lenail, Alex; Ramamoorthy, Divya; Fraenkel, Ernest; Daigle, Gavin; Hussain, Uzma; Coye, Alyssa; Rothstein, Jeffrey; Sareen, Dhruv; Ornelas, Loren; Banuelos, Maria; Mandefro, Berhan; Ho, Ritchie; Svendsen, Clive N; Lim, Ryan G; Stocksdale, Jennifer; Casale, Malcolm S; Thompson, Terri G; Wu, Jie; Thompson, Leslie M; Dardov, Victoria; Venkatraman, Vidya; Matlock, Andrea; Van Eyk, Jennifer E; Jaffe, Jacob D; Papanastasiou, Malvina; Subramanian, Aravind; Golub, Todd R; Erickson, Sean D; Fallahi-Sichani, Mohammad; Hafner, Marc; Gray, Nathanael S; Lin, Jia-Ren; Mills, Caitlin E; Muhlich, Jeremy L; Niepel, Mario; Shamu, Caroline E; Williams, Elizabeth H; Wrobel, David; Sorger, Peter K; Heiser, Laura M; Gray, Joe W; Korkola, James E; Mills, Gordon B; LaBarge, Mark; Feiler, Heidi S; Dane, Mark A; Bucher, Elmar; Nederlof, Michel; Sudar, Damir; Gross, Sean; Kilburn, David F; Smith, Rebecca; Devlin, Kaylyn; Margolis, Ron; Derr, Leslie; Lee, Albert; Pillai, Ajay
2018-01-24
The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability. Copyright © 2017 Elsevier Inc. All rights reserved.
Non-Hermitian systems of Euclidean Lie algebraic type with real energy spectra
Dey, Sanjib; Fring, Andreas; Mathanaranjan, Thilagarajah
2014-07-01
We study several classes of non-Hermitian Hamiltonian systems, which can be expressed in terms of bilinear combinations of Euclidean-Lie algebraic generators. The classes are distinguished by different versions of antilinear (PT)-symmetries exhibiting various types of qualitative behaviour. On the basis of explicitly computed non-perturbative Dyson maps we construct metric operators, isospectral Hermitian counterparts for which we solve the corresponding time-independent Schrödinger equation for specific choices of the coupling constants. In these cases general analytical expressions for the solutions are obtained in the form of Mathieu functions, which we analyze numerically to obtain the corresponding energy spectra. We identify regions in the parameter space for which the corresponding spectra are entirely real and also domains where the PT symmetry is spontaneously broken and sometimes also regained at exceptional points. In some cases it is shown explicitly how the threshold region from real to complex spectra is characterized by the breakdown of the Dyson maps or the metric operator. We establish the explicit relationship to models currently under investigation in the context of beam dynamics in optical lattices.
Anthropology in the post-Euclidean State, or from textual to oral anthropology
Antonio Luigi Palmisano
2011-12-01
Full Text Available The actual crisis of anthropology is examined in relation to its wide public success. Anthropology has prospered and the anthropologists have proliferated becoming more specific. But the theoretical debate has come to a halt over the last decades. The article suggests that both the methodology and the form of expression of the ethnographic report have developed and then become crystallized around actual protocols. A critique of the dichotomy Subject/Object, namely the key discussion about the notion of Otherness, is here reexamined as the testimony for an immanent “non-protocolar” character of anthropology. This critique together with the end of anthropology as tekhne, i.e. as protocolar activity, will allow anthropology to go on enhancing many other social and non social sciences. The article discusses the re-definition of anthropology in the context of Daseinanalysis and, therefore the changing relation between man and power, that is between the social actor and the post-Euclidean State in the era of the tekhne.
Q. Zhou
2017-07-01
Full Text Available Visual Odometry (VO is a critical component for planetary robot navigation and safety. It estimates the ego-motion using stereo images frame by frame. Feature points extraction and matching is one of the key steps for robotic motion estimation which largely influences the precision and robustness. In this work, we choose the Oriented FAST and Rotated BRIEF (ORB features by considering both accuracy and speed issues. For more robustness in challenging environment e.g., rough terrain or planetary surface, this paper presents a robust outliers elimination method based on Euclidean Distance Constraint (EDC and Random Sample Consensus (RANSAC algorithm. In the matching process, a set of ORB feature points are extracted from the current left and right synchronous images and the Brute Force (BF matcher is used to find the correspondences between the two images for the Space Intersection. Then the EDC and RANSAC algorithms are carried out to eliminate mismatches whose distances are beyond a predefined threshold. Similarly, when the left image of the next time matches the feature points with the current left images, the EDC and RANSAC are iteratively performed. After the above mentioned, there are exceptional remaining mismatched points in some cases, for which the third time RANSAC is applied to eliminate the effects of those outliers in the estimation of the ego-motion parameters (Interior Orientation and Exterior Orientation. The proposed approach has been tested on a real-world vehicle dataset and the result benefits from its high robustness.
$O(N)$ model in Euclidean de Sitter space: beyond the leading infrared approximation
Nacir, Diana López; Trombetta, Leonardo G
2016-01-01
We consider an $O(N)$ scalar field model with quartic interaction in $d$-dimensional Euclidean de Sitter space. In order to avoid the problems of the standard perturbative calculations for light and massless fields, we generalize to the $O(N)$ theory a systematic method introduced previously for a single field, which treats the zero modes exactly and the nonzero modes perturbatively. We compute the two-point functions taking into account not only the leading infrared contribution, coming from the self-interaction of the zero modes, but also corrections due to the interaction of the ultraviolet modes. For the model defined in the corresponding Lorentzian de Sitter spacetime, we obtain the two-point functions by analytical continuation. We point out that a partial resummation of the leading secular terms (which necessarily involves nonzero modes) is required to obtain a decay at large distances for massless fields. We implement this resummation along with a systematic double expansion in an effective coupling c...
Maximally-localized position, Euclidean path-integral, and thermodynamics in GUP quantum mechanics
Bernardo, Reginald Christian S.; Esguerra, Jose Perico H.
2018-04-01
In dealing with quantum mechanics at very high energies, it is essential to adapt to a quasiposition representation using the maximally-localized states because of the generalized uncertainty principle. In this paper, we look at maximally-localized states as eigenstates of the operator ξ = X + iβP that we refer to as the maximally-localized position. We calculate the overlap between maximally-localized states and show that the identity operator can be expressed in terms of the maximally-localized states. Furthermore, we show that the maximally-localized position is diagonal in momentum-space and that the maximally-localized position and its adjoint satisfy commutation and anti-commutation relations reminiscent of the harmonic oscillator commutation and anti-commutation relations. As application, we use the maximally-localized position in developing the Euclidean path-integral and introduce the compact form of the propagator for maximal localization. The free particle momentum-space propagator and the propagator for maximal localization are analytically evaluated up to quadratic-order in β. Finally, we obtain a path-integral expression for the partition function of a thermodynamic system using the maximally-localized states. The partition function of a gas of noninteracting particles is evaluated. At temperatures exceeding the Planck energy, we obtain the gas' maximum internal energy N / 2 β and recover the zero heat capacity of an ideal gas.
Durato, M. V.; Albano, A. M.; Rapp, P. E.; Nawang, S. A.
2015-06-01
The validity of ERPs as indices of stable neurophysiological traits is partially dependent on their stability over time. Previous studies on ERP stability, however, have reported diverse stability estimates despite using the same component scoring methods. This present study explores a novel approach in investigating the longitudinal stability of average ERPs—that is, by treating the ERP waveform as a time series and then applying Euclidean Distance and Kolmogorov-Smirnov analyses to evaluate the similarity or dissimilarity between the ERP time series of different sessions or run pairs. Nonlinear dynamical analysis show that in the absence of a change in medical condition, the average ERPs of healthy human adults are highly longitudinally stable—as evaluated by both the Euclidean distance and the Kolmogorov-Smirnov test.
Durato, M V; Nawang, S A; Albano, A M; Rapp, P E
2015-01-01
The validity of ERPs as indices of stable neurophysiological traits is partially dependent on their stability over time. Previous studies on ERP stability, however, have reported diverse stability estimates despite using the same component scoring methods. This present study explores a novel approach in investigating the longitudinal stability of average ERPs—that is, by treating the ERP waveform as a time series and then applying Euclidean Distance and Kolmogorov-Smirnov analyses to evaluate the similarity or dissimilarity between the ERP time series of different sessions or run pairs. Nonlinear dynamical analysis show that in the absence of a change in medical condition, the average ERPs of healthy human adults are highly longitudinally stable—as evaluated by both the Euclidean distance and the Kolmogorov-Smirnov test. (paper)
Kristiansen, Trine A; Jaensson Gyllenbäck, Elin; Zriwil, Alya
2016-01-01
. Using cellular barcoding for in vivo single-cell fate analyses, we found that fetal liver definitive HSCs gave rise to both B-1a and B-2 cells. Whereas B-1a potential diminished in all HSCs with time, B-2 output was maintained. B-1a and B-2 plasticity could be reinitiated in a subset of adult HSCs...... by ectopic expression of the RNA binding protein LIN28B, a key regulator of fetal hematopoiesis, and this coincided with the clonal reversal to fetal-like elevated self-renewal and repopulation potential. These results anchor the attenuation of B-1a cell output to fetal HSC behavior and demonstrate...
Environment Aware Cellular Networks
Ghazzai, Hakim
2015-02-01
The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant
Engineering Cellular Metabolism
Nielsen, Jens; Keasling, Jay
2016-01-01
Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....
Desai, R.G.P.; Joseph, A.; Agarvadekar, Y.; Dabholkar, N.; Mehra, P.; Gouveia, A.D.; Tengali, S.; VijayKumar, K.; Parab, A.
illustration of the predicted fair-weather sea-level, current sea-level, and residual sea-level (i.e. measured minus predicted fairweather sea-level), which can be monitored via Internet from any part of the world. This system provides a cost...
A radiation measurement study on cellular phone
Mohd Yusof Mohd Ali; Rozaimah Abd Rahim; Roha Tukimin; Khairol Nizam Mohamed; Mohd Amirul Nizam Mohamad Thari; Ahmad Fadzli Ahmad Sanusi
2007-01-01
This paper will explain the radiation level produced by various selected cellular phone from various models and brands available in the market. The result obtained from this study will also recommend whether a cellular phone is safe for public usage or it might cause any effect on public health. Finally, a database of radiation measurement level produced by selected various cellular phone will also be developed and exhibited in this paper. (Author)
Euclidean Dynamical Triangulation revisited: is the phase transition really 1st order?
Rindlisbacher, Tobias; Forcrand, Philippe de
2015-01-01
The transition between the two phases of 4D Euclidean Dynamical Triangulation (http://dx.doi.org/10.1016/0370-2693(92)90709-D) was long believed to be of second order until in 1996 first order behavior was found for sufficiently large systems (http://dx.doi.org/10.1016/0550-3213(96)00214-3, http://dx.doi.org/10.1016/S0370-2693(96)01277-4). However, one may wonder if this finding was affected by the numerical methods used: to control volume fluctuations, in both studies (http://dx.doi.org/10.1016/0550-3213(96)00214-3, http://dx.doi.org/10.1016/S0370-2693(96)01277-4) an artificial harmonic potential was added to the action and in (http://dx.doi.org/10.1016/S0370-2693(96)01277-4) measurements were taken after a fixed number of accepted instead of attempted moves which introduces an additional error. Finally the simulations suffer from strong critical slowing down which may have been underestimated. In the present work, we address the above weaknesses: we allow the volume to fluctuate freely within a fixed interval; we take measurements after a fixed number of attempted moves; and we overcome critical slowing down by using an optimized parallel tempering algorithm (http://dx.doi.org/10.1088/1742-5468/2010/01/P01020). With these improved methods, on systems of size up to N_4=64k 4-simplices, we confirm that the phase transition is 1"s"t order. In addition, we discuss a local criterion to decide whether parts of a triangulation are in the elongated or crumpled state and describe a new correspondence between EDT and the balls in boxes model. The latter gives rise to a modified partition function with an additional, third coupling. Finally, we propose and motivate a class of modified path-integral measures that might remove the metastability of the Markov chain and turn the phase transition into 2"n"d order.
Zhang, Dongwen; Zhu, Qingsong; Xiong, Jing; Wang, Lei
2014-04-27
In a deforming anatomic environment, the motion of an instrument suffers from complex geometrical and dynamic constraints, robot assisted minimally invasive surgery therefore requires more sophisticated skills for surgeons. This paper proposes a novel dynamic virtual fixture (DVF) to enhance the surgical operation accuracy of admittance-type medical robotics in the deforming environment. A framework for DVF on the Euclidean Group SE(3) is presented, which unites rotation and translation in a compact form. First, we constructed the holonomic/non-holonomic constraints, and then searched for the corresponded reference to make a distinction between preferred and non-preferred directions. Second, different control strategies are employed to deal with the tasks along the distinguished directions. The desired spatial compliance matrix is synthesized from an allowable motion screw set to filter out the task unrelated components from manual input, the operator has complete control over the preferred directions; while the relative motion between the surgical instrument and the anatomy structures is actively tracked and cancelled, the deviation relative to the reference is compensated jointly by the operator and DVF controllers. The operator, haptic device, admittance-type proxy and virtual deforming environment are involved in a hardware-in-the-loop experiment, human-robot cooperation with the assistance of DVF controller is carried out on a deforming sphere to simulate beating heart surgery, performance of the proposed DVF on admittance-type proxy is evaluated, and both human factors and control parameters are analyzed. The DVF can improve the dynamic properties of human-robot cooperation in a low-frequency (0 ~ 40 rad/sec) deforming environment, and maintain synergy of orientation and translation during the operation. Statistical analysis reveals that the operator has intuitive control over the preferred directions, human and the DVF controller jointly control the
Freudenberg, R., E-mail: robert.freudenberg@uniklinikum-dresden.de; Runge, R.; Maucksch, U.; Berger, V.; Kotzerke, J. [University Hospital/Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Department of Nuclear Medicine, Dresden, Saxony 01307 (Germany)
2014-06-15
Purpose: Based on the authors’ previous findings concerning the radiotoxicity of{sup 99m}Tc, the authors compared the cellular survival under the influence of this nuclide with that following exposure to the Auger electron emitter {sup 123}I. To evaluate the relative biological effectiveness (RBE) of both radionuclides, knowledge of the absorbed dose is essential. Thus, the authors present the dose calculations and discuss the results based on different models of the radionuclide distribution. Both different target volumes and the influence of the uptake kinetics were considered. Methods: Rat thyroid PC Cl3 cells in culture were incubated with either{sup 99m}Tc or {sup 123}I or were irradiated using 200 kV x-rays in the presence or absence of perchlorate. The clonogenic cell survival was measured via colony formation. In addition, the intracellular radionuclide uptake was quantified. Single-cell dose calculations were based on Monte Carlo simulations performed using Geant4. Results: Compared with external radiation using x-rays (D{sub 37} = 2.6 Gy), the radionuclides {sup 99m}Tc (D{sub 37} = 3.5 Gy), and {sup 123}I (D{sub 37} = 3.8 Gy) were less toxic in the presence of perchlorate. In the absence of perchlorate, the amount of activity a{sub 37} that was necessary to reduce the surviving fraction (SF) to 0.37 was 22.8 times lower for {sup 99m}Tc and 12.4 times lower for {sup 123}I because of the dose increase caused by intracellular radionuclide accumulation. When the cell nucleus was considered as the target for the dose calculation, the authors found a RBE of 2.18 for {sup 99m}Tc and RBE = 3.43 for {sup 123}I. Meanwhile, regarding the dose to the entire cell, RBE = 0.75 for {sup 99m}Tc and RBE = 1.87 for {sup 123}I. The dose to the entire cell was chosen as the dose criterion because of the intracellular radionuclide accumulation, which was found to occur solely in the cytoplasm. The calculated number of intracellular decays per cell was (975 ± 109) decays
Misa Agustino, M. J.; Alvarez-Folgueras, M.; Jorge-Mora, M. T.; Jorge Barreiro, F. J.; Ares Pena, F. J.; Lleiro, J.; Lopez Martin, M. E.
2011-07-01
In this study we analyzed the cellular stress levels achieved by heat shock proteins (HSP) 90 and 70 in rat thyroid tissue after exposure to radio waves in TWG experimental system. Parallel measurements of body stress in animals by rectal temperature probes allow us to determine whether there is any interaction between temperature increases and cellular stress.
Ait-Haddou, Rachid
2015-06-04
We show that the best degree reduction of a given polynomial P from degree n to m with respect to the discrete (Formula presented.)-norm is equivalent to the best Euclidean distance of the vector of h-Bézier coefficients of P from the vector of degree raised h-Bézier coefficients of polynomials of degree m. Moreover, we demonstrate the adequacy of h-Bézier curves for approaching the problem of weighted discrete least squares approximation. Applications to discrete orthogonal polynomials are also presented. © 2015 Springer Science+Business Media Dordrecht
Astor, M.B.; Hall, E.J.; Biaglow, J.E.; Hartog, B.
1984-01-01
The role of glutathione (GSH) and total non-protein thiols (NPSH) in repairing radiation-induced free radical damage incurred under aerated and hypoxic conditions was investigated using Chinese hamster V79 cells cultured in vitro. GSH and NPSH levels were depleted in V79 cells of varying cell densities using the gamma-glutamyl-cysteine-synthetase inhibitor, D,L-Buthionine-S,R-sulfoximine (BSO). A small change in hypoxic cell radiosensitivity could be attributed to the loss of GSH while depletion of thiols to lower levels affected both aerated and hypoxic cell radiosensitivity, resulting in no change in the OER
Yuxian Zhang
2015-01-01
Full Text Available The quality index model in slashing process is difficult to build by reason of the outliers and noise data from original data. To the above problem, a fuzzy neural network based on non-Euclidean distance clustering is proposed in which the input space is partitioned into many local regions by the fuzzy clustering based on non-Euclidean distance so that the computation complexity is decreased, and fuzzy rule number is determined by validity function based on both the separation and the compactness among clusterings. Then, the premise parameters and consequent parameters are trained by hybrid learning algorithm. The parameters identification is realized; meanwhile the convergence condition of consequent parameters is obtained by Lyapunov function. Finally, the proposed method is applied to build the quality index model in slashing process in which the experimental data come from the actual slashing process. The experiment results show that the proposed fuzzy neural network for quality index model has lower computation complexity and faster convergence time, comparing with GP-FNN, BPNN, and RBFNN.
Zhang, Ying-Ying; Yang, Cai; Zhang, Ping
2017-08-01
In this paper, we present a novel bottom-up saliency detection algorithm from the perspective of covariance matrices on a Riemannian manifold. Each superpixel is described by a region covariance matrix on Riemannian Manifolds. We carry out a two-stage sparse coding scheme via Log-Euclidean kernels to extract salient objects efficiently. In the first stage, given background dictionary on image borders, sparse coding of each region covariance via Log-Euclidean kernels is performed. The reconstruction error on the background dictionary is regarded as the initial saliency of each superpixel. In the second stage, an improvement of the initial result is achieved by calculating reconstruction errors of the superpixels on foreground dictionary, which is extracted from the first stage saliency map. The sparse coding in the second stage is similar to the first stage, but is able to effectively highlight the salient objects uniformly from the background. Finally, three post-processing methods-highlight-inhibition function, context-based saliency weighting, and the graph cut-are adopted to further refine the saliency map. Experiments on four public benchmark datasets show that the proposed algorithm outperforms the state-of-the-art methods in terms of precision, recall and mean absolute error, and demonstrate the robustness and efficiency of the proposed method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Paquet, F.
1991-12-01
The Americium 241 radioelement accumulation and elimination rate and mechanisms in the lobster organism have been experimentally studied; incorporation and detoxification capacities of each organ are evaluated. The existence of various biological compartments is shown; the major role of the digestive gland in accumulation of the radioelement, its distribution towards the various organs, and its resorption is comprehensively described, with an analysis at the subcellular and molecular levels. 401 p., 65 fig., 43 tab., 428 ref
Li, Bin; Bhandari, Dhaka Ram; Janfelt, Christian
2014-01-01
The rhizome of Glycyrrhiza glabra (licorice) was analyzed by high-resolution mass spectrometry imaging and tandem mass spectrometry imaging. An atmospheric pressure matrix-assisted laser desorption/ionization imaging ion source was combined with an orbital trapping mass spectrometer in order to o...... and saponins in legume species, combing the spatially resolved chemical information with morphological details at the microscopic level. Furthermore, the technique offers a scheme capable of high-throughput profiling of metabolites in plant tissues....
Narjes Javaheri
2014-06-01
Full Text Available Controlled synthesis of silicon is a major challenge in nanotechnology and material science. Diatoms, the unicellular algae, are an inspiring example of silica biosynthesis, producing complex and delicate nano-structures. This happens in several cell compartments, including cytoplasm and silica deposition vesicle (SDV. Considering the low concentration of silicic acid in oceans, cells have developed silicon transporter proteins (SIT. Moreover, cells change the level of active SITs during one cell cycle, likely as a response to the level of external nutrients and internal deposition rates. Despite this topic being of fundamental interest, the intracellular dynamics of nutrients and cell regulation strategies remain poorly understood. One reason is the difficulties in measurements and manipulation of these mechanisms at such small scales, and even when possible, data often contain large errors. Therefore, using computational techniques seems inevitable. We have constructed a mathematical model for silicon dynamics in the diatom Thalassiosira pseudonana in four compartments: external environment, cytoplasm, SDV and deposited silica. The model builds on mass conservation and Michaelis-Menten kinetics as mass transport equations. In order to find the free parameters of the model from sparse, noisy experimental data, an optimization technique (global and local search, together with enzyme related penalty terms, has been applied. We have connected population-level data to individual-cell-level quantities including the effect of early division of non-synchronized cells. Our model is robust, proven by sensitivity and perturbation analysis, and predicts dynamics of intracellular nutrients and enzymes in different compartments. The model produces different uptake regimes, previously recognized as surge, externally-controlled and internally-controlled uptakes. Finally, we imposed a flux of SITs to the model and compared it with previous classical kinetics
de Haan, Laura H J; Pot, Gerda K; Aarts, Jac M M J G; Rietjens, Ivonne M C M; Alink, Gerrit M
2006-08-01
NAD(P)H:quinone oxidoreductase (NQO1)-mediated detoxification of quinones is suggested to be involved in cancer prevention. In the present study, using transfected CHO cells, it was demonstrated that the relation between NQO1 activity and the resulting protection against the cytotoxicity of menadione shows a steep dose-response curve revealing a 'lower protection threshold' of 0.5mumol DCPIP/min/mg protein and an 'upper protection threshold' at 1mumol DCPIP/min/mg protein. In an additional in vivo experiment it was investigated how both in vitro critical activity levels of NQO1, relate to NQO1 activities in mice and man, either without or upon induction of the enzyme by butylated hydroxyanisol (BHA) or indole-3-carbinol (I(3)C). Data from an experiment with CD1 mice revealed that base-line NQO1 levels in liver, kidney, small intestine, colon and lung are generally below the observed 'lower protection threshold' in vitro, this also holds for most human tissue S-9 samples. To achieve NQO1 levels above this 'lower protection threshold' will require 5-20 fold NQO1 induction. Discussion focuses on the relevance of the in vitro NQO1 activity thresholds for the in vivo situation. We conclude that increased protection against menadione toxicity can probably not be achieved by NQO1 induction but should be achieved by other mechanisms. Whether this conclusion also holds for other electrophiles and the in vivo situation awaits further definition of their NQO1 protection thresholds.
David Beauparlant
2017-03-01
Full Text Available A hallmark of HIV-1 infection is the continuously declining number of the virus' predominant target cells, activated CD4+ T cells. With diminishing CD4+ T cell levels, the capacity to utilize alternate cell types and receptors, including cells that express low CD4 receptor levels such as macrophages, thus becomes crucial. To explore evolutionary paths that allow HIV-1 to acquire a wider host cell range by infecting cells with lower CD4 levels, we dissected the evolution of the envelope-CD4 interaction under in vitro culture conditions that mimicked the decline of CD4high target cells, using a prototypic subtype B, R5-tropic strain. Adaptation to CD4low targets proved to severely alter envelope functions including trimer opening as indicated by a higher affinity to CD4 and loss in shielding against neutralizing antibodies. We observed a strikingly decreased infectivity on CD4high target cells, but sustained infectivity on CD4low targets, including macrophages. Intriguingly, the adaptation to CD4low targets altered the kinetic of the entry process, leading to rapid CD4 engagement and an extended transition time between CD4 and CCR5 binding during entry. This phenotype was also observed for certain central nervous system (CNS derived macrophage-tropic viruses, highlighting that the functional perturbation we defined upon in vitro adaptation to CD4low targets occurs in vivo. Collectively, our findings suggest that CD4low adapted envelopes may exhibit severe deficiencies in entry fitness and shielding early in their evolution. Considering this, adaptation to CD4low targets may preferentially occur in a sheltered and immune-privileged environment such as the CNS to allow fitness restoring compensatory mutations to occur.
Wireless Cellular Mobile Communications
Zalud, V.
2002-01-01
In this article is briefly reviewed the history of wireless cellular mobile communications, examined the progress in current second generation (2G) cellular standards and discussed their migration to the third generation (3G). The European 2G cellular standard GSM and its evolution phases GPRS and EDGE are described somewhat in detail. The third generation standard UMTS taking up on GSM/GPRS core network and equipped with a new advanced access network on the basis of code division multiple ac...
Biomechanics of cellular solids.
Gibson, Lorna J
2005-03-01
Materials with a cellular structure are widespread in nature and include wood, cork, plant parenchyma and trabecular bone. Natural cellular materials are often mechanically efficient: the honeycomb-like microstructure of wood, for instance, gives it an exceptionally high performance index for resisting bending and buckling. Here we review the mechanics of a wide range of natural cellular materials and examine their role in lightweight natural sandwich structures (e.g. iris leaves) and natural tubular structures (e.g. plant stems or animal quills). We also describe two examples of engineered biomaterials with a cellular structure, designed to replace or regenerate tissue in the body.
Nagle, W.A.; Moss, A.J. Jr.; Roberts, H.G. Jr.; Baker, M.L.
1980-01-01
Intracellular adenosine triphosphate (ATP) levels were measured in both hypoxic and aerobic cultures of V79 Chinese hamster cells treated with 5-thio-D-glucose (5-SH-D-Glc). This glucose analog, a known inhibitor of D-glucose transport and metabolism, reduced ATP in cell cultures allowed to become hypoxic by cell metabolism, but not in aerobic cultures treated similarly. Cells depleted of ATP were unable to rejoin x-ray induced deoxyribonucleic acid (DNA) strand breaks as measured by the alkaline sucrose gradient sedimentation technique. The inference for radiation therapy is that inhibition of glucose metabolism selectively depletes energy reserves in hypoxic cells, rendering these cells more radiosensitive and leading to a more effective tumor treatment
K. Vardas
2014-01-01
Full Text Available Objective. To evaluate the early heat shock protein (HSP and hormonal stress response of intensive care unit (ICU patients with severe sepsis/septic shock (SS or systemic inflammatory response syndrome (SIRS compared to healthy subjects (H. Methods. Patients with early (first 48 hrs SS (n=29 or SIRS (n=29 admitted to a university ICU and 16 H were enrolled in the study. Serum prolactin, cortisol, and plasma ACTH were determined using immunoassay analyzers. ELISA was used to evaluate extracellular HSPs (eHSP90α, eHSP72 and interleukins. Mean fluorescence intensity (MFI values for intracellular HSPs (iHSP72, iHSP90α were measured using 4-colour flow-cytometry. Results. Prolactin, cortisol, and eHSP90α levels were significantly increased in SS patients compared to SIRS and H (P<0.003. ACTH and eHSP72 were significantly higher in SS and SIRS compared to H (P<0.005. SS monocytes expressed lower iHSP72 MFI levels compared to H (P=0.03. Prolactin was related with SAPS III and APACHE II scores and cortisol with eHSP90α, IL-6, and lactate (P<0.05. In SS and SIRS eHSP90α was related with eHSP72, IL-6, and IL-10. Conclusion. Prolactin, apart from cortisol, may have a role in the acute stress response in severe sepsis. In this early-onset inflammatory process, cortisol relates to eHSP90α, monocytes suppress iHSP72, and plasma eHSP72 increases.
Linearizable cellular automata
Nobe, Atsushi; Yura, Fumitaka
2007-01-01
The initial value problem for a class of reversible elementary cellular automata with periodic boundaries is reduced to an initial-boundary value problem for a class of linear systems on a finite commutative ring Z 2 . Moreover, a family of such linearizable cellular automata is given
Tocquet, N.
1995-01-01
The work presented here is an experimental investigation of the biokinetics of transfer of a transuranic and a rare earth element ( 238 Pu and 152 Eu) in the lobster Homarus gammarus. The study of 238 Pu biokinetics forms part of a wider framework of research concerning the transfer of transuranic elements in marine species, while the study of 152 Eu is carried out with a view to supporting the analogy between the behaviour of transuranics and rare earths in living organisms. Exactly the same experimental protocol, based on techniques from various disciplines (biology, biochemistry and metrology), was used to Investigate the biokinetics of transfer of these two radionuclides. The Individual lobsters were radiolabelled by means of one-shot or chronic ingestion of spiked meals. As the first approach, the kinetics and transfer mechanisms were studied In whole animal samples and in different organs distinct series of pathways through the different organs were identified in the case of both radionuclides, being mainly linked to digestive processes induced by the meal as well as the transport function of hemo-lymph in this way, the Important role of the digestive gland was picked out, with two of four cellular types displaying a successive involvement In the fixation and then the retention of the studied radionuclides. As a corroborative approach, the digestive gland was subjected to a more detailed investigation with the aim of describing the mechanisms of Incorporation and elucidating transfer processes at the cellular and molecular levels. 238 Pu is preferentially partitioned into the cytosol, where it is associated with various constituents such as ferritin (iron-storing protein). 152 Eu is more diffusely distributed in the hepato-pancreatic cells, while the lysosomes appear to play a more important role during transfer. The results obtained in this study, both on the macroscopic scale (i.e. the whole animal and different organs) as well as the cellular and molecular
Wang, Yong-Long; Jiang, Hua; Zong, Hong-Shi
2017-08-01
In the spirit of the thin-layer quantization approach, we give the formula of the geometric influences of a particle confined to a curved surface embedded in three-dimensional Euclidean space. The geometric contributions can result from the reduced commutation relation between the acted function depending on normal variable and the normal derivative. According to the formula, we obtain the geometric potential, geometric momentum, geometric orbital angular momentum, geometric linear Rashba, and cubic Dresselhaus spin-orbit couplings. As an example, a truncated cone surface is considered. We find that the geometric orbital angular momentum can provide an azimuthal polarization for spin, and the sign of the geometric Dresselhaus spin-orbit coupling can be flipped through the inclination angle of generatrix.
Renormalized G-convolution of n-point functions in quantum field theory. I. The Euclidean case
Bros, Jacques; Manolessou-Grammaticou, Marietta.
1977-01-01
The notion of Feynman amplitude associated with a graph G in perturbative quantum field theory admits a generalized version in which each vertex v of G is associated with a general (non-perturbative) nsub(v)-point function Hsup(nsub(v)), nsub(v) denoting the number of lines which are incident to v in G. In the case where no ultraviolet divergence occurs, this has been performed directly in complex momentum space through Bros-Lassalle's G-convolution procedure. The authors propose a generalization of G-convolution which includes the case when the functions Hsup(nsub(v)) are not integrable at infinity but belong to a suitable class of slowly increasing functions. A finite part of the G-convolution integral is then defined through an algorithm which closely follows Zimmermann's renormalization scheme. The case of Euclidean four-momentum configurations is only treated
Bezerra de Mello, E.R.
2006-01-01
In this paper we present, in a integral form, the Euclidean Green function associated with a massless scalar field in the five-dimensional Kaluza-Klein magnetic monopole superposed to a global monopole, admitting a nontrivial coupling between the field with the geometry. This Green function is expressed as the sum of two contributions: the first one related with uncharged component of the field, is similar to the Green function associated with a scalar field in a four-dimensional global monopole space-time. The second contains the information of all the other components. Using this Green function it is possible to study the vacuum polarization effects on this space-time. Explicitly we calculate the renormalized vacuum expectation value * (x)Φ(x)> Ren , which by its turn is also expressed as the sum of two contributions
Heterogeneous cellular networks
Hu, Rose Qingyang
2013-01-01
A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses, covering the related topics including scenarios of heterogeneous network deployment, interference management i
Limitations of MIRD at the cellular level
Makrigiorgos, M.G.; Aldestein, S.J.; Kassis, A.I.
1989-01-01
The MIRD formulation assumes a homogeneous distribution of radionuclides over the human organ of interest. The dosimetric impact of making this assumption when calculating the dose to individual cells in an organ is examined in the present work. For this purpose, a computer program has been written to calculate radiation dose to individual cells of a human organ for various three-dimensional distributions of radiopharmaceutical in this organ. The effects of two variables have been considered in the calculations: (a) the intracellular -to-extracellular radionuclide concentration [k], and (b) the fraction of the organ volume occupied by the radiolabeled cells [f]. Both photons and electrons emitted by the radionuclide have been accounted for in these dose estimations. For small f and large k values, the MIRD formulation is shown to underestimate severely the dose to individual labeled cells. To demonstrate the relevance of such considerations to current clinical practice, an example is presented from diagnostic nuclear medicine: technetium-99m labeled Microlite, a commonly used agent for spleen, liver and lung imaging that concentrates exclusively and highly in macrophages. Based on the dosimetric model developed, it is shown that the actual dose to labeled cells is 10 to 60 times higher than that predicted by the conventional MIRD formulation
Magnetohydrodynamics cellular automata
Hatori, Tadatsugu.
1990-02-01
There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)
Epigenetics and Cellular Metabolism
Wenyi Xu; Fengzhong Wang; Zhongsheng Yu; Fengjiao Xin
2016-01-01
Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the proce...
Matthäus, Franziska; Pahle, Jürgen
2017-01-01
This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.
Magnetohydrodynamic cellular automata
Hatori, Tadatsugu [National Inst. for Fusion Science, Nagoya (Japan)
1990-03-01
There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author).
Magnetohydrodynamic cellular automata
Hatori, Tadatsugu
1990-01-01
There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)
Michel Modo
2005-07-01
Full Text Available Cellular MR imaging is a young field that aims to visualize targeted cells in living organisms. In order to provide a different signal intensity of the targeted cell, they are either labeled with MR contrast agents in vivo or prelabeled in vitro. Either (ultrasmall superparamagnetic iron oxide [(USPIO] particles or (polymeric paramagnetic chelates can be used for this purpose. For in vivo cellular labeling, Gd3+- and Mn2+- chelates have mainly been used for targeted hepatobiliary imaging, and (USPIO-based cellular imaging has been focused on imaging of macrophage activity. Several of these magneto-pharmaceuticals have been FDA-approved or are in late-phase clinical trials. As for prelabeling of cells in vitro, a challenge has been to induce a sufficient uptake of contrast agents into nonphagocytic cells, without affecting normal cellular function. It appears that this issue has now largely been resolved, leading to an active research on monitoring the cellular biodistribution in vivo following transplantation or transfusion of these cells, including cell migration and trafficking. New applications of cellular MR imaging will be directed, for instance, towards our understanding of hematopoietic (immune cell trafficking and of novel guided (stem cell-based therapies aimed to be translated to the clinic in the future.
Simulating physics with cellular automata
Vichniac, G Y
1984-01-01
Cellular automata are dynamical systems where space, time, and variables are discrete. They are shown on two-dimensional examples to be capable of non-numerical simulations of physics. They are useful for faithful parallel processing of lattice models. At another level, they exhibit behaviours and illustrate concepts that are unmistakably physical, such as non-ergodicity and order parameters, frustration, relaxation to chaos through period doublings, a conspicuous arrow of time in reversible microscopic dynamics, causality and light-cone, and non-separability. In general, they constitute exactly computable models for complex phenomena and large-scale correlations that result from very simple short-range interactions. The author studies their space, time, and intrinsic symmetries and the corresponding conservation laws, with an emphasis on the conservation of information obeyed by reversible cellular automata. 60 references.
Cellular phone use while driving at night.
Vivoda, Jonathon M; Eby, David W; St Louis, Renée M; Kostyniuk, Lidia P
2008-03-01
Use of a cellular phone has been shown to negatively affect one's attention to the driving task, leading to an increase in crash risk. At any given daylight hour, about 6% of US drivers are actively talking on a hand-held cell phone. However, previous surveys have focused only on cell phone use during the day. Driving at night has been shown to be a riskier activity than driving during the day. The purpose of the current study was to assess the rate of hand-held cellular phone use while driving at night, using specialized night vision equipment. In 2006, two statewide direct observation survey waves of nighttime cellular phone use were conducted in Indiana utilizing specialized night vision equipment. Combined results of driver hand-held cellular phone use from both waves are presented in this manuscript. The rates of nighttime cell phone use were similar to results found in previous daytime studies. The overall rate of nighttime hand-held cellular phone use was 5.8 +/- 0.6%. Cellular phone use was highest for females and for younger drivers. In fact, the highest rate observed during the study (of 11.9%) was for 16-to 29-year-old females. The high level of cellular phone use found within the young age group, coupled with the increased crash risk associated with cellular phone use, nighttime driving, and for young drivers in general, suggests that this issue may become an important transportation-related concern.
Cellularized Cellular Solids via Freeze-Casting.
Christoph, Sarah; Kwiatoszynski, Julien; Coradin, Thibaud; Fernandes, Francisco M
2016-02-01
The elaboration of metabolically active cell-containing materials is a decisive step toward the successful application of cell based technologies. The present work unveils a new process allowing to simultaneously encapsulate living cells and shaping cell-containing materials into solid-state macroporous foams with precisely controlled morphology. Our strategy is based on freeze casting, an ice templating materials processing technique that has recently emerged for the structuration of colloids into macroporous materials. Our results indicate that it is possible to combine the precise structuration of the materials with cellular metabolic activity for the model organism Saccharomyces cerevisiae. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Epigenetics and Cellular Metabolism
Wenyi Xu
2016-01-01
Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.
Pohl-Rueling, J.
1980-12-01
The transmembrane resting potential (MRP) was chosen as a highly sensitive indicator for cellular reactions. The MRP was studied for its suitability as biological indicator of the level of accidental radiation exposure. The development of methodology and installation of a low-cost test chamber, and dose-response studies of MRP-changes of human cells after irradiation with low- and high-LET radiation were considered. Cultured human embryonic lung fibroblasts and human lung biopsy samples were used, with a Co-60 source for low-LET irradiation at dose rates of 2 rad and 20 rad/min, respectively. For high-LET irradiation an Am-241 source was used. The onset of radiation induced effects on cell membranes was prompt but of short duration. In general, full recovery followed within hours of irradiation, at least under the particular experimental conditions. MRP changes in irradiated cells proved a highly sensitive parameter for assessing radiation effects on cell membranes. It appears premature to draw conclusions on the suitability of the method as a biological indicator of radiation damage from accidental exposure, in view of the short duration and prompt reversibility of the effects, and an incomplete understanding of the radiation-induced reactions involved at different LET's and at different doses and dose-rates
Wireless Cellular Mobile Communications
V. Zalud
2002-12-01
Full Text Available In this article is briefly reviewed the history of wireless cellularmobile communications, examined the progress in current secondgeneration (2G cellular standards and discussed their migration to thethird generation (3G. The European 2G cellular standard GSM and itsevolution phases GPRS and EDGE are described somewhat in detail. Thethird generation standard UMTS taking up on GSM/GPRS core network andequipped with a new advanced access network on the basis of codedivision multiple access (CDMA is investigated too. A sketch of theperspective of mobile communication beyond 3G concludes this article.
Kim, Won Hwa; Chung, Moo K; Singh, Vikas
2013-01-01
The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.
Abd El-Monsef, M.M.; Kozae, A.M.; Seddeek, M.K.; Medhat, T.; Sharshar, T.; Badran, H.M.
2004-01-01
Form the geological point of view, the origin and transport of black and normal sands is particularly important. Black and normal sands came to their places along the Mediterranean-sea coast after transport by some natural process. Both types of sands have different radiological properties. This study is, therefore, attempts to use mathematical methods to classify Egyptian sand samples collected from 42 locations in an area of 40 x 19 km 2 based on their radioactivity contents. The use of all information resulted from the experimental measurements of radioactivity contents as well as some other parameters can be a time and effort consuming task. So that the process of eliminating unnecessary attributes is of prime importance. This elimination process of the superfluous attributes that cannot affect the decision was carried out. Some topological techniques to classify the information systems resulting from the radioactivity measurements were then carried out. These techniques were applied in Euclidean and quasi-discrete topological cases. While there are some applications in environmental radioactivity of the former case, the use of the quasi-discrete in the so-called rough set information analysis is new in such a study. The mathematical methods are summarized and the results and their radiological implications are discussed. Generally, the results indicate no radiological anomaly and it supports the hypothesis previously suggested about the presence of two types of sand in the studied area
Biess, Armin
2013-01-01
The study of the kinematic and dynamic features of human arm movements provides insights into the computational strategies underlying human motor control. In this paper a differential geometric approach to movement control is taken by endowing arm configuration space with different non-Euclidean metric structures to study the predictions of the generalized minimum-jerk (MJ) model in the resulting Riemannian manifold for different types of human arm movements. For each metric space the solution of the generalized MJ model is given by reparametrized geodesic paths. This geodesic model is applied to a variety of motor tasks ranging from three-dimensional unconstrained movements of a four degree of freedom arm between pointlike targets to constrained movements where the hand location is confined to a surface (e.g., a sphere) or a curve (e.g., an ellipse). For the latter speed-curvature relations are derived depending on the boundary conditions imposed (periodic or nonperiodic) and the compatibility with the empirical one-third power law is shown. Based on these theoretical studies and recent experimental findings, I argue that geodesics may be an emergent property of the motor system and that the sensorimotor system may shape arm configuration space by learning metric structures through sensorimotor feedback.
Radiolabelled cellular blood elements
Sinzinger, H.
1990-01-01
This book reports on radiolabelled cellular blood elements, covering new advances made during the past several years, in particular the use of Tc-99 as a tracer for blood elements. Coverage extends to several radiolabelled monoclonal antibodies that are specific for blood components and may label blood elements in vivo
Building synthetic cellular organization
Polka, Jessica K.; Silver, Pamela A.
2013-01-01
The elaborate spatial organization of cells enhances, restricts, and regulates protein–protein interactions. However, the biological significance of this organization has been difficult to study without ways of directly perturbing it. We highlight synthetic biology tools for engineering novel cellular organization, describing how they have been, and can be, used to advance cell biology.
Claman, Henry N.
1973-01-01
Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)
Electromagnetic cellular interactions.
Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan
2011-05-01
Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.
Genetic Dominance & Cellular Processes
Seager, Robert D.
2014-01-01
In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…
Bubelev, E.G.; Kuchin, I.A.
1998-01-01
The necessity of creating mesophysics is motivated on the basis of a general likeness of the description of many phenomena and processes in micro- and macroworld. For a general and detailed investigation of the former in modern high energy physics (HEP), the Absolute (arising from Minkovsky and irrespective of any reference system) universal approach is used. Its two conceptually new branches are non-linear system-dynamic and non-Euclidean evolutionary ones. They are complementary ones and completely adequate to an extreme complexity of directly unobservable HEP objects. Some primary problems of them are briefly made clear on the basis of synergetics principles and HEP's internal Lobachevsky-Euclidean geometry. They are noted as the primary content of the Lobachevsky-Poincare Programme (LPP) the idea of which has been proposed recently for their successive solution
A cryptosystem based on elementary cellular automata
Abdo, A. A.; Lian, Shiguo; Ismail, I. A.; Amin, M.; Diab, H.
2013-01-01
Based on elementary cellular automata, a new image encryption algorithm is proposed in this paper. In this algorithm, a special kind of periodic boundary cellular automata with unity attractors is used. From the viewpoint of security, the number of cellular automata attractor states are changed with respect to the encrypted image, and different key streams are used to encrypt different plain images. The cellular neural network with chaotic properties is used as the generator of a pseudo-random key stream. Theoretical analysis and experimental results have both confirmed that the proposed algorithm possesses high security level and good performances against differential and statistical attacks. The comparison with other existing schemes is given, which shows the superiority of the proposal scheme.
Toxicity of pyrolysis gases from some cellular polymers
Hilado, C. J.; Machado, A. M.
1978-01-01
Various samples of cellular polymers were evaluated for toxicity of pyrolysis gases, using the screening test method developed at the University of San Francisco. The cellular polymer samples included polyimide, polymethacrylimide, polybismaleimide, polyurethane, polyisocyanurate, polyethylene, polychloroprene, polyvinyl chloride, polystyrene, polysiloxane, and polyphosphazene. The cellular polymers exhibited varying levels of toxicity under these test conditions. Among the rigid cellular polymers, times to death were shortest with the imide type foams and longest with polyvinyl chloride and polystyrene. Among the flexible cellular polymers, times to death were shortest with polyimide and polyester, and longest with polychloroprene and polysiloxane. Increased char yield was not necessarily associated with reduced toxicity.
Quasthoff, U.
1985-07-01
Cellular automata by definition consist of a finite or infinite number of cells, say of unit length, with each cell having the same transition function. These cells are usually considered as the smallest elements and so the space filled with these cells becomes discrete. Nevertheless, large pictures created by such cellular automata look very fractal. So we try to replace each cell by a couple of smaller cells, which have the same transition functions as the large ones. There are automata where this replacement does not destroy the macroscopic structure. In these cases this nesting process can be iterated. The paper contains large classes of automata with the above properties. In the case of one dimensional automata with two states and next neighbour interaction and a nesting function of the same type a complete classification is given. (author)
Predictability in cellular automata.
Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius
2014-01-01
Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case.
Probabilistic cellular automata.
Agapie, Alexandru; Andreica, Anca; Giuclea, Marius
2014-09-01
Cellular automata are binary lattices used for modeling complex dynamical systems. The automaton evolves iteratively from one configuration to another, using some local transition rule based on the number of ones in the neighborhood of each cell. With respect to the number of cells allowed to change per iteration, we speak of either synchronous or asynchronous automata. If randomness is involved to some degree in the transition rule, we speak of probabilistic automata, otherwise they are called deterministic. With either type of cellular automaton we are dealing with, the main theoretical challenge stays the same: starting from an arbitrary initial configuration, predict (with highest accuracy) the end configuration. If the automaton is deterministic, the outcome simplifies to one of two configurations, all zeros or all ones. If the automaton is probabilistic, the whole process is modeled by a finite homogeneous Markov chain, and the outcome is the corresponding stationary distribution. Based on our previous results for the asynchronous case-connecting the probability of a configuration in the stationary distribution to its number of zero-one borders-the article offers both numerical and theoretical insight into the long-term behavior of synchronous cellular automata.
Wavefront cellular learning automata.
Moradabadi, Behnaz; Meybodi, Mohammad Reza
2018-02-01
This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.
Wavefront cellular learning automata
Moradabadi, Behnaz; Meybodi, Mohammad Reza
2018-02-01
This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.
Jégat , Alain
2014-01-01
The usual framework for Einstein’s special theory of relativity is the pseudo-euclidean spacetime proposed by Hermann Minkowski. This article aims at proposing a different model.The framework is an euclidean four-dimensional space in which all the objects move regularly (it means that, between two observations, whatever their trajectories, they cover the same distance), but where the events are seen in projection according to a privileged direction, as we are going to explain. The remark, rat...
Cosserat modeling of cellular solids
Onck, P.R.
Cellular solids inherit their macroscopic mechanical properties directly from the cellular microstructure. However, the characteristic material length scale is often not small compared to macroscopic dimensions, which limits the applicability of classical continuum-type constitutive models. Cosserat
Evaluation of Structural Cellular Glass
Adams, M. A.; Zwissler, J. G.
1984-01-01
Preliminary design information presented. First report discusses state of structural-cellular-glass programs as of June 1979. Second report gives further details of program to develop improved cellular glasses and to characterize properties of glasses and commercially available materials.
Rojas C, E. L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Santos C, C. L. [Universidad Autonoma del Estado de Mexico, Paseo Tollocan y Jesus Carranza, Toluca 50120, Estado de Mexico (Mexico)], e-mail: leticia.rojas@inin.gob.mx
2009-10-15
The {sup 188}Re is a radionuclide of radiation gamma emitter, useful in obtaining of gamma-graphic images, but it is also emitter of beta radiations and Auger electrons. A bio-molecule directed to a specific receptor of a cancer cell labeled with a emitter radionuclide of beta particles and Auger electrons, as the {sup 188}Re-Tat-Bombesin, it has the potential to be used in radiotherapy of molecular targets for its capacity to penetrate to cellular nucleus. In this system, the radiation dose is distributed in way located at microscopic levels in sub cellular specific places, where Auger emissions contributes of significant way in absorbed dose. The cellular dosimetry is realized in most of cases, using analytic or semi analytical methods, for example the cellular MIRD methodology. However, it is required to complement these calculations simulating the electrons transport and considering experimental bio kinetics data. Therefore, in this work preliminary results are presented of dosimetric calculation to sub cellular level for {sup 188}Re-Tat-Bombesin by Monte Carlo simulation, using the 2008 version of PENELOPE: PENEASY code. The spatial distribution of absorbed dose in membrane, cytoplasm and nucleus, was calculated with geometry of a cell of 10 {mu}m of diameter, a nucleus of 2 {mu}m of ratio and membrane of 0.2 {mu}m of thickness, considering elementary constitution for each cellular compartment proposal in literature. The total number of disintegrations at sub cellular level was evaluated integrating the activity in function of time starting from experimental bio kinetics data in mamma cancer cells MDA-MB231. The preliminary results show that 46.4% of total disintegrations for unit of captured activity by cell occurs in nucleus, 38.4% in membrane and 15.2% in cytoplasm. The due absorbed dose to Auger electrons for 1 Bq of {sup 188}Re located in cellular membrane were respectively of 1.32E-1 and 1.43E-1 Gy in cytoplasm and nucleus. (Author)
Cellular communication through light.
Daniel Fels
Full Text Available Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.
Cellular mechanics and motility
Hénon, Sylvie; Sykes, Cécile
2015-10-01
The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in
Fuzzy cellular automata models in immunology
Ahmed, E.
1996-01-01
The self-nonself character of antigens is considered to be fuzzy. The Chowdhury et al. cellular automata model is generalized accordingly. New steady states are found. The first corresponds to a below-normal help and suppression and is proposed to be related to autoimmune diseases. The second corresponds to a below-normal B-cell level
Xu, Xiang; Lin, Feng
2017-01-01
This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical...
Anon.
1982-01-01
Testing the applicability of mathematical models with carefully designed experiments is a powerful tool in the investigations of the effects of ionizing radiation on cells. The modeling and cellular studies complement each other, for modeling provides guidance for designing critical experiments which must provide definitive results, while the experiments themselves provide new input to the model. Based on previous experimental results the model for the accumulation of damage in Chlamydomonas reinhardi has been extended to include various multiple two-event combinations. Split dose survival experiments have shown that models tested to date predict most but not all the observed behavior. Stationary-phase mammalian cells, required for tests of other aspects of the model, have been shown to be at different points in the cell cycle depending on how they were forced to stop proliferating. These cultures also demonstrate different capacities for repair of sublethal radiation damage
Statistical mechanics of cellular automata
Wolfram, S.
1983-01-01
Cellular automata are used as simple mathematical models to investigate self-organization in statistical mechanics. A detailed analysis is given of ''elementary'' cellular automata consisting of a sequence of sites with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to p definite rules involving the values of its nearest neighbors. With simple initial configurations, the cellular automata either tend to homogeneous states, or generate self-similar patterns with fractal dimensions approx. =1.59 or approx. =1.69. With ''random'' initial configurations, the irreversible character of the cellular automaton evolution leads to several self-organization phenomena. Statistical properties of the structures generated are found to lie in two universality classes, independent of the details of the initial state or the cellular automaton rules. More complicated cellular automata are briefly considered, and connections with dynamical systems theory and the formal theory of computation are discussed
Is Glutathione the Major Cellular Target of Cisplatin?
Kasherman, Yonit; Stürup, Stefan; gibson, dan
2009-01-01
Cisplatin is an anticancer drug whose efficacy is limited because tumors develop resistance to the drug. Resistant cells often have elevated levels of cellular glutathione (GSH), believed to be the major cellular target of cisplatin that inactivates the drug by binding to it irreversibly, forming...
47 CFR 22.909 - Cellular markets.
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular markets. 22.909 Section 22.909... Cellular Radiotelephone Service § 22.909 Cellular markets. Cellular markets are standard geographic areas used by the FCC for administrative convenience in the licensing of cellular systems. Cellular markets...
Cellular glutathione prevents cytolethality of monomethylarsonic acid
Sakurai, Teruaki; Kojima, Chikara; Ochiai, Masayuki; Ohta, Takami; Sakurai, Masumi H.; Waalkes, Michael P.; Fujiwara, Kitao
2004-01-01
Inorganic arsenicals are clearly toxicants and carcinogens in humans. In mammals, including humans, inorganic arsenic often undergoes methylation, forming compounds such as monomethylarsonic acid (MMAs V ) and dimethylarsinic acid (DMAs V ). However, much less information is available on the in vitro toxic potential or mechanisms of these methylated arsenicals, especially MMAs V . We studied the molecular mechanisms of in vitro cytolethality of MMAs V using a rat liver epithelial cell line (TRL 1215). MMAs V was not cytotoxic in TRL 1215 cells even at concentrations exceeding 10 mM, but it became weakly cytotoxic and induced both necrotic and apoptotic cell death when cellular reduced glutathione (GSH) was depleted with the glutathione synthase inhibitor, L-buthionine-[S,R]-sulfoximine (BSO), or the glutathione reductase inhibitor, carmustine. Similar results were observed in the other mammalian cells, such as human skin TIG-112 cells, chimpanzee skin CRT-1609 cells, and mouse metallothionein (MT) positive and MT negative embryonic cells. Ethacrynic acid (EA), an inhibitor of glutathione S-transferase (GST) that catalyses GSH-substrate conjugation, also enhanced the cytolethality of MMAs V , but aminooxyacetic acid (AOAA), an inhibitor of β-lyase that catalyses the final breakdown of GSH-substrate conjugates, had no effect. Both the cellular GSH levels and the cellular GST activity were increased by the exposure to MMAs V in TRL 1215 cells. On the other hand, the addition of exogenous extracellular GSH enhanced the cytolethality of MMAs V , although cellular GSH levels actually prevented the cytolethality of combined MMAs V and exogenous GSH. These findings indicate that human arsenic metabolite MMAs V is not a highly toxic compound in mammalian cells, and the level of cellular GSH is critical to its eventual toxic effects
MSAT and cellular hybrid networking
Baranowsky, Patrick W., II
Westinghouse Electric Corporation is developing both the Communications Ground Segment and the Series 1000 Mobile Phone for American Mobile Satellite Corporation's (AMSC's) Mobile Satellite (MSAT) system. The success of the voice services portion of this system depends, to some extent, upon the interoperability of the cellular network and the satellite communication circuit switched communication channels. This paper will describe the set of user-selectable cellular interoperable modes (cellular first/satellite second, etc.) provided by the Mobile Phone and described how they are implemented with the ground segment. Topics including roaming registration and cellular-to-satellite 'seamless' call handoff will be discussed, along with the relevant Interim Standard IS-41 Revision B Cellular Radiotelecommunications Intersystem Operations and IOS-553 Mobile Station - Land Station Compatibility Specification.
Cellular automata analysis and applications
Hadeler, Karl-Peter
2017-01-01
This book focuses on a coherent representation of the main approaches to analyze the dynamics of cellular automata. Cellular automata are an inevitable tool in mathematical modeling. In contrast to classical modeling approaches as partial differential equations, cellular automata are straightforward to simulate but hard to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction of cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of different topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kůrka classification). These classifications suggest to cluster cel...
MIMO Communication for Cellular Networks
Huang, Howard; Venkatesan, Sivarama
2012-01-01
As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...
Predicting cellular growth from gene expression signatures.
Edoardo M Airoldi
2009-01-01
Full Text Available Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.
Programmable cellular arrays. Faults testing and correcting in cellular arrays
Cercel, L.
1978-03-01
A review of some recent researches about programmable cellular arrays in computing and digital processing of information systems is presented, and includes both combinational and sequential arrays, with full arbitrary behaviour, or which can realize better implementations of specialized blocks as: arithmetic units, counters, comparators, control systems, memory blocks, etc. Also, the paper presents applications of cellular arrays in microprogramming, in implementing of a specialized computer for matrix operations, in modeling of universal computing systems. The last section deals with problems of fault testing and correcting in cellular arrays. (author)
Cellular and Chemical Neuroscience of Mammalian Sleep
Datta, Subimal
2010-01-01
Extraordinary strides have been made toward understanding the complexities and regulatory mechanisms of sleep over the past two decades, thanks to the help of rapidly evolving technologies. At its most basic level, mammalian sleep is a restorative process of the brain and body. Beyond its primary restorative purpose, sleep is essential for a number of vital functions. Our primary research interest is to understand the cellular and molecular mechanisms underlying the regulation of sleep and it...
Image processing with a cellular nonlinear network
Morfu, S.
2005-01-01
A cellular nonlinear network (CNN) based on uncoupled nonlinear oscillators is proposed for image processing purposes. It is shown theoretically and numerically that the contrast of an image loaded at the nodes of the CNN is strongly enhanced, even if this one is initially weak. An image inversion can be also obtained without reconfiguration of the network whereas a gray levels extraction can be performed with an additional threshold filtering. Lastly, an electronic implementation of this CNN is presented
Efficiency of cellular information processing
Barato, Andre C; Hartich, David; Seifert, Udo
2014-01-01
We show that a rate of conditional Shannon entropy reduction, characterizing the learning of an internal process about an external process, is bounded by the thermodynamic entropy production. This approach allows for the definition of an informational efficiency that can be used to study cellular information processing. We analyze three models of increasing complexity inspired by the Escherichia coli sensory network, where the external process is an external ligand concentration jumping between two values. We start with a simple model for which ATP must be consumed so that a protein inside the cell can learn about the external concentration. With a second model for a single receptor we show that the rate at which the receptor learns about the external environment can be nonzero even without any dissipation inside the cell since chemical work done by the external process compensates for this learning rate. The third model is more complete, also containing adaptation. For this model we show inter alia that a bacterium in an environment that changes at a very slow time-scale is quite inefficient, dissipating much more than it learns. Using the concept of a coarse-grained learning rate, we show for the model with adaptation that while the activity learns about the external signal the option of changing the methylation level increases the concentration range for which the learning rate is substantial. (paper)
Influence of income on tertiary students acquisition of cellular products
G. A.P Drotsky
2007-12-01
Full Text Available Purpose: The purpose of the article is to determine whether there are any differences between high and low-income group students in their selection of a cellular phone brand or network operator. Design/Methodology/Approach: Four hypotheses are set to determine if there are any significant differences between the two income groups in current decision-making. It is established that there exist no significant difference between high and low-income students in their selection of cellular phones and network operators. The levels of agreement or disagreement on various statements do, however, give an indication of the importance that students place on aspects that they view as important when acquiring a cellular phone or network operator. Findings: In the article, it is established that no significant differences exist between the two income groups. The levels of agreement or disagreement indicate the importance that subscription method, social value, service quality and branding has on student decision-making. Implications: The article provides a better understanding of the influence that income plays in student's decision-making in acquiring cellular products and services. Possible future research in student cellular usage can be guided through the information obtained in this article. Originality/Value: The article provides information to cellular network operators, service providers and cellular phone manufactures regarding the influence of income on students' acquisition of cellular products and services. Information from the article can assist in the establishment of marketing plans for the student market by these role players.
Abkarian, Manouk; Faivre, Magalie; Horton, Renita
2008-01-01
Microfluidic tools are providing many new insights into the chemical, physical and physicochemical responses of cells. Both suspension-level and single-cell measurements have been studied. We review our studies of these kinds of problems for red blood cells with particular focus on the shapes of ...
Cellular dosimetry in nuclear medicine imaging: training
Gardin, I.; Faraggi, M.; Stievenart, J.L.; Le Guludec, D.; Bok, B.
1998-01-01
The radionuclides used in nuclear medicine imaging emit not only diagnostically useful photons, but also energy electron emissions, responsible for dose heterogeneity at the cellular level. The mean dose delivered to the cell nucleus by electron emissions of 99m Tc, 123 I, 111 In, 67 Ga, and 201 Tl, has been calculated, for the cell nucleus, a cytoplasmic and a cell membrane distribution of radioactivity. This model takes into account both the self-dose which results from the radionuclide located in the target cell, and the cross-dose, which comes from the surrounding cells. The results obtained by cellular dosimetry (D cel ) have been compared with those obtained with conventional dosimetry (D conv ), by assuming the same amount of radioactivity per cell. Cellular dosimetry shows, for a cytoplasmic and a cell membrane distributions of radioactivity, that the main contribution to the dose to the cell nucleus, comes from the surrounding cells. On the other hand, for a cell nucleus distribution of radioactivity, the self-dose is not negligible and may be the main contribution. The comparison between cellular and conventional dosimetry shows that D cel /D conv ratio ranges from 0.61 and O.89, in case of a cytoplasmic and a cell membrane distributions of radioactivity, depending on the radionuclide and cell dimensions. Thus, conventional dosimetry slightly overestimates the mean dose to the cell nucleus. On the other hand, D cel /D conv ranges from 1.1 to 75, in case of a cell nucleus distribution of radioactivity. Conventional dosimetry may strongly underestimates the absorbed dose to the nucleus, when radioactivity is located in the nucleus. The study indicates that in nuclear medicine imaging, cellular dosimetry may lead to a better understanding of biological effects of radiopharmaceuticals. (authors)
Cellular senescence and organismal aging.
Jeyapalan, Jessie C; Sedivy, John M
2008-01-01
Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age-related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging.
Origami interleaved tube cellular materials
Cheung, Kenneth C; Tachi, Tomohiro; Calisch, Sam; Miura, Koryo
2014-01-01
A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis. (paper)
Origami interleaved tube cellular materials
Cheung, Kenneth C.; Tachi, Tomohiro; Calisch, Sam; Miura, Koryo
2014-09-01
A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis.
Cellular Angiofibroma of the Nasopharynx.
Erdur, Zülküf Burak; Yener, Haydar Murat; Yilmaz, Mehmet; Karaaltin, Ayşegül Batioğlu; Inan, Hakki Caner; Alaskarov, Elvin; Gozen, Emine Deniz
2017-11-01
Angiofibroma is a common tumor of the nasopharynx region but cellular type is extremely rare in head and neck. A 13-year-old boy presented with frequent epistaxis and nasal obstruction persisting for 6 months. According to the clinical symptoms and imaging studies juvenile angiofibroma was suspected. Following angiographic embolization total excision of the lesion by midfacial degloving approach was performed. Histological examination revealed that the tumor consisted of staghorn blood vessels and irregular fibrous stroma. Stellate fibroblasts with small pyknotic to large vesicular nuclei were seen in a highly cellular stroma. These findings identified cellular angiofibroma mimicking juvenile angiofibroma. This article is about a very rare patient of cellular angiofibroma of nasopharynx.
Kovarik, M.D.; Barnes, T.; Tennessee Univ., Knoxville, TN
1993-01-01
We describe a Monte Carlo simulation of a dynamical fermion problem in two spatial dimensions on an Intel iPSC/860 hypercube. The problem studied is the determination of the dispersion relation of a dynamical hole in the t-J model of the high temperature superconductors. Since this problem involves the motion of many fermions in more than one spatial dimensions, it is representative of the class of systems that suffer from the ''minus sign problem'' of dynamical fermions which has made Monte Carlo simulation very difficult. We demonstrate that for small values of the hole hopping parameter one can extract the entire hole dispersion relation using the GRW Monte Carlo algorithm, which is a simulation of the Euclidean time Schroedinger equation, and present results on 4 x 4 and 6 x 6 lattices. Generalization to physical hopping parameter values wig only require use of an improved trial wavefunction for importance sampling
Cytokines as cellular communicators
R. Debets
1996-01-01
Full Text Available Cytokines and their receptors are involved in the pathophysiology of many diseases. Here we present a detailed review on cytokines, receptors and signalling routes, and show that one important lesson from cytokine biology is the complex and diverse regulation of cytokine activity. The activity of cytokines is controlled at the level of transcription, translation, storage, processing, posttranslational modification, trapping, binding by soluble proteins, and receptor number and/or function. Translation of this diverse regulation in strategies aimed at the control of cytokine activity will result in the development of more specific and selective drugs to treat diseases.
Cellular vs. organ approaches to dose estimates
Adelstein, S.J.; Kassis, A.I.; Sastry, K.S.R.
1986-01-01
The cellular distribution of tissue-incorporated radionuclides has generally been neglected in the dosimetry of internal emitters. Traditional dosimetry assumes homogeneous distribution of radionuclides in organs of interest, while presuming that the ranges of particulate radiations are large relative to typical cell diameters. The macroscopic distribution of dose thus calculated has generally served as a sufficient approximation for the energy deposited within radiosensitive sites. However, with the increasing utilization of intracellular agents, such as thallium-201, it has become necessary to examine the microscopic distribution of energy at the cellular level. This is particularly important in the instance of radionuclides that decay by electron capture or by internal conversion with the release of Auger and Coster-Kronig electrons. In many instances, these electrons are released as a dense shower of low-energy particles with ranges of subcellular dimensions. The high electron density in the immediate vicinity of the decaying atom produces a focal deposition of energy that far exceeds the average dose taken over several cell diameters. These studies point out the increasing need to take into account the microscopic distribution of dose on the cellular level as radionuclides distributed in cells become more commonplace, especially if the decay involves electron capture or internal conversion. As radiotracers are developed for the measurement of intracellular functions these factors should be given greater consideration. 16 references, 5 figures, 5 tables
Extended Cellular Automata Models of Particles and Space-Time
Beedle, Michael
2005-04-01
Models of particles and space-time are explored through simulations and theoretical models that use Extended Cellular Automata models. The expanded Cellular Automata Models consist go beyond simple scalar binary cell-fields, into discrete multi-level group representations like S0(2), SU(2), SU(3), SPIN(3,1). The propagation and evolution of these expanded cellular automatas are then compared to quantum field theories based on the "harmonic paradigm" i.e. built by an infinite number of harmonic oscillators, and with gravitational models.
Cellular potts models multiscale extensions and biological applications
Scianna, Marco
2013-01-01
A flexible, cell-level, and lattice-based technique, the cellular Potts model accurately describes the phenomenological mechanisms involved in many biological processes. Cellular Potts Models: Multiscale Extensions and Biological Applications gives an interdisciplinary, accessible treatment of these models, from the original methodologies to the latest developments. The book first explains the biophysical bases, main merits, and limitations of the cellular Potts model. It then proposes several innovative extensions, focusing on ways to integrate and interface the basic cellular Potts model at the mesoscopic scale with approaches that accurately model microscopic dynamics. These extensions are designed to create a nested and hybrid environment, where the evolution of a biological system is realistically driven by the constant interplay and flux of information between the different levels of description. Through several biological examples, the authors demonstrate a qualitative and quantitative agreement with t...
Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis.
Olson, D K; Fröhlich, F; Farese, R V; Walther, T C
2016-08-01
Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2015. Published by Elsevier B.V.
Quantifying the global cellular thiol-disulfide status
Hansen, Rosa E; Roth, Doris; Winther, Jakob R
2009-01-01
It is widely accepted that the redox status of protein thiols is of central importance to protein structure and folding and that glutathione is an important low-molecular-mass redox regulator. However, the total cellular pools of thiols and disulfides and their relative abundance have never been...... determined. In this study, we have assembled a global picture of the cellular thiol-disulfide status in cultured mammalian cells. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated protein (PSSG) in all cellular protein, including membrane proteins. These data...... cell types. However, when cells are exposed to a sublethal dose of the thiol-specific oxidant diamide, PSSG levels increase to >15% of all protein cysteine. Glutathione is typically characterized as the "cellular redox buffer"; nevertheless, our data show that protein thiols represent a larger active...
Cellular-based preemption system
Bachelder, Aaron D. (Inventor)
2011-01-01
A cellular-based preemption system that uses existing cellular infrastructure to transmit preemption related data to allow safe passage of emergency vehicles through one or more intersections. A cellular unit in an emergency vehicle is used to generate position reports that are transmitted to the one or more intersections during an emergency response. Based on this position data, the one or more intersections calculate an estimated time of arrival (ETA) of the emergency vehicle, and transmit preemption commands to traffic signals at the intersections based on the calculated ETA. Additional techniques may be used for refining the position reports, ETA calculations, and the like. Such techniques include, without limitation, statistical preemption, map-matching, dead-reckoning, augmented navigation, and/or preemption optimization techniques, all of which are described in further detail in the above-referenced patent applications.
Novel Materials for Cellular Nanosensors
Sasso, Luigi
The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...... and that offer advantages of functionalization, and conducting polymers were used as electrochemical sensor surface modifications for increasing the sensitivity towards relevant analytes, with focus on the detection of dopamine released from cells via exocytosis. Vertical peptide nanowires were synthesized from...
Hydrogen peroxide probes directed to different cellular compartments.
Mikalai Malinouski; You Zhou; Vsevolod V Belousov; Dolph L Hatfield; Vadim N Gladyshev
2011-01-01
Background Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular ...
The cellular basis of skin injury after cytotoxic insult
Potten, C.S.
1986-01-01
It is concluded that although the major target in terms of radiation damage is undoubtedly the epidermis, the skin is a complex tissue made up of many inter-dependent components each of which may constitute an important secondary target. Damage to each component has been considered at the cellular level. The precise inter-relationships and interdependencies remain somewhat obscure. Even within one site, the epidermis, a comprehensive cellular explanation of the various post-irradiation changes is difficult. Substantial bibliography. (UK)
Cellular signaling identifiability analysis: a case study.
Roper, Ryan T; Pia Saccomani, Maria; Vicini, Paolo
2010-05-21
Two primary purposes for mathematical modeling in cell biology are (1) simulation for making predictions of experimental outcomes and (2) parameter estimation for drawing inferences from experimental data about unobserved aspects of biological systems. While the former purpose has become common in the biological sciences, the latter is less common, particularly when studying cellular and subcellular phenomena such as signaling-the focus of the current study. Data are difficult to obtain at this level. Therefore, even models of only modest complexity can contain parameters for which the available data are insufficient for estimation. In the present study, we use a set of published cellular signaling models to address issues related to global parameter identifiability. That is, we address the following question: assuming known time courses for some model variables, which parameters is it theoretically impossible to estimate, even with continuous, noise-free data? Following an introduction to this problem and its relevance, we perform a full identifiability analysis on a set of cellular signaling models using DAISY (Differential Algebra for the Identifiability of SYstems). We use our analysis to bring to light important issues related to parameter identifiability in ordinary differential equation (ODE) models. We contend that this is, as of yet, an under-appreciated issue in biological modeling and, more particularly, cell biology. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Global properties of cellular automata
Jen, E.
1986-01-01
Cellular automata are discrete mathematical systems that generate diverse, often complicated, behavior using simple deterministic rules. Analysis of the local structure of these rules makes possible a description of the global properties of the associated automata. A class of cellular automata that generate infinitely many aperoidic temporal sequences is defined,a s is the set of rules for which inverses exist. Necessary and sufficient conditions are derived characterizing the classes of ''nearest-neighbor'' rules for which arbitrary finite initial conditions (i) evolve to a homogeneous state; (ii) generate at least one constant temporal sequence
Cellular structures with interconnected microchannels
Shaefer, Robert Shahram; Ghoniem, Nasr M.; Williams, Brian
2018-01-30
A method for fabricating a cellular tritium breeder component includes obtaining a reticulated carbon foam skeleton comprising a network of interconnected ligaments. The foam skeleton is then melt-infiltrated with a tritium breeder material, for example, lithium zirconate or lithium titanate. The foam skeleton is then removed to define a cellular breeder component having a network of interconnected tritium purge channels. In an embodiment the ligaments of the foam skeleton are enlarged by adding carbon using chemical vapor infiltration (CVI) prior to melt-infiltration. In an embodiment the foam skeleton is coated with a refractory material, for example, tungsten, prior to melt infiltration.
Reduced labor and condensed schedules with cellular concrete solutions
Lavis, D. [CEMATRIX Inc., Calgary, AB (Canada)
2008-07-01
This paper discussed the use of cellular concrete materials in oil sands tank base foundation systems, shallow buried utility insulation systems, roadways, slabs, and buried modules. The concrete is formed from Portland cement, water, specialized pre-formed foaming agents, and air mixed in controlled proportions. Fly ash and polypropylene or glass fibers can also be used as additions. Cellular concrete can often be used to speed up construction and minimize labour requirements. Cellular concrete can be cast-in-place, and has soil-stabilizing and self-compacting features. The concrete can be produced and placed on-site at rates exceeding 120 cubic meters per hour. Cellular concrete can be pumped into place over long distances through flexible hoses. A case study comparing the cellular concrete to traditional plastic foam insulation was used to demonstrate the equivalency and adequacy of insulation, structural properties and installation costs. The study showed that although the cellular concrete had a high installation cost, greater compressive strength was gained. The concrete was self-levelling and did not require compaction or vibration. The use of the cellular concrete resulted in an accelerated construction schedule. 6 refs., 2 tabs., 6 figs.
The oxygen effect and cellular adaptation
Meshcherikova, V.V.; Vajnson, A.A.; Yarmonenko, S.P.
1979-01-01
The radiomodifying effect of oxygen was shown to depend on the level of cellular oxygenation prior to irradiation. Acute hypoxia created at the time of irradiation protects previously normally oxygenated cells with DMF approximately 1.4 times larger than that of cells cultured for 24 hours under conditions of mild hypoxia. It is suggested that a decrease in the radioprotective effect of acute hypoxia on chronically hypoxic cells is correlated with an appreciable decrease in the rate of oxygen consumption by these cells, due to which the oxygen concentration near the intracellular targets in chronically hypoxic cells may be higher than in normal cells under conditions of poor oxygenation
Cellular uptake of metallated cobalamins
Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry
2016-01-01
Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN...
Cellular automaton for surface reactions
Pechatnikov, E L [AN SSSR, Chernogolovka (Russian Federation). Otdelenie Inst. Khimicheskoj Fiziki; Frankowicz, A; Danielak, R [Uniwersytet Jagiellonski, Cracow (Poland)
1994-06-01
A new algorithm which overcomes some specific difficulties arising in modeling of heterogeneous catalytic processes by cellular automata (CA) technique is proposed. The algorithm was tested with scheme introduced by Ziff, Gulari and Barshad and showed a good agreement with their results. The problem of the physical adequacy and interpretation of the algorithm was discussed. (author). 10 refs, 4 figs.
Cellular Automata and the Humanities.
Gallo, Ernest
1994-01-01
The use of cellular automata to analyze several pre-Socratic hypotheses about the evolution of the physical world is discussed. These hypotheses combine characteristics of both rigorous and metaphoric language. Since the computer demands explicit instructions for each step in the evolution of the automaton, such models can reveal conceptual…
Cellular buckling in long structures
Hunt, G.W.; Peletier, M.A.; Champneys, A.R.; Woods, P.D.; Wadee, M.A.; Budd, C.J.; Lord, G.J.
2000-01-01
A long structural system with an unstable (subcritical)post-buckling response that subsequently restabilizes typically deformsin a cellular manner, with localized buckles first forming and thenlocking up in sequence. As buckling continues over a growing number ofcells, the response can be described
Giovanni Dalmasso
Full Text Available Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis and the removal of damaged mitochondria by selective autophagy (mitophagy. While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1 mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2 restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3 maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4 our model suggests sources of, and stress conditions
Capri, M. A. L.; Lemes, V. E. R.; Sobreiro, R. F.; Sorella, S. P.; Thibes, R.
2006-01-01
We pursue the study of SU(2) Euclidean Yang-Mills theory in the maximal Abelian gauge by taking into account the effects of the Gribov horizon. The Gribov approximation, previously introduced in [M. A. L. Capri, V. E. R. Lemes, R. F. Sobreiro, S. P. Sorella, and R. Thibes, Phys. Rev. D 72, 085021 (2005).], is improved through the introduction of the horizon function, which is constructed under the requirements of localizability and renormalizability. By following Zwanziger's treatment of the horizon function in the Landau gauge, we prove that, when cast in local form, the horizon term of the maximal Abelian gauge leads to a quantized theory which enjoys multiplicative renormalizability, a feature which is established to all orders by means of the algebraic renormalization. Furthermore, it turns out that the horizon term is compatible with the local residual U(1) Ward identity, typical of the maximal Abelian gauge, which is easily derived. As a consequence, the nonrenormalization theorem, Z g Z A 1/2 =1, relating the renormalization factors of the gauge coupling constant Z g and of the diagonal gluon field Z A , still holds in the presence of the Gribov horizon. Finally, we notice that a generalized dimension two gluon operator can be also introduced. It is BRST invariant on-shell, a property which ensures its multiplicative renormalizability. Its anomalous dimension is not an independent parameter of the theory, being obtained from the renormalization factors of the gauge coupling constant and of the diagonal antighost field
Li, Huangai; Shirako, Yukio
2015-02-01
Barley yellow mosaic virus (BaYMV) and Wheat yellow mosaic virus (WYMV) are separate species in the genus Bymovirus with bipartite plus-sense RNA genomes. In fields, BaYMV infects only barley and WYMV infects only wheat. Here, we studied the replicative capability of the two viruses in barley and wheat mesophyll protoplasts. BaYMV replicated in both barley and wheat protoplasts, but WYMV replicated only in wheat protoplasts. The expression of wheat translation initiation factor 4E (eIF4E), a common host factor for potyviruses, from the WYMV genome enabled WYMV replication in barley protoplasts. Replacing the BaYMV VPg gene with that of WYMV abolished BaYMV replication in barley protoplasts, whereas the additional expression of wheat eIF4E from BaYMV genome restored the replication of the BaYMV mutant in barley protoplasts. These results indicate that both VPg and the host eIF4E are involved in the host tropism of BaYMV and WYMV at the replication level. Copyright © 2014 Elsevier Inc. All rights reserved.
Universal map for cellular automata
García-Morales, V.
2012-01-01
A universal map is derived for all deterministic 1D cellular automata (CAs) containing no freely adjustable parameters and valid for any alphabet size and any neighborhood range (including non-symmetrical neighborhoods). The map can be extended to an arbitrary number of dimensions and topologies and to arbitrary order in time. Specific CA maps for the famous Conway's Game of Life and Wolfram's 256 elementary CAs are given. An induction method for CAs, based in the universal map, allows mathematical expressions for the orbits of a wide variety of elementary CAs to be systematically derived. -- Highlights: ► A universal map is derived for all deterministic 1D cellular automata (CA). ► The map is generalized to 2D for Von Neumann, Moore and hexagonal neighborhoods. ► A map for all Wolfram's 256 elementary CAs is derived. ► A map for Conway's “Game of Life” is obtained.
Clarissa Z. Y. Koh
2018-03-01
Full Text Available A Dual-Domain Carbonic Anhydrase (DDCA had been sequenced and characterized from the ctenidia (gills of the giant clam, Tridacna squamosa, which lives in symbiosis with zooxanthellae. DDCA was expressed predominantly in the ctenidium. The complete cDNA coding sequence of DDCA from T. squamosa comprised 1,803 bp, encoding a protein of 601 amino acids and 66.7 kDa. The deduced DDCA sequence contained two distinct α-CA domains, each with a specific catalytic site. It had a high sequence similarity with tgCA from Tridacna gigas. In T. squamosa, the DDCA was localized apically in certain epithelial cells near the base of the ctenidial filament and the epithelial cells surrounding the tertiary water channels. Due to the presence of two transmembrane regions in the DDCA, one of the Zn2+-containing active sites could be located externally and the other one inside the cell. These results denote that the ctenidial DDCA was positioned to dehydrate HCO3- to CO2 in seawater, and to hydrate the CO2 that had permeated the apical membrane back to HCO3- in the cytoplasm. During insolation, the host clam needs to increase the uptake of inorganic carbon from the ambient seawater to benefit the symbiotic zooxanthellae; only then, can the symbionts conduct photosynthesis and share the photosynthates with the host. Indeed, the transcript and protein levels of DDCA/DDCA in the ctenidium of T. squamosa increased significantly after 6 and 12 h of exposure to light, respectively, denoting that DDCA could participate in the light-enhanced uptake and assimilation of exogenous inorganic carbon.
Cellular Adhesion and Adhesion Molecules
SELLER, Zerrin
2014-01-01
In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...
Cellular automata with voting rule
Makowiec, D.
1996-01-01
The chosen local interaction - the voting (majority) rule applied to the square lattice is known to cause the non ergodic cellular automata behaviour. Presented computer simulation results verify two cases of non ergodicity. The first one is implicated by the noise introduced to the local interactions and the second one follows properties of the initial lattice configuration selected at random. For the simplified voting rule - non symmetric voting, the critical behaviour has been explained rigorously. (author)
Cellular communications a comprehensive and practical guide
Tripathi, Nishith
2014-01-01
Even as newer cellular technologies and standards emerge, many of the fundamental principles and the components of the cellular network remain the same. Presenting a simple yet comprehensive view of cellular communications technologies, Cellular Communications provides an end-to-end perspective of cellular operations, ranging from physical layer details to call set-up and from the radio network to the core network. This self-contained source forpractitioners and students represents a comprehensive survey of the fundamentals of cellular communications and the landscape of commercially deployed
The cellular approach to band structure calculations
Verwoerd, W.S.
1982-01-01
A short introduction to the cellular approach in band structure calculations is given. The linear cellular approach and its potantial applicability in surface structure calculations is given some consideration in particular
[Cellular subcutaneous tissue. Anatomic observations].
Marquart-Elbaz, C; Varnaison, E; Sick, H; Grosshans, E; Cribier, B
2001-11-01
We showed in a companion paper that the definition of the French "subcutaneous cellular tissue" considerably varied from the 18th to the end of the 20th centuries and has not yet reached a consensus. To address the anatomic reality of this "subcutaneous cellular tissue", we investigated the anatomic structures underlying the fat tissue in normal human skin. Sixty specimens were excised from the surface to the deep structures (bone, muscle, cartilage) on different body sites of 3 cadavers from the Institut d'Anatomie Normale de Strasbourg. Samples were paraffin-embedded, stained and analysed with a binocular microscope taking x 1 photographs. Specimens were also excised and fixed after subcutaneous injection of Indian ink, after mechanic tissue splitting and after performing artificial skin folds. The aspects of the deep parts of the skin greatly varied according to their anatomic localisation. Below the adipose tissue, we often found a lamellar fibrous layer which extended from the interlobular septa and contained horizontally distributed fat cells. No specific tissue below the hypodermis was observed. Artificial skin folds concerned either exclusively the dermis, when they were superficial or included the hypodermis, but no specific structure was apparent in the center of the fold. India ink diffused to the adipose tissue, mainly along the septa, but did not localise in a specific subcutaneous compartment. This study shows that the histologic aspects of the deep part of the skin depend mainly on the anatomic localisation. Skin is composed of epidermis, dermis and hypodermis and thus the hypodermis can not be considered as being "subcutaneous". A difficult to individualise, fibrous lamellar structure in continuity with the interlobular septa is often found under the fat lobules. This structure is a cleavage line, as is always the case with loose connective tissues, but belongs to the hypodermis (i.e. fat tissue). No specific tissue nor any virtual space was
Information theory based approaches to cellular signaling.
Waltermann, Christian; Klipp, Edda
2011-10-01
Cells interact with their environment and they have to react adequately to internal and external changes such changes in nutrient composition, physical properties like temperature or osmolarity and other stresses. More specifically, they must be able to evaluate whether the external change is significant or just in the range of noise. Based on multiple external parameters they have to compute an optimal response. Cellular signaling pathways are considered as the major means of information perception and transmission in cells. Here, we review different attempts to quantify information processing on the level of individual cells. We refer to Shannon entropy, mutual information, and informal measures of signaling pathway cross-talk and specificity. Information theory in systems biology has been successfully applied to identification of optimal pathway structures, mutual information and entropy as system response in sensitivity analysis, and quantification of input and output information. While the study of information transmission within the framework of information theory in technical systems is an advanced field with high impact in engineering and telecommunication, its application to biological objects and processes is still restricted to specific fields such as neuroscience, structural and molecular biology. However, in systems biology dealing with a holistic understanding of biochemical systems and cellular signaling only recently a number of examples for the application of information theory have emerged. This article is part of a Special Issue entitled Systems Biology of Microorganisms. Copyright © 2011 Elsevier B.V. All rights reserved.
Zeno's paradox in quantum cellular automata
Groessing, G.; Zeilinger, A.
1991-01-01
The effect of Zeno's paradox in quantum theory is demonstrated with the aid of quantum mechanical cellular automata. It is shown that the degree of non-unitarity of the cellular automaton evolution and the frequency of consecutive measurements of cellular automaton states are operationally indistinguishable. (orig.)
Zeno's paradox in quantum cellular automata
Groessing, G [Atominst. der Oesterreichischen Universitaeten, Vienna (Austria); Zeilinger, A [Inst. fuer Experimentalphysik, Univ. Innsbruck (Austria)
1991-07-01
The effect of Zeno's paradox in quantum theory is demonstrated with the aid of quantum mechanical cellular automata. It is shown that the degree of non-unitarity of the cellular automaton evolution and the frequency of consecutive measurements of cellular automaton states are operationally indistinguishable. (orig.).
Game of Life Cellular Automata
Adamatzky, Andrew
2010-01-01
In the late 1960s, British mathematician John Conway invented a virtual mathematical machine that operates on a two-dimensional array of square cell. Each cell takes two states, live and dead. The cells' states are updated simultaneously and in discrete time. A dead cell comes to life if it has exactly three live neighbours. A live cell remains alive if two or three of its neighbours are alive, otherwise the cell dies. Conway's Game of Life became the most programmed solitary game and the most known cellular automaton. The book brings together results of forty years of study into computational
'Biomoleculas': cellular metabolism didactic software
Menghi, M L; Novella, L P; Siebenlist, M R
2007-01-01
'Biomoleculas' is a software that deals with topics such as the digestion, cellular metabolism and excretion of nutrients. It is a pleasant, simple and didactic guide, made by and for students. In this program, each biomolecule (carbohydrates, lipids and proteins) is accompanied until its degradation and assimilation by crossing and interrelating the different metabolic channels to finally show the destination of the different metabolites formed and the way in which these are excreted. It is used at present as a teaching-learning process tool by the chair of Physiology and Biophysics at the Facultad de Ingenieria - Universidad Nacional de Entre Rios
Symmetry analysis of cellular automata
García-Morales, V.
2013-01-01
By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.
On two integrable cellular automata
Bobenko, A [Technische Univ. Berlin (Germany). Fachbereich Mathematik; Bordemann, M [Freiburg Univ. (Germany). Fachbereich Physik; Gunn, C [Technische Univ. Berlin (Germany). Fachbereich Mathematik; Pinkall, U [Technische Univ. Berlin (Germany). Fachbereich Mathematik
1993-11-01
We describe two simple cellular automata (CA) models which exhibit the essential attributes of soliton systems. The first one is an invertible, 2-state, 1-dimensional CA or, in other words, a nonlinear Z[sub 2]-valued dynamical system with discrete space and time. Against a vacuum state of 0, the system exhibits light cone particles in both spatial directions, which interact in a soliton-like fashion. A complete solution of this system is obtained. We also consider another CA, which is described by the Hirota equation over a finite field, and present a Lax representation for it. (orig.)
Cellular automata a parallel model
Mazoyer, J
1999-01-01
Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.
The similia principle: results obtained in a cellular model system.
Wiegant, Fred; Van Wijk, Roeland
2010-01-01
This paper describes the results of a research program focused on the beneficial effect of low dose stress conditions that were applied according to the similia principle to cells previously disturbed by more severe stress conditions. In first instance, we discuss criteria for research on the similia principle at the cellular level. Then, the homologous ('isopathic') approach is reviewed, in which the initial (high dose) stress used to disturb cellular physiology and the subsequent (low dose) stress are identical. Beneficial effects of low dose stress are described in terms of increased cellular survival capacity and at the molecular level as an increase in the synthesis of heat shock proteins (hsps). Both phenomena reflect a stimulation of the endogenous cellular self-recovery capacity. Low dose stress conditions applied in a homologous approach stimulate the synthesis of hsps and enhance survival in comparison with stressed cells that were incubated in the absence of low dose stress conditions. Thirdly, the specificity of the low dose stress condition is described where the initial (high dose) stress is different in nature from the subsequently applied (low dose) stress; the heterologous or 'heteropathic' approach. The results support the similia principle at the cellular level and add to understanding of how low dose stress conditions influence the regulatory processes underlying self-recovery. In addition, the phenomenon of 'symptom aggravation' which is also observed at the cellular level, is discussed in the context of self-recovery. Finally, the difference in efficiency between the homologous and the heterologous approach is discussed; a perspective is indicated for further research; and the relationship between studies on the similia principle and the recently introduced concept of 'postconditioning hormesis' is emphasized. Copyright 2009 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Echinococcus-Host Interactions at Cellular and Molecular Levels.
Brehm, K; Koziol, U
2017-01-01
The potentially lethal zoonotic diseases alveolar and cystic echinococcosis are caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively. In both cases, metacestode growth and proliferation occurs within the inner organs of mammalian hosts, which is associated with complex molecular host-parasite interactions that regulate nutrient uptake by the parasite as well as metacestode persistence and development. Using in vitro cultivation systems for parasite larvae, and informed by recently released, comprehensive genome and transcriptome data for both parasites, these molecular host-parasite interactions have been subject to significant research during recent years. In this review, we discuss progress in this field, with emphasis on parasite development and proliferation. We review host-parasite interaction mechanisms that occur early during an infection, when the invading oncosphere stage undergoes a metamorphosis towards the metacestode, and outline the decisive role of parasite stem cells during this process. We also discuss special features of metacestode morphology, and how this parasite stage takes up nutrients from the host, utilizing newly evolved or expanded gene families. We comprehensively review mechanisms of host-parasite cross-communication via evolutionarily conserved signalling systems and how the parasite signalling systems might be exploited for the development of novel chemotherapeutics. Finally, we point to an urgent need for the development of functional genomic techniques in this parasite, which will be imperative for hypothesis-driven analyses into Echinococcus stem cell biology, developmental mechanisms and immunomodulatory activities, which are all highly relevant for the development of anti-infective measures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trojan horse at cellular level for tumor gene therapies.
Collet, Guillaume; Grillon, Catherine; Nadim, Mahdi; Kieda, Claudine
2013-08-10
Among innovative strategies developed for cancer treatments, gene therapies stand of great interest despite their well-known limitations in targeting, delivery, toxicity or stability. The success of any given gene-therapy is highly dependent on the carrier efficiency. New approaches are often revisiting the mythic trojan horse concept to carry therapeutic nucleic acid, i.e. DNAs, RNAs or small interfering RNAs, to pathologic tumor site. Recent investigations are focusing on engineering carrying modalities to overtake the above limitations bringing new promise to cancer patients. This review describes recent advances and perspectives for gene therapies devoted to tumor treatment, taking advantage of available knowledge in biotechnology and medicine. Copyright © 2013 Elsevier B.V. All rights reserved.
Bio-optofluidics and biophotonics at the cellular level
Bañas, Andrew Rafael; Palima, Darwin; Tauro, Sandeep
2012-01-01
We present ongoing research and development activities for constructing a compact next generation BioPhotonics Workstation and a Bio-optofluidic Cell Sorter (cell-BOCS) for all-optical micro-manipulation platforms utilizing low numerical aperture beam geometries. Unlike conventional high NA optical...
Melanoma screening with cellular phones.
Cesare Massone
Full Text Available BACKGROUND: Mobile teledermatology has recently been shown to be suitable for teledermatology despite limitations in image definition in preliminary studies. The unique aspect of mobile teledermatology is that this system represents a filtering or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigated the feasibility of teleconsultation using a new generation of cellular phones in pigmented skin lesions. 18 patients were selected consecutively in the Pigmented Skin Lesions Clinic of the Department of Dermatology, Medical University of Graz, Graz (Austria. Clinical and dermoscopic images were acquired using a Sony Ericsson with a built-in two-megapixel camera. Two teleconsultants reviewed the images on a specific web application (http://www.dermahandy.net/default.asp where images had been uploaded in JPEG format. Compared to the face-to-face diagnoses, the two teleconsultants obtained a score of correct telediagnoses of 89% and of 91.5% reporting the clinical and dermoscopic images, respectively. CONCLUSIONS/SIGNIFICANCE: The present work is the first study performing mobile teledermoscopy using cellular phones. Mobile teledermatology has the potential to become an easy applicable tool for everyone and a new approach for enhanced self-monitoring for skin cancer screening in the spirit of the eHealth program of the European Commission Information for Society and Media.
Understanding Cellular Respiration in Terms of Matter & Energy within Ecosystems
White, Joshua S.; Maskiewicz, April C.
2014-01-01
Using a design-based research approach, we developed a data-rich problem (DRP) set to improve student understanding of cellular respiration at the ecosystem level. The problem tasks engage students in data analysis to develop biological explanations. Several of the tasks and their implementation are described. Quantitative results suggest that…
Biological (molecular and cellular) markers of toxicity
Shugart, L.R.; D'Surney, S.J.; Gettys-Hull, C.; Greeley, M.S. Jr.
1991-01-01
Several molecular and cellular markers of genotoxicity were adapted for measurement in the Medaka (Oryzias latipes), and were used to describe the effects of treatment of the organism with diethylnitrosamine (DEN). NO 6 -ethyl guanine adducts were detected, and a slight statistically significant, increase in DNA strand breaks was observed. These results are consistent with the hypothesis that prolonged exposure to high levels of DEN induced alkyltransferase activity which enzymatically removes any O 6 -ethyl guanine adducts but does not result in strand breaks or hypomethylation of the DNA such as might be expected from excision repair of chemically modified DNA. Following a five week continuous DEN exposure with 100 percent renewal of DEN-water every third day, the F values (DNA double strandedness) increased considerably and to similar extent in fish exposed to 25, 50, and 100 ppM DEN. This has been observed also in medaka exposed to BaP
Cellular and chemical neuroscience of mammalian sleep.
Datta, Subimal
2010-05-01
Extraordinary strides have been made toward understanding the complexities and regulatory mechanisms of sleep over the past two decades thanks to the help of rapidly evolving technologies. At its most basic level, mammalian sleep is a restorative process of the brain and body. Beyond its primary restorative purpose, sleep is essential for a number of vital functions. Our primary research interest is to understand the cellular and molecular mechanisms underlying the regulation of sleep and its cognitive functions. Here I will reflect on our own research contributions to 50 years of extraordinary advances in the neurobiology of slow-wave sleep (SWS) and rapid eye movement (REM) sleep regulation. I conclude this review by suggesting some potential future directions to further our understanding of the neurobiology of sleep. Copyright 2010 Elsevier B.V. All rights reserved.
Simulating Complex Systems by Cellular Automata
Kroc, Jiri; Hoekstra, Alfons G
2010-01-01
Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emergent behavior. Conversely, CA can also be designed to produce a desired emergent behavior, using either theoretical methodologies or evolutionary techniques. Meanwhile, beyond the original realm of applications - Physics, Computer Science, and Mathematics – CA have also become work horses in very different disciplines such as epidemiology, immunology, sociology, and finance. In this context of fast and impressive progress, spurred further by the enormous attraction these topics have on students, this book emerges as a welcome overview of the field for its practitioners, as well as a good starting point for detailed study on the graduate and post-graduate level. The book contains three parts, two major parts on th...
Topological methods in Euclidean spaces
Naber, Gregory L
2000-01-01
Extensive development of a number of topics central to topology, including elementary combinatorial techniques, Sperner's Lemma, the Brouwer Fixed Point Theorem, homotopy theory and the fundamental group, simplicial homology theory, the Hopf Trace Theorem, the Lefschetz Fixed Point Theorem, the Stone-Weierstrass Theorem, and Morse functions. Includes new section of solutions to selected problems.
Euclidean distance geometry an introduction
Liberti, Leo
2017-01-01
This textbook, the first of its kind, presents the fundamentals of distance geometry: theory, useful methodologies for obtaining solutions, and real world applications. Concise proofs are given and step-by-step algorithms for solving fundamental problems efficiently and precisely are presented in Mathematica®, enabling the reader to experiment with concepts and methods as they are introduced. Descriptive graphics, examples, and problems, accompany the real gems of the text, namely the applications in visualization of graphs, localization of sensor networks, protein conformation from distance data, clock synchronization protocols, robotics, and control of unmanned underwater vehicles, to name several. Aimed at intermediate undergraduates, beginning graduate students, researchers, and practitioners, the reader with a basic knowledge of linear algebra will gain an understanding of the basic theories of distance geometry and why they work in real life.
Non-Euclidean visibility problems
FERNANDO CHAMIZO. Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain. MS received 14 November 2005. Abstract. We consider the analog of visibility problems in hyperbolic plane (repre- sented by Poincaré half-plane model H), replacing the standard lattice Z ...
Is central dogma a global property of cellular information flow?
Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar
2012-01-01
The central dogma of molecular biology has come under scrutiny in recent years. Here, we reviewed high-throughput mRNA and protein expression data of Escherichia coli, Saccharomyces cerevisiae, and several mammalian cells. At both single cell and population scales, the statistical comparisons between the entire transcriptomes and proteomes show clear correlation structures. In contrast, the pair-wise correlations of single transcripts to proteins show nullity. These data suggest that the organizing structure guiding cellular processes is observed at omics-wide scale, and not at single molecule level. The central dogma, thus, globally emerges as an average integrated flow of cellular information.
Is central dogma a global property of cellular information flow?
Vincent ePiras
2012-11-01
Full Text Available The central dogma of molecular biology has come under scrutiny in recent years. Here, we reviewed high-throughput mRNA and protein expression data of Escherichia coli, Saccharomyces cerevisiae, and several mammalian cells. At both single cell and population scales, the statistical comparisons between the entire transcriptomes and proteomes show clear correlation structures. In contrast, the pair-wise correlations of single transcript to protein show nullity. These data suggest that the organizing structure guiding cellular processes is observed at omics-wide scale and not at single molecule level. The central dogma, thus, globally emerges as an average integrated flow of cellular information.
2010-10-01
...-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. 22.970 Section... MOBILE SERVICES Cellular Radiotelephone Service § 22.970 Unacceptable interference to part 90 non-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. (a) Definition...
Molecular, cellular, and tissue engineering
Bronzino, Joseph D
2015-01-01
Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering. Molecular, Cellular, and Tissue Engineering, the fourth volume of the handbook, presents material from respected scientists with diverse backgrounds in molecular biology, transport phenomena, physiological modeling, tissue engineering, stem cells, drug delivery systems, artificial organs, and personalized medicine. More than three dozen specific topics are examined, including DNA vaccines, biomimetic systems, cardiovascular dynamics, biomaterial scaffolds, cell mechanobiology, synthetic biomaterials, pluripotent stem cells, hematopoietic stem cells, mesenchymal stem cells, nanobiomaterials for tissue engineering, biomedical imaging of engineered tissues, gene therapy, noninvasive targeted protein and peptide drug deliver...
Pressure-actuated cellular structures
Pagitz, M; Hol, J M A M; Lamacchia, E
2012-01-01
Shape changing structures will play an important role in future engineering designs since rigid structures are usually only optimal for a small range of service conditions. Hence, a concept for reliable and energy-efficient morphing structures that possess a large strength to self-weight ratio would be widely applicable. We propose a novel concept for morphing structures that is inspired by the nastic movement of plants. The idea is to connect prismatic cells with tailored pentagonal and/or hexagonal cross sections such that the resulting cellular structure morphs into given target shapes for certain cell pressures. An efficient algorithm for computing equilibrium shapes as well as cross-sectional geometries is presented. The potential of this novel concept is demonstrated by several examples that range from a flagellum like propulsion device to a morphing aircraft wing.
Cellular automata in cytoskeletal lattices
Smith, S A; Watt, R C; Hameroff, S R
1984-01-01
Cellular automata (CA) activities could mediate biological regulation and information processing via nonlinear electrodynamic effects in cytoskeletal lattice arrays. Frohlich coherent oscillations and other nonlinear mechanisms may effect discrete 10/sup -10/ to 10/sup -11/ s interval events which result in dynamic patterns in biolattices such as cylindrical protein polymers: microtubules (MT). Structural geometry and electrostatic forces of MT subunit dipole oscillations suggest neighbor rules among the hexagonally packed protein subunits. Computer simulations using these suggested rules and MT structural geometry demonstrate CA activities including dynamical and stable self-organizing patterns, oscillators, and traveling gliders. CA activities in MT and other cytoskeletal lattices may have important biological regulatory functions. 23 references, 6 figures, 1 table.
Sensing Phosphatidylserine in Cellular Membranes
Jason G. Kay
2011-01-01
Full Text Available Phosphatidylserine, a phospholipid with a negatively charged head-group, is an important constituent of eukaryotic cellular membranes. On the plasma membrane, rather than being evenly distributed, phosphatidylserine is found preferentially in the inner leaflet. Disruption of this asymmetry, leading to the appearance of phosphatidylserine on the surface of the cell, is known to play a central role in both apoptosis and blood clotting. Despite its importance, comparatively little is known about phosphatidylserine in cells: its precise subcellular localization, transmembrane topology and intracellular dynamics are poorly characterized. The recent development of new, genetically-encoded probes able to detect phosphatidylserine within live cells, however, is leading to a more in-depth understanding of the biology of this phospholipid. This review aims to give an overview of the current methods for phosphatidylserine detection within cells, and some of the recent realizations derived from their use.
Thermo-fluid behaviour of periodic cellular metals
Lu, Tian Jian; Wen, Ting
2013-01-01
Thermo-Fluid Behaviour of Periodic Cellular Metals introduces the study of coupled thermo-fluid behaviour of cellular metals with periodic structure in response to thermal loads, which is an interdisciplinary research area that requires a concurrent-engineering approach. The book, for the first time, systematically adopts experimental, numerical, and analytical approaches, presents the fluid flow and heat transfer in periodic cellular metals under forced convection conditions, aiming to establish structure-property relationships for tailoring material structures to achieve properties and performance levels that are customized for defined multifunctional applications. The book, as a textbook and reference book, is intended for both academic and industrial people, including graduate students, researchers and engineers. Dr. Tian Jian Lu is a professor at the School of Aerospace, Xi’an Jiaotong University, Xi’an, China. Dr. Feng Xu is a professor at the Key Laboratory of Biomedical Information Engineering o...
Cellular Response to Ionizing Radiation: A MicroRNA Story
Halimi, Mohammad; Asghari, S. Mohsen; Sariri, Reyhaneh; Moslemi, Dariush; Parsian, Hadi
2012-01-01
MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that microRNA-mediated gene regulation interferes with radio-related pathways in ionizing radiation. Here, we review the recent discoveries about miRNAs in cellular response to IR. Thoroughly understanding the mechanism of miRNAs in radiation response, it will be possible to design new strategies for improving radiotherapy efficiency and ultimately cancer treatment. PMID:24551775
In vivo cellular imaging using fluorescent proteins - Methods and Protocols
M. Monti
2012-12-01
Full Text Available The discovery and genetic engineering of fluorescent proteins has revolutionized cell biology. What was previously invisible to the cell often can be made visible with the use of fluorescent proteins. With this words, Robert M. Hoffman introduces In vivo Cellular Imaging Using Fluorescent proteins, the eighteen chapters book dedicated to the description of how fluorescence proteins have changed the way to analyze cellular processes in vivo. Modern researches aim to study new and less invasive methods able to follow the behavior of different cell types in different biological contexts: for example, how cancer cells migrate or how they respond to different therapies. Also, in vivo systems can help researchers to better understand animal embryonic development so as how fluorescence proteins may be used to monitor different processes in living organisms at the molecular and cellular level.
Evaluation of cellular influences caused by calcium carbonate nanoparticles.
Horie, Masanori; Nishio, Keiko; Kato, Haruhisa; Endoh, Shigehisa; Fujita, Katsuhide; Nakamura, Ayako; Kinugasa, Shinichi; Hagihara, Yoshihisa; Yoshida, Yasukazu; Iwahashi, Hitoshi
2014-03-05
The cellular effects of calcium carbonate (CaCO₃) nanoparticles were evaluated. Three kinds of CaCO₃ nanoparticles were employed in our examinations. One of the types of CaCO₃ nanoparticles was highly soluble. And solubility of another type of CaCO₃ nanoparticle was lower. A stable CaCO₃ nanoparticle medium dispersion was prepared and applied to human lung carcinoma A549 cells and human keratinocyte HaCaT cells. Then, mitochondrial activity, cell membrane damage, colony formation ability, DNA injury, induction of oxidative stress, and apoptosis were evaluated. Although the influences of CaCO₃ nanoparticles on mitochondrial activity and cell membrane damage were small, "soluble" CaCO₃ nanoparticles exerted some cellular influences. Soluble CaCO₃ nanoparticles also induced a cell morphological change. Colony formation was inhibited by CaCO₃ nanoparticle exposure. In particular, soluble CaCO₃ nanoparticles completely inhibited colony formation. The influence on intracellular the reactive oxygen species (ROS) level was small. Soluble CaCO₃ nanoparticles caused an increase in C/EBP-homologous protein (CHOP) expression and the activation of caspase-3. Moreover, CaCO₃ exposure increased intracellular the Ca²⁺ level and activated calpain. These results suggest that cellular the influences of CaCO₃ nanoparticles are mainly caused by intracellular calcium release and subsequently disrupt the effect of calcium signaling. In conclusion, there is possibility that soluble CaCO₃ nanoparticles induce cellular influences such as a cell morphological change. Cellular influence of CaCO₃ nanoparticles is caused by intracellular calcium release. If inhaled CaCO₃ nanoparticles have the potential to influence cellular events. However, the effect might be not severe because calcium is omnipresent element in cell. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
A cellular automata model of bone formation.
Van Scoy, Gabrielle K; George, Estee L; Opoku Asantewaa, Flora; Kerns, Lucy; Saunders, Marnie M; Prieto-Langarica, Alicia
2017-04-01
Bone remodeling is an elegantly orchestrated process by which osteocytes, osteoblasts and osteoclasts function as a syncytium to maintain or modify bone. On the microscopic level, bone consists of cells that create, destroy and monitor the bone matrix. These cells interact in a coordinated manner to maintain a tightly regulated homeostasis. It is this regulation that is responsible for the observed increase in bone gain in the dominant arm of a tennis player and the observed increase in bone loss associated with spaceflight and osteoporosis. The manner in which these cells interact to bring about a change in bone quality and quantity has yet to be fully elucidated. But efforts to understand the multicellular complexity can ultimately lead to eradication of metabolic bone diseases such as osteoporosis and improved implant longevity. Experimentally validated mathematical models that simulate functional activity and offer eventual predictive capabilities offer tremendous potential in understanding multicellular bone remodeling. Here we undertake the initial challenge to develop a mathematical model of bone formation validated with in vitro data obtained from osteoblastic bone cells induced to mineralize and quantified at 26 days of culture. A cellular automata model was constructed to simulate the in vitro characterization. Permutation tests were performed to compare the distribution of the mineralization in the cultures and the distribution of the mineralization in the mathematical models. The results of the permutation test show the distribution of mineralization from the characterization and mathematical model come from the same probability distribution, therefore validating the cellular automata model. Copyright © 2017 Elsevier Inc. All rights reserved.
Complex cellular logic computation using ribocomputing devices.
Green, Alexander A; Kim, Jongmin; Ma, Duo; Silver, Pamela A; Collins, James J; Yin, Peng
2017-08-03
Synthetic biology aims to develop engineering-driven approaches to the programming of cellular functions that could yield transformative technologies. Synthetic gene circuits that combine DNA, protein, and RNA components have demonstrated a range of functions such as bistability, oscillation, feedback, and logic capabilities. However, it remains challenging to scale up these circuits owing to the limited number of designable, orthogonal, high-performance parts, the empirical and often tedious composition rules, and the requirements for substantial resources for encoding and operation. Here, we report a strategy for constructing RNA-only nanodevices to evaluate complex logic in living cells. Our 'ribocomputing' systems are composed of de-novo-designed parts and operate through predictable and designable base-pairing rules, allowing the effective in silico design of computing devices with prescribed configurations and functions in complex cellular environments. These devices operate at the post-transcriptional level and use an extended RNA transcript to co-localize all circuit sensing, computation, signal transduction, and output elements in the same self-assembled molecular complex, which reduces diffusion-mediated signal losses, lowers metabolic cost, and improves circuit reliability. We demonstrate that ribocomputing devices in Escherichia coli can evaluate two-input logic with a dynamic range up to 900-fold and scale them to four-input AND, six-input OR, and a complex 12-input expression (A1 AND A2 AND NOT A1*) OR (B1 AND B2 AND NOT B2*) OR (C1 AND C2) OR (D1 AND D2) OR (E1 AND E2). Successful operation of ribocomputing devices based on programmable RNA interactions suggests that systems employing the same design principles could be implemented in other host organisms or in extracellular settings.
Outer-totalistic cellular automata on graphs
Marr, Carsten; Huett, Marc-Thorsten
2009-01-01
We present an intuitive formalism for implementing cellular automata on arbitrary topologies. By that means, we identify a symmetry operation in the class of elementary cellular automata. Moreover, we determine the subset of topologically sensitive elementary cellular automata and find that the overall number of complex patterns decreases under increasing neighborhood size in regular graphs. As exemplary applications, we apply the formalism to complex networks and compare the potential of scale-free graphs and metabolic networks to generate complex dynamics
Radiation, nitric oxide and cellular death
Dubner, D.; Perez, M.R. Del; Michelin, S.C.; Gisone, P.A.
1997-01-01
The mechanisms of radiation induced cellular death constitute an objective of research ever since the first biological effects of radiation were first observed. The explosion of information produced in the last 20 years calls for a careful analysis due to the apparent contradictory data related to the cellular system studied and the range of doses used. This review focuses on the role of the active oxygen species, in particular the nitric oxides, in its relevance as potential mediator of radiation induced cellular death
Cellular Targets of Dietary Polyphenol Resveratrol
Wu, Joseph M
2006-01-01
To test the hypothesis that resveratrol, a grape derived polyphenol, exerts its chemopreventive properties against prostate cancer by interacting with specific cellular targets, denoted resveratrol targeting proteins (RTPs...
The cellular memory disc of reprogrammed cells.
Anjamrooz, Seyed Hadi
2013-04-01
The crucial facts underlying the low efficiency of cellular reprogramming are poorly understood. Cellular reprogramming occurs in nuclear transfer, induced pluripotent stem cell (iPSC) formation, cell fusion, and lineage-switching experiments. Despite these advances, there are three fundamental problems to be addressed: (1) the majority of cells cannot be reprogrammed, (2) the efficiency of reprogramming cells is usually low, and (3) the reprogrammed cells developed from a patient's own cells activate immune responses. These shortcomings present major obstacles for using reprogramming approaches in customised cell therapy. In this Perspective, the author synthesises past and present observations in the field of cellular reprogramming to propose a theoretical picture of the cellular memory disc. The current hypothesis is that all cells undergo an endogenous and exogenous holographic memorisation such that parts of the cellular memory dramatically decrease the efficiency of reprogramming cells, act like a barrier against reprogramming in the majority of cells, and activate immune responses. Accordingly, the focus of this review is mainly to describe the cellular memory disc (CMD). Based on the present theory, cellular memory includes three parts: a reprogramming-resistance memory (RRM), a switch-promoting memory (SPM) and a culture-induced memory (CIM). The cellular memory arises genetically, epigenetically and non-genetically and affects cellular behaviours. [corrected].
Infiltrating giant cellular blue naevus.
Bittencourt, A L; Monteiro, D A; De Pretto, O J
2007-01-01
Cellular blue naevi (CBN) measure 1-2 cm in diameter and affect the dermis, occasionally extending into the subcutaneous fat. The case of a 14-year-old boy with a giant CBN (GCBN) involving the right half of the face, the jugal mucosa and the lower eyelid with a tumour that had infiltrated the bone and the maxillary and ethmoidal sinuses is reported. Biopsies were taken from the skin, jugal mucosa and maxillary sinus. The following markers were used in the immunohistochemical evaluation: CD34, CD56, HMB-45, anti-S100, A-103, Melan A and MIB-1. The biopsy specimens showed a biphasic pattern affecting the lower dermis, subcutaneous fat, skeletal muscle, bone, jugal mucosa and maxillary sinus, but there was no histological evidence of malignancy. The tumour cells were CD34-, CD56-, HMB45+, anti-S100+ and A-103+. Melan A was focally expressed. No positive MIB-1 cells were identified. The present case shows that GCBN may infiltrate deeply, with no evidence of malignancy.