WorldWideScience

Sample records for cellular iron homeostasis

  1. The cellular mechanisms of body iron homeostasis

    OpenAIRE

    MARCO T NUÑEZ; MARCO A GARATE; MIGUEL ARREDONDO; VICTORIA TAPlA; PATRICIA MUÑOZ

    2000-01-01

    Cells tightly regulate iron levels through the activity of iron regulatory proteins (IRPs) that bind to RNA motifs called iron responsive elements (IREs). When cells become iron-depleted, IRPs bind to IREs present in the mRNAs of ferritin and the transferrin receptor, resulting in diminished translation of the ferritin mRNA and increased translation of the transferrin receptor mRNA. Similarly, body iron homeostasis is maintained through the control of intestinal iron absorption. Intestinal ep...

  2. Iron-Responsive miR-485-3p Regulates Cellular Iron Homeostasis by Targeting Ferroportin

    OpenAIRE

    Sangokoya, Carolyn; Doss, Jennifer F; Chi, Jen-Tsan

    2013-01-01

    Author Summary Cellular iron homeostasis is maintained by a sophisticated system that responds to iron levels and coordinates the expression of targets important for balancing iron export and uptake with intracellular storage and utilization. Ferroportin is the only known cellular iron exporter in mammalian cells and plays a critical role in both cellular and systemic iron balance. Thus the ability to regulate cellular iron export is of great interest in the search for therapeutic strategies ...

  3. Involvement of the iron regulatory protein from Eisenia andrei earthworms in the regulation of cellular iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Petra Procházková

    Full Text Available Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs of the 5'- or 3'-untranslated regions (UTR of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP. The earthworm IRE site in 5'-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant.

  4. Involvement of the iron regulatory protein from Eisenia andrei earthworms in the regulation of cellular iron homeostasis.

    Science.gov (United States)

    Procházková, Petra; Škanta, František; Roubalová, Radka; Šilerová, Marcela; Dvořák, Jiří; Bilej, Martin

    2014-01-01

    Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs) that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs) of the 5'- or 3'-untranslated regions (UTR) of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP). The earthworm IRE site in 5'-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant. PMID:25279857

  5. Protein degradation and iron homeostasis.

    Science.gov (United States)

    Thompson, Joel W; Bruick, Richard K

    2012-09-01

    Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron's privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. This article is part of a Special Issue entitled: Cell Biology of Metals. PMID:22349011

  6. Involvement of the Iron Regulatory Protein from Eisenia andrei Earthworms in the Regulation of Cellular Iron Homeostasis

    OpenAIRE

    Petra Procházková; František Škanta; Radka Roubalová; Marcela Šilerová; Jiří Dvořák; Martin Bilej

    2014-01-01

    Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs) that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs) of the 5'- or 3'-untranslated regions (UTR) of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP). The earthworm IRE site in 5'-UTR of ferritin mRNA most likely f...

  7. Cellular Homeostasis and Aging.

    Science.gov (United States)

    Hartl, F Ulrich

    2016-06-01

    Aging and longevity are controlled by a multiplicity of molecular and cellular signaling events that interface with environmental factors to maintain cellular homeostasis. Modulation of these pathways to extend life span, including insulin-like signaling and the response to dietary restriction, identified the cellular machineries and networks of protein homeostasis (proteostasis) and stress resistance pathways as critical players in the aging process. A decline of proteostasis capacity during aging leads to dysfunction of specific cell types and tissues, rendering the organism susceptible to a range of chronic diseases. This volume of the Annual Review of Biochemistry contains a set of two reviews addressing our current understanding of the molecular mechanisms underlying aging in model organisms and humans. PMID:27050288

  8. Iron Homeostasis and Nutritional Iron Deficiency123

    OpenAIRE

    Theil, Elizabeth C.

    2011-01-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins enc...

  9. F-box and Leucine-rich Repeat Protein 5 (FBXL5) Is Required for Maintenance of Cellular and Systemic Iron Homeostasis*

    Science.gov (United States)

    Ruiz, Julio C.; Walker, Scott D.; Anderson, Sheila A.; Eisenstein, Richard S.; Bruick, Richard K.

    2013-01-01

    Maintenance of cellular iron homeostasis requires post-transcriptional regulation of iron metabolism genes by iron regulatory protein 2 (IRP2). The hemerythrin-like domain of F-box and leucine-rich repeat protein 5 (FBXL5), an E3 ubiquitin ligase subunit, senses iron and oxygen availability and facilitates IRP2 degradation in iron replete cells. Disruption of the ubiquitously expressed murine Fbxl5 gene results in a failure to sense increased cellular iron availability, accompanied by constitutive IRP2 accumulation and misexpression of IRP2 target genes. FBXL5-null mice die during embryogenesis, although viability is restored by simultaneous deletion of the IRP2, but not IRP1, gene. Mice containing a single functional Fbxl5 allele behave like their wild type littermates when fed an iron-sufficient diet. However, unlike wild type mice that manifest decreased hematocrit and hemoglobin levels when fed a low-iron diet, Fbxl5 heterozygotes maintain normal hematologic values due to increased iron absorption. The responsiveness of IRP2 to low iron is specifically enhanced in the duodena of the heterozygotes and is accompanied by increased expression of the divalent metal transporter-1. These results confirm the role of FBXL5 in the in vivo maintenance of cellular and systemic iron homeostasis and reveal a privileged role for the intestine in their regulation by virtue of its unique FBXL5 iron sensitivity. PMID:23135277

  10. F-box and leucine-rich repeat protein 5 (FBXL5) is required for maintenance of cellular and systemic iron homeostasis.

    Science.gov (United States)

    Ruiz, Julio C; Walker, Scott D; Anderson, Sheila A; Eisenstein, Richard S; Bruick, Richard K

    2013-01-01

    Maintenance of cellular iron homeostasis requires post-transcriptional regulation of iron metabolism genes by iron regulatory protein 2 (IRP2). The hemerythrin-like domain of F-box and leucine-rich repeat protein 5 (FBXL5), an E3 ubiquitin ligase subunit, senses iron and oxygen availability and facilitates IRP2 degradation in iron replete cells. Disruption of the ubiquitously expressed murine Fbxl5 gene results in a failure to sense increased cellular iron availability, accompanied by constitutive IRP2 accumulation and misexpression of IRP2 target genes. FBXL5-null mice die during embryogenesis, although viability is restored by simultaneous deletion of the IRP2, but not IRP1, gene. Mice containing a single functional Fbxl5 allele behave like their wild type littermates when fed an iron-sufficient diet. However, unlike wild type mice that manifest decreased hematocrit and hemoglobin levels when fed a low-iron diet, Fbxl5 heterozygotes maintain normal hematologic values due to increased iron absorption. The responsiveness of IRP2 to low iron is specifically enhanced in the duodena of the heterozygotes and is accompanied by increased expression of the divalent metal transporter-1. These results confirm the role of FBXL5 in the in vivo maintenance of cellular and systemic iron homeostasis and reveal a privileged role for the intestine in their regulation by virtue of its unique FBXL5 iron sensitivity. PMID:23135277

  11. Molecular control of vertebrate iron homeostasis by iron regulatory proteins

    OpenAIRE

    Wallander, Michelle L.; Leibold, Elizabeth A.; Eisenstein, Richard S.

    2006-01-01

    Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally control the stability or translation of mRNAs ...

  12. Iron homeostasis and nutritional iron deficiency.

    Science.gov (United States)

    Theil, Elizabeth C

    2011-04-01

    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins encoded in iron responsive element (IRE)-mRNA. The noncoding IRE-mRNA structures bind protein repressors, IRP1 or 2, during iron deficiency. Integration of the IRE-RNA in translation regulators (near the cap) or turnover elements (after the coding region) increases iron uptake (DMT1/TRF1) or decreases iron storage/efflux (FTN/FPN) when IRP binds. An antioxidant response element in FTN DNA binds Bach1, a heme-sensitive transcription factor that coordinates expression among antioxidant response proteins like FTN, thioredoxin reductase, and quinone reductase. FTN, an antioxidant because Fe(2+) and O(2) (reactive oxygen species generators) are consumed to make iron mineral, is also a nutritional iron concentrate that is an efficiently absorbed, nonheme source of iron from whole legumes. FTN protein cages contain thousands of mineralized iron atoms and enter cells by receptor-mediated endocytosis, an absorption mechanism distinct from transport of nonheme iron salts (ferrous sulfate), iron chelators (ferric-EDTA), or heme. Recognition of 2 nutritional nonheme iron sources, small and large (FTN), will aid the solution of iron deficiency, a major public health problem, and the development of new policies on iron nutrition. PMID:21346101

  13. The role of sirtuins in cellular homeostasis.

    Science.gov (United States)

    Kupis, Wioleta; Pałyga, Jan; Tomal, Ewa; Niewiadomska, Ewa

    2016-09-01

    Sirtuins are evolutionarily conserved nicotinamide adenine dinucleotide (NAD(+))-dependent lysine deacylases or ADP-ribosyltransferases. These cellular enzymes are metabolic sensors sensitive to NAD(+) levels that maintain physiological homeostasis in the animal and plant cells. PMID:27154583

  14. Iron Homeostasis and the Inflammatory Response

    OpenAIRE

    Wessling-Resnick, Marianne

    2010-01-01

    Iron and its homeostasis are intimately tied to the inflammatory response. The adaptation to iron deficiency, which confers resistance to infection and improves the inflammatory condition, underlies what is probably the most obvious link: the anemia of inflammation or chronic disease. A large number of stimulatory inputs must be integrated to tightly control iron homeostasis during the inflammatory response. In order to understand the pathways of iron trafficking and how they are regulated, t...

  15. Epigenetic regulation of iron homeostasis in Arabidopsis.

    Science.gov (United States)

    Xing, Jiewen; Wang, Tianya; Ni, Zhongfu

    2015-01-01

    Iron (Fe) is one of the most important microelement required for plant growth and development because of its unique property of catalyzing oxidation/reduction reactions. Iron deficiency impairs fundamental processes which could lead to a decrease in chlorophyll production and pollen fertility, thus influencing crop productivity and quality. However, iron in excess is toxic to the cell and is harmful to the plant. To exactly control the iron content in all tissues, plants have evolved many strategies to regulate iron homeostasis, which refers to 2 successive steps: iron uptake at the root surface, and iron distribution in vivo. In the last decades, a number of transporters and regulatory factors involved in this process have been isolated and identified. To cope with the complicated flexible environmental conditions, plants apply diverse mechanisms to regulate the expression and activity of these components. One of the most important mechanisms is epigenetic regulation of iron homeostasis. This review has been presented to provide an update on the information supporting the involvement of histone modifications in iron homeostasis and possible future course of the field. PMID:26313698

  16. Epigenetic regulation of iron homeostasis in Arabidopsis

    Science.gov (United States)

    Xing, Jiewen; Wang, Tianya; Ni, Zhongfu

    2015-01-01

    Iron (Fe) is one of the most important microelement required for plant growth and development because of its unique property of catalyzing oxidation/reduction reactions. Iron deficiency impairs fundamental processes which could lead to a decrease in chlorophyll production and pollen fertility, thus influencing crop productivity and quality. However, iron in excess is toxic to the cell and is harmful to the plant. To exactly control the iron content in all tissues, plants have evolved many strategies to regulate iron homeostasis, which refers to 2 successive steps: iron uptake at the root surface, and iron distribution in vivo. In the last decades, a number of transporters and regulatory factors involved in this process have been isolated and identified. To cope with the complicated flexible environmental conditions, plants apply diverse mechanisms to regulate the expression and activity of these components. One of the most important mechanisms is epigenetic regulation of iron homeostasis. This review has been presented to provide an update on the information supporting the involvement of histone modifications in iron homeostasis and possible future course of the field. PMID:26313698

  17. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin

    OpenAIRE

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-01-01

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded ...

  18. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis.

    Science.gov (United States)

    Salahudeen, Ameen A; Thompson, Joel W; Ruiz, Julio C; Ma, He-Wen; Kinch, Lisa N; Li, Qiming; Grishin, Nick V; Bruick, Richard K

    2009-10-30

    Cellular iron homeostasis is maintained by the coordinate posttranscriptional regulation of genes responsible for iron uptake, release, use, and storage through the actions of the iron regulatory proteins IRP1 and IRP2. However, the manner in which iron levels are sensed to affect IRP2 activity is poorly understood. We found that an E3 ubiquitin ligase complex containing the FBXL5 protein targets IRP2 for proteasomal degradation. The stability of FBXL5 itself was regulated, accumulating under iron- and oxygen-replete conditions and degraded upon iron depletion. FBXL5 contains an iron- and oxygen-binding hemerythrin domain that acted as a ligand-dependent regulatory switch mediating FBXL5's differential stability. These observations suggest a mechanistic link between iron sensing via the FBXL5 hemerythrin domain, IRP2 regulation, and cellular responses to maintain mammalian iron homeostasis. PMID:19762597

  19. Cellular Auxin Homeostasis:Gatekeeping Is Housekeeping

    Institute of Scientific and Technical Information of China (English)

    Michel Ruiz Rosquete; Elke Barbez; Jürgen Kleine-Vehn

    2012-01-01

    The phytohormone auxin is essential for plant development and contributes to nearly every aspect of the plant life cycle.The spatio-temporal distribution of auxin depends on a complex interplay between auxin metabolism and cell-to-cell auxin transport.Auxin metabolism and transport are both crucial for plant development;however,it largely remains to be seen how these processes are integrated to ensure defined cellular auxin levels or even gradients within tissues or organs.In this review,we provide a glance at very diverse topics of auxin biology,such as biosynthesis,conjugation,oxidation,and transport of auxin.This broad,but certainly superficial,overview highlights the mutual importance of auxin metabolism and transport.Moreover,it allows pinpointing how auxin metabolism and transport get integrated to jointly regulate cellular auxin homeostasis.Even though these processes have been so far only separately studied,we assume that the phytohormonal crosstalk integrates and coordinates auxin metabolism and transport.Besides the integrative power of the global hormone signaling,we additionally introduce the hypothetical concept considering auxin transport components as gatekeepers for auxin responses.

  20. Activation of the NLRP3 inflammasome by cellular labile iron.

    Science.gov (United States)

    Nakamura, Kyohei; Kawakami, Toru; Yamamoto, Naoki; Tomizawa, Miyu; Fujiwara, Tohru; Ishii, Tomonori; Harigae, Hideo; Ogasawara, Kouetsu

    2016-02-01

    Cellular labile iron, which contains chelatable redox-active Fe(2+), has been implicated in iron-mediated cellular toxicity leading to multiple organ dysfunction. Iron homeostasis is controlled by monocytes/macrophages through their iron recycling and storage capacities. Furthermore, iron sequestration by monocytes/macrophages is regulated by pro-inflammatory cytokines including interleukin-1, highlighting the importance of these cells in the crosstalk between inflammation and iron homeostasis. However, a role for cellular labile iron in monocyte/macrophage-mediated inflammatory responses has not been defined. Here we describe how cellular labile iron activates the NLRP3 inflammasome in human monocytes. Stimulation of lipopolysaccharide-primed peripheral blood mononuclear cells with ferric ammonium citrate increases the level of cellular Fe(2+) levels in monocytes and induces production of interleukin-1β in a dose-dependent manner. This ferric ammonium citrate-induced interleukin-1β production is dependent on caspase-1 and is significantly inhibited by an Fe(2+)-specific chelator. Ferric ammonium citrate consistently induced interleukin-1β secretion in THP1 cells, but not in NLRP3-deficient THP1 cells, indicating a requirement for the NLRP3 inflammasome. Additionally, activation of the inflammasome is mediated by potassium efflux, reactive oxygen species-mediated mitochondrial dysfunction, and lysosomal membrane permeabilization. Thus, these results suggest that monocytes/macrophages not only sequestrate iron during inflammation, but also mediate inflammation in response to cellular labile iron, which provides novel insights into the role of iron in chronic inflammation. PMID:26577567

  1. Misregulation of iron homeostasis in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Gajowiak, Anna; Styś, Agnieszka; Starzyński, Rafał R; Staroń, Robert; Lipiński, Paweł

    2016-01-01

    Iron is essential for all mammalian cells, but it is toxic in excess. Our understanding of molecular mechanisms ensuring iron homeostasis at both cellular and systemic levels has dramatically increased over the past 15 years. However, despite major advances in this field, homeostatic regulation of iron in the central nervous system (CNS) requires elucidation. It is unclear how iron moves in the CNS and how its transfer to the CNS across the blood-brain and the blood-cerebrospinal fluid barriers, which separate the CNS from the systemic circulation, is regulated. Increasing evidence indicates the role of iron dysregulation in neuronal cell death observed in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). ALS is a progressive neurodegenerative disorder characterized by selective cortical czynand spinal motor neuron dysfunction that results from a complex interplay among various pathogenic factors including oxidative stress. The latter is known to strongly affect cellular iron balance, creating a vicious circle to exacerbate oxidative injury. The role of iron in the pathogenesis of ALS is confirmed by therapeutic effects of iron chelation in ALS mouse models. These models are of great importance for deciphering molecular mechanisms of iron accumulation in neurons. Most of them consist of transgenic rodents overexpressing the mutated human superoxide dismutase 1 (SOD1) gene. Mutations in the SOD1 gene constitute one of the most common genetic causes of the inherited form of ALS. However, it should be considered that overexpression of the SOD1 gene usually leads to increased SOD1 enzymatic activity, a condition which does not occur in human pathology and which may itself change the expression of iron metabolism genes. PMID:27356602

  2. Mechanisms involved in cellular ceramide homeostasis

    Directory of Open Access Journals (Sweden)

    Hussain M

    2012-07-01

    Full Text Available Abstract Sphingolipids are ubiquitous and critical components of biological membranes. Their biosynthesis starts with soluble precursors in the endoplasmic reticulum and culminates in the Golgi complex and plasma membrane. Ceramides are important intermediates in the biosynthesis of sphingolipids, such as sphingomyelin, and their overload in the membranes is injurious to cells. The major product of ceramide metabolism is sphingomyelin. We observed that sphingomyelin synthase (SMS 1 or SMS2 deficiencies significantly decreased plasma and liver sphingomyelin levels. However, SMS2 but not SMS1 deficiency increased plasma ceramides. Surprisingly, SMS1 deficiency significantly increased glucosylceramide and ganglioside GM3, but SMS2 deficiency did not. To explain these unexpected findings about modest to no significant changes in ceramides and increases in other sphingolipids after the ablation of SMS1, we hypothesize that cells have evolved several organelle specific mechanisms to maintain ceramide homeostasis. First, ceramides in the endoplasmic reticulum membranes are controlled by its export to Golgi by protein mediated transfer. Second, in the Golgi, ceramide levels are modulated by their enzymatic conversion to different sphingolipids such as sphingomyelin, and glucosylceramides. Additionally, these sphingolipids can become part of triglyceride-rich apolipoprotein B-containing lipoproteins and be secreted. Third, in the plasma membrane ceramide levels are maintained by ceramide/sphingomyelin cycle, delivery to lysosomes, and efflux to extracellular plasma acceptors. All these pathways might have evolved to ensure steady cellular ceramide levels.

  3. Dysregulation of iron and copper homeostasis innonalcoholic fatty liver

    Institute of Scientific and Technical Information of China (English)

    Elmar Aigner; Günter Weiss; Christian Datz

    2015-01-01

    Elevated iron stores as indicated by hyperferritinemiawith normal or mildly elevated transferrin saturationand mostly mild hepatic iron deposition are acharacteristic finding in subjects with non-alcoholicfatty liver disease (NAFLD). Excess iron is observedin approximately one third of NAFLD patients andis commonly referred to as the "dysmetabolic ironoverload syndrome". Clinical evidence suggests thatelevated body iron stores aggravate the clinical courseof NAFLD with regard to liver-related and extrahepaticdisease complications which relates to the fact thatexcess iron catalyses the formation of toxic hydroxylradicalssubsequently resulting in cellular damage. Ironremoval improves insulin sensitivity, delays the onsetof type 2 diabetes mellitus, improves pathologic liverfunction tests and likewise ameliorates NAFLD histology.Several mechanisms contribute to pathologic ironaccumulation in NAFLD. These include impaired ironexport from hepatocytes and mesenchymal Kupffer cellsas a consequence of imbalances in the concentrationsof iron regulatory factors, such as hepcidin, cytokines,copper or other dietary factors. This review summarizesthe knowledge about iron homeostasis in NAFLD andthe rationale for its therapeutic implications.

  4. Nitric oxide and plant iron homeostasis.

    Science.gov (United States)

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. PMID:25612116

  5. Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Saif Hameed

    Full Text Available We previously demonstrated that iron deprivation enhances drug susceptibility of Candida albicans by increasing membrane fluidity which correlated with the lower expression of ERG11 transcript and ergosterol levels. The iron restriction dependent membrane perturbations led to an increase in passive diffusion and drug susceptibility. The mechanisms underlying iron homeostasis and multidrug resistance (MDR, however, are not yet resolved. To evaluate the potential mechanisms, we used whole genome transcriptome and electrospray ionization tandem mass spectrometry (ESI-MS/MS based lipidome analyses of iron deprived Candida cells to examine the new cellular circuitry of the MDR of this pathogen. Our transcriptome data revealed a link between calcineurin signaling and iron homeostasis. Among the several categories of iron deprivation responsive genes, the down regulation of calcineurin signaling genes including HSP90, CMP1 and CRZ1 was noteworthy. Interestingly, iron deprived Candida cells as well as iron acquisition defective mutants phenocopied molecular chaperone HSP90 and calcineurin mutants and thus were sensitive to alkaline pH, salinity and membrane perturbations. In contrast, sensitivity to above stresses did not change in iron deprived DSY2146 strain with a hyperactive allele of calcineurin. Although, iron deprivation phenocopied compromised HSP90 and calcineurin, it was independent of protein kinase C signaling cascade. Notably, the phenotypes associated with iron deprivation in genetically impaired calcineurin and HSP90 could be reversed with iron supplementation. The observed down regulation of ergosterol (ERG1, ERG2, ERG11 and ERG25 and sphingolipid biosynthesis (AUR1 and SCS7 genes followed by lipidome analysis confirmed that iron deprivation not only disrupted ergosterol biosynthesis, but it also affected sphingolipid homeostasis in Candida cells. These lipid compositional changes suggested extensive remodeling of the membranes in iron

  6. Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans.

    Science.gov (United States)

    Hameed, Saif; Dhamgaye, Sanjiveeni; Singh, Ashutosh; Goswami, Shyamal K; Prasad, Rajendra

    2011-01-01

    We previously demonstrated that iron deprivation enhances drug susceptibility of Candida albicans by increasing membrane fluidity which correlated with the lower expression of ERG11 transcript and ergosterol levels. The iron restriction dependent membrane perturbations led to an increase in passive diffusion and drug susceptibility. The mechanisms underlying iron homeostasis and multidrug resistance (MDR), however, are not yet resolved. To evaluate the potential mechanisms, we used whole genome transcriptome and electrospray ionization tandem mass spectrometry (ESI-MS/MS) based lipidome analyses of iron deprived Candida cells to examine the new cellular circuitry of the MDR of this pathogen. Our transcriptome data revealed a link between calcineurin signaling and iron homeostasis. Among the several categories of iron deprivation responsive genes, the down regulation of calcineurin signaling genes including HSP90, CMP1 and CRZ1 was noteworthy. Interestingly, iron deprived Candida cells as well as iron acquisition defective mutants phenocopied molecular chaperone HSP90 and calcineurin mutants and thus were sensitive to alkaline pH, salinity and membrane perturbations. In contrast, sensitivity to above stresses did not change in iron deprived DSY2146 strain with a hyperactive allele of calcineurin. Although, iron deprivation phenocopied compromised HSP90 and calcineurin, it was independent of protein kinase C signaling cascade. Notably, the phenotypes associated with iron deprivation in genetically impaired calcineurin and HSP90 could be reversed with iron supplementation. The observed down regulation of ergosterol (ERG1, ERG2, ERG11 and ERG25) and sphingolipid biosynthesis (AUR1 and SCS7) genes followed by lipidome analysis confirmed that iron deprivation not only disrupted ergosterol biosynthesis, but it also affected sphingolipid homeostasis in Candida cells. These lipid compositional changes suggested extensive remodeling of the membranes in iron deprived Candida

  7. The GARP complex is required for cellular sphingolipid homeostasis

    DEFF Research Database (Denmark)

    Fröhlich, Florian; Petit, Constance; Kory, Nora;

    2015-01-01

    (GARP) complex, which functions in endosome-to-Golgi retrograde vesicular transport, as a critical player in sphingolipid homeostasis. GARP deficiency leads to accumulation of sphingolipid synthesis intermediates, changes in sterol distribution, and lysosomal dysfunction. A GARP complex mutation...... the phenotypes of GARP-deficient yeast or mammalian cells. Together, these data show that GARP is essential for cellular sphingolipid homeostasis and suggest a therapeutic strategy for the treatment of PCCA2....

  8. The physiological functions of iron regulatory proteins in iron homeostasis - an update

    Directory of Open Access Journals (Sweden)

    De-LiangZhang

    2014-06-01

    Full Text Available Iron regulatory proteins (IRPs regulate the expression of genes involved in iron metabolism by binding to RNA stem-loop structures known as iron responsive elements (IREs in target mRNAs. IRP binding inhibits the translation of mRNAs that contain an IRE in the 5’untranslated region of the transcripts, and increases the stability of mRNAs that contain IREs in the 3'untranslated region of transcripts. By these mechanisms, IRPs increase cellular iron absorption and decrease storage and export of iron to maintain an optimal intracellular iron balance. There are two members of the mammalian IRP protein family, IRP1 and IRP2, and they have redundant functions as evidenced by the embryonic lethality of the mice that completely lack IRP expression (Irp1-/-/Irp2-/- mice, which contrasts with the fact that Irp1-/- and Irp2-/- mice are viable. In addition, Irp2-/- mice also display neurodegenerative symptoms and microcytic hypochromic anemia, suggesting that IRP2 function predominates in the nervous system and erythropoietic homeostasis. Though the physiological significance of IRP1 had been unclear since Irp1-/- animals were first assessed in the early 1990’s, recent studies indicate that IRP1 plays an essential function in orchestrating the balance between erythropoiesis and bodily iron homeostasis. Additionally, Irp1-/- mice develop pulmonary hypertension, and they experience sudden death when maintained on an iron-deficient diet, indicating that IRP1 has a critical role in the pulmonary and cardiovascular systems. This review summarizes recent progress that has been made in understanding the physiological roles of IRP1 and IRP2, and further discusses the implications for clinical research on patients with idiopathic polycythemia, pulmonary hypertension and neurodegeneration.

  9. Intestinal Iron Homeostasis and Colon Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Yatrik M. Shah

    2013-06-01

    Full Text Available Colorectal cancer (CRC is the third most common cause of cancer-related deaths in industrialized countries. Understanding the mechanisms of growth and progression of CRC is essential to improve treatment. Iron is an essential nutrient for cell growth. Iron overload caused by hereditary mutations or excess dietary iron uptake has been identified as a risk factor for CRC. Intestinal iron is tightly controlled by iron transporters that are responsible for iron uptake, distribution, and export. Dysregulation of intestinal iron transporters are observed in CRC and lead to iron accumulation in tumors. Intratumoral iron results in oxidative stress, lipid peroxidation, protein modification and DNA damage with consequent promotion of oncogene activation. In addition, excess iron in intestinal tumors may lead to increase in tumor-elicited inflammation and tumor growth. Limiting intratumoral iron through specifically chelating excess intestinal iron or modulating activities of iron transporter may be an attractive therapeutic target for CRC.

  10. PfsR is a key regulator of iron homeostasis in Synechocystis PCC 6803.

    Directory of Open Access Journals (Sweden)

    Dan Cheng

    Full Text Available Iron is an essential cofactor in numerous cellular processes. The iron deficiency in the oceans affects the primary productivity of phytoplankton including cyanobacteria. In this study, we examined the function of PfsR, a TetR family transcriptional regulator, in iron homeostasis of the cyanobacterium Synechocystis PCC 6803. Compared with the wild type, the pfsR deletion mutant displayed stronger tolerance to iron limitation and accumulated significantly more chlorophyll a, carotenoid, and phycocyanin under iron-limiting conditions. The mutant also maintained more photosystem I and photosystem II complexes than the wild type after iron deprivation. In addition, the activities of photosystem I and photosystem II were much higher in pfsR deletion mutant than in wild-type cells under iron-limiting conditions. The transcripts of pfsR were enhanced by iron limitation and inactivation of the gene affected pronouncedly expression of fut genes (encoding a ferric iron transporter, feoB (encoding a ferrous iron transporter, bfr genes (encoding bacterioferritins, ho genes (encoding heme oxygenases, isiA (encoding a chlorophyll-binding protein, and furA (encoding a ferric uptake regulator. The iron quota in pfsR deletion mutant cells was higher than in wild-type cells both before and after exposure to iron limitation. Electrophoretic mobility shift assays showed that PfsR bound to its own promoter and thereby auto-regulated its own expression. These data suggest that PfsR is a critical regulator of iron homeostasis.

  11. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin.

    Science.gov (United States)

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-04-26

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation. PMID:27078093

  12. Immunity to plant pathogens and iron homeostasis.

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W G; Thomine, Sebastien; Dellagi, Alia

    2015-11-01

    Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity. PMID:26475190

  13. Disruption of iron homeostasis in mesothelial cells after talc pleurodesis.

    Science.gov (United States)

    Ghio, Andrew J; Soukup, Joleen M; Dailey, Lisa A; Richards, Judy H; Turi, Jennifer L; Pavlisko, Elizabeth N; Roggli, Victor L

    2012-01-01

    The mechanism for biological effects after exposure to particles is incompletely understood. One postulate proposed to explain biological effects after exposure to particles involves altered iron homeostasis in the host. The fibro-inflammatory properties of mineral oxide particles are exploited therapeutically with the instillation of massive quantities of talc into the pleural space, to provide sclerosis. We tested the postulates that (1) in vitro exposure to talc induces a disruption in iron homeostasis, oxidative stress, and a biological effect, and (2) talc pleurodesis in humans alters iron homeostasis. In vitro exposures of both mesothelial and airway epithelial cells to 100 μg/ml talc significantly increased iron importation and concentrations of the storage protein ferritin. Using dichlorodihydrofluorescein, exposure to talc was associated with a time-dependent and concentration-dependent generation of oxidants in both cell types. The expression of proinflammatory mediators was also increased after in vitro exposures of mesothelial and airway epithelial cells to talc. Relative to control lung tissue, lung tissue from patients treated with sclerodesis demonstrated an accumulation of iron and increased expression of iron-related proteins, including ferritin, the importer divalent metal transport-1 and the exporter ferroportin-1. Talc was also observed to translocate to the parenchyma, and changes in iron homeostasis were focally distributed to sites of retention. We conclude that exposure to talc disrupts iron homeostasis, is associated with oxidative stress, and results in a biological effect (i.e., a fibro-inflammatory response). Talc pleurodesis can function as a model of the human response to mineral oxide particle exposure, albeit a massive one. PMID:22210826

  14. Hepcidin and Iron Homeostasis during Pregnancy

    Directory of Open Access Journals (Sweden)

    Mary Dawn Koenig

    2014-08-01

    Full Text Available Hepcidin is the master regulator of systemic iron bioavailability in humans. This review examines primary research articles that assessed hepcidin during pregnancy and postpartum and report its relationship to maternal and infant iron status and birth outcomes; areas for future research are also discussed. A systematic search of the databases Medline and Cumulative Index to Nursing and Allied Health returned 16 primary research articles including 10 human and six animal studies. Collectively, the results indicate that hepcidin is lower during pregnancy than in a non-pregnant state, presumably to ensure greater iron bioavailability to the mother and fetus. Pregnant women with undetectable serum hepcidin transferred a greater quantity of maternally ingested iron to their fetus compared to women with detectable hepcidin, indicating that maternal hepcidin in part determines the iron bioavailability to the fetus. However, inflammatory states, including preeclampsia, malaria infection, and obesity were associated with higher hepcidin during pregnancy compared to healthy controls, suggesting that maternal and fetal iron bioavailability could be compromised in such conditions. Future studies should examine the relative contribution of maternal versus fetal hepcidin to the control of placental iron transfer as well as optimizing maternal and fetal iron bioavailability in pregnancies complicated by inflammation.

  15. NCOA4 Deficiency Impairs Systemic Iron Homeostasis

    Directory of Open Access Journals (Sweden)

    Roberto Bellelli

    2016-01-01

    Full Text Available The cargo receptor NCOA4 mediates autophagic ferritin degradation. Here we show that NCOA4 deficiency in a knockout mouse model causes iron accumulation in the liver and spleen, increased levels of transferrin saturation, serum ferritin, and liver hepcidin, and decreased levels of duodenal ferroportin. Despite signs of iron overload, NCOA4-null mice had mild microcytic hypochromic anemia. Under an iron-deprived diet (2–3 mg/kg, mice failed to release iron from ferritin storage and developed severe microcytic hypochromic anemia and ineffective erythropoiesis associated with increased erythropoietin levels. When fed an iron-enriched diet (2 g/kg, mice died prematurely and showed signs of liver damage. Ferritin accumulated in primary embryonic fibroblasts from NCOA4-null mice consequent to impaired autophagic targeting. Adoptive expression of the NCOA4 COOH terminus (aa 239–614 restored this function. In conclusion, NCOA4 prevents iron accumulation and ensures efficient erythropoiesis, playing a central role in balancing iron levels in vivo.

  16. Hepcidin and Iron Homeostasis during Pregnancy

    OpenAIRE

    Mary Dawn Koenig; Lisa Tussing-Humphreys; Jessica Day; Brooke Cadwell; Elizabeta Nemeth

    2014-01-01

    Hepcidin is the master regulator of systemic iron bioavailability in humans. This review examines primary research articles that assessed hepcidin during pregnancy and postpartum and report its relationship to maternal and infant iron status and birth outcomes; areas for future research are also discussed. A systematic search of the databases Medline and Cumulative Index to Nursing and Allied Health returned 16 primary research articles including 10 human and six animal studies. Collectively...

  17. Iron Homeostasis in Yellowstone National Park Hot Spring Microbial Communities

    Science.gov (United States)

    Brown, I.; Tringe, S. G.; Franklin, H.; Bryant, D. A.; Klatt, C. G.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    It has been postulated that life may have originated on Earth, and possibly on Mars, in association with hydrothermal activity and high concentrations of ferrous iron. However, it is not clear how an iron-rich thermal hydrosphere could be hospitable to microbes, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, the study of microbial diversity in iron-depositing hot springs (IDHS) and the mechanisms of iron homeostasis and suppression of oxidative stress may help elucidate how Precambrian organisms could withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe(2+) and O2. Proteins and clusters of orthologous groups (COGs) involved in the maintenance of Fe homeostasis found in cyanobacteria (CB) inhabiting environments with high and low [Fe] were main target of this analysis. Preliminary results of the analysis suggest that the Chocolate Pots (CP) microbial community is heavily dominated by phototrophs from the cyanobacteria (CB), Chloroflexi and Chlorobi phyla, while the Mushroom Spring (MS) effluent channel harbors a more diverse community in which Chloroflexi are the dominant phototrophs. It is speculated that CB inhabiting IDHS have an increased tolerance to both high concentrations of Fe(2+) and ROS produced in the Fenton reaction. This hypothesis was explored via a comparative analysis of the diversity of proteins and COGs involved in Fe and redox homeostasis in the CP and MS microbiomes.

  18. Deficiency of α-1-antitrypsin influences systemic iron homeostasis

    Directory of Open Access Journals (Sweden)

    Ghio AJ

    2013-01-01

    Full Text Available Andrew J Ghio,1 Joleen M Soukup,1 Judy H Richards,1 Bernard M Fischer,2 Judith A Voynow,2 Donald E Schmechel31US Environmental Protection Agency, Chapel Hill, NC, USA; 2Division of Pediatric Pulmonary Medicine, Department of Pediatrics,3Joseph and Kathleen Bryan Alzheimer Disease Research Center, Department of Medicine (Neurology, Duke University Medical Center, Durham, NC, USAAbstract: There is evidence that proteases and antiproteases participate in the iron homeostasis of cells and living systems. We tested the postulate that α-1 antitrypsin (A1AT polymorphism and the consequent deficiency of this antiprotease in humans are associated with a systemic disruption in iron homeostasis. Archived plasma samples from Alpha-1 Foundation (30 MM, 30 MZ, and 30 ZZ individuals were analyzed for A1AT, ferritin, transferrin, and C-reactive protein (CRP. Plasma samples were also assayed for metals using inductively coupled plasma atomic emission spectroscopy (ICPAES. Plasma levels of A1AT in MZ and ZZ individuals were approximately 60% and 20% of those for MM individuals respectively. Plasma ferritin concentrations in those with the ZZ genotype were greater relative to those individuals with either MM or MZ genotype. Plasma transferrin for MM, MZ, and ZZ genotypes showed no significant differences. Linear regression analysis revealed a significant (negative relationship between plasma concentrations of A1AT and ferritin while that between A1AT and transferrin levels was not significant. Plasma CRP concentrations were not significantly different between MM, MZ, and ZZ individuals. ICPAES measurement of metals confirmed elevated plasma concentrations of nonheme iron among ZZ individuals. Nonheme iron concentrations correlated (negatively with levels of A1AT. A1AT deficiency is associated with evidence of a disruption in iron homeostasis with plasma ferritin and nonheme iron concentrations being elevated among those with the ZZ genotype.Keywords: α-1

  19. Control of iron homeostasis by an iron-regulated ubiquitin ligase.

    Science.gov (United States)

    Vashisht, Ajay A; Zumbrennen, Kimberly B; Huang, Xinhua; Powers, David N; Durazo, Armando; Sun, Dahui; Bhaskaran, Nimesh; Persson, Anja; Uhlen, Mathias; Sangfelt, Olle; Spruck, Charles; Leibold, Elizabeth A; Wohlschlegel, James A

    2009-10-30

    Eukaryotic cells require iron for survival and have developed regulatory mechanisms for maintaining appropriate intracellular iron concentrations. The degradation of iron regulatory protein 2 (IRP2) in iron-replete cells is a key event in this pathway, but the E3 ubiquitin ligase responsible for its proteolysis has remained elusive. We found that a SKP1-CUL1-FBXL5 ubiquitin ligase protein complex associates with and promotes the iron-dependent ubiquitination and degradation of IRP2. The F-box substrate adaptor protein FBXL5 was degraded upon iron and oxygen depletion in a process that required an iron-binding hemerythrin-like domain in its N terminus. Thus, iron homeostasis is regulated by a proteolytic pathway that couples IRP2 degradation to intracellular iron levels through the stability and activity of FBXL5. PMID:19762596

  20. Out of Balance—Systemic Iron Homeostasis in Iron-Related Disorders

    Directory of Open Access Journals (Sweden)

    Andrea U. Steinbicker

    2013-08-01

    Full Text Available Iron is an essential element in our daily diet. Most iron is required for the de novo synthesis of red blood cells, where it plays a critical role in oxygen binding to hemoglobin. Thus, iron deficiency causes anemia, a major public health burden worldwide. On the other extreme, iron accumulation in critical organs such as liver, heart, and pancreas causes organ dysfunction due to the generation of oxidative stress. Therefore, systemic iron levels must be tightly balanced. Here we focus on the regulatory role of the hepcidin/ferroportin circuitry as the major regulator of systemic iron homeostasis. We discuss how regulatory cues (e.g., iron, inflammation, or hypoxia affect the hepcidin response and how impairment of the hepcidin/ferroportin regulatory system causes disorders of iron metabolism.

  1. Iron homeostasis and responses to iron limitation in extreme acidophiles from the Ferroplasma genus.

    Science.gov (United States)

    Potrykus, Joanna; Jonna, Venkateswara Rao; Dopson, Mark

    2011-01-01

    Extremely acidophilic archaea from the genus Ferroplasma inhabit iron-rich biomining environments and are important constituents of naturally occurring microbial consortia that catalyze the production of acid mine drainage. A combined bioinformatic, transcript profiling, and proteomic approach was used to elucidate iron homeostasis mechanisms in "F. acidarmanus" Fer1 and F. acidiphilum Y(T) . Bioinformatic analysis of the "F. acidarmanus" Fer1 genome sequence revealed genes encoding proteins hypothesized to be involved in iron-dependent gene regulation and siderophore biosynthesis; the Fhu and NRAMP cation acquisition systems; iron storage proteins; and the SUF machinery for the biogenesis of Fe-S clusters. A subset of homologous genes was identified on the F. acidiphilum Y(T) chromosome by direct PCR probing. In both strains, some of the genes appeared to be regulated in a ferrous/ferric iron-dependent manner, as indicated by RT-PCR. A detailed gel-based proteomics analysis of responses to iron depletion showed that a putative isochorismatase, presumably involved in siderophore biosynthesis, and the SufBCD system were upregulated under iron-limiting conditions. No evidence was obtained for iron sparing response during iron limitation. This study constitutes the first detailed investigation of iron homeostasis in extremely acidophilic archaea. PMID:21182194

  2. The PICALM protein plays a key role in iron homeostasis and cell proliferation.

    Directory of Open Access Journals (Sweden)

    Paula B Scotland

    Full Text Available The ubiquitously expressed phosphatidylinositol binding clathrin assembly (PICALM protein associates with the plasma membrane, binds clathrin, and plays a role in clathrin-mediated endocytosis. Alterations of the human PICALM gene are present in aggressive hematopoietic malignancies, and genome-wide association studies have recently linked the PICALM locus to late-onset Alzheimer's disease. Inactivating and hypomorphic Picalm mutations in mice cause different degrees of severity of anemia, abnormal iron metabolism, growth retardation and shortened lifespan. To understand PICALM's function, we studied the consequences of PICALM overexpression and characterized PICALM-deficient cells derived from mutant fit1 mice. Our results identify a role for PICALM in transferrin receptor (TfR internalization and demonstrate that the C-terminal PICALM residues are critical for its association with clathrin and for the inhibitory effect of PICALM overexpression on TfR internalization. Murine embryonic fibroblasts (MEFs that are deficient in PICALM display several characteristics of iron deficiency (increased surface TfR expression, decreased intracellular iron levels, and reduced cellular proliferation, all of which are rescued by retroviral PICALM expression. The proliferation defect of cells that lack PICALM results, at least in part, from insufficient iron uptake, since it can be corrected by iron supplementation. Moreover, PICALM-deficient cells are particularly sensitive to iron chelation. Taken together, these data reveal that PICALM plays a critical role in iron homeostasis, and offer new perspectives into the pathogenesis of PICALM-associated diseases.

  3. Dissecting plant iron homeostasis under short and long-term iron fluctuations

    DEFF Research Database (Denmark)

    Shirvanehdeh, Behrooz Darbani; Briat, Jean-Francois; Holm, Preben Bach;

    2013-01-01

    discuss the lack of low affinity iron uptake mechanisms in plants, the utilization of a different uptake mechanism by graminaceous plants compared to the others, as well as the roles of riboflavin, ferritin isoforms, nitric oxide, nitrosylation, heme, aconitase, and vacuolar pH. Cross-homeostasis between...

  4. Metagenomic Study of Iron Homeostasis in Iron Depositing Hot Spring Cyanobacterial Community

    Science.gov (United States)

    Brown, I.; Franklin H.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.

  5. Chronic hepcidin induction causes hyposideremia and alters the pattern of cellular iron accumulation in hemochromatotic mice.

    Science.gov (United States)

    Viatte, Lydie; Nicolas, Gaël; Lou, Dan-Qing; Bennoun, Myriam; Lesbordes-Brion, Jeanne-Claire; Canonne-Hergaux, François; Schönig, Kai; Bujard, Hermann; Kahn, Axel; Andrews, Nancy C; Vaulont, Sophie

    2006-04-01

    We report the generation of a tetracycline-regulated (Tet ON) transgenic mouse model for acute and chronic expression of the iron regulatory peptide hepcidin in the liver. We demonstrate that short-term and long-term tetracycline-dependent activation of hepcidin in adult mice leads to hypoferremia and iron-limited erythropoiesis, respectively. This clearly establishes the key role of hepcidin in regulating the extracellular iron concentration. We previously demonstrated that, when expressed early in fetal development, constitutive transgenic hepcidin expression prevented iron accumulation in an Hfe-/- mouse model of hemochromatosis. We now explore the effect of chronic hepcidin expression in adult Hfe-/- mice that have already developed liver iron overload. We demonstrate that induction of chronic hepcidin expression in 2-month-old Hfe-/- mice alters their pattern of cellular iron accumulation, leading to increased iron in tissue macrophages and duodenal cells but less iron in hepatocytes. These hepcidin-induced changes in the pattern of cellular iron accumulation are associated with decreased expression of the iron exporter ferroportin in macrophages but no detectable alteration of ferroportin expression in the hepatocytes. We speculate that this change in iron homeostasis could offer a therapeutic advantage by protecting against damage to parenchymal cells. PMID:16339398

  6. Mapping of cellular iron using hyperspectral fluorescence imaging in a cellular model of Parkinson's disease

    Science.gov (United States)

    Oh, Eung Seok; Heo, Chaejeong; Kim, Ji Seon; Lee, Young Hee; Kim, Jong Min

    2013-05-01

    Parkinson's disease (PD) is characterized by progressive dopaminergic cell loss in the substantianigra (SN) and elevated iron levels demonstrated by autopsy and with 7-Tesla magnetic resonance imaging. Direct visualization of iron with live imaging techniques has not yet been successful. The aim of this study is to visualize and quantify the distribution of cellular iron using an intrinsic iron hyperspectral fluorescence signal. The 1-methyl-4-phenylpyridinium (MPP+)-induced cellular model of PD was established in SHSY5Y cells. The cells were exposed to iron by treatment with ferric ammonium citrate (FAC, 100 μM) for up to 6 hours. The hyperspectral fluorescence imaging signal of iron was examined usinga high- resolution dark-field optical microscope system with signal absorption for the visible/ near infrared (VNIR) spectral range. The 6-hour group showed heavy cellular iron deposition compared with the small amount of iron accumulation in the 1-hour group. The cellular iron was dispersed in a small, particulate form, whereas extracellular iron was detected in an aggregated form. In addition, iron particles were found to be concentrated on the cell membrane/edge of shrunken cells. The cellular iron accumulation readily occurred in MPP+-induced cells, which is consistent with previous studies demonstrating elevated iron levels in the SN in PD. This direct iron imaging methodology could be applied to analyze the physiological role of iron in PD, and its application might be expanded to various neurological disorders involving other metals, such as copper, manganese or zinc.

  7. Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Parhamifar, Ladan; Lange, Marina Krarup;

    2015-01-01

    demonstrate that the central mechanisms of PEI architecture- and size-dependent perturbations of integrated cellular metabolomics involve destabilization of plasma membrane and mitochondrial membranes with consequences on mitochondrial oxidative phosphorylation (OXPHOS), glycolytic flux and redox homeostasis...... branched architectures caused a greater lactate dehydrogenase (LDH) and ATP depletion, activated AMP kinase (AMPK) and disturbed redox homeostasis through diminished availability of nicotinamide adenine dinucleotide phosphate (NADPH), reduced antioxidant capacity of glutathione (GSH) and increased burden...

  8. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1

    Directory of Open Access Journals (Sweden)

    Koji Aoyama

    2015-05-01

    Full Text Available Reactive oxygen species (ROS are by-products of the cellular metabolism of oxygen consumption, produced mainly in the mitochondria. ROS are known to be highly reactive ions or free radicals containing oxygen that impair redox homeostasis and cellular functions, leading to cell death. Under physiological conditions, a variety of antioxidant systems scavenge ROS to maintain the intracellular redox homeostasis and normal cellular functions. This review focuses on the antioxidant system’s roles in maintaining redox homeostasis. Especially, glutathione (GSH is the most important thiol-containing molecule, as it functions as a redox buffer, antioxidant, and enzyme cofactor against oxidative stress. In the brain, dysfunction of GSH synthesis leading to GSH depletion exacerbates oxidative stress, which is linked to a pathogenesis of aging-related neurodegenerative diseases. Excitatory amino acid carrier 1 (EAAC1 plays a pivotal role in neuronal GSH synthesis. The regulatory mechanism of EAAC1 is also discussed.

  9. Candida albicans specializations for iron homeostasis: from commensalism to virulence

    OpenAIRE

    Noble, Suzanne

    2013-01-01

    Candida albicans is a fungal commensal-pathogen that persistently associates with its mammalian hosts. Between the commensal and pathogenic lifestyles, this microorganism inhabits host niches that differ markedly in the levels of bioavailable iron. A number of recent studies have exposed C. albicans specializations for acquiring iron from specific host molecules in regions where iron is scarce, while also defending against iron-related toxicity in regions where iron occurs in surfeit. Togethe...

  10. Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism

    Science.gov (United States)

    Horniblow, Richard D.; Dowle, Miriam; Iqbal, Tariq H.; Latunde-Dada, Gladys O.; Palmer, Richard E.

    2015-01-01

    Alginates are a class of biopolymers with known iron binding properties which are routinely used in the fabrication of iron-oxide nanoparticles. In addition, alginates have been implicated in influencing human iron absorption. However, the synthesis of iron oxide nanoparticles employs non-physiological pH conditions and whether nanoparticle formation in vivo is responsible for influencing cellular iron metabolism is unclear. Thus the aims of this study were to determine how alginate and iron interact at gastric-comparable pH conditions and how this influences iron metabolism. Employing a range of spectroscopic techniques under physiological conditions alginate-iron complexation was confirmed and, in conjunction with aberration corrected scanning transmission electron microscopy, nanoparticles were observed. The results infer a nucleation-type model of iron binding whereby alginate is templating the condensation of iron-hydroxide complexes to form iron oxide centred nanoparticles. The interaction of alginate and iron at a cellular level was found to decrease cellular iron acquisition by 37% (p < 0.05) and in combination with confocal microscopy the alginate inhibits cellular iron transport through extracellular iron chelation with the resulting complexes not internalised. These results infer alginate as being useful in the chelation of excess iron, especially in the context of inflammatory bowel disease and colorectal cancer where excess unabsorbed luminal iron is thought to be a driver of disease. PMID:26378798

  11. A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Guillem Casanovas

    2014-01-01

    Full Text Available Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease.

  12. Liver-gut axis in the regulation of iron homeostasis

    Institute of Scientific and Technical Information of China (English)

    Deepak Darshan; Gregory J Anderson

    2007-01-01

    The human body requires about 1-2 mg of iron per day for its normal functioning, and dietary iron is the only source for this essential metal. Since humans do not possess a mechanism for the active excretion of iron,the amount of iron in the body is determined by the amount absorbed across the proximal small intestine and, consequently, intestinal iron absorption is a highly regulated process. In recent years, the liver has emerged as a central regulator of both iron absorption and iron release from other tissues. It achieves this by secreting a peptide hormone called hepcidin that acts on the small intestinal epithelium and other cells to limit iron delivery to the plasma. Hepcidin itself is regulated in response to various systemic stimuli including variations in body iron stores, the rate of erythropoiesis, inflammation and hypoxia, the same stimuli that have been known for many years to modulate iron absorption. This review will summarize recent findings on the role played by the liver and hepcidin in the regulation of body iron absorption.

  13. Vacuolar-Iron-Transporter1-Like proteins mediate iron homeostasis in Arabidopsis.

    Science.gov (United States)

    Gollhofer, Julia; Timofeev, Roman; Lan, Ping; Schmidt, Wolfgang; Buckhout, Thomas J

    2014-01-01

    Iron deficiency is a nutritional problem in plants and reduces crop productivity, quality and yield. With the goal of improving the iron (Fe) storage properties of plants, we have investigated the function of three Arabidopsis proteins with homology to Vacuolar Iron Transporter1 (AtVIT1). Heterologous expression of Vacuolar Iron Transporter-Like1 (AtVTL1; At1g21140), AtVTL2 (At1g76800) or AtVTL5 (At3g25190) in the yeast vacuolar Fe transport mutant, Δccc1, restored growth in the presence of 4 mM Fe. Isolated vacuoles from yeast expressing either of the VTL genes in the Δccc1 background had a three- to four-fold increase in Fe concentration compared to vacuoles isolated from the untransformed mutant. Transiently expressed GFP-tagged AtVTL1 was localized exclusively and AtVTL2 was localized primarily to the vacuolar membrane of onion epidermis cells. Seedling root growth of the Arabidopsis nramp3/nramp4 and vit1-1 mutants was decreased compared to the wild type when seedlings were grown under Fe deficiency. When expressed under the 35S promoter in the nramp3/nramp4 or vit1-1 backgrounds, AtVTL1, AtVTL2 or AtVTL5 restored root growth in both mutants. The seed Fe concentration in the nramp3/nramp4 mutant overexpressing AtVTL1, AtVTL2 or AtVTL5 was between 50 and 60% higher than in non-transformed double mutants or wild-type plants. We conclude that the VTL proteins catalyze Fe transport into vacuoles and thus contribute to the regulation of Fe homeostasis in planta. PMID:25360591

  14. Alterations in the iron homeostasis network: A driving force for macrophage-mediated hepatitis C virus persistency.

    Science.gov (United States)

    Foka, Pelagia; Dimitriadis, Alexios; Karamichali, Eirini; Kyratzopoulou, Eleni; Giannimaras, Dionyssios; Koskinas, John; Varaklioti, Agoritsa; Mamalaki, Avgi; Georgopoulou, Urania

    2016-08-17

    Mechanisms that favor Hepatitis C virus (HCV) persistence over clearance are unclear, but involve defective innate immunity. Chronic infection is characterized by hepatic iron overload, hyperferraemia and hyperferittinaemia. Hepcidin modulates iron egress via ferroportin and its storage in ferritin. Chronic HCV patients have decreased hepcidin, while HCV replication is modified by HAMP silencing. We aimed to investigate interactions between HCV and hepcidin, during acute and chronic disease, and putative alterations in cellular iron homeostasis that enhance HCV propagation and promote viral persistence. Thus, we used HCV JFH-1-infected co-cultures of Huh7.5 hepatoma and THP-1 macrophage cells, HCV patients' sera and Huh7 hepcidin-expressing cells transfected with HCV replicons. Hepcidin levels were elevated in acutely infected patients, but correlated with viral load in chronic patients. HAMP expression was up-regulated early in HCV infection in vitro, with corresponding changes in ferritin and FPN. Hepcidin overexpression enhanced both viral translation and replication. In HCV-infected co-cultures, we observed increased hepcidin, reduced hepatoma ferritin and a concurrent rise in macrophaghic ferritin over time. Altered iron levels complemented amplified replication in hepatoma cells and one replication round in macrophages. Iron-loading of macrophages led to enhancement of hepatic HCV replication through reversed ferritin "flow." Viral transmissibility from infected macrophages to naïve hepatoma cells was induced by iron. We propose that HCV control over iron occurs both by intracellular iron sequestration, through hepcidin, and intercellular iron mobilisation via ferritin, as means toward enhanced replication. Persistence could be achieved through HCV-induced changes in macrophagic iron that enhances viral replication in these cells. PMID:27058404

  15. Simon Labbé’s work on iron and copper homeostasis

    Institute of Scientific and Technical Information of China (English)

    Simon; Labbé

    2010-01-01

    Iron and copper have a wealth of functions in biological systems,which makes them essential micronutrients for all living organisms.Defects in iron and copper homeostasis are directly responsible for diseases,and have been linked to impaired development,metabolic syndromes and fungal virulence.Consequently,it is crucial to gain a comprehensive understanding of the molecular bases of iron-and copper-dependent proteins in living systems.Simon Labbémaintains parallel programs on iron and copper homeostasis using the fission yeast Schizosaccharomyces pombe(Schiz.pombe) as a model system.The study of fission yeast transition-metal metabolism has been successful,not only in discerning the genes and pathways functioning in Schiz.pombe,but also the genes and pathways that are active in mammalian systems and for other fungi.

  16. The extrahepatic role of TFR2 in iron homeostasis

    Directory of Open Access Journals (Sweden)

    Laura eSilvestri

    2014-05-01

    Full Text Available Transferrin receptor 2 (TFR2, a protein homologous to the cell iron importer transferrin receptor 1 (TFR1, is expressed in the liver and erythroid cells and is reported to bind diferric transferrin, although at lower affinity than TFR1. TFR2 gene is mutated in type 3 hemochromatosis, a disorder characterized by iron overload and inability to upregulate hepcidin in response to iron. Liver TFR2 is considered a sensor of diferric transferrin, possibly in a complex with HFE. In erythroid cells TFR2 is a partner of erythropoietin receptor (EPOR and stabilizes the receptor on the cell surface. However, Tfr2 null mice as well as TFR2 hemochromatosis patients do not show defective erythropoiesis and tolerate repeated phlebotomy. The iron deficient Tfr2-Tmprss6 double knock out mice have higher red cells count and more severe microcytosis than the liver specific Tfr2 and Tmprss6 double knock out mice. TFR2 in the bone marrow might be a sensor of iron deficiency that protects against excessive microcytosis in a way that involves EPOR, although the mechanisms remain to be worked out.

  17. Hepcidin and regulation of iron homeostasis in maintenance hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Dawlat Sany

    2014-01-01

    Full Text Available Hepcidin may play a critical role in the response of patients with anemia to iron and erythropoiesis-stimulating agent therapy. To evaluate the factors affecting serum hepcidin levels and their relation to other indexes of anemia, iron metabolism and inflammation, as well as the dose of erythropoietin, we studied 80 maintenance hemodialysis (MHD patients treated with recombinant human erythropoietin and their serum hepcidin levels were specifically measured by using a competitive enzyme-linked immunosorbent assay. In linear regression analysis, ferritin was found to be a significant predictor of hepcidin levels in all the study patients. In the absence of apparent inflammation, serum hepcidin levels correlated exclusively with ferritin levels in MHD patients, and it was also an independent marker of inflammation as highly sensitive C-reactive protein.

  18. Atherogenesis and iron: from epidemiology to cellular level

    Directory of Open Access Journals (Sweden)

    ViktóriaJeney

    2014-05-01

    Full Text Available Iron accumulates in human atherosclerotic lesions but whether it is a cause or simply a downstream consequence of the atheroma formation has been an open question for decades. According to the so called “iron hypothesis”, iron is believed to be detrimental for the cardiovascular system, thus promoting atherosclerosis development and progression. Iron, in its catalytically active form, can participate in the generation of reactive oxygen species and induce lipid-peroxidation, triggering endothelial activation, smooth muscle cell proliferation and macrophage activation; all of these processes are considered to be proatherogenic. On the other hand, the observation that hemochromatotic patients, affected by life-long iron overload, do not show any increased incidence of atherosclerosis is perceived as the most convincing evidence against the “iron hypothesis”. Epidemiological studies and data from animal models provided conflicting evidences about the role of iron in atherogenesis. Therefore more careful studies are needed in which issues like the source and the compartmentalization of iron will be addressed. This review article summarizes what we have learnt about iron and atherosclerosis from epidemiological studies, animal models and cellular systems and highlights the rather contributory than innocent role of iron in atherogenesis.

  19. Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model

    Science.gov (United States)

    Moglianetti, Mauro; de Luca, Elisa; Pedone, Deborah; Marotta, Roberto; Catelani, Tiziano; Sartori, Barbara; Amenitsch, Heinz; Retta, Saverio Francesco; Pompa, Pier Paolo

    2016-02-01

    In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide dismutase, catalase, and peroxidase enzymes, with similar or even superior performance than natural enzymes, along with higher adaptability to the changes in environmental conditions. We then exploited their potent activity as radical scavenging materials in a cellular model of an oxidative stress-related disorder, namely human Cerebral Cavernous Malformation (CCM) disease, which is associated with a significant increase in intracellular ROS levels. Noteworthily, we found that Pt nanozymes can efficiently reduce ROS levels, completely restoring the cellular physiological homeostasis.In recent years, the use of nanomaterials as biomimetic enzymes has attracted great interest. In this work, we show the potential of biocompatible platinum nanoparticles (Pt NPs) as antioxidant nanozymes, which combine abundant cellular internalization and efficient scavenging activity of cellular reactive oxygen species (ROS), thus simultaneously integrating the functions of nanocarriers and antioxidant drugs. Careful toxicity assessment and intracellular tracking of Pt NPs proved their cytocompatibility and high cellular uptake, with compartmentalization within the endo/lysosomal vesicles. We have demonstrated that Pt NPs possess strong and broad antioxidant properties, acting as superoxide

  20. DNA Mismatch Repair System: Repercussions in Cellular Homeostasis and Relationship with Aging

    Directory of Open Access Journals (Sweden)

    Juan Cristóbal Conde-Pérezprina

    2012-01-01

    Full Text Available The mechanisms that concern DNA repair have been studied in the last years due to their consequences in cellular homeostasis. The diverse and damaging stimuli that affect DNA integrity, such as changes in the genetic sequence and modifications in gene expression, can disrupt the steady state of the cell and have serious repercussions to pathways that regulate apoptosis, senescence, and cancer. These altered pathways not only modify cellular and organism longevity, but quality of life (“health-span”. The DNA mismatch repair system (MMR is highly conserved between species; its role is paramount in the preservation of DNA integrity, placing it as a necessary focal point in the study of pathways that prolong lifespan, aging, and disease. Here, we review different insights concerning the malfunction or absence of the DNA-MMR and its impact on cellular homeostasis. In particular, we will focus on DNA-MMR mechanisms regulated by known repair proteins MSH2, MSH6, PMS2, and MHL1, among others.

  1. Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Guofen eGao

    2014-02-01

    Full Text Available Mitochondrial ferritin (FtMt is a novel iron-storage protein in mitochondria. Evidences have shown that FtMt is structurally and functionally similar to the cytosolic H-chain ferritin. It protects mitochondria from iron-induced oxidative damage presumably through sequestration of potentially harmful excess free iron. It also participates in the regulation of iron distribution between cytosol and mitochondrial contents. Unlike the ubiquitously expressed H-ferritin, FtMt is mainly expressed in testis and brain, which suggests its tissue-related roles. FtMt is involved in pathogenesis of neurodegenerative diseases, as its increased expression has been observed in Alzheimer’s disease, restless legs syndrome and Friedreich’s ataxia. Studies from our laboratory showed that in Alzheimer’s disease, FtMt overexpression attenuated the β-amyloid induced neurotoxicity, which on the other hand increased significantly when FtMt expression was knocked down. It is also found that, by maintaining mitochondrial iron homeostasis, FtMt could prevent 6-hydroxydopamine induced dopaminergic cell damage in Parkinson’s disease. These recent findings on FtMt regarding its functions in regulation of brain iron homeostasis and its protective role in pathogenesis of neurodegenerative diseases are summarized and reviewed.

  2. Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy

    Directory of Open Access Journals (Sweden)

    Barbara Marengo

    2016-01-01

    Full Text Available Reactive oxygen species (ROS and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy.

  3. The evolving role of the NAD+/nicotinamide metabolome in skin homeostasis, cellular bioenergetics, and aging.

    Science.gov (United States)

    Oblong, John E

    2014-11-01

    Human skin is exposed to daily environmental insults, particularly solar radiation, that triggers a range of molecular responses. These perturbations to the normal homeostatic state can lead to cellular dysfunction and, ultimately, impacts tissue integrity and accelerates skin aging (photoaging). One of the responses is increased oxidative stress which has been shown to disrupt cellular bioenergetics. This can be detected by depletion of the nucleotide energy metabolites NAD+ and ATP as both an acute transient decrease and, over time, a more permanent chronic reduction due in part to cumulative damage of mitochondria. NAD+ and its primary precursor nicotinamide have been known for some time to impact skin homeostasis based on linkages to dietary requirements, treatment of various inflammatory conditions, photoaging, and prevention of cancer. Cellular NAD+ pools are known to be lower in aged skin and treatment with nicotinamide is hypothesized to restore these levels, thereby mitigating cellular bioenergetics dysfunction. In dermal fibroblasts, nicotinamide is able to protect against oxidative stress to glycolysis, oxidative phosphorylation as well as increase mitochondrial efficiency via sirtuin-dependent selective mitophagy. Recent research has found that NAD+ cellular pools are more dynamic than previously thought, oscillating in tandem with free nicotinamide, and serves as a regulatory point and feedback loop in cellular metabolism regulation, maintenance of mitochondrial efficiency, and circadian rhythmicity. Since UV-induced oxidative stress in skin can disrupt these processes, continued molecular understanding of the role of NAD+ and nicotinamide in skin biology is important to identify interventions that would help maintain its normal homeostatic functions and efficient cellular bioenergetics. PMID:24794404

  4. Iron homeostasis and oxidative stress in idiopathic pulmonary alveolar proteinosis: a case-control study

    Directory of Open Access Journals (Sweden)

    Roggli Victor L

    2008-01-01

    Full Text Available Abstract Background Lung injury caused by both inhaled dusts and infectious agents depends on increased availability of iron and metal-catalyzed oxidative stress. Because inhaled particles, such as silica, and certain infections can cause secondary pulmonary alveolar proteinosis (PAP, we tested the hypothesis that idiopathic PAP is associated with an altered iron homeostasis in the human lung. Methods Healthy volunteers (n = 20 and patients with idiopathic PAP (n = 20 underwent bronchoalveolar lavage and measurements were made of total protein, iron, tranferrin, transferrin receptor, lactoferrin, and ferritin. Histochemical staining for iron and ferritin was done in the cell pellets from control subjects and PAP patients, and in lung specimens of patients without cardiopulmonary disease and with PAP. Lavage concentrations of urate, glutathione, and ascorbate were also measured as indices of oxidative stress. Results Lavage concentrations of iron, transferrin, transferrin receptor, lactoferrin, and ferritin were significantly elevated in PAP patients relative to healthy volunteers. The cells of PAP patients had accumulated significant iron and ferritin, as well as considerable amounts of extracellular ferritin. Immunohistochemistry for ferritin in lung tissue revealed comparable amounts of this metal-storage protein in the lower respiratory tract of PAP patients both intracellularly and extracellularly. Lavage concentrations of ascorbate, glutathione, and urate were significantly lower in the lavage fluid of the PAP patients. Conclusion Iron homeostasis is altered in the lungs of patients with idiopathic PAP, as large amounts of catalytically-active iron and low molecular weight anti-oxidant depletion are present. These findings suggest a metal-catalyzed oxidative stress in the maintenance of this disease.

  5. Matriptase-2 is essential for hepcidin repression during fetal life and postnatal development in mice to maintain iron homeostasis.

    Science.gov (United States)

    Willemetz, Alexandra; Lenoir, Anne; Deschemin, Jean-Christophe; Lopez-Otin, Carlos; Ramsay, Andrew J; Vaulont, Sophie; Nicolas, Gaël

    2014-07-17

    Iron is an essential element required for development and survival of all living organisms. In fetuses, maternofetal iron transfer across the placenta is essential for growth and development. In neonates, efficient intestinal iron absorption is required to scavenge as much iron as possible from the low-iron-content milk. During these periods, efficient iron mobilization is ensured by the downregulation of the iron regulatory hormone hepcidin by as-yet uncharacterized molecular mechanisms. Here we demonstrate that the recently described hepcidin repressor-the serine protease matriptase-2 (encoded by Tmprss6)-is responsible for this repression throughout development, with its deficiency leading to increased hepcidin levels triggering iron deficiency and anemia starting in utero. This result might have implications for a better understanding of iron homeostasis during early development in iron-refractory iron deficiency anemia patients, who present with microcytic anemia caused by hyperhepcidinemia, and of questions about the role of matriptase-2 in human neonates. PMID:24904115

  6. Vacuolar-Iron-Transporter1-Like Proteins Mediate Iron Homeostasis in Arabidopsis

    OpenAIRE

    Gollhofer, Julia; Timofeev, Roman; LAN, PING; Schmidt, Wolfgang; Buckhout, Thomas J.

    2014-01-01

    Iron deficiency is a nutritional problem in plants and reduces crop productivity, quality and yield. With the goal of improving the iron (Fe) storage properties of plants, we have investigated the function of three Arabidopsis proteins with homology to Vacuolar Iron Transporter1 (AtVIT1). Heterologous expression of Vacuolar Iron Transporter-Like1 (AtVTL1; At1g21140), AtVTL2 (At1g76800) or AtVTL5 (At3g25190) in the yeast vacuolar Fe transport mutant, Δccc1, restored growth in the presence of 4...

  7. Drosophila Frataxin: An Iron Chaperone During Cellular Fe-S Cluster Bioassembly

    Energy Technology Data Exchange (ETDEWEB)

    Kondapalli, K.C.; Kok, N.M.; Dancis, A.; Stemmler, T.L.

    2009-05-20

    Frataxin, a mitochondrial protein that is directly involved in regulating cellular iron homeostasis, has been suggested to serve as an iron chaperone during cellular Fe-S cluster biosynthesis. In humans, decreased amounts or impaired function of frataxin causes the autosomal recessive neurodegenerative disorder Friedreich's ataxia. Cellular production of Fe-S clusters is accomplished by the Fe cofactor assembly platform enzymes Isu (eukaryotes) and IscU (prokaryotes). In this report, we have characterized the overall stability and iron binding properties of the Drosophila frataxin homologue (Dfh). Dfh is highly folded with secondary structural elements consistent with the structurally characterized frataxin orthologs. While the melting temperature (T{sub M} {approx} 59 C) and chemical stability ([urea]{sub 50} {approx} 2.4 M) of Drosophila frataxin, measured using circular dichroism (CD) and fluorescence spectroscopy, closely match values determined for the human ortholog, pure Dfh is more stable against autodegradation than both the human and yeast proteins. The ferrous iron binding affinity (K{sub d} {approx} 6.0 {micro}M) and optimal metal to protein stoichiometry (1:1) for Dfh have been measured using isothermal titration calorimetry (ITC). Under anaerobic conditions with salt present, holo-Dfh is a stable iron-loaded protein monomer. Frataxin prevents reactive oxygen species-induced oxidative damage to DNA when presented with both Fe(II) and H{sub 2}O{sub 2}. Ferrous iron bound to Dfh is high-spin and held in a partially symmetric Fe-(O/N){sub 6} coordination environment, as determined by X-ray absorption spectroscopy (XAS). Extended X-ray absorption fine structure (EXAFS) simulations indicate the average Fe-O/N bond length in Dfh is 2.13 {angstrom}, consistent with a ligand geometry constructed by water and carboxylate oxygens most likely supplied in part by surface-exposed conserved acidic residues located on helix 1 and strand 1 in the structurally

  8. Hemerythrin-like domain within F-box and leucine-rich repeat protein 5 (FBXL5) communicates cellular iron and oxygen availability by distinct mechanisms.

    Science.gov (United States)

    Chollangi, Srinivas; Thompson, Joel W; Ruiz, Julio C; Gardner, Kevin H; Bruick, Richard K

    2012-07-01

    Iron regulatory proteins play a principal role in maintaining cellular iron homeostasis by post-transcriptionally regulating factors responsible for iron uptake, utilization, and storage. An E3 ubiquitin ligase complex containing FBXL5 targets IRP2 for proteasomal degradation under iron- and oxygen-replete conditions, whereas FBXL5 itself is degraded when iron and oxygen availability decreases. FBXL5 contains a hemerythrin-like (Hr) domain at its N terminus that mediates its own differential stability. Here, we investigated the iron- and oxygen-dependent conformational changes within FBXL5-Hr that underlie its role as a cellular sensor. As predicted, FBXL5-Hr undergoes substantive structural changes when iron becomes limiting, accounting for its switch-like behavior. However, these same changes are not observed in response to oxygen depletion, indicating that this domain accommodates two distinct sensing mechanisms. Moreover, FBXL5-Hr does not behave as a dynamic sensor that continuously samples the cellular environment, assuming conformations in equilibrium with ever-changing cellular iron levels. Instead, the isolated domain appears competent to incorporate iron only at or near the time of its own synthesis. These observations have important implications for mechanisms by which these metabolites are sensed within mammalian cells. PMID:22648410

  9. The Perilipins: Major Cytosolic Lipid Droplet-Associated Proteins and Their Roles in Cellular Lipid Storage, Mobilization, and Systemic Homeostasis.

    Science.gov (United States)

    Kimmel, Alan R; Sztalryd, Carole

    2016-07-17

    The discovery by Dr. Constantine Londos of perilipin 1, the major scaffold protein at the surface of cytosolic lipid droplets in adipocytes, marked a fundamental conceptual change in the understanding of lipolytic regulation. Focus then shifted from the enzymatic activation of lipases to substrate accessibility, mediated by perilipin-dependent protein sequestration and recruitment. Consequently, the lipid droplet became recognized as a unique, metabolically active cellular organelle and its surface as the active site for novel protein-protein interactions. A new area of investigation emerged, centered on lipid droplets' biology and their role in energy homeostasis. The perilipin family is of ancient origin and has expanded to include five mammalian genes and a growing list of evolutionarily conserved members. Universally, the perilipins modulate cellular lipid storage. This review provides a summary that connects the perilipins to both cellular and whole-body homeostasis. PMID:27431369

  10. Pharmacodynamic Model of Hepcidin Regulation of Iron Homeostasis in Cynomolgus Monkeys.

    Science.gov (United States)

    Krzyzanski, Wojciech; Xiao, Jim J; Sasu, Barbra; Hinkle, Beth; Perez-Ruixo, Juan Jose

    2016-05-01

    Hepcidin (H25) is a hormone peptide synthesized by the liver that binds to ferroportin and blocks iron export. In this study, H25 was inhibited by administration of single and multiple doses of an anti-H25 monoclonal antibody Ab 12B9m in cynomolgus monkeys. The objective of this analysis was to develop a pharmacodynamic model describing the role of H25 in regulating iron homeostasis and the impact of hepcidin inhibition by Ab 12B9m. Total serum H25 and Ab 12B9m were determined in each animal. Corresponding measurements of serum iron and hemoglobin (Hb) were obtained. The PD model consisted of iron pools in serum (FeS), reticuloendothelial macrophages (FeM), hemoglobin (FeHb), and liver (FeL). The iron was assumed to be transported between the FeS, FeHb, and FeM unidirectionally at rates k S, k Hb, and k M. H25 serum concentrations were described by the previously developed PK model with the parameters fixed at their estimates. The serum iron and Hb data were fitted simultaneously. The corresponding estimates of the rate constants were k S/Fe0 = 0.113 h(-1), k M = 0.00191 h(-1), and k Hb = 0.00817 h(-1). The model-based IC50 value for the H25 inhibitory effect on ferroportin activity was 0.398 nM. The PD model predicted a negligible effect of Ab 12B9m on Hb levels for the tested doses. The presented PD model adequately described the serum iron time courses following single and multiple doses of Ab 12B9m. Ab 12B9m-induced inhibition of H25 resulted in a temporal increase in serum and liver iron and a decrease in the iron stored in reticuloendothelial macrophages. PMID:26917226

  11. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Youxi Yuan; Huilan Wu; Ning Wang; Jie Li; Weina Zhao; Juan Du; Daowen Wang; Hong-Qing Ling

    2008-01-01

    Iron is an essential element for plant growth and development. Iron homeostasis in plants is tightly regulated at both transcriptional and posttranscriptional level. Several bHLH transcription factors involved in iron homeostasis have been identified recently. However, their regulatory mechanisms remain unknown. In this work, we demonstrate that the transcription factor FIT interacted with AtbHLH38 and AtbHLH39 and directly conferred the expression regulation of iron uptake genes for iron homeostasis in Arabidopsis. Yeast two-hybrid analysis and transient expression in Arabidopsis protoplasts showed that AtbH LH38 or AtbHLH39 interacted with FIT, a central transcription factor involved in iron homeostasis in Arabidopsis. Expression of FIT/AtbHLH38 or FIT/AtbHLH39 in yeast cells activated GUS expression driven by ferric chelate reductase (FRO2) and ferrous transporter (IRT1) promoters. Overexpression of FIT with either AtbHLH38 or AtbHLH39 in plants converted the expression of the iron uptake genes FRO2 and IRT1 from induced to constitutive. Further analysis revealed that FR02 and IRT1 were not regulated at the posttranscriptional level in these plants because IRT1 protein accumulation and high ferric chelate reductase activity were detected in the overexpression plants under both iron deficiency and iron sufficiency. The double overexpression plants accumulated more iron in their shoots than wild type or the plants overexpressing either AtbHLH38,AtbHLH39 or FIT. Our data support that ferric-chelate reductase FRO2 and ferrous-transporter IRT1 are the targets of the three transcription factors and the transcription of FRO2 and IRT1 is directly regulated by a complex of FIT/AtbHLH38 or FIT/AtbHLH39.

  12. Comparative analysis of iron homeostasis in sub-Saharan African children with sickle cell disease and their unaffected siblings

    Directory of Open Access Journals (Sweden)

    Selma eGomez

    2016-02-01

    Full Text Available Iron is an essential trace element subject to tight regulation to ensure adequate running of biological processes. In sub-Saharan Africa where hemoglobinopathies are common, iron homeostasis is likely to be impaired by these conditions. Here we assessed and compared key serum proteins associated with iron metabolism between sub-Saharan African children with sickle cell disease (SCD and their unaffected siblings. Complete blood counts and serum concentrations of four key proteins involved in iron regulation (ferritin, transferrin, sTfR and hepcidin were measured for 73 children with SCD and 68 healthy siblings in Benin, West Africa. We found significant differences in concentration of transferrin, sTfR and ferritin between the two groups. Hepcidin concentrations were found at unusually high concentrations but did not differ among the two groups. We found a significant negative correlation between hepcidin levels and both MCH and MCV in the SCD group and report that sTfR concentrations show a correlation with MCV and MHC in opposite directions in the two groups. These results highlight the unusually high levels of hepcidin in the Beninese population and the patterns of differential iron homeostasis taking place under sickle cell disease status. These results lay the foundation for a systematic evaluation of the underlying mechanisms deregulating iron homeostasis in populations with SCD or high prevalence of iron deficiency.

  13. Quantitative Susceptibility Mapping Indicates a Disturbed Brain Iron Homeostasis in Neuromyelitis Optica – A Pilot Study

    Science.gov (United States)

    Granado, Vanessa; Rueda, Fernanda; Deistung, Andreas; Reichenbach, Juergen R.; Tukamoto, Gustavo; Gasparetto, Emerson Leandro; Schweser, Ferdinand

    2016-01-01

    Dysregulation of brain iron homeostasis is a hallmark of many neurodegenerative diseases and can be associated with oxidative stress. The objective of this study was to investigate brain iron in patients with Neuromyelitis Optica (NMO) using quantitative susceptibility mapping (QSM), a quantitative iron-sensitive MRI technique. 12 clinically confirmed NMO patients (6 female and 6 male; age 35.4y±14.2y) and 12 age- and sex-matched healthy controls (7 female and 5 male; age 33.9±11.3y) underwent MRI of the brain at 3 Tesla. Quantitative maps of the effective transverse relaxation rate (R2*) and magnetic susceptibility were calculated and a blinded ROI-based group comparison analysis was performed. Normality of the data and differences between patients and controls were tested by Kolmogorov-Smirnov and t-test, respectively. Correlation with age was studied using Spearman’s rank correlation and an ANCOVA-like analysis. Magnetic susceptibility values were decreased in the red nucleus (p0.95; between -15 and -22 ppb depending on reference region) with a trend toward increasing differences with age. R2* revealed significantly decreased relaxation in the optic radiations of five of the 12 patients (p<0.0001; -3.136±0.567 s-1). Decreased relaxation in the optic radiation is indicative for demyelination, which is in line with previous findings. Decreased magnetic susceptibility in the red nucleus is indicative for a lower brain iron concentration, a chemical redistribution of iron into less magnetic forms, or both. Further investigations are necessary to elucidate the pathological cause or consequence of this finding. PMID:27171423

  14. Induction of stress responses by polluting agents which dis-regulate cellular homeostasis

    International Nuclear Information System (INIS)

    There is growing concern both in the scientific community and among the general public about the effects of exposure to low levels of radiation and environmental chemicals. The increased incidence of cancer, reproduction disorders and allergies have been associated with ambient environmental exposure to these pollutants. The pollution burden is generally made up of a mixture of agents, occurring at concentrations of the individual compounds which are not considered harmful and which are below the action level. Individual pollutants can act through a variety of primary toxicity mechanisms. However the resulting secondary and tertiary toxicity mechanisms which affect cellular homeostasis might be more common. These resulting stress responses, including oxidative stress, have been associated with effects that include increased level of death during cell division, increased levels of mutation and increased tolerance of mutations in cell populations, increased levels of cytogenetic abnormalities and many other symptoms. These effects are linked to a persistent increase in (oxidative) stress and are particularly evident in the haematopoietic system (possibly due to the high rate self of renewal in that system). Therefore prolonged exposure to mixtures of chemicals and radiation might result in additive and synergistic stress responses which can induce long-term delayed effects, often in progeny or in cells not directly exposed to the agent/s. The existence of a common (oxidative) stress mechanism means that the effects of individual pollutants may not be considered in isolation. Rather the total pollution burden may need to be measured using a response rather than a dose based scoring or ranking system. Improved understanding of toxicity mechanisms and effects underpins improved risk assessment and identification of biomarkers. The immune system plays a pivotal role in maintaining health status, and disruption of immune functions can lead to increased susceptibility to

  15. Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation

    Directory of Open Access Journals (Sweden)

    HelenePuccio

    2014-06-01

    Full Text Available Friedreich ataxia (FRDA is the most common recessive ataxia in the Caucasian population and is characterized by a mixed spinocerebellar and sensory ataxia frequently associating cardiomyopathy. The disease results from decreased expression of the FXN gene coding for the mitochondrial protein frataxin. Early histological and biochemical study of the pathophysiology in patient’s samples revealed that dysregulation of iron metabolism is a key feature of the disease, mainly characterized by mitochondrial iron accumulation and by decreased activity of iron-sulfur cluster enzymes. In the recent past years, considerable progress in understanding the function of frataxin has been provided through cellular and biochemical approaches, pointing to the primary role of frataxin in iron-sulfur cluster biogenesis. However, why and how the impact of frataxin deficiency on this essential biosynthetic pathway leads to mitochondrial iron accumulation is still poorly understood. Herein, we review data on both the primary function of frataxin and the nature of the iron metabolism dysregulation in FRDA. To date, the pathophysiological implication of the mitochondrial iron overload in FRDA remains to be clarified.

  16. Silkworm ferritin 1 heavy chain homolog is involved in defense against bacterial infection through regulation of haemolymph iron homeostasis.

    Science.gov (United States)

    Otho, Sohail Ahmed; Chen, Kangkang; Zhang, Yongdong; Wang, Peng; Lu, Zhiqiang

    2016-02-01

    Iron functions as a nutrient and a potential toxin in all organisms. It plays a key role in the interaction between microbes and their hosts as well. Microbial infection disrupts iron homeostasis in the host; meanwhile the host endeavors to keep the homeostasis through iron transport and storage. Transferrins and ferritins are the major iron-binding proteins that affect iron distribution in insects. In this study, we investigated a possible involvement of Bombyx mori ferritin 1 (BmFer1) heavy chain homolog in the defense against bacterial infection in the silkworm larvae. The BmFer1 mRNA abundance was up-regulated in hemocytes, but not in fat body, after Pseudomonas aeruginosa or Staphylococcus aureus infection. The infection resulted in elevated iron levels in the hemolymph. Injection of recombinant BmFer1 protein into hemocoel reduced the plasma iron level after infection, limited the bacterial growth in the hemolymph, and resulted in a lower mortality caused by infection. Our study indicated that B. mori ferritin-1 may restrict iron access of the invading bacteria to block their growth as a defense strategy. PMID:26522340

  17. Iron homeostasis and H63D mutations in alcoholics with and without liver disease

    Directory of Open Access Journals (Sweden)

    Mariana Verdelho Machado, Paula Ravasco, Alexandra Martins, Maria Rosário Almeida, Maria Ermelinda Camilo, Helena Cortez-Pinto

    2009-01-01

    Full Text Available AIM: To evaluate the prevalence of HFE gene mutation and indices of disturbed iron homeostasis in alcoholics with and without liver disease.METHODS: One hundred and fifty-three heavy drinkers (defined as alcohol consumption > 80 g/d for at least 5 years were included in the study. These comprised 78 patients with liver disease [liver disease alcoholics (LDA] in whom the presence of liver disease was confirmed by liver biopsy or clinical evidence of hepatic decompensation, and 75 subjects with no evidence of liver disease, determined by normal liver tests on two occasions [non-liver disease alcoholics (NLDA], were consecutively enrolled. Serum markers of iron status and HFE C282Y and H63D mutations were determined. HFE genotyping was compared with data obtained in healthy blood donors from the same geographical area.RESULTS: Gender ratio was similar in both study groups. LDA patients were older than NLDA patients (52 ± 10 years vs 48 ± 11 years, P = 0.03. One third and one fifth of the study population had serum transferrin saturation (TS greater than 45% and 60% respectively. Serum iron levels were similar in both groups. However, LDA patients had higher TS (51 ± 27 vs 36 ± 13, P < 0.001 and ferritin levels (559 ± 607 ng/mL vs 159 ± 122 ng/mL, P < 0.001, and lower total iron binding capacity (TIBC (241 ± 88 μg/dL vs 279 ± 40 μg/dL, P = 0.001. The odds ratio for having liver disease with TS greater than 45% was 2.20 (95% confidence interval (CI: 1.37-3.54. There was no difference in C282Y allelic frequency between the two groups. However, H63D was more frequent in LDA patients (0.25 vs 0.16, P = 0.03. LDA patients had a greater probability of carrying at least one HFE mutation than NLDA patients (49.5% vs 31.6%, P = 0.02. The odds ratio for LDA in patients with H63D mutation was 1.57 (95% CI: 1.02-2.40.CONCLUSION: The present study confirms the presence of iron overload in alcoholics, which was more severe in the subset of subjects with

  18. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Kalambur, Venkat S; Longmire, Ellen K; Bischof, John C

    2007-11-20

    Superparamagnetic iron oxide nanoparticles (NPs) hold promise for a variety of biomedical applications due to their properties of visualization using magnetic resonance imaging (MRI), heating with radio frequency (rf), and movement in an external magnetic field. In this study, the cellular loading (uptake) mechanism of dextran- and surfactant-coated iron oxide NPs by malignant prostate tumor cells (LNCaP-Pro5) has been studied, and the feasibility of traditional rf treatment and a new laser heating method was evaluated. The kinetics of cell loading was quantified using magnetophoresis and a colorimetric assay. The results showed that loading of surfactant-coated iron oxide NPs with LNCaP-Pro5 was saturable with time (at 24 h) and extracellular concentration (11 pg Fe/cell at 0.5 mg Fe/mL), indicating that the particles are taken up by an "adsorptive endocytosis" pathway. Dextran-coated NPs, however, were taken up less efficiently (1 pg Fe/cell at 0.5 mg Fe/mL). Loading did not saturate with concentration suggesting uptake by fluid-phase endocytosis. Magnetophoresis suggests that NP-loaded cells can be held using external magnetic fields in microcirculatory flow velocities in vivo or in an appropriately designed extracorporeal circuit. Loaded cells were heated using traditional rf (260A, 357 kHz) and a new laser method (532 nm, 7 ns pulse duration, 0.03 J/pulse, 20 pulse/s). Iron oxide in water was found to absorb sufficiently strongly at 532 nm such that heating of individual NPs and thus loaded cells (1 pg Fe/cell) was effective (10 pg Fe/cell) and longer duration (30 min) when compared to laser to accomplish cell destruction (50% viability at 10 pg Fe/cell). Scaling calculations show that the pulsed laser method can lead to single-cell (loaded with NPs) treatments (200 degrees C temperature change at the surface of an individual NP) unlike traditional rf heating methods which can be used only for bulk tissue level treatments. In a mixture of normal and NP

  19. Cellular distribution and localisation of iron in adult rat brain (substantia nigra)

    Energy Technology Data Exchange (ETDEWEB)

    Meinecke, Ch. [Institute for Experimental Physics II, Faculty for Physics and Geosciences, University of Leipzig, Linnestr. 5, D-04103 Leipzig (Germany)]. E-mail: meinecke@physik.uni-leipzig.de; Morawski, M. [Paul-Flechsig-Institute for Brain research, University of Leipzig, Jahnallee 59, D-04109 Leipzig (Germany); Reinert, T. [Institute for Experimental Physics II, Faculty for Physics and Geosciences, University of Leipzig, Linnestr. 5, D-04103 Leipzig (Germany); Arendt, T. [Paul-Flechsig-Institute for Brain research, University of Leipzig, Jahnallee 59, D-04109 Leipzig (Germany); Butz, T. [Institute for Experimental Physics II, Faculty for Physics and Geosciences, University of Leipzig, Linnestr. 5, D-04103 Leipzig (Germany)

    2006-08-15

    Iron appears to be one of the main factors in the metal induced neurodegeneration. Quantitative information on cellular, sub-cellular and cell specific distributions of iron is therefore important to assess. The investigations reported here were carried out on a brain from an adult rat. Therefore, 6 {mu}m thick embedded, unstained brain sections containing the midbrain (substantia nigra, SN) were analysed. Particle induced X-ray emission (PIXE) using a focussed proton beam (beam - diameter app. 1 {mu}m) was performed to determine the quantitative iron content on a cellular and sub-cellular level. The integral analysis shows that the iron content in the SN pars reticulata is twice as high than in the SN pars compacta. The analysis of the iron content on the cellular level revealed no remarkable differences between glia cells and neurons. This is in contrast to other studies using staining techniques.

  20. Cellular distribution and localisation of iron in adult rat brain (substantia nigra)

    International Nuclear Information System (INIS)

    Iron appears to be one of the main factors in the metal induced neurodegeneration. Quantitative information on cellular, sub-cellular and cell specific distributions of iron is therefore important to assess. The investigations reported here were carried out on a brain from an adult rat. Therefore, 6 μm thick embedded, unstained brain sections containing the midbrain (substantia nigra, SN) were analysed. Particle induced X-ray emission (PIXE) using a focussed proton beam (beam - diameter app. 1 μm) was performed to determine the quantitative iron content on a cellular and sub-cellular level. The integral analysis shows that the iron content in the SN pars reticulata is twice as high than in the SN pars compacta. The analysis of the iron content on the cellular level revealed no remarkable differences between glia cells and neurons. This is in contrast to other studies using staining techniques

  1. Hiperpigmentación cutánea y homeostasis del hierro: rol de la hepcidina Cutaneous hyperpigmentation and homeostasis of iron: role of the hepcidin

    Directory of Open Access Journals (Sweden)

    C. Wolf

    2007-06-01

    Full Text Available La hiperpigmentación cutánea por melanina en zonas expuestas al sol puede estar asociada a un desequilibrio en la homeostasis del hierro. La hepcidina es un péptido responsable de la regulación negativa de la absorción del hierro en el intestino delgado y de su liberación por los macrófagos. Posee capacidad antimicrobiana. Es sintetizada en el hígado, secretada al torrente circulatorio y excretada por la orina. La sobreexpresión causa anemia y su déficit, sobrecarga de hierro (acumulación en diferentes órganos y hemocromatosis hereditaria. Los antagonistas de la hepcidina podrían utilizarse en el tratamiento de la anemia resistente a eritropoyetina, asociada a procesos crónicos. Por su parte, los agonistas o sustancias que estimulen la producción de hepcidina, podrían constituir un tratamiento en enfermedades con sobrecarga de hierro (siderosis y por consiguiente, corregir la hiperpigmentación asociada.The cutaneous hyperpigmentation by melanin in zones of the skin exposed to the sun can be associated to an imbalance in the homeostasis of the iron. The hepcidin is a peptide responsible for the negative regulation of the absorption of the iron in the small intestine and of its liberation by the macrophages. It has, in addition, antimicrobial capacity. It is synthesized in the liver, secreted to the circulatory torrent and excreted by the urine. Its overexpression causes anemia and its deficit iron overload (accumulation in different organs and hereditary hemochromatosis, The antagonists of the hepcidin, could be used in the treatment of anemia resistant to erythropoyetin associated to chronic processes. On the other hand, the agonists or substances that stimulate the hepcidin production, could constitute a treatment in diseases with overload of iron (siderosis and therefore, to correct the associate.hyperpigmentation.

  2. Insulin/IGF-1 and hypoxia signaling act in concert to regulate iron homeostasis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Daniel Ackerman

    Full Text Available Iron plays an essential role in many biological processes, but also catalyzes the formation of reactive oxygen species (ROS, which can cause molecular damage. Iron homeostasis is therefore a critical determinant of fitness. In Caenorhabditis elegans, insulin/IGF-1 signaling (IIS promotes growth and reproduction but limits stress resistance and lifespan through inactivation of the DAF-16/FoxO transcription factor (TF. We report that long-lived daf-2 insulin/IGF-1 receptor mutants show a daf-16-dependent increase in expression of ftn-1, which encodes the iron storage protein H-ferritin. To better understand the regulation of iron homeostasis, we performed a TF-limited genetic screen for factors influencing ftn-1 gene expression. The screen identified the heat-shock TF hsf-1, the MAD bHLH TF mdl-1, and the putative histone acetyl transferase ada-2 as activators of ftn-1 expression. It also revealed that the HIFα homolog hif-1 and its binding partner aha-1 (HIFβ are potent repressors of ftn-1 expression. ftn-1 expression is induced by exposure to iron, and we found that hif-1 was required for this induction. In addition, we found that the prolyl hydroxylase EGL-9, which represses HIF-1 via the von Hippel-Lindau tumor suppressor VHL-1, can also act antagonistically to VHL-1 in regulating ftn-1. This suggests a novel mechanism for HIF target gene regulation by these evolutionarily conserved and clinically important hydroxylases. Our findings imply that the IIS and HIF pathways act together to regulate iron homeostasis in C. elegans. We suggest that IIS/DAF-16 regulation of ftn-1 modulates a trade-off between growth and stress resistance, as elevated iron availability supports growth but also increases ROS production.

  3. The Loss of Myocardial Benefit following Ischemic Preconditioning Is Associated with Dysregulation of Iron Homeostasis in Diet-Induced Diabetes.

    Science.gov (United States)

    Vinokur, Vladimir; Weksler-Zangen, Sarah; Berenshtein, Eduard; Eliashar, Ron; Chevion, Mordechai

    2016-01-01

    Whether the diabetic heart benefits from ischemic preconditioning (IPC), similar to the non-diabetic heart, is a subject of controversy. We recently proposed new roles for iron and ferritin in IPC-protection in Type 1-like streptozotocin-induced diabetic rat heart. Here, we investigated iron homeostasis in Cohen diabetic sensitive rat (CDs) that develop hyperglycemia when fed on a high-sucrose/low-copper diet (HSD), but maintain normoglycemia on regular-diet (RD). Control Cohen-resistant rats (CDr) maintain normoglycemia on either diet. The IPC procedure improved the post-ischemic recovery of normoglycemic hearts (CDr-RD, CDr-HSD and CDs-RD). CDs-HSD hearts failed to show IPC-associated protection. The recovery of these CDs-HSD hearts following I/R (without prior IPC) was better than their RD controls. During IPC ferritin levels increased in normoglycemic hearts, and its level was maintained nearly constant during the subsequent prolonged ischemia, but decayed to its baseline level during the reperfusion phase. In CDs-HSD hearts the baseline levels of ferritin and ferritin-saturation with iron were notably higher than in the controls, and remained unchanged during the entire experiment. This unique and abnormal pattern of post-ischemic recovery of CDs-HSD hearts is associated with marked changes in myocardial iron homeostasis, and suggests that iron and iron-proteins play a causative role/s in the etiology of diabetes-associated cardiovascular disorders. PMID:27458721

  4. c-Myc over-expression in Ramos Burkitt's lymphoma cell line predisposes to iron homeostasis disruption in vitro

    International Nuclear Information System (INIS)

    Burkitt's lymphoma is an aggressive B-cell neoplasm resulting from deregulated c-myc expression. We have previously shown that proliferation of Burkitt's lymphoma cell lines such as Ramos is markedly reduced by iron treatment. It has been shown that iron induces expression of c-myc which, owing to its transcriptional regulatory functions, regulates genes involved in iron metabolism. Transient enhancement of c-myc expression by iron could increase the expression of genes involved in iron incorporation, which could lead to an accumulation of intracellular free iron. Here, we have investigated whether cells with a high basal level of c-Myc were more likely to accumulate free iron. Our results suggest that the basal level of c-Myc in Ramos cells is twofold higher than what is seen in HL-60 cells. Moreover, in Ramos cells, where c-Myc is expressed at a high level, H-ferritin expression is down-regulated, transferrin receptor (CD71) expression is increased, and ferritin translation is inhibited. These modifications in iron metabolism, resulting from the strong basal expression of c-Myc, and amplified by iron addition, could lead to a disruption in homeostasis and consequently to growth arrest

  5. Functional genomics of pH homeostasis in Corynebacterium glutamicum revealed novel links between pH response, oxidative stress, iron homeostasis and methionine synthesis

    Directory of Open Access Journals (Sweden)

    Persicke Marcus

    2009-12-01

    Full Text Available Abstract Background The maintenance of internal pH in bacterial cells is challenged by natural stress conditions, during host infection or in biotechnological production processes. Comprehensive transcriptomic and proteomic analyses has been conducted in several bacterial model systems, yet questions remain as to the mechanisms of pH homeostasis. Results Here we present the comprehensive analysis of pH homeostasis in C. glutamicum, a bacterium of industrial importance. At pH values between 6 and 9 effective maintenance of the internal pH at 7.5 ± 0.5 pH units was found. By DNA microarray analyses differential mRNA patterns were identified. The expression profiles were validated and extended by 1D-LC-ESI-MS/MS based quantification of soluble and membrane proteins. Regulators involved were identified and thereby participation of numerous signaling modules in pH response was found. The functional analysis revealed for the first time the occurrence of oxidative stress in C. glutamicum cells at neutral and low pH conditions accompanied by activation of the iron starvation response. Intracellular metabolite pool analysis unraveled inhibition of the TCA and other pathways at low pH. Methionine and cysteine synthesis were found to be activated via the McbR regulator, cysteine accumulation was observed and addition of cysteine was shown to be toxic under acidic conditions. Conclusions Novel limitations for C. glutamicum at non-optimal pH values were identified by a comprehensive analysis on the level of the transcriptome, proteome, and metabolome indicating a functional link between pH acclimatization, oxidative stress, iron homeostasis, and metabolic alterations. The results offer new insights into bacterial stress physiology and new starting points for bacterial strain design or pathogen defense.

  6. Arabidopsis HY1 Confers Cadmium Toleranceby Decreasing Nitric Oxide Production andImproving Iron Homeostasis

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Up-regulation of the gene that encodes intracellular heme oxygenase 1 (HO1) benefits plants under cad-mium (Cd2+) stress; however, the molecular mechanisms remain unclear. Here, we elucidate the role of Arabidopsis HY1(AtHO1) in Cd2+ tolerance by using genetic and molecular approaches. Analysis of two HY1 null mutants, three HY1 over-expression lines, HO double or triple mutants, as well as phyA and phyB mutants revealed the specific hypersensitivityof by1 to Cd2+ stress. Supplementation with two enzymatic by-products of HY1, carbon monoxide (CO) and iron (Fe,especially), rescued the Cd2+-induced inhibition of primary root (PR) elongation in hy1-100. The mutation of HY1, whichexhibited lower glutathione content than Col-0 in root tissues, was able to induce nitric oxide (NO) overproduction,Cd2+ accumulation, and severe Fe deficiency in root tissues. However, the contrasting responses appeared in 35S:HY1-4.Additionally, reduced levels of Ferric Reduction Oxidase 2 (FRO2) and Iron-Regulated Transporter 1 (IRT1) transcripts,and increased levels of Heavy Metal ATPase 2/4 (HMA2/4) transcripts bolster the notion that HY1 up-regulation amelio-rates Fe deficiency, and might increase Cd2+ exclusion. Taken together, these results showed that HY1 plays a commonlink in Cd2+ tolerance by decreasing NO production and improving Fe homeostasis in Arabidopsis root tissues.

  7. Single-cell-based system to monitor carrier driven cellular auxin homeostasis

    Czech Academy of Sciences Publication Activity Database

    Barbez, E.; Laňková, Martina; Pařezová, Markéta; Maizel, A.; Zažímalová, Eva; Petrášek, Jan; Friml, J.; Kleine-Vehn, J.

    2013-01-01

    Roč. 13, FEB 4 (2013). ISSN 1471-2229 R&D Projects: GA ČR(CZ) GAP305/11/0797; GA ČR(CZ) GAP305/11/2476 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin homeostasis * DR5 * Auxin carrier Subject RIV: ED - Physiology Impact factor: 3.942, year: 2013

  8. Isolation and characterization of Lotus japonicus genes involved in iron and zinc homeostasis

    DEFF Research Database (Denmark)

    Cvitanich, Cristina; Jensen, Winnie; Sandal, Niels Nørgaard; Jensen, Dorthe Bødker; Busk, Hanne; Husted, Søren; Stougaard, Jens; Jensen, Erik Østergaard

    The goal of this project is to find ways to improve the nutritional value of legumes by identifying genes and proteins important for iron and zinc regulation in the model legume Lotus japonicus. Legumes are important staples in the developing world and are a major source of nutrients in many areas....... Legumes are frequently grown in soil with limited nutrient availability. Plants use finely tuned mechanisms to keep appropriated levels of iron and zinc in each of their organs. Several genes involved in iron and zinc homeostasis have been described in yeast, and a few orthologs have been studied in...... plants. We have used these sequences to search for L. japonicus ESTs and genomic loci that are likely to be involved in iron and zinc metabolism. We have identified sequences corresponding to ferritins, ferric reductases, metal transport proteins of the ZIP family, and cation transporters of the NRAMP...

  9. Atherogenesis and iron: from epidemiology to cellular level

    OpenAIRE

    Vinchi, Francesca; Muckenthaler, Martina U.; Da Silva, Milene C.; Balla, György; Balla, József; Jeney, Viktória

    2014-01-01

    Iron accumulates in human atherosclerotic lesions but whether it is a cause or simply a downstream consequence of the atheroma formation has been an open question for decades. According to the so called “iron hypothesis,” iron is believed to be detrimental for the cardiovascular system, thus promoting atherosclerosis development and progression. Iron, in its catalytically active form, can participate in the generation of reactive oxygen species and induce lipid-peroxidation, triggering endoth...

  10. Atherogenesis and iron: from epidemiology to cellular level

    OpenAIRE

    ViktóriaJeney; FrancescaVinchi; GyörgyBalla

    2014-01-01

    Iron accumulates in human atherosclerotic lesions but whether it is a cause or simply a downstream consequence of the atheroma formation has been an open question for decades. According to the so called “iron hypothesis”, iron is believed to be detrimental for the cardiovascular system, thus promoting atherosclerosis development and progression. Iron, in its catalytically active form, can participate in the generation of reactive oxygen species and induce lipid-peroxidation, triggering endoth...

  11. S14G-humanin restored cellular homeostasis disturbed by amyloid-beta protein***

    Institute of Scientific and Technical Information of China (English)

    Xue Li; Wencong Zhao; Hongqi Yang; Junhong Zhang; Jianjun Ma

    2013-01-01

    Humanin is a potential therapeutic agent for Alzheimer’s disease, and its derivative, S14G-humanin, is 1 000-fold stronger in its neuroprotective effect against Alzheimer’s disease-relevant insults. Alt-hough effective, the detailed molecular mechanism through which S14G-humanin exerts its effects remains unclear. Data from this study showed that fibril ar amyloid-beta 40 disturbed cel ular ho-meostasis through the cel membrane, increasing intracel ular calcium, generating reactive oxygen species, and decreasing the mitochondrial membrane potential. S14G-humanin restored these re-sponses. The results suggested that S14G-humanin blocked the effects of amyloid-beta 40 on the neuronal cel membrane, and restored the disturbed cel ular homeostasis, thereby exerting a neuroprotective effect on hippocampal neurons.

  12. Phenotype enhancement screen of a regulatory spx mutant unveils a role for the ytpQ gene in the control of iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Peter Zuber

    Full Text Available Spx is a global regulator of genes that are induced by disulfide stress in Bacillus subtilis. The regulon that it governs is comprised of over 120 genes based on microarray analysis, although it is not known how many of these are under direct Spx control. Most of the Spx-regulated genes (SRGs are of unknown function, but many encode products that are conserved in low %GC Gram-positive bacteria. Using a gene-disruption library of B. subtilis genomic mutations, the SRGs were screened for phenotypes related to Spx-controlled activities, such as poor growth in minimal medium and sensitivity to methyglyoxal, but nearly all of the SRG mutations showed little if any phenotype. To uncover SRG function, the mutations were rescreened in an spx mutant background to determine which mutant SRG allele would enhance the spx mutant phenotype. One of the SRGs, ytpQ was the site of a mutation that, when combined with an spx null mutation, elevated the severity of the Spx mutant phenotype, as shown by reduced growth in a minimal medium and by hypersensitivity to methyglyoxal. The ytpQ mutant showed elevated oxidative protein damage when exposed to methylglyoxal, and reduced growth rate in liquid culture. Proteomic and transcriptomic data indicated that the ytpQ mutation caused the derepression of the Fur and PerR regulons of B. subtilis. Our study suggests that the ytpQ gene, encoding a conserved DUF1444 protein, functions directly or indirectly in iron homeostasis. The ytpQ mutant phenotype mimics that of a fur mutation, suggesting a condition of low cellular iron. In vitro transcription analysis indicated that Spx stimulates transcription from the ytpPQR operon within which the ytpQ gene resides. The work uncovers a link between Spx and control of iron homeostasis.

  13. Cellular Catabolism of the Iron-Regulatory Peptide Hormone Hepcidin

    OpenAIRE

    Preza, Gloria Cuevas; Pinon, Rogelio; Ganz, Tomas; Nemeth, Elizabeta

    2013-01-01

    Hepcidin, a 25-amino acid peptide hormone, is the principal regulator of plasma iron concentrations. Hepcidin binding to its receptor, the iron exporter ferroportin, induces ferroportin internalization and degradation, thus blocking iron efflux from cells into plasma. The aim of this study was to characterize the fate of hepcidin after binding to ferroportin. We show that hepcidin is taken up by ferroportin-expressing cells in a temperature- and pH-dependent manner, and degraded together with...

  14. Anaemia and Iron Homeostasis in a Cohort of HIV-Infected Patients: A Cross-Sectional Study in Ghana

    Directory of Open Access Journals (Sweden)

    Christian Obirikorang

    2016-01-01

    Full Text Available Aim. We determined the prevalence of anaemia and evaluated markers of iron homeostasis in a cohort of HIV patients. Methods. A comparative cross-sectional study on 319 participants was carried out at the Tamale Teaching Hospital from July 2013 to December 2013, 219 patients on HAART (designated On-HAART and 100 HAART-naive patients. Data gathered include sociodemography, clinical history, and selected laboratory assays. Results. Prevalence of anaemia was 23.8%. On-HAART participants had higher CD4/CD3 lymphocyte counts, Hb, HCT/PCV, MCV, MCH, iron, ferritin, and TSAT (P<0.05. Hb, iron, ferritin, and TSAT decreased from grade 1 to grade 3 anaemia and CD4/CD3 lymphocyte count was lowest in grade 3 anaemia (P<0.05. Iron (P=0.0072 decreased with disease severity whilst transferrin (P=0.0143 and TIBC (P=0.0143 increased with disease severity. Seventy-six (23.8% participants fulfilled the criteria for anaemia, 86 (26.9% for iron deficiency, 41 (12.8% for iron deficiency anaemia, and 17 (5.3% for iron overload. The frequency of anaemia was higher amongst participants not on HAART (OR 2.6 for grade 1 anaemia; OR 3.0 for grade 3 anaemia. Conclusion. In this study population, HIV-associated anaemia is common and is related to HAART status and disease progression. HIV itself is the most important cause of anaemia and treatment of HIV should be a priority compared to iron supplementation.

  15. Heme oxygenase activity correlates with serum indices of iron homeostasis in healthy nonsmokers

    Science.gov (United States)

    Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirm...

  16. The critical role of the cellular thiol homeostasis in cadmium perturbation of the lung extracellular matrix

    International Nuclear Information System (INIS)

    Cadmium (Cd) inhalation can result in emphysema. Cd exposure of rat lung fibroblasts (RFL6) enhanced levels of metal scavenging thiols, e.g., metallothionein (MT) and glutathione (GSH), and the heavy chain of γ-glutamylcysteine synthetase (γ-GCS), a key enzyme for GSH biosynthesis, concomitant with downregulation of lysyl oxidase (LO), a copper-dependent enzyme for crosslinking collagen and elastin in the extracellular matrix (ECM). Cd downregulation of LO in treated cells was closely accompanied by suppression of synthesis of collagen, a major structure component of the lung ECM. Using rats intratracheally instilled with cadmium chloride (30 μg, once a week) as an animal model, we further demonstrated that although 2-week Cd instillation induced a non-significant change in the lung LO activity and collagen synthesis, 4- and 6-week Cd instillation resulted in a steady decrease in the lung LO and collagen expression. The lung MT and total GSH levels were both upregulated upon the long-term Cd exposure. Emphysematous lesions were generated in lungs of 6-week Cd-dosed rats. Increases of cellular thiols by transfection of cells with MT-II expression vectors or treatment of cells with GSH monoethyl ester, a GSH delivery system, markedly inhibited LO mRNA levels and catalytic activities in the cell model. Thus, Cd upregulation of cellular thiols may be a critical cellular event facilitating downregulation of LO, a potential mechanism for Cd-induced emphysema.

  17. High dose intravenous iron, mineral homeostasis and intact FGF23 in normal and uremic rats

    DEFF Research Database (Denmark)

    Gravesen, Eva; Hofman-Bang, Jacob; Mace, Maria L.;

    2013-01-01

    High iron load might have a number of toxic effects in the organism. Recently intravenous (iv) iron has been proposed to induce elevation of fibroblast growth factor 23 (FGF23), hypophosphatemia and osteomalacia in iron deficient subjects. High levels of FGF23 are associated with increased mortal...

  18. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic......, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to...... present and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation...

  19. Effects of cellular iron deficiency on the formation of vascular endothelial growth factor and angiogenesis. Iron deficiency and angiogenesis

    Directory of Open Access Journals (Sweden)

    Eckard Jonathan

    2010-08-01

    Full Text Available Abstract Background Young women diagnosed with breast cancer are known to have a higher mortality rate from the disease than older patients. Specific risk factors leading to this poorer outcome have not been identified. In the present study, we hypothesized that iron deficiency, a common ailment in young women, contributes to the poor outcome by promoting the hypoxia inducible factor-1α (HIF-1α and vascular endothelial growth factor (VEGF formation. This hypothesis was tested in an in vitro cell culture model system. Results Human breast cancer MDA-MB-231 cells were transfected with transferrin receptor-1 (TfR1 shRNA to constitutively impair iron uptake. Cellular iron status was determined by a set of iron proteins and angiogenesis was evaluated by levels of VEGF in cells as well as by a mouse xenograft model. Significant decreases in ferritin with concomitant increases in VEGF were observed in TfR1 knockdown MDA-MB-231 cells when compared to the parental cells. TfR1 shRNA transfectants also evoked a stronger angiogenic response after the cells were injected subcutaneously into nude mice. The molecular mechanism appears that cellular iron deficiency elevates VEGF formation by stabilizing HIF-1α. This mechanism is also true in human breast cancer MCF-7 and liver cancer HepG2 cells. Conclusions Cellular iron deficiency increased HIF-1α, VEGF, and angiogenesis, suggesting that systemic iron deficiency might play an important part in the tumor angiogenesis and recurrence in this young age group of breast cancer patients.

  20. Ferritin polarization and iron transport across monolayer epithelial barriers in mammals

    Directory of Open Access Journals (Sweden)

    EstherG.Meyron-Holtz

    2014-08-01

    Iron is an essential element but toxic at excess. Therefore, all iron-requiring organisms tightly regulate iron concentrations on systemic and cellular levels. In contrast to most cell types that control just their own iron homeostasis, EBCs also regulate homeostasis of the compartment they enclose or the body as a whole. Iron is transported across EBCs by specialized transporters such as the transferrin receptor and ferroportin. Recently, the iron storage protein ferritin was also attributed a role in the regulation of systemic iron homeostasis and we gathered evidence from the literature and original data that ferritin is polarized in EBC, suggesting also a role for ferritin in iron trafficking across EBCs.

  1. An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis

    OpenAIRE

    Chen, Changbin; Pande, Kalyan; French, Sarah D.; Tuch, Brian B.; Noble, Suzanne M.

    2011-01-01

    The mammalian gastrointestinal tract and bloodstream are highly disparate biological niches that differ in concentrations of nutrients such as iron. However, some commensal-pathogenic microorganisms, such as the yeast Candida albicans, thrive in both environments. We report the evolution of a transcription circuit in C. albicans that controls iron uptake and determines its fitness in both niches. Our analysis of DNA-binding proteins that regulate iron uptake by this organism suggests the evol...

  2. Identification of two genes potentially associated in iron-heme homeostasis in human carotid plaque using microarray analysis

    Indian Academy of Sciences (India)

    Hanène Ayari; Giampiero Bricca

    2013-06-01

    Classic characteristics are poor predictors of the risk of thromboembolism. Thus, better markers for the carotid atheroma plaque formation and symptom causing are needed. Our objective was to study by microarray analysis gene expression of genes involved in homeostasis of iron and heme in carotid atheroma plaque from the same patient. mRNA gene expression was measured by an Affymetrix GeneChip Human Gene 1.0 ST arrays (Affymetrix, Santa Clara, CA, USA) using RNA prepared from 68 specimens of endarteriectomy from 34 patients. Two genes involved in iron-heme homeostasis, CD163 and heme oxygenase (HO-1), were analysed in 34 plaques. CD163 (2.18, =1.45E−08) and HO-1 (fold-change 2.67, =2.07E−09) mRNAs were induced. We suggest that atheroma plaques show a more pronounced induction of CD163 and HO-1. Although further evidence is needed, our results support previous data. To our knowledge, this is the first report comparing gene expression between intact arterial tissue and carotid plaque using microarray analysis.

  3. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress.

    Science.gov (United States)

    Hernández, Luis E; Sobrino-Plata, Juan; Montero-Palmero, M Belén; Carrasco-Gil, Sandra; Flores-Cáceres, M Laura; Ortega-Villasante, Cristina; Escobar, Carolina

    2015-05-01

    The accumulation of toxic metals and metalloids, such as cadmium (Cd), mercury (Hg), or arsenic (As), as a consequence of various anthropogenic activities, poses a serious threat to the environment and human health. The ability of plants to take up mineral nutrients from the soil can be exploited to develop phytoremediation technologies able to alleviate the negative impact of toxic elements in terrestrial ecosystems. However, we must select plant species or populations capable of tolerating exposure to hazardous elements. The tolerance of plant cells to toxic elements is highly dependent on glutathione (GSH) metabolism. GSH is a biothiol tripeptide that plays a fundamental dual role: first, as an antioxidant to mitigate the redox imbalance caused by toxic metal(loid) accumulation, and second as a precursor of phytochelatins (PCs), ligand peptides that limit the free ion cellular concentration of those pollutants. The sulphur assimilation pathway, synthesis of GSH, and production of PCs are tightly regulated in order to alleviate the phytotoxicity of different hazardous elements, which might induce specific stress signatures. This review provides an update on mechanisms of tolerance that depend on biothiols in plant cells exposed to toxic elements, with a particular emphasis on the Hg-triggered responses, and considering the contribution of hormones to their regulation. PMID:25750419

  4. Cellular catabolism of the iron-regulatory peptide hormone hepcidin.

    Directory of Open Access Journals (Sweden)

    Gloria Cuevas Preza

    Full Text Available Hepcidin, a 25-amino acid peptide hormone, is the principal regulator of plasma iron concentrations. Hepcidin binding to its receptor, the iron exporter ferroportin, induces ferroportin internalization and degradation, thus blocking iron efflux from cells into plasma. The aim of this study was to characterize the fate of hepcidin after binding to ferroportin. We show that hepcidin is taken up by ferroportin-expressing cells in a temperature- and pH-dependent manner, and degraded together with its receptor. When Texas red-labeled hepcidin (TR-Hep was added to ferroportin-GFP (Fpn-GFP expressing cells, confocal microscopy showed co-localization of TR-Hep with Fpn-GFP. Using flow cytometry, we showed that the peptide was almost completely degraded by 24 h after its addition, but that lysosomal inhibitors completely prevented degradation of both ferroportin and hepcidin. In addition, using radio-labeled hepcidin and HPLC analysis we show that hepcidin is not recycled, and that only degradation products are released from the cells. Together these results show that the hormone hepcidin and its receptor ferroportin are internalized together and trafficked to lysosomes where both are degraded.

  5. Deposition of plutonium-238 injected intratracheally within different skeleton bones iron homeostasis being changed

    International Nuclear Information System (INIS)

    A study was made of the distribution of plutonium-239 injected intratracheally within different bones of the skeleton, the iron status in the blood being changed. The iron preparation caused 2.5-3-fold decrease in the plutonium loading onto cancellous bone tissue that displayed, in ordinary conditions, a higher tropism to the radionuclide than a cortical highly mineralized bone did

  6. When Less is More: Novel Mechanisms of Iron Conservation

    OpenAIRE

    Bayeva, Marina; Chang, Hsiang-Chun; Wu, Rongxue; Ardehali, Hossein

    2013-01-01

    Disorders of iron homeostasis are very common, yet the molecular mechanisms of iron regulation remain understudied. Over 20 years have passed since the first characterization of iron regulatory proteins (IRP) as mediators of cellular iron deficiency response in mammals through iron acquisition. However, little is known about other mechanisms necessary for adaptation to low-iron states. In this review we present recent evidence that establishes existence of a new iron regulatory pathway aimed ...

  7. Influence of microRNA on the Maintenance of Human Iron Metabolism

    Directory of Open Access Journals (Sweden)

    Stephen Clarke

    2013-07-01

    Full Text Available Iron is an essential nutrient critical for many cellular functions including DNA synthesis, ATP generation, and cellular proliferation. Though essential, excessive iron may contribute to the generation of free radicals capable of damaging cellular lipids, proteins, and nucleic acids. As such, the maintenance and control of cellular iron homeostasis is critical to prevent either iron deficiency or iron toxicity conditions. The maintenance of cellular iron homeostasis is largely coordinated by a family of cytosolic RNA binding proteins known as Iron Regulatory Proteins (IRP that function to post-transcriptionally control the translation and/or stability of mRNA encoding proteins required for iron uptake, storage, transport, and utilization. More recently, a class of small non-coding RNA known as microRNA (miRNA has also been implicated in the control of iron metabolism. To date, miRNA have been demonstrated to post-transcriptionally regulate the expression of genes associated with iron acquisition (transferrin receptor and divalent metal transporter, iron export (ferroportin, iron storage (ferritin, iron utilization (ISCU, and coordination of systemic iron homeostasis (HFE and hemojevelin. Given the diversity of miRNA and number of potential mRNA targets, characterizing factors that contribute to alterations in miRNA expression, biogenesis, and processing will enhance our understanding of mechanisms by which cells respond to changes in iron demand and/or iron availability to control cellular iron homeostasis.

  8. The Abnormal Measures of Iron Homeostasis in Pediatric Obesity Are Associated with the Inflammation of Obesity

    Directory of Open Access Journals (Sweden)

    Visintainer PaulF

    2009-08-01

    Full Text Available Objectives. To determine if the low iron state described in obese children is associated with the chronic inflammatory state seen in obesity. Study Design. Obese children age from 2 to 19 years seen at a weight management clinic were studied prospectively. Data were collected on age, gender, BMI, BMI -score, serum iron, ferritin, transferrin saturation, free erythrocyte protoporphyrin, high sensitivity creactive protein (hs-crp, and hemoglobin concentration. Results. 107 subjects were studied. Hs-crp levels correlated positively with BMI and BMI -score and negatively with serum iron . 11.2% of subjects had low serum iron. Median serum iron was significantly lower for subjects with American Heart Association high risk hs-crp values (3 mg/L compared to those with low risk hs-crp (1 mg/L, (65 mcg/dL versus 96 mcg/dL, . After adjusting for age, gender, and BMI -score, serum iron was still negatively associated with hs-crp . Conclusions. We conclude that the chronic inflammation of obesity results in the low iron state previously reported in obese children, similar to what is seen in other inflammatory diseases.

  9. The role of hepatic transferrin receptor 2 in the regulation of iron homeostasis in the body.

    Directory of Open Access Journals (Sweden)

    Christal A Worthen

    2014-03-01

    Full Text Available Fine tuning of body iron is required to prevent diseases such as iron-overload and anemia. The putative iron-sensor, transferrin receptor 2 (TfR2, is expressed in the liver and mutations in this protein result in the iron-overload disease Type III hereditary hemochromatosis (HH. With the loss of functional TfR2, the liver produces about two-fold less of the peptide hormone hepcidin, which is responsible for negatively regulating iron uptake from the diet. This reduction in hepcidin expression leads to the slow accumulation of iron in the liver, heart, joints, and pancreas and subsequent cirrhosis, heart disease, arthritis, and diabetes. TfR2 can bind iron-loaded transferrin in the bloodstream, and hepatocytes treated with transferrin respond with a two-fold increase in hepcidin expression through stimulation of the BMP-signaling pathway. Loss of functional TfR2 or its binding partner, the original HH protein (HFE, results in a loss of this transferrin-sensitivity. While much is known about the trafficking and regulation of TfR2, the mechanism of its transferrin-sensitivity through the BMP-signaling pathway is still not known.

  10. Effects of environmental pollutants on cellular iron homeostasis and ultimate links to human disease

    Science.gov (United States)

    Chronic disease has increased in the last several decades, and environmental pollutants have been implicated. The magnitude and variety of diseases indicate the malfunctioning of some basic mechanism underlying human health. Environmental pollutants demonstrate a capability to co...

  11. Robust intestinal homeostasis relies on cellular plasticity in enteroblasts mediated by miR-8–Escargot switch

    Science.gov (United States)

    Antonello, Zeus A; Reiff, Tobias; Ballesta-Illan, Esther; Dominguez, Maria

    2015-01-01

    The intestinal epithelium is remarkably robust despite perturbations and demand uncertainty. Here, we investigate the basis of such robustness using novel tracing methods that allow simultaneously capturing the dynamics of stem and committed progenitor cells (called enteroblasts) and intestinal cell turnover with spatiotemporal resolution. We found that intestinal stem cells (ISCs) divide “ahead” of demand during Drosophila midgut homeostasis. Their newborn enteroblasts, on the other hand, take on a highly polarized shape, acquire invasive properties and motility. They extend long membrane protrusions that make cell–cell contact with mature cells, while exercising a capacity to delay their final differentiation until a local demand materializes. This cellular plasticity is mechanistically linked to the epithelial–mesenchymal transition (EMT) programme mediated by escargot, a snail family gene. Activation of the conserved microRNA miR-8/miR-200 in “pausing” enteroblasts in response to a local cell loss promotes timely terminal differentiation via a reverse MET by antagonizing escargot. Our findings unveil that robust intestinal renewal relies on hitherto unrecognized plasticity in enteroblasts and reveal their active role in sensing and/or responding to local demand. PMID:26077448

  12. Robust intestinal homeostasis relies on cellular plasticity in enteroblasts mediated by miR-8-Escargot switch.

    Science.gov (United States)

    Antonello, Zeus A; Reiff, Tobias; Ballesta-Illan, Esther; Dominguez, Maria

    2015-08-01

    The intestinal epithelium is remarkably robust despite perturbations and demand uncertainty. Here, we investigate the basis of such robustness using novel tracing methods that allow simultaneously capturing the dynamics of stem and committed progenitor cells (called enteroblasts) and intestinal cell turnover with spatiotemporal resolution. We found that intestinal stem cells (ISCs) divide "ahead" of demand during Drosophila midgut homeostasis. Their newborn enteroblasts, on the other hand, take on a highly polarized shape, acquire invasive properties and motility. They extend long membrane protrusions that make cell-cell contact with mature cells, while exercising a capacity to delay their final differentiation until a local demand materializes. This cellular plasticity is mechanistically linked to the epithelial-mesenchymal transition (EMT) programme mediated by escargot, a snail family gene. Activation of the conserved microRNA miR-8/miR-200 in "pausing" enteroblasts in response to a local cell loss promotes timely terminal differentiation via a reverse MET by antagonizing escargot. Our findings unveil that robust intestinal renewal relies on hitherto unrecognized plasticity in enteroblasts and reveal their active role in sensing and/or responding to local demand. PMID:26077448

  13. Anemia and iron homeostasis in a cohort of HIV-infected patients in Indonesia

    Directory of Open Access Journals (Sweden)

    Jusuf Hadi

    2011-08-01

    Full Text Available Abstract Background Anemia is a common clinical finding in HIV-infected patients and iron deficiency or redistribution may contribute to the development of low hemoglobin levels. Iron overload is associated with a poor prognosis in HIV and Hepatitis C virus infections. Iron redistribution may be caused by inflammation but possibly also by hepatitis C co-infection. We examined the prevalence of anemia and its relation to mortality in a cohort of HIV patients in a setting where injecting drug use (IDU is a main mode of HIV transmission, and measured serum ferritin and sTfR, in relation to anemia, inflammation, stage of HIV disease, ART and HCV infection. Methods Patient characteristics, ART history and iron parameters were recorded from adult HIV patients presenting between September 2007 and August 2009 in the referral hospital for West Java, Indonesia. Kaplan-Meier estimates and Cox's regression were used to assess factors affecting survival. Logistic regression was used to identity parameters associated with high ferritin concentrations. Results Anemia was found in 49.6% of 611 ART-naïve patients, with mild (Hb 10.5 - 12.99 g/dL for men; and 10.5 - 11.99 g/dL for women anemia in 62.0%, and moderate to severe anemia (Hb Conclusion HIV-associated anemia is common among HIV-infected patients in Indonesia and strongly related to mortality. High ferritin with low sTfR levels suggest that iron redistribution and low erythropoietic activity, rather than iron deficiency, contribute to anemia. Serum ferritin and sTfR should be used cautiously to assess iron status in patients with advanced HIV infection.

  14. Interference of nickel with copper and iron homeostasis contributes to metal toxicity symptoms in the nickel hyperaccumulator plant Alyssum inflatum.

    Science.gov (United States)

    Ghasemi, Rasoul; Ghaderian, S Majid; Krämer, Ute

    2009-11-01

    The divalent cations of several transition metal elements have similar chemical properties and, when present in excess, one metal can interfere with the homeostasis of another. To better understand the role of interactions between transition metals in the development of metal toxicity symptoms in plants, the effects of exposure to excess nickel (Ni) on copper (Cu) and iron (Fe) homeostasis in the Ni hyperaccumulator plant Alyssum inflatum were examined. Alyssum inflatum was hypertolerant to Ni, but not to Cu. Exposure to elevated subtoxic Ni concentrations increased Cu sensitivity, associated with enhanced Cu accumulation and enhanced root surface Cu(II)-specific reductase activity. Exposure to elevated Ni concentrations resulted in an inhibition of root-to-shoot translocation of Fe and concentration-dependent progressive Fe accumulation in root pericycle, endodermis and cortex cells of the differentiation zone. Shoot Fe concentrations, chlorophyll concentrations and Fe-dependent antioxidant enzyme activities were decreased in Ni-exposed plants when compared with unexposed controls. Foliar Fe spraying or increased Fe supply to roots ameliorated the chlorosis observed under exposure to high Ni concentrations. These results suggest that Ni interferes with Cu regulation and that the disruption of root-to-shoot Fe translocation is a major cause of nickel toxicity symptoms in A. inflatum. PMID:19691676

  15. Effect of iron poly (sorbitolgluconic acid) complex on urinary cellular excretion.

    Science.gov (United States)

    Elliott, H L; Lawrence, J R; Campbell, B C; Goldberg, A; Smart, L E

    1981-01-01

    The intramuscular injection of 250 mg iron poly (sorbitol-gluconic acid) complex caused no increase in urinary cellular or bacterial excretion in 8 patients with chronic pyelonephritis, 4 patients with non-infective renal disease, and 4 controls. However, in 4 patients with chronic infective disease of the renal tract given 500 g there was a significant increase in cellular excretion. This response was not seen in 2 control patients, nor in 2 patients with non-infective renal disease. Using a differential staining technique, this increase in urinary cellular excretion was found to be due, not to leucocytes, but to renal tubular cells. The precise significance of this is unclear, but there would be concern that the high concentration of excreted iron was providing a 'toxic' insult to susceptible, infection-damaged cells. PMID:7226874

  16. Lipocalin 2 deficiency dysregulates iron homeostasis and exacerbates endotoxin-induced sepsis

    DEFF Research Database (Denmark)

    Srinivasan, Gayathri; Aitken, Jesse D; Zhang, Benyue;

    2012-01-01

    elevated intracellular labile iron. In this study, we report that LPS induced systemic Lcn2 by 150-fold in wild-type mice at 24 h. Relative to wild-type littermates, Lcn2KO mice were markedly more sensitive to endotoxemia, exhibiting elevated indices of organ damage (transaminasemia, lactate dehydrogenase......) and increased mortality. Such exacerbated endotoxemia was associated with substantially increased caspase-3 cleavage and concomitantly elevated immune cell apoptosis. Furthermore, cells from Lcn2KO mice were hyperresponsive to LPS ex vivo, exhibiting elevated cytokine secretion. Additionally, Lcn2KO...... mice exhibited delayed LPS-induced hypoferremia despite normal hepatic hepcidin expression and displayed decreased levels of the tissue redox state indicators cysteine and glutathione in liver and plasma. Desferroxamine, an iron chelator, significantly protects Lcn2KO mice from LPS-induced toxicity...

  17. Involvement of the Iron Regulatory Protein from Eisenia andrei Earthworms in the Regulation of Cellular Iron Homeostasis

    Czech Academy of Sciences Publication Activity Database

    Procházková, Petra; Škanta, František; Roubalová, Radka; Šilerová, Marcela; Dvořák, Jiří; Bilej, Martin

    2014-01-01

    Roč. 9, č. 10 (2014). E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.20.0055 Institutional support: RVO:61388971 Keywords : MULTIPLE SEQUENCE ALIGNMENT * ELEMENT- BINDING PROTEIN * FERRITIN MESSENGER-RNA Subject RIV: EE - Microbiology, Virology Impact factor: 3.234, year: 2014

  18. Involvement of the Iron Regulatory Protein from Eisenia andrei Earthworms in the Regulation of Cellular Iron Homeostasis

    Czech Academy of Sciences Publication Activity Database

    Procházková, Petra; Škanta, František; Roubalová, Radka; Šilerová, Marcela; Dvořák, Jiří; Bilej, Martin

    2014-01-01

    Roč. 9, č. 10 (2014). E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.20.0055 Institutional support: RVO:61388971 Keywords : MULTIPLE SEQUENCE ALIGNMENT * ELEMENT-BINDING PROTEIN * FERRITIN MESSENGER-RNA Subject RIV: EE - Microbiology, Virology Impact factor: 3.234, year: 2014

  19. Role of Saccharomyces cerevisiae ISA1 and ISA2 in Iron Homeostasis

    OpenAIRE

    Jensen, Laran T.; Culotta, Valeria Cizewski

    2000-01-01

    The budding yeast Saccharomyces cerevisiae contains two homologues of bacterial IscA proteins, designated Isa1p and Isa2p. Bacterial IscA is a product of the isc (iron-sulfur cluster) operon and has been suggested to participate in Fe-S cluster formation or repair. To test the function of yeast Isa1p and Isa2p, single or combinatorial disruptions were introduced in ISA1 and ISA2. The resultant isaΔ mutants were viable but exhibited a dependency on lysine and glutamate for growth and a respira...

  20. Hepcidin, a new iron regulatory peptide.

    Science.gov (United States)

    Nicolas, Gaël; Viatte, Lydie; Bennoun, Myriam; Beaumont, Carole; Kahn, Axel; Vaulont, Sophie

    2002-01-01

    Maintaining normal iron homeostasis is essential for the organism, as both iron deficiency and iron excess are associated with cellular dysfunction. Recently, several lines of evidence have suggested that hepcidin, a peptide mainly produced by the liver, plays a major role in the control of body iron homeostasis. The subject of this paper is to summarize the advances toward the understanding of function and regulation of hepcidin in iron metabolism and to provide new data on the regulation of hepcidin gene expression by erythropoietin, the major regulator of mammalian erythropoiesis. PMID:12547223

  1. Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia.

    Directory of Open Access Journals (Sweden)

    Tolunay Beker Aydemir

    Full Text Available ZIP14 (slc39A14 is a zinc transporter induced in response to pro-inflammatory stimuli. ZIP14 induction accompanies the reduction in serum zinc (hypozincemia of acute inflammation. ZIP14 can transport Zn(2+ and non-transferrin-bound Fe(2+ in vitro. Using a Zip14(-/- mouse model we demonstrated that ZIP14 was essential for control of phosphatase PTP1B activity and phosphorylation of c-Met during liver regeneration. In the current studies, a global screening of ZIP transporter gene expression in response to LPS-induced endotoxemia was conducted. Following LPS, Zip14 was the most highly up-regulated Zip transcript in liver, but also in white adipose tissue and muscle. Using ZIP14(-/- mice we show that ZIP14 contributes to zinc absorption from the gastrointestinal tract directly or indirectly as zinc absorption was decreased in the KOs. In contrast, Zip14(-/- mice absorbed more iron. The Zip14 KO mice did not exhibit hypozincemia following LPS, but do have hypoferremia. Livers of Zip14-/- mice had increased transcript abundance for hepcidin, divalent metal transporter-1, ferritin and transferrin receptor-1 and greater accumulation of iron. The Zip14(-/- phenotype included greater body fat, hypoglycemia and higher insulin levels, as well as increased liver glucose and greater phosphorylation of the insulin receptor and increased GLUT2, SREBP-1c and FASN expression. The Zip14 KO mice exhibited decreased circulating IL-6 with increased hepatic SOCS-3 following LPS, suggesting SOCS-3 inhibited insulin signaling which produced the hypoglycemia in this genotype. The results are consistent with ZIP14 ablation yielding abnormal labile zinc pools which lead to increased SOCS-3 production through G-coupled receptor activation and increased cAMP production as well as signaled by increased pSTAT3 via the IL-6 receptor, which inhibits IRS 1/2 phosphorylation. Our data show the role of ZIP14 in the hepatocyte is multi-functional since zinc and iron trafficking are

  2. Zinc Transporter ZIP14 Functions in Hepatic Zinc, Iron and Glucose Homeostasis during the Innate Immune Response (Endotoxemia)

    Science.gov (United States)

    Beker Aydemir, Tolunay; Chang, Shou-Mei; Guthrie, Gregory J.; Maki, Alyssa B.; Ryu, Moon-Suhn; Karabiyik, Afife; Cousins, Robert J.

    2012-01-01

    ZIP14 (slc39A14) is a zinc transporter induced in response to pro-inflammatory stimuli. ZIP14 induction accompanies the reduction in serum zinc (hypozincemia) of acute inflammation. ZIP14 can transport Zn2+ and non-transferrin-bound Fe2+ in vitro. Using a Zip14−/− mouse model we demonstrated that ZIP14 was essential for control of phosphatase PTP1B activity and phosphorylation of c-Met during liver regeneration. In the current studies, a global screening of ZIP transporter gene expression in response to LPS-induced endotoxemia was conducted. Following LPS, Zip14 was the most highly up-regulated Zip transcript in liver, but also in white adipose tissue and muscle. Using ZIP14−/− mice we show that ZIP14 contributes to zinc absorption from the gastrointestinal tract directly or indirectly as zinc absorption was decreased in the KOs. In contrast, Zip14−/− mice absorbed more iron. The Zip14 KO mice did not exhibit hypozincemia following LPS, but do have hypoferremia. Livers of Zip14−/− mice had increased transcript abundance for hepcidin, divalent metal transporter-1, ferritin and transferrin receptor-1 and greater accumulation of iron. The Zip14−/− phenotype included greater body fat, hypoglycemia and higher insulin levels, as well as increased liver glucose and greater phosphorylation of the insulin receptor and increased GLUT2, SREBP-1c and FASN expression. The Zip14 KO mice exhibited decreased circulating IL-6 with increased hepatic SOCS-3 following LPS, suggesting SOCS-3 inhibited insulin signaling which produced the hypoglycemia in this genotype. The results are consistent with ZIP14 ablation yielding abnormal labile zinc pools which lead to increased SOCS-3 production through G-coupled receptor activation and increased cAMP production as well as signaled by increased pSTAT3 via the IL-6 receptor, which inhibits IRS 1/2 phosphorylation. Our data show the role of ZIP14 in the hepatocyte is multi-functional since zinc and iron trafficking are

  3. Mitochondrial dysfunction and defects in lipid homeostasis as therapeutic targets in neurodegeneration with brain iron accumulation

    Science.gov (United States)

    Kinghorn, Kerri J.; Castillo-Quan, Jorge Iván

    2016-01-01

    ABSTRACT The PLA2G6 gene encodes a group VIA calcium independent phospholipase A2 (iPLA2β), which hydrolyses glycerophospholipids to release fatty acids and lysophospholipids. Mutations in PLA2G6 are associated with a number of neurodegenerative disorders including neurodegeneration with brain iron accumulation (NBIA), infantile neuroaxonal dystrophy (INAD), and dystonia parkinsonism, collectively known as PLA2G6-associated neurodegeneration (PLAN). Recently Kinghorn et al. demonstrated in Drosophila and PLA2G6 mutant fibroblasts that loss of normal PLA2G6 activity is associated with mitochondrial dysfunction and mitochondrial lipid peroxidation. Furthermore, they were able to show the beneficial effects of deuterated polyunsaturated fatty acids (D-PUFAs), which reduce lipid peroxidation. D-PUFAs were able to rescue the locomotor deficits of flies lacking the fly ortholog of PLA2G6 (iPLA2-VIA), as well as the mitochondrial abnormalities in PLA2G6 mutant fibroblasts. This work demonstrated that the iPLA2-VIA knockout fly is a useful organism to dissect the mechanisms of pathogenesis of PLAN, and that further investigation is required to determine the therapeutic potential of D-PUFAs in patients with PLA2G6 mutations. The fruit fly has also been used to study some of the other genetic causes of NBIA, and here we also describe what is known about the mechanisms of pathogenesis of these NBIA variants. Mitochondrial dysfunction, defects in lipid metabolism, as well as defective Coenzyme A (CoA) biosynthesis, have all been implicated in some genetic forms of NBIA, including PANK2, CoASY, C12orf19 and FA2H.

  4. Biological Properties of Iron Oxide Nanoparticles for Cellular and Molecular Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Claus-Christian Glüer

    2010-12-01

    Full Text Available Superparamagnetic iron-oxide particles (SPIO are used in different ways as contrast agents for magnetic resonance imaging (MRI: Particles with high nonspecific uptake are required for unspecific labeling of phagocytic cells whereas those that target specific molecules need to have very low unspecific cellular uptake. We compared iron-oxide particles with different core materials (magnetite, maghemite, different coatings (none, dextran, carboxydextran, polystyrene and different hydrodynamic diameters (20–850 nm for internalization kinetics, release of internalized particles, toxicity, localization of particles and ability to generate contrast in MRI. Particle uptake was investigated with U118 glioma cells und human umbilical vein endothelial cells (HUVEC, which exhibit different phagocytic properties. In both cell types, the contrast agents Resovist, B102, non-coated Fe3O4 particles and microspheres were better internalized than dextran-coated Nanomag particles. SPIO uptake into the cells increased with particle/iron concentrations. Maximum intracellular accumulation of iron particles was observed between 24 h to 36 h of exposure. Most particles were retained in the cells for at least two weeks, were deeply internalized, and only few remained adsorbed at the cell surface. Internalized particles clustered in the cytosol of the cells. Furthermore, all particles showed a low toxicity. By MRI, monolayers consisting of 5000 Resovist-labeled cells could easily be visualized. Thus, for unspecific cell labeling, Resovist and microspheres show the highest potential, whereas Nanomag particles are promising contrast agents for target-specific labeling.

  5. Ceruloplasmin Oxidation, a Feature of Parkinson's Disease CSF, Inhibits Ferroxidase Activity and Promotes Cellular Iron Retention

    KAUST Repository

    Olivieri, S.

    2011-12-14

    Parkinson\\'s disease is a neurodegenerative disorder characterized by oxidative stress and CNS iron deposition. Ceruloplasmin is an extracellular ferroxidase that regulates cellular iron loading and export, and hence protects tissues from oxidative damage. Using two-dimensional electrophoresis, we investigated ceruloplasmin patterns in the CSF of human Parkinson\\'s disease patients. Parkinson\\'s disease ceruloplasmin profiles proved more acidic than those found in healthy controls and in other human neurological diseases (peripheral neuropathies, amyotrophic lateral sclerosis, and Alzheimer\\'s disease); degrees of acidity correlated with patients\\' pathological grading. Applying an unsupervised pattern recognition procedure to the two-dimensional electrophoresis images, we identified representative pathological clusters. In vitro oxidation of CSF in two-dimensional electrophoresis generated a ceruloplasmin shift resembling that observed in Parkinson\\'s disease and co-occurred with an increase in protein carbonylation. Likewise, increased protein carbonylation was observed in Parkinson\\'s disease CSF, and the same modification was directly identified in these samples on ceruloplasmin. These results indicate that ceruloplasmin oxidation contributes to pattern modification in Parkinson\\'s disease. From the functional point of view, ceruloplasmin oxidation caused a decrease in ferroxidase activity, which in turn promotes intracellular iron retention in neuronal cell lines as well as in primary neurons, which are more sensitive to iron accumulation. Accordingly, the presence of oxidized ceruloplasmin in Parkinson\\'s disease CSF might be used as a marker for oxidative damage and might provide new insights into the underlying pathological mechanisms.

  6. Modelling of Eutectic Saturation Influence on Microstructure in Thin Wall Ductile Iron Casting Using Cellular Automata

    Directory of Open Access Journals (Sweden)

    M. Górny

    2012-12-01

    Full Text Available The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular AutomatonFinite Differences (CA-FD calculation method. Model has been used for studies of the primary austenite and of globular eutectic grainsgrowth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniformtemperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibriumnature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1 on microstructure (austenite and graphite fraction, density of austenite and graphite grains and temperature curves in 2 mm wall ductile iron casting has been done.

  7. Hiperpigmentación cutánea y homeostasis del hierro: rol de la hepcidina Cutaneous hyperpigmentation and homeostasis of iron: role of the hepcidin

    OpenAIRE

    Wolf, C

    2007-01-01

    La hiperpigmentación cutánea por melanina en zonas expuestas al sol puede estar asociada a un desequilibrio en la homeostasis del hierro. La hepcidina es un péptido responsable de la regulación negativa de la absorción del hierro en el intestino delgado y de su liberación por los macrófagos. Posee capacidad antimicrobiana. Es sintetizada en el hígado, secretada al torrente circulatorio y excretada por la orina. La sobreexpresión causa anemia y su déficit, sobrecarga de hierro (acumulación en ...

  8. An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium.

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. P.; Gorman-Lewis, D.; Aryal, B. P.; Paunesku, T.; Vogt, S.; Rickert, P. G.; Seifert, S.; Lai, B.; Woloschak, G. E.; Soderholm, L. (Chemical Sciences and Engineering Division); ( XSD); (Univ. of Chicago); (Northwestern Univ.)

    2011-08-01

    Plutonium is a toxic synthetic element with no natural biological function, but it is strongly retained by humans when ingested. Using small-angle X-ray scattering, receptor binding assays and synchrotron X-ray fluorescence microscopy, we find that rat adrenal gland (PC12) cells can acquire plutonium in vitro through the major iron acquisition pathway -- receptor-mediated endocytosis of the iron transport protein serum transferrin; however, only one form of the plutonium-transferrin complex is active. Low-resolution solution models of plutonium-loaded transferrins derived from small-angle scattering show that only transferrin with plutonium bound in the protein's C-terminal lobe (C-lobe) and iron bound in the N-terminal lobe (N-lobe) (Pu{sub c}Fe{sub N}Tf) adopts the proper conformation for recognition by the transferrin receptor protein. Although the metal-binding site in each lobe contains the same donors in the same configuration and both lobes are similar, the differences between transferrin's two lobes act to restrict, but not eliminate, cellular Pu uptake.

  9. Monomeric Yeast Frataxin is an Iron Binding Protein†

    OpenAIRE

    Cook, Jeremy D.; Bencze, Krisztina Z.; Jankovic, Ana D.; Crater, Anna K.; Busch, Courtney N.; Bradley, Patrick B.; Stemmler, Ann J.; Spaller, Mark R.; Stemmler, Timothy L.

    2006-01-01

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50,000 humans, is caused by decreased levels of the protein frataxin. Although nuclear encoded, frataxin is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into p...

  10. 2,3,7,8-Tetrachlorodibenzo-p-dioxin promotes BHV-1 infection in mammalian cells by interfering with iron homeostasis regulation.

    Directory of Open Access Journals (Sweden)

    Filomena Fiorito

    Full Text Available Mammalian cells require iron to satisfy metabolic needs or to accomplish specialized functions, and DNA viruses, like bovine herpesvirus 1 (BHV-1, require an iron-replete host to efficiently replicate, so that iron bioavailability is an important component of viral virulence. Cellular iron metabolism is coordinately controlled by the Iron Regulatory Proteins (IRP1 and IRP2, whose activity is affected by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a current and persistent environmental contaminant. Considering that TCDD enhances BHV-1 replication, herein we analyzed the effects of TCDD on iron metabolism during BHV-1 infection in MDBK cells, and presented evidences of a divergent modulation of IRP1 and IRP2 RNA-binding capacity. Moreover, an up-regulation of transferrin receptor 1 (TfR1 and a concomitant down-regulation of ferritin were observed. This scenario led to an expansion of the labile iron pool (LIP and induces a significant enhance of viral titer, as confirmed by increased levels of BHV-1 infected cell protein 0 (bICP0, the major transcriptional regulatory protein of BHV-1. Taken together, our data suggest that TCDD increases the free intracellular iron availability thereby promoting the onset of BHV-1 infection and rendering bovine cells more vulnerable to the virus.

  11. D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol alters cellular cholesterol homeostasis by modulating the endosome lipid domains.

    Science.gov (United States)

    Makino, Asami; Ishii, Kumiko; Murate, Motohide; Hayakawa, Tomohiro; Suzuki, Yusuke; Suzuki, Minoru; Ito, Kazuki; Fujisawa, Tetsuro; Matsuo, Hirotami; Ishitsuka, Reiko; Kobayashi, Toshihide

    2006-04-11

    D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) is a frequently used inhibitor of glycosphingolipid biosynthesis. However, some interesting characteristics of D-PDMP cannot be explained by the inhibition of glycolipid synthesis alone. In the present study, we showed that d-PDMP inhibits the activation of lysosomal acid lipase by late endosome/lysosome specific lipid, bis(monoacylglycero)phosphate (also called as lysobisphosphatidic acid), through alteration of membrane structure of the lipid. When added to cultured fibroblasts, D-PDMP inhibits the degradation of low-density lipoprotein (LDL) and thus accumulates both cholesterol ester and free cholesterol in late endosomes/lysosomes. This accumulation results in the inhibition of LDL-derived cholesterol esterification and the decrease of cell surface cholesterol. We showed that D-PDMP alters cellular cholesterol homeostasis in a glycosphingolipid-independent manner using L-PDMP, a stereoisomer of D-PDMP, which does not inhibit glycosphingolipid synthesis, and mutant melanoma cell which is defective in glycolipid synthesis. Altering cholesterol homeostasis by D-PDMP explains the unique characteristics of sensitizing multidrug resistant cells by this drug. PMID:16584188

  12. Effective Inhibition of Cellular ROS Production by MXCXXC-Type Peptides: Potential Therapeutic Applications in Copper-Homeostasis Disorders.

    Science.gov (United States)

    Shoshan, Michal S; Tshuva, Edit Y

    2016-06-27

    Cyclic and acyclic peptides with sequences derived from metallochaperone binding sites, but differing at position 2, were analyzed for their inhibitory reactivity towards cellular ROS (reactive oxygen species) formation and catalytic activity towards oxidation with H2 O2 , in comparison with three commercial drugs clinically employed in chelation therapy for Wilson's disease. Acyclic peptides were more effective inhibitors than the cyclic ones, with one leading peptide with threonine at position 2 systematically showing the highest efficiency in reducing cellular ROS levels and in inhibiting Cu oxidation. This peptide was more effective than all commercial drugs in all aspects analyzed, and showed no toxicity towards human colon HT-29 cancer cells at concentrations 10-100 times higher than the IC50 of the commercial drugs, corroborating its high medicinal potential. PMID:27124086

  13. Profiling human protein degradome delineates cellular responses to proteasomal inhibition and reveals a feedback mechanism in regulating proteasome homeostasis

    OpenAIRE

    Yu, Tao; Tao, Yonghui; Yang, Meiqiang; Chen, Peng; Gao, XiaoBo; Zhang, Yanbo; Zhang,Tao; Chen, Zi; Hou, Jian; Zhang, Yan; Ruan, Kangcheng; Wang, Hongyan; Hu, Ronggui

    2014-01-01

    Global change in protein turnover (protein degradome) constitutes a central part of cellular responses to intrinsic or extrinsic stimuli. However, profiling protein degradome remains technically challenging. Recently, inhibition of the proteasome, e.g., by using bortezomib (BTZ), has emerged as a major chemotherapeutic strategy for treating multiple myeloma and other human malignancies, but systematic understanding of the mechanisms for BTZ drug action and tumor drug resistance is yet to be a...

  14. Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice.

    Science.gov (United States)

    Gao, Lei; Chang, Jiadong; Chen, Ruijie; Li, Hubo; Lu, Hongfei; Tao, Longxing; Xiong, Jie

    2016-12-01

    Iron (Fe) is essential for rice growth and humans consuming as their staple food but is often deficient because of insoluble Fe(III) in soil for rice growth and limited assimilation for human bodies, while cadmium (Cd) is non-essential and toxic for rice growth and humans if accumulating at high levels. Over-accumulated Cd can cause damage to human bodies. Selecting and breeding Fe-rich but Cd-free rice cultivars are ambitious, challenging and meaningful tasks for researchers. Although evidences show that the mechanisms of Fe/Cd uptake and accumulation in rice are common to some extent as a result of similar entry routes within rice, an increasing number of researchers have discovered distinct mechanisms between Fe/Cd uptake and accumulation in rice. This comprehensive review systematically elaborates and compares cellular mechanisms of Fe/Cd uptake and accumulation in rice, respectively. Mechanisms for maintaining Fe homeostasis and Cd detoxicification are also elucidated. Then, effects of different fertilizer management on Fe/Cd accumulation in rice are discussed. Finally, this review enumerates various approaches for reducing grain Cd accumulation and enhancing Fe content in rice. In summary, understanding of discrepant cellular mechanisms of Fe/Cd accumulation in rice provides guidance for cultivating Fe-fortified rice and has paved the way to develop rice that are tolerant to Cd stress, aiming at breeding Fe-rich but Cd-free rice. PMID:27502932

  15. The Hijacking of Cellular Signaling and the Diabetes Epidemic: Mechanisms of Environmental Disruption of Insulin Action and Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Robert M. Sargis

    2014-02-01

    Full Text Available The burgeoning epidemic of metabolic disease causes significant societal and individual morbidity and threatens the stability of health care systems around the globe. Efforts to understand the factors that contribute to metabolic derangements are critical for reversing these troubling trends. While excess caloric consumption and physical inactivity superimposed on a susceptible genetic background are central drivers of this crisis, these factors alone fail to fully account for the magnitude and rapidity with which metabolic diseases have increased in prevalence worldwide. Recent epidemiological evidence implicates endocrine disrupting chemicals in the pathogenesis of metabolic diseases. These compounds represent a diverse array of chemicals to which humans are exposed via multiple routes in adulthood and during development. Furthermore, a growing ensemble of animal- and cell-based studies provides preclinical evidence supporting the hypothesis that environmental contaminants contribute to the development of metabolic diseases, including diabetes. Herein are reviewed studies linking specific endocrine disruptors to impairments in glucose homeostasis as well as tying these compounds to disturbances in insulin secretion and impairments in insulin signal transduction. While the data remains somewhat incomplete, the current body of evidence supports the hypothesis that our chemically polluted environment may play a contributing role in the current metabolic crisis.

  16. Iron-Responsive Regulation of the Helicobacter pylori Iron-Cofactored Superoxide Dismutase SodB Is Mediated by Fur

    OpenAIRE

    Ernst, Florian D.; Homuth, Georg; Stoof, Jeroen; Mäder, Ulrike; Waidner, Barbara; Kuipers, Ernst J; Kist, Manfred; Kusters, Johannes G.; Bereswill, Stefan; van Vliet, Arnoud H. M.

    2005-01-01

    Maintaining iron homeostasis is a necessity for all living organisms, as free iron augments the generation of reactive oxygen species like superoxide anions, at the risk of subsequent lethal cellular damage. The iron-responsive regulator Fur controls iron metabolism in many bacteria, including the important human pathogen Helicobacter pylori, and thus is directly or indirectly involved in regulation of oxidative stress defense. Here we demonstrate that Fur is a direct regulator of the H. pylo...

  17. Effect of growth hormone on small intestinal homeostasis relation to cellular mediators IGF-I and IGFBP-3

    Institute of Scientific and Technical Information of China (English)

    Betul Ersoy; Kemal Ozbilgin; Erhun Kasirga; Sevinc Inan; Senol Coskun; Ibrahim Tuglu

    2009-01-01

    AIM: To evaluate the effects of growth hormone (GH) on the histology of small intestines which might be related to the role of insulin like growth factor (IGF)-I, IGF-binding protein 3 (IGFBP-3) and its receptors.METHODS: Twelve week-old adult male Wistar albino rats were divided into two groups.The study group ( n = 10), received recombinant human growth hormone (rGH) at a dose of 2 mg/kg per day subcutaneously for 14 d and the control group ( n = 10) received physiologic serum.Paraffin sections of jejunum were stained with periodic acid shift (PAS) and hematoxylin and eosin (HE) for light microscopy.They were also examined for IGF-I, IGFBP-3 and IGF-receptor immunoreactivities.Staining intensity was graded semi-quantitatively using the HSCORE.RESULTS: Goblet cells and the cells in crypt epithelia were significantly increased in the study group compared to that of the control group.We have demonstrated an increase of IGF-I and IGFBP-3 immunoreactivities in surface epithelium of the small intestine by GH application.IGF-I receptor immunoreactivities of crypt, villous columnar cells, enteroendocrine cells and muscularis mucosae were also more strongly positive in the study group compared to those of in the control group.CONCLUSION: These findings confirm the important trophic and protective role of GH in the homeostasis of the small intestine.The trophic effect is mediated by an increase in IGF-I synthesis in the small intestine, but the protective effect is not related to IGF-I.

  18. Characterization of Three New Glutaredoxin Genes in the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis: Putative Role of RiGRX4 and RiGRX5 in Iron Homeostasis.

    Directory of Open Access Journals (Sweden)

    Elisabeth Tamayo

    Full Text Available Glutaredoxins (GRXs are small ubiquitous oxidoreductases involved in the regulation of the redox state in living cells. In an attempt to identify the full complement of GRXs in the arbuscular mycorrhizal (AM fungus Rhizophagus irregularis, three additional GRX homologs, besides the formerly characterized GintGRX1 (renamed here as RiGRX1, were identified. The three new GRXs (RiGRX4, RiGRX5 and RiGRX6 contain the CXXS domain of monothiol GRXs, but whereas RiGRX4 and RiGRX5 belong to class II GRXs, RiGRX6 belongs to class I together with RiGRX1. By using a yeast expression system, we observed that the newly identified homologs partially reverted sensitivity of the GRX deletion yeast strains to external oxidants. Furthermore, our results indicated that RiGRX4 and RiGRX5 play a role in iron homeostasis in yeast. Gene expression analyses revealed that RiGRX1 and RiGRX6 were more highly expressed in the intraradical (IRM than in the extraradical mycelium (ERM. Exposure of the ERM to hydrogen peroxide induced up-regulation of RiGRX1, RiGRX4 and RiGRX5 gene expression. RiGRX4 expression was also up-regulated in the ERM when the fungus was grown in media supplemented with a high iron concentration. These data indicate the two monothiol class II GRXs, RiGRX4 and RiGRX5, might be involved in oxidative stress protection and in the regulation of fungal iron homeostasis. Increased expression of RiGRX1 and RiGRX6 in the IRM suggests that these GRXs should play a key role in oxidative stress protection of R. irregularis during its in planta phase.

  19. Tucum-Do-Cerrado (Bactris setosa Mart.) Consumption Modulates Iron Homeostasis and Prevents Iron-Induced Oxidative Stress in the Rat Liver.

    Science.gov (United States)

    Fustinoni-Reis, Adriana M; Arruda, Sandra F; Dourado, Lívia P S; da Cunha, Marcela S B; Siqueira, Egle M A

    2016-02-01

    This study investigated the effect of tucum-do-cerrado consumption in the oxidative status of iron-supplemented rats. Four groups of rats were treated: Control (AIN-93G), Tuc (AIN-93G added of tucum-do-cerrado), Fe (AIN-93G iron-enriched), or TucFe (AIN-93G with tucum-do-cerrado and iron-enriched) diet, for 30 days. Iron-enriched diet increased serum, liver, spleen, and intestine iron levels; transferrin saturation; liver lipid oxidation; mRNA levels of hepatic Hamp and Bmp6, and Nrf2 in the intestine. Tucum-do-cerrado consumption reduced spleen lipid and protein oxidation; mRNA levels of hepatic Hamp and Ftl, and increased serum antioxidant capacity and hepatic mRNA levels of Bmp6, Hmox1, Nqo1, and Nrf2. TucFe diet consumption abrogated the liver Hamp iron-induced up-regulation, prevented intestinal iron accumulation; hepatic lipid peroxidation; splenic protein damage, and the increase of catalase, glutathione reductase, and glutathione peroxidase activity in some tissues. These results suggest that tucum-do-cerrado protects tissues against oxidative damage, by reducing iron availability in liver and consequently inhibiting liver Hamp expression. PMID:26901220

  20. Pulmonary Toxicity and Modifications in Iron Homeostasis Following Libby Amphibole Asbestos Exposure in Rat Models of Cardiovascular Disease

    Science.gov (United States)

    Rationale: Individuals suffering from cardiovascular disease (CVD) develop iron dysregulation which may influence pulmonary toxicity and injury upon exposure to asbestos. We hypothesized spontaneously hypertensive (SH) and spontaneously hypertensive heart failure (SHHF) rats woul...

  1. Experimental and clinical studies on liver regeneration and hepatocellular carcinoma. Roles of redox proteins, iron homeostasis and multikinase inhibition.

    OpenAIRE

    Mollbrink, Annelie

    2013-01-01

    Compensatory liver regeneration is triggered by chronic liver injury or surgery and is crucial to maintain tissue homeostasis. The underlying mechanisms which include a whole battery of complex signaling events have been thoroughly studied for decades. The majority of hepatocellular carcinomas develop in a highly proliferative environment caused by underlying chronic liver disease in which lost liver tissue must be restored to meet the needs of the organism. The chronic inflammatory condition...

  2. Effects of intracellular chelatable iron and oxidative stress on transcription of classical cellular glutathione peroxidase gene in murine erythroleukemia cells

    International Nuclear Information System (INIS)

    The effect of intracellular chelatable iron levels and of oxidative stress on nuclear classical cellular glutathione peroxidase (GSHPx-1) RNA nascent chain elongation (run-on transcription) and on the stability of cytoplasmic GSHPx-1 mRNA was investigated in murine erythroleukemia (MEL) cells. The amount in the intracellular low molecular mass iron pool was changed by incubation of MEL cells transformed by Friend virus with iron donors or iron chelators. Transcription in vitro in isolated nuclei from treated cells showed that the treatment with chelators (desferrioxamine (DFO), pyridoxal isonicotinoyl hydrazone) decrease the rate of nuclear GSHPx-1 RNA nascent chain elongation in both un-induced and with 5 mmol hexamethylenebisacetamide to erythroid differentiation induced MEL cells. Iron donors (diferric transferrin,, Fe-PIH or their combination) and t-butyl hydroperoxide (t-BuOOH) had the opposite effect on GSHPx-1 gene transcription in run-on experiments. On the other hand, 50 μmol DFO or 2.5 μmol t-BuOOH did not change the stability of cytoplasmic GSHPx-1 mRNA in both un-induced and induced MEL cells treated with 5 μmol actinomycin D and with or without these agents for 9 h. These findings indicate that iron and oxidative stress play their role at the transcriptional level of GSHPx-1 gene expression. (author)

  3. Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds

    DEFF Research Database (Denmark)

    Cvitanich, Cristina; Przybylowicz, Wojciech J; Urbanski, Dorian Fabian;

    2010-01-01

    will assist in the production of staples with increased bioavailable iron. Results Here we reveal the distribution of iron in seeds of three Phaseolus species including thirteen genotypes of P. vulgaris, P. coccineus, and P. lunatus. We showed that high concentrations of iron accumulate in cells...

  4. Effects of acute creatine supplementation on iron homeostasis and uric acid-based antioxidant capacity of plasma after wingate test

    Directory of Open Access Journals (Sweden)

    Barros Marcelo P

    2012-06-01

    Full Text Available Abstract Background Dietary creatine has been largely used as an ergogenic aid to improve strength and athletic performance, especially in short-term and high energy-demanding anaerobic exercise. Recent findings have also suggested a possible antioxidant role for creatine in muscle tissues during exercise. Here we evaluate the effects of a 1-week regimen of 20 g/day creatine supplementation on the plasma antioxidant capacity, free and heme iron content, and uric acid and lipid peroxidation levels of young subjects (23.1 ± 5.8 years old immediately before and 5 and 60 min after the exhaustive Wingate test. Results Maximum anaerobic power was improved by acute creatine supplementation (10.5 %, but it was accompanied by a 2.4-fold increase in pro-oxidant free iron ions in the plasma. However, potential iron-driven oxidative insult was adequately counterbalanced by proportional increases in antioxidant ferric-reducing activity in plasma (FRAP, leading to unaltered lipid peroxidation levels. Interestingly, the FRAP index, found to be highly dependent on uric acid levels in the placebo group, also had an additional contribution from other circulating metabolites in creatine-fed subjects. Conclusions Our data suggest that acute creatine supplementation improved the anaerobic performance of athletes and limited short-term oxidative insults, since creatine-induced iron overload was efficiently circumvented by acquired FRAP capacity attributed to: overproduction of uric acid in energy-depleted muscles (as an end-product of purine metabolism and a powerful iron chelating agent and inherent antioxidant activity of creatine.

  5. Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds

    Directory of Open Access Journals (Sweden)

    Blair Matthew W

    2010-02-01

    Full Text Available Abstract Background Iron is an important micronutrient for all living organisms. Almost 25% of the world population is affected by iron deficiency, a leading cause of anemia. In plants, iron deficiency leads to chlorosis and reduced yield. Both animals and plants may suffer from iron deficiency when their diet or environment lacks bioavailable iron. A sustainable way to reduce iron malnutrition in humans is to develop staple crops with increased content of bioavailable iron. Knowledge of where and how iron accumulates in seeds of crop plants will increase the understanding of plant iron metabolism and will assist in the production of staples with increased bioavailable iron. Results Here we reveal the distribution of iron in seeds of three Phaseolus species including thirteen genotypes of P. vulgaris, P. coccineus, and P. lunatus. We showed that high concentrations of iron accumulate in cells surrounding the provascular tissue of P. vulgaris and P. coccineus seeds. Using the Perls' Prussian blue method, we were able to detect iron in the cytoplasm of epidermal cells, cells near the epidermis, and cells surrounding the provascular tissue. In contrast, the protein ferritin that has been suggested as the major iron storage protein in legumes was only detected in the amyloplasts of the seed embryo. Using the non-destructive micro-PIXE (Particle Induced X-ray Emission technique we show that the tissue in the proximity of the provascular bundles holds up to 500 μg g-1 of iron, depending on the genotype. In contrast to P. vulgaris and P. coccineus, we did not observe iron accumulation in the cells surrounding the provascular tissues of P. lunatus cotyledons. A novel iron-rich genotype, NUA35, with a high concentration of iron both in the seed coat and cotyledons was bred from a cross between an Andean and a Mesoamerican genotype. Conclusions The presented results emphasize the importance of complementing research in model organisms with analysis in

  6. Polymeric nanocomposites loaded with fluoridated hydroxyapatite Ln3+ (Ln = Eu or Tb)/iron oxide for magnetic targeted cellular imaging

    Science.gov (United States)

    Pan, Jie; Liu, Wei-Jiao; Hua, Chao; Wang, Li-Li; Wan, Dong; Gong, Jun-Bo

    2015-01-01

    Objective To fabricate polymeric nanocomposites with excellent photoluminescence, magnetic properties, and stability in aqueous solutions, in order to improve specificity and sensitivity of cellular imaging under a magnetic field. Methods Fluoridated Ln3+-doped HAP (Ln3+-HAP) NPs and iron oxides (IOs) can be encapsulated with biocompatible polymers via a modified solvent exaction/evaporation technique to prepare polymeric nanocomposites with fluoridated Ln3+-HAP/iron oxide. The nanocomposites were characterized for surface morphology, fluorescence spectra, magnetic properties and in vitro cytotoxicity. Magnetic targeted cellular imaging of such nanocomposites was also evaluated with confocal laser scanning microscope using A549 cells with or without magnetic field. Results The fabricated nanocomposites showed good stability and excellent luminescent properties, as well as low in vitro cytotoxicity, indicating that the nanocomposites are suitable for biological applications. Nanocomposites under magnetic field achieved much higher cellular uptake via an energy-dependent pathway than those without magnetic field. Conclusion The nanocomposites fabricated in this study will be a promising tool for magnetic targeted cellular imaging with improved specificity and enhanced selection. PMID:26487962

  7. Polymeric nanocomposites loaded with fluoridated hydroxyapatite Ln3+ (Ln = Eu or Tb)/iron oxide for magnetic targeted cellular imaging

    International Nuclear Information System (INIS)

    To fabricate polymeric nanocomposites with excellent photoluminescence, magnetic properties, and stability in aqueous solutions, in order to improve specificity and sensitivity of cellular imaging under a magnetic field. Fluoridated Ln3+-doped HAP (Ln3+-HAP) NPs and iron oxides (IOs) can be encapsulated with biocompatible polymers via a modified solvent exaction/evaporation technique to prepare polymeric nanocomposites with fluoridated Ln3+-HAP/iron oxide. The nanocomposites were characterized for surface morphology, fluorescence spectra, magnetic properties and in vitro cytotoxicity. Magnetic targeted cellular imaging of such nanocomposites was also evaluated with confocal laser scanning microscope using A549 cells with or without magnetic field. The fabricated nanocomposites showed good stability and excellent luminescent properties, as well as low in vitro cytotoxicity, indicating that the nanocomposites are suitable for biological applications. Nanocomposites under magnetic field achieved much higher cellular uptake via an energy-dependent pathway than those without magnetic field. The nanocomposites fabricated in this study will be a promising tool for magnetic targeted cellular imaging with improved specificity and enhanced selection

  8. Iron Absorption in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Fanis Missirlis

    2013-05-01

    Full Text Available The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import, the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export and the role of ferritin in the process of iron acquisition (iron storage. We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration.

  9. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field.

    Science.gov (United States)

    Prijic, Sara; Scancar, Janez; Romih, Rok; Cemazar, Maja; Bregar, Vladimir B; Znidarsic, Andrej; Sersa, Gregor

    2010-07-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are used as delivery systems for different therapeutics including nucleic acids for magnetofection-mediated gene therapy. The aim of our study was to evaluate physicochemical properties, biocompatibility, cellular uptake and trafficking pathways of the custom-synthesized SPIONs for their potential use in magnetofection. Custom-synthesized SPIONs were tested for size, shape, crystalline composition and magnetic behavior using a transmission electron microscope, X-ray diffractometer and magnetometer. SPIONs were dispersed in different aqueous media to obtain ferrofluids, which were tested for pH and stability using a pH meter and zetameter. Cytotoxicity was determined using the MTS and clonogenic assays. Cellular uptake and trafficking pathways were qualitatively evaluated by transmission electron microscopy and quantitatively by inductively coupled plasma atomic emission spectrometry. SPIONs were composed of an iron oxide core with a diameter of 8-9 nm, coated with a 2-nm-thick layer of silica. SPIONs, dispersed in 0.9% NaCl solution, resulted in a stable ferrofluid at physiological pH for several months. SPIONs were not cytotoxic in a broad range of concentrations and were readily internalized into different cells by endocytosis. Exposure to neodymium-iron-boron magnets significantly increased the cellular uptake of SPIONs, predominantly into malignant cells. The prepared SPIONs displayed adequate physicochemical and biomedical properties for potential use in magnetofection. Their cellular uptake was dependent on the cell type, and their accumulation within the cells was dependent on the duration of exposure to an external magnetic field. PMID:20602230

  10. Regulating Subcellular Metal Homeostasis: The Key to Crop Improvement.

    Science.gov (United States)

    Bashir, Khurram; Rasheed, Sultana; Kobayashi, Takanori; Seki, Motoaki; Nishizawa, Naoko K

    2016-01-01

    Iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) are essential micronutrient mineral elements for living organisms, as they regulate essential cellular processes, such as chlorophyll synthesis and photosynthesis (Fe, Cu, and Mn), respiration (Fe and Cu), and transcription (Zn). The storage and distribution of these minerals in various cellular organelles is strictly regulated to ensure optimal metabolic rates. Alteration of the balance in uptake, distribution, and/or storage of these minerals severely impairs cellular metabolism and significantly affects plant growth and development. Thus, any change in the metal profile of a cellular compartment significantly affects metabolism. Different subcellular compartments are suggested to be linked through complex retrograde signaling networks to regulate cellular metal homeostasis. Various genes regulating cellular and subcellular metal distribution have been identified and characterized. Understanding the role of these transporters is extremely important to elaborate the signaling between various subcellular compartments. Moreover, modulation of the proteins involved in cellular metal homeostasis may help in the regulation of metabolism, adaptability to a diverse range of environmental conditions, and biofortification. Here, we review progress in the understanding of different subcellular metal transport components in plants and discuss the prospects of regulating cellular metabolism and strategies to develop biofortified crop plants. PMID:27547212

  11. The Role of Iron and Iron Overload in Chronic Liver Disease

    Science.gov (United States)

    Milic, Sandra; Mikolasevic, Ivana; Orlic, Lidija; Devcic, Edita; Starcevic-Cizmarevic, Nada; Stimac, Davor; Kapovic, Miljenko; Ristic, Smiljana

    2016-01-01

    The liver plays a major role in iron homeostasis; thus, in patients with chronic liver disease, iron regulation may be disturbed. Higher iron levels are present not only in patients with hereditary hemochromatosis, but also in those with alcoholic liver disease, nonalcoholic fatty liver disease, and hepatitis C viral infection. Chronic liver disease decreases the synthetic functions of the liver, including the production of hepcidin, a key protein in iron metabolism. Lower levels of hepcidin result in iron overload, which leads to iron deposits in the liver and higher levels of non-transferrin-bound iron in the bloodstream. Iron combined with reactive oxygen species leads to an increase in hydroxyl radicals, which are responsible for phospholipid peroxidation, oxidation of amino acid side chains, DNA strain breaks, and protein fragmentation. Iron-induced cellular damage may be prevented by regulating the production of hepcidin or by administering hepcidin agonists. Both of these methods have yielded successful results in mouse models. PMID:27332079

  12. The Role of Iron and Iron Overload in Chronic Liver Disease.

    Science.gov (United States)

    Milic, Sandra; Mikolasevic, Ivana; Orlic, Lidija; Devcic, Edita; Starcevic-Cizmarevic, Nada; Stimac, Davor; Kapovic, Miljenko; Ristic, Smiljana

    2016-01-01

    The liver plays a major role in iron homeostasis; thus, in patients with chronic liver disease, iron regulation may be disturbed. Higher iron levels are present not only in patients with hereditary hemochromatosis, but also in those with alcoholic liver disease, nonalcoholic fatty liver disease, and hepatitis C viral infection. Chronic liver disease decreases the synthetic functions of the liver, including the production of hepcidin, a key protein in iron metabolism. Lower levels of hepcidin result in iron overload, which leads to iron deposits in the liver and higher levels of non-transferrin-bound iron in the bloodstream. Iron combined with reactive oxygen species leads to an increase in hydroxyl radicals, which are responsible for phospholipid peroxidation, oxidation of amino acid side chains, DNA strain breaks, and protein fragmentation. Iron-induced cellular damage may be prevented by regulating the production of hepcidin or by administering hepcidin agonists. Both of these methods have yielded successful results in mouse models. PMID:27332079

  13. The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis.

    Science.gov (United States)

    Zhang, Jie; Liu, Bing; Li, Mengshu; Feng, Dongru; Jin, Honglei; Wang, Peng; Liu, Jun; Xiong, Feng; Wang, Jinfa; Wang, Hong-Bin

    2015-03-01

    Iron (Fe) is an indispensable micronutrient for plant growth and development. The regulation of Fe homeostasis in plants is complex and involves a number of transcription factors. Here, we demonstrate that a basic helix-loop-helix (bHLH) transcription factor, bHLH104, belonging to the IVc subgroup of bHLH family, acts as a key component positively regulating Fe deficiency responses. Knockout of bHLH104 in Arabidopsis thaliana greatly reduced tolerance to Fe deficiency, whereas overexpression of bHLH104 had the opposite effect and led to accumulation of excess Fe in soil-grown conditions. The activation of Fe deficiency-inducible genes was substantially suppressed by loss of bHLH104. Further investigation showed that bHLH104 interacted with another IVc subgroup bHLH protein, IAA-LEUCINE RESISTANT3 (ILR3), which also plays an important role in Fe homeostasis. Moreover, bHLH104 and ILR3 could bind directly to the promoters of Ib subgroup bHLH genes and POPEYE (PYE) functioning in the regulation of Fe deficiency responses. Interestingly, genetic analysis showed that loss of bHLH104 could decrease the tolerance to Fe deficiency conferred by the lesion of BRUTUS, which encodes an E3 ligase and interacts with bHLH104. Collectively, our data support that bHLH104 and ILR3 play pivotal roles in the regulation of Fe deficiency responses via targeting Ib subgroup bHLH genes and PYE expression. PMID:25794933

  14. Effects of cellular iron deficiency on the formation of vascular endothelial growth factor and angiogenesis. Iron deficiency and angiogenesis

    OpenAIRE

    Eckard Jonathan; Dai Jisen; Wu Jing; Jian Jinlong; Yang Qing; Chen Haobin; Costa Max; Frenkel Krystyna; Huang Xi

    2010-01-01

    Abstract Background Young women diagnosed with breast cancer are known to have a higher mortality rate from the disease than older patients. Specific risk factors leading to this poorer outcome have not been identified. In the present study, we hypothesized that iron deficiency, a common ailment in young women, contributes to the poor outcome by promoting the hypoxia inducible factor-1α (HIF-1α and vascular endothelial growth factor (VEGF) formation. This hypothesis was tested in an in vitro ...

  15. Redox control of iron regulatory protein 2 stability.

    Science.gov (United States)

    Hausmann, Anja; Lee, Julie; Pantopoulos, Kostas

    2011-02-18

    Iron regulatory protein 2 (IRP2) is a critical switch for cellular and systemic iron homeostasis. In iron-deficient or hypoxic cells, IRP2 binds to mRNAs containing iron responsive elements (IREs) and regulates their expression. Iron promotes proteasomal degradation of IRP2 via the F-box protein FBXL5. Here, we explored the effects of oxygen and cellular redox status on IRP2 stability. We show that iron-dependent decay of tetracycline-inducible IRP2 proceeds efficiently under mild hypoxic conditions (3% oxygen) but is compromised in severe hypoxia (0.1% oxygen). A treatment of cells with exogenous H(2)O(2) protects IRP2 against iron and increases its IRE-binding activity. IRP2 is also stabilized during menadione-induced oxidative stress. These data demonstrate that the degradation of IRP2 in iron-replete cells is not only oxygen-dependent but also sensitive to redox perturbations. PMID:21281640

  16. Impact of Anaerobiosis on Expression of the Iron-Responsive Fur and RyhB Regulons

    OpenAIRE

    Beauchene, Nicole A.; Kevin S Myers; Chung, Dongjun; Park, Dan M.; Weisnicht, Allison M.; Keleş, Sündüz; Kiley, Patricia J.

    2015-01-01

    ABSTRACT Iron, a major protein cofactor, is essential for most organisms. Despite the well-known effects of O2 on the oxidation state and solubility of iron, the impact of O2 on cellular iron homeostasis is not well understood. Here we report that in Escherichia coli K-12, the lack of O2 dramatically changes expression of genes controlled by the global regulators of iron homeostasis, the transcription factor Fur and the small RNA RyhB. Using chromatin immunoprecipitation sequencing (ChIP-seq)...

  17. A balanced salt solution that prevents agglomeration of nano iron oxo-hydroxides in serum-free cellular assays

    Science.gov (United States)

    Pereira, Dora I. A.; Lederer, Bianca; Powell, Jonathan J.

    2015-01-01

    Nano iron oxo-hydroxides have numerous and increasing applications in biology and medicine. Assessment of their uptake and toxicity often requires cell culture but maintaining iron oxides uniformly nano-dispersed in such conditions can be challenging. We describe a balanced salt solution (BSS) compatible with cellular assays for use in such investigations. We determined hydrodynamic particle size and dispersibility of nano iron in BSS. The BSS, containing 130 mM NaCl, 10 mM KCl, 1 mM MgSO4, 5 mM glucose and 1.8 mM CaCl2 in 10 mM PIPES buffer (pH 7.4), was capable of maintaining nanoparticulate tartrate-modified Fe(III) oxo-hydroxide (i.e. nano Fe) mono-disperse (≥95% nanoparticulate) with a mean hydrodynamic particle diameter of 6.1 ± 0.3 nm. This size was similar to the native form of the nano Fe material (i.e. as synthesized) with a mean hydrodynamic particle diameter of 4.3 ± 0.1 nm in water. Furthermore, we show that BSS also adequately maintains nano Fe dispersion when supplemented with inhibitors of particle uptake or lysosomal acidification, namely chloropromazine and monensin, and when used at pHs 6.5 or 5.8. In conclusion, we provide a method for nanodispersion of iron oxo-hydroxides that is suitable for short term (1-3 h) cellular exposure investigations.

  18. A balanced salt solution that prevents agglomeration of nano iron oxo-hydroxides in serum-free cellular assays

    International Nuclear Information System (INIS)

    Nano iron oxo-hydroxides have numerous and increasing applications in biology and medicine. Assessment of their uptake and toxicity often requires cell culture but maintaining iron oxides uniformly nano-dispersed in such conditions can be challenging. We describe a balanced salt solution (BSS) compatible with cellular assays for use in such investigations. We determined hydrodynamic particle size and dispersibility of nano iron in BSS. The BSS, containing 130 mM NaCl, 10 mM KCl, 1 mM MgSO4, 5 mM glucose and 1.8 mM CaCl2 in 10 mM PIPES buffer (pH 7.4), was capable of maintaining nanoparticulate tartrate-modified Fe(III) oxo-hydroxide (i.e. nano Fe) mono-disperse (≥95% nanoparticulate) with a mean hydrodynamic particle diameter of 6.1 ± 0.3 nm. This size was similar to the native form of the nano Fe material (i.e. as synthesized) with a mean hydrodynamic particle diameter of 4.3 ± 0.1 nm in water. Furthermore, we show that BSS also adequately maintains nano Fe dispersion when supplemented with inhibitors of particle uptake or lysosomal acidification, namely chloropromazine and monensin, and when used at pHs 6.5 or 5.8. In conclusion, we provide a method for nanodispersion of iron oxo-hydroxides that is suitable for short term (1–3 h) cellular exposure investigations. (paper)

  19. Cellular Studies with UVA Radiation: A Role for Iron (invited paper)

    International Nuclear Information System (INIS)

    The UVA (320-380 nm) component of sunlight or sunbeds acts as an oxidising carcinogen and has been clearly implicated in skin cancer. Since UVA radiation interacts with cells by generating active oxygen species, the damaging effects of this radiation will be exacerbated by the presence of catalytically reactive iron in cells. It has now been shown by two independent techniques (dequenching of metal-quenched calcein fluorescence in cells and changes in the binding activity of the iron responsive protein IRPI) that UVA radiation causes an immediate release of 'free' iron in human skin fibroblasts via the proteolysis of ferritin (Ft). Within minutes of exposure to a range of doses of UVA at natural exposure levels, the binding activity of IRP-1, as well as Ft levels, decrease in a dose-dependent manner. It is proposed that the oxidative damage to lysosomes that leads to Ft degradation and the consequent release of potentially harmful 'free' iron to the cytosol might be a major factor in UVA-induced damage to the skin. UVA radiation also breaks down heme-containing proteins in the microsomal membrane to release free heme as an additional photosensitising component. This will provide another source of enhanced free iron in skin cells since constitutive heme oxygenase 2 (in keratinocytes) and UVA-inducible heme oxygenase-1 (in fibroblasts) are likely to break down any free heme to biliverdin and release iron and carbon monoxide in the process. It is postulated that, in skin fibroblasts, this free heme release and the enhanced free iron pools will lead to an adaptive response involving heme oxygenase (with a maximum about 10 h) and ferritin (in 24-48 h) that will scavenge the heme and iron released by subsequent oxidising (UVA) treatments. (author)

  20. Duodenal Cytochrome b (DCYTB in Iron Metabolism: An Update on Function and Regulation

    Directory of Open Access Journals (Sweden)

    Darius J. R. Lane

    2015-03-01

    Full Text Available Iron and ascorbate are vital cellular constituents in mammalian systems. The bulk-requirement for iron is during erythropoiesis leading to the generation of hemoglobin-containing erythrocytes. Additionally; both iron and ascorbate are required as co-factors in numerous metabolic reactions. Iron homeostasis is controlled at the level of uptake; rather than excretion. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance non-heme iron absorption in the gut; ascorbate regulates iron homeostasis. The involvement of ascorbate in dietary iron absorption extends beyond the direct chemical reduction of non-heme iron by dietary ascorbate. Among other activities; intra-enterocyte ascorbate appears to be involved in the provision of electrons to a family of trans-membrane redox enzymes; namely those of the cytochrome b561 class. These hemoproteins oxidize a pool of ascorbate on one side of the membrane in order to reduce an electron acceptor (e.g., non-heme iron on the opposite side of the membrane. One member of this family; duodenal cytochrome b (DCYTB; may play an important role in ascorbate-dependent reduction of non-heme iron in the gut prior to uptake by ferrous-iron transporters. This review discusses the emerging relationship between cellular iron homeostasis; the emergent “IRP1-HIF2α axis”; DCYTB and ascorbate in relation to iron metabolism.

  1. Lipocalin 2 alleviates iron toxicity by facilitating hypoferremia of inflammation and limiting catalytic iron generation.

    Science.gov (United States)

    Xiao, Xia; Yeoh, Beng San; Saha, Piu; Olvera, Rodrigo Aguilera; Singh, Vishal; Vijay-Kumar, Matam

    2016-06-01

    Iron is an essential transition metal ion for virtually all aerobic organisms, yet its dysregulation (iron overload or anemia) is a harbinger of many pathologic conditions. Hence, iron homeostasis is tightly regulated to prevent the generation of catalytic iron (CI) which can damage cellular biomolecules. In this study, we investigated the role of iron-binding/trafficking innate immune protein, lipocalin 2 (Lcn2, aka siderocalin) on iron and CI homeostasis using Lcn2 knockout (KO) mice and their WT littermates. Administration of iron either systemically or via dietary intake strikingly upregulated Lcn2 in the serum, urine, feces, and liver of WT mice. However, similarly-treated Lcn2KO mice displayed elevated CI, augmented lipid peroxidation and other indices of organ damage markers, implicating that Lcn2 responses may be protective against iron-induced toxicity. Herein, we also show a negative association between serum Lcn2 and CI in the murine model of dextran sodium sulfate (DSS)-induced colitis. The inability of DSS-treated Lcn2KO mice to elicit hypoferremic response to acute colitis, implicates the involvement of Lcn2 in iron homeostasis during inflammation. Using bone marrow chimeras, we further show that Lcn2 derived from both immune and non-immune cells participates in CI regulation. Remarkably, exogenous rec-Lcn2 supplementation suppressed CI levels in Lcn2KO serum and urine. Collectively, our results suggest that Lcn2 may facilitate hypoferremia, suppress CI generation and prevent iron-mediated adverse effects. PMID:27007712

  2. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  3. Stabilization and cellular delivery of chitosan-polyphosphate nanoparticles by incorporation of iron.

    Science.gov (United States)

    Giacalone, Giovanna; Hillaireau, Hervé; Capiau, Pauline; Chacun, Hélène; Reynaud, Franceline; Fattal, Elias

    2014-11-28

    Chitosan (CS) nanoparticles are typically obtained by complexation with tripolyphosphate (TPP) ions, or more recently using triphosphate group-containing drugs such as adenosine triphosphate (ATP). ATP is an active molecule we aim to deliver in order to restore its depletion in macrophages, when associated with their death leading to plaque rupture in atherosclerotic lesions. Despite high interest in CS nanoparticles for drug delivery, due to the biodegradability of CS and to the ease of the preparation process, these systems tend to readily disintegrate when diluted in physiological media. Some stabilization strategies have been proposed so far but they typically involve the addition of a coating agent or chemical cross-linkers. In this study, we propose the complexation of CS with iron ions prior to nanoparticle formation as a strategy to improve the carrier stability. This can be achieved thanks to the ability of iron to strongly bind both chitosan and phosphate groups. Nanoparticles were obtained from either TPP or ATP and chitosan-iron (CS-Fe) complexes containing 3 to 12% w/w iron. Isothermal titration calorimetry showed that the binding affinity of TPP and ATP to CS-Fe increased with the iron content of CS-Fe complexes. The stability of these nanoparticles in physiological conditions was evaluated by turbidity and by fluorescence fluctuation in real time upon dilution by electrolytes, and revealed an important stabilization effect of CS-Fe compared to CS, increasing with the iron content. Furthermore, in vitro studies on two macrophage cell lines (J774A.1 and THP-1) revealed that ATP uptake is improved consistently with the iron content of CS-Fe/ATP nanoparticles, and correlated to their lower dissociation in biological medium, allowing interesting perspectives for the intracellular delivery of ATP. PMID:25192940

  4. Tissue-specific expression of ferritin H regulates cellular iron homoeostasis in vivo.

    Science.gov (United States)

    Wilkinson, John; Di, Xiumin; Schönig, Kai; Buss, Joan L; Kock, Nancy D; Cline, J Mark; Saunders, Thomas L; Bujard, Hermann; Torti, Suzy V; Torti, Frank M

    2006-05-01

    Ferritin is a ubiquitously distributed iron-binding protein. Cell culture studies have demonstrated that ferritin plays a role in maintenance of iron homoeostasis and in the protection against cytokine- and oxidant-induced stress. To test whether FerH (ferritin H) can regulate tissue iron homoeostasis in vivo, we prepared transgenic mice that conditionally express FerH and EGFP (enhanced green fluorescent protein) from a bicistronic tetracycline-inducible promoter. Two transgenic models were explored. In the first, the FerH and EGFP transgenes were controlled by the tTA(CMV) (Tet-OFF) (where tTA and CMV are tet transactivator protein and cytomegalovirus respectively). In skeletal muscle of mice bearing the FerH/EGFP and tTA(CMV) transgenes, FerH expression was increased 6.0+/-1.1-fold (mean+/-S.D.) compared with controls. In the second model, the FerH/EGFP transgenes were controlled by an optimized Tet-ON transactivator, rtTA2(S)-S2(LAP) (where rtTA is reverse tTA and LAP is liver activator protein), resulting in expression predominantly in the kidney and liver. In mice expressing these transgenes, doxycycline induced FerH in the kidney by 14.2+/-4.8-fold (mean+/-S.D.). Notably, increases in ferritin in overexpressers versus control littermates were accompanied by an elevation of IRP (iron regulatory protein) activity of 2.3+/-0.9-fold (mean+/-S.D.), concurrent with a 4.5+/-2.1-fold (mean+/-S.D.) increase in transferrin receptor, indicating that overexpression of FerH is sufficient to elicit a phenotype of iron depletion. These results demonstrate that FerH not only responds to changes in tissue iron (its classic role), but can actively regulate overall tissue iron balance. PMID:16448386

  5. Chromate alters root system architecture and activates expression of genes involved in iron homeostasis and signaling in Arabidopsis thaliana.

    Science.gov (United States)

    Martínez-Trujillo, Miguel; Méndez-Bravo, Alfonso; Ortiz-Castro, Randy; Hernández-Madrigal, Fátima; Ibarra-Laclette, Enrique; Ruiz-Herrera, León Francisco; Long, Terri A; Cervantes, Carlos; Herrera-Estrella, Luis; López-Bucio, José

    2014-09-01

    Soil contamination by hexavalent chromium [Cr(VI) or chromate] due to anthropogenic activities has become an increasingly important environmental problem. To date few studies have been performed to elucidate the signaling networks involved on adaptive responses to (CrVI) toxicity in plants. In this work, we report that depending upon its concentration, Cr(VI) alters in different ways the architecture of the root system in Arabidopsis thaliana seedlings. Low concentrations of Cr (20-40 µM) promoted primary root growth, while concentrations higher than 60 µM Cr repressed growth and increased formation of root hairs, lateral root primordia and adventitious roots. We analyzed global gene expression changes in seedlings grown in media supplied with 20 or 140 µM Cr. The level of 731 transcripts was significantly modified in response to Cr treatment with only five genes common to both Cr concentrations. Interestingly, 23 genes related to iron (Fe) acquisition were up-regulated including IRT1, YSL2, FRO5, BHLH100, BHLH101 and BHLH039 and the master controllers of Fe deficiency responses PYE and BTS were specifically activated in pericycle cells. It was also found that increasing concentration of Cr in the plant correlated with a decrease in Fe content, but increased both acidification of the rhizosphere and activity of the ferric chelate reductase. Supply of Fe to Cr-treated Arabidopsis allowed primary root to resume growth and alleviated toxicity symptoms, indicating that Fe nutrition is a major target of Cr stress in plants. Our results show that low Cr levels are beneficial to plants and that toxic Cr concentrations activate a low-Fe rescue system. PMID:24928490

  6. METABOLISM OF IRON STORES

    OpenAIRE

    Saito, Hiroshi

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since th...

  7. Iron

    Science.gov (United States)

    ... seafood, and foods that contain vitamin C , like citrus fruits, strawberries, sweet peppers, tomatoes, and broccoli. What ... diets. What are some effects of iron on health? Scientists are studying iron to understand how it ...

  8. Suppression of serum iron-binding capacity and bone marrow cellularity in pigs fed aflatoxin

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, R.B.; Clark, D.E.; Huff, W.E.; Kubena, L.F.; Corrier, D.E.; Phillips, I.D.

    1988-04-01

    Flavus-parasiticus species of the genus Aspergillus are recognized as the primary producers of aflatoxins B/sub 1/, B/sup 2/, G/sup 1/, and G/sup 2/, hereafter referred to as aflatoxin (AF). The effects of feeding AF-contaminated diets to growing and finishing pigs have been described with changes in clinical performance, serum biochemistry, histology, and hematology attributed to aflatoxicosis. However, most of these studies evaluated AF-induced changes for a single AF dosage at a given point in time. The present study was designed to characterize how various AF dosages influence bone marrow histology, hematology, prothrombin and activated thromboplastin times, serum amino acids, and serum iron binding capacity during aflatoxicosis in growing pigs.

  9. Suppression of serum iron-binding capacity and bone marrow cellularity in pigs fed aflatoxin

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, R.B.; Clark, D.E.; Huff, W.E.; Kubena, L.F.; Corrier, D.E. (USDA, College Station, TX (USA)); Phillips, T.D. (Texas A M Univ., College Station (USA))

    1988-05-01

    Flavus-parasiticus species of the genus Aspergillus are recognized as the primary producers of aflatoxins B{sub 1}, B{sub 2}, G{sub 1}, and G{sub 2}, hereafter referred to as aflatoxin (AF). The effects of feeding AF-contaminated diets to growing and finishing pigs have been described with changes in clinical performance, serum biochemistry, histology, and hematology attributed to aflatoxicosis. However, most of these studies evaluated AF-induced changes for a single AF dosage at a given point in time. The present study was designed to characterize how various AF dosages influence bone marrow histology, hematology, prothrombin and activated thromboplastin times, serum amino acids, and serum iron binding capacity during aflatoxicosis in growing pigs.

  10. Cp/Heph mutant mice have iron-induced neurodegeneration diminished by deferiprone.

    Science.gov (United States)

    Zhao, Liangliang; Hadziahmetovic, Majda; Wang, Chenguang; Xu, Xueying; Song, Ying; Jinnah, H A; Wodzinska, Jolanta; Iacovelli, Jared; Wolkow, Natalie; Krajacic, Predrag; Weissberger, Alyssa Cwanger; Connelly, John; Spino, Michael; Lee, Michael K; Connor, James; Giasson, Benoit; Harris, Z Leah; Dunaief, Joshua L

    2015-12-01

    Brain iron accumulates in several neurodegenerative diseases and can cause oxidative damage, but mechanisms of brain iron homeostasis are incompletely understood. Patients with mutations in the cellular iron-exporting ferroxidase ceruloplasmin (Cp) have brain iron accumulation causing neurodegeneration. Here, we assessed the brains of mice with combined mutation of Cp and its homolog hephaestin. Compared to single mutants, brain iron accumulation was accelerated in double mutants in the cerebellum, substantia nigra, and hippocampus. Iron accumulated within glia, while neurons were iron deficient. There was loss of both neurons and glia. Mice developed ataxia and tremor, and most died by 9 months. Treatment with the oral iron chelator deferiprone diminished brain iron levels, protected against neuron loss, and extended lifespan. Ferroxidases play important, partially overlapping roles in brain iron homeostasis by facilitating iron export from glia, making iron available to neurons. Above: Iron (Fe) normally moves from capillaries to glia to neurons. It is exported from the glia by ferroportin (Fpn) with ferroxidases ceruloplasmin (Cp) and/or Hephaestin (Heph). Below: In mice with mutation of Cp and Heph, iron accumulates in glia, while neurons have low iron levels. Both neurons and glia degenerate and mice become ataxic unless given an iron chelator. PMID:26303407

  11. Obesity as an Emerging Risk Factor for Iron Deficiency

    Directory of Open Access Journals (Sweden)

    Elmar Aigner

    2014-09-01

    Full Text Available Iron homeostasis is affected by obesity and obesity-related insulin resistance in a many-facetted fashion. On one hand, iron deficiency and anemia are frequent findings in subjects with progressed stages of obesity. This phenomenon has been well studied in obese adolescents, women and subjects undergoing bariatric surgery. On the other hand, hyperferritinemia with normal or mildly elevated transferrin saturation is observed in approximately one-third of patients with metabolic syndrome (MetS or nonalcoholic fatty liver disease (NAFLD. This constellation has been named the “dysmetabolic iron overload syndrome (DIOS”. Both elevated body iron stores and iron deficiency are detrimental to health and to the course of obesity-related conditions. Iron deficiency and anemia may impair mitochondrial and cellular energy homeostasis and further increase inactivity and fatigue of obese subjects. Obesity-associated inflammation is tightly linked to iron deficiency and involves impaired duodenal iron absorption associated with low expression of duodenal ferroportin (FPN along with elevated hepcidin concentrations. This review summarizes the current understanding of the dysregulation of iron homeostasis in obesity.

  12. Dysregulation of Iron Metabolism in Alzheimer's Disease, Parkinson's Disease, and Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Satoru Oshiro

    2011-01-01

    Full Text Available Dysregulation of iron metabolism has been observed in patients with neurodegenerative diseases (NDs. Utilization of several importers and exporters for iron transport in brain cells helps maintain iron homeostasis. Dysregulation of iron homeostasis leads to the production of neurotoxic substances and reactive oxygen species, resulting in iron-induced oxidative stress. In Alzheimer's disease (AD and Parkinson's disease (PD, circumstantial evidence has shown that dysregulation of brain iron homeostasis leads to abnormal iron accumulation. Several genetic studies have revealed mutations in genes associated with increased iron uptake, increased oxidative stress, and an altered inflammatory response in amyotrophic lateral sclerosis (ALS. Here, we review the recent findings on brain iron metabolism in common NDs, such as AD, PD, and ALS. We also summarize the conventional and novel types of iron chelators, which can successfully decrease excess iron accumulation in brain lesions. For example, iron-chelating drugs have neuroprotective effects, preventing neural apoptosis, and activate cellular protective pathways against oxidative stress. Glial cells also protect neurons by secreting antioxidants and antiapoptotic substances. These new findings of experimental and clinical studies may provide a scientific foundation for advances in drug development for NDs.

  13. The cytotoxicity of polycationic iron oxide nanoparticles: Common endpoint assays and alternative approaches for improved understanding of cellular response mechanism

    Directory of Open Access Journals (Sweden)

    Hoskins Clare

    2012-04-01

    Full Text Available Abstract Background Iron oxide magnetic nanoparticles (MNP's have an increasing number of biomedical applications. As such in vitro characterisation is essential to ensure the bio-safety of these particles. Little is known on the cellular interaction or effect on membrane integrity upon exposure to these MNPs. Here we synthesised Fe3O4 and surface coated with poly(ethylenimine (PEI and poly(ethylene glycol (PEG to achieve particles of varying surface positive charges and used them as model MNP's to evaluate the relative utility and limitations of cellular assays commonly applied for nanotoxicity assessment. An alternative approach, atomic force microscopy (AFM, was explored for the analysis of membrane structure and cell morphology upon interacting with the MNPs. The particles were tested in vitro on human SH-SY5Y, MCF-7 and U937 cell lines for reactive oxygen species (ROS production and lipid peroxidation (LPO, LDH leakage and their overall cytotoxic effect. These results were compared with AFM topography imaging carried out on fixed cell lines. Results Successful particle synthesis and coating were characterised using FTIR, PCS, TEM and ICP. The particle size from TEM was 30 nm (−16.9 mV which increased to 40 nm (+55.6 mV upon coating with PEI and subsequently 50 nm (+31.2 mV with PEG coating. Both particles showed excellent stability not only at neutral pH but also in acidic environment of pH 4.6 in the presence of sodium citrate. The higher surface charge MNP-PEI resulted in increased cytotoxic effect and ROS production on all cell lines compared with the MNP-PEI-PEG. In general the effect on the cell membrane integrity was observed only in SH-SY5Y and MCF-7 cells by MNP-PEI determined by LDH leakage and LPO production. AFM topography images showed consistently that both the highly charged MNP-PEI and the less charged MNP-PEI-PEG caused cell morphology changes possibly due to membrane disruption and cytoskeleton remodelling. Conclusions

  14. Synthesis and in vitro cellular interactions of superparamagnetic iron nanoparticles with a crystalline gold shell

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • A novel synthetic protocol for Fe@Au nanoparticles (NPs) has been optimized. • Surface functionalization and characterization of Fe@Au NPs. • NPs retain superparamagnetic properties after Au coating. • No toxic effects on two different cell types. • NPs suitable for theranostic applications. - Abstract: Fe@Au core–shell nanoparticles (NPs) exhibit multiple functionalities enabling their effective use in applications such as medical imaging and drug delivery. In this work, a novel synthetic method was developed and optimized for the synthesis of highly stable, monodisperse Fe@Au NPs of average diameter ∼24 nm exhibiting magneto-plasmonic characteristics. Fe@Au NPs were characterized by a wide range of experimental techniques, including scanning (transmission) electron microscopy (S(T)EM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) and UV–vis spectroscopy. The formed particles comprise an amorphous iron core with a crystalline Au shell of tunable thickness, and retain the superparamagnetic properties at room temperature after formation of a crystalline Au shell. After surface modification, PEGylated Fe@Au NPs were used for in vitro studies on olfactory ensheathing cells (OECs) and human neural stem cells (hNSCs). No adverse effects of the Fe@Au particles were observed post-labeling, both cell types retaining normal morphology, viability, proliferation, and motility. It can be concluded that no appreciable toxic effects on both cell types, coupled with multifunctionality and chemical stability make them ideal candidates for therapeutic as well as diagnostic applications

  15. Liver iron transport

    Institute of Scientific and Technical Information of China (English)

    Ross M Graham; Anita CG Chua; Carly E Herbison; John K Olynyk; Debbie Trinder

    2007-01-01

    The liver plays a central role in iron metabolism. It is the major storage site for iron and also expresses a complex range of molecules which are involved in iron transport and regulation of iron homeostasis. An increasing number of genes associated with hepatic iron transport or regulation have been identified. These include transferrin receptors (TFR1 and 2), a ferrireductase (STEAP3), the transporters divalent metal transporter-1 (DMT1) and ferroportin (FPN) as well as the haemochromatosis protein, HFE and haemojuvelin (HJV),which are signalling molecules. Many of these genes also participate in iron regulatory pathways which focus on the hepatic peptide hepcidin. However, we are still only beginning to understand the complex interactions between liver iron transport and iron homeostasis. This review outlines our current knowledge of molecules of iron metabolism and their roles in iron transport and regulation of iron homeostasis.

  16. Comparative Iron Oxide Nanoparticle Cellular Dosimetry and Response in Mice by the Inhalation and Liquid Cell Culture Exposure Routes

    Energy Technology Data Exchange (ETDEWEB)

    Teeguarden, Justin G.; Mikheev, Vladimir B.; Minard, Kevin R.; Forsythe, William C.; Wang, Wei; Sharma, Gaurav; Karin, Norman J.; Tilton, Susan C.; Waters, Katrina M.; Asgharian, Bahman; Price, Owen; Pounds, Joel G.; Thrall, Brian D.

    2014-01-01

    testing the rapidly growing number of nanomaterials requires large scale use of in vitro systems under the presumption that these systems are sufficiently predictive or descriptive of responses in in vivo systems for effective use in hazard ranking. We hypothesized that improved relationships between in vitro and in vivo models of experimental toxicology for nanomaterials would result from placing response data in vitro and in vivo on the same dose scale, the amount of material associated with cells (target cell dose). Methods: Balb/c mice were exposed nose-only to an aerosol of 12.8 nm (68.6 nm CMD, 19.9 mg/m3, 4 hours) super paramagnetic iron oxide particles, target cell doses were calculated and biomarkers of response anchored with histological evidence were identified by global transcriptomics. Representative murine epithelial and macrophage cell types were exposed in vitro to the same material in liquid suspension for four hours and levels nanoparticle regulated cytokine transcripts identified in vivo were quantified as a function of measured nanoparticle cellular dose. Results. Target tissue doses of 0.009-0.4 μg SPIO/cm2 lung led to an inflammatory response in the alveolar region characterized by interstitial inflammation and macrophage infiltration. In vitro, higher target tissue doses of ~1.2-4 μg SPIO/ cm2 of cells were required to induce transcriptional regulation of markers of inflammation, CXCL2 CCL3, in C10 lung epithelial cells. Estimated in vivo macrophage SPIO nanoparticle doses ranged from 1-100 pg/cell, and induction of inflammatory markers was observed in vitro in macrophages at doses of 8-35 pg/cell. Conclusions: Application of target tissue dosimetry revealed good correspondence between target cell doses triggering inflammatory processes in vitro and in vivo in the alveolar macrophage population, but not in the epithelial cells of the alveolar region. These findings demonstrate the potential for target tissue dosimetry to enable the more

  17. Proteomic Analysis of the Marine Cyanobacterium Synechococcus WH8102 and Implications for Estimates of the Cellular Iron Content

    Science.gov (United States)

    Saito, M. A.; Bertrand, E. M.; Bulygin, V.; Moran, D.; Waterbury, J. B.

    2008-12-01

    The proteome of the marine cyanobacterium Synechococcus WH8102 was analyzed by nanospray liquid chromatography mass spectrometry (nLC-MS) with two major goals: to provide a first examination of the relative abundance of the most abundant proteins in this important microbe and to provide the necessary mass spectra for future quantification of biogeochemically significant proteins. Analyses of 37 nLC-MS runs of whole cell tryptic digestions and SDS-PAGE gel separated tryptic digestions resulted in a total of 636 proteins identified, 376 identified with two or more tryptic peptides. The identifications used the Sequest algorithm with stringent data filters on 54003 observed peptides, 3066 of which were unique, with a false positive rate of 2.2%. These measured proteins represent ~ 25.2% (14.8% with >= 2 peptides) of the open reading frames (ORFs) in the genome, similar to or higher than the percentage found in other cyanobacterial proteome studies thus far. The relative abundance of the more abundant proteins in the proteome was examined using the exponentially modified protein abundance index from a single nLC-MS run that identified 372 proteins (14.7% of the ORFs) from 7743 observed peptides (1224 unique peptides). Estimates of the relative abundance showed the photosynthesis and respiration category contributing approximately 32% of the total detected protein, hypothetical proteins contributing about 16%, and translation about 12%. Of biogeochemical interest, multiple types of nitrogen assimilation systems were observed to be simultaneously expressed as proteins, only 5 of the 21 B12 biosynthesis proteins were identified likely due to low abundance, and the metalloproteins metallothionein and nickel superoxide dismutase were relatively abundant. In contrast to previous predictions of a high photosystem I: photosystem II ratio of approximately 3 in the cyanobacteria and a resultant high cellular iron content, the ratio of the average relative abundances of all

  18. Osmotic Homeostasis

    OpenAIRE

    Danziger, John; Zeidel, Mark L.

    2014-01-01

    Alterations in water homeostasis can disturb cell size and function. Although most cells can internally regulate cell volume in response to osmolar stress, neurons are particularly at risk given a combination of complex cell function and space restriction within the calvarium. Thus, regulating water balance is fundamental to survival. Through specialized neuronal “osmoreceptors” that sense changes in plasma osmolality, vasopressin release and thirst are titrated in order to achieve water bala...

  19. Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations

    DEFF Research Database (Denmark)

    Boczek, Tomasz; Lisek, Malwina; Ferenc, Bozena;

    2014-01-01

    Plasma membrane Ca2+-ATPase (PMCA) by extruding Ca2+ outside the cell, actively participates in the regulation of intracellular Ca2+ concentration. Acting as Ca2+/H+ counter-transporter, PMCA transports large quantities of protons which may affect organellar pH homeostasis. PMCA exists in four...... isoforms (PMCA1-4) but only PMCA2 and PMCA3, due to their unique localization and features, perform more specialized function. Using differentiated PC12 cells we assessed the role of PMCA2 and PMCA3 in the regulation of intracellular pH in steady-state conditions and during Ca2+ overload evoked by 59 m......+-driven opening of mitochondrial permeability transition pore as putative underlying mechanism. The findings presented here demonstrate a crucial role of PMCA2 and PMCA3 in regulation of cellular pH and indicate PMCA membrane composition important for preservation of electrochemical gradient...

  20. Cellular Iron Depletion and the Mechanisms Involved in the Iron-dependent Regulation of the Growth Arrest and DNA Damage Family of Genes*

    OpenAIRE

    Saletta, Federica; Rahmanto, Yohan Suryo; Siafakas, Aritee R.; Richardson, Des R.

    2011-01-01

    Iron plays a crucial part in proliferation while iron deficiency results in G1/S arrest, DNA damage, and apoptosis. However, the precise role of iron in cell cycle control remains unclear. We showed that iron depletion using the iron chelators, desferrioxamine (DFO), or 2-hydroxy-1-napthylaldehyde isonicotinoyl hydrazone (311), increased the mRNA levels of the growth arrest and DNA damage 45α gene, GADD45α (Darnell, G. and Richardson, D. R. (1999) Blood 94, 781–792). In this study, we examine...

  1. Complementary RNA and Protein Profiling Identifies Iron as a Key Regulator of Mitochondrial Biogenesis

    Directory of Open Access Journals (Sweden)

    Jarred W. Rensvold

    2013-01-01

    Full Text Available Mitochondria are centers of metabolism and signaling whose content and function must adapt to changing cellular environments. The biological signals that initiate mitochondrial restructuring and the cellular processes that drive this adaptive response are largely obscure. To better define these systems, we performed matched quantitative genomic and proteomic analyses of mouse muscle cells as they performed mitochondrial biogenesis. We find that proteins involved in cellular iron homeostasis are highly coordinated with this process and that depletion of cellular iron results in a rapid, dose-dependent decrease of select mitochondrial protein levels and oxidative capacity. We further show that this process is universal across a broad range of cell types and fully reversed when iron is reintroduced. Collectively, our work reveals that cellular iron is a key regulator of mitochondrial biogenesis, and provides quantitative data sets that can be leveraged to explore posttranscriptional and posttranslational processes that are essential for mitochondrial adaptation.

  2. Mitigating effects of L-selenomethionine on low-dose iron ion radiation-induced changes in gene expression associated with cellular stress

    OpenAIRE

    Nuth, Manunya; Kennedy, Ann R.

    2013-01-01

    Ionizing radiation associated with highly energetic and charged heavy (HZE) particles poses a danger to astronauts during space travel. The aim of the present study was to evaluate the patterns of gene expression associated with cellular exposure to low-dose iron ion irradiation, in the presence and absence of L-selenomethionine (SeM). Human thyroid epithelial cells (HTori-3) were exposed to low-dose iron ion (1 GeV/n) irradiation at 10 or 20 cGy with or without SeM pretreatment. The cells we...

  3. Multi-domain CGFS-type glutaredoxin Grx4 regulates iron homeostasis via direct interaction with a repressor Fep1 in fission yeast

    International Nuclear Information System (INIS)

    Research highlights: → Monothiol glutaredoxin Grx4 allows Fep1-mediated de-repression of iron uptake genes at low iron. → Grx4 directly interacts with Fep1 in vivo and in vitro. → The Cys172 in the CGFS motif of Grx4 is necessary for cell proliferation and iron regulation. → The Cys172 of Grx4 is required for normal interaction with Fep1. -- Abstract: The fission yeast Schizosaccharomyces pombe contains two CGFS-type monothiol glutaredoxins, Grx4 and Grx5, which are localized primarily in the nucleus and mitochondria, respectively. We observed involvement of Grx4 in regulating iron-responsive gene expression, which is modulated by a repressor Fep1. Lack of Grx4 caused defects not only in growth but also in the expression of both iron-uptake and iron-utilizing genes regardless of iron availability. In order to unravel how Grx4 is involved in Fep1-mediated regulation, interaction between them was investigated. Co-immunoprecipitation and bimolecular fluorescence complementation (BiFC) revealed that Grx4 physically interacts with Fep1 in vivo. BiFC revealed localized nuclear dots produced by interaction of Grx4 with Fep1. Mutation of cysteine-172 in the CGFS motif to serine (C172S) produced effects similarly observed under Grx4 depletion, such as the loss of iron-dependent gene regulation and the absence of nuclear dots in BiFC analysis. These results suggest that the ability of Grx4 to bind iron, most likely Fe-S cofactor, could be critical in interacting with and modulating the activity of Fep1.

  4. Autophagy and intestinal homeostasis.

    Science.gov (United States)

    Patel, Khushbu K; Stappenbeck, Thaddeus S

    2013-01-01

    Nutrient absorption is the basic function that drives mammalian intestinal biology. To facilitate nutrient uptake, the host's epithelial barrier is composed of a single layer of cells. This constraint is problematic, as a design of this type can be easily disrupted. The solution during the course of evolution was to add numerous host defense mechanisms that can help prevent local and systemic infection. These mechanisms include specialized epithelial cells that produce a physiochemical barrier overlying the cellular barrier, robust and organized adaptive and innate immune cells, and the ability to mount an inflammatory response that is commensurate with a specific threat level. The autophagy pathway is a critical cellular process that strongly influences all these functions. Therefore, a fundamental understanding of the components of this pathway and their influence on inflammation, immunity, and barrier function will facilitate our understanding of homeostasis in the gastrointestinal tract. PMID:23216414

  5. Association Studies of HFE C282Y and H63D Variants with Oral Cancer Risk and Iron Homeostasis Among Whites and Blacks

    Directory of Open Access Journals (Sweden)

    Nathan R. Jones

    2015-12-01

    Full Text Available Background: Polymorphisms in the hemochromatosis (HFE gene are associated with excessive iron absorption from the diet, and pro-oxidant effects of iron accumulation are thought to be a risk factor for several types of cancer. Methods: The C282Y (rs1800562 and H63D (rs1799945 polymorphisms were genotyped in 301 oral cancer cases and 437 controls and analyzed in relation to oral cancer risk, and serum iron biomarker levels from a subset of 130 subjects. Results: Individuals with the C282Y allele had lower total iron binding capacity (TIBC (321.2 ± 37.2 µg/dL vs. 397.7 ± 89.0 µg/dL, p = 0.007 and higher percent transferrin saturation (22.0 ± 8.7 vs. 35.6 ± 22.9, p = 0.023 than wild type individuals. Iron and ferritin levels approached significantly higher levels for the C282Y allele (p = 0.0632 and p = 0.0588, respectively. Conclusions: Iron biomarker levels were elevated by the C282Y allele, but neither (rs1800562 nor (rs1799945 was associated with oral cancer risk in blacks and whites.

  6. Association Studies of HFE C282Y and H63D Variants with Oral Cancer Risk and Iron Homeostasis Among Whites and Blacks

    Science.gov (United States)

    Jones, Nathan R.; Ashmore, Joseph H.; Lee, Sang Y.; Richie, John P.; Lazarus, Philip; Muscat, Joshua E.

    2015-01-01

    Background: Polymorphisms in the hemochromatosis (HFE) gene are associated with excessive iron absorption from the diet, and pro-oxidant effects of iron accumulation are thought to be a risk factor for several types of cancer. Methods: The C282Y (rs1800562) and H63D (rs1799945) polymorphisms were genotyped in 301 oral cancer cases and 437 controls and analyzed in relation to oral cancer risk, and serum iron biomarker levels from a subset of 130 subjects. Results: Individuals with the C282Y allele had lower total iron binding capacity (TIBC) (321.2 ± 37.2 µg/dL vs. 397.7 ± 89.0 µg/dL, p = 0.007) and higher percent transferrin saturation (22.0 ± 8.7 vs. 35.6 ± 22.9, p = 0.023) than wild type individuals. Iron and ferritin levels approached significantly higher levels for the C282Y allele (p = 0.0632 and p = 0.0588, respectively). Conclusions: Iron biomarker levels were elevated by the C282Y allele, but neither (rs1800562) nor (rs1799945) was associated with oral cancer risk in blacks and whites. PMID:26690219

  7. Pharmacology of Iron Transport

    OpenAIRE

    Byrne, Shaina L.; Krishnamurthy, Divya; Wessling-Resnick, Marianne

    2012-01-01

    Elucidating the molecular basis for the regulation of iron uptake, storage, and distribution is necessary to understand iron homeostasis. Pharmacological tools are emerging to identify and distinguish among different iron transport pathways. Stimulatory or inhibitory small molecules with effects on iron uptake can help characterize the mechanistic elements of iron transport and the roles of the transporters involved in these processes. In particular, iron chelators can serve as potential phar...

  8. F-box and leucine-rich repeat protein 5 (FBXL5): sensing intracellular iron and oxygen.

    Science.gov (United States)

    Ruiz, Julio C; Bruick, Richard K

    2014-04-01

    Though essential for many vital biological processes, excess iron results in the formation of damaging reactive oxygen species (ROS). Therefore, iron metabolism must be tightly regulated. F-box and leucine-rich repeat protein 5 (FBXL5), an E3 ubiquitin ligase subunit, regulates cellular and systemic iron homeostasis by facilitating iron regulatory protein 2 (IRP2) degradation. FBXL5 possesses an N-terminal hemerythrin (Hr)-like domain that mediates its own differential stability by switching between two different conformations to communicate cellular iron availability. In addition, the FBXL5-Hr domain also senses O2 availability, albeit by a distinct mechanism. Mice lacking FBXL5 fail to sense intracellular iron levels and die in utero due to iron overload and exposure to damaging levels of oxidative stress. By closely monitoring intracellular levels of iron and oxygen, FBLX5 prevents the formation of conditions that favor ROS formation. These findings suggest that FBXL5 is essential for the maintenance of iron homeostasis and is a key sensor of bioavailable iron. Here, we describe the iron and oxygen sensing mechanisms of the FBXL5 Hr-like domain and its role in mediating ROS biology. PMID:24508277

  9. Characterization of transferrin receptor-mediated endocytosis and cellular iron delivery of recombinant human serum transferrin from rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Zhang Deshui

    2012-11-01

    Full Text Available Abstract Background Transferrin (TF plays a critical physiological role in cellular iron delivery via the transferrin receptor (TFR-mediated endocytosis pathway in nearly all eukaryotic organisms. Human serum TF (hTF is extensively used as an iron-delivery vehicle in various mammalian cell cultures for production of therapeutic proteins, and is also being explored for use as a drug carrier to treat a number of diseases by employing its unique TFR-mediated endocytosis pathway. With the increasing concerns over the risk of transmission of infectious pathogenic agents of human plasma-derived TF, recombinant hTF is preferred to use for these applications. Here, we carry out comparative studies of the TFR binding, TFR-mediated endocytosis and cellular iron delivery of recombinant hTF from rice (rhTF, and evaluate its suitability for biopharmaceutical applications. Result Through a TFR competition binding affinity assay with HeLa human cervic carcinoma cells (CCL-2 and Caco-2 human colon carcinoma cells (HTB-37, we show that rhTF competes similarly as hTF to bind TFR, and both the TFR binding capacity and dissociation constant of rhTF are comparable to that of hTF. The endocytosis assay confirms that rhTF behaves similarly as hTF in the slow accumulation in enterocyte-like Caco-2 cells and the rapid recycling pathway in HeLa cells. The pulse-chase assay of rhTF in Caco-2 and HeLa cells further illustrates that rice-derived rhTF possesses the similar endocytosis and intracellular processing compared to hTF. The cell culture assays show that rhTF is functionally similar to hTF in the delivery of iron to two diverse mammalian cell lines, HL-60 human promyelocytic leukemia cells (CCL-240 and murine hybridoma cells derived from a Sp2/0-Ag14 myeloma fusion partner (HB-72, for supporting their proliferation, differentiation, and physiological function of antibody production. Conclusion The functional similarity between rice derived rhTF and native hTF in

  10. Impacto da inflamação na regulação do ferro e deficiência funcional de ferro Importance of inflammation on iron homeostasis and functional iron deficiency

    Directory of Open Access Journals (Sweden)

    Maria Stella Figueiredo

    2010-06-01

    Full Text Available Deficiência funcional de ferro (Fe pode ser definida como o desbalanço entre a quantidade necessária de Fe para a síntese de hemoglobina e o seu suprimento. Ela ocorre na ausência de estoque de Fe, característica da anemia ferropênica (AF, e na presença de bloqueio da homeostasia do Fe, como na anemia da inflamação (AI. Na AI, citocinas e células do sistema retículo-endotelial induzem alterações que interferem em diferentes vias da eritropoese levando à anemia. O bloqueio na mobilização do Fe de estoque pela hepcidina, embora não único, é o mecanismo etiológico mais evidente da AI. A hepcidina, regulador negativo da entrada de Fe no plasma, atua ligando-se à ferroportina, induzindo sua internalização e degradação. Embora a diferenciação entre AF e AI seja relativamente tranquila, pacientes com AI podem cursar com deficiência de Fe associada. O diagnóstico diferencial entre AI e AI com deficiência de Fe tem evidente importância clínica, e novas técnicas laboratoriais têm sido sugeridas para auxiliar neste diagnóstico.Functional iron deficiency can be defined as an imbalance between the iron needs of the erythroid marrow and iron supply. Iron deficiency occurs in the absence of iron deposits, as in the case of iron deficiency anemia (IDA, or when there is an impaired iron mobilization, such as in anemia of inflammation (AI. Cytokines and cells of the reticuloendothelial system can induce changes in several pathways, interfering in erythropoiesis and causing anemia. The retention of iron within cells of the reticuloendothelial system is due to hepcidin. Although this is not the only mechanism evolved in AI, it is the most important. Hepcidin is a negative regulator of iron entry into the plasma. Hepcidin binds to ferroportin, inducing its internalization and degradation. Differentiation between IDA and AI is relatively easy, but patients with AI can have the association of true iron deficiency. The differential

  11. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION

    Directory of Open Access Journals (Sweden)

    Neenu Singh

    2010-09-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this review also mentions the importance of studying the subtle cellular alterations in the form of DNA damage and oxidative stress. We review current studies and discuss how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation. The importance of protein–SPION interaction and various safety considerations relating to SPION exposure are also addressed.

  12. Hepcidin and its role in iron absorption

    OpenAIRE

    Robson, K J

    2004-01-01

    Maintaining the correct iron balance is crucial to good health. Disorders of iron homeostasis have a global distribution. As iron is not actively excreted by the body, understanding the role of proteins involved in regulating iron uptake is essential to our understanding of disease involving iron homeostasis. Over the past 10 years, major advances have been made in understanding the genetics of iron metabolism and this has led to identification of a number of new proteins, including hepcidin,...

  13. The Role of the Cytoplasmic Heme-binding Protein (PhuS) of Pseudomonas aeruginosa in Intracellular Heme Trafficking and Iron Homeostasis*S⃞

    OpenAIRE

    Kaur, Ajinder P.; Lansky, Ila B.; Wilks, Angela

    2009-01-01

    The cytoplasmic heme-binding protein PhuS, encoded within the Fur-regulated Pseudomonas heme utilization (phu) operon, has previously been shown to traffic heme to the iron-regulated heme oxygenase (HO). We further investigate the role of PhuS in heme trafficking to HO on disruption of the phuS and hemO genes in a Pseudomonas aeruginosa siderophore-deficient and wild-type background. Previous studies have shown that deletion of hemO prevents the cells from utilizin...

  14. Iron Metabolism: Interactions with Normal and Disordered Erythropoiesis

    OpenAIRE

    Ganz, Tomas; Nemeth, Elizabeta

    2012-01-01

    Hemoglobinopathies and other disorders of erythroid cells are often associated with abnormal iron homeostasis. We review the molecular physiology of intracellular and systemic iron regulation, and the interactions between erythropoiesis and iron homeostasis. Finally, we discuss iron disorders that affect erythropoiesis as well as erythroid disorders that cause iron dysregulation.

  15. Recent Advances in Iron Metabolism: Relevance for Health, Exercise, and Performance.

    Science.gov (United States)

    Buratti, Paolo; Gammella, Elena; Rybinska, Ilona; Cairo, Gaetano; Recalcati, Stefania

    2015-08-01

    Iron is necessary for physiological processes essential for athletic performance, such as oxygen transport, energy production, and cell division. However, an excess of "free" iron is toxic because it produces reactive hydroxyl radicals that damage biological molecules, thus leading to cell and tissue injury. Therefore, iron homeostasis is strictly regulated; and in recent years, there have been important advancements in our knowledge of the underlying processes. Hepcidin is the central regulator of systemic iron homeostasis and exerts its function by controlling the presence of the iron exporter ferroportin on the cell membrane. Hepcidin binding induces ferroportin degradation, thus leading to cellular iron retention and decreased levels of circulating iron. As iron is required for hemoglobin synthesis, the tight link between erythropoiesis and iron metabolism is particularly relevant to sports physiology. The iron needed for hemoglobin synthesis is ensured by inhibiting hepcidin to increase ferroportin activity and iron availability and hence to make certain that efficient blood oxygen transport occurs for aerobic exercise. However, hepcidin expression is also affected by exercise-associated conditions, such as iron deficiency, anemia or hypoxia, and, particularly, inflammation, which can play a role in the pathogenesis of sports anemia. Here, we review recent advances showing the relevance of iron for physical exercise and athletic performance. Low body iron levels can cause anemia and thus limit the delivery of oxygen to exercising muscle, but tissue iron deficiency may also affect performance by, for example, hampering muscle oxidative metabolism. Accordingly, a hemoglobin-independent effect of iron on exercise capacity has been demonstrated in animal models and humans. Here, we review recent advances showing the relevance of iron for physical exercise and athletic performance. PMID:25494391

  16. Targeting Cells With MR Imaging Probes: Cellular Interaction And Intracellular Magnetic Iron Oxide Nanoparticles Uptake In Brain Capillary Endothelial and Choroidal Plexus Epithelial Cells

    Science.gov (United States)

    Cambianica, I.; Bossi, M.; Gasco, P.; Gonzalez, W.; Idee, J. M.; Miserocchi, G.; Rigolio, R.; Chanana, M.; Morjan, I.; Wang, D.; Sancini, G.

    2010-10-01

    Magnetic iron oxide nanoparticles (NPs) are considered for various diagnostic and therapeutic applications in brain including their use as contrast agent for magnetic resonance imaging. In delivery application, the critical step is the transport across cell layers and the internalization of NPs into specific cells, a process often limited by poor targeting specificity and low internalization efficiency. The development of the models of brain endothelial cells and choroidal plexus epithelial cells in culture has allowed us to investigate into these mechanisms. Our strategy is aimed at exploring different routes to the entrapment of iron oxide NPs in these brain related cells. Here we demonstrated that not only cells endowed with a good phagocytic activity like activated macrophages but also endothelial brain capillary and choroidal plexus epithelial cells do internalize iron oxide NPs. Our study of the intracellular trafficking of NPs by TEM, and confocal microscopy revealed that NPs are mainly internalized by the endocytic pathway. Iron oxide NPs were dispersed in water and coated with 3,4-dihydroxyl-L-phenylalanine (L-DOPA) using standard procedures. Magnetic lipid NPs were prepared by NANOVECTOR: water in oil in water (W/O/W) microemulsion process has been applied to directly coat different iron based NPs by lipid layer or to encapsulate them into Solid Lipid Nanoparticles (SLNs). By these coating/loading the colloidal stability was improved without strong alteration of the particle size distribution. Magnetic lipid NPs could be reconstituted after freeze drying without appreciable changes in stability. L-DOPA coated NPs are stable in PBS and in MEM (Modified Eagle Medium) medium. The magnetic properties of these NPs were not altered by the coating processes. We investigated the cellular uptake, cytotoxicity, and interaction of these NPs with rat brain capillary endothelial (REB4) and choroidal plexus epithelial (Z310) cells. By means of widefield, confocal

  17. Iron disorders of genetic origin: a changing world.

    Science.gov (United States)

    Brissot, Pierre; Bardou-Jacquet, Edouard; Jouanolle, Anne-Marie; Loréal, Olivier

    2011-12-01

    Iron disorders of genetic origin are mainly composed of iron overload diseases, the most frequent being HFE-related hemochromatosis. Hepcidin deficiency underlies iron overload in HFE-hemochromatosis as well as in several other genetic iron excess disorders, such as hemojuvelin or hepcidin-related hemochromatosis and transferrin receptor 2-related hemochromatosis. Deficiency of ferroportin, the only known cellular protein iron exporter, produces iron overload in the typical form of ferroportin disease. By contrast, genetically enhanced hepcidin production, as observed in matriptase-2 deficiency, generates iron-refractory iron deficiency anemia. Diagnosis of these iron storage disorders is usually established noninvasively through combined biochemical, imaging and genetic approaches. Moreover, improved knowledge of the molecular mechanisms accounting for the variations of iron stores opens the way of novel therapeutic approaches aiming to restore normal iron homeostasis. In this review, we will summarize recent findings about these various genetic entities that have been identified owing to an exemplary interplay between clinicians and basic scientists. PMID:21862411

  18. Methodology description for detection of cellular uptake of PVA coated superparamagnetic iron oxide nanoparticles (SPION) in synovial cells of sheep

    International Nuclear Information System (INIS)

    The detection of superparamagnetic iron oxide nanoparticles (SPION) in synoviocytes is reported. Synoviocytes were incubated for 2, 12, 24 and 48 h with 1.5 mg/ml of PVA coated SPION under the influence of magnets (12 h). Particles were well tolerated by the synoviocytes, were easily detected using the Turnbulls and Prussian blue reactions between 12 and 24 h

  19. Homeostasis of T Cell Diversity

    Institute of Scientific and Technical Information of China (English)

    VinayS.Mahajan; IlyaB.Leskov; JianzhuChen

    2005-01-01

    T cell homeostasis commonly refers to the maintenance of relatively stable T cell numbers in the peripheral lymphoid organs. Among the large numbers of T cells in the periphery, T cells exhibit structural diversity, i.e., the expression of a diverse repertoire of T cell receptors (TCRs), and functional diversity, i.e., the presence of T cells at naive, effector, and memory developmental stages. Although the homeostasis of T cell numbers has been extensively studied, investigation of the mechanisms underlying the maintenance of structural and functional diversity of T cells is still at an early stage. The fundamental feature throughout T cell development is the interaction between the TCR and either self or foreign peptides in association with MHC molecules. In this review, we present evidence showing that homeostasis of T cell number and diversity is mediated through competition for limiting resources. The number of T cells is maintained through competition for limiting cytokines, whereas the diversity of T cells is maintained by competition for self-peptide-MHC complexes. In other words, diversity of the self-peptide repertoire limits the structural (TCR) diversity of a T cell population. We speculate that cognate low affinity self-peptides, acting as weak agonists and antagonists, regulate the homeostasis of T cell diversity whereas non-cognate or null peptides which are extremely abundant for any given TCR, may contribute to the homeostasis of T cell number by providing survival signals. Moreover, self-peptides and cytokines may form specialized niches for the regulation of T cell homeostasis. Cellular & Molecular Immunology. 2005;2(1): 1-10.

  20. Plasticity and Dedifferentiation within the Pancreas: Development, Homeostasis, and Disease

    OpenAIRE

    Puri, Sapna; Folias, Alexandra E.; Hebrok, Matthias

    2014-01-01

    Cellular identity is established by genetic, epigenetic, and environmental factors that regulate organogenesis and tissue homeostasis. Although some flexibility in fate potential is beneficial to overall organ health, dramatic changes in cellular identity can have disastrous consequences. Emerging data within the field of pancreas biology are revising current beliefs about how cellular identity is shaped by developmental and environmental cues under homeostasis and stress conditions. Here, we...

  1. Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich's ataxia.

    Science.gov (United States)

    Chiang, Shannon; Kovacevic, Zaklina; Sahni, Sumit; Lane, Darius J R; Merlot, Angelica M; Kalinowski, Danuta S; Huang, Michael L-H; Richardson, Des R

    2016-06-01

    The mitochondrion is a major site for the metabolism of the transition metal, iron, which is necessary for metabolic processes critical for cell vitality. The enigmatic mitochondrial protein, frataxin, is known to play a significant role in both cellular and mitochondrial iron metabolism due to its iron-binding properties and its involvement in iron-sulfur cluster (ISC) and heme synthesis. The inherited neuro- and cardio-degenerative disease, Friedreich's ataxia (FA), is caused by the deficient expression of frataxin that leads to deleterious alterations in iron metabolism. These changes lead to the accumulation of inorganic iron aggregates in the mitochondrial matrix that are presumed to play a key role in the oxidative damage and subsequent degenerative features of this disease. Furthermore, the concurrent dys-regulation of cellular antioxidant defense, which coincides with frataxin deficiency, exacerbates oxidative stress. Hence, the pathogenesis of FA underscores the importance of the integrated homeostasis of cellular iron metabolism and the cytoplasmic and mitochondrial redox environments. This review focuses on describing the pathogenesis of the disease, the molecular mechanisms involved in mitochondrial iron-loading and the dys-regulation of cellular antioxidant defense due to frataxin deficiency. In turn, current and emerging therapeutic strategies are also discussed. PMID:27129098

  2. Iron metabolism in the mononuclear phagocyte system

    Institute of Scientific and Technical Information of China (English)

    Weina Kong; Xianglin Duan; Zhenhua Shi; Yanzhong Chang

    2008-01-01

    The maintenance of body iron homeostasis requires the coordination of multiple regulatory mechanisms of iron metabolism.The mononuclear phagocyte system (MPS,composed of monocytes,macrophages,and their precursor cells) is crucial in the maintenance of iron homeostasis.Recycling of iron is carried out by specialized macrophages via engulfment of aged erythrocytes.The iron stores of macrophages depend on the levels of recovered and exported iron.However,the molecular mechanisms underlying iron homeostasis in macrophages are poorly understood.Recent studies characterizing the function and regulation of natural resistance-associated macrophage protein 1 (Nrampl),divalent metal transporter 1 (DMTI),HLA-linked hemechromatosis gene (HFE),ferroportin 1 (FPN1),and hepcidin are rapidly expanding our knowledge on the molecular level of MPS iron handling.These studies are deepening our understanding about the molecular mechanism of iron homeostasis and iron-related diseases.

  3. Cysteine Prevents the Reduction in Keratin Synthesis Induced by Iron Deficiency in Human Keratinocytes.

    Science.gov (United States)

    Miniaci, Maria Concetta; Irace, Carlo; Capuozzo, Antonella; Piccolo, Marialuisa; Di Pascale, Antonio; Russo, Annapina; Lippiello, Pellegrino; Lepre, Fabio; Russo, Giulia; Santamaria, Rita

    2016-02-01

    L-cysteine is currently recognized as a conditionally essential sulphur amino acid. Besides contributing to many biological pathways, cysteine is a key component of the keratin protein by its ability to form disulfide bridges that confer strength and rigidity to the protein. In addition to cysteine, iron represents another critical factor in regulating keratins expression in epidermal tissues, as well as in hair follicle growth and maturation. By focusing on human keratinocytes, the aim of this study was to evaluate the effect of cysteine supplementation as nutraceutical on keratin biosynthesis, as well as to get an insight on the interplay of cysteine availability and cellular iron status in regulating keratins expression in vitro. Herein we demonstrate that cysteine promotes a significant up-regulation of keratins expression as a result of de novo protein synthesis, while the lack of iron impairs keratin expression. Interestingly, cysteine supplementation counteracts the adverse effect of iron deficiency on cellular keratin expression. This effect was likely mediated by the up-regulation of transferrin receptor and ferritin, the main cellular proteins involved in iron homeostasis, at last affecting the labile iron pool. In this manner, cysteine may also enhance the metabolic iron availability for DNA synthesis without creating a detrimental condition of iron overload. To the best of our knowledge, this is one of the first study in an in vitro keratinocyte model providing evidence that cysteine and iron cooperate for keratins expression, indicative of their central role in maintaining healthy epithelia. PMID:26212225

  4. Iron economy in Chlamydomonas reinhardtii

    Science.gov (United States)

    Glaesener, Anne G.; Merchant, Sabeeha S.; Blaby-Haas, Crysten E.

    2013-01-01

    While research on iron nutrition in plants has largely focused on iron-uptake pathways, photosynthetic microbes such as the unicellular green alga Chlamydomonas reinhardtii provide excellent experimental systems for understanding iron metabolism at the subcellular level. Several paradigms in iron homeostasis have been established in this alga, including photosystem remodeling in the chloroplast and preferential retention of some pathways and key iron-dependent proteins in response to suboptimal iron supply. This review presents our current understanding of iron homeostasis in Chlamydomonas, with specific attention on characterized responses to changes in iron supply, like iron-deficiency. An overview of frequently used methods for the investigation of iron-responsive gene expression, physiology and metabolism is also provided, including preparation of media, the effect of cell size, cell density and strain choice on quantitative measurements and methods for the determination of metal content and assessing the effect of iron supply on photosynthetic performance. PMID:24032036

  5. Mitigating effects of L-selenomethionine on low-dose iron ion radiation-induced changes in gene expression associated with cellular stress.

    Science.gov (United States)

    Nuth, Manunya; Kennedy, Ann R

    2013-07-01

    Ionizing radiation associated with highly energetic and charged heavy (HZE) particles poses a danger to astronauts during space travel. The aim of the present study was to evaluate the patterns of gene expression associated with cellular exposure to low-dose iron ion irradiation, in the presence and absence of L-selenomethionine (SeM). Human thyroid epithelial cells (HTori-3) were exposed to low-dose iron ion (1 GeV/n) irradiation at 10 or 20 cGy with or without SeM pretreatment. The cells were harvested 6 and 16 h post-irradiation and analyzed by the Affymetrix U133Av2 gene chip arrays. Genes exhibiting a 1.5-fold expression cut-off and 5% false discovery rate (FDR) were considered statistically significant and subsequently analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) for pathway analysis. Representative genes were further validated by real-time RT-PCR. Even at low doses of radiation from iron ions, global genome profiling of the irradiated cells revealed the upregulation of genes associated with the activation of stress-related signaling pathways (ubiquitin-mediated proteolysis, p53 signaling, cell cycle and apoptosis), which occurred in a dose-dependent manner. A 24-h pretreatment with SeM was shown to reduce the radiation effects by mitigating stress-related signaling pathways and downregulating certain genes associated with cell adhesion. The mechanism by which SeM prevents radiation-induced transformation in vitro may involve the suppression of the expression of genes associated with stress-related signaling and certain cell adhesion events. PMID:23946774

  6. Tetracapsuloides bryosalmonae infection affects the expression of genes involved in cellular signal transduction and iron metabolism in the kidney of the brown trout Salmo trutta.

    Science.gov (United States)

    Kumar, Gokhlesh; Sarker, Subhodeep; Menanteau-Ledouble, Simon; El-Matbouli, Mansour

    2015-06-01

    Tetracapsuloides bryosalmonae is an enigmatic endoparasite which causes proliferative kidney disease in various species of salmonids in Europe and North America. The life cycle of the European strain of T. bryosalmonae generally completes in an invertebrate host freshwater bryozoan and vertebrate host brown trout (Salmo trutta) Linnaeus, 1758. Little is known about the gene expression in the kidney of brown trout during the developmental stages of T. bryosalmonae. In the present study, quantitative real-time PCR was applied to quantify the target genes of interest in the kidney of brown trout at different time points of T. bryosalmonae development. PCR primers specific for target genes were designed and optimized, and their gene expression levels were quantified in the cDNA kidney samples using SYBR Green Supermix. Expression of Rab GDP dissociation inhibitor beta, integral membrane protein 2B, NADH dehydrogenase 1 beta subcomplex subunit 6, and 26S protease regulatory subunit S10B were upregulated significantly in infected brown trout, while the expression of the ferritin M middle subunit was downregulated significantly. These results suggest that host genes involved in cellular signal transduction, proteasomal activities, including membrane transporters and cellular iron storage, are differentially upregulated or downregulated in the kidney of brown trout during parasite development. The gene expression pattern of infected renal tissue may support the development of intraluminal sporogonic stages of T. bryosalmonae in the renal tubular lumen of brown trout which may facilitate the release of viable parasite spores to transmit to the invertebrate host bryozoan. PMID:25786607

  7. HERC2 targets the iron regulator FBXL5 for degradation and modulates iron metabolism.

    Science.gov (United States)

    Moroishi, Toshiro; Yamauchi, Takayoshi; Nishiyama, Masaaki; Nakayama, Keiichi I

    2014-06-01

    FBXL5 (F-box and leucine-rich repeat protein 5) is the F-box protein subunit of, and therefore responsible for substrate recognition by, the SCF(FBXL5) ubiquitin-ligase complex, which targets iron regulatory protein 2 (IRP2) for proteasomal degradation. IRP2 plays a central role in the maintenance of cellular iron homeostasis in mammals through posttranscriptional regulation of proteins that contribute to control of the intracellular iron concentration. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo, given that mice lacking FBXL5 die during early embryogenesis as a result of unrestrained IRP2 activity and oxidative stress attributable to excessive iron accumulation. Despite its pivotal role in the control of iron homeostasis, however, little is known of the upstream regulation of FBXL5 activity. We now show that FBXL5 undergoes constitutive ubiquitin-dependent degradation at the steady state. With the use of a proteomics approach to the discovery of proteins that regulate the stability of FBXL5, we identified the large HECT-type ubiquitin ligase HERC2 (HECT and RLD domain containing E3 ubiquitin protein ligase 2) as an FBXL5-associated protein. Inhibition of the HERC2-FBXL5 interaction or depletion of endogenous HERC2 by RNA interference resulted in the stabilization of FBXL5 and a consequent increase in its abundance. Such accumulation of FBXL5 in turn led to a decrease in the intracellular content of ferrous iron. Our results thus suggest that HERC2 regulates the basal turnover of FBXL5, and that this ubiquitin-dependent degradation pathway contributes to the control of mammalian iron metabolism. PMID:24778179

  8. Combinatorics of feedback in cellular uptake and metabolism of small molecules.

    Science.gov (United States)

    Krishna, Sandeep; Semsey, Szabolcs; Sneppen, Kim

    2007-12-26

    We analyze the connection between structure and function for regulatory motifs associated with cellular uptake and usage of small molecules. Based on the boolean logic of the feedback we suggest four classes: the socialist, consumer, fashion, and collector motifs. We find that the socialist motif is good for homeostasis of a useful but potentially poisonous molecule, whereas the consumer motif is optimal for nutrition molecules. Accordingly, examples of these motifs are found in, respectively, the iron homeostasis system in various organisms and in the uptake of sugar molecules in bacteria. The remaining two motifs have no obvious analogs in small molecule regulation, but we illustrate their behavior using analogies to fashion and obesity. These extreme motifs could inspire construction of synthetic systems that exhibit bistable, history-dependent states, and homeostasis of flux (rather than concentration). PMID:18093927

  9. Iron regulation by hepatocytes and free radicals

    OpenAIRE

    Takami, Taro; Sakaida, Isao

    2011-01-01

    Iron is an essential metallic microelement for life. However, iron overload is toxic. The liver serves an important role as a storehouse for iron in the body. About 20–25 mg of iron is required each day for hemoglobin synthesis. To maintain iron homeostasis, transferrin and transferrin receptors are primarily involved in the uptake of iron into hepatocytes, ferritin in its storage, and ferroportin in its export. Moreover, hepcidin controls ferroportin and plays a central role in the iron meta...

  10. Oxidative Stress in the Healthy and Wounded Hepatocyte: A Cellular Organelles Perspective.

    Science.gov (United States)

    Mello, Tommaso; Zanieri, Francesca; Ceni, Elisabetta; Galli, Andrea

    2016-01-01

    Accurate control of the cell redox state is mandatory for maintaining the structural integrity and physiological functions. This control is achieved both by a fine-tuned balance between prooxidant and anti-oxidant molecules and by spatial and temporal confinement of the oxidative species. The diverse cellular compartments each, although structurally and functionally related, actively maintain their own redox balance, which is necessary to fulfill specialized tasks. Many fundamental cellular processes such as insulin signaling, cell proliferation and differentiation and cell migration and adhesion, rely on localized changes in the redox state of signal transducers, which is mainly mediated by hydrogen peroxide (H2O2). Therefore, oxidative stress can also occur long before direct structural damage to cellular components, by disruption of the redox circuits that regulate the cellular organelles homeostasis. The hepatocyte is a systemic hub integrating the whole body metabolic demand, iron homeostasis and detoxification processes, all of which are redox-regulated processes. Imbalance of the hepatocyte's organelles redox homeostasis underlies virtually any liver disease and is a field of intense research activity. This review recapitulates the evolving concept of oxidative stress in the diverse cellular compartments, highlighting the principle mechanisms of oxidative stress occurring in the healthy and wounded hepatocyte. PMID:26788252

  11. Monomeric Yeast Frataxin is an Iron Binding Protein†

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.; Bencze, K; Jankovic, A; Crater, A; Busch, C; Bradley, P; Stemmler, A; Spaller, M; Stemmler, T

    2009-01-01

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron.

  12. Monomeric Yeast Frataxin is an Iron-Binding Protein

    Energy Technology Data Exchange (ETDEWEB)

    Cook,J.; Bencze, K.; Jankovic, A.; Crater, A.; Busch, C.; Bradley, P.; Stemmler, A.; Spaller, M.; Stemmler, T.

    2006-01-01

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron.

  13. Monomeric Yeast Frataxin is an Iron-Binding Protein

    International Nuclear Information System (INIS)

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron

  14. Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models

    Directory of Open Access Journals (Sweden)

    Sun Z

    2013-03-01

    Full Text Available Zhizhi Sun,1 Vinith Yathindranath,2 Matthew Worden,3 James A Thliveris,4 Stephanie Chu,1 Fiona E Parkinson,1 Torsten Hegmann,1–3 Donald W Miller1 1Department of Pharmacology and Therapeutics, 2Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; 3Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH, USA; 4Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada  Background: Aminosilane-coated iron oxide nanoparticles (AmS-IONPs have been widely used in constructing complex and multifunctional drug delivery systems. However, the biocompatibility and uptake characteristics of AmS-IONPs in central nervous system (CNS-relevant cells are unknown. The purpose of this study was to determine the effect of surface charge and magnetic field on toxicity and uptake of AmS-IONPs in CNS-relevant cell types. Methods: The toxicity and uptake profile of positively charged AmS-IONPs and negatively charged COOH-AmS-IONPs of similar size were examined using a mouse brain microvessel endothelial cell line (bEnd.3 and primary cultured mouse astrocytes and neurons. Cell accumulation of IONPs was examined using the ferrozine assay, and cytotoxicity was assessed by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results: No toxicity was observed in bEnd.3 cells at concentrations up to 200 µg/mL for either AmS-IONPs or COOH-AmS-IONPs. AmS-IONPs at concentrations above 200 µg/mL reduced neuron viability by 50% in the presence or absence of a magnetic field, while only 20% reductions in viability were observed with COOH-AmS-IONPs. Similar concentrations of AmS-IONPs in astrocyte cultures reduced viability to 75% but only in the presence of a magnetic field, while exposure to COOH-AmS-IONPs reduced viability to 65% and 35% in the absence and presence of a magnetic field, respectively. Cellular accumulation of AmS-IONPs was greater

  15. Iron regulation by hepcidin

    OpenAIRE

    Zhao, Ningning; Zhang, An-Sheng; Enns, Caroline A

    2013-01-01

    Hepcidin is a key hormone that is involved in the control of iron homeostasis in the body. Physiologically, hepcidin is controlled by iron stores, inflammation, hypoxia, and erythropoiesis. The regulation of hepcidin expression by iron is a complex process that requires the coordination of multiple proteins, including hemojuvelin, bone morphogenetic protein 6 (BMP6), hereditary hemochromatosis protein, transferrin receptor 2, matriptase-2, neogenin, BMP receptors, and transferrin. Misregulati...

  16. Cadmium-induced aggregation of iron regulatory protein-1

    International Nuclear Information System (INIS)

    Iron regulatory protein-1 (IRP-1) is central to regulation of iron homeostasis, and has been shown to be sensitive to Cd2+ in vitro. Although Cd2+ induces disulfide-bond formation in many proteins, the critical cysteine residues for iron binding in IRP-1 were shown not to be involved in Cd-induced IRP-1 aggregation in vitro. Here we show that Cd2+ causes polymerization and aggregation of IRP-1 in vitro and in vivo, and decreases in a dose-dependent manner both its RNA-binding and aconitase enzymatic activities, as well as its cytosolic expression. We have used two-dimensional electrophoresis to demonstrate thiol-dependent self-association of purified recombinant IRP-1 treated with Cd2+, as well as self-association in Cd2+-exposed mesangial cells. Circular dichroism spectra confirm significant conformational changes in the purified protein upon Cd2+ exposure. Following Cd2+ treatment, there is increased translocation of inactive IRP-1 to the actin cytoskeletal fraction, and this translocation is diminished by both antioxidant (BHA) treatment and inhibition of CaMK-II. These changes differ from those elicited by manipulation of iron levels. Cadmium-induced translocation of proteins to cellular compartments, and particularly to the cytoskeleton, is becoming a recognized event in Cd2+ toxicity. Polymer-dependent translocation of IRP-1 in Cd2+-exposed cells may underlie effects of Cd2+ on iron homeostasis

  17. Responses to iron limitation are impacted by light quality and regulated by RcaE in the chromatically acclimating cyanobacterium Fremyella diplosiphon.

    Science.gov (United States)

    Pattanaik, Bagmi; Busch, Andrea W U; Hu, Pingsha; Chen, Jin; Montgomery, Beronda L

    2014-05-01

    Photosynthetic organisms adapt to environmental fluctuations of light and nutrient availability. Iron is critical for photosynthetic organismal growth, as many cellular processes depend upon iron cofactors. Whereas low iron levels can have deleterious effects, excess iron can lead to damage, as iron is a reactive metal that can result in the production of damaging radicals. Therefore, organisms regulate cellular iron levels to maintain optimal iron homeostasis. In particular, iron is an essential factor for the function of photosystems associated with photosynthetic light-harvesting complexes. Photosynthetic organisms, including cyanobacteria, generally respond to iron deficiency by reduced growth, degradation of non-essential proteins and in some cases alterations of cellular morphology. In response to fluctuations in ambient light quality, the cyanobacterium Fremyella diplosiphon undergoes complementary chromatic adaptation (CCA). During CCA, phycobiliprotein composition of light-harvesting antennae is altered in response to green light (GL) and red light (RL) for efficient utilization of light energy for photosynthesis. We observed light-regulated responses to iron limitation in F. diplosiphon. RL-grown cells exhibited significant reductions in growth and pigment levels, and alterations in iron-associated proteins, which impact the accumulation of reactive oxygen species under iron-limiting conditions, whereas GL-grown cells exhibited partial resistance to iron limitation. We investigated the roles of known CCA regulators RcaE, RcaF and RcaC in this light-dependent iron-acclimation response. Through comparative analyses of wild-type and CCA mutant strains, we determined that photoreceptor RcaE has a central role in light-induced oxidative stress associated with iron limitation, and impacts light-regulated iron-acclimation responses, physiologically and morphologically. PMID:24623652

  18. Homeostasis in anorexia nervosa

    OpenAIRE

    Södersten, Per; Bergh, Cecilia; Zandian, Modjtaba; Ioakimidis, Ioannis

    2014-01-01

    Brainstem and hypothalamic “orexigenic/anorexigenic” networks are thought to maintain body weight homeostasis in response to hormonal and metabolic feedback from peripheral sites. This approach has not been successful in managing over- and underweight patients. It is suggested that concept of homeostasis has been misinterpreted; rather than exerting control, the brain permits eating in proportion to the amount of physical activity necessary to obtain food. In support, animal experiments have ...

  19. Homeostasis in anorexia nervosa

    OpenAIRE

    Per eSodersten; Cecilia eBergh; Modjtaba eZandian; Ioannis eIoakimidis

    2014-01-01

    Brainstem and hypothalamic orexigenic/anorexigenic networks are thought to maintain body weight homeostasis in response to hormonal and metabolic feedback from peripheral sites. This approach has not been successful in managing over- and underweight patients. It is suggested that concept of homeostasis has been misinterpreted; rather than exerting control, the brain permits eating in proportion to the amount of physical activity necessary to obtain food. In support, animal experiments have sh...

  20. The Role of Hepcidin in Iron Metabolism

    OpenAIRE

    Nemeth, Elizabeta; Ganz, Tomas

    2009-01-01

    Hepcidin is the central regulator of systemic iron homeostasis. Dysregulation of hepcidin production results in a variety of iron disorders. Hepcidin deficiency is the cause of iron overload in hereditary hemochromatosis, iron-loading anemias, and hepatitis C. Hepcidin excess is associated with anemia of inflammation, chronic kidney disease and iron-refractory iron deficiency anemia. Diagnostic and therapeutic applications of this new knowledge are beginning to emerge. Dr. Ernest Beutler play...

  1. Review: Insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories.

    Science.gov (United States)

    Arber, C E; Li, A; Houlden, H; Wray, S

    2016-04-01

    Neurodegeneration with brain iron accumulation (NBIA) is a group of disorders characterized by dystonia, parkinsonism and spasticity. Iron accumulates in the basal ganglia and may be accompanied by Lewy bodies, axonal swellings and hyperphosphorylated tau depending on NBIA subtype. Mutations in 10 genes have been associated with NBIA that include Ceruloplasmin (Cp) and ferritin light chain (FTL), both directly involved in iron homeostasis, as well as Pantothenate Kinase 2 (PANK2), Phospholipase A2 group 6 (PLA2G6), Fatty acid hydroxylase 2 (FA2H), Coenzyme A synthase (COASY), C19orf12, WDR45 and DCAF17 (C2orf37). These genes are involved in seemingly unrelated cellular pathways, such as lipid metabolism, Coenzyme A synthesis and autophagy. A greater understanding of the cellular pathways that link these genes and the disease mechanisms leading to iron dyshomeostasis is needed. Additionally, the major overlap seen between NBIA and more common neurodegenerative diseases may highlight conserved disease processes. In this review, we will discuss clinical and pathological findings for each NBIA-related gene, discuss proposed disease mechanisms such as mitochondrial health, oxidative damage, autophagy/mitophagy and iron homeostasis, and speculate the potential overlap between NBIA subtypes. PMID:25870938

  2. Modulation of hepcidin to treat iron deregulation: potential clinical applications

    OpenAIRE

    Blanchette, Nicole L.; Manz, David H.; Torti, Frank M.; Torti, Suzy V.

    2015-01-01

    The secreted peptide hormone hepcidin regulates systemic and local iron homeostasis through degradation of the iron exporter ferroportin. Dysregulation of hepcidin leads to altered iron homeostasis and development of pathological disorders including hemochromatosis, and iron loading and iron restrictive anemias. Therapeutic modulation of hepcidin is a promising method to ameliorate these conditions. Several approaches have been taken to enhance or reduce the effects of hepcidin in vitro and i...

  3. Cellular resilience.

    Science.gov (United States)

    Smirnova, Lena; Harris, Georgina; Leist, Marcel; Hartung, Thomas

    2015-01-01

    Cellular resilience describes the ability of a cell to cope with environmental changes such as toxicant exposure. If cellular metabolism does not collapse directly after the hit or end in programmed cell death, the ensuing stress responses promote a new homeostasis under stress. The processes of reverting "back to normal" and reversal of apoptosis ("anastasis") have been studied little at the cellular level. Cell types show astonishingly similar vulnerability to most toxicants, except for those that require a very specific target, metabolism or mechanism present only in specific cell types. The majority of chemicals triggers "general cytotoxicity" in any cell at similar concentrations. We hypothesize that cells differ less in their vulnerability to a given toxicant than in their resilience (coping with the "hit"). In many cases, cells do not return to the naive state after a toxic insult. The phenomena of "pre-conditioning", "tolerance" and "hormesis" describe this for low-dose exposures to toxicants that render the cell more resistant to subsequent hits. The defense and resilience programs include epigenetic changes that leave a "memory/scar" - an alteration as a consequence of the stress the cell has experienced. These memories might have long-term consequences, both positive (resistance) and negative, that contribute to chronic and delayed manifestations of hazard and, ultimately, disease. This article calls for more systematic analyses of how cells cope with toxic perturbations in the long-term after stressor withdrawal. A technical prerequisite for these are stable (organotypic) cultures and a characterization of stress response molecular networks. PMID:26536287

  4. Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines

    Directory of Open Access Journals (Sweden)

    Cianzio Silvia R

    2007-12-01

    grown under iron sufficient and iron limited conditions. Iron inefficient plants failed to respond to decreased iron availability with increased activity of Fe reductase. Conclusion These experiments have identified genes involved in the soybean iron deficiency chlorosis response under iron deficient conditions. Single linkage cluster analysis suggests iron limited soybeans mount a general stress response as well as a specialized iron deficiency stress response. Root membrane bound reductase capacity is often correlated with iron efficiency. Under iron-limited conditions, the iron efficient plant had high root bound membrane reductase capacity while the iron inefficient plants reductase levels remained low, further limiting iron uptake through the root. Many of the genes up-regulated in the iron inefficient NIL are involved in known stress induced pathways. The most striking response of the iron inefficient genotype to iron deficiency stress was the induction of a profusion of signaling and regulatory genes, presumably in an attempt to establish and maintain cellular homeostasis. Genes were up-regulated that point toward an increased transport of molecules through membranes. Genes associated with reactive oxidative species and an ROS-defensive enzyme were also induced. The up-regulation of genes involved in DNA repair and RNA stability reflect the inhospitable cellular environment resulting from iron deficiency stress. Other genes were induced that are involved in protein and lipid catabolism; perhaps as an effort to maintain carbon flow and scavenge energy. The under-expression of a key glycolitic gene may result in the iron-inefficient genotype being energetically challenged to maintain a stable cellular environment. These experiments have identified candidate genes and processes for further experimentation to increase our understanding of soybeans' response to iron deficiency stress.

  5. The interplay between iron accumulation, mitochondrial dysfunction and inflammation during the execution step of neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    MarcoTulioNunez

    2014-03-01

    Full Text Available A growing set of observations points to mitochondrial dysfunction, iron accumulation, oxidative damage and chronic inflammation as common pathognomonic signs of a number of neurodegenerative diseases that includes Alzheimer's disease, Huntington disease, amyotrophic lateral sclerosis, Friedrich’s ataxia and Parkinson’s disease. Particularly relevant for neurodegenerative processes is the relationship between mitochondria and iron. The mitochondrion upholds the synthesis of iron-sulfur clusters and heme, the most abundant iron-containing prosthetic groups in a large variety of proteins, so a fraction of incoming iron must go through this organelle before reaching its final destination. In turn, the mitochondrial respiratory chain is the source of reactive oxygen species (ROS derived from leaks in the electron transport chain. The co-existence of both iron and ROS in the secluded space of the mitochondrion makes this organelle particularly prone to hydroxyl radical-mediated damage. In addition, a connection between the loss of iron homeostasis and inflammation is starting to emerge; thus, inflammatory cytokines like TNF-alpha and IL-6 induce the synthesis of the divalent metal transporter 1 and promote iron accumulation in neurons and microglia. Here, we review the recent literature on mitochondrial iron homeostasis and the role of inflammation on mitochondria dysfunction and iron accumulation on the neurodegenerative process that lead to cell death in Parkinson’s disease. We also put forward the hypothesis that mitochondrial dysfunction, iron accumulation and inflammation are part of a synergistic self-feeding cycle that ends in apoptotic cell death, once the antioxidant cellular defense systems are finally overwhelmed.

  6. Oxidative Stress and Autophagy in Cardiovascular Homeostasis

    OpenAIRE

    Morales, Cyndi R.; Pedrozo, Zully; Lavandero, Sergio; Hill, Joseph A.

    2014-01-01

    Significance: Autophagy is an evolutionarily ancient process of intracellular protein and organelle recycling required to maintain cellular homeostasis in the face of a wide variety of stresses. Dysregulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to oxidative damage. Both autophagy and ROS/RNS serve pathological or adaptive roles within cardiomyocytes, depending on the context. Recent Advances: ROS/RNS and autophagy communicate with each other via both tra...

  7. Hepcidin in iron overload disorders

    OpenAIRE

    Papanikolaou, George; Tzilianos, Michalis; Christakis, John I.; Bogdanos, Dionisios; Tsimirika, Konstantina; MacFarlane, Julie; Goldberg, Y. Paul; Sakellaropoulos, Nikos; Ganz, Tomas; Nemeth, Elizabeta

    2005-01-01

    Hepcidin is the principal regulator of iron absorption in humans. The peptide inhibits cellular iron efflux by binding to the iron export channel ferroportin and inducing its internalization and degradation. Either hepcidin deficiency or alterations in its target, ferroportin, would be expected to result in dysregulated iron absorption, tissue maldistribution of iron, and iron overload. Indeed, hepcidin deficiency has been reported in hereditary hemochromatosis and attributed to mutations in ...

  8. [Iron-refractory iron deficiency anemia].

    Science.gov (United States)

    Kawabata, Hiroshi

    2016-02-01

    The major causes of iron deficiency anemia (IDA) include iron loss due to bleeding, increased iron requirements, and decreased iron absorption by the intestine. The most common cause of IDA in Japanese women is iron loss during menstruation. Autoimmune atrophic gastritis and Helicobacter pylori infection can also cause IDA by reducing intestinal iron absorption. In addition to these common etiologies, germline mutations of TMPRSS6 can cause iron-refractory IDA (IRIDA). TMPRSS6 encodes matriptase-2, a membrane-bound serine protease primarily expressed in the liver. Functional loss of matriptase-2 due to homozygous mutations results in an increase in the expression of hepcidin, which is the key regulator of systemic iron homeostasis. The serum hepcidin increase in turn leads to a decrease in iron supply from the intestine and macrophages to erythropoietic cells. IRIDA is microcytic and hypochromic, but decreased serum ferritin is not observed as in IDA. IRIDA is refractory to oral iron supplementation, but does respond to intravenous iron supplementation to some extent. Because genetic testing is required for the diagnoses of IRIDA, a considerable number of cases may go undiagnosed and may thus be overlooked. PMID:26935626

  9. Loss of NCB5OR in the cerebellum disturbs iron pathways, potentiates behavioral abnormalities, and exacerbates harmaline-induced tremor in mice.

    Science.gov (United States)

    Stroh, Matthew A; Winter, Michelle K; Swerdlow, Russell H; McCarson, Kenneth E; Zhu, Hao

    2016-08-01

    Iron dyshomeostasis has been implicated in many diseases, including a number of neurological conditions. Cytosolic NADH cytochrome b5 oxidoreductase (NCB5OR) is ubiquitously expressed in animal tissues and is capable of reducing ferric iron in vitro. We previously reported that global gene ablation of NCB5OR resulted in early-onset diabetes and altered iron homeostasis in mice. To further investigate the specific effects of NCB5OR deficiency on neural tissue without contributions from known phenotypes, we generated a conditional knockout (CKO) mouse that lacks NCB5OR only in the cerebellum and midbrain. Assessment of molecular markers in the cerebellum of CKO mice revealed changes in pathways associated with cellular and mitochondrial iron homeostasis. (59)Fe pulse-feeding experiments revealed cerebellum-specific increased or decreased uptake of iron by 7 and 16 weeks of age, respectively. Additionally, we characterized behavioral changes associated with loss of NCB5OR in the cerebellum and midbrain in the context of dietary iron deprivation-evoked generalized iron deficiency. Locomotor activity was reduced and complex motor task execution was altered in CKO mice treated with an iron deficient diet. A sucrose preference test revealed that the reward response was intact in CKO mice, but that iron deficient diet consumption altered sucrose preference in all mice. Detailed gait analysis revealed locomotor changes in CKO mice associated with dysfunctional proprioception and locomotor activation independent of dietary iron deficiency. Finally, we demonstrate that loss of NCB5OR in the cerebellum and midbrain exacerbated harmaline-induced tremor activity. Our findings suggest an essential role for NCB5OR in maintaining both iron homeostasis and the proper functioning of various locomotor pathways in the mouse cerebellum and midbrain. PMID:27188291

  10. Iron and Mechanisms of Emotional Behavior

    OpenAIRE

    Kim, Jonghan; Wessling-Resnick, Marianne

    2014-01-01

    Iron is required for appropriate behavioral organization. Iron deficiency results in poor brain myelination and impaired monoamine metabolism. Glutamate and GABA homeostasis is modified by changes in brain iron status. Such changes not only produce deficits in memory/learning capacity and motor skills, but also emotional and psychological problems. An accumulating body of evidence indicates that both energy metabolism and neurotransmitter homeostasis influence emotional behavior, and both fun...

  11. Using glutamate homeostasis as a target for treating addictive disorders

    OpenAIRE

    Reissner, Kathryn J.; Kalivas, Peter W.

    2010-01-01

    Well-developed cellular mechanisms exist to preserve glutamate homeostasis and regulate extrasynaptic glutamate levels. Accumulating evidence indicates that disruptions in glutamate homeostasis are associated with addictive disorders. The disruptions in glutamate concentrations observed following prolonged exposure to drugs of abuse are associated with changes in the function and activity of several key components within the homeostatic control mechanism, including the cystine/glutamate excha...

  12. Mammalian iron transport.

    Science.gov (United States)

    Anderson, Gregory Jon; Vulpe, Christopher D

    2009-10-01

    Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma. PMID:19484405

  13. Iron and immunity: immunological consequences of iron deficiency and overload

    OpenAIRE

    Cherayil, Bobby J.

    2010-01-01

    The influence of iron on immune function has been long appreciated. However, the molecular basis for this interaction is less well understood. Recently, there have been several important advances that have shed light on the mechanisms that regulate mammalian iron metabolism. The new insights provide a conceptual framework for understanding and manipulating the cross-talk between iron homeostasis and the immune system. This article will review what is currently known about how disturbances of ...

  14. The Hepcidin Circuits Act: Balancing Iron and Inflammation

    OpenAIRE

    Maliken, Bryan D.; Nelson, James E.; Kowdley, Kris V.

    2011-01-01

    Hepcidin is a peptide hormone that regulates iron homeostasis and acts as an antimicrobial peptide. It is expressed and secreted by a variety of cell types in response to iron loading and inflammation. Hepcidin mediates iron homeostasis by binding to the iron exporter ferroportin, inducing its internalization and degradation via activation of the protein kinase Jak2 and the subsequent phosphorylation of ferroportin. Here we have shown that hepcidin-activated Jak2 also phosphorylates the trans...

  15. Water Homeostasis: Evolutionary Medicine

    OpenAIRE

    Zeidel, Mark L.

    2012-01-01

    As a major component of homeostasis, all organisms regulate the water composition of various compartments. Through the selective use of barrier membranes and surface glycoproteins, as well as aquaporin water channels, organisms ranging from Archaebacteria to humans can vary water permeabilities across their cell membranes by 4 to 5 orders of magnitude. In barrier epithelia the outer, or exofacial, leaflet acts as the main resistor to water flow; this leaflet restricts water flow by minimizing...

  16. Iron Chelators of the Di-2-pyridylketone Thiosemicarbazone and 2-Benzoylpyridine Thiosemicarbazone Series Inhibit HIV-1 Transcription: Identification of Novel Cellular Targets—Iron, Cyclin-Dependent Kinase (CDK) 2, and CDK9S⃞

    OpenAIRE

    Debebe, Zufan; Ammosova, Tatyana; Breuer, Denitra; Lovejoy, David B.; Kalinowski, Danuta S.; Karla, Pradeep K.; Kumar, Krishna; Jerebtsova, Marina; Ray, Patricio; KASHANCHI, FATAH; Gordeuk, Victor R; Richardson, Des R.; Nekhai, Sergei

    2011-01-01

    HIV-1 transcription is activated by HIV-1 Tat protein, which recruits cyclin-dependent kinase 9 (CDK9)/cyclin T1 and other host transcriptional coactivators to the HIV-1 promoter. Tat itself is phosphorylated by CDK2, and inhibition of CDK2 by small interfering RNA, the iron chelator 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311), and the iron chelator deferasirox (ICL670) inhibits HIV-1 tran...

  17. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels

    KAUST Repository

    Tong, Winghang

    2011-09-01

    Inactivation of the TCA cycle enzyme, fumarate hydratase (FH), drives a metabolic shift to aerobic glycolysis in FH-deficient kidney tumors and cell lines from patients with hereditary leiomyomatosis renal cell cancer (HLRCC), resulting in decreased levels of AMP-activated kinase (AMPK) and p53 tumor suppressor, and activation of the anabolic factors, acetyl-CoA carboxylase and ribosomal protein S6. Reduced AMPK levels lead to diminished expression of the DMT1 iron transporter, and the resulting cytosolic iron deficiency activates the iron regulatory proteins, IRP1 and IRP2, and increases expression of the hypoxia inducible factor HIF-1α, but not HIF-2α. Silencing of HIF-1α or activation of AMPK diminishes invasive activities, indicating that alterations of HIF-1α and AMPK contribute to the oncogenic growth of FH-deficient cells. © 2011 Elsevier Inc.

  18. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Qi Xu

    2016-01-01

    Full Text Available Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson’s disease (PD. However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P<0.0001 upregulated ferroportin 1 expression and significantly (P<0.05 decreased intracellular iron by 25%. Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P<0.05 and DNA fragmentation by 29% (P=0.086 and increased cell viability by 22% (P<0.05. In addition, hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P<0.05 and intracellular iron by 28% (P<0.01, indicating the role of hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1.

  19. Iron and Iron Metabolism

    OpenAIRE

    Melike Sezgin Evim; Birol Baytan; Adalet Meral Güneş

    2012-01-01

    Iron is an essential element for almost all living organisms except some bacteria. A great number of new articles related to the iron metabolism have been published in recent years explaining new findings. Hepsidine, a peptide hormon, that is recently found, regulates iron methabolism by effecting iron absorbsion from gut, secreting iron from hepatic store and flows iron from macrophages. Hepsidin blockes to effluxe iron from cells by bounding to ferroportin and by inducing ferroportin destru...

  20. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake

    DEFF Research Database (Denmark)

    Hvidberg, Vibeke; Jacobsen, Christian; Strong, Roland K;

    2005-01-01

    Neutrophil-gelatinase-associated lipocalin (NGAL) is a prominent protein of specific granules of human neutrophils also synthesized by epithelial cells during inflammation. NGAL binds bacterial siderophores preventing bacteria from retrieving iron from this source. Also, NGAL may be important in...

  1. Homeostasis Hombre-Naturaleza

    Directory of Open Access Journals (Sweden)

    Stephano Betancourt

    2016-06-01

    Full Text Available La tendencia al equilibrio en la naturaleza y el flujo energético entre los organismos y suambiente; resulta de vital importancia para la supervivencia de estos últimos. Cuando seda una mirada antropocéntrica a esta interacción, se genera un enfoque reduccionista de losfactores que influyen para mantener la tendencia al equilibrio. Por consiguiente, el sostenerlo inteligible de las interacciones de los elementos que conforman nuestra existencia es unpunto clave de la compleja relación, entre el ser humano y su entorno, para poder permitiruna homeostasis entre ellos.

  2. A lysosome-centered view of nutrient homeostasis.

    Science.gov (United States)

    Mony, Vinod K; Benjamin, Shawna; O'Rourke, Eyleen J

    2016-04-01

    Lysosomes are highly acidic cellular organelles traditionally viewed as sacs of enzymes involved in digesting extracellular or intracellular macromolecules for the regeneration of basic building blocks, cellular housekeeping, or pathogen degradation. Bound by a single lipid bilayer, lysosomes receive their substrates by fusing with endosomes or autophagosomes, or through specialized translocation mechanisms such as chaperone-mediated autophagy or microautophagy. Lysosomes degrade their substrates using up to 60 different soluble hydrolases and release their products either to the cytosol through poorly defined exporting and efflux mechanisms or to the extracellular space by fusing with the plasma membrane. However, it is becoming evident that the role of the lysosome in nutrient homeostasis goes beyond the disposal of waste or the recycling of building blocks. The lysosome is emerging as a signaling hub that can integrate and relay external and internal nutritional information to promote cellular and organismal homeostasis, as well as a major contributor to the processing of energy-dense molecules like glycogen and triglycerides. Here we describe the current knowledge of the nutrient signaling pathways governing lysosomal function, the role of the lysosome in nutrient mobilization, and how lysosomes signal other organelles, distant tissues, and even themselves to ensure energy homeostasis in spite of fluctuations in energy intake. At the same time, we highlight the value of genomics approaches to the past and future discoveries of how the lysosome simultaneously executes and controls cellular homeostasis. PMID:27050453

  3. Hepcidin screening to guide iron supplementation in African children

    OpenAIRE

    Pasricha, S-R; Atkinson, S; Armitage, A; Khandwala, S; Veenemans, J.; Cox, S.; Eddowes, L; Hayes, T.; Doherty, C; Demir, A; Tijhaar, E.; Verhoef, H.; Prentice, A; Drakesmith, H.

    2015-01-01

    Objectives: Hematologic and non-hematologic benefits from iron supplementation are chiefly seen in iron deficient individuals; concerns that iron might promote infection especially in non-iron deficient individuals have complicated global anemia control policies, particularly in malaria-endemic settings. Iron homeostasis, including intestinal absorption, is controlled by hepcidin. Hepcidin is regulated by iron, erythropoietic drive, and inflammation, suggesting its potential utility to apprai...

  4. Homeostasis in anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Per eSodersten

    2014-08-01

    Full Text Available Brainstem and hypothalamic orexigenic/anorexigenic networks are thought to maintain body weight homeostasis in response to hormonal and metabolic feedback from peripheral sites. This approach has not been successful in managing over- and underweight patients. It is suggested that concept of homeostasis has been misinterpreted; rather than exerting control, the brain permits eating in proportion to the amount of physical activity necessary to obtain food. In support, animal experiments have shown that while a hypothalamic orexigen excites eating when food is abundant, it inhibits eating and stimulates foraging when food is in short supply. As the physical price of food approaches zero, eating and body weight increase without constraints. Conversely, in anorexia nervosa body weight is homeostatically regulated, the high level of physical activity in anorexia is displaced hoarding for food that keeps body weight constantly low. A treatment based on this point of view, providing patients with computerized mealtime support to re-establish normal eating behavior, has brought 75% of patients with eating disorders into remission, reduced the rate of relapse to 10%, and eliminated mortality.

  5. Ageing and water homeostasis

    Science.gov (United States)

    Robertson, David; Jordan, Jens; Jacob, Giris; Ketch, Terry; Shannon, John R.; Biaggioni, Italo

    2002-01-01

    This review outlines current knowledge concerning fluid intake and volume homeostasis in ageing. The physiology of vasopressin is summarized. Studies have been carried out to determine orthostatic changes in plasma volume and to assess the effect of water ingestion in normal subjects, elderly subjects, and patients with dysautonomias. About 14% of plasma volume shifts out of the vasculature within 30 minutes of upright posture. Oral ingestion of water raises blood pressure in individuals with impaired autonomic reflexes and is an important source of noise in blood pressure trials in the elderly. On the average, oral ingestion of 16 ounces (473ml) of water raises blood pressure 11 mmHg in elderly normal subjects. In patients with autonomic impairment, such as multiple system atrophy, strikingly exaggerated pressor effects of water have been seen with blood pressure elevations greater than 75 mmHg not at all uncommon. Ingestion of water is a major determinant of blood pressure in the elderly population. Volume homeostasis is importantly affected by posture and large changes in plasma volume may occur within 30 minutes when upright posture is assumed.

  6. Iron Chelators of the Di-2-pyridylketone Thiosemicarbazone and 2-Benzoylpyridine Thiosemicarbazone Series Inhibit HIV-1 Transcription: Identification of Novel Cellular Targets—Iron, Cyclin-Dependent Kinase (CDK) 2, and CDK9S⃞

    Science.gov (United States)

    Debebe, Zufan; Ammosova, Tatyana; Breuer, Denitra; Lovejoy, David B.; Kalinowski, Danuta S.; Karla, Pradeep K.; Kumar, Krishna; Jerebtsova, Marina; Ray, Patricio; Kashanchi, Fatah; Gordeuk, Victor R.; Richardson, Des R.

    2011-01-01

    HIV-1 transcription is activated by HIV-1 Tat protein, which recruits cyclin-dependent kinase 9 (CDK9)/cyclin T1 and other host transcriptional coactivators to the HIV-1 promoter. Tat itself is phosphorylated by CDK2, and inhibition of CDK2 by small interfering RNA, the iron chelator 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311), and the iron chelator deferasirox (ICL670) inhibits HIV-1 transcription. Here we have analyzed a group of novel di-2-pyridylketone thiosemicarbazone- and 2-benzoylpyridine thiosemicarbazone-based iron chelators that exhibit marked anticancer activity in vitro and in vivo (Proc Natl Acad Sci USA 103:7670–7675, 2006; J Med Chem 50:3716–3729, 2007). Several of these iron chelators, in particular 2-benzoylpyridine 4-allyl-3-thiosemicarbazone (Bp4aT) and 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), inhibited HIV-1 transcription and replication at much lower concentrations than did 311 and ICL670. Neither Bp4aT nor Bp4eT were toxic after a 24-h incubation. However, longer incubations for 48 h or 72 h resulted in cytotoxicity. Analysis of the molecular mechanism of HIV-1 inhibition showed that the novel iron chelators inhibited basal HIV-1 transcription, but not the nuclear factor-κB-dependent transcription or transcription from an HIV-1 promoter with inactivated SP1 sites. The chelators inhibited the activities of CDK2 and CDK9/cyclin T1, suggesting that inhibition of CDK9 may contribute to the inhibition of HIV-1 transcription. Our study suggests the potential usefulness of Bp4aT or Bp4eT in antiretroviral regimens, particularly where resistance to standard treatment occurs. PMID:20956357

  7. The role of iron in pulmonary pathology

    OpenAIRE

    Khiroya, Heena; Turner, Alice M

    2015-01-01

    Respiratory disease accounts for a large proportion of emergency admissions to hospital and diseaseassociated mortality. Genetic association studies demonstrate a link between iron metabolism and pulmonary disease phenotypes. IREB2 is a gene that produces iron regulatory protein 2 (IRP2), which has a key role in iron homeostasis. This review addresses pathways involved in iron metabolism, particularly focusing on the role of IREB2. In addition to this, environmental factors also influence phe...

  8. Depletion of cellular iron by curcumin leads to alteration in histone acetylation and degradation of Sml1p in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Gajendra Kumar Azad

    Full Text Available Curcumin, a naturally occurring polyphenolic compound, is known to possess diverse pharmacological properties. There is a scarcity of literature documenting the exact mechanism by which curcumin modulates its biological effects. In the present study, we have used yeast as a model organism to dissect the mechanism underlying the action of curcumin. We found that the yeast mutants of histone proteins and chromatin modifying enzymes were sensitive to curcumin and further supplementation of iron resulted in reversal of the changes induced by curcumin. Additionally, treatment of curcumin caused the iron starvation induced expression of FET3, FRE1 genes. We also demonstrated that curcumin induces degradation of Sml1p, a ribonucleotide reductase inhibitor involved in regulating dNTPs production. The degradation of Sml1p was mediated through proteasome and vacuole dependent protein degradation pathways. Furthermore, curcumin exerts biological effect by altering global proteome profile without affecting chromatin architecture. These findings suggest that the medicinal properties of curcumin are largely contributed by its cumulative effect of iron starvation and epigenetic modifications.

  9. Consciousness, endogenous generation of goals and homeostasis

    Science.gov (United States)

    Tsitolovsky, Lev E.

    2015-08-01

    Behaviour can be both unpredictable and goal directed, as animals act in correspondence with their motivation. Motivation arises when neurons in specific brain areas leave the state of homeostatic equilibrium and are injured. The basic goal of organisms and living cells is to maintain their life and their functional state is optimal if it does not lead to physiological damage. This can somehow be sensed by neurons and the occurrence of damage elicits homeostatic protection to recover excitability and the ability to produces spikes. It can be argued that the neuron's activity is guided on the scale of "damage-protection" and it behaves as an object possessing minimum awareness. The approach of death increases cellular efforts to operate. Thus, homeostasis may evidently produce both maintenance of life and will. The question is - how does homeostasis reach the optimum? We have no possibility of determining how the cell evaluates its own states, e.g. as "too little free energy" or in terms of "threat" to life. In any case, the approach of death increases cellular efforts to operate. For the outside observer, this is reminiscent of intentional action and a manifestation of will.

  10. Iron overload and immunity

    Institute of Scientific and Technical Information of China (English)

    Gra(c)a Porto; Maria De Sousa

    2007-01-01

    Progress in the characterization of genes involved in the control of iron homeostasis in humans and in mice has improved the definition of iron overload and of the cells affected by it. The cell involved in iron overload with the greatest effect on immunity is the macrophage.Intriguing evidence has emerged, however, in the last 12 years indicating that parenchymal iron overload is linked to genes classically associated with the immune system. This review offers an update of the genes and proteins relevant to iron metabolism expressed in cells of the innate immune system, and addresses the question of how this system is affected in clinical situations of iron overload. The relationship between iron and the major cells of adaptive immunity, the T lymphocytes,will also be reviewed. Most studies addressing this last question in humans were performed in the clinical model of Hereditary Hemochromatosis. Data will also be reviewed demonstrating how the disruption of molecules essentially involved in adaptive immune responses result in the spontaneous development of iron overload and how they act as modifiers of iron overload.

  11. Homeostatic Mechanisms for Iron Storage Revealed by Genetic Manipulations and Live Imaging of Drosophila Ferritin

    Science.gov (United States)

    Missirlis, Fanis; Kosmidis, Stylianos; Brody, Tom; Mavrakis, Manos; Holmberg, Sara; Odenwald, Ward F.; Skoulakis, Efthimios M. C.; Rouault, Tracey A.

    2007-01-01

    Ferritin is a symmetric, 24-subunit iron-storage complex assembled of H and L chains. It is found in bacteria, plants, and animals and in two classes of mutations in the human L-chain gene, resulting in hereditary hyperferritinemia cataract syndrome or in neuroferritinopathy. Here, we examined systemic and cellular ferritin regulation and trafficking in the model organism Drosophila melanogaster. We showed that ferritin H and L transcripts are coexpressed during embryogenesis and that both subunits are essential for embryonic development. Ferritin overexpression impaired the survival of iron-deprived flies. In vivo expression of GFP-tagged holoferritin confirmed that iron-loaded ferritin molecules traffic through the Golgi organelle and are secreted into hemolymph. A constant ratio of ferritin H and L subunits, secured via tight post-transcriptional regulation, is characteristic of the secreted ferritin in flies. Differential cellular expression, conserved post-transcriptional regulation via the iron regulatory element, and distinct subcellular localization of the ferritin subunits prior to the assembly of holoferritin are all important steps mediating iron homeostasis. Our study revealed both conserved features and insect-specific adaptations of ferritin nanocages and provides novel imaging possibilities for their in vivo characterization. PMID:17603097

  12. The mammary cellular hierarchy and breast cancer

    OpenAIRE

    Oakes, Samantha R.; Gallego-Ortega, David; Ormandy, Christopher J.

    2014-01-01

    Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and ...

  13. Polyglycerol-grafted superparamagnetic iron oxide nanoparticles: highly efficient MRI contrast agent for liver and kidney imaging and potential scaffold for cellular and molecular imaging.

    Science.gov (United States)

    Arsalani, Nasser; Fattahi, Hassan; Laurent, Sophie; Burtea, Carmen; Vander Elst, Luce; Muller, Robert N

    2012-01-01

    Polyglycerol as a water-soluble and biocompatible hyperbranched polymer was covalently grafted on the surface of superparamagnetic iron oxide nanoparticles. With this aim, superparamagnetic magnetite nanoparticles were prepared by coprecipitation in aqueous media, then the surface of nanoparticles was modified to introduce the reactive groups on the surface of nanoparticles. After that, polyglycerol was grafted on the surface of nanoparticles by ring-opening anionic polymerization of glycidol using n-bulyllithium as initiator. The magnetometry, relaxometry and phantom MRI experiments of this highly stable ferrofluid showed its high potential as a negative MRI contrast agent. Calculated r(1) and r(2) relaxivities at different magnetic fields were higher than the values reported for commercially available iron oxide contrast agents. The in vivo MRI studies showed that, after intravenous injection into mice, the particles produced a strong negative contrast in liver and kidneys, which persisted for 80 min (in liver) to 110 min (in kidneys). The negative contrast of the liver and kidneys weakened over the time, suggesting that polyglycerol coating renders the nanoparticles stealth and possibly optimal for renal excretion. PMID:22434631

  14. Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis

    Directory of Open Access Journals (Sweden)

    Teresa Anna eGiancaspero

    2015-04-01

    Full Text Available The primary role of the water-soluble vitamin B2 (riboflavin in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in energetic metabolism, epigenetics, protein folding, as well as in a number of diverse regulatory processes. The problem of localisation of flavin cofactor synthesis events and in particular of the FAD synthase (EC 2.7.7.2 in HepG2 cells is addressed here by confocal microscopy in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalysed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesising activity, hFADS is able to operate as a FAD chaperone.The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear or a mitochondrial enzyme that is lysine specific demethylase 1 (LSD1, EC 1.-.-.- and dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4, respectively which carry out similar reactions of oxidative demethylation, assisted by tetrahydrofolate used to form 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells.

  15. Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis

    Science.gov (United States)

    Giancaspero, Teresa Anna; Colella, Matilde; Brizio, Carmen; Difonzo, Graziana; Fiorino, Giuseppina Maria; Leone, Piero; Brandsch, Roderich; Bonomi, Francesco; Iametti, Stefania; Barile, Maria

    2015-04-01

    The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in energetic metabolism, epigenetics, protein folding, as well as in a number of diverse regulatory processes. The problem of localisation of flavin cofactor synthesis events and in particular of the FAD synthase (EC 2.7.7.2) in HepG2 cells is addressed here by confocal microscopy in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalysed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesising activity, hFADS is able to operate as a FAD "chaperone". The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear or a mitochondrial enzyme that is lysine specific demethylase 1 (LSD1, EC 1.-.-.-) and dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4), respectively which carry out similar reactions of oxidative demethylation, assisted by tetrahydrofolate used to form 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells.

  16. Like Iron in the Blood of the People: The Requirement for Heme Trafficking in Iron Metabolism

    Directory of Open Access Journals (Sweden)

    IqbalHamza

    2014-06-01

    Full Text Available Heme is an iron-containing porphyrin ring that serves as a prosthetic group in proteins that function in diverse metabolic pathways. Heme is also a major source of bioavailable iron in the human diet. While the synthesis of heme has been well-characterized, the pathways for heme trafficking remain poorly understood. It is likely that heme transport across membranes is highly regulated, as free heme is toxic to cells. This review outlines the requirement for heme delivery to various subcellular compartments as well as possible mechanisms for the mobilization of heme from these compartments. We also discuss how these trafficking pathways might function during physiological events involving inter- and intra-cellular mobilization of heme, including erythropoiesis, erythrophagocytosis, heme absorption in the gut, as well as heme transport pathways supporting embryonic development. Lastly, we aim to question the current dogma that heme, in toto, is not mobilized from one cell or tissue to another, outlining the evidence for these pathways and drawing parallels to other well-accepted paradigms for copper, iron, and cholesterol homeostasis.

  17. Redox homeostasis: The Golden Mean of healthy living

    Directory of Open Access Journals (Sweden)

    Fulvio Ursini

    2016-08-01

    Full Text Available The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles

  18. Redox homeostasis: The Golden Mean of healthy living.

    Science.gov (United States)

    Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay

    2016-08-01

    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve "reactive oxygen species" rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary

  19. Iron chelation and multiple sclerosis

    OpenAIRE

    Kelsey J. Weigel; Sharon G. Lynch; Steven M. LeVine

    2014-01-01

    Histochemical and MRI studies have demonstrated that MS (multiple sclerosis) patients have abnormal deposition of iron in both gray and white matter structures. Data is emerging indicating that this iron could partake in pathogenesis by various mechanisms, e.g., promoting the production of reactive oxygen species and enhancing the production of proinflammatory cytokines. Iron chelation therapy could be a viable strategy to block iron-related pathological events or it can confer cellular prote...

  20. Blockage of mitochondrial calcium uniporter prevents iron accumulation in a model of experimental subarachnoid hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Huiying [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Hao, Shuangying; Sun, Xiaoyan [Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu Province (China); Zhang, Dingding; Gao, Xin; Yu, Zhuang [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China); Li, Kuanyu, E-mail: likuanyu@nju.edu.cn [Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu Province (China); Hang, Chun-Hua, E-mail: hang_neurosurgery@163.com [Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province (China)

    2015-01-24

    Highlights: • Iron accumulation was involved in the acute phase following SAH. • Blockage of MCU could attenuate cellular iron accumulation following SAH. • Blockage of MCU could decrease ROS generation and improve cell energy supply following SAH. • Blockage of MCU could alleviate apoptosis and brain injury following SAH. - Abstract: Previous studies have shown that iron accumulation is involved in the pathogenesis of brain injury following subarachnoid hemorrhage (SAH) and chelation of iron reduced mortality and oxidative DNA damage. We previously reported that blockage of mitochondrial calcium uniporter (MCU) provided benefit in the early brain injury after experimental SAH. This study was undertaken to identify whether blockage of MCU could ameliorate iron accumulation-associated brain injury following SAH. Therefore, we used two reagents ruthenium red (RR) and spermine (Sper) to inhibit MCU. Sprague–Dawley (SD) rats were randomly divided into four groups including sham, SAH, SAH + RR, and SAH + Sper. Biochemical analysis and histological assays were performed. The results confirmed the iron accumulation in temporal lobe after SAH. Interestingly, blockage of MCU dramatically reduced the iron accumulation in this area. The mechanism was revealed that inhibition of MCU reversed the down-regulation of iron regulatory protein (IRP) 1/2 and increase of ferritin. Iron–sulfur cluster dependent-aconitase activity was partially conserved when MCU was blocked. In consistence with this and previous report, ROS levels were notably reduced and ATP supply was rescued; levels of cleaved caspase-3 dropped; and integrity of neurons in temporal lobe was protected. Taken together, our results indicated that blockage of MCU could alleviate iron accumulation and the associated injury following SAH. These findings suggest that the alteration of calcium and iron homeostasis be coupled and MCU be considered to be a therapeutic target for patients suffering from SAH.

  1. Blockage of mitochondrial calcium uniporter prevents iron accumulation in a model of experimental subarachnoid hemorrhage

    International Nuclear Information System (INIS)

    Highlights: • Iron accumulation was involved in the acute phase following SAH. • Blockage of MCU could attenuate cellular iron accumulation following SAH. • Blockage of MCU could decrease ROS generation and improve cell energy supply following SAH. • Blockage of MCU could alleviate apoptosis and brain injury following SAH. - Abstract: Previous studies have shown that iron accumulation is involved in the pathogenesis of brain injury following subarachnoid hemorrhage (SAH) and chelation of iron reduced mortality and oxidative DNA damage. We previously reported that blockage of mitochondrial calcium uniporter (MCU) provided benefit in the early brain injury after experimental SAH. This study was undertaken to identify whether blockage of MCU could ameliorate iron accumulation-associated brain injury following SAH. Therefore, we used two reagents ruthenium red (RR) and spermine (Sper) to inhibit MCU. Sprague–Dawley (SD) rats were randomly divided into four groups including sham, SAH, SAH + RR, and SAH + Sper. Biochemical analysis and histological assays were performed. The results confirmed the iron accumulation in temporal lobe after SAH. Interestingly, blockage of MCU dramatically reduced the iron accumulation in this area. The mechanism was revealed that inhibition of MCU reversed the down-regulation of iron regulatory protein (IRP) 1/2 and increase of ferritin. Iron–sulfur cluster dependent-aconitase activity was partially conserved when MCU was blocked. In consistence with this and previous report, ROS levels were notably reduced and ATP supply was rescued; levels of cleaved caspase-3 dropped; and integrity of neurons in temporal lobe was protected. Taken together, our results indicated that blockage of MCU could alleviate iron accumulation and the associated injury following SAH. These findings suggest that the alteration of calcium and iron homeostasis be coupled and MCU be considered to be a therapeutic target for patients suffering from SAH

  2. Plant transporters involved in heavy metal homeostasis

    Directory of Open Access Journals (Sweden)

    Dorina Podar

    2010-12-01

    Full Text Available Transition metal ions (predominately manganese, iron, cobalt, nickel, copper and zinc havean array of catalytic and regulatory roles in the growth and development of all living organisms.However, an excess of these metal ions can also be toxic to any life form and therefore every cell andwhole organism needs to maintain the concentration of these essential nutrient metals within a narrowrange: a process known as metal homeostasis. Heavy metal ions are taken up into cells by selectivetransporters and as they cannot be degraded, the “desired” levels of metal ions are achieved by anumber of strategies that involve: chelation, sequestration and export out of the cell. Cation DiffusionFacilitators (CDF is a large family of transporters involved in maintaining the cytosolic metalconcentration. They transport different heavy metal divalent ions, but exhibit main affinity for zinc, ironand manganese. Metal Tolerance Proteins (MTPs are a subfamily of the Cation Diffusion Facilitator (CDFfamily found in plants. There has been much interest in these heavy metal transporters in order toprovide an insight into plant metal homeostasis, which has significant implications in human health andphytoremediation. Although data regarding the CDFs/MTPs mechanism is gathering there is still littleinformation with respect to metal selectivity determinants.

  3. Iron-Responsive Bacterial Small RNAs: Variations on a Theme

    OpenAIRE

    Oglesby-Sherrouse, Amanda G.; Murphy, Erin R.

    2013-01-01

    For most living organisms, iron is both essential and potentially toxic, making the precise maintenance of iron homeostasis necessary for survival. To manage this paradox, bacteria regulate the acquisition, utilization, and storage of iron in response to its availability. The iron-dependent ferric uptake repressor (Fur) often mediates this iron-responsive regulation, by both direct and indirect mechanisms. In 2002, Masse and Gottesman identified a novel target of Fur-mediated regulation in Es...

  4. Iron accumulates in the lavage and explanted lungs of cystic fibrosis patients.

    Science.gov (United States)

    Abstract Oxidative stress participates in the pathophysiology of cystic fibrosis (CF). An underlying disruption in iron homeostasis can frequently be demonstrated in injuries and diseases associated with an oxidative stress. We tested the hypothesis that iron accumulation and ...

  5. Deciphering Mineral Homeostasis in Barley Seed Transfer Cells at Transcriptional Level.

    Directory of Open Access Journals (Sweden)

    Behrooz Darbani

    Full Text Available In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between

  6. The cellular decision between apoptosis and autophagy

    Directory of Open Access Journals (Sweden)

    Yong-Jun Fan

    2013-03-01

    Full Text Available Apoptosis and autophagy are important molecular processes that maintain organismal and cellular homeostasis, respectively. While apoptosis fulfills its role through dismantling damaged or unwanted cells, autophagy maintains cellular homeostasis through recycling selective intracellular organelles and molecules. Yet in some conditions, autophagy can lead to cell death. Apoptosis and autophagy can be stimulated by the same stresses. Emerging evidence indicates an interplay between the core proteins in both pathways, which underlies the molecular mechanism of the crosstalk between apoptosis and autophagy. This review summarizes recent literature on molecules that regulate both the apoptotic and autophagic processes.

  7. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson's Disease

    Science.gov (United States)

    Xu, Qi; Kanthasamy, Anumantha G.; Jin, Huajun; Reddy, Manju B.

    2016-01-01

    Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson's disease (PD). However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA) induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P Hepcidin knockdown also reduced 6-OHDA induced caspase-3 activity by 42% (P hepcidin knockdown significantly attenuated 6-OHDA induced protein carbonyls by 52% (P hepcidin in oxidative stress. Conclusions. Our results demonstrate that hepcidin knockdown protected N27 cells from 6-OHDA induced apoptosis and that hepcidin plays a major role in reducing cellular iron burden and oxidative damage by possibly regulating cellular iron export mediated by ferroportin 1. PMID:27298749

  8. Apoptosis signaling pathways and lymphocyte homeostasis

    Institute of Scientific and Technical Information of China (English)

    Guangwu Xu; Yufang Shi

    2007-01-01

    It has been almost three decades since the term "apoptosis" was first coined to describe a unique form of cell death that involves orderly, gene-dependent cell disintegration. It is now well accepted that apoptosis is an essential life process for metazoan animals and is critical for the formation and function of tissues and organs. In the adult mammalian body, apoptosis is especially important for proper functioning of the immune system. In recent years, along with the rapid advancement of molecular and cellular biology, great progress has been made in understanding the mechanisms leading to apoptosis. It is generally accepted that there are two major pathways of apoptotic cell death induction: extrinsic signaling through death receptors that leads to the formation of the death-inducing signaling complex (DISC), and intrinsic signaling mainly through mitochondria which leads to the formation of the apoptosome. Formation of the DISC or apoptosome, respectively, activates initiator and common effector caspases that execute the apoptosis process. In the immune system, both pathways operate; however, it is not known whether they are sufficient to maintain lymphocyte homeostasis. Recently, new apoptotic mechanisms including caspase-independent pathways and granzyme-initiated pathways have been shown to exist in lymphocytes. This review will summarize our understanding of the mechanisms that control the homeostasis of various lymphocyte populations.

  9. Regulation of neuronal chloride homeostasis by neuromodulators.

    Science.gov (United States)

    Mahadevan, Vivek; Woodin, Melanie A

    2016-05-15

    KCC2 is the central regulator of neuronal Cl(-) homeostasis, and is critical for enabling strong hyperpolarizing synaptic inhibition in the mature brain. KCC2 hypofunction results in decreased inhibition and increased network hyperexcitability that underlies numerous disease states including epilepsy, neuropathic pain and neuropsychiatric disorders. The current holy grail of KCC2 biology is to identify how we can rescue KCC2 hypofunction in order to restore physiological levels of synaptic inhibition and neuronal network activity. It is becoming increasingly clear that diverse cellular signals regulate KCC2 surface expression and function including neurotransmitters and neuromodulators. In the present review we explore the existing evidence that G-protein-coupled receptor (GPCR) signalling can regulate KCC2 activity in numerous regions of the nervous system including the hypothalamus, hippocampus and spinal cord. We present key evidence from the literature suggesting that GPCR signalling is a conserved mechanism for regulating chloride homeostasis. This evidence includes: (1) the activation of group 1 metabotropic glutamate receptors and metabotropic Zn(2+) receptors strengthens GABAergic inhibition in CA3 pyramidal neurons through a regulation of KCC2; (2) activation of the 5-hydroxytryptamine type 2A serotonin receptors upregulates KCC2 cell surface expression and function, restores endogenous inhibition in motoneurons, and reduces spasticity in rats; and (3) activation of A3A-type adenosine receptors rescues KCC2 dysfunction and reverses allodynia in a model of neuropathic pain. We propose that GPCR-signals are novel endogenous Cl(-) extrusion enhancers that may regulate KCC2 function. PMID:26876607

  10. Environmental stresses disrupt telomere length homeostasis.

    Directory of Open Access Journals (Sweden)

    Gal Hagit Romano

    Full Text Available Telomeres protect the chromosome ends from degradation and play crucial roles in cellular aging and disease. Recent studies have additionally found a correlation between psychological stress, telomere length, and health outcome in humans. However, studies have not yet explored the causal relationship between stress and telomere length, or the molecular mechanisms underlying that relationship. Using yeast as a model organism, we show that stresses may have very different outcomes: alcohol and acetic acid elongate telomeres, whereas caffeine and high temperatures shorten telomeres. Additional treatments, such as oxidative stress, show no effect. By combining genome-wide expression measurements with a systematic genetic screen, we identify the Rap1/Rif1 pathway as the central mediator of the telomeric response to environmental signals. These results demonstrate that telomere length can be manipulated, and that a carefully regulated homeostasis may become markedly deregulated in opposing directions in response to different environmental cues.

  11. Dietary uptake of Cu sorbed to hydrous iron oxide is linked to cellular toxicity and feeding inhibition in a benthic grazer

    Science.gov (United States)

    Cain, Daniel J.; Croteau, Marie-Noele; Fuller, Christopher C.; Ringwood, Amy H.

    2016-01-01

    Whereas feeding inhibition caused by exposure to contaminants has been extensively documented, the underlying mechanism(s) are less well understood. For this study, the behavior of several key feeding processes, including ingestion rate and assimilation efficiency, that affect the dietary uptake of Cu were evaluated in the benthic grazer Lymnaea stagnalis following 4–5 h exposures to Cu adsorbed to synthetic hydrous ferric oxide (Cu–HFO). The particles were mixed with a cultured alga to create algal mats with Cu exposures spanning nearly 3 orders of magnitude at variable or constant Fe concentrations, thereby allowing first order and interactive effects of Cu and Fe to be evaluated. Results showed that Cu influx rates and ingestion rates decreased as Cu exposures of the algal mat mixture exceeded 104 nmol/g. Ingestion rate appeared to exert primary control on the Cu influx rate. Lysosomal destabilization rates increased directly with Cu influx rates. At the highest Cu exposure where the incidence of lysosomal membrane damage was greatest (51%), the ingestion rate was suppressed 80%. The findings suggested that feeding inhibition was a stress response emanating from excessive uptake of dietary Cu and cellular toxicity.

  12. Zebrafish as an animal model to study ion homeostasis

    OpenAIRE

    Hwang, Pung-Pung; Chou, Ming-Yi

    2013-01-01

    Zebrafish (Danio rerio) possesses several advantages as an experimental organism, including the applicability of molecular tools, ease of in vivo cellular observation and functional analysis, and rapid embryonic development, making it an emerging model for the study of integrative and regulatory physiology and, in particular, the epithelial transport associated with body fluid ionic homeostasis. Zebrafish inhabits a hypotonic freshwater environment, and as such, the gills (or the skin, during...

  13. Metabolic Plasticity in Stem Cell Homeostasis and Differentiation

    OpenAIRE

    Folmes, Clifford D. L.; Dzeja, Petras P.; Nelson, Timothy J.; Terzic, Andre

    2012-01-01

    Plasticity in energy metabolism allows stem cells to match the divergent demands of self-renewal and lineage specification. Beyond a role in energetic support, new evidence implicates nutrient-responsive metabolites as mediators of crosstalk between metabolic flux, cellular signaling, and epigenetic regulation of cell fate. Stem cell metabolism also offers a potential target for controlling tissue homeostasis and regeneration in aging and disease. In this Perspective, we cover recent progress...

  14. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  15. Disorders of Iron Metabolism and Anemia in Chronic Kidney Disease.

    Science.gov (United States)

    Panwar, Bhupesh; Gutiérrez, Orlando M

    2016-07-01

    Dysregulated iron homeostasis plays a central role in the development of anemia of chronic kidney disease (CKD) and is a major contributor toward resistance to treatment with erythropoiesis-stimulating agents. Understanding the underlying pathophysiology requires an in-depth understanding of normal iron physiology and regulation. Recent discoveries in the field of iron biology have greatly improved our understanding of the hormonal regulation of iron trafficking in human beings and how its alterations lead to the development of anemia of CKD. In addition, emerging evidence has suggested that iron homeostasis interacts with bone and mineral metabolism on multiple levels, opening up new avenues of investigation into the genesis of disordered iron metabolism in CKD. Building on recent advances in our understanding of normal iron physiology and abnormalities in iron homeostasis in CKD, this review characterizes how anemia related to disordered iron metabolism develops in the setting of CKD. In addition, this review explores our emerging recognition of the connections between iron homeostasis and mineral metabolism and their implications for the management of altered iron status and anemia of CKD. PMID:27475656

  16. Wood smoke particle sequesters cell iron to impact a biological effect.

    Science.gov (United States)

    The biological effect of an inorganic particle (i.e., silica) can be associated with a disruption in cell iron homeostasis. Organic compounds included in particles originating from combustion processes can also complex sources of host cell iron to disrupt metal homeostasis. We te...

  17. Homeostasis of T Cell Diversity

    Institute of Scientific and Technical Information of China (English)

    Vinay S. Mahajan; Ilya B. Leskov; Jianzhu Chen

    2005-01-01

    T cell homeostasis commonly refers to the maintenance of relatively stable T cell numbers in the peripheral lymphoid organs. Among the large numbers of T cells in the periphery, T cells exhibit structural diversity, I.e., the expression of a diverse repertoire of T cell receptors (TCRs), and functional diversity, I.e., the presence of T cells at na(I)ve, effector, and memory developmental stages. Although the homeostasis of T cell numbers has been extensively studied, investigation of the mechanisms underlying the maintenance of structural and functional diversity of T cells is still at an early stage. The fundamental feature throughout T cell development is the interaction between the TCR and either self or foreign peptides in association with MHC molecules. In this review, we present evidence showing that homeostasis of T cell number and diversity is mediated through competition for limiting resources.The number of T cells is maintained through competition for limiting cytokines, whereas the diversity of T cells is maintained by competition for self-peptide-MHC complexes. In other words, diversity of the self-peptide repertoire limits the structural (TCR) diversity of a T cell population. We speculate that cognate low affinity self-peptides,acting as weak agonists and antagonists, regulate the homeostasis of T cell diversity whereas non-cognate or null peptides which are extremely abundant for any given TCR, may contribute to the homeostasis of T cell number by providing survival signals. Moreover, self-peptides and cytokines may form specialized niches for the regulation of T cell homeostasis.

  18. Leptin and Hormones: Energy Homeostasis.

    Science.gov (United States)

    Triantafyllou, Georgios A; Paschou, Stavroula A; Mantzoros, Christos S

    2016-09-01

    Leptin, a 167 amino acid adipokine, plays a major role in human energy homeostasis. Its actions are mediated through binding to leptin receptor and activating JAK-STAT3 signal transduction pathway. It is expressed mainly in adipocytes, and its circulating levels reflect the body's energy stores in adipose tissue. Recombinant methionyl human leptin has been FDA approved for patients with generalized non-HIV lipodystrophy and for compassionate use in subjects with congenital leptin deficiency. The purpose of this review is to outline the role of leptin in energy homeostasis, as well as its interaction with other hormones. PMID:27519135

  19. Hepcidin Plays a Key Role in 6-OHDA Induced Iron Overload and Apoptotic Cell Death in a Cell Culture Model of Parkinson's Disease.

    Science.gov (United States)

    Xu, Qi; Kanthasamy, Anumantha G; Jin, Huajun; Reddy, Manju B

    2016-01-01

    Background. Elevated brain iron levels have been implicated in the pathogenesis of Parkinson's disease (PD). However, the precise mechanism underlying abnormal iron accumulation in PD is not clear. Hepcidin, a hormone primarily produced by hepatocytes, acts as a key regulator in both systemic and cellular iron homeostasis. Objective. We investigated the role of hepcidin in 6-hydroxydopamine (6-OHDA) induced apoptosis in a cell culture model of PD. Methods. We downregulated hepcidin using siRNA interference in N27 dopaminergic neuronal cells and made a comparison with control siRNA transfected cells to investigate the role of hepcidin in 6-OHDA induced neurodegeneration. Results. Hepcidin knockdown (32.3%, P export mediated by ferroportin 1. PMID:27298749

  20. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology.

    Science.gov (United States)

    López-Millán, Ana F; Duy, Daniela; Philippar, Katrin

    2016-01-01

    Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field. PMID:27014281

  1. Hepcidin Regulation of Iron Transport1–3

    OpenAIRE

    Collins, James F.; Wessling-Resnick, Marianne; Knutson, Mitchell D.

    2008-01-01

    The discovery of hepcidin as a key regulator of iron homeostasis has advanced our current knowledge of this field. Liver-derived hepcidin peptide is secreted in response to iron and inflammation and interacts with the iron export protein ferroportin. This review summarizes recent advances discussed at the Symposium. A particular focus is on molecular interactions between hepcidin and ferroportin, the regulation of hepcidin expression by iron and inflammation, and emerging methods to measure s...

  2. Ferritin iron minerals are chelator targets, antioxidants, and coated, dietary iron

    OpenAIRE

    Theil, Elizabeth C.

    2010-01-01

    Cellular ferritin is central for iron balance during transfusions therapies; serum ferritin is a small fraction of body ferritin, albeit a convenient reporter. Iron overload induces extra ferritin protein synthesis but the protein is overfilled with the extra iron that damages ferritin, with conversion to toxic hemosiderin. Three new approaches that manipulate ferritin to address excess iron, hemosiderin, and associated oxidative damage in Cooley’s Anemia and other iron overload conditions, a...

  3. Aft2, a novel transcription regulator, is required for iron metabolism, oxidative stress, surface adhesion and hyphal development in Candida albicans.

    Science.gov (United States)

    Xu, Ning; Cheng, Xinxin; Yu, Qilin; Qian, Kefan; Ding, Xiaohui; Liu, Ruming; Zhang, Biao; Xing, Laijun; Li, Mingchun

    2013-01-01

    Morphological transition and iron metabolism are closely relevant to Candida albicans pathogenicity and virulence. In our previous study, we demonstrated that C. albicans Aft2 plays an important role in ferric reductase activity and virulence. Here, we further explored the roles of C. albicans Aft2 in numerous cellular processes. We found that C. albicans Aft2 exhibited an important role in iron metabolism through bi-directional regulation effects on iron-regulon expression. Deletion of AFT2 reduced cellular iron accumulation under iron-deficient conditions. Furthermore, both reactive oxygen species (ROS) generation and superoxide dismutase (SOD) activity were remarkably increased in the aft2Δ/Δ mutant, which were thought to be responsible for the defective responses to oxidative stress. However, we found that over-expression of C. albicans AFT2 under the regulation of the strong PGK1 promoter could not effectively rescue Saccharomyces cerevisiae aft1Δ mutant defects in some cellular processes, such as cell-wall assembly, ion homeostasis and alkaline resistance, suggesting a possibility that C. albicans Aft2 weakened its functional role of regulating some cellular metabolism during the evolutionary process. Interestingly, deletion of AFT2 in C. albicans increased cell surface hydrophobicity, cell flocculation and the ability of adhesion to polystyrene surfaces. In addition, our results also revealed that C. albicans Aft2 played a dual role in regulating hypha-specific genes under solid and liquid hyphal inducing conditions. Deletion of AFT2 caused an impaired invasive growth in solid medium, but an increased filamentous aggregation and growth in liquid conditions. Moreover, iron deficiency and environmental cues induced nuclear import of Aft2, providing additional evidence for the roles of Aft2 in transcriptional regulation. PMID:23626810

  4. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    Ting-Wei Mu

    2008-02-01

    Full Text Available A lysosomal storage disease (LSD results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum-associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil-both US Food and Drug Administration-approved hypertension drugs-partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient-derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely alpha-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety.

  5. Sleeping, Waking, ... and Glucose Homeostasis

    OpenAIRE

    Rudic R. Daniel; McNamara Peter; Curtis Anne-Maria; Boston Raymond C; Panda Satchidananda; Hogenesch John B; FitzGerald Garret A

    2004-01-01

    Circadian timing is generated through a unique series of autoregulatory interactions termed the molecular clock. Behavioral rhythms subject to the molecular clock are well characterized. We demonstrate a role for Bmal1 and Clock in the regulation of glucose homeostasis. Inactivation of the known clock components Bmal1 (Mop3) and Clock suppress the diurnal variation in glucose and triglycerides. Gluconeogenesis is abolished by deletion of Bmal1 and is depressed in Clock mutants, but the counte...

  6. Zinc bioavailability and homeostasis1234

    OpenAIRE

    Hambidge, K Michael; Miller, Leland V; Westcott, Jamie E; Sheng, Xiaoyang; Krebs, Nancy F.

    2010-01-01

    Zinc has earned recognition recently as a micronutrient of outstanding and diverse biological, clinical, and global public health importance. Regulation of absorption by zinc transporters in the enterocyte, together with saturation kinetics of the absorption process into and across the enterocyte, are the principal means by which whole-body zinc homeostasis is maintained. Several physiologic factors, most notably the quantity of zinc ingested, determine the quantity of zinc absorbed and the e...

  7. Transport, signaling, and homeostasis of potassium and sodium in plants

    Institute of Scientific and Technical Information of China (English)

    Eri Adams; Ryoung Shin

    2014-01-01

    Potassium (Kþ) is an essential macronutrient in plants and a lack of Kþ significantly reduces the potential for plant growth and development. By contrast, sodium (Naþ), while beneficial to some extent, at high concentrations it disturbs and inhibits various physiological processes and plant growth. Due to their chemical similarities, some functions of Kþ can be undertaken by Naþ but Kþ homeostasis is severely affected by salt stress, on the other hand. Recent advances have highlighted the fascinating regulatory mechanisms of Kþ and Naþ transport and signaling in plants. This review summarizes three major topics:(i) the transport mechanisms of Kþ and Naþ from the soil to the shoot and to the cellular compartments; (i ) the mechanisms through which plants sense and respond to Kþ and Naþ availability; and (i i) the components involved in maintenance of Kþ/Naþ homeostasis in plants under salt stress.

  8. Iron overdose

    Science.gov (United States)

    Iron is a mineral found in many over-the-counter supplements. Iron overdose occurs when someone takes more than the ... This can be by accident or on purpose. Iron overdose is especially dangerous for children. A severe ...

  9. Research on Control of Uric Acid Homeostasis at Cellular Level by a Synthetic Gene Circuit%利用合成的基因回路实现细胞水平上尿酸稳态控制的实验研究

    Institute of Scientific and Technical Information of China (English)

    曲国龙; 邵妤; 谭俊杰; 陈章; 金晶; 凌焱; 李玉霞; 刘刚; 陈惠鹏

    2014-01-01

    Objective: To study the regulation of uric acid homeostasis at cellular level introduced by uric acid-mediated gene circuit that was constructed with synthetic biology approach. Methods: Based on the transcriptional inhibitor hucR and its binding site hucO in the genome of Deinococcus radiodurans R1, synthesize optimized tran-scriptional inhibitor gene mUTs and its binding site 8-series structure(hucO8) chemically to construct the circuit;transfect HeLa cells, verifying the mechanisms of the circuit and its reaction to uric acid by assaying the expres-sion of secreted alkaline phosphatase(SEAP); based on these, use optimized Aspergillus flavus urate oxidase gene smUox to replace SEAP gene, transfect HeLa cells, and verify the ability of circuit to regulate the uric acid by as-saying the uric acid concentration change in the culture medium before and after the transfection. Results: The transcriptional inhibitor expression vector pcDNA3.1/V5-mUTs, reporter gene expression vector pSEAP-hucO8, smUox expression vector phucO8-smUox, pBudCE4.1-smUox, the co-direction co-expression vector pBudCE4.1-SEAP-mUTs, pBudCE4.1-mUTs-smUox were constructed; the single transfection with pBudCE4.1-SEAP-mUTs or the co-transfection with pSEAP-hucO8 and pcDNA3.1/V5-mUTs, by assaying SEAP expression level in the culture medium, verifies the impact of the double and single vector circuit to uric acid; replacing SAEP gene with smUox,the ability of double and single vector circuits to mediate uric acid is demonstrated by assaying the concentration change of uric acid concentration in the medium within 48 hours. Conclusion: At the cellular level, the construct-ed double vector circuit(phucO8-smUox、pcDNA3.1/V5-mUTs) and the single vector circuit(pBudCE4.1-mUTs-smUox) could both sense and regulate the urid acid. By increasing the mole ration between mUTs and hucO8 in a certain extent, the level and the extent in which the circuit regulates the uric acid could be changed.%目的:利用合

  10. Oxidative stress homeostasis in grapevine (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Luisa C Carvalho

    2015-03-01

    Full Text Available Plants can maintain growth and reproductive success by sensing changes in the environment and reacting through mechanisms at molecular, cellular, physiological and developmental levels. Each stress condition prompts a unique response although some overlap between the reactions to abiotic stress (drought, heat, cold, salt or high light and to biotic stress (pathogens does occur. A common feature in the response to all stresses is the onset of oxidative stress, through the production of reactive oxygen species (ROS. As hydrogen peroxide and superoxide are involved in stress signaling, a tight control in ROS homeostasis requires a delicate balance of systems involved in their generation and degradation. If the plant lacks the capacity to generate scavenging potential, this can ultimately lead to death. In grapevine, antioxidant homeostasis can be considered at whole plant levels and during the development cycle. The most striking example lies in berries and their derivatives, such as wine, with nutraceutical properties associated with their antioxidant capacity. Antioxidant homeostasis is tightly regulated in leaves, assuring a positive balance between photosynthesis and respiration, explaining the tolerance of many grapevine varieties to extreme environments.In this review we will focus on antioxidant metabolites, antioxidant enzymes, transcriptional regulation and cross-talk with hormones prompted by abiotic stress conditions. We will also discuss three situations that require specific homeostasis balance: biotic stress, the oxidative burst in berries at veraison and in vitro systems. The genetic plasticity of the antioxidant homeostasis response put in evidence by the different levels of tolerance to stress presented by grapevine varieties will be addressed. The gathered information is relevant to foster varietal adaptation to impending climate changes, to assist breeders in choosing the more adapted varieties and to suitable viticulture

  11. Cellular Automata

    OpenAIRE

    Bagnoli, Franco

    1998-01-01

    An introduction to cellular automata (both deterministic and probabilistic) with examples. Definition of deterministic automata, dynamical properties, damage spreading and Lyapunov exponents; probabilistic automata and Markov processes, nonequilibrium phase transitions, directed percolation, diffusion; simulation techniques, mean field. Investigation themes: life, epidemics, forest fires, percolation, modeling of ecosystems and speciation. They represent my notes for the school "Dynamical Mod...

  12. Gravity and positional homeostasis of the cell

    Science.gov (United States)

    Nace, G. W.

    1983-01-01

    The effect of gravity upon cytoplasmic aggregates of the size present in eggs and upon cells is investigated. An expression is developed to describe the tendency of torque to rotate the egg and reorganize its constituents. This expression provides the net torque resulting from buoyancy and gravity acting upon a dumbbell-shaped cell, with heavy and light masses at either end and floating in a medium. Torques of approximately 2.5 x 10 to the -13th to 0.85 dyne-cm are found to act upon cells ranging from 6.4 microns to 31 mm (chicken egg). It is noted that cells must expend energy to maintain positional homeostasis against gravity, as demonstrated by results from Skylab 3, where tissue cultures used 58 percent more glucose on earth than in space. The implications for developmental biology, physiology, genetics, and evolution are discussed. It is argued that at the cellular and tissue levels the concept of gravity receptors may be unnecessary.

  13. Global Transcriptional Response to Hfe Deficiency and Dietary Iron Overload in Mouse Liver and Duodenum

    OpenAIRE

    Alejandra Rodriguez; Tiina Luukkaala; Fleming, Robert E.; Britton, Robert S.; Bacon, Bruce R.; Seppo Parkkila

    2009-01-01

    Iron is an essential trace element whose absorption is usually tightly regulated in the duodenum. HFE-related hereditary hemochromatosis (HH) is characterized by abnormally low expression of the iron-regulatory hormone, hepcidin, which results in increased iron absorption. The liver is crucial for iron homeostasis as it is the main production site of hepcidin. The aim of this study was to explore and compare the genome-wide transcriptome response to Hfe deficiency and dietary iron overload in...

  14. Carnosine: can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential?

    OpenAIRE

    Hipkiss, Alan R; Cartwright, Stephanie P.; Bromley, Clare; Gross, Stephane R.; Bill, Roslyn M.

    2013-01-01

    The dipeptide carnosine (β-alanyl-L-histidine) has contrasting but beneficial effects on cellular activity. It delays cellular senescence and rejuvenates cultured senescent mammalian cells. However, it also inhibits the growth of cultured tumour cells. Based on studies in several organisms, we speculate that carnosine exerts these apparently opposing actions by affecting energy metabolism and/or protein homeostasis (proteostasis). Specific effects on energy metabolism include the dipeptide’s ...

  15. Alpha Klotho and phosphate homeostasis

    OpenAIRE

    Bian, Ao; Xing, Changying; Hu, Ming Chang

    2014-01-01

    The Klotho family consists of three single-pass transmembrane proteins—αKlotho, βKlotho and γKlotho. Each of them combines with fibroblast growth factor (FGF) receptors (FGFRs) to form receptor complexes for various FGF’s. αKlotho is a co-receptor for physiological FGF23 signaling and appears essential for FGF23-mediated regulation of mineral metabolism. αKlotho protein also plays a FGF23-independent role in phosphate homeostasis. Animal experimental studies and clinical observations have dem...

  16. Iron and cancer: recent insights.

    Science.gov (United States)

    Manz, David H; Blanchette, Nicole L; Paul, Bibbin T; Torti, Frank M; Torti, Suzy V

    2016-03-01

    Iron is an essential dietary element. However, the ability of iron to cycle between oxidized and reduced forms also renders it capable of contributing to free radical formation, which can have deleterious effects, including promutagenic effects that can potentiate tumor formation. Dysregulation of iron metabolism can increase cancer risk and promote tumor growth. Cancer cells exhibit an enhanced dependence on iron relative to their normal counterparts, a phenomenon we have termed iron addiction. Work conducted in the past few years has revealed new cellular processes and mechanisms that deepen our understanding of the link between iron and cancer. Control of iron efflux through the combined action of ferroportin, an iron efflux pump, and its regulator hepcidin appears to play an important role in tumorigenesis. Ferroptosis is a form of iron-dependent cell death involving the production of reactive oxygen species. Specific mechanisms involved in ferroptosis, including depletion of glutathione and inhibition of glutathione peroxidase 4, have been uncovered. Ferritinophagy is a newly identified mechanism for degradation of the iron storage protein ferritin. Perturbations of mechanisms that control transcripts encoding proteins that regulate iron have been observed in cancer cells, including differences in miRNA, methylation, and acetylation. These new insights may ultimately provide new therapeutic opportunities for treating cancer. PMID:26890363

  17. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers

    Directory of Open Access Journals (Sweden)

    Wahajuddin

    2012-07-01

    Full Text Available Wahajuddin,1,2 Sumit Arora21Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 2Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Rae Bareli, IndiaAbstract: A targeted drug delivery system is the need of the hour. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of superparamagnetic iron oxide nanoparticles (SPIONs as novel drug delivery vehicles. SPIONs are small synthetic γ-Fe2O3 (maghemite or Fe3O4 (magnetite particles with a core ranging between 10 nm and 100 nm in diameter. These magnetic particles are coated with certain biocompatible polymers, such as dextran or polyethylene glycol, which provide chemical handles for the conjugation of therapeutic agents and also improve their blood distribution profile. The current research on SPIONs is opening up wide horizons for their use as diagnostic agents in magnetic resonance imaging as well as for drug delivery vehicles. Delivery of anticancer drugs by coupling with functionalized SPIONs to their targeted site is one of the most pursued areas of research in the development of cancer treatment strategies. SPIONs have also demonstrated their efficiency as nonviral gene vectors that facilitate the introduction of plasmids into the nucleus at rates multifold those of routinely available standard technologies. SPION-induced hyperthermia has also been utilized for localized killing of cancerous cells. Despite their potential biomedical application, alteration in gene expression profiles, disturbance in iron homeostasis, oxidative stress, and altered cellular responses are some SPION-related toxicological aspects which require due consideration. This review provides a comprehensive understanding of SPIONs with regard to their method of preparation, their utility as drug delivery vehicles, and some concerns which need to

  18. Nuclear transport of the serum response factor coactivator MRTF-A is downregulated at tensional homeostasis

    OpenAIRE

    McGee, Karen M; Vartiainen, Maria K.; Peng T. Khaw; Treisman, Richard; Bailly, Maryse

    2011-01-01

    The SRF co-activator MRTF-A has been implicated in tension-based regulation of SRF-mediated transcriptional activity. This study shows that nuclear trafficking of MRTF-A is strongly downregulated in cells at tensional homeostasis, suggesting a link between the MRTF-A/SRF pathway and the cellular mechanostat set point.

  19. Cellular manganese content is developmentally regulated in human dopaminergic neurons

    Science.gov (United States)

    Kumar, Kevin K.; Lowe, Edward W., Jr.; Aboud, Asad A.; Neely, M. Diana; Redha, Rey; Bauer, Joshua A.; Odak, Mihir; Weaver, C. David; Meiler, Jens; Aschner, Michael; Bowman, Aaron B.

    2014-10-01

    Manganese (Mn) is both an essential biological cofactor and neurotoxicant. Disruption of Mn biology in the basal ganglia has been implicated in the pathogenesis of neurodegenerative disorders, such as parkinsonism and Huntington's disease. Handling of other essential metals (e.g. iron and zinc) occurs via complex intracellular signaling networks that link metal detection and transport systems. However, beyond several non-selective transporters, little is known about the intracellular processes regulating neuronal Mn homeostasis. We hypothesized that small molecules that modulate intracellular Mn could provide insight into cell-level Mn regulatory mechanisms. We performed a high throughput screen of 40,167 small molecules for modifiers of cellular Mn content in a mouse striatal neuron cell line. Following stringent validation assays and chemical informatics, we obtained a chemical `toolbox' of 41 small molecules with diverse structure-activity relationships that can alter intracellular Mn levels under biologically relevant Mn exposures. We utilized this toolbox to test for differential regulation of Mn handling in human floor-plate lineage dopaminergic neurons, a lineage especially vulnerable to environmental Mn exposure. We report differential Mn accumulation between developmental stages and stage-specific differences in the Mn-altering activity of individual small molecules. This work demonstrates cell-level regulation of Mn content across neuronal differentiation.

  20. ER Stress Controls Iron Metabolism Through Induction of Hepcidin

    OpenAIRE

    Vecchi, Chiara; Montosi, Giuliana; Zhang, Kezhong; Lamberti, Igor; Duncan, Stephen A.; Kaufman, Randal J.; Pietrangelo, Antonello

    2009-01-01

    Hepcidin is a peptide hormone that is secreted by the liver and controls body iron homeostasis. Hepcidin overproduction causes anemia of inflammation, whereas its deficiency leads to hemochromatosis. Inflammation and iron are known extracellular stimuli for hepcidin expression. We found that endoplasmic reticulum (ER) stress also induces hepcidin expression and causes hypoferremia and spleen iron sequestration in mice. CREBH (cyclic AMP response element–binding protein H), an ER stress–activa...

  1. Epigenetic Regulation of Cholesterol Homeostasis

    Directory of Open Access Journals (Sweden)

    Steve eMeaney

    2014-09-01

    Full Text Available Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g. the Hedgehog system. A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more ‘traditional’ regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review.

  2. Components of calcium homeostasis in Archaeon Methanobacterium thermoautotrophicum

    International Nuclear Information System (INIS)

    The cells of Archaea are interesting from several points of view. Among others there are: (a) the evolutionary relationship to procaryotes and eucaryotes and (b) the involvement of Na+ and H+ gradient in archaeal bio-energetics. The observations are presented which are devoted to the description of components of Ca2+ homeostasis, an apparatus is vital for both procaryotic and eukaryotic organisms, in obligate anaerobe Methanobacterium thermoautotrophicum. This is, after the demonstration of the ATP-dependent Ca2+ transport in Halobacterium halobium membrane vesicles, the first complex description of processes of Ca2+ homeostasis in Archaea. The Ca2+ influx and efflux was measured using radionuclide 45Ca2+. The experiment were performed under strictly anaerobic conditions. The measurement of the membrane potential by means of 3H-tetraphenyl phosphonium chloride showed that the presence of Na+ depolarized the membrane from -110 to -60 mV. The growth of M. thermoautotrophicum and methanogenesis was suppressed but nor arrested by the presence EGTA suggesting that the Ca2+ homeostasis may be involved in controlling these cellular functions. The results indicate the presence of three components involved in establishing the Ca2+ homeostasis in cell of M. thermoautotrophicum. The first is the Ca2+-carrier mediating the CA2+ influx driven by the proton motive force or the membrane potential. The Ca2+ efflux is mediated by two transport systems, Na+/Ca2+ and H+/Ca2+ anti-porters. The evidence for the presence of the Ca2+-transporting ATPase was not obtained so far. (authors)

  3. Sumo and the cellular stress response

    OpenAIRE

    Enserink, Jorrit M.

    2015-01-01

    The ubiquitin family member Sumo has important functions in many cellular processes including DNA repair, transcription and cell division. Numerous studies have shown that Sumo is essential for maintaining cell homeostasis when the cell encounters endogenous or environmental stress, such as osmotic stress, hypoxia, heat shock, genotoxic stress, and nutrient stress. Regulation of transcription is a key component of the Sumo stress response, and multiple mechanisms have been described by which ...

  4. Oxidative stress action in cellular aging

    OpenAIRE

    Monique Cristine de Oliveira; João Paulo Ferreira Schoffen

    2010-01-01

    Various theories try to explain the biological aging by changing the functions and structure of organic systems and cells. During lifetime, free radicals in the oxidative stress lead to lipid peroxidation of cellular membranes, homeostasis imbalance, chemical residues formation, gene mutations in DNA, dysfunction of certain organelles, and the arise of diseases due to cell death and/or injury. This review describes the action of oxidative stress in the cells aging process, emphasizing the fac...

  5. Iron Overload

    Science.gov (United States)

    ... drug called an iron chelator to remove excess iron from your body because of transfusion-dependent anemias. Be sure to talk with your doctor about the potential benefits and risks of using these drugs. Previous Article ...

  6. Iron and genome stability: An update

    Energy Technology Data Exchange (ETDEWEB)

    Pra, Daniel, E-mail: daniel_pra@yahoo.com [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); PPG em Saude e Comportamento, Universidade Catolica de Pelotas, Pelotas, RS (Brazil); Franke, Silvia Isabel Rech [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); Henriques, Joao Antonio Pegas [Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Fenech, Michael [CSIRO Food and Nutritional Sciences, Adelaide, SA (Australia)

    2012-05-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40-45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  7. Iron and genome stability: An update

    International Nuclear Information System (INIS)

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40–45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  8. Global Protein Oxidation Profiling Suggests Efficient Mitochondrial Proteome Homeostasis During Aging.

    Science.gov (United States)

    Ramallo Guevara, Carina; Philipp, Oliver; Hamann, Andrea; Werner, Alexandra; Osiewacz, Heinz D; Rexroth, Sascha; Rögner, Matthias; Poetsch, Ansgar

    2016-05-01

    The free radical theory of aging is based on the idea that reactive oxygen species (ROS) may lead to the accumulation of age-related protein oxidation. Because themajority of cellular ROS is generated at the respiratory electron transport chain, this study focuses on the mitochondrial proteome of the aging model Podospora anserina as target for ROS-induced damage. To ensure the detection of even low abundant modified peptides, separation by long gradient nLC-ESI-MS/MS and an appropriate statistical workflow for iTRAQ quantification was developed. Artificial protein oxidation was minimized by establishing gel-free sample preparation in the presence of reducing and iron-chelating agents. This first large scale, oxidative modification-centric study for P. anserina allowed the comprehensive quantification of 22 different oxidative amino acid modifications, and notably the quantitative comparison of oxidized and nonoxidized protein species. In total 2341 proteins were quantified. For 746 both protein species (unmodified and oxidatively modified) were detected and the modification sites determined. The data revealed that methionine residues are preferably oxidized. Further prominent identified modifications in decreasing order of occurrence were carbonylation as well as formation of N-formylkynurenine and pyrrolidinone. Interestingly, for the majority of proteins a positive correlation of changes in protein amount and oxidative damage were noticed, and a general decrease in protein amounts at late age. However, it was discovered that few proteins changed in oxidative damage in accordance with former reports. Our data suggest that P. anserina is efficiently capable to counteract ROS-induced protein damage during aging as long as protein de novo synthesis is functioning, ultimately leading to an overall constant relationship between damaged and undamaged protein species. These findings contradict a massive increase in protein oxidation during aging and rather suggest a

  9. Metal Homeostasis Regulators Suppress FRDA Phenotypes in a Drosophila Model of the Disease

    Science.gov (United States)

    Soriano, Sirena; Calap-Quintana, Pablo; Llorens, José Vicente; Al-Ramahi, Ismael; Gutiérrez, Lucía; Martínez-Sebastián, María José; Botas, Juan; Moltó, María Dolores

    2016-01-01

    Friedreich’s ataxia (FRDA), the most commonly inherited ataxia in populations of European origin, is a neurodegenerative disorder caused by a decrease in frataxin levels. One of the hallmarks of the disease is the accumulation of iron in several tissues including the brain, and frataxin has been proposed to play a key role in iron homeostasis. We found that the levels of zinc, copper, manganese and aluminum were also increased in a Drosophila model of FRDA, and that copper and zinc chelation improve their impaired motor performance. By means of a candidate genetic screen, we identified that genes implicated in iron, zinc and copper transport and metal detoxification can restore frataxin deficiency-induced phenotypes. Taken together, these results demonstrate that the metal dysregulation in FRDA includes other metals besides iron, therefore providing a new set of potential therapeutic targets. PMID:27433942

  10. Diseases of Pulmonary Surfactant Homeostasis

    OpenAIRE

    Jeffrey A Whitsett; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after bi...

  11. Iron Regulatory Proteins Control a Mucosal Block to Intestinal Iron Absorption

    Directory of Open Access Journals (Sweden)

    Bruno Galy

    2013-03-01

    Full Text Available Mammalian iron metabolism is regulated systemically by the hormone hepcidin and cellularly by iron regulatory proteins (IRPs that orchestrate a posttranscriptional regulatory network. Through ligand-inducible genetic ablation of both IRPs in the gut epithelium of adult mice, we demonstrate that IRP deficiency impairs iron absorption and promotes mucosal iron retention via a ferritin-mediated “mucosal block.” We show that IRP deficiency does not interfere with intestinal sensing of body iron loading and erythropoietic iron need, but rather alters the basal expression of the iron-absorption machinery. IRPs thus secure sufficient iron transport across absorptive enterocytes by restricting the ferritin “mucosal block” and define a basal set point for iron absorption upon which IRP-independent systemic regulatory inputs are overlaid.

  12. Gallium and its competing roles with iron in biological systems.

    Science.gov (United States)

    Chitambar, Christopher R

    2016-08-01

    Gallium, a group IIIa metal, shares chemical properties with iron. Studies have shown that gallium-based compounds have potential therapeutic activity against certain cancers and infectious microorganisms. By functioning as an iron mimetic, gallium perturbs iron-dependent proliferation processes in tumor cells. Gallium's action on iron homeostasis leads to disruption of ribonucleotide reductase, mitochondrial function, and the regulation of transferrin receptor and ferritin. In addition, gallium nitrate stimulates an increase in mitochondrial reactive oxygen species in cells which triggers downstream upregulation of metallothionein and hemoxygenase-1. Gallium's anti-infective activity against bacteria and fungi results from disruption of microbial iron utilization through mechanisms which include gallium binding to siderophores and downregulation of bacterial iron uptake. Gallium compounds lack cross-resistance to conventional chemotherapeutic drugs and antibiotics thus making them attractive agents for drug development. This review will focus on the mechanisms of action of gallium with emphasis on its interaction with iron and iron proteins. PMID:27150508

  13. Supplementation of iron in pulmonary hypertension: Rationale and design of a phase II clinical trial in idiopathic pulmonary arterial hypertension

    OpenAIRE

    Howard, Luke S.G.E.; Watson, Geoffrey M.J.; Wharton, John; Rhodes, Christopher J.; Chan, Kakit; Khengar, Rajeshree; Robbins, Peter A.; Kiely, David G.; Condliffe, Robin; Elliott, Charlie A.; Pepke-Zaba*, Joanna; Sheares, Karen; Morrell, Nicholas W.; Davies, Rachel; Ashby, Deborah

    2013-01-01

    Our aim is to assess the safety and potential clinical benefit of intravenous iron (Ferinject) infusion in iron deficient patients with idiopathic pulmonary arterial hypertension (IPAH). Iron deficiency in the absence of anemia (1) is common in patients with IPAH; (2) is associated with inappropriately raised levels of hepcidin, the key regulator of iron homeostasis; and (3) correlates with disease severity and worse clinical outcomes. Oral iron absorption may be impeded by reduced absorption...

  14. Role of alcohol in the regulation of iron metabolism

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Patients with alcoholic liver disease frequently exhibit increased body iron stores, as reflected by elevated serum iron indices (transferrin saturation, ferritin) and hepatic iron concentration. Even mild to moderate alcohol consumption has been shown to increase the prevalence of iron overload. Moreover, increased hepatic iron content is associated with greater mortality from alcoholic cirrhosis, suggesting a pathogenic role for iron in alcoholic liver disease. Alcohol increases the severity of disease in patients with genetic hemochromatosis,an iron overload disorder common in the Caucasian population. Both iron and alcohol individually cause oxidative stress and lipid peroxidation, which culminates in liver injury. Despite these observations, the underlying mechanisms of iron accumulation and the source of the excess iron observed in alcoholic liver disease remain unclear. Over the last decade, several novel iron-regulatory proteins have been identified and these have greatly enhanced our understanding of iron metabolism. For example, hepcidin, a circulatory antimicrobial peptide synthesized by the hepatocytes of the liver is now known to play a central role in the regulation of iron homeostasis. This review attempts to describe the interaction of alcohol and iron-regulatory molecules. Understanding these molecular mechanisms is of considerable clinical importance because both alcoholic liver disease and genetic hemochromatosis are common diseases, in which alcohol and iron appear to act synergistically to cause liver injury.

  15. Effects of Pregnancy and Lactation on Iron Metabolism in Rats

    Directory of Open Access Journals (Sweden)

    Guofen Gao

    2015-01-01

    Full Text Available In female, inadequate iron supply is a highly prevalent problem that often leads to iron-deficiency anemia. This study aimed to understand the effects of pregnancy and lactation on iron metabolism. Rats with different days of gestation and lactation were used to determine the variations in iron stores and serum iron level and the changes in expression of iron metabolism-related proteins, including ferritin, ferroportin 1 (FPN1, ceruloplasmin (Cp, divalent metal transporter 1 (DMT1, transferrin receptor 1 (TfR1, and the major iron-regulatory molecule—hepcidin. We found that iron stores decline dramatically at late-pregnancy period, and the low iron store status persists throughout the lactation period. The significantly increased FPN1 level in small intestine facilitates digestive iron absorption, which maintains the serum iron concentration at a near-normal level to meet the increase of iron requirements. Moreover, a significant decrease of hepcidin expression is observed during late-pregnancy and early-lactation stages, suggesting the important regulatory role that hepcidin plays in iron metabolism during pregnancy and lactation. These results are fundamental to the understanding of iron homeostasis during pregnancy and lactation and may provide experimental bases for future studies to identify key molecules expressed during these special periods that regulate the expression of hepcidin, to eventually improve the iron-deficiency status.

  16. Pancreatic regulation of glucose homeostasis.

    Science.gov (United States)

    Röder, Pia V; Wu, Bingbing; Liu, Yixian; Han, Weiping

    2016-01-01

    In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed. PMID:26964835

  17. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain

    OpenAIRE

    Raha-Chowdhury, Ruma; Raha, Animesh Alexander; Forostyak, Serhiy; Zhao, Jing-Wei; Stott, Simon Russell William; Bomford, Adrian

    2015-01-01

    Background Hepcidin is a peptide hormone belonging to the defensin family of cationic antimicrobial molecules that has an essential role in systemic iron homeostasis. The peptide is synthesised by hepatocytes and transported in the circulation to target tissues where it regulates the iron export function of the ferrous iron permease, ferroportin. In the brain hepcidin protein has been identified using immuno-histochemistry and mRNA by real-time PCR but not by in situ hybridisation raising the...

  18. Pathophysiology in Medicine: Hepcidin and iron regulation in health and disease

    OpenAIRE

    Means, Robert T.

    2013-01-01

    A decade ago hepcidin, an antimicrobial peptide with iron-regulatory properties, was discovered and proposed as playing a significant role in the pathogenesis of the anemia of chronic disease. Subsequent studies have demonstrated that hepcidin is the keystone of the linked systems of iron balance and iron transport in health and in disease. The definition of the role of hepcidin and of its regulation has permitted the mechanisms of disorders of iron homeostasis to be understood at a molecular...

  19. The Effect of Iron Limitation on the Transcriptome and Proteome of Pseudomonas fluorescens Pf-5

    OpenAIRE

    Lim, Chee Kent; Hassan, Karl A.; Tetu, Sasha G.; Loper, Joyce E.; Paulsen, Ian T.

    2012-01-01

    One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, includ...

  20. 丙二醛对大鼠海马神经元结构的破坏和钙离子稳态的影响%The Effects of Malondialdehyde on the Cellular Structures of Hippocampal Neurons and Its Calcium Homeostasis in SD Rats

    Institute of Scientific and Technical Information of China (English)

    蔡建光; 汤华; 唐晖; 印大中

    2011-01-01

    脂质过氧化中间产物丙二醛(Malondialdehyde,MDA)在生物体内表现了广泛的生物毒性,MDA也是机体过度训练和运动性疲劳的重要生理指标.采用光学显微镜和透射式电子显微镜观察不同浓度MDA作用后海马神经元形态和超微结构的变化,并采用荧光分光光度法测定原代培养的海马神经元中Ca2+-ATPase活性的变化和胞质游离钙离子水平的变化,探讨MDA对海马神经元形态和结构上的破坏及神经元钙离子稳态的影响.在光镜下可观察到MDA作用下神经元突触变短,胞体肿胀,出现细胞死亡或凋亡的形态特征;在电镜下可观察到线粒体结构的明显破坏,内膜上的嵴颗粒减少或消失;同时MDA还通过抑制质膜Ca2+-ATPase的活性和其它的途径,破坏神经元胞质游离Ca2+稳态.结果表明,MDA可通过破坏海马神经元的结构和影响胞质中钙离子稳态,破坏神经元的生理功能,在机体运动性中枢疲劳形成中可能发挥重要作用.%As a useful physiological index for over trained or exercise-induced fatigue,there were kinds of biological toxicity of malondialdehyde (MDA) produced in the process of lipid peroxidation.In this investigation,in order to observe the effects of MDA on the damages of hippocampal neuronal shapes and ultra-structure,and examine the calcium homeostasis in primary culture neurons,the microscope and transmission electronic microscope were applied for observing the changes of shapes and the transforms of ultra-struc-tures,and also,the fluorospectrophotometer was used to determine the concentration of cytosohc free calcium in the system of primary culture hippocampal neurons of SD rats.The microphotographic study clearly demonstrated that the hippocampal neurons became gradually damaged following exposure to different concentrations of MDA.And also,the ultra-structures were observed that the architectures of mitochondria were deformed and their cristae were decreased or

  1. Nanomechanics of magnetically driven cellular endocytosis

    Science.gov (United States)

    Zablotskii, V.; Lunov, O.; Dejneka, A.; Jastrabík, L.; Polyakova, T.; Syrovets, T.; Simmet, Th.

    2011-10-01

    Being essential for many pharmacodynamic and pharmacokinetic processes and playing a crucial role in regulating substrate detachment that enables cellular locomotion, endocytotic mechanisms in many aspects still remain a mystery and therefore can hardly be controlled. Here, we report on experimental and modeling studies of the magnetically assisted endocytosis of functionalized superparamagnetic iron oxide nanoparticles by prostate cancer cells (PC-3) and characterize the time and force scales of the cellular uptake machinery. The results indicate how the cellular uptake rate could be controlled by applied magnetic field, membrane elasticity, and nanoparticle magnetic moment.

  2. Luminescence turn-on/off sensing of biological iron by carbon dots in transferrin.

    Science.gov (United States)

    Bhattacharya, Arpan; Chatterjee, Surajit; Khorwal, Vijaykant; Mukherjee, Tushar Kanti

    2016-02-21

    Iron is a key nutrient as well as a potential toxin for almost all living organisms. In mammalian cells, serum transferrin (Tf) is responsible for iron transport and its iron overload/deficiency causes various diseases. Therefore, closely regulated iron homeostasis is extremely essential for cellular metabolism. In the present article we report the pH-dependent luminescence turn-on/off sensing of bound Fe(3+) ions of serum Tf by carbon dots (CDs) with the help of photoluminescence (PL) spectroscopy, FTIR spectroscopy, dynamic light scattering (DLS), circular dichroism (CD) and PL imaging techniques. At physiological pH (7.4), the intrinsic luminescence of CDs gets quenched in the presence of Tf as a consequence of ground-state association, which is driven by favorable electrostatic interactions between negatively charged CDs (-25.45 ± 1.23 mV) and positively charged Fe(3+) ions of Tf. The estimated detection limit of Tf by CDs at physiological pH is found to be 1.82 μM (signal-to-noise ratio of 3), which is much lower than the in vivo plasma concentration of Tf (∼25-35 μM). Various thermodynamic parameters have been evaluated by using the van't Hoff equation. Importantly, the secondary structure of Tf remains unaltered upon association with CDs. However, at pH 3.5, no such luminescence quenching of CDs has been observed in the presence of Tf due to the lack of ground-state interactions between positively charged (+17.63 ± 0.84 mV) CDs and Tf. Furthermore, the results from UV-Vis and far-UV CD measurements revealed a significant conformational change of Tf at pH 3.5 relative to pH 7.4, which triggers the subsequent release of bound iron from Tf. PL microscopy of individual CD revealed significant luminescence quenching at the single particle level, which further supports the non-emissive ground-state complexation at pH 7.4. Our present results show that these chemically synthesized water-dispersed CDs have the ability to selectively sense the bound iron from

  3. Decreased serum hepcidin, inflammation, and improved functional iron status six-months post-restrictive bariatric surgery.

    Science.gov (United States)

    Excess adiposity is associated with low-grade inflammation and decreased iron status. Iron depletion (ID) in obesity is thought to be mediated by an inflammation-induced increase in the body’s main regulator of iron homeostasis, hepcidin. Elevated hepcidin can result in ID as it prevents the release...

  4. Serum hepcidin is significantly associated with iron absorption from food and supplemental sources in healthy young woman

    Science.gov (United States)

    Hepcidin is a key regulator of iron homeostasis, but to date no studies have examined the effect of hepcidin on iron absorption in humans. Our objective was to assess relations between both serum hepcidin and serum prohepcidin with nonheme-iron absorption in the presence and absence of food with the...

  5. Serum Iron Parameters, HFE C282Y Genotype, and Cognitive Performance in Older Adults: Results From the FACIT Study

    NARCIS (Netherlands)

    Schiepers, O.J.G.; Boxtel, van M.P.J.; Groot, R.H.M.; Jolles, J.; Kort, de W.L.A.M.; Swinkels, D.W.; Kok, F.J.; Verhoef, P.; Durga, J.

    2010-01-01

    Although iron homeostasis is essential for brain functioning, the effects of iron levels on cognitive performance in older individuals have scarcely been investigated. In the present study, serum iron parameters and hemochromatosis (HFE) C282Y genotype were determined in 818 older individuals who pa

  6. The role of malate in plant homeostasis

    OpenAIRE

    Finkemeier, Iris; Sweetlove, Lee J.

    2009-01-01

    Malate is a central metabolite of the plant cell with important roles in plant physiology and metabolism. Here, we summarize the most recent advances in our understanding of malate homeostasis in central metabolism, guard cell functioning, and root exudation.

  7. Orm family proteins mediate sphingolipid homeostasis

    DEFF Research Database (Denmark)

    Breslow, David K; Collins, Sean R; Bodenmiller, Bernd;

    2010-01-01

    expression or mutations to their phosphorylation sites cause dysregulation of sphingolipid metabolism. Our work identifies the Orm proteins as critical mediators of sphingolipid homeostasis and raises the possibility that sphingolipid misregulation contributes to the development of childhood asthma....

  8. Rethinking iron regulation and assessment in iron deficiency, the anemia of chronic disease, and obesity: introducing Hepcidin

    Science.gov (United States)

    Adequate iron availability is essential to human development and overall health. Iron is a key component of oxygen-carrying proteins; a vital player in cellular metabolism, and essential to cell growth and differentiation. Tight regulation of iron at the systemic and cytosolic level is necessary bec...

  9. Leptin therapy, insulin sensitivity, and glucose homeostasis

    OpenAIRE

    Gilberto Paz-Filho; Claudio Mastronardi; Ma-Li Wong; Julio Licinio

    2012-01-01

    Glucose homeostasis is closely regulated not only by insulin, but also by leptin. Both hormones act centrally, regulating food intake and adiposity in humans. Leptin has several effects on the glucose-insulin homeostasis, some of which are independent of body weight and adiposity. Those effects of leptin are determined centrally in the hypothalamus and peripherally in the pancreas, muscles and liver. Leptin has beneficial effects on the glucose-insulin metabolism, by decreasing glycemia, insu...

  10. Impact of metal ion homeostasis of genetically modified Escherichia coli Nissle 1917 and K12 (W3110) strains on colonization properties in the murine intestinal tract

    OpenAIRE

    Kupz, Andreas; Fischer, André; Nies, Dietrich H.; Grass, Gregor; Göbel, Ulf B.; Bereswill, Stefan; Heimesaat, Markus M.

    2013-01-01

    Metal ions are integral parts of pro- as well as eukaryotic cell homeostasis. Escherichia coli proved a valuable in vitro model organism to elucidate essential mechanisms involved in uptake, storage, and export of metal ions. Given that E. coli Nissle 1917 is able to overcome murine colonization resistance, we generated several E. coli Nissle 1917 mutants with defects in zinc, iron, copper, nickel, manganese homeostasis and performed a comprehensive survey of the impact of m...

  11. Post-Transcriptional Coordination of the Arabidopsis Iron Deficiency Response is Partially Dependent on the E3 Ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2).

    Science.gov (United States)

    Pan, I-Chun; Tsai, Huei-Hsuan; Cheng, Ya-Tan; Wen, Tuan-Nan; Buckhout, Thomas J; Schmidt, Wolfgang

    2015-10-01

    Acclimation to changing environmental conditions is mediated by proteins, the abundance of which is carefully tuned by an elaborate interplay of DNA-templated and post-transcriptional processes. To dissect the mechanisms that control and mediate cellular iron homeostasis, we conducted quantitative high-resolution iTRAQ proteomics and microarray-based transcriptomic profiling of iron-deficient Arabidopsis thaliana plants. A total of 13,706 and 12,124 proteins was identified with a quadrupole-Orbitrap hybrid mass spectrometer in roots and leaves, respectively. This deep proteomic coverage allowed accurate estimates of post-transcriptional regulation in response to iron deficiency. Similarly regulated transcripts were detected in only 13% (roots) and 11% (leaves) of the 886 proteins that differentially accumulated between iron-sufficient and iron-deficient plants, indicating that the majority of the iron-responsive proteins was post-transcriptionally regulated. Mutants harboring defects in the RING DOMAIN LIGASE1 (RGLG1)(1) and RING DOMAIN LIGASE2 (RGLG2) showed a pleiotropic phenotype that resembled iron-deficient plants with reduced trichome density and the formation of branched root hairs. Proteomic and transcriptomic profiling of rglg1 rglg2 double mutants revealed that the functional RGLG protein is required for the regulation of a large set of iron-responsive proteins including the coordinated expression of ribosomal proteins. This integrative analysis provides a detailed catalog of post-transcriptionally regulated proteins and allows the concept of a chiefly transcriptionally regulated iron deficiency response to be revisited. Protein data are available via ProteomeXchange with identifier PXD002126. PMID:26253232

  12. The reproductive ecology of iron in women.

    Science.gov (United States)

    Miller, Elizabeth M

    2016-01-01

    Reproductive ecology focuses on the sensitivity of human reproduction to environmental variation. While reproductive ecology has historically focused on the relationship between energy status and reproductive outcomes, iron status is equally critical to women's reproductive health, given the wide-ranging detrimental effects of iron-deficiency anemia on maternal and infant well-being. This review interprets the vast literature on iron status and women's reproduction through an evolutionary framework. First, it will critique the evidence for iron deficiency caused by blood loss during menstruation, reinterpreting the available data as ecological variation in menses within and between populations of women. Second, it will highlight the scant but growing evidence that iron status is implicated in fertility, a relationship that has deep evolutionary roots. Third, this review proposes a new hypothesis for the transfer of iron from mother to infant via pregnancy and breastfeeding: reproductive iron withholding. In this hypothesis, mothers transfer iron to infants in a manner that helps infants avoid iron-mediated infection and oxidative stress, but trades off with potential risk of maternal and infant iron deficiency. Finally, this review explores two main factors that can modify the relationship between iron status and the gestation-lactation cycle: (1) the relationship between long-term reproductive effort (parity) and iron status and (2) supplementation schemes before and during pregnancy. The review concludes by suggesting continued research into iron homeostasis in women using evolutionary, ecological, and biocultural frameworks. Am J Phys Anthropol 159:S172-S195, 2016. © 2016 Wiley Periodicals, Inc. PMID:26808104

  13. Iron load

    Directory of Open Access Journals (Sweden)

    Filippo Cassarà

    2013-03-01

    Full Text Available Recent research addressed the main role of hepcidin in the regulation of iron metabolism. However, while this mechanism could be relevant in causing iron load in Thalassemia Intermedia and Sickle-Cell Anemia, its role in Thalassemia Major (TM is marginal. This is mainly due to the high impact of transfusional requirement into the severe increase of body iron. Moreover, the damage of iron load may be worsened by infections, as HCV hepatitis, or liver and endocrinological damage. One of the most relevant associations was found between splenectomy and increase of risk for mortality due,probably, to more severe iron load. These issues suggest as morbidity and mortality of this group of patients they do not depend only by our ability in controlling heart damage but even in preventing or treating particular infections and complications. This finding is supported by the impairment of survival curves in patients with complications different from heart damage. However, because, during recent years different direct and indirect methods to detect iron overload in patients affected by secondary hemochromatosis have been implemented, our ability to maintain under control iron load is significantly improved. Anyway, the future in iron load management remains to be able to have an iron load map of our body for targeting chelation and other medical treatment according to the single organ damage.

  14. Genomic analyses reveal a conserved glutathione homeostasis pathway in the invertebrate chordate Ciona intestinalis

    Science.gov (United States)

    Nava, Gerardo M.; Lee, David Y.; Ospina, Javier H.; Cai, Shi-Ying

    2009-01-01

    The major thiol redox buffer glutathione (l-γ-glutamyl-l-cysteinylglycine, GSH) is central to cell fate determination, and thus, associated metabolic and regulatory pathways are exquisitely sensitive to a wide range of environmental cues. An imbalance of cellular redox homeostasis has emerged as a pathologic hallmark of a diverse range of human gene-environment disorders. Despite the central importance of GSH in cellular homeostasis, underlying genetic regulatory pathways remain poorly defined. This report describes the annotation and expression analysis of genes contributing to GSH homeostasis in the invertebrate chordate Ciona intestinalis. A core pathway comprising 19 genes contributing to the biosynthesis of GSH and its use as both a redox buffer and a conjugate in phase II detoxification as well as known transcriptional regulators were analyzed. These genes exhibit a high level of sequence conservation with corresponding human, rat, and mouse homologs and were expressed constitutively in tissues of adult animals. The GSH biosynthetic genes Gclc and Gclm were also responsive to the prototypical antioxidant tert-butylhydroquinone. The present evidence of a conserved GSH homeostasis pathway in C. intestinalis together with its phylogenetic position as a basal chordate and lifestyle as a filter feeder constantly exposed to natural marine toxins introduces this species as an important animal model for defining molecular mechanisms that potentially underlie genetic susceptibility to environmentally associated stress. PMID:19470804

  15. Cellular Signaling in Health and Disease

    CERN Document Server

    Beckerman, Martin

    2009-01-01

    In today’s world, three great classes of non-infectious diseases – the metabolic syndromes (such as type 2 diabetes and atherosclerosis), the cancers, and the neurodegenerative disorders – have risen to the fore. These diseases, all associated with increasing age of an individual, have proven to be remarkably complex and difficult to treat. This is because, in large measure, when the cellular signaling pathways responsible for maintaining homeostasis and health of the body become dysregulated, they generate equally stable disease states. As a result the body may respond positively to a drug, but only for a while and then revert back to the disease state. Cellular Signaling in Health and Disease summarizes our current understanding of these regulatory networks in the healthy and diseased states, showing which molecular components might be prime targets for drug interventions. This is accomplished by presenting models that explain in mechanistic, molecular detail how a particular part of the cellular sign...

  16. microRNA Regulation of Peritoneal Cavity Homeostasis in Peritoneal Dialysis

    Directory of Open Access Journals (Sweden)

    Melisa Lopez-Anton

    2015-01-01

    Full Text Available Preservation of peritoneal cavity homeostasis and peritoneal membrane function is critical for long-term peritoneal dialysis (PD treatment. Several microRNAs (miRNAs have been implicated in the regulation of key molecular pathways driving peritoneal membrane alterations leading to PD failure. miRNAs regulate the expression of the majority of protein coding genes in the human genome, thereby affecting most biochemical pathways implicated in cellular homeostasis. In this review, we report published findings on miRNAs and PD therapy, with emphasis on evidence for changes in peritoneal miRNA expression during long-term PD treatment. Recent work indicates that PD effluent- (PDE- derived cells change their miRNA expression throughout the course of PD therapy, contributing to the loss of peritoneal cavity homeostasis and peritoneal membrane function. Changes in miRNA expression profiles will alter regulation of key molecular pathways, with the potential to cause profound effects on peritoneal cavity homeostasis during PD treatment. However, research to date has mainly adopted a literature-based miRNA-candidate methodology drawing conclusions from modest numbers of patient-derived samples. Therefore, the study of miRNA expression during PD therapy remains a promising field of research to understand the mechanisms involved in basic peritoneal cell homeostasis and PD failure.

  17. microRNA Regulation of Peritoneal Cavity Homeostasis in Peritoneal Dialysis

    Science.gov (United States)

    Lopez-Anton, Melisa; Bowen, Timothy; Jenkins, Robert H.

    2015-01-01

    Preservation of peritoneal cavity homeostasis and peritoneal membrane function is critical for long-term peritoneal dialysis (PD) treatment. Several microRNAs (miRNAs) have been implicated in the regulation of key molecular pathways driving peritoneal membrane alterations leading to PD failure. miRNAs regulate the expression of the majority of protein coding genes in the human genome, thereby affecting most biochemical pathways implicated in cellular homeostasis. In this review, we report published findings on miRNAs and PD therapy, with emphasis on evidence for changes in peritoneal miRNA expression during long-term PD treatment. Recent work indicates that PD effluent- (PDE-) derived cells change their miRNA expression throughout the course of PD therapy, contributing to the loss of peritoneal cavity homeostasis and peritoneal membrane function. Changes in miRNA expression profiles will alter regulation of key molecular pathways, with the potential to cause profound effects on peritoneal cavity homeostasis during PD treatment. However, research to date has mainly adopted a literature-based miRNA-candidate methodology drawing conclusions from modest numbers of patient-derived samples. Therefore, the study of miRNA expression during PD therapy remains a promising field of research to understand the mechanisms involved in basic peritoneal cell homeostasis and PD failure. PMID:26495316

  18. Hypothalamic AMPK as a Regulator of Energy Homeostasis.

    Science.gov (United States)

    Huynh, My Khanh Q; Kinyua, Ann W; Yang, Dong Joo; Kim, Ki Woo

    2016-01-01

    Activated in energy depletion conditions, AMP-activated protein kinase (AMPK) acts as a cellular energy sensor and regulator in both central nervous system and peripheral organs. Hypothalamic AMPK restores energy balance by promoting feeding behavior to increase energy intake, increasing glucose production, and reducing thermogenesis to decrease energy output. Besides energy state, many hormones have been shown to act in concert with AMPK to mediate their anorexigenic and orexigenic central effects as well as thermogenic influences. Here we explore the factors that affect hypothalamic AMPK activity and give the underlying mechanisms for the role of central AMPK in energy homeostasis together with the physiological effects of hypothalamic AMPK on energy balance restoration. PMID:27547453

  19. SND1 overexpression deregulates cholesterol homeostasis in hepatocellular carcinoma.

    Science.gov (United States)

    Navarro-Imaz, Hiart; Rueda, Yuri; Fresnedo, Olatz

    2016-09-01

    SND1 is a multifunctional protein participating, among others, in gene transcription and mRNA metabolism. SND1 is overexpressed in cancer cells and promotes viability and tumourigenicity of hepatocellular carcinoma cells. This study shows that cholesterol synthesis is increased in SND1-overexpressing hepatoma cells. Neither newly synthesised nor extracellularly supplied cholesterol are able to suppress this increase; however, inhibition of cholesterol esterification reverted the activated state of sterol-regulatory element-binding protein 2 (SREBP2) and cholesterogenesis. These results highlight SND1 as a potential regulator of cellular cholesterol distribution and homeostasis in hepatoma cells, and support the rationale for the therapeutic use of molecules that influence cholesterol management when SND1 is overexpressed. PMID:27238764

  20. Hypothalamic AMPK as a Regulator of Energy Homeostasis

    Science.gov (United States)

    Huynh, My Khanh Q.; Kinyua, Ann W.; Yang, Dong Joo

    2016-01-01

    Activated in energy depletion conditions, AMP-activated protein kinase (AMPK) acts as a cellular energy sensor and regulator in both central nervous system and peripheral organs. Hypothalamic AMPK restores energy balance by promoting feeding behavior to increase energy intake, increasing glucose production, and reducing thermogenesis to decrease energy output. Besides energy state, many hormones have been shown to act in concert with AMPK to mediate their anorexigenic and orexigenic central effects as well as thermogenic influences. Here we explore the factors that affect hypothalamic AMPK activity and give the underlying mechanisms for the role of central AMPK in energy homeostasis together with the physiological effects of hypothalamic AMPK on energy balance restoration. PMID:27547453

  1. Microarray Analysis to Monitor Bacterial Cell Wall Homeostasis.

    Science.gov (United States)

    Hong, Hee-Jeon; Hesketh, Andy

    2016-01-01

    Transcriptomics, the genome-wide analysis of gene transcription, has become an important tool for characterizing and understanding the signal transduction networks operating in bacteria. Here we describe a protocol for quantifying and interpreting changes in the transcriptome of Streptomyces coelicolor that take place in response to treatment with three antibiotics active against different stages of peptidoglycan biosynthesis. The results defined the transcriptional responses associated with cell envelope homeostasis including a generalized response to all three antibiotics involving activation of transcription of the cell envelope stress sigma factor σ(E), together with elements of the stringent response, and of the heat, osmotic, and oxidative stress regulons. Many antibiotic-specific transcriptional changes were identified, representing cellular processes potentially important for tolerance to each antibiotic. The principles behind the protocol are transferable to the study of cell envelope homeostatic mechanisms probed using alternative chemical/environmental insults or in other bacterial strains. PMID:27311662

  2. Genome-Wide Analysis Reveals Novel Genes Essential for Heme Homeostasis in Caenorhabditiselegans

    OpenAIRE

    Severance, Scott; Rajagopal, Abbhirami; Rao, Anita U.; Cerqueira, Gustavo C; Mitreva, Makedonka; El-Sayed, Najib M.; Krause, Michael; Hamza, Iqbal

    2010-01-01

    Heme is a cofactor in proteins that function in almost all sub-cellular compartments and in many diverse biological processes. Heme is produced by a conserved biosynthetic pathway that is highly regulated to prevent the accumulation of heme—a cytotoxic, hydrophobic tetrapyrrole. Caenorhabditis elegans and related parasitic nematodes do not synthesize heme, but instead require environmental heme to grow and develop. Heme homeostasis in these auxotrophs is, therefore, regulated in accordance wi...

  3. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    DEFF Research Database (Denmark)

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K;

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derive...... to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI:http://dx.doi.org/10.7554/eLife.00953.001....

  4. The role of DNA base excision repair in brain homeostasis and disease

    DEFF Research Database (Denmark)

    Akbari, Mansour; Morevati, Marya; Croteau, Deborah;

    2015-01-01

    Chemical modification and spontaneous loss of nucleotide bases from DNA are estimated to occur at the rate of thousands per human cell per day. DNA base excision repair (BER) is a critical mechanism for repairing such lesions in nuclear and mitochondrial DNA. Defective expression or function of p...... energy homeostasis, mitochondrial function and cellular bioenergetics, with especially strong influence on neurological function. Further studies in this area could lead to novel approaches to prevent and treat human neurodegenerative disease....

  5. Polarity in Stem Cell Division: Asymmetric Stem Cell Division in Tissue Homeostasis

    OpenAIRE

    Yamashita, Yukiko M; Yuan, Hebao; Cheng, Jun; Hunt, Alan J.

    2010-01-01

    Many adult stem cells divide asymmetrically to balance self-renewal and differentiation, thereby maintaining tissue homeostasis. Asymmetric stem cell divisions depend on asymmetric cell architecture (i.e., cell polarity) within the cell and/or the cellular environment. In particular, as residents of the tissues they sustain, stem cells are inevitably placed in the context of the tissue architecture. Indeed, many stem cells are polarized within their microenvironment, or the stem cell niche, a...

  6. Disturbed Flow Induces Autophagy, but Impairs Autophagic Flux to Perturb Mitochondrial Homeostasis

    OpenAIRE

    Li, Rongsong; Jen, Nelson; Wu, Lan; Lee, Juhyun; Fang, Karen; Quigley, Katherine; Lee, Katherine; Wang, Sky; Zhou, Bill; Vergnes, Laurent; Chen, Yun-Ru; Li, Zhaoping; Reue, Karen; Ann, David K.; Hsiai, Tzung K.

    2015-01-01

    Aim: Temporal and spatial variations in shear stress are intimately linked with vascular metabolic effects. Autophagy is tightly regulated in intracellular bulk degradation/recycling system for maintaining cellular homeostasis. We postulated that disturbed flow modulates autophagy with an implication in mitochondrial superoxide (mtO2•−) production. Results: In the disturbed flow or oscillatory shear stress (OSS)-exposed aortic arch, we observed prominent staining of p62, a reverse marker of a...

  7. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja;

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES...... understand iron metabolism in elderly HF patients....

  8. The role of lysosomes in iron metabolism and recycling

    OpenAIRE

    Kurz, Tino; Eaton, John W.; Brunk, Ulf

    2011-01-01

    Iron is the most abundant transition metal in the earths crust. It cycles easily between ferric (oxidized; Fe(III)) and ferrous (reduced; Fe(II)) and readily forms complexes with oxygen, making this metal a central player in respiration and related redox processes. However, loose iron, not within heme or iron-sulfur cluster proteins, can be destructively redox-active, causing damage to almost all cellular components, killing both cells and organisms. This may explain why iron is so carefully ...

  9. Genetic disorders of surfactant homeostasis.

    Science.gov (United States)

    Whitsett, Jeffrey A; Wert, Susan E; Xu, Yan

    2005-01-01

    Adaptation to air breathing at birth requires the precise orchestration of cellular processes to initiate fluid clearance, enhance pulmonary blood flow, and to synthesize and secrete pulmonary surfactant needed to reduce surface tension at the air-liquid interface in the alveoli. Genetic programs regulating the synthesis of the surfactant proteins and lipids required for the production and function of pulmonary surfactant are highly conserved across vertebrates, and include proteins that regulate the synthesis and packaging of pulmonary surfactant proteins and lipids. Surfactant proteins B and C (SP-B and -C) are small, uniquely hydrophobic proteins that play important roles in the stability and spreading of surfactant lipids in the alveolus. Deletion or mutations in SP-B and -C cause acute and chronic lung disease in neonates and infants. SP-B and -C are synthesized and packaged with surfactant phospholipids in lamellar bodies. Normal lamellar body formation requires SP-B and a member of the ATP-binding cassette (ABC) family of ATP-dependent membrane-associated transport proteins, ABCA3. Mutations in ABCA3 cause fatal respiratory disease in newborns and severe chronic lung disease in infancy. Expression of SP-B, -C, and ABCA3 are coregulated during late gestation by transcriptional programs influenced by thyroid transcription factor-1 and forkhead box a2, transcription factors that regulate both differentiation of the respiratory epithelium and transcription of genes required for perinatal adaptation to air breathing. PMID:15985750

  10. Iron-dependent regulation of hepcidin in Hjv-/- mice: evidence that hemojuvelin is dispensable for sensing body iron levels.

    Directory of Open Access Journals (Sweden)

    Konstantinos Gkouvatsos

    Full Text Available Hemojuvelin (Hjv is a bone morphogenetic protein (BMP co-receptor involved in the control of systemic iron homeostasis. Functional inactivation of Hjv leads to severe iron overload in humans and mice due to marked suppression of the iron-regulatory hormone hepcidin. To investigate the role of Hjv in body iron sensing, Hjv-/- mice and isogenic wild type controls were placed on a moderately low, a standard or a high iron diet for four weeks. Hjv-/- mice developed systemic iron overload under all regimens. Transferrin (Tf was highly saturated regardless of the dietary iron content, while liver iron deposition was proportional to it. Hepcidin mRNA expression responded to fluctuations in dietary iron intake, despite the absence of Hjv. Nevertheless, iron-dependent upregulation of hepcidin was more than an order of magnitude lower compared to that seen in wild type controls. Likewise, iron signaling via the BMP/Smad pathway was preserved but substantially attenuated. These findings suggest that Hjv is not required for sensing of body iron levels and merely functions as an enhancer for iron signaling to hepcidin.

  11. [Iron deficiency in the elderly].

    Science.gov (United States)

    Helsen, Tuur; Joosten, Etienne

    2016-06-01

    Anemia is a common diagnosis in the geriatric population, especially in institutionalized and hospitalized elderly. Most common etiologies for anemia in elderly people admitted to a geriatric ward are iron-deficiency anemia and anemia associated with chronic disease.Determination of serum ferritin is the most used assay in the differential diagnosis, despite low sensitivity and moderate specificity. New insights into iron homeostasis lead to new diagnostic assays such as serum hepcidin, serum transferrin receptor and reticulocyte hemoglobin equivalent.Importance of proper diagnosis and treatment for this population is large since there is a correlation between anemia and morbidity - mortality. Anemia is usually defined as hemoglobin less than 12 g/dl for women and less than 13 g/dl for men. There is no consensus for which hemoglobinvalue an investigation into underlying pathology is obligatory. This needs to be evaluated depending on functional condition of the patient. PMID:27106490

  12. Piracy on the molecular level: human herpesviruses manipulate cellular chemotaxis.

    Science.gov (United States)

    Cornaby, Caleb; Tanner, Anne; Stutz, Eric W; Poole, Brian D; Berges, Bradford K

    2016-03-01

    Cellular chemotaxis is important to tissue homeostasis and proper development. Human herpesvirus species influence cellular chemotaxis by regulating cellular chemokines and chemokine receptors. Herpesviruses also express various viral chemokines and chemokine receptors during infection. These changes to chemokine concentrations and receptor availability assist in the pathogenesis of herpesviruses and contribute to a variety of diseases and malignancies. By interfering with the positioning of host cells during herpesvirus infection, viral spread is assisted, latency can be established and the immune system is prevented from eradicating viral infection. PMID:26669819

  13. Metabolism and epigenetics in the nervous system: Creating cellular fitness and resistance to neuronal death in neurological conditions via modulation of oxygen-, iron-, and 2-oxoglutarate-dependent dioxygenases.

    Science.gov (United States)

    Karuppagounder, Saravanan S; Kumar, Amit; Shao, Diana S; Zille, Marietta; Bourassa, Megan W; Caulfield, Joseph T; Alim, Ishraq; Ratan, Rajiv R

    2015-12-01

    Modern definitions of epigenetics incorporate models for transient but biologically important changes in gene expression that are unrelated to DNA code but responsive to environmental changes such as injury-induced stress. In this scheme, changes in oxygen levels (hypoxia) and/or metabolic co-factors (iron deficiency or diminished 2-oxoglutarate levels) are transduced into broad genetic programs that return the cell and the organism to a homeostatic set point. Over the past two decades, exciting studies have identified a superfamily of iron-, oxygen-, and 2-oxoglutarate-dependent dioxygenases that sit in the nucleus as modulators of transcription factor stability, co-activator function, histone demethylases, and DNA demethylases. These studies have provided a concrete molecular scheme for how changes in metabolism observed in a host of neurological conditions, including stroke, traumatic brain injury, and Alzheimer's disease, could be transduced into adaptive gene expression to protect the nervous system. We will discuss these enzymes in this short review, focusing primarily on the ten eleven translocation (TET) DNA demethylases, the jumonji (JmJc) histone demethylases, and the oxygen-sensing prolyl hydroxylase domain enzymes (HIF PHDs). This article is part of a Special Issue entitled SI: Neuroprotection. PMID:26232572

  14. Leptin therapy, insulin sensitivity, and glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Gilberto Paz-Filho

    2012-01-01

    Full Text Available Glucose homeostasis is closely regulated not only by insulin, but also by leptin. Both hormones act centrally, regulating food intake and adiposity in humans. Leptin has several effects on the glucose-insulin homeostasis, some of which are independent of body weight and adiposity. Those effects of leptin are determined centrally in the hypothalamus and peripherally in the pancreas, muscles and liver. Leptin has beneficial effects on the glucose-insulin metabolism, by decreasing glycemia, insulinemia and insulin resistance. The understanding of the effects of leptin on the glucose-insulin homeostasis will lead to the development of leptin-based therapies against diabetes and other insulin resistance syndromes. In these review, we summarize the interactions between leptin and insulin, and their effects on the glucose metabolism.

  15. Melanocortin-4 receptor-regulated energy homeostasis.

    Science.gov (United States)

    Krashes, Michael J; Lowell, Bradford B; Garfield, Alastair S

    2016-02-01

    The melanocortin system provides a conceptual blueprint for the central control of energetic state. Defined by four principal molecular components--two antagonistically acting ligands and two cognate receptors--this phylogenetically conserved system serves as a prototype for hierarchical energy balance regulation. Over the last decade the application of conditional genetic techniques has facilitated the neuroanatomical dissection of the melanocortinergic network and identified the specific neural substrates and circuits that underscore the regulation of feeding behavior, energy expenditure, glucose homeostasis and autonomic outflow. In this regard, the melanocortin-4 receptor is a critical coordinator of mammalian energy homeostasis and body weight. Drawing on recent advances in neuroscience and genetic technologies, we consider the structure and function of the melanocortin-4 receptor circuitry and its role in energy homeostasis. PMID:26814590

  16. Ceruloplasmin-ferroportin system of iron traffic in vertebrates

    Institute of Scientific and Technical Information of China (English)

    Giovanni; Musci; Fabio; Polticelli; Maria; Carmela; Bonaccorsi; di; Patti

    2014-01-01

    Safe trafficking of iron across the cell membrane is a delicate process that requires specific protein carriers. While many proteins involved in iron uptake by cells are known, only one cellular iron export protein has been identified in mammals: ferroportin(SLC40A1). Ceruloplasmin is a multicopper enzyme endowed with ferroxidase activity that is found as a soluble isoform in plasma or as a membrane-associated isoform in specific cell types. According to the currently accepted view, ferrous iron transported out of the cell by ferroportin would be safely oxidized by ceruloplasmin to facilitate loading on transferrin. Therefore, the ceruloplasminferroportin system represents the main pathway for cellular iron egress and it is responsible for physiological regulation of cellular iron levels. The most recent findings regarding the structural and functional features of ceruloplasmin and ferroportin and their relationship will be described in this review.

  17. Iron biology, immunology, aging and obesity: four fields connected by the small peptide hormone, hepcidin

    Science.gov (United States)

    It is well-known that obesity and aging have a negative impact on iron status and immune response, but little is known about the additional impact that obesity may have on iron homeostasis and immunity in the elderly. This question is relevant given the rising numbers of elderly obese individuals a...

  18. Elevated systemic hepcidin and iron depletion in obese pre-menopausal females.

    Science.gov (United States)

    Hepcidin, the body’s main regulator of systemic iron homeostasis, is unregulated in response to inflammation, and is thought to play a role in the manifestation of iron deficiency (ID) observed in obese populations. We determined systemic hepcidin levels and its association with body mass, inflammat...

  19. The effect of iron limitation on the transcriptome and proteome of Pseudomonas fluorescens Pf-5

    Science.gov (United States)

    We investigated the transcriptomic and proteomic effects of iron limitation on Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that molecular elements involved in iron homeostasis, including the pyoverdine and enantio-pyochelin biosynthesis clusters a...

  20. Red Meat, Dietary Heme Iron, and Risk of Type 2 Diabetes: The Involvement of Advanced Lipoxidation Endproducts12

    OpenAIRE

    White, Desley L.; Collinson, Avril

    2013-01-01

    There is growing evidence of disordered iron homeostasis in the diabetic condition, with links proposed between dietary iron intakes and both the risk of disease and the risk of complications of advanced disease. In the United States, Britain, and Canada, the largest dietary contributors of iron are cereals and cereal products and meat and meat products. This review discusses the findings of cohort studies and meta-analyses of heme iron and red meat intakes and the risk of type 2 diabetes. Th...

  1. Heterozygous Mutations in BMP6 Pro-peptide Lead to Inappropriate Hepcidin Synthesis and Moderate Iron Overload in Humans

    OpenAIRE

    Daher, Raed; Kannengiesser, Caroline; Houamel, Dounia; Lefebvre, Thibaud; Bardou-Jacquet, Edouard; Ducrot, Nicolas; Kerguenec, Caroline,; Jouanolle, Anne-Marie; Robreau, Anne-Marie; Oudin, Claire; Le Gac, Gerald; Moulouel, Boualem; Loustaud-Ratti, Véronique; Bedossa, Pierre; Valla, Dominique

    2015-01-01

    Background & Aims Hereditary hemochromatosis is a heterogeneous group of genetic disorders characterized by parenchymal iron overload. It is caused by defective expression of liver hepcidin, the main regulator of iron homeostasis. Iron stimulates the gene encoding (HAMP) hepcidin via the BMP6 signaling to SMAD. Although several genetic factors have been found to cause late-onset hemochromatosis, many patients have unexplained signs of iron overload. We investigated BMP6 function in these indi...

  2. Carbonic anhydrase 5 regulates acid-base homeostasis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ruben Postel

    Full Text Available The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5 mutation, collapse of fins (cof, which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders.

  3. Roles of connexins and pannexins in digestive homeostasis

    Science.gov (United States)

    Maes, Michaël; Cogliati, Bruno; Yanguas, Sara Crespo; Willebrords, Joost; Vinken, Mathieu

    2015-01-01

    Connexin proteins are abundantly present in the digestive system. They primarily form gap junctions, which control the intercellular exchange of critical homeostasis regulators. By doing so, gap junctions drive a plethora of gastrointestinal and hepatic functional features, including gastric and gut motility, gastric acid secretion, intestinal innate immune defense, xenobiotic biotransformation, glycogenolysis, bile secretion, ammonia detoxification and plasma protein synthesis. In the last decade, it has become clear that connexin hemichannels, which are the structural precursors of gap junctions, also provide a pathway for cellular communication, namely between the cytosol and the extracellular environment. Although merely pathological functions have been described, some physiological roles have been attributed to connexin hemichannels, in particular in the modulation of colonic motility. This equally holds true for cellular channels composed of pannexins, connexin-like proteins recently identified in the intestine and the liver, which have become acknowledged key players in inflammatory processes and that have been proposed to control colonic motility, secretion and blood flow. PMID:26084872

  4. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent

    2015-01-01

    We live in an oxidized world: oxygen makes up 22 percent of the atmosphere and by reacting with organic matter produces most of our energy, including the energy our bodies use to function: breathe, think, move, etc. It has not always been thus. Originally the Earth, in common with most of the Solar...... System, was reduced. The oxidized outer layers of the Earth have formed by two processes. Firstly, water is decomposed to oxygen and hydrogen by solar radiation in the upper parts of the atmosphere, the light hydrogen diffusing to space, leaving oxygen behind. Secondly, plants, over the course of...... situation unique in the Solar System. In such a world, iron metal is unstable and, as we all know, oxidizes to the ferric iron compounds we call 'rust'. If we require iron metal it must be produced at high temperatures by reacting iron ore, usually a mixture of ferrous (Fe2+) and ferric (Fe3+) oxides (Fe2O3...

  5. Cellular functions of p53 and p53 gene family members p63 and p73

    OpenAIRE

    Nadir Koçak; İbrahim Halil Yıldırım; Seval Cing Yıldırım

    2011-01-01

    p53 is a transcription factor that regulates multiple cellular processes that are also important in cellular fates such as cell cycle arrest or programmed cell death. Induction of growth arrest or cell death by p53 prevents the replication of damaged DNA and proliferation of genetically abnormal cells. Therefore, inactivation of p53 by mutation or deletion is also important in ensuring the cellular homeostasis. However, studies showed that p53 deficient mice and cells such as Saos-2 cells are...

  6. ApproachtoAcuteIronIntoxication: A Case Report

    Directory of Open Access Journals (Sweden)

    Ülkü Özgül

    2011-12-01

    Full Text Available In adults, the main causes of iron poisoning are intake suicide attempts and an overdose of iron during pregnancy. The severity of intoxication depends on the amount of iron. When serum iron level exceeds the iron binding capacity of the body, free radicals occurs, leading to lipid peroxidation and cellular membrane damage. In iron poisoning, especially the liver, heart, kidney, lung, and hematologic systems are affected negatively. Acute iron poisoning can cause serious complications resulting in death. Clinical, laboratory observation and early treatment are important. In this case report, we examined to approach the acute iron poisoning with the occasion of high-dose iron intake for suicide attempt. (Journal of the Turkish Society Intensive Care 2011; 9: 107-9ntakeforsuicideattempt. (Journal of theTurkishSocietyIntensiveCare 2011; 9: 107-9

  7. Redox Homeostasis in Pancreatic beta Cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Petr; Dlasková, Andrea; Plecitá-Hlavatá, Lydie

    2012-01-01

    Roč. 2012, č. 2012 (2012), s. 932838. ISSN 1942-0900 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP304/10/P204 Institutional support: RVO:67985823 Keywords : beta cells * reactive oxygen species homeostasis * mitochondria Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.393, year: 2012

  8. Biting the Iron Bullet: Endoplasmic Reticulum Stress Adds the Pain of Hepcidin to Chronic Liver Disease

    OpenAIRE

    Messner, Donald J.; Kowdley, Kris V.

    2010-01-01

    Hepcidin is a peptide hormone that is secreted by the liver and controls body iron homeostasis. Hepcidin overproduction causes anemia of inflammation, whereas its deficiency leads to hemochromatosis. Inflammation and iron are known extracellular stimuli for hepcidin expression. We found that endoplasmic reticulum (ER) stress also induces hepcidin expression and causes hypoferremia and spleen iron sequestration in mice. CREBH (cyclic AMP response element-binding protein H), an ER stress-activa...

  9. Iron transferrin regulates hepcidin synthesis in primary hepatocyte culture through hemojuvelin and BMP2/4

    OpenAIRE

    Lin, Lan; Valore, Erika V.; Nemeth, Elizabeta; Goodnough, Julia B; Gabayan, Victoria; Ganz, Tomas

    2007-01-01

    The peptide hormone hepcidin is the principal regulator of systemic iron homeostasis. We examined the pathway by which iron stimulates the production of hepcidin. In humans who ingested 65 mg of iron, the increase in transferrin saturation preceded by hours the increase in urinary hepcidin excretion. Increases in urinary hepcidin concentrations were proportional to the increment in transferrin saturation. Paradoxically, in previous studies in primary hepatocytes and cell lines, hepcidin respo...

  10. Iron Prochelator BSIH Protects Retinal Pigment Epithelial Cells against Cell Death Induced by Hydrogen Peroxide

    OpenAIRE

    Charkoudian, Louise K.; Dentchev, Tzvete; Lukinova, Nina; Wolkow, Natalie; Dunaief, Joshua L.; Franz, Katherine J.

    2008-01-01

    Dysregulation of localized iron homeostasis is implicated in several degenerative diseases, including Parkinson’s, Alzheimer’s, and age-related macular degeneration, wherein iron-mediated oxidative stress is hypothesized to contribute to cell death. Inhibiting toxic iron without altering normal metal-dependent processes presents significant challenges for standard small molecule chelating agents. We previously introduced BSIH (isonicotinic acid [2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl...

  11. Iron uptake and transport across physiological barriers.

    Science.gov (United States)

    Duck, Kari A; Connor, James R

    2016-08-01

    Iron is an essential element for human development. It is a major requirement for cellular processes such as oxygen transport, energy metabolism, neurotransmitter synthesis, and myelin synthesis. Despite its crucial role in these processes, iron in the ferric form can also produce toxic reactive oxygen species. The duality of iron's function highlights the importance of maintaining a strict balance of iron levels in the body. As a result, organisms have developed elegant mechanisms of iron uptake, transport, and storage. This review will focus on the mechanisms that have evolved at physiological barriers, such as the intestine, the placenta, and the blood-brain barrier (BBB), where iron must be transported. Much has been written about the processes for iron transport across the intestine and the placenta, but less is known about iron transport mechanisms at the BBB. In this review, we compare the established pathways at the intestine and the placenta as well as describe what is currently known about iron transport at the BBB and how brain iron uptake correlates with processes at these other physiological barriers. PMID:27457588

  12. Loss of endoplasmic reticulum Ca homeostasis:contribution to neuronal cell death during cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Ankur BODALIA; Hongbin LI; Michael F JACKSON

    2013-01-01

    The loss of Ca2+ homeostasis during cerebral ischemia is a hallmark of impending neuronal demise.Accordingly,considerable cellular resources are expended in maintaining low resting cytosolic levels of Ca2+.These include contributions by a host of proteins involved in the sequestration and transport of Ca2+,many of which are expressed within intracellular organelles,including lysosomes,mitochondria as well as the endoplasmic reticulum (ER).Ca2+ sequestration by the ER contributes to cytosolic Ca2+ dynamics and homeostasis.Furthermore,within the ER Ca2+ plays a central role in regulating a host of physiological processes.Conversely,impaired ER Ca2+ homeostasis is an important trigger of pathological processes.Here we review a growing body of evidence suggesting that ER dysfunction is an important factor contributing to neuronal injury and loss post-ischemia.Specifically,the contribution of the ER to cytosolic Ca2+ elevations during ischemia will be considered,as will the signalling cascades recruited as a consequence of disrupting ER homeostasis and function.

  13. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress

    Directory of Open Access Journals (Sweden)

    Hossain eSazzad

    2016-05-01

    Full Text Available Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g. the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH, alternative oxidase (AOX, the plastid terminal oxidase (PTOX and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.

  14. Quantitative steps in symbiogenesis and the evolution of homeostasis.

    Science.gov (United States)

    Kooijman, S A L M; Auger, P; Poggiale, J C; Kooi, B W

    2003-08-01

    The merging of two independent populations of heterotrophs and autotrophs into a single population of mixotrophs has occurred frequently in evolutionary history. It is an example of a wide class of related phenomena, known as symbiogenesis. The physiological basis is almost always (reciprocal) syntrophy, where each species uses the products of the other species. Symbiogenesis can repeat itself after specialization on particular assimilatory substrates. We discuss quantitative aspects and delineate eight steps from two free-living interacting populations to a single fully integrated endosymbiotic one. The whole process of gradual interlocking of the two populations could be mimicked by incremental changes of particular parameter values. The role of products gradually changes from an ecological to a physiological one. We found conditions where the free-living, epibiotic and endobiotic populations of symbionts can co-exist, as well as conditions where the endobiotic symbionts outcompete other symbionts. Our population dynamical analyses give new insights into the evolution of cellular homeostasis. We show how structural biomass with a constant chemical composition can evolve in a chemically varying environment if the parameters for the formation of products satisfy simple constraints. No additional regulation mechanisms are required for homeostasis within the context of the dynamic energy budget (DEB) theory for the uptake and use of substrates by organisms. The DEB model appears to be dosed under endosymbiosis. This means that when each free-living partner follows DEB rules for substrate uptake and use, and they become engaged in an endosymbiotic relationship, a gradual transition to a single fully integrated system is possible that again follows DEB rules for substrate uptake and use. PMID:14558592

  15. Adaptation of iron requirement to hypoxic conditions at high altitude.

    Science.gov (United States)

    Gassmann, Max; Muckenthaler, Martina U

    2015-12-15

    Adequate acclimatization time to enable adjustment to hypoxic conditions is one of the most important aspects for mountaineers ascending to high altitude. Accordingly, most reviews emphasize mechanisms that cope with reduced oxygen supply. However, during sojourns to high altitude adjustment to elevated iron demand is equally critical. Thus in this review we focus on the interaction between oxygen and iron homeostasis. We review the role of iron 1) in the oxygen sensing process and erythropoietin (Epo) synthesis, 2) in gene expression control mediated by the hypoxia-inducible factor-2 (HIF-2), and 3) as an oxygen carrier in hemoglobin, myoglobin, and cytochromes. The blood hormone Epo that is abundantly expressed by the kidney under hypoxic conditions stimulates erythropoiesis in the bone marrow, a process requiring high iron levels. To ensure that sufficient iron is provided, Epo-controlled erythroferrone that is expressed in erythroid precursor cells acts in the liver to reduce expression of the iron hormone hepcidin. Consequently, suppression of hepcidin allows for elevated iron release from storage organs and enhanced absorption of dietary iron by enterocytes. As recently observed in sojourners at high altitude, however, iron uptake may be hampered by reduced appetite and gastrointestinal bleeding. Reduced iron availability, as observed in a hypoxic mountaineer, enhances hypoxia-induced pulmonary hypertension and may contribute to other hypoxia-related diseases. Overall, adequate systemic iron availability is an important prerequisite to adjust to high-altitude hypoxia and may have additional implications for disease-related hypoxic conditions. PMID:26183475

  16. Expression of Iron-Related Proteins at the Neurovascular Unit Supports Reduction and Reoxidation of Iron for Transport Through the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Burkhart, Annette; Skjørringe, Tina; Johnsen, Kasper Bendix;

    2015-01-01

    The mechanisms for iron transport through the blood-brain barrier (BBB) remain a controversy. We analyzed for expression of mRNA and proteins involved in oxidation and transport of iron in isolated brain capillaries from dietary normal, iron-deficient, and iron-reverted rats. The expression was...... endothelial cells provide the machinery for receptor-mediated uptake of ferric iron-containing transferrin. Ferric iron can then undergo reduction to ferrous iron by ferrireductases inside endosomes followed by DMT1-mediated pumping into the cytosol and subsequently cellular export by ferroportin. The...

  17. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Science.gov (United States)

    Pongrac, Igor M; Pavičić, Ivan; Milić, Mirta; Brkić Ahmed, Lada; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs) are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs – uncoated, coated with d-mannose, or coated with poly-l-lysine – affects biocompatibility. We sought to investigate murine neural stem cells (NSCs) as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions presented in this work highlights the need for further safety evaluations. This investigation helps to fill the knowledge gaps on the criteria that should be considered in evaluating the biocompatibility and safety of novel nanoparticles.

  18. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Pongrac, Igor M; Pavičić, Ivan; Milić, Mirta; Brkić Ahmed, Lada; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs) are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs - uncoated, coated with d-mannose, or coated with poly-l-lysine - affects biocompatibility. We sought to investigate murine neural stem cells (NSCs) as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions presented in this work highlights the need for further safety evaluations. This investigation helps to fill the knowledge gaps on the criteria that should be considered in evaluating the biocompatibility and safety of novel nanoparticles. PMID:27217748

  19. Structural and functional characterization of the bacterial ferrous homeostasis protein FeoA

    OpenAIRE

    Vieira, Vanessa Cristina de Carvalho

    2012-01-01

    O objectivo deste trabalho intitulado ““Structural and functional characterization of the bacterial ferrous homeostasis protein FeoA” consistiu na determinação da estrutura e função da proteína FeoA da bacteria E.coli. A principal via bacteriana de entrada do ferro ferroso é através do sistema Feo que deriva das palavras inglesas ferrous iron transport. O ferro é um elemento essencial para a maioria dos organismos participando em vias metabólicas essenciais. Os sistemas de importação ...

  20. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Hüser Andrea T

    2006-02-01

    Full Text Available Abstract Background The knowledge about complete bacterial genome sequences opens the way to reconstruct the qualitative topology and global connectivity of transcriptional regulatory networks. Since iron is essential for a variety of cellular processes but also poses problems in biological systems due to its high toxicity, bacteria have evolved complex transcriptional regulatory networks to achieve an effective iron homeostasis. Here, we apply a combination of transcriptomics, bioinformatics, in vitro assays, and comparative genomics to decipher the regulatory network of the iron-dependent transcriptional regulator DtxR of Corynebacterium glutamicum. Results A deletion of the dtxR gene of C. glutamicum ATCC 13032 led to the mutant strain C. glutamicum IB2103 that was able to grow in minimal medium only under low-iron conditions. By performing genome-wide DNA microarray hybridizations, differentially expressed genes involved in iron metabolism of C. glutamicum were detected in the dtxR mutant. Bioinformatics analysis of the genome sequence identified a common 19-bp motif within the upstream region of 31 genes, whose differential expression in C. glutamicum IB2103 was verified by real-time reverse transcription PCR. Binding of a His-tagged DtxR protein to oligonucleotides containing the 19-bp motifs was demonstrated in vitro by DNA band shift assays. At least 64 genes encoding a variety of physiological functions in iron transport and utilization, in central carbohydrate metabolism and in transcriptional regulation are controlled directly by the DtxR protein. A comparison with the bioinformatically predicted networks of C. efficiens, C. diphtheriae and C. jeikeium identified evolutionary conserved elements of the DtxR network. Conclusion This work adds considerably to our currrent understanding of the transcriptional regulatory network of C. glutamicum genes that are controlled by DtxR. The DtxR protein has a major role in controlling the

  1. Iron and Your Child

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy Iron and Your Child KidsHealth > For Parents > Iron and ... enough iron in their daily diets. How Much Iron Do Kids Need? Kids require different amounts of ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... have enough iron in your body. Low iron levels usually are due to blood loss, poor diet, ... iron supplements and multivitamins to improve her iron levels. Susan also made changes to her diet, such ...

  3. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  4. Homeostasis as the Mechanism of Evolution

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2015-09-01

    Full Text Available Homeostasis is conventionally thought of merely as a synchronic (same time servo-mechanism that maintains the status quo for organismal physiology. However, when seen from the perspective of developmental physiology, homeostasis is a robust, dynamic, intergenerational, diachronic (across-time mechanism for the maintenance, perpetuation and modification of physiologic structure and function. The integral relationships generated by cell-cell signaling for the mechanisms of embryogenesis, physiology and repair provide the needed insight to the scale-free universality of the homeostatic principle, offering a novel opportunity for a Systems approach to Biology. Starting with the inception of life itself, with the advent of reproduction during meiosis and mitosis, moving forward both ontogenetically and phylogenetically through the evolutionary steps involved in adaptation to an ever-changing environment, Biology and Evolution Theory need no longer default to teleology.

  5. Homeostasis as the Mechanism of Evolution.

    Science.gov (United States)

    Torday, John S

    2015-01-01

    Homeostasis is conventionally thought of merely as a synchronic (same time) servo-mechanism that maintains the status quo for organismal physiology. However, when seen from the perspective of developmental physiology, homeostasis is a robust, dynamic, intergenerational, diachronic (across-time) mechanism for the maintenance, perpetuation and modification of physiologic structure and function. The integral relationships generated by cell-cell signaling for the mechanisms of embryogenesis, physiology and repair provide the needed insight to the scale-free universality of the homeostatic principle, offering a novel opportunity for a Systems approach to Biology. Starting with the inception of life itself, with the advent of reproduction during meiosis and mitosis, moving forward both ontogenetically and phylogenetically through the evolutionary steps involved in adaptation to an ever-changing environment, Biology and Evolution Theory need no longer default to teleology. PMID:26389962

  6. The Commensal Microbiota Drives Immune Homeostasis

    OpenAIRE

    Arrieta, Marie-Claire; Finlay, Barton Brett

    2012-01-01

    For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use t...

  7. Thiol redox homeostasis in neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    Gethin J. McBean

    2015-08-01

    Full Text Available This review provides an overview of the biochemistry of thiol redox couples and the significance of thiol redox homeostasis in neurodegenerative disease. The discussion is centred on cysteine/cystine redox balance, the significance of the xc− cystine–glutamate exchanger and the association between protein thiol redox balance and neurodegeneration, with particular reference to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and glaucoma. The role of thiol disulphide oxidoreductases in providing neuroprotection is also discussed.

  8. Nuclear receptors, bile acids and cholesterol homeostasis series - bile acids and pregnancy.

    Science.gov (United States)

    Abu-Hayyeh, Shadi; Papacleovoulou, Georgia; Williamson, Catherine

    2013-04-10

    Bile acids have been traditionally thought of as having an important role in fat emulsification. It is now emerging that they act as important signalling molecules that not only autoregulate their own synthesis but also influence lipid and glucose metabolism. Although, the mechanisms that underlie the regulation of bile acid homeostasis have been well characterised in normal physiology, the impact of pregnancy on bile acid regulation is still poorly understood. This review summarises the main regulatory mechanisms underlying bile acid homeostasis and discusses how pregnancy, a unique physiological state, can modify them. The fetoplacental adaptations that protect against fetal bile acid toxicity are reviewed. We highlight the importance of bile acid regulation during gestation by discussing the liver disease of pregnancy, intrahepatic cholestasis of pregnancy (ICP) and how genetic, endocrine and environmental factors contribute to the disease aetiology at a cellular and molecular level. PMID:23159988

  9. Regulation of energy homeostasis via GPR120

    Directory of Open Access Journals (Sweden)

    Atsuhiko eIchimura

    2014-07-01

    Full Text Available Free fatty acids (FFAs are fundamental units of key nutrients. FFAs exert various biological functions, depending on the chain length and degree of desaturation. Recent studies have shown that several FFAs act as ligands of G-protein-coupled receptors (GPCRs, activate intracellular signaling and exert physiological functions via these GPCRs. GPR120 (also known as free fatty acid receptor 4, FFAR4 is activated by unsaturated medium- to long-chain FFAs and has a critical role in various physiological homeostasis mechanisms such as incretin hormone secretion, food preference, anti-inflammation and adipogenesis. Recent studies showed that a lipid sensor GPR120 has a key role in sensing dietary fat in white adipose tissue and regulates the whole body energy homeostasis in both humans and rodents. Genetic study in human identified the loss-of-functional mutation of GPR120 associated with obesity and insulin resistance. In addition, dysfunction of GPR120 has been linked as a novel risk factor for diet-induced obesity. This review aims to provide evidence from the recent development in physiological function of GPR120 and discusses its functional roles in regulation of energy homeostasis and its potential as drug targets.

  10. Baicalin interferes with iron accumulation in C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Chunyan Guo; Xin Chen

    2011-01-01

    Baicalin reacts with ferric ammonium citrate and acts as an-iron chelator. The maximal reaction time for baicalin to interact with irons was approximately 3 hours. C6 glioma cell survival decreased following iron-loading, with a large number of cells accumulating iron. In addition, lipid peroxidation increased. Iron accumulation and lipid peroxidation were the major cause of cellular death. Baicalin and ferric ammonium citrate alleviated iron accumulation in C6 cells and lowered the mortality of nerve cells. In addition, malondialdehyde and lactate dehydrogenase levels reduced. These results indicate that baicalin strongly inhibits lipid peroxidation via chelation, reduces the content of iron in C6 cells, lowers lipid peroxidation, and thus plays a protective role against iron-induced nerve cell death.

  11. Impaired Iron Status in Aging Research

    Directory of Open Access Journals (Sweden)

    Christiaan Leeuwenburgh

    2012-02-01

    Full Text Available Aging is associated with disturbances in iron metabolism and storage. During the last decade, remarkable progress has been made toward understanding their cellular and molecular mechanisms in aging and age-associated diseases using both cultured cells and animal models. The field has moved beyond descriptive studies to potential intervention studies focusing on iron chelation and removal. However, some findings remain controversial and inconsistent. This review summarizes important features of iron dyshomeostasis in aging research with a particular emphasis on current knowledge of the mechanisms underlying age-associated disorders in rodent models.

  12. Battles with Iron: Manganese in Oxidative Stress Protection*

    OpenAIRE

    Aguirre, J. Dafhne; Culotta, Valeria C.

    2012-01-01

    The redox-active metal manganese plays a key role in cellular adaptation to oxidative stress. As a cofactor for manganese superoxide dismutase or through formation of non-proteinaceous manganese antioxidants, this metal can combat oxidative damage without deleterious side effects of Fenton chemistry. In either case, the antioxidant properties of manganese are vulnerable to iron. Cellular pools of iron can outcompete manganese for binding to manganese superoxide dismutase, and through Fenton c...

  13. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain

    Czech Academy of Sciences Publication Activity Database

    Raha-Chowdhury, R.; Raha, A.A.; Forostyak, Serhiy; Zhao, J.W.; Stott, S.R.W.; Bomford, A.

    2015-01-01

    Roč. 16, APR 21 (2015), s. 24. ISSN 1471-2202 Institutional support: RVO:68378041 Keywords : hepcidin * ferroportin * defensin * inflammatory cytokines * brain iron homeostasis * blood brain barrier * pericytes * sub-ventricular zone * neurogenesis Subject RIV: FH - Neurology Impact factor: 2.665, year: 2014

  14. Iron and iron derived radicals

    International Nuclear Information System (INIS)

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fast! Think small! In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab

  15. Modelling the role of the Hsp70/Hsp90 system in the maintenance of protein homeostasis.

    Directory of Open Access Journals (Sweden)

    Carole J Proctor

    Full Text Available Neurodegeneration is an age-related disorder which is characterised by the accumulation of aggregated protein and neuronal cell death. There are many different neurodegenerative diseases which are classified according to the specific proteins involved and the regions of the brain which are affected. Despite individual differences, there are common mechanisms at the sub-cellular level leading to loss of protein homeostasis. The two central systems in protein homeostasis are the chaperone system, which promotes correct protein folding, and the cellular proteolytic system, which degrades misfolded or damaged proteins. Since these systems and their interactions are very complex, we use mathematical modelling to aid understanding of the processes involved. The model developed in this study focuses on the role of Hsp70 (IPR00103 and Hsp90 (IPR001404 chaperones in preventing both protein aggregation and cell death. Simulations were performed under three different conditions: no stress; transient stress due to an increase in reactive oxygen species; and high stress due to sustained increases in reactive oxygen species. The model predicts that protein homeostasis can be maintained during short periods of stress. However, under long periods of stress, the chaperone system becomes overwhelmed and the probability of cell death pathways being activated increases. Simulations were also run in which cell death mediated by the JNK (P45983 and p38 (Q16539 pathways was inhibited. The model predicts that inhibiting either or both of these pathways may delay cell death but does not stop the aggregation process and that eventually cells die due to aggregated protein inhibiting proteasomal function. This problem can be overcome if the sequestration of aggregated protein into inclusion bodies is enhanced. This model predicts responses to reactive oxygen species-mediated stress that are consistent with currently available experimental data. The model can be used to

  16. O-GlcNAcase expression is sensitive to changes in O-GlcNAc homeostasis

    Directory of Open Access Journals (Sweden)

    ZHEN eZHANG

    2014-12-01

    Full Text Available O-linked N-acetylglucosamine (O-GlcNAc is a post-translational modification involving an attachment of a single β-N-acetylglucosamine moiety to serine or threonine residues in nuclear and cytoplasmic proteins. Cellular O-GlcNAc levels are regulated by two enzymes: O-GlcNAc transferase (OGT and O-GlcNAcase (OGA, which add and remove the modification respectively. The levels of O-GlcNAc can rapidly change in response to fluctuations in the extracellular environment; however, O-GlcNAcylation returns to a baseline level quickly after stimulus removal. This process termed O-GlcNAc homeostasis appears to be critical to the regulation of many cellular functions including cell cycle progress, stress response, and gene transcription. Disruptions in O-GlcNAc homeostasis are proposed to lead to the development of diseases such as cancer, diabetes, and Alzheimer’s disease. O-GlcNAc homeostasis is correlated with the expression of OGT and OGA. We reason that alterations in O-GlcNAc levels affect OGA and OGT transcription. We treated several human cell lines with Thiamet-G (TMG, an OGA inhibitor to increase overall O-GlcNAc levels resulting in decreased OGT protein expression and increased OGA protein expression. OGT transcript levels slightly declined with TMG treatment, but OGA transcript levels were significantly increased. Pretreating cells with protein translation inhibitor cycloheximide (CHX did not stabilize OGT or OGA protein expression in the presence of TMG; nor did TMG stabilize OGT and OGA mRNA levels when cells were treated with RNA transcription inhibitor actinomycin D (AMD. Finally, we performed RNA Polymerase II chromatin immunoprecipitation (ChIP at the OGA promoter and found RNA Pol II occupancy at the transcription start site (TSS was lower after prolonged TMG treatment. Together, these data suggest that OGA transcription was sensitive to changes in O-GlcNAc homeostasis and was potentially regulated by O-GlcNAc.

  17. The Tumorigenic Roles of the Cellular REDOX Regulatory Systems

    OpenAIRE

    Stéphanie Anaís Castaldo; Joana Raquel Freitas; Nadine Vasconcelos Conchinha; Patrícia Alexandra Madureira

    2016-01-01

    The cellular REDOX regulatory systems play a central role in maintaining REDOX homeostasis that is crucial for cell integrity, survival, and proliferation. To date, a substantial amount of data has demonstrated that cancer cells typically undergo increasing oxidative stress as the tumor develops, upregulating these important antioxidant systems in order to survive, proliferate, and metastasize under these extreme oxidative stress conditions. Since a large number of chemotherapeutic agents cur...

  18. Metformin regulates glycemic homeostasis in patients with type 2 diabetes mellitus as an NO donor

    Directory of Open Access Journals (Sweden)

    Ivan Sergeevich Kuznetsov

    2013-11-01

    Full Text Available Aim. To evaluate the influence of metformin on nitric oxide bioavailability in patients with type 2 diabetes mellitus (T2DM regarding glycemic homeostasis, and to investigate a correlation between metformin dosage and NO levels in vivo.Materials and Methods. Two groups – primary and control – were assembled for the clinical section of this study. Patients with newly diagnosed T2DM on metformin therapy were included to the primary group, while drug-naïve T2DM patients were enrolled as control subjects. Glycemic parameters and NO bioavailability was tested in both groups prior to and after the follow-up period. Experimental section was dedicated to the elucidation of potential dose-dependent effects of metformin on NO bioavailability. Mice were intraperitoneally infused with metformin at 0.5; 1.1; 5.6 mg per subject. Tissue detection of NO was performed with diethyldithiocarbamate (DETC iron complexes to form mononitrosyl iron compounds (MIC with paramagnetic properties. Control rodents were intraperitoneally infused with metformin without spin trapping.Results. We found nitrite and methaemoglobin (a marker for NO bioavailability to increase in parallel along with glycemic compensation in the primary but not control group. In vivo rodent models showed linear correlation between accumulation of DETC/MIC and dose of metformin, as well as formation of dinitrosyl iron complexes, known as endogenous NO transporters.Conclusion. Our data suggests that metformin benefits glycemic homeostasis in T2DM as an NO donor via formation of dinitrosyl iron complexes.

  19. Dynamics of uptake and metabolism of small molecules in cellular response systems.

    Directory of Open Access Journals (Sweden)

    Maria Werner

    Full Text Available BACKGROUND: Proper cellular function requires uptake of small molecules from the environment. In response to changes in extracellular conditions cells alter the import and utilization of small molecules. For a wide variety of small molecules the cellular response is regulated by a network motif that combines two feedback loops, one which regulates the transport and the other which regulates the subsequent metabolism. RESULTS: We analyze the dynamic behavior of two widespread but logically distinct two-loop motifs. These motifs differ in the logic of the feedback loop regulating the uptake of the small molecule. Our aim is to examine the qualitative features of the dynamics of these two classes of feedback motifs. We find that the negative feedback to transport is accompanied by overshoot in the intracellular amount of small molecules, whereas a positive feedback to transport removes overshoot by boosting the final steady state level. On the other hand, the negative feedback allows for a rapid initial response, whereas the positive feedback is slower. We also illustrate how the dynamical deficiencies of one feedback motif can be mitigated by an additional loop, while maintaining the original steady-state properties. CONCLUSIONS: Our analysis emphasizes the core of the regulation found in many motifs at the interface between the metabolic network and the environment of the cell. By simplifying the regulation into uptake and the first metabolic step, we provide a basis for elaborate studies of more realistic network structures. Particularly, this theoretical analysis predicts that FeS cluster formation plays an important role in the dynamics of iron homeostasis.

  20. Maintaining cholesterol homeostasis:Sterol regulatory element-binding proteins

    Institute of Scientific and Technical Information of China (English)

    Lutz W. Weber; Meinrad Boll; Andreas Stampfl

    2004-01-01

    The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins are members of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP).The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones,cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease.

  1. Factors influencing the diversity of iron uptake systems in aquatic microorganisms

    Directory of Open Access Journals (Sweden)

    Dhwani K Desai

    2012-10-01

    Full Text Available AbstractIron (Fe is an essential micronutrient for many processes in all living cells. Dissolved iron concentrations in the ocean are of the order of a few nM, and Fe is often a factor limiting primary production. Bioavailability of Fe in aquatic environments is believed to be primarily controlled through chelation by Fe-binding ligands. Marine microbes have evolved different mechanisms to cope with the scarcity of bioavailable dissolved Fe (dFe. Gradients in dFe concentrations and quality of the Fe-ligand pool from coastal to open ocean waters havepresumably imposed selection pressures that should be reflected in the genomes of microbial communities inhabiting the pelagic realm. We applied a hidden Markov model (HMM-based search for proteins related to cellular iron metabolism, and in particular those involved in Fe uptake mechanisms in 164 microbial genomes belonging to diverse taxa and occupying different aquatic niches. A multivariate statistical approach demonstrated that in phototrophic organisms, there is a clear influence of the ecological niche on the diversity of Fe uptake systems. Extending the analyses to the metagenome database from the Global Ocean Sampling expedition (GOS, we demonstrated that the Fe uptake and homeostasis mechanisms differed significantly across marine niches defined by temperatures and dFe concentrations, and that this difference was linked to the distribution of microbial taxa in these niches. Using the dN/dS ratios (which signify the rate of non-synonymous mutations of the nucleotide sequences, we identified that genes encoding for TonB, Ferritin, Ferric reductase, IdiA, ZupT and Fe2+ transport proteins FeoA and FeoB were evolving at a faster rate (positive selection pressure while genes encoding ferrisiderophore/heme/Vitamin B12 uptake systems, siderophore biosynthesis, and IsiA and IsiB were under purifying selection pressure (evolving slowly.

  2. Lysosomal function in macromolecular homeostasis and bioenergetics in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Zhang Jianhua

    2010-04-01

    Full Text Available Abstract The pathological changes occurring in Parkinson's and several other neurodegenerative diseases are complex and poorly understood, but all clearly involve protein aggregation. Also frequently appearing in neurodegeneration is mitochondrial dysfunction which may precede, coincide or follow protein aggregation. These observations led to the concept that protein aggregation and mitochondrial dysfunction either arise from the same etiological factors or are interactive. Understanding the mechanisms and regulation of processes that lead to protein aggregation or mitochondrial dysfunction may therefore contribute to the design of better therapeutics. Clearance of protein aggregates and dysfunctional organelles is dependent on macroautophagy which is the process through which aged or damaged proteins and organelles are first degraded by the lysosome and then recycled. The macroautophagy-lysosomal pathway is essential for maintaining protein and energy homeostasis. Not surprisingly, failure of the lysosomal system has been implicated in diseases that have features of protein aggregation and mitochondrial dysfunction. This review summarizes 3 major topics: 1 the current understanding of Parkinson's disease pathogenesis in terms of accumulation of damaged proteins and reduction of cellular bioenergetics; 2 evolving insights into lysosomal function and biogenesis and the accumulating evidence that lysosomal dysfunction may cause or exacerbate Parkinsonian pathology and finally 3 the possibility that enhancing lysosomal function may provide a disease modifying therapy.

  3. Homeostasis of plasma membrane viscosity in fluctuating temperatures.

    Science.gov (United States)

    Martinière, Alexandre; Shvedunova, Maria; Thomson, Adrian J W; Evans, Nicola H; Penfield, Steven; Runions, John; McWatters, Harriet G

    2011-10-01

    Temperature has a direct effect at the cellular level on an organism. For instance, in the case of biomembranes, cooling causes lipids to lose entropy and pack closely together. Reducing temperature should, in the absence of other factors, increase the viscosity of a lipid membrane. We have investigated the effect of temperature variation on plasma membrane (PM) viscosity. We used dispersion tracking of photoactivated green fluorescent protein (GFP) and fluorescence recovery after photobleaching in wild-type and desaturase mutant Arabidopsis thaliana plants along with membrane lipid saturation analysis to monitor the effect of temperature and membrane lipid composition on PM viscosity. Plasma membrane viscosity in A. thaliana is negatively correlated with ambient temperature only under constant-temperature conditions. In the more natural environment of temperature cycles, plants actively manage PM viscosity to counteract the direct effects of temperature. Plasma membrane viscosity is regulated by altering the proportion of desaturated fatty acids. In cold conditions, cell membranes accumulate desaturated fatty acids, which decreases membrane viscosity and vice versa. Moreover, we show that control of fatty acid desaturase 2 (FAD2)-dependent lipid desaturation is essential for this homeostasis of membrane viscosity. Finally, a lack of FAD2 function results in aberrant temperature responses. PMID:21762166

  4. Human iron transporters

    OpenAIRE

    Garrick, Michael D.

    2010-01-01

    Human iron transporters manage iron carefully because tissues need iron for critical functions, but too much iron increases the risk of reactive oxygen species. Iron acquisition occurs in the duodenum via divalent metal transporter (DMT1) and ferroportin. Iron trafficking depends largely on the transferrin cycle. Nevertheless, non-digestive tissues have a variety of other iron transporters that may render DMT1 modestly redundant, and DMT1 levels exceed those needed for the just-mentioned task...

  5. Iron bioavailability from commercially available iron supplements

    OpenAIRE

    Christides, Tatiana; Wray, David; McBride, Richard; Fairweather, Rose; Sharp, Paul

    2015-01-01

    Purpose Iron deficiency anaemia (IDA) is a global public health problem. Treatment with the standard of care ferrous iron salts may be poorly tolerated, leading to non-compliance and ineffective correction of IDA. Employing supplements with higher bioavailability might permit lower doses of iron to be used with fewer side effects, thus improving treatment efficacy. Here, we compared the iron bioavailability of ferrous sulphate tablets with alternative commercial iron products, including th...

  6. Protein folding, protein homeostasis, and cancer

    Institute of Scientific and Technical Information of China (English)

    John H. Van Drie

    2011-01-01

    Proteins fold into their functional 3-dimensional structures from a linear amino acid sequence. In vitro this process is spontaneous; while in vivo it is orchestrated by a specialized set of proteins, called chaperones. Protein folding is an ongoing cellular process, as cellular proteins constantly undergo synthesis and degradation. Here emerging links between this process and cancer are reviewed. This perspective both yields insights into the current struggle to develop novel cancer chemotherapeutics and has implications for future chemotherapy discovery.

  7. Complexity and Information: Measuring Emergence, Self-organization, and Homeostasis at Multiple Scales

    CERN Document Server

    Gershenson, Carlos

    2012-01-01

    Concepts used in the scientific study of complex systems have become so widespread that their use and abuse has led to ambiguity and confusion in their meaning. In this paper we use information theory to provide abstract and concise measures of complexity, emergence, self-organization, and homeostasis. The purpose is to clarify the meaning of these concepts with the aid of the proposed formal measures. In a simplified version of the measures (focussing on the information produced by a system), emergence becomes the opposite of self-organization, while complexity represents their balance. We use computational experiments on random Boolean networks and elementary cellular automata to illustrate our measures at multiple scales.

  8. The molecular physiology of uric acid homeostasis.

    Science.gov (United States)

    Mandal, Asim K; Mount, David B

    2015-01-01

    Uric acid, generated from the metabolism of purines, has proven and emerging roles in human disease. Serum uric acid is determined by production and the net balance of reabsorption or secretion by the kidney and intestine. A detailed understanding of epithelial absorption and secretion of uric acid has recently emerged, aided in particular by the results of genome-wide association studies of hyperuricemia. Novel genetic and regulatory networks with effects on uric acid homeostasis have also emerged. These developments promise to lead to a new understanding of the various diseases associated with hyperuricemia and to novel, targeted therapies for hyperuricemia. PMID:25422986

  9. Epididymis cholesterol homeostasis and sperm fertilizing ability

    Institute of Scientific and Technical Information of China (English)

    Fabrice Saez; Aurélia Ouvrier; Jo(e)l R Drevet

    2011-01-01

    Cholesterol, being the starting point of steroid hormone synthesis, is a long known modulator of both female and male reproductive physiology especially at the level of the gonads and the impact cholesterol has on gametogenesis. Less is known about the effects cholesterol homeostasis may have on postgonadic reproductive functions. Lately, several data have been reported showing how imbalanced cholesterol levels may particularly affect the post-testicular events of sperm maturation that lead to fully fertile male gametes. This review will focus on that aspect and essentially centers on how cholesterol is important for the physiology of the mammalian epididymis and spermatozoa.

  10. Apc Restoration Promotes Cellular Differentiation and Reestablishes Crypt Homeostasis in Colorectal Cancer

    NARCIS (Netherlands)

    Dow, Lukas E; O'Rourke, Kevin P; Simon, Janelle; Tschaharganeh, Darjus F; van Es, Johan H; Clevers, Hans; Lowe, Scott W

    2015-01-01

    The adenomatous polyposis coli (APC) tumor suppressor is mutated in the vast majority of human colorectal cancers (CRC) and leads to deregulated Wnt signaling. To determine whether Apc disruption is required for tumor maintenance, we developed a mouse model of CRC whereby Apc can be conditionally su

  11. Impact of metal ion homeostasis of genetically modified Escherichia coli Nissle 1917 and K12 (W3110) strains on colonization properties in the murine intestinal tract.

    Science.gov (United States)

    Kupz, Andreas; Fischer, André; Nies, Dietrich H; Grass, Gregor; Göbel, Ulf B; Bereswill, Stefan; Heimesaat, Markus M

    2013-09-01

    Metal ions are integral parts of pro- as well as eukaryotic cell homeostasis. Escherichia coli proved a valuable in vitro model organism to elucidate essential mechanisms involved in uptake, storage, and export of metal ions. Given that E. coli Nissle 1917 is able to overcome murine colonization resistance, we generated several E. coli Nissle 1917 mutants with defects in zinc, iron, copper, nickel, manganese homeostasis and performed a comprehensive survey of the impact of metal ion transport and homeostasis for E. coli colonization capacities within the murine intestinal tract. Seven days following peroral infection of conventional mice with E. coli Nissle 1917 strains exhibiting defined defects in zinc or iron uptake, the respective mutant and parental strains could be cultured at comparable, but low levels from the colonic lumen. We next reassociated gnotobiotic mice in which the microbiota responsible for colonization resistance was abrogated by broad-spectrum antibiotics with six different E. coli K12 (W3110) mutants. Seven days following peroral challenge, each mutant and parental strain stably colonized duodenum, ileum, and colon at comparable levels. Taken together, defects in zinc, iron, copper, nickel, and manganese homeostasis do not compromise colonization capacities of E. coli in the murine intestinal tract. PMID:24265943

  12. Chronic Sleep Restriction Disrupts Sleep Homeostasis and Behavioral Sensitivity to Alcohol by Reducing the Extracellular Accumulation of Adenosine

    OpenAIRE

    Clasadonte, Jerome; McIver, Sally R; Schmitt, Luke I.; Michael M. Halassa; Haydon, Philip G.

    2014-01-01

    Sleep impairments are comorbid with a variety of neurological and psychiatric disorders including depression, epilepsy, and alcohol abuse. Despite the prevalence of these disorders, the cellular mechanisms underlying the interaction between sleep disruption and behavior remain poorly understood. In this study, the impact of chronic sleep loss on sleep homeostasis was examined in C57BL/6J mice following 3 d of sleep restriction. The electroencephalographic power of slow-wave activity (SWA; 0.5...

  13. Iron and iron derived radicals

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  14. Obesity Promotes Alterations in Iron Recycling

    Directory of Open Access Journals (Sweden)

    Marta Citelli

    2015-01-01

    Full Text Available Hepcidin is a key hormone that induces the degradation of ferroportin (FPN, a protein that exports iron from reticuloendothelial macrophages and enterocytes. The aim of the present study was to experimentally evaluate if the obesity induced by a high-fat diet (HFD modifies the expression of FPN in macrophages and enterocytes, thus altering the iron bioavailability. In order to directly examine changes associated with iron metabolism in vivo, C57BL/6J mice were fed either a control or a HFD. Serum leptin levels were evaluated. The hepcidin, divalent metal transporter-1 (DMT1, FPN and ferritin genes were analyzed by real-time polymerase chain reaction. The amount of iron present in both the liver and spleen was determined by flame atomic absorption spectrometry. Ferroportin localization within reticuloendothelial macrophages was observed by immunofluorescence microscopy. Obese animals were found to exhibit increased hepcidin gene expression, while iron accumulated in the spleen and liver. They also exhibited changes in the sublocation of splenic cellular FPN and a reduction in the FPN expression in the liver and the spleen, while no changes were observed in enterocytes. Possible explanations for the increased hepcidin expression observed in HFD animals may include: increased leptin levels, the liver iron accumulation or endoplasmic reticulum (ER stress. Together, the results indicated that obesity promotes changes in iron bioavailability, since it altered the iron recycling function.

  15. MAVS maintains mitochondrial homeostasis via autophagy.

    Science.gov (United States)

    Sun, Xiaofeng; Sun, Liwei; Zhao, Yuanyuan; Li, Ying; Lin, Wei; Chen, Dahua; Sun, Qinmiao

    2016-01-01

    Mitochondrial antiviral signalling protein (MAVS) acts as a critical adaptor protein to transduce antiviral signalling by physically interacting with activated RIG-I and MDA5 receptors. MAVS executes its functions at the outer membrane of mitochondria to regulate downstream antiviral signalling, indicating that the mitochondria provides a functional platform for innate antiviral signalling transduction. However, little is known about whether and how MAVS-mediated antiviral signalling contributes to mitochondrial homeostasis. Here we show that the activation of MAVS is sufficient to induce autophagic signalling, which may mediate the turnover of the damaged mitochondria. Importantly, we find MAVS directly interacts with LC3 through its LC3-binding motif 'YxxI', suggesting that MAVS might act as an autophagy receptor to mediate mitochondrial turnover upon excessive activation of RLR signalling. Furthermore, we provide evidence that both MAVS self-aggregation and its interaction with TRAF2/6 proteins are important for MAVS-mediated mitochondrial turnover. Collectively, our findings suggest that MAVS acts as a potential receptor for mitochondria-associated autophagic signalling to maintain mitochondrial homeostasis. PMID:27551434

  16. Perturbed cholesterol homeostasis in aging spinal cord.

    Science.gov (United States)

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging. PMID:27459933

  17. Lipoproteins, cholesterol homeostasis and cardiac health

    Directory of Open Access Journals (Sweden)

    Tyler F. Daniels, Karen M. Killinger, Jennifer J. Michal, Raymond W. Wright Jr., Zhihua Jiang

    2009-01-01

    Full Text Available Cholesterol is an essential substance involved in many functions, such as maintaining cell membranes, manufacturing vitamin D on surface of the skin, producing hormones, and possibly helping cell connections in the brain. When cholesterol levels rise in the blood, they can, however, have dangerous consequences. In particular, cholesterol has generated considerable notoriety for its causative role in atherosclerosis, the leading cause of death in developed countries around the world. Homeostasis of cholesterol is centered on the metabolism of lipoproteins, which mediate transport of the lipid to and from tissues. As a synopsis of the major events and proteins that manage lipoprotein homeostasis, this review contributes to the substantial attention that has recently been directed to this area. Despite intense scrutiny, the majority of phenotypic variation in total cholesterol and related traits eludes explanation by current genetic knowledge. This is somewhat disappointing considering heritability estimates have established these traits as highly genetic. Thus, the continued search for candidate genes, mutations, and mechanisms is vital to our understanding of heart disease at the molecular level. Furthermore, as marker development continues to predict risk of vascular illness, this knowledge has the potential to revolutionize treatment of this leading human disease.

  18. Histopathological data of iron and calcium in the mouse lung after asbestos exposure

    Directory of Open Access Journals (Sweden)

    Elisa Trevisan

    2016-03-01

    Full Text Available This data article contains data related to the research article entitled, “Synchrotron X-ray microscopy reveals early calcium and iron interaction with crocidolite fibers in the lung of exposed mice” [1]. Asbestos fibers disrupt iron homeostasis in the human and mouse lung, leading to the deposition of iron (Fe onto longer asbestos fibers which forms asbestos bodies (AB [2]. Similar to Fe, calcium (Ca is also deposited in the coats of the AB. This article presents data on iron and calcium in the mouse lung after asbestos exposure detected by histochemical evaluation.

  19. Hepatic iron overload following liver transplantation of a C282y homozygous allograft: a case report and literature review.

    LENUS (Irish Health Repository)

    Dwyer, Jeremy P

    2011-11-01

    Hereditary haemochromatosis is a common genetic disease associated with progressive iron overload and parenchymal organ damage including liver, pancreas and heart. We report a case of inadvertent transplantation of a liver from a haemochromatosis donor to a 56-year-old Asian female. Progressive iron overload occurred over a 2 year follow up as assessed by liver biopsy and iron studies in the absence of a secondary cause of iron overload, supporting a primary role of liver rather than small intestine in the regulation of iron homeostasis in hereditary haemochromatosis.

  20. Modelling cellular behaviour

    Science.gov (United States)

    Endy, Drew; Brent, Roger

    2001-01-01

    Representations of cellular processes that can be used to compute their future behaviour would be of general scientific and practical value. But past attempts to construct such representations have been disappointing. This is now changing. Increases in biological understanding combined with advances in computational methods and in computer power make it possible to foresee construction of useful and predictive simulations of cellular processes.

  1. Foam injection molding of elastomers with iron microparticles

    Science.gov (United States)

    Volpe, Valentina; D'Auria, Marco; Sorrentino, Luigi; Davino, Daniele; Pantani, Roberto

    2015-12-01

    In this work, a preliminary study of foam injection molding of a thermoplastic elastomer, Engage 8445, and its microcomposite loaded with iron particles was carried out, in order to evaluate the effect of the iron microparticles on the foaming process. In particular, reinforced samples have been prepared by using nanoparticles at 2% by volume. Nitrogen has been used as physical blowing agent. Foamed specimens consisting of neat and filled elastomer were characterized by density measurements and morphological analysis. While neat Engage has shown a well developed cellular morphology far from the injection point, the addition of iron microparticles considerably increased the homogeneity of the cellular morphology. Engage/iron foamed samples exhibited a reduction in density greater than 32%, with a good and homogeneous cellular morphology, both in the transition and in the core zones, starting from small distances from the injection point.

  2. Oxidative stress-induced proteome alterations target different cellular pathways in human myoblasts

    DEFF Research Database (Denmark)

    Baraibar, Martin A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina;

    2011-01-01

    Although increased oxidative stress has been associated with the impairment of proliferation and function of adult human muscle stem cells, proteins either involved in the stress response or damaged by oxidation have not been identified. A parallel proteomics approach was performed for analyzing...... are mainly cytosolic and involved in carbohydrate metabolism, cellular assembly, cellular homeostasis, and protein synthesis and degradation. Pathway analysis revealed skeletal and muscular disorders, cell death, and cancer-related as the main molecular networks altered. Interestingly, these pathways...

  3. A mouse model of harlequin ichthyosis delineates a key role for Abca12 in lipid homeostasis.

    Directory of Open Access Journals (Sweden)

    Ian Smyth

    Full Text Available Harlequin Ichthyosis (HI is a severe and often lethal hyperkeratotic skin disease caused by mutations in the ABCA12 transport protein. In keratinocytes, ABCA12 is thought to regulate the transfer of lipids into small intracellular trafficking vesicles known as lamellar bodies. However, the nature and scope of this regulation remains unclear. As part of an original recessive mouse ENU mutagenesis screen, we have identified and characterised an animal model of HI and showed that it displays many of the hallmarks of the disease including hyperkeratosis, loss of barrier function, and defects in lipid homeostasis. We have used this model to follow disease progression in utero and present evidence that loss of Abca12 function leads to premature differentiation of basal keratinocytes. A comprehensive analysis of lipid levels in mutant epidermis demonstrated profound defects in lipid homeostasis, illustrating for the first time the extent to which Abca12 plays a pivotal role in maintaining lipid balance in the skin. To further investigate the scope of Abca12's activity, we have utilised cells from the mutant mouse to ascribe direct transport functions to the protein and, in doing so, we demonstrate activities independent of its role in lamellar body function. These cells have severely impaired lipid efflux leading to intracellular accumulation of neutral lipids. Furthermore, we identify Abca12 as a mediator of Abca1-regulated cellular cholesterol efflux, a finding that may have significant implications for other diseases of lipid metabolism and homeostasis, including atherosclerosis.

  4. Iron chelation and multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Kelsey J. Weigel

    2014-01-01

    Full Text Available Histochemical and MRI studies have demonstrated that MS (multiple sclerosis patients have abnormal deposition of iron in both gray and white matter structures. Data is emerging indicating that this iron could partake in pathogenesis by various mechanisms, e.g., promoting the production of reactive oxygen species and enhancing the production of proinflammatory cytokines. Iron chelation therapy could be a viable strategy to block iron-related pathological events or it can confer cellular protection by stabilizing hypoxia inducible factor 1α, a transcription factor that normally responds to hypoxic conditions. Iron chelation has been shown to protect against disease progression and/or limit iron accumulation in some neurological disorders or their experimental models. Data from studies that administered a chelator to animals with experimental autoimmune encephalomyelitis, a model of MS, support the rationale for examining this treatment approach in MS. Preliminary clinical studies have been performed in MS patients using deferoxamine. Although some side effects were observed, the large majority of patients were able to tolerate the arduous administration regimen, i.e., 6–8 h of subcutaneous infusion, and all side effects resolved upon discontinuation of treatment. Importantly, these preliminary studies did not identify a disqualifying event for this experimental approach. More recently developed chelators, deferasirox and deferiprone, are more desirable for possible use in MS given their oral administration, and importantly, deferiprone can cross the blood–brain barrier. However, experiences from other conditions indicate that the potential for adverse events during chelation therapy necessitates close patient monitoring and a carefully considered administration regimen.

  5. Iron Sucrose Injection

    Science.gov (United States)

    ... is in a class of medications called iron replacement products. It works by replenishing iron stores so ... ferumoxytol (Feraheme), iron dextran (Dexferrum, Infed, Proferdex), or sodium ferric gluconate (Ferrlecit); any other medications; or any ...

  6. Iron Dextran Injection

    Science.gov (United States)

    ... is in a class of medications called iron replacement products. It works by replenishing iron stores so ... carboxymaltose (Injectafer), ferumoxytol (Feraheme), iron sucrose (Venofer), or sodium ferric gluconate (Ferrlecit);any other medications; or any ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... refers to a condition in which your blood has a lower than normal number of red blood ... iron, your body starts using the iron it has stored. Soon, the stored iron gets used up. ...

  8. Taking iron supplements

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007478.htm Taking iron supplements To use the sharing features on this page, ... levels. You may also need to take iron supplements as well to rebuild iron stores in your ...

  9. Iron deficiency anemia

    Science.gov (United States)

    ... Iron-rich foods include: Chicken and turkey Dried lentils, peas, and beans Fish Meats (liver is the ... and egg yolks are high sources of iron. Flour, bread, and some cereals are fortified with iron. ...

  10. The placenta: the forgotten essential organ of iron transport.

    Science.gov (United States)

    Cao, Chang; Fleming, Mark D

    2016-07-01

    Optimal iron nutrition in utero is essential for development of the fetus and helps establish birth iron stores adequate to sustain growth in early infancy. In species with hemochorial placentas, such as humans and rodents, iron in the maternal circulation is transferred to the fetus by directly contacting placental syncytiotrophoblasts. Early kinetic studies provided valuable data on the initial uptake of maternal transferrin, an iron-binding protein, by the placenta. However, the remaining steps of iron trafficking across syncytiotrophoblasts and through the fetal endothelium into the fetal blood remain poorly characterized. Over the last 20 years, identification of transmembrane iron transporters and the iron regulatory hormone hepcidin has greatly expanded the knowledge of cellular iron transport and its regulation by systemic iron status. In addition, emerging human and animal data demonstrating comprised fetal iron stores in severe maternal iron deficiency challenge the classic dogma of exclusive fetal control over the transfer process and indicate that maternal and local signals may play a role in regulating this process. This review compiles current data on the kinetic, molecular, and regulatory aspects of placental iron transport and considers new questions and knowledge gaps raised by these advances. PMID:27261274

  11. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  12. HFE gene variants, iron, and lipids: a novel connection in Alzheimer’s disease

    OpenAIRE

    FatimaAli-Rahmani

    2014-01-01

    Iron accumulation and associated oxidative stress in the brain have been consistently found in several neurodegenerative diseases. Multiple genetic studies have been undertaken to try to identify a cause of neurodegenerative diseases but direct connections have been rare. In the iron field, variants in the HFE gene that give rise to a protein involved in cellular iron regulation, are associated with iron accumulation in multiple organs including the brain. There is also substantial epide...

  13. HFE gene variants, iron, and lipids: a novel connection in Alzheimer’s disease

    OpenAIRE

    Ali-Rahmani, Fatima; Schengrund, Cara-Lynne; Connor, James R.

    2014-01-01

    Iron accumulation and associated oxidative stress in the brain have been consistently found in several neurodegenerative diseases. Multiple genetic studies have been undertaken to try to identify a cause of neurodegenerative diseases but direct connections have been rare. In the iron field, variants in the HFE gene that give rise to a protein involved in cellular iron regulation, are associated with iron accumulation in multiple organs including the brain. There is also substantial epidemiolo...

  14. PACAP in the Defense of Energy Homeostasis.

    Science.gov (United States)

    Rudecki, Alexander P; Gray, Sarah L

    2016-09-01

    The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) mediates diverse physiology from neuroprotection to thermoregulation. PACAP is well established as a master regulator of the stress response, regulating psychological and physiological equilibrium via the autonomic nervous system. Neuroanatomical and functional evidence support a role for PACAP in energy metabolism, including thermogenesis, activity, mobilization of energy stores, and appetite. Through integration of this evidence we suggest PACAP be included in the growing list of neuropeptides that mediate energy homeostasis. Future work to uncover the intricacies of PACAP expression and the molecular pathways responsible for PACAP signaling may show potential for this neuropeptide as a therapeutic target as well as further elucidate the complex neuroanatomical networks involved in defending energy balance. PMID:27166671

  15. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  16. Cellular Reflectarray Antenna

    Science.gov (United States)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  17. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T.J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...... to that continuing on Earth – although on much smaller length- and timescales – with melting of the metal and silicates; differentiation into core, mantle, and crust; and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep...

  18. Quorum sensing in CD4+ T cell homeostasis: a hypothesis and a model.

    Directory of Open Access Journals (Sweden)

    Afonso R.M. Almeida

    2012-05-01

    Full Text Available Homeostasis of lymphocyte numbers is believed to be due to competition between cellular populations for a common niche of restricted size, defined by the combination of interactions and trophic factors required for cell survival. Here we propose a new mechanism: homeostasis of lymphocyte numbers could also be achieved by the ability of lymphocytes to perceive the density of their own populations. Such a mechanism would be reminiscent of the primordial quorum sensing systems used by bacteria, in which some bacteria sense the accumulation of bacterial metabolites secreted by other elements of the population, allowing them to count the number of cells present and adapt their growth accordingly. We propose that homeostasis of CD4+ T cell numbers may occur via a quorum-sensing-like mechanism, where IL-2 is produced by activated CD4+ T cells and sensed by a population of CD4+ Treg cells that expresses the high-affinity IL-2Rα-chain and can regulate the number of activated IL-2-producing CD4+ T cells and the total CD4+T cell population. In other words, CD4+ T cell populations can restrain their growth by monitoring the number of activated cells, thus preventing uncontrolled lymphocyte proliferation during immune responses. We hypothesize that malfunction of this quorum-sensing mechanism may lead to uncontrolled T cell activation and autoimmunity. Finally, we present a mathematical model that describes the role of IL-2 and quorum-sensing mechanisms in CD4+ T cell homeostasis during an immune response.

  19. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach

    2011-01-01

    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... contours are sketched of iron production based on bog iron ore from Zealand....

  20. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis

    Directory of Open Access Journals (Sweden)

    Ya Hui Hung

    2013-08-01

    Full Text Available Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer’s, Parkinson’s and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-Type ATPases (copper-ATPases, ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.

  1. Cellular oncogenes in neoplasia.

    OpenAIRE

    Chan, V T; McGee, J O

    1987-01-01

    In recent years cellular homologues of many viral oncogenes have been identified. As these genes are partially homologous to viral oncogenes and are activated in some tumour cell lines they are termed "proto-oncogenes". In tumour cell lines proto-oncogenes are activated by either quantitative or qualitative changes in gene structure: activation of these genes was originally thought to be a necessary primary event in carcinogenesis, but activated cellular oncogenes, unlike viral oncogenes, do ...

  2. Cellular Cardiomyoplasty: Clinical Application

    OpenAIRE

    Chachques, J. (J.); Acar, C; J. Herreros; Trainini, J. (Jorge); Prosper, F.; D’Attellis, N. (N.); Fabiani, J. N.; Carpentier, A

    2004-01-01

    Myocardial regeneration can be induced with the implantation of a variety of myogenic and angiogenic cell types. More than 150 patients have been treated with cellular cardiomyoplasty worldwide, 18 patients have been treated by our group. Cellular cardiomyoplasty seems to reduce the size and fibrosis of infarct scars, limit postischemic remodelling, and restore regional myocardial contractility. Techniques for skeletal myoblasts culture and ex vivo expansion using auto...

  3. Respiratory Effects of Inhaled Single-Walled Carbon Nanotubes: The Role of Particle Morphology and Iron Content

    Science.gov (United States)

    Madl, Amy Kathleen

    Nanotechnology provides promise for significant advancements in a number of different fields including imaging, electronics, and therapeutics. With worldwide production of carbon nanotubes (CNTs) exceeding over 500 metric tons annually and industry growth expecting to double over the next 5 yr, there are concerns our understanding of the hazards of these nanomaterials may not be keeping pace with market demand. The physicochemical properties of CNTs may delineate the key features that determine either toxicity or biocompatibility and assist in evaluating the potential health risks posed in industrial and consumer product settings. We hypothesized that the iron content and morphology of inhaled single-walled carbon nanotubes (SWCNTs) influences the extent of cellular injury and alters homeostasis in the lung. To address this hypothesis, (1) an aerosol system was developed to deliver carbon-based nanomaterials in a manner of exposure that is physiologically and environmentally relevant (e.g., inhalation), (2) acute (1 d) and subacute (10 d) nose-only inhalation studies to a well-characterized aerosol of iron-containing (FeSWCNT) versus cleaned (iron removed, cSWCNTs) SWCNTs were conducted to evaluate the time-course patterns of possible injury through measurement of markers of cytotoxicity, inflammation, and cellular remodeling/homeostasis, and (3) the effects of SWCNTs were compared to other well-studied materials (e.g. non-fibrous, low-iron content ultrafine carbon black and fibrous, high-iron content, highly persistent, durable and potent carcinogen crocidolite) to offer insights into the relative toxicity of these nanomaterials as well as the possible mechanisms by which the effects occur. Rats (SD) were exposed to either aerosolized SWCNTs (raw FeSWCNT or purified cSWCNT), carbon black (CB), crocidolite, or fresh air via nose-only inhalation. Markers of inflammation and cytotoxicity in lung lavage, mucin in different airway generations, and collagen in the

  4. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

    2012-01-01

    (DMT1) is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1, and ferroportin......Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is...... strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead...

  5. A conceptual framework for homeostasis: development and validation.

    Science.gov (United States)

    McFarland, Jenny; Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-06-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. PMID:27105740

  6. Special thermite cast irons

    OpenAIRE

    Yu. Zhiguts; I. Kurytnik

    2008-01-01

    The given paper deals with the problems of the synthesis of cast iron by metallothermy synthesis. On the basis of investigated method of calculations structures of charges have been arranged and cast iron has been synthesized further. Peculiarities metallothermic smelting were found, mechanical properties and structure of received cast iron were investigated and different technologies for cast iron receiving were worked out.

  7. Iron deficiency anemia

    Science.gov (United States)

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  8. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  9. High-Iron Consumption Impairs Growth and Causes Copper-Deficiency Anemia in Weanling Sprague-Dawley Rats.

    Science.gov (United States)

    Ha, Jung-Heun; Doguer, Caglar; Wang, Xiaoyu; Flores, Shireen R; Collins, James F

    2016-01-01

    Iron-copper interactions were described decades ago; however, molecular mechanisms linking the two essential minerals remain largely undefined. Investigations in humans and other mammals noted that copper levels increase in the intestinal mucosa, liver and blood during iron deficiency, tissues all important for iron homeostasis. The current study was undertaken to test the hypothesis that dietary copper influences iron homeostasis during iron deficiency and iron overload. We thus fed weanling, male Sprague-Dawley rats (n = 6-11/group) AIN-93G-based diets containing high (~8800 ppm), adequate (~80) or low (~11) iron in combination with high (~183), adequate (~8) or low (~0.9) copper for 5 weeks. Subsequently, the iron- and copper-related phenotype of the rats was assessed. Rats fed the low-iron diets grew slower than controls, with changes in dietary copper not further influencing growth. Unexpectedly, however, high-iron (HFe) feeding also impaired growth. Furthermore, consumption of the HFe diet caused cardiac hypertrophy, anemia, low serum and tissue copper levels and decreased circulating ceruloplasmin activity. Intriguingly, these physiologic perturbations were prevented by adding extra copper to the HFe diet. Furthermore, higher copper levels in the HFe diet increased serum nonheme iron concentration and transferrin saturation, exacerbated hepatic nonheme iron loading and attenuated splenic nonheme iron accumulation. Moreover, serum erythropoietin levels, and splenic erythroferrone and hepatic hepcidin mRNA levels were altered by the dietary treatments in unanticipated ways, providing insight into how iron and copper influence expression of these hormones. We conclude that high-iron feeding of weanling rats causes systemic copper deficiency, and further, that copper influences the iron-overload phenotype. PMID:27537180

  10. Canine Models for Copper Homeostasis Disorders

    OpenAIRE

    Xiaoyan Wu; Leegwater, Peter A. J.; Hille Fieten

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper me...

  11. Urinary iron excretion test in iron deficiency anemia.

    OpenAIRE

    Kimura,Ikuro; Yamana,Masatoshi; NNishishita,Akira; Sugiyama,Motoharu; Miyata, Akira

    1980-01-01

    A urinary iron excretion test was carried out in 22 patients with iron deficiency anemia. The iron excretion index was significantly higher in patients with intractable iron deficiency anemia compared with normal subjects and anemic patients who were responsive to iron therapy. The findings suggest that iron excretion may be a factor that modulates the response of patients to iron therapy.

  12. Abdominal Fat and Sarcopenia in Women Significantly Alter Osteoblasts Homeostasis In Vitro by a WNT/β-Catenin Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Francesca Wannenes

    2014-01-01

    Full Text Available Obesity and sarcopenia have been associated with mineral metabolism derangement and low bone mineral density (BMD. We investigated whether imbalance of serum factors in obese or obese sarcopenic patients could affect bone cell activity in vitro. To evaluate and characterize potential cellular and molecular changes of human osteoblasts, cells were exposed to sera of four groups of patients: (1 affected by obesity with normal BMD (O, (2 affected by obesity with low BMD (OO, (3 affected by obesity and sarcopenia (OS, and (4 affected by obesity, sarcopenia, and low BMD (OOS as compared to subjects with normal body weight and normal BMD (CTL. Patients were previously investigated and characterized for body composition, biochemical and bone turnover markers. Then, sera of different groups of patients were used to incubate human osteoblasts and evaluate potential alterations in cell homeostasis. Exposure to OO, OS, and OOS sera significantly reduced alkaline phosphatase, osteopontin, and BMP4 expression compared to cells exposed to O and CTL, indicating a detrimental effect on osteoblast differentiation. Interestingly, sera of all groups of patients induced intracellular alteration in Wnt/β-catenin molecular pathway, as demonstrated by the significant alteration of specific target genes expression and by altered β-catenin cellular compartmentalization and GSK3β phosphorylation. In conclusion our results show for the first time that sera of obese subjects with low bone mineral density and sarcopenia significantly alter osteoblasts homeostasis in vitro, indicating potential detrimental effects of trunk fat on bone formation and skeletal homeostasis.

  13. Iron metabolism and iron supplementation in cancer patients

    OpenAIRE

    Ludwig, Heinz; Evstatiev, Rayko; Kornek, Gabriela; Aapro, Matti; Bauernhofer, Thomas; Buxhofer-Ausch, Veronika; Fridrik, Michael; Geissler, Dietmar; Geissler, Klaus; Gisslinger, Heinz; Koller, Elisabeth; Kopetzky, Gerhard; Lang, Alois; Rumpold, Holger; Steurer, Michael

    2015-01-01

    Summary Iron deficiency and iron deficiency-associated anemia are common complications in cancer patients. Most iron deficient cancer patients present with functional iron deficiency (FID), a status with adequate storage iron, but insufficient iron supply for erythroblasts and other iron dependent tissues. FID is the consequence of the cancer-associated cytokine release, while in absolute iron deficiency iron stores are depleted resulting in similar but often more severe symptoms of insuffici...

  14. Methylmercury alters glutathione homeostasis by inhibiting glutaredoxin 1 and enhancing glutathione biosynthesis in cultured human astrocytoma cells.

    Science.gov (United States)

    Robitaille, Stephan; Mailloux, Ryan J; Chan, Hing Man

    2016-08-10

    Methylmercury (MeHg) is a neurotoxin that binds strongly to thiol residues on protein and low molecular weight molecules like reduced glutathione (GSH). The mechanism of its effects on GSH homeostasis particularly at environmentally relevant low doses is not fully known. We hypothesized that exposure to MeHg would lead to a depletion of reduced glutathione (GSH) and an accumulation of glutathione disulfide (GSSG) leading to alterations in S-glutathionylation of proteins. Our results showed exposure to low concentrations of MeHg (1μM) did not significantly alter GSH levels but increased GSSG levels by ∼12-fold. This effect was associated with a significant increase in total cellular glutathione content and a decrease in GSH/GSSG. Immunoblot analyses revealed that proteins involved in glutathione synthesis were upregulated accounting for the increase in cellular glutathione. This was associated an increase in cellular Nrf2 protein levels which is required to induce the expression of antioxidant genes in response to cellular stress. Intriguingly, we noted that a key enzyme involved in reversing protein S-glutathionylation and maintaining glutathione homeostasis, glutaredoxin-1 (Grx1), was inhibited by ∼50%. MeHg treatment also increased the S-glutathionylation of a high molecular weight protein. This observation is consistent with the inhibition of Grx1 and elevated H2O2 production however; contrary to our original hypothesis we found few S-glutathionylated proteins in the astrocytoma cells. Collectively, MeHg affects multiple arms of glutathione homeostasis ranging from pool management to protein S-glutathionylation and Grx1 activity. PMID:27180086

  15. Novel MntR-Independent Mechanism of Manganese Homeostasis in Escherichia coli by the Ribosome-Associated Protein HflX

    OpenAIRE

    Kaur, Gursharan; Sengupta, Sandeepan; Kumar, Vineet; Kumari, Aruna; Ghosh, Aditi; Parrack, Pradeep; Dutta, Dipak

    2014-01-01

    Manganese is a micronutrient required for activities of several important enzymes under conditions of oxidative stress and iron starvation. In Escherichia coli, the manganese homeostasis network primarily constitutes a manganese importer (MntH) and an exporter (MntP), which are regulated by the MntR dual regulator. In this study, we find that deletion of E. coli hflX, which encodes a ribosome-associated GTPase with unknown function, renders extreme manganese sensitivity characterized by ar...

  16. Breast milk, microbiota, and intestinal immune homeostasis.

    Science.gov (United States)

    Walker, W Allan; Iyengar, Rajashri Shuba

    2015-01-01

    Newborns adjust to the extrauterine environment by developing intestinal immune homeostasis. Appropriate initial bacterial colonization is necessary for adequate intestinal immune development. An environmental determinant of adequate colonization is breast milk. Although the full-term infant is developmentally capable of mounting an immune response, the effector immune component requires bacterial stimulation. Breast milk stimulates the proliferation of a well-balanced and diverse microbiota, which initially influences a switch from an intrauterine TH2 predominant to a TH1/TH2 balanced response and with activation of T-regulatory cells by breast milk-stimulated specific organisms (Bifidobacteria, Lactobacillus, and Bacteroides). As an example of its effect, oligosaccharides in breast milk are fermented by colonic bacteria producing an acid milieu for bacterial proliferation. In addition, short-chain fatty acids in breast milk activate receptors on T-reg cells and bacterial genes, which preferentially mediate intestinal tight junction expression and anti-inflammation. Other components of breast milk (defensins, lactoferrin, etc.) inhibit pathogens and further contribute to microbiota composition. The breast milk influence on initial intestinal microbiota also prevents expression of immune-mediated diseases (asthma, inflammatory bowel disease, type 1 diabetes) later in life through a balanced initial immune response, underscoring the necessity of breastfeeding as the first source of nutrition. PMID:25310762

  17. DYSREGULATION OF ION HOMEOSTASIS BY ANTIFUNGAL AGENTS

    Directory of Open Access Journals (Sweden)

    RajiniRao

    2012-04-01

    Full Text Available Ion signaling and transduction networks are central to fungal development and virulence because they regulate gene expression, filamentation, host association and invasion, pathogen stress response and survival. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis by which a growing number of amphipathic but structurally unrelated compounds elicit antifungal activity. Included in this group is carvacrol, a terpenoid phenol that is a prominent component of oregano and other plant essential oils. Carvacrol triggers an early dose dependent Ca2+ burst and long lasting pH changes in the model yeast S. cerevisiae. The distinct phases of ionic transients and a robust transcriptional response that overlaps with Ca2+ stress and nutrient starvation point to specific signaling events elicited by plant terpenoid phenols, rather than a non-specific lesion of the membrane as was previously considered. We discuss the potential use of plant essential oils and other agents that disrupt ion signaling pathways as chemosensitizers to augment conventional antifungal therapy, and to convert fungistatic drugs with strong safety profiles into fungicides.

  18. Proteomics of old world camelid (Camelus dromedarius: Better understanding the interplay between homeostasis and desert environment

    Directory of Open Access Journals (Sweden)

    Mohamad Warda

    2014-03-01

    Full Text Available Life is the interplay between structural–functional integrity of biological systems and the influence of the external environment. To understand this interplay, it is useful to examine an animal model that competes with harsh environment. The dromedary camel is the best model that thrives under severe environment with considerable durability. The current proteomic study on dromedary organs explains a number of cellular mysteries providing functional correlates to arid living. Proteome profiling of camel organs suggests a marked increased expression of various cytoskeleton proteins that promote intracellular trafficking and communication. The comparative overexpression of α-actinin of dromedary heart when compared with rat heart suggests an adaptive peculiarity to sustain hemoconcentration–hemodilution episodes associated with alternative drought-rehydration periods. Moreover, increased expression of the small heat shock protein, α B-crystallin facilitates protein folding and cellular regenerative capacity in dromedary heart. The observed unbalanced expression of different energy related dependent mitochondrial enzymes suggests the possibility of mitochondrial uncoupling in the heart in this species. The evidence of increased expression of H+-ATPase subunit in camel brain guarantees a rapidly usable energy supply. Interestingly, the guanidinoacetate methyltransferase in camel liver has a renovation effect on high energy phosphate with possible concomitant intercession of ion homeostasis. Surprisingly, both hump fat tissue and kidney proteomes share the altered physical distribution of proteins that favor cellular acidosis. Furthermore, the study suggests a vibrant nature for adipose tissue of camel hump by the up-regulation of vimentin in adipocytes, augmenting lipoprotein translocation, blood glucose trapping, and challenging external physical extra-stress. The results obtained provide new evidence of homeostasis in the arid habitat

  19. Deregulation of proteins involved in iron metabolism in hepcidin-deficient mice.

    Science.gov (United States)

    Viatte, Lydie; Lesbordes-Brion, Jeanne-Claire; Lou, Dan-Qing; Bennoun, Myriam; Nicolas, Gaël; Kahn, Axel; Canonne-Hergaux, François; Vaulont, Sophie

    2005-06-15

    Evidence is accumulating that hepcidin, a liver regulatory peptide, could be the common pathogenetic denominator of all forms of iron overload syndromes including HFE-related hemochromatosis, the most prevalent genetic disorder characterized by inappropriate iron absorption. To understand the mechanisms whereby hepcidin controls iron homeostasis in vivo, we have analyzed the level of iron-related proteins by Western blot and immunohistochemistry in hepcidin-deficient mice, a mouse model of severe hemochromatosis. These mice showed important increased levels of duodenal cytochrome b (Dcytb), divalent metal transporter 1 (DMT1), and ferroportin compared with control mice. Interestingly, the level of ferroportin was coordinately up-regulated in the duodenum, the spleen, and the liver (predominantly in the Kupffer cells). Finally, we also evidenced a decrease of ceruloplasmin in the liver of hepcidin-deficient mice. We hypothesized that the deregulation of these proteins might be central in the pathogenesis of iron overload, providing key therapeutic targets for iron disorders. PMID:15713792

  20. Irregular Cellular Learning Automata.

    Science.gov (United States)

    Esnaashari, Mehdi; Meybodi, Mohammad Reza

    2015-08-01

    Cellular learning automaton (CLA) is a recently introduced model that combines cellular automaton (CA) and learning automaton (LA). The basic idea of CLA is to use LA to adjust the state transition probability of stochastic CA. This model has been used to solve problems in areas such as channel assignment in cellular networks, call admission control, image processing, and very large scale integration placement. In this paper, an extension of CLA called irregular CLA (ICLA) is introduced. This extension is obtained by removing the structure regularity assumption in CLA. Irregularity in the structure of ICLA is needed in some applications, such as computer networks, web mining, and grid computing. The concept of expediency has been introduced for ICLA and then, conditions under which an ICLA becomes expedient are analytically found. PMID:25291810

  1. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  2. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation.

    Science.gov (United States)

    Nicolas, Gaël; Chauvet, Caroline; Viatte, Lydie; Danan, Jean Louis; Bigard, Xavier; Devaux, Isabelle; Beaumont, Carole; Kahn, Axel; Vaulont, Sophie

    2002-10-01

    The present study was aimed at determining whether hepcidin, a recently identified peptide involved in iron metabolism, plays a role in conditions associated with both iron overload and iron deficiency. Hepcidin mRNA levels were assessed in two models of anemia, acute hemolysis provoked by phenylhydrazine and bleeding provoked by repeated phlebotomies. Hepcidin response to hypoxia was also studied, both ex vivo, in human hepatoma cells, and in vivo. Anemia and hypoxia were associated with a dramatic decrease in liver hepcidin gene expression, which may account for the increase in iron release from reticuloendothelial cells and increase in iron absorption frequently observed in these situations. A single injection of turpentine for 16 hours induced a sixfold increase in liver hepcidin mRNA levels and a twofold decrease in serum iron. The hyposideremic effect of turpentine was completely blunted in hepcidin-deficient mice, revealing hepcidin participation in anemia of inflammatory states. These modifications of hepcidin gene expression further suggest a key role for hepcidin in iron homeostasis under various pathophysiological conditions, which may support the pharmaceutical use of hepcidin agonists and antagonists in various iron homeostasis disorders. PMID:12370282

  3. Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores.

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W G; Rigault, Martine; Riache, Nassima; Joseph, Delphine; Desmaële, Didier; Mouille, Grégory; Boutet, Stéphanie; Soubigou-Taconnat, Ludivine; Renou, Jean-Pierre; Thomine, Sébastien; Expert, Dominique; Dellagi, Alia

    2014-04-01

    Siderophores are specific ferric iron chelators synthesized by virtually all microorganisms in response to iron deficiency. We have previously shown that they promote infection by the phytopathogenic enterobacteria Dickeya dadantii and Erwinia amylovora. Siderophores also have the ability to activate plant immunity. We have used complete Arabidopsis transcriptome microarrays to investigate the global transcriptional modifications in roots and leaves of Arabidopsis (Arabidopsis thaliana) plants after leaf treatment with the siderophore deferrioxamine (DFO). Physiological relevance of these transcriptional modifications was validated experimentally. Immunity and heavy-metal homeostasis were the major processes affected by DFO. These two physiological responses could be activated by a synthetic iron chelator ethylenediamine-di(o-hydroxyphenylacetic) acid, indicating that siderophores eliciting activities rely on their strong iron-chelating capacity. DFO was able to protect Arabidopsis against the pathogenic bacterium Pseudomonas syringae pv tomato DC3000. Siderophore treatment caused local modifications of iron distribution in leaf cells visible by ferrocyanide and diaminobenzidine-H₂O₂ staining. Metal quantifications showed that DFO causes a transient iron and zinc uptake at the root level, which is presumably mediated by the metal transporter iron regulated transporter1 (IRT1). Defense gene expression and callose deposition in response to DFO were compromised in an irt1 mutant. Consistently, plant susceptibility to D. dadantii was increased in the irt1 mutant. Our work shows that iron scavenging is a unique mechanism of immunity activation in plants. It highlights the strong relationship between heavy-metal homeostasis and immunity. PMID:24501001

  4. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo.

    Science.gov (United States)

    Moroishi, Toshiro; Nishiyama, Masaaki; Takeda, Yukiko; Iwai, Kazuhiro; Nakayama, Keiichi I

    2011-09-01

    Iron-dependent degradation of iron-regulatory protein 2 (IRP2) is a key event for maintenance of an appropriate intracellular concentration of iron. Although FBXL5 (F box and leucine-rich repeat protein 5) is thought to mediate this degradation, the role of FBXL5 in the control of iron homeostasis in vivo has been poorly understood. We have now found that mice deficient in FBXL5 died in utero, associated with excessive iron accumulation. This embryonic mortality was prevented by additional ablation of IRP2, suggesting that impaired IRP2 degradation is primarily responsible for the death of Fbxl5(-)(/-) mice. We also found that liver-specific deletion of Fbxl5 resulted in deregulation of both hepatic and systemic iron homeostasis, leading to the development of steatohepatitis. The liver-specific mutant mice died with acute liver failure when fed a high-iron diet. Thus, our results uncover a major role for FBXL5 in ensuring an appropriate supply of iron to cells. PMID:21907140

  5. Investigating the role of two iron-regulated small RNAs of Pseudomonas syringae

    Science.gov (United States)

    Small RNAs (sRNAs) have emerged as important components of many regulatory pathways and have been shown to have key roles in the regulation of iron homeostasis in a number of bacteria. To date, only a few sRNAs have been described for the bacterial plant pathogen Pseudomonas syringae pathovar tomat...

  6. Molecular responses of ceruloplasmin to Edwardsiella ictaluri infection and iron overload in channel catfish (Ictalurus punctatus)

    Science.gov (United States)

    Ceruloplasmin is a serum ferroxidase that carries more than 90% of the copper in plasma and has documented roles in iron homeostasis as well as antioxidative functions. In our previous studies, it has been shown that the ceruloplasmin gene is strongly up-regulated in catfish during challenge with Ed...

  7. Wireless Cellular Mobile Communications

    Directory of Open Access Journals (Sweden)

    V. Zalud

    2002-12-01

    Full Text Available In this article is briefly reviewed the history of wireless cellularmobile communications, examined the progress in current secondgeneration (2G cellular standards and discussed their migration to thethird generation (3G. The European 2G cellular standard GSM and itsevolution phases GPRS and EDGE are described somewhat in detail. Thethird generation standard UMTS taking up on GSM/GPRS core network andequipped with a new advanced access network on the basis of codedivision multiple access (CDMA is investigated too. A sketch of theperspective of mobile communication beyond 3G concludes this article.

  8. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: Implications for regulation and cellular function

    OpenAIRE

    Hubert, Nadia; Hentze, Matthias W.

    2002-01-01

    Divalent metal transporter 1 (DMT1) mediates apical iron uptake into duodenal enterocytes and also transfers iron from the endosome into the cytosol after cellular uptake via the transferrin receptor. Hence, mutations in DMT1 cause systemic iron deficiency and anemia. DMT1 mRNA levels are increased in the duodenum of iron-deficient animals. This regulation has been observed for DMT1 mRNA harboring an iron–responsive element (IRE) in its 3′ UTR, but not for a processing variant lacking a 3′UTR...

  9. Iron Metabolism Regulates p53 Signaling through Direct Heme-p53 Interaction and Modulation of p53 Localization, Stability, and Function

    Directory of Open Access Journals (Sweden)

    Jia Shen

    2014-04-01

    Full Text Available Iron excess is closely associated with tumorigenesis in multiple types of human cancers, with underlying mechanisms yet unclear. Recently, iron deprivation has emerged as a major strategy for chemotherapy, but it exerts tumor suppression only on select human malignancies. Here, we report that the tumor suppressor protein p53 is downregulated during iron excess. Strikingly, the iron polyporphyrin heme binds to p53 protein, interferes with p53-DNA interactions, and triggers both nuclear export and cytosolic degradation of p53. Moreover, in a tumorigenicity assay, iron deprivation suppressed wild-type p53-dependent tumor growth, suggesting that upregulation of wild-type p53 signaling underlies the selective efficacy of iron deprivation. Our findings thus identify a direct link between iron/heme homeostasis and the regulation of p53 signaling, which not only provides mechanistic insights into iron-excess-associated tumorigenesis but may also help predict and improve outcomes in iron-deprivation-based chemotherapy.

  10. Translating partitioned cellular automata into classical type cellular automata

    OpenAIRE

    Poupet, Victor

    2008-01-01

    Partitioned cellular automata are a variant of cellular automata that was defined in order to make it very simple to create complex automata having strong properties such as number conservation and reversibility (which are often difficult to obtain on cellular automata). In this article we show how a partitioned cellular automaton can be translated into a regular cellular automaton in such a way that these properties are conserved.

  11. Lipid landscapes and pipelines in membrane homeostasis.

    Science.gov (United States)

    Holthuis, Joost C M; Menon, Anant K

    2014-06-01

    The lipid composition of cellular organelles is tailored to suit their specialized tasks. A fundamental transition in the lipid landscape divides the secretory pathway in early and late membrane territories, allowing an adaptation from biogenic to barrier functions. Defending the contrasting features of these territories against erosion by vesicular traffic poses a major logistical problem. To this end, cells evolved a network of lipid composition sensors and pipelines along which lipids are moved by non-vesicular mechanisms. We review recent insights into the molecular basis of this regulatory network and consider examples in which malfunction of its components leads to system failure and disease. PMID:24899304

  12. Sphingolipid and Ceramide Homeostasis: Potential Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Simon A. Young

    2012-01-01

    Full Text Available Sphingolipids are ubiquitous in eukaryotic cells where they have been attributed a plethora of functions from the formation of structural domains to polarized cellular trafficking and signal transduction. Recent research has identified and characterised many of the key enzymes involved in sphingolipid metabolism and this has led to a heightened interest in the possibility of targeting these processes for therapies against cancers, Alzheimer's disease, and numerous important human pathogens. In this paper we outline the major pathways in eukaryotic sphingolipid metabolism and discuss these in relation to disease and therapy for both chronic and infectious conditions.

  13. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    interiors of Earth and other terrestrial planets. This chapter deals with our current knowledge of these meteorites. How did they form? What can they tell us about the early evolution of the solar system and its solid bodies? How closely do they resemble the materials from planetary interiors? What do and...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar......Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...

  14. Genetic Dominance & Cellular Processes

    Science.gov (United States)

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  15. Radioactivity of cellular concrete

    International Nuclear Information System (INIS)

    The natural radioactivity of cellular concrete is discussed. Some data on the concentrations of 40K, 226Ra and 232Th in building materials in Poland are given. The results of dose rates measurements in living quarters as well as outside are presented. (A.S.)

  16. The New Cellular Immunology

    Science.gov (United States)

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  17. Staphylococcus aureus redirects central metabolism to increase iron availability.

    Directory of Open Access Journals (Sweden)

    David B Friedman

    2006-08-01

    Full Text Available Staphylococcus aureus pathogenesis is significantly influenced by the iron status of the host. However, the regulatory impact of host iron sources on S. aureus gene expression remains unknown. In this study, we combine multivariable difference gel electrophoresis and mass spectrometry with multivariate statistical analyses to systematically cluster cellular protein response across distinct iron-exposure conditions. Quadruplicate samples were simultaneously analyzed for alterations in protein abundance and/or post-translational modification state in response to environmental (iron chelation, hemin treatment or genetic (Deltafur alterations in bacterial iron exposure. We identified 120 proteins representing several coordinated biochemical pathways that are affected by changes in iron-exposure status. Highlighted in these experiments is the identification of the heme-regulated transport system (HrtAB, a novel transport system which plays a critical role in staphylococcal heme metabolism. Further, we show that regulated overproduction of acidic end-products brought on by iron starvation decreases local pH resulting in the release of iron from the host iron-sequestering protein transferrin. These findings reveal novel strategies used by S. aureus to acquire scarce nutrients in the hostile host environment and begin to define the iron and heme-dependent regulons of S. aureus.

  18. Calcium homeostasis modulator (CALHM) ion channels.

    Science.gov (United States)

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin

    2016-03-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology. PMID:26603282

  19. Mechanical homeostasis regulating adipose tissue volume

    Directory of Open Access Journals (Sweden)

    Svedman Paul

    2007-09-01

    Full Text Available Abstract Background The total body adipose tissue volume is regulated by hormonal, nutritional, paracrine, neuronal and genetic control signals, as well as components of cell-cell or cell-matrix interactions. There are no known locally acting homeostatic mechanisms by which growing adipose tissue might adapt its volume. Presentation of the hypothesis Mechanosensitivity has been demonstrated by mesenchymal cells in tissue culture. Adipocyte differentiation has been shown to be inhibited by stretching in vitro, and a pathway for the response has been elucidated. In humans, intermittent stretching of skin for reconstructional purposes leads to thinning of adipose tissue and thickening of epidermis – findings matching those observed in vitro in response to mechanical stimuli. Furthermore, protracted suspension of one leg increases the intermuscular adipose tissue volume of the limb. These findings may indicate a local homeostatic adipose tissue volume-regulating mechanism based on movement-induced reduction of adipocyte differentiation. This function might, during evolution, have been of importance in confined spaces, where overgrowth of adipose tissue could lead to functional disturbance, as for instance in the turtle. In humans, adipose tissue near muscle might in particular be affected, for instance intermuscularly, extraperitoneally and epicardially. Mechanical homeostasis might also contribute to protracted maintainment of soft tissue shape in the face and neck region. Testing of the hypothesis Assessment of messenger RNA-expression of human adipocytes following activity in adjacent muscle is planned, and study of biochemical and volumetric adipose tissue changes in man are proposed. Implications of the hypothesis The interpretation of metabolic disturbances by means of adipose tissue might be influenced. Possible applications in the head and neck were discussed.

  20. Iron deficiency in Europe.

    Science.gov (United States)

    Hercberg, S; Preziosi, P; Galan, P

    2001-04-01

    In Europe, iron deficiency is considered to be one of the main nutritional deficiency disorders affecting large fractions of the population, particularly such physiological groups as children, menstruating women and pregnant women. Some factors such as type of contraception in women, blood donation or minor pathological blood loss (haemorrhoids, gynaecological bleeding...) considerably increase the difficulty of covering iron needs. Moreover, women, especially adolescents consuming low-energy diets, vegetarians and vegans are at high risk of iron deficiency. Although there is no evidence that an absence of iron stores has any adverse consequences, it does indicate that iron nutrition is borderline, since any further reduction in body iron is associated with a decrease in the level of functional compounds such as haemoglobin. The prevalence of iron-deficient anaemia has slightly decreased in infants and menstruating women. Some positive factors may have contributed to reducing the prevalence of iron-deficiency anaemia in some groups of population: the use of iron-fortified formulas and iron-fortified cereals; the use of oral contraceptives and increased enrichment of iron in several countries; and the use of iron supplements during pregnancy in some European countries. It is possible to prevent and control iron deficiency by counseling individuals and families about sound iron nutrition during infancy and beyond, and about iron supplementation during pregnancy, by screening persons on the basis of their risk for iron deficiency, and by treating and following up persons with presumptive iron deficiency. This may help to reduce manifestations of iron deficiency and thus improve public health. Evidence linking iron status with risk of cardiovascular disease or cancer is unconvincing and does not justify changes in food fortification or medical practice, particularly because the benefits of assuring adequate iron intake during growth and development are well established

  1. Unexpected link between iron and drug resistance of Candida spp.: iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptible cells.

    Science.gov (United States)

    Prasad, Tulika; Chandra, Aparna; Mukhopadhyay, Chinmay K; Prasad, Rajendra

    2006-11-01

    Inthis study, we show that iron depletion in Candida albicans with bathophenanthrolene disulfonic acid and ferrozine as chelators enhanced its sensitivity to several drugs, including the most common antifungal, fluconazole (FLC). Several other species of Candida also displayed increased sensitivity to FLC because of iron restriction. Iron uptake mutations, namely, Deltaftr1 and Deltaftr2, as well as the copper transporter mutation Deltaccc2, which affects high-affinity iron uptake in Candida, produced increased sensitivity to FLC compared to that of the wild type. The effect of iron depletion on drug sensitivity appeared to be independent of the efflux pump proteins Cdr1p and Cdr2p. We found that iron deprivation led to lowering of membrane ergosterol by 15 to 30%. Subsequently, fluorescence polarization measurements also revealed that iron-restricted Candida cells displayed a 29 to 40% increase in membrane fluidity, resulting in enhanced passive diffusion of the drugs. Northern blot assays revealed that the ERG11 gene was considerably down regulated in iron-deprived cells, which might account for the lowered ergosterol content. Our results show a close relationship between cellular iron and drug susceptibilities of C. albicans. Considering that multidrug resistance is a manifestation of multifactorial phenomena, the influence of cellular iron on the drug susceptibilities of Candida suggests iron as yet another novel determinant of multidrug resistance. PMID:16954314

  2. Hepcidin and Iron Metabolism in Pregnancy: Correlation with Smoking and Birth Weight and Length.

    Science.gov (United States)

    Chełchowska, Magdalena; Ambroszkiewicz, Jadwiga; Gajewska, Joanna; Jabłońska-Głąb, Ewa; Maciejewski, Tomasz M; Ołtarzewski, Mariusz

    2016-09-01

    To estimate the effect of tobacco smoking on iron homeostasis and the possible association between hepcidin and the neonatal birth weight and length, concentrations of serum hepcidin and selected iron markers were measured in 81 healthy pregnant women (41 smokers and 40 nonsmokers). The smoking mothers had significantly lower concentrations of serum hepcidin (p erythropoietin (p erythropoietin suggest that smoking could lead to subclinical iron deficiency and chronic hypoxia not only in mothers but also in fetus. Low serum hepcidin concentration in smoking pregnant women might be associated with lower fetal birth weight and length. PMID:26785641

  3. Iron, hormesis, and protection in acute kidney injury.

    Science.gov (United States)

    Swaminathan, Sundararaman

    2016-07-01

    Iron is critical for cellular, organismal, and possibly universal existence. Use of iron complexes to treat human diseases is ancient and is described in detail in Ayurveda/Siddha systems of medicine. Old aphorisms from Siddha medicine ("Alavukku Minjinal Amirdhamum Nanjagum," an elixir turns poisonous when taken in excess) and Paracelsus ("Die Dosis macht das Gift," the dose makes the poison) are of practical relevance in understanding the role of this ancient metal in acute kidney injury. PMID:27312440

  4. Interference of CuO nanoparticles with metal homeostasis in hepatocytes under sub-toxic conditions

    Science.gov (United States)

    Cuillel, Martine; Chevallet, Mireille; Charbonnier, Peggy; Fauquant, Caroline; Pignot-Paintrand, Isabelle; Arnaud, Josiane; Cassio, Doris; Michaud-Soret, Isabelle; Mintz, Elisabeth

    2014-01-01

    Copper oxide nanoparticles (CuO-NP) were studied for their toxicity and mechanism of action on hepatocytes (HepG2), in relation to Cu homeostasis disruption. Indeed, hepatocytes, in the liver, are responsible for the whole body Cu balance and should be a major line of defence in the case of exposure to CuO-NP. We investigated the early responses to sub-toxic doses of CuO-NP and compared them to equivalent doses of Cu added as salt to see if there is a specific nano-effect related to Cu homeostasis in hepatocytes. The expression of the genes encoding the Cu-ATPase ATP7B, metallothionein 1X, heme oxygenase 1, heat shock protein 70, superoxide dismutase 1, glutamate cysteine ligase modifier subunit, metal responsive element-binding transcription factor 1 and zinc transporter 1 was analyzed by qRT-PCR. These genes are known to be involved in response to Cu, Zn and/or oxidative stresses. Except for MTF1, ATP7B and SOD1, we clearly observed an up regulation of these genes expression in CuO-NP treated cells, as compared to CuCl2. In addition, ATP7B trafficking from the Golgi network to the bile canaliculus membrane was observed in WIF-B9 cells, showing a need for Cu detoxification. This shows an increase in the intracellular Cu concentration, probably due to Cu release from endosomal CuO-NP solubilisation. Our data show that CuO-NP enter hepatic cells, most probably by endocytosis, bypassing the cellular defence mechanism against Cu, thus acting as a Trojan horse. Altogether, this study suggests that sub-toxic CuO-NP treatments induce successively a Cu overload, a Cu-Zn exchange on metallothioneins and MTF1 regulation on both Cu and Zn homeostasis.Copper oxide nanoparticles (CuO-NP) were studied for their toxicity and mechanism of action on hepatocytes (HepG2), in relation to Cu homeostasis disruption. Indeed, hepatocytes, in the liver, are responsible for the whole body Cu balance and should be a major line of defence in the case of exposure to CuO-NP. We investigated

  5. Neutrophil Homeostasis and Periodontal Health in Children and Adults

    OpenAIRE

    Hajishengallis, E.; Hajishengallis, G

    2014-01-01

    This review summarizes the current state of knowledge on neutrophil basic biology and discusses how the breakdown of neutrophil homeostasis affects periodontal health. The homeostasis of neutrophils is tightly regulated through coordinated bone marrow production, release into the circulation, transmigration to and activation in peripheral tissues, and clearance of senescent neutrophils. Dysregulation of any of these homeostatic mechanisms at any age can cause severe periodontitis in humans an...

  6. Autophagy in Skeletal Muscle Homeostasis and in Muscular Dystrophies

    OpenAIRE

    Paolo Bonaldo; Paolo Grumati

    2012-01-01

    Skeletal muscles are the agent of motion and one of the most important tissues responsible for the control of metabolism. The maintenance of muscle homeostasis is finely regulated by the balance between catabolic and anabolic process. Macroautophagy (or autophagy) is a catabolic process that provides the degradation of protein aggregation and damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagy flux is fundamental for the homeostasis o...

  7. Lung Stem and Progenitor Cells in Tissue Homeostasis and Disease

    OpenAIRE

    Leeman, Kristen T.; Fillmore, Christine M.; Kim, Carla F.

    2014-01-01

    The mammalian lung is a complex organ containing numerous putative stem/progenitor cell populations that contribute to region-specific tissue homeostasis and repair. In this review, we discuss recent advances in identifying and studying these cell populations in the context of lung homeostasis and disease. Genetically engineered mice now allow for lineage tracing of several lung stem and progenitor cell populations in vivo during different types of lung injury repair. Using specific sets of c...

  8. Sex differences in metabolic homeostasis, diabetes, and obesity

    OpenAIRE

    Mauvais-Jarvis, Franck

    2015-01-01

    There are fundamental aspects of the control of metabolic homeostasis that are regulated differently in males and females. This sex asymmetry represents an evolutionary paradigm for females to resist the loss of energy stores. This perspective discusses the most fundamental sex differences in metabolic homeostasis, diabetes, and obesity. Together, the role of genetic sex, the programming effect of testosterone in the prenatal period in males, and the activational role of sex hormones at puber...

  9. Iron-Nutrient Interactions within Phytoplankton.

    Science.gov (United States)

    Schoffman, Hanan; Lis, Hagar; Shaked, Yeala; Keren, Nir

    2016-01-01

    Iron limits photosynthetic activity in up to one third of the world's oceans and in many fresh water environments. When studying the effects of Fe limitation on phytoplankton or their adaptation to low Fe environments, we must take into account the numerous cellular processes within which this micronutrient plays a central role. Due to its flexible redox chemistry, Fe is indispensable in enzymatic catalysis and electron transfer reactions and is therefore closely linked to the acquisition, assimilation and utilization of essential resources. Iron limitation will therefore influence a wide range of metabolic pathways within phytoplankton, most prominently photosynthesis. In this review, we map out four well-studied interactions between Fe and essential resources: nitrogen, manganese, copper and light. Data was compiled from both field and laboratory studies to shed light on larger scale questions such as the connection between metabolic pathways and ambient iron levels and the biogeographical distribution of phytoplankton species. PMID:27588022

  10. The PICALM Protein Plays a Key Role in Iron Homeostasis and Cell Proliferation

    OpenAIRE

    Scotland, Paula B.; Heath, Jessica L.; Conway, Amanda E; Porter, Natasha B.; Armstrong, Michael B.; Walker, Jennifer A.; Mitchell L Klebig; Catherine P Lavau; Wechsler, Daniel S

    2012-01-01

    The ubiquitously expressed phosphatidylinositol binding clathrin assembly (PICALM) protein associates with the plasma membrane, binds clathrin, and plays a role in clathrin-mediated endocytosis. Alterations of the human PICALM gene are present in aggressive hematopoietic malignancies, and genome-wide association studies have recently linked the PICALM locus to late-onset Alzheimer's disease. Inactivating and hypomorphic Picalm mutations in mice cause different degrees of severity of anemia, a...

  11. Formula feeding alters hepatic gene expression signature, iron and cholesterol homeostasis in the neonatal pig

    Science.gov (United States)

    Although the American Academy of Pediatrics recommends breast feeding for at least the first 6 months of life, formula feeding remains more popular in the US. In the current study, neonatal piglets were breast-fed or were fed commercially available milk-based formula (MF) or soy-based formula (SF) ...

  12. Research on the Relationship between Exercise and Iron Homeostasis%运动与铁稳态

    Institute of Scientific and Technical Information of China (English)

    漆正堂; 贺杰; 罗艳蕊

    2006-01-01

    机体对运动的不适应不仅可能导致铁的丢失,还可能导致铁转运障碍,铁在储铁组织(肝脏、肌肉)蓄积过多,而在耗铁组织(骨髓)又相对缺乏.这种贫富悬殊的铁分布可能是运动性贫血的发病机理之一.长期运动训练后,如果机体产生运动适应,上调转铁蛋白及其受体的表达或增强非Tf结合铁的转运,那么就会克服铁的紊乱分布,将富铁组织的铁转运到贫铁的骨髓,有利于运动性贫血发生后血红蛋白与红细胞比容的恢复,这可能是运动性贫血呈现一过性、长期运动训练后机体出现低铁而不贫血状态的原因所在.

  13. Can Endocrine disrupters interfere with Ca2+ homeostasis in invertebrate cells?

    Directory of Open Access Journals (Sweden)

    L. Canesi

    2010-01-01

    Full Text Available A wide range of environmental chemicals have been shown to alter the endocrine system of both wildlife and humans. There is increasing evidence that many of these endocrine disruptors (EDs, in particular estrogenic chemicals, can rapidly affect cellular homeostasis and signaling in mammalian Ca2+ systems. In this work, in vitro and in vivo data are summarised on the effects of different compounds known or suspected as EDs on homeostasis in Ca2+ marine invertebrate, the blue mussel Mytilus spp. Both synthetic estrogens and different EDs (DES, BPA, NP, PCB congeners, etc. rapidly increased sytosolic [Ca2+] in mussel hemosytes, as evaluated by FURA2 single cell fluorescence microscopy. The observed [Ca2+] increase was unaffected by the antiestrogen Tamoxifen and was due to either increased influx or release from Ca2+ intracellular stores, depending on the compound. Moreover, different ED,s including the brominated flame retardant TBBPA (tetrabromo bisphenol A induced a dose-dependent inhibition of the plasma membrane Ca2+ -ATPase (PMCA activity from mussel gills in vitro, this supporting a direct effect on membrane pumps. The in vitro effects of EDs were observed at concentrations generally higher than those of E2. However, in vivo, mussel exposure to environmetal concentrations of Bisphenol A (BPA and of the polybrominated diphenyl ether TBDE-47 resulted in large inhibition of PMCA activity in the digestive gland. The results indicate that, in invertebrate like in mammalian systems, interference with Ca2+ homeostasis may represent a significant mode of action of a variety of EDs.

  14. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes

    OpenAIRE

    Masashi Maekawa; Yanbo Yang; Fairn, Gregory D.

    2016-01-01

    Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pa...

  15. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis*

    OpenAIRE

    Schmitt, Estelle; Paquet, Claudie; Beauchemin, Myriam; Bertrand, Richard

    2007-01-01

    Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycl...

  16. Alterations of iron distribution in Arabidopsis tissues infected by Dickeya dadantii.

    Science.gov (United States)

    Aznar, Aude; Patrit, Oriane; Berger, Adeline; Dellagi, Alia

    2015-06-01

    Dickeya dadantii is a plant-pathogenic enterobacterium responsible for plant soft rot disease in a wide range of hosts, including the model plant Arabidopsis thaliana. Iron distribution in infected A. thaliana was investigated at the cellular scale using the Perls'-diaminobenzidine-H2 O2 (PDH) method. Iron visualization during infection reveals a loss of iron from cellular compartments and plant cell walls. During symptom progression, two distinct zones are clearly visible: a macerated zone displaying weak iron content and a healthy zone displaying strong iron content. Immunolabelling of cell wall methylated pectin shows that pectin degradation is correlated with iron release from cell walls, indicating a strong relationship between cell wall integrity and iron in plant tissues. Using a D. dadantii lipopolysaccharide antibody, we show that bacteria are restricted to the infected tissue, and that they accumulate iron in planta. In conclusion, weak iron content is strictly correlated with bacterial cell localization in the infected tissues, indicating a crucial role of this element during the interaction. This is the first report of iron localization at the cellular level during a plant-microbe interaction and shows that PDH is a method of choice in this type of investigation. PMID:25266463

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Deficiency Anemia Explore Iron-Deficiency Anemia What Is... CAUSES WHO IS AT RISK SIGNS & SYMPTOMS DIAGNOSIS TREATMENTS ... less hemoglobin than normal. Iron-deficiency anemia can cause fatigue (tiredness), shortness of breath, chest pain, and ...

  18. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  19. Iron in diet

    Science.gov (United States)

    Diet - iron; Ferric acid; Ferrous acid; Ferritin ... The human body needs iron to make the oxygen-carrying proteins hemoglobin and myoglobin. Hemoglobin is found in red blood cells and myoglobin is found ...

  20. Iron supplements (image)

    Science.gov (United States)

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.