WorldWideScience

Sample records for cellular darwinian evolution

  1. Cancer models, genomic instability and somatic cellular Darwinian evolution

    Directory of Open Access Journals (Sweden)

    Little Mark P

    2010-04-01

    Full Text Available Abstract The biology of cancer is critically reviewed and evidence adduced that its development can be modelled as a somatic cellular Darwinian evolutionary process. The evidence for involvement of genomic instability (GI is also reviewed. A variety of quasi-mechanistic models of carcinogenesis are reviewed, all based on this somatic Darwinian evolutionary hypothesis; in particular, the multi-stage model of Armitage and Doll (Br. J. Cancer 1954:8;1-12, the two-mutation model of Moolgavkar, Venzon, and Knudson (MVK (Math. Biosci. 1979:47;55-77, the generalized MVK model of Little (Biometrics 1995:51;1278-1291 and various generalizations of these incorporating effects of GI (Little and Wright Math. Biosci. 2003:183;111-134; Little et al. J. Theoret. Biol. 2008:254;229-238. Reviewers This article was reviewed by RA Gatenby and M Kimmel.

  2. From prebiotic chemistry to cellular metabolism--the chemical evolution of metabolism before Darwinian natural selection.

    Science.gov (United States)

    Meléndez-Hevia, Enrique; Montero-Gómez, Nancy; Montero, Francisco

    2008-06-07

    It is generally assumed that the complex map of metabolism is a result of natural selection working at the molecular level. However, natural selection can only work on entities that have three basic features: information, metabolism and membrane. Metabolism must include the capability of producing all cellular structures, as well as energy (ATP), from external sources; information must be established on a material that allows its perpetuity, in order to safeguard the goals achieved; and membranes must be able to preserve the internal material, determining a selective exchange with external material in order to ensure that both metabolism and information can be individualized. It is not difficult to understand that protocellular entities that boast these three qualities can evolve through natural selection. The problem is rather to explain the origin of such features under conditions where natural selection could not work. In the present work we propose that these protocells could be built by chemical evolution, starting from the prebiotic primordial soup, by means of chemical selection. This consists of selective increases of the rates of certain specific reactions because of the kinetic or thermodynamic features of the process, such as stoichiometric catalysis or autocatalysis, cooperativity and others, thereby promoting their prevalence among the whole set of chemical possibilities. Our results show that all chemical processes necessary for yielding the basic materials that natural selection needs to work may be achieved through chemical selection, thus suggesting a way for life to begin.

  3. Darwinian Evolution and Fractals

    Science.gov (United States)

    Carr, Paul H.

    2009-05-01

    Did nature's beauty emerge by chance or was it intelligently designed? Richard Dawkins asserts that evolution is blind aimless chance. Michael Behe believes, on the contrary, that the first cell was intelligently designed. The scientific evidence is that nature's creativity arises from the interplay between chance AND design (laws). Darwin's ``Origin of the Species,'' published 150 years ago in 1859, characterized evolution as the interplay between variations (symbolized by dice) and the natural selection law (design). This is evident in recent discoveries in DNA, Madelbrot's Fractal Geometry of Nature, and the success of the genetic design algorithm. Algorithms for generating fractals have the same interplay between randomness and law as evolution. Fractal statistics, which are not completely random, characterize such phenomena such as fluctuations in the stock market, the Nile River, rainfall, and tree rings. As chaos theorist Joseph Ford put it: God plays dice, but the dice are loaded. Thus Darwin, in discovering the evolutionary interplay between variations and natural selection, was throwing God's dice!

  4. How Darwinian is cultural evolution?

    Science.gov (United States)

    Claidière, Nicolas; Scott-Phillips, Thomas C.; Sperber, Dan

    2014-01-01

    Darwin-inspired population thinking suggests approaching culture as a population of items of different types, whose relative frequencies may change over time. Three nested subtypes of populational models can be distinguished: evolutionary, selectional and replicative. Substantial progress has been made in the study of cultural evolution by modelling it within the selectional frame. This progress has involved idealizing away from phenomena that may be critical to an adequate understanding of culture and cultural evolution, particularly the constructive aspect of the mechanisms of cultural transmission. Taking these aspects into account, we describe cultural evolution in terms of cultural attraction, which is populational and evolutionary, but only selectional under certain circumstances. As such, in order to model cultural evolution, we must not simply adjust existing replicative or selectional models but we should rather generalize them, so that, just as replicator-based selection is one form that Darwinian selection can take, selection itself is one of several different forms that attraction can take. We present an elementary formalization of the idea of cultural attraction. PMID:24686939

  5. Do Galaxies Follow Darwinian Evolution?

    Science.gov (United States)

    2006-12-01

    Using VIMOS on ESO's Very Large Telescope, a team of French and Italian astronomers have shown the strong influence the environment exerts on the way galaxies form and evolve. The scientists have for the first time charted remote parts of the Universe, showing that the distribution of galaxies has considerably evolved with time, depending on the galaxies' immediate surroundings. This surprising discovery poses new challenges for theories of the formation and evolution of galaxies. The 'nature versus nurture' debate is a hot topic in human psychology. But astronomers too face similar conundrums, in particular when trying to solve a problem that goes to the very heart of cosmological theories: are the galaxies we see today simply the product of the primordial conditions in which they formed, or did experiences in the past change the path of their evolution? ESO PR Photo 17/06 ESO PR Photo 45/06 Galaxy Distribution in Space In a large, three-year long survey carried out with VIMOS [1], the Visible Imager and Multi-Object Spectrograph on ESO's VLT, astronomers studied more than 6,500 galaxies over a wide range of distances to investigate how their properties vary over different timescales, in different environments and for varying galaxy luminosities [2]. They were able to build an atlas of the Universe in three dimensions, going back more than 9 billion years. This new census reveals a surprising result. The colour-density relation, that describes the relationship between the properties of a galaxy and its environment, was markedly different 7 billion years ago. The astronomers thus found that the galaxies' luminosity, their initial genetic properties, and the environments they reside in have a profound impact on their evolution. "Our results indicate that environment is a key player in galaxy evolution, but there's no simple answer to the 'nature versus nurture' problem in galaxy evolution," said Olivier Le Fèvre from the Laboratoire d'Astrophysique de Marseille

  6. Is evolution Darwinian or/and Lamarckian?

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2009-11-01

    Full Text Available Abstract Background The year 2009 is the 200th anniversary of the publication of Jean-Bapteste Lamarck's Philosophie Zoologique and the 150th anniversary of Charles Darwin's On the Origin of Species. Lamarck believed that evolution is driven primarily by non-randomly acquired, beneficial phenotypic changes, in particular, those directly affected by the use of organs, which Lamarck believed to be inheritable. In contrast, Darwin assigned a greater importance to random, undirected change that provided material for natural selection. The concept The classic Lamarckian scheme appears untenable owing to the non-existence of mechanisms for direct reverse engineering of adaptive phenotypic characters acquired by an individual during its life span into the genome. However, various evolutionary phenomena that came to fore in the last few years, seem to fit a more broadly interpreted (quasiLamarckian paradigm. The prokaryotic CRISPR-Cas system of defense against mobile elements seems to function via a bona fide Lamarckian mechanism, namely, by integrating small segments of viral or plasmid DNA into specific loci in the host prokaryote genome and then utilizing the respective transcripts to destroy the cognate mobile element DNA (or RNA. A similar principle seems to be employed in the piRNA branch of RNA interference which is involved in defense against transposable elements in the animal germ line. Horizontal gene transfer (HGT, a dominant evolutionary process, at least, in prokaryotes, appears to be a form of (quasiLamarckian inheritance. The rate of HGT and the nature of acquired genes depend on the environment of the recipient organism and, in some cases, the transferred genes confer a selective advantage for growth in that environment, meeting the Lamarckian criteria. Various forms of stress-induced mutagenesis are tightly regulated and comprise a universal adaptive response to environmental stress in cellular life forms. Stress-induced mutagenesis

  7. Darwinian evolution in the light of genomics.

    Science.gov (United States)

    Koonin, Eugene V

    2009-03-01

    Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or 'forest' of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future.

  8. Non-Darwinian Express Evolution and Its Phenomenological Theory

    Science.gov (United States)

    Azbel', Mark

    2001-03-01

    I quantify fitness (with the probability l(x) to survive to a given, in particular, reproductive, age x) and instantaneous environment (with the birth mortality q). I study l(x) vs q for a given x according to extensive data for humans and flies. To the specified accuracy, the dependence is reversible, independent of the previous history, rapidly (within few % of the lifespan) established. Most important, it is invariant with respect to environment and population genotypes (e.g., for different races, countries, times), i.e. to certain transformations. Mathematically such symmetry implies piecewise linear l(x) vs q, which proceeds via transitions (simultaneous for an entire population of different ages) to new phases. Similar to the Darwinian evolution, this short term adaptation is genetic (since it is independent of living conditions) and inheritable (since it proceeds for at least 10 reproductive generations). In contrast to the Darwinian evolution, it is reversible, rapid, fine-tuned to a single environmental variable, independent of previous history and of a specific DNA sequence (since it is the same for at least an entire species), and is inherited via genetically predetermined phases.

  9. Understanding protein evolution: from protein physics to Darwinian selection.

    Science.gov (United States)

    Zeldovich, Konstantin B; Shakhnovich, Eugene I

    2008-01-01

    Efforts in whole-genome sequencing and structural proteomics start to provide a global view of the protein universe, the set of existing protein structures and sequences. However, approaches based on the selection of individual sequences have not been entirely successful at the quantitative description of the distribution of structures and sequences in the protein universe because evolutionary pressure acts on the entire organism, rather than on a particular molecule. In parallel to this line of study, studies in population genetics and phenomenological molecular evolution established a mathematical framework to describe the changes in genome sequences in populations of organisms over time. Here, we review both microscopic (physics-based) and macroscopic (organism-level) models of protein-sequence evolution and demonstrate that bridging the two scales provides the most complete description of the protein universe starting from clearly defined, testable, and physiologically relevant assumptions.

  10. From Darwinian to technological evolution: forgetting the human lottery.

    Science.gov (United States)

    Tintino, Giorgio

    2014-01-01

    The GRIN technologies (-geno, -robo, -info, -nano) promise to change the inner constitution of human body and its own existence. This transformation involves the structure of our lives and represent a brave new world that we have to explore and to manage. In this sense, the traditional tools of humanism seems very inadequate to think the biotech century and there is a strong demand of a new thought for the evolution and the concrete history of life. The posthuman philosophy tries to take this new path of human existence in all of its novelty since GRIN technologies seem to promise new and unexpected paths of evolution to living beings and, above all, man. For this, the post-human thought, as we see, is a new anthropological overview on the concrete evolution of human being, an overview that involves an epistemological revolution of the categories that humanism uses to conceptualize the journey that divides the Homo sapiens from the man. But, is this right?

  11. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution.

    Science.gov (United States)

    Ling, Shaoping; Hu, Zheng; Yang, Zuyu; Yang, Fang; Li, Yawei; Lin, Pei; Chen, Ke; Dong, Lili; Cao, Lihua; Tao, Yong; Hao, Lingtong; Chen, Qingjian; Gong, Qiang; Wu, Dafei; Li, Wenjie; Zhao, Wenming; Tian, Xiuyun; Hao, Chunyi; Hungate, Eric A; Catenacci, Daniel V T; Hudson, Richard R; Li, Wen-Hsiung; Lu, Xuemei; Wu, Chung-I

    2015-11-24

    The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 "polymorphic" SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors.

  12. Adaptive evolution of cooperation through Darwinian dynamics in Public Goods games.

    Science.gov (United States)

    Deng, Kuiying; Chu, Tianguang

    2011-01-01

    The linear or threshold Public Goods game (PGG) is extensively accepted as a paradigmatic model to approach the evolution of cooperation in social dilemmas. Here we explore the significant effect of nonlinearity of the structures of public goods on the evolution of cooperation within the well-mixed population by adopting Darwinian dynamics, which simultaneously consider the evolution of populations and strategies on a continuous adaptive landscape, and extend the concept of evolutionarily stable strategy (ESS) as a coalition of strategies that is both convergent-stable and resistant to invasion. Results show (i) that in the linear PGG contributing nothing is an ESS, which contradicts experimental data, (ii) that in the threshold PGG contributing the threshold value is a fragile ESS, which cannot resist the invasion of contributing nothing, and (iii) that there exists a robust ESS of contributing more than half in the sigmoid PGG if the return rate is relatively high. This work reveals the significant effect of the nonlinearity of the structures of public goods on the evolution of cooperation, and suggests that, compared with the linear or threshold PGG, the sigmoid PGG might be a more proper model for the evolution of cooperation within the well-mixed population.

  13. Detecting positive darwinian selection in brain-expressed genes during human evolution

    Institute of Scientific and Technical Information of China (English)

    QI XueBin; Alice A. LIN; Luca L. CAVALLI-SFORZA; WANG Jun; SU Bing; YANG Su; ZHENG HongKun; WANG YinQiu; LIAO ChengHong; LIU Ying; CHEN XiaoHua; SHI Hong; YU XiaoJing

    2007-01-01

    To understand the genetic basis that underlies the phenotypic divergence between human and nonhuman primates, we screened a total of 7176 protein-coding genes expressed in the human brain and compared them with the chimpanzee orthologs to identify genes that show evidence of rapid evolution in the human lineage. Our results showed that the nonsynonymous/synonymous substitution (Ka/Ks) ratio for genes expressed in the brain of human and chimpanzee is 0.3854, suggesting that the brain-expressed genes are under functional constraint. The X-linked human brain-expressed genes evolved more rapidly than autosomal ones. We further dissected the molecular evolutionary patterns of 34 candidate genes by sequencing representative primate species to identify lineage-specific adaptive evolution. Fifteen out of the 34 candidate genes showed evidence of positive Darwinian selection in human and/or chimpanzee lineages. These genes are predicted to play diverse functional roles in embryonic development, spermatogenesis and male fertility, signal transduction, sensory nociception, and neural function. This study together with others demonstrated the usefulness and power of phylogenetic comparison of multiple closely related species in detecting lineage-specific adaptive evolution, and the identification of the positively selected brain-expressed genes may add new knowledge to the understanding of molecular mechanism of human origin.

  14. Evolution Born of Moisture: Analogies and Parallels Between Anaximander's Ideas on Origin of Life and Man and Later Pre-Darwinian and Darwinian Evolutionary Concepts.

    Science.gov (United States)

    Kočandrle, Radim; Kleisner, Karel

    2013-01-01

    This study focuses on the origin of life as presented in the thought of Anaximander of Miletus but also points to some parallel motifs found in much later conceptions of both the pre-Darwinian German romantic science and post-Darwinian biology. According to Anaximander, life originated in the moisture associated with earth (mud). This moist environment hosted the first living creatures that later populated the dry land. In these descriptions, one can trace the earliest hints of the notion of environmental adaptation. The origin of humans was seen as connected in some way with fish: ancient humans were supposed to have developed inside fish-like animals. Anaximander took into account changes in the development of living creatures (adaptations) and speculated on the origins of humans. Similar ideas are found also in the writings of much later, eighteenth and nineteenth century authors who were close to the tradition of German romantic science. We do not argue that these later concepts are in any way directly linked with those of the pre-Socratics, but they show surprising parallels in, e.g., the hypothesis that life originated in a moist environment or the supposition that human developed from fish-like ancestors. These transformations are seen as a consequence of timeless logic rather than as evolution in historical terms. Despite the accent on the origin of living things, both Anaximander and the later Naturphilosophen lack in their notions the element most characteristic of Darwin's thought, that is, the emphasis on historicity and uniqueness of all that comes into being.

  15. Individuals and groups in evolution: Darwinian pluralism and the multilevel selection debate

    Indian Academy of Sciences (India)

    Telmo Pievani

    2014-04-01

    Outlined here is an updated review of the long-standing `kin selection vs group selection’ debate. Group selection is a highly contentious concept, scientifically and philosophically. In 2012, Dawkins’ attack against Wilson’s latest book about eusociality concentrated all the attention on group selection and its mutual exclusivity with respect to inclusive fitness theory. Both opponents seem to be wrong, facing the general consensus in the field, which favours a pluralistic approach. Historically, despite some misunderstandings in current literature, such a perspective is clearly rooted in Darwin’s writings, which suggested a plurality of levels of selection and a general view that we propose to call `imperfect selfishness’. Today, the mathematically updated hypothesis of group selection has little to do with earlier versions of `group selection’. It does not imply ontologically unmanageable notions of `groups’. We propose here population structure as the main criterion of compatibility between kin selection and group selection. The latter is now evidently a pattern among others within a more general `multilevel selection’ theory. Different explanations and patterns are not mutually exclusive. Such a Darwinian pluralism is not a piece of the past, but a path into the future. A challenge in philosophy of biology will be to figure out the logical structure of this emerging pluralistic theory of evolution in such contentious debates.

  16. Individuals and groups in evolution: Darwinian pluralism and the multilevel selection debate.

    Science.gov (United States)

    Pievani, Telmo

    2014-04-01

    Outlined here is an updated review of the long-standing 'kin selection vs group selection' debate. Group selection is a highly contentious concept, scientifically and philosophically. In 2012, Dawkins' attack against Wilson's latest book about eusociality concentrated all the attention on group selection and its mutual exclusivity with respect to inclusive fitness theory. Both opponents seem to be wrong, facing the general consensus in the field, which favours a pluralistic approach. Historically, despite some misunderstandings in current literature, such a perspective is clearly rooted in Darwin's writings, which suggested a plurality of levels of selection and a general view that we propose to call 'imperfect selfishness'. Today, the mathematically updated hypothesis of group selection has little to do with earlier versions of 'group selection'. It does not imply ontologically unmanageable notions of 'groups'. We propose here population structure as the main criterion of compatibility between kin selection and group selection. The latter is now evidently a pattern among others within a more general 'multilevel selection' theory. Different explanations and patterns are not mutually exclusive. Such a Darwinian pluralism is not a piece of the past, but a path into the future. A challenge in philosophy of biology will be to figure out the logical structure of this emerging pluralistic theory of evolution in such contentious debates.

  17. The pre-Mendelian, pre-Darwinian world: Shifting relations between genetic and epigenetic mechanisms in early multicellular evolution

    Indian Academy of Sciences (India)

    Stuart A Newman

    2005-02-01

    The reliable dependence of many features of contemporary organisms on changes in gene content and activity is tied to the processes of Mendelian inheritance and Darwinian evolution. With regard to morphological characters, however, Mendelian inheritance is the exception rather than the rule, and neo-Darwinian mechanisms in any case do not account for the origination (as opposed to the inherited variation) of such characters. It is proposed, therefore, that multicellular organisms passed through a pre-Mendelian, pre-Darwinian phase, whereby cells, genes and gene products constituted complex systems with context-dependent, self-organizing morphogenetic capabilities. An example is provided of a plausible ‘core’ mechanism for the development of the vertebrate limb that is both inherently pattern forming and morphogenetically plastic. It is suggested that most complex multicellular structures originated from such systems. The notion that genes are privileged determinants of biological characters can only be sustained by neglecting questions of evolutionary origination and the evolution of developmental mechanisms.

  18. Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution.

    Science.gov (United States)

    Skinner, Michael K

    2015-04-26

    Environment has a critical role in the natural selection process for Darwinian evolution. The primary molecular component currently considered for neo-Darwinian evolution involves genetic alterations and random mutations that generate the phenotypic variation required for natural selection to act. The vast majority of environmental factors cannot directly alter DNA sequence. Epigenetic mechanisms directly regulate genetic processes and can be dramatically altered by environmental factors. Therefore, environmental epigenetics provides a molecular mechanism to directly alter phenotypic variation generationally. Lamarck proposed in 1802 the concept that environment can directly alter phenotype in a heritable manner. Environmental epigenetics and epigenetic transgenerational inheritance provide molecular mechanisms for this process. Therefore, environment can on a molecular level influence the phenotypic variation directly. The ability of environmental epigenetics to alter phenotypic and genotypic variation directly can significantly impact natural selection. Neo-Lamarckian concept can facilitate neo-Darwinian evolution. A unified theory of evolution is presented to describe the integration of environmental epigenetic and genetic aspects of evolution.

  19. Comparative Structural Models of Similarities and Differences between Vehicle and Target in Order to Teach Darwinian Evolution

    Science.gov (United States)

    Marcelos, Maria Fátima; Nagem, Ronaldo L.

    2010-06-01

    Our objective is to contribute to the teaching of Classical Darwinian Evolution by means of a study of analogies and metaphors. Throughout the history of knowledge about Evolution and in Science teaching, tree structures have been used an analogs to refer to Evolution, such as by Darwin in the Tree of Life passage contained in On The Origin of Species (1859). We analyze the analogies and metaphors found in the Darwinian text the Tree of Life and propose Comparative Structural Models of Similarities and Differences between the vehicle and target, considering the viability of their use in teaching Sciences. Our foundation is the Theory of Conceptual Metaphor by Lakoff and Johnson (1980) and the Methodology of Teaching with Analogies—- MECA—by Nagem et al. (2001). The analogies and metaphors were classified and analyzed and the similarities and differences were highlighted. We found conceptual metaphors in the text. The analogies and metaphors in the Tree of Life are complex and appropriate for didactic use, but require an adequate methodological approach.

  20. Research program for a search of the origin of Darwinian evolution. Research program for a vesicle-based model of the origin of Darwinian evolution on prebiotic early Earth

    Science.gov (United States)

    Tessera, Marc

    2017-03-01

    The search for origin of `life' is made even more complicated by differing definitions of the subject matter, although a general consensus is that an appropriate definition should center on Darwinian evolution (Cleland and Chyba 2002). Within a physical approach which has been defined as a level-4 evolution (Tessera and Hoelzer 2013), one mechanism could be described showing that only three conditions are required to allow natural selection to apply to populations of different system lineages. This approach leads to a vesicle- based model with the necessary properties. Of course such a model has to be tested. Thus, after a brief presentation of the model an experimental program is proposed that implements the different steps able to show whether this new direction of the research in the field is valid and workable.

  1. Research program for a search of the origin of Darwinian evolution - Research program for a vesicle-based model of the origin of Darwinian evolution on prebiotic early Earth

    Science.gov (United States)

    Tessera, Marc

    2016-03-01

    The search for origin of `life' is made even more complicated by differing definitions of the subject matter, although a general consensus is that an appropriate definition should center on Darwinian evolution (Cleland and Chyba 2002). Within a physical approach which has been defined as a level-4 evolution (Tessera and Hoelzer 2013), one mechanism could be described showing that only three conditions are required to allow natural selection to apply to populations of different system lineages. This approach leads to a vesicle- based model with the necessary properties. Of course such a model has to be tested. Thus, after a brief presentation of the model an experimental program is proposed that implements the different steps able to show whether this new direction of the research in the field is valid and workable.

  2. Early cellular evolution.

    Science.gov (United States)

    Margulis, L.

    1972-01-01

    Study of the evolutionary developments that occurred subsequent to the origin of ancestral cells. Microbial physiology and ecology are potential sharp tools for shaping concepts of microbial evolution. Some popular unjustified assumptions are discussed. It is considered that certain principles derived mainly from the advances of molecular biology can be used to order the natural groups (genera) of extant prokaryotes and their patterns phylogenetically.

  3. Modeling evolution and immune system by cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Bezzi, M. [Scuola Internazionale Superiore di Studi Avanzati, Trieste (Italy); Istituto Nazionale di Fisica della Materia, Florence (Italy)

    2001-07-01

    In this review the behavior of two different biological systems is investigated using cellular automata. Starting from this spatially extended approach it is also tried, in some cases, to reduce the complexity of the system introducing mean-field approximation, and solving (or trying to solve) these simplified systems. It is discussed the biological meaning of the results, the comparison with experimental data (if available) and the different features between spatially extended and mean-field versions. The biological systems considered in this review are the following: Darwinian evolution in simple ecosystems and immune system response. In the first section the main features of molecular evolution are introduced, giving a short survey of genetics for physicists and discussing some models for prebiotic systems and simple ecosystems. It is also introduced a cellular automaton model for studying a set of evolving individuals in a general fitness landscape, considering also the effects of co-evolution. In particular the process of species formation (speciation) is described in sect. 5. The second part deals with immune system modeling. The biological features of immune response are discussed, as well as it is introduced the concept of shape space and of idiotypic network. More detailed reviews which deal with immune system models (mainly focused on idiotypic network models) can be found. Other themes here discussed: the applications of CA to immune system modeling, two complex cellular automata for humoral and cellular immune response. Finally, it is discussed the biological data and the general conclusions are drawn in the last section.

  4. Alfred Russel Wallace (1823-1913): the forgotten co-founder of the Neo-Darwinian theory of biological evolution.

    Science.gov (United States)

    Kutschera, Ulrich; Hossfeld, Uwe

    2013-12-01

    The British naturalist Alfred Russel Wallace (1823-1913), who had to leave school aged 14 and never attended university, did extensive fieldwork, first in the Amazon River basin (1848-1852) and then in Southeast Asia (1854-1862). Based on this experience, and after reading the corresponding scientific literature, Wallace postulated that species were not created, but are modified descendants of pre-existing varieties (Sarawak Law paper, 1855). Evolution is brought about by a struggle for existence via natural selection, which results in the adaptation of those individuals in variable populations who survive and reproduce (Ternate essay, 1858). In his monograph Darwinism (1889), and in subsequent publications, Wallace extended the contents of Darwin's Origin of Species (1859) into the Neo-Darwinian theory of biological evolution, with reference to the work of August Weismann (1834-1914). Wallace also became the (co)-founder of biogeography, biodiversity research, astrobiology and evolutionary anthropology. Moreover, he envisioned what was later called the anthropocene (i.e., the age of human environmental destructiveness). However, since Wallace believed in atheistic spiritualism and mixed up scientific facts and supernatural speculations in some of his writings, he remains a controversial figure in the history of biology.

  5. A Scoring Rubric for Students' Responses to Simple Evolution Questions: Darwinian Components

    Science.gov (United States)

    Jensen, Murray; Moore, Randy; Hatch, Jay; Hsu, Leon

    2007-01-01

    The call to teach students Darwin's theory of evolution by natural selection has been made by a variety of professional organizations. In addition to these national organizations, almost every state has science education guidelines calling for the teaching of evolution. Many administrators and policymakers believe that evolution is being taught,…

  6. Quantum Darwinism as a Darwinian process

    CERN Document Server

    Campbell, John

    2010-01-01

    The Darwinian nature of Wojciech Zurek's theory of Quantum Darwinism is evaluated against the criteria of a Darwinian process as understood within Universal Darwinism. The characteristics of a Darwinian process are developed including the consequences of accumulated adaptations resulting in adaptive systems operating in accordance with Friston's free energy principle and employing environmental simulations. Quantum theory, as developed in Zurek's research program and encapsulated by his theory of Quantum Darwinism is discussed from the view that Zurek's derivation of the measurement axioms implies that the evolution of a quantum system entangled with environmental entities is determined solely by the nature of the entangled system. There need be no further logical foundation. Quantum Darwinism is found to conform to the Darwinian paradigm in unexpected detail and is thus may be considered a theory within the framework of Universal Darwinism. With the inclusion of Quantum Darwinism within Universal Darwinism a...

  7. Organization of networks with tagged nodes and biased links: a priori distinct communities. The case of Intelligent Design Proponents and Darwinian Evolution Defenders

    CERN Document Server

    Rotundo, G

    2010-01-01

    Among topics of opinion formation it is of interest to observe the characteristics of networks with a priori distinct communities. As an illustration, we report on the citation network(s) unfolded in the recent decades through web available works belonging to selected members of the Neocreationist and Intelligent Design Proponents (IDP) and the Darwinian Evolution Defenders (DED) communities. An adjacency matrix of tagged nodes is first constructed; it is not symmetric. A generalization of considerations pertaining to the case of networks with biased links, directed or undirected, is thus presented. The main characteristic coefficients describing the structure of such partially directed networks with tagged nodes are outlined. The structural features are discussed searching for statistical aspects, equivalence or not of subnetworks through the degree distributions, each network assortativity, the global and local clustering coefficients and the Average Overlap Indices. The various closed and open triangles ma...

  8. The instinctual nation-state: non-Darwinian theories, state science and ultra-nationalism in Oka Asajirō's Evolution and Human Life.

    Science.gov (United States)

    Sullivan, Gregory

    2011-01-01

    In his anthology of socio-political essays, Evolution and Human Life, Oka Asajirō (1868-1944), early twentieth century Japan's foremost advocate of evolutionism, developed a biological vision of the nation-state as super-organism that reflected the concerns and aims of German-inspired Meiji statism and anticipated aspects of radical ultra-nationalism. Drawing on non-Darwinian doctrines, Oka attempted to realize such a fused or organic state by enhancing social instincts that would bind the minzoku (ethnic nation) and state into a single living entity. Though mobilization during the Russo-Japanese War seemed to evince this super-organism, the increasingly contentious and complex society that emerged in the war's aftermath caused Oka to turn first to Lamarckism and eventually to orthogenesis in the hopes of preserving the instincts needed for a viable nation-state. It is especially in the state interventionist measures that Oka finally came to endorse in order to forestall orthogenetically-driven degeneration that the technocratic proclivities of his statist orientation become most apparent. The article concludes by suggesting that Oka's emphasis on degeneration, autarkic expansion, and, most especially, totalitarian submersion of individuals into the statist collectivity indicates a complex relationship between his evolutionism and fascist ideology, what recent scholarship has dubbed radical Shinto ultra-nationalism.

  9. A darwinian perspective: right premises, questionable conclusion. A commentary on Niall Shanks and Rebecca Pyles' "Evolution and medicine: the long reach of "Dr. Darwin""

    Directory of Open Access Journals (Sweden)

    Melnick Ronald

    2008-02-01

    Full Text Available Abstract As Dobzhansky wrote, nothing in biology makes sense outside the context of the evolutionary theory, and this truth has not been sufficiently explored yet by medicine. We comment on Shanks and Pyles' recently published paper, Evolution and medicine: the long reach of "Dr. Darwin", and discuss some recent advancements in the application of evolutionary theory to carcinogenesis. However, we disagree with Shanks and Pyles about the usefulness of animal experiments in predicting human hazards. Based on the darwinian observation of inter-species and inter-individual variation in all biological functions, Shanks and Pyles suggest that animal experiments cannot be used to identify hazards to human health. We claim that while the activity of enzymes may vary among individuals and among species, this does not indicate that critical events in disease processes occurring after exposure to hazardous agents differ qualitatively between animal models and humans. In addition, the goal is to avoid human disease whenever possible and with the means that are available at a given point in time. Epidemics of cancer could have been prevented if experimental data had been used to reduce human exposures or ban carcinogenic chemicals. We discuss examples.

  10. A Darwinian perspective: right premises, questionable conclusion. A commentary on Niall Shanks and Rebecca Pyles' "evolution and medicine: the long reach of "Dr. Darwin".

    Science.gov (United States)

    Vineis, Paolo; Melnick, Ronald

    2008-02-12

    As Dobzhansky wrote, nothing in biology makes sense outside the context of the evolutionary theory, and this truth has not been sufficiently explored yet by medicine. We comment on Shanks and Pyles' recently published paper, Evolution and medicine: the long reach of "Dr. Darwin", and discuss some recent advancements in the application of evolutionary theory to carcinogenesis. However, we disagree with Shanks and Pyles about the usefulness of animal experiments in predicting human hazards. Based on the darwinian observation of inter-species and inter-individual variation in all biological functions, Shanks and Pyles suggest that animal experiments cannot be used to identify hazards to human health. We claim that while the activity of enzymes may vary among individuals and among species, this does not indicate that critical events in disease processes occurring after exposure to hazardous agents differ qualitatively between animal models and humans. In addition, the goal is to avoid human disease whenever possible and with the means that are available at a given point in time. Epidemics of cancer could have been prevented if experimental data had been used to reduce human exposures or ban carcinogenic chemicals. We discuss examples.

  11. EVOLUTION COMPLEXITY OF THEELEMENTARY CELLULAR AUTOMATON OF RULE 22

    Institute of Scientific and Technical Information of China (English)

    WangYi; JiangZhisong

    2002-01-01

    Cellular automata are the discrete dynamical systems of simple construction but with complex and varied behaviors. In this paper, the elementary cellular automaton of rule 22 is studied by the tools of formal language theory and symbolic dynamics. Its temporal evolution orbits are coarse-grained into evolution sequences and the evolution languages are defined. It is proved that for every n≥2 its width n evolution language is not regular.

  12. Darwinian Controversies: An Historiographical Recounting

    Science.gov (United States)

    Depew, David J.

    2010-05-01

    This essay reviews key controversies in the history of the Darwinian research tradition: the Wilberforce-Huxley debate in 1860, early twentieth-century debates about the heritability of acquired characteristics and the consistency of Mendelian genetics with natural selection; the 1925 Scopes trial about teaching evolution; tensions about race, culture, and eugenics at the 1959 centenary celebration Darwin’s Origin of Species; adaptationism and its critics in the Sociobiology debate of 1970s and, more recently, Evolutionary Psychology; and current disputes about Intelligent Design. These controversies, I argue, are etched into public memory because they occur at the emotionally charged boundaries between public-political, technical-scientific, and personal-religious spheres of discourse. Over most of them falls the shadow of eugenics. The main lesson is that the history of Darwinism cannot be told except by showing the mutual influence of the different norms of discourse that obtain in the personal, technical, and public spheres. Nor can evolutionary biology successfully be taught to citizens and citizens-to-be until the fractious intersections between spheres of discourse have been made explicit. In the course of showing why, I take rival evolutionary approaches to be dynamical historical research traditions rather than static theories. Accordingly, I distinguish Darwin’s version of Darwinism from its later transformations. I pay special attention to the role Darwin assigned to development in evolution, which was marginalized by twentieth-century population genetical Darwinism, but has recently resurfaced in new forms. I also show how the disputed phrases “survival of the fittest” and “social Darwinism” have shaped personal anxieties about “Darwinism,” have provoked public opposition to teaching evolution in public schools, and have cast a shadow over efforts to effectively communicate to the public largely successful technical efforts to make

  13. Positive Darwinian selection in human population: A review

    Institute of Scientific and Technical Information of China (English)

    WU DongDong; ZHANG YaPing

    2008-01-01

    This paper reviews a large number of genes under positive Darwinian selection in modern human populations, such as brain development genes, immunity genes, reproductive related genes, percep-tion receptors. The research on the evolutionary property of these genes will provide important insight into human evolution and disease mechanisms. With the increase of population genetics and com-parative genomics data, more and more evidences indicate that positive Darwinian selection plays an indispensable role in the origin and evolution of human beings. This paper will also summarize the methods to detect positive selection, analyze the interference factors faced and make suggestions for further research on positive selection.

  14. The Problem with a Darwinian View of Humanity

    Science.gov (United States)

    Cunningham, Paul F.

    2009-01-01

    Comments on the special issue on Charles Darwin and psychology (Dewsbury, February-March 2009), in which the authors present evidence supporting the validity of Charles Darwin's theory of evolution and how generations of psychologists have viewed the natural world through its light, taking Darwinian theories for granted as being a literal…

  15. Evolution from Cellular to Social Scales

    CERN Document Server

    Skjeltorp, Arne T

    2008-01-01

    Evolution is a critical challenge for many areas of science, technology and development of society. The book reviews general evolutionary facts such as origin of life and evolution of the genome and clues to evolution through simple systems. Emerging areas of science such as "systems biology" and "bio-complexity" are founded on the idea that phenomena need to be understood in the context of highly interactive processes operating at different levels and on different scales. This is where physics meets complexity in nature, and where we must begin to learn about complexity if we are to understand it. Similarly, there is an increasingly urgent need to understand and predict the evolutionary behavior of highly interacting man-made systems, in areas such as communications and transport, which permeate the modern world. The same applies to the evolution of human networks such as social, political and financial systems, where technology has tended to vastly increase both the complexity and speed of interaction, whic...

  16. Numerical investigation on evolution of cylindrical cellular detonation

    Institute of Scientific and Technical Information of China (English)

    WANG Chun; JIANG Zong-lin; HU Zong-min; HAN Gui-lai

    2008-01-01

    Cylindrical cellular detonation is numerically investigated by solving twodimensional reactive Euler equations with a finite volume method on a two-dimensional self-adaptive unstructured mesh.The one-step reversible chemical reaction model is applied to simplify the control parameters of chemical reaction.Numerical results demonstrate the evolution of cellular cell splitting of cylindrical cellular detonation explored in experimentas.Split of cellular structures shows different features in the near-field and far-field from the initiation zone.Variation of the local curvature is a key factor in the behavior of cell split of cylindrical cellular detonation in propagation.Numerical results show that split of cellular structures comes from the self-organization of transverse waves corresponding to the development of small disturbances along the detonation front related to detonation instability.

  17. The Convergent Cancer Evolution toward a Single Cellular Destination.

    Science.gov (United States)

    Chen, Han; He, Xionglei

    2016-01-01

    The essence of Darwin's theory is that evolution is driven by purposeless mutations that are subsequently selected by natural environments, so there is often no predefined destination in organismal evolution. Using gene expressions of 107 cell types, we built a functional space of human cells to trace the evolutionary trajectory of 18 types of solid tumor cancers. We detected a dominant evolving trend toward the functional status of embryonic stem cells (ESC) for approximately 3,000 tumors growing in distinct tissue environments. This pattern remained the same after excluding known cancer/ESC signature genes (∼ 3,000 genes) or excluding all oncogenic gene sets (∼ 12,000 genes) annotated in MSigDB, suggesting a convergent evolution of the overall functional status in cancers. In support of this, the functional distance to ESC served as a common prognostic indicator for cancers of various types, with shorter distance corresponding to poor prognosis, which was true even when randomly selected gene sets were considered. Thus, regardless of the external environments, cancer evolution is a directional process toward a defined cellular destination, a finding reconciling development and evolution, the two seemingly incompatible philosophies both adopted by the cancer research community, and also raising new questions to evolutionary biology.

  18. The Cellular Differential Evolution Based on Chaotic Local Search

    Directory of Open Access Journals (Sweden)

    Qingfeng Ding

    2015-01-01

    Full Text Available To avoid immature convergence and tune the selection pressure in the differential evolution (DE algorithm, a new differential evolution algorithm based on cellular automata and chaotic local search (CLS or ccDE is proposed. To balance the exploration and exploitation tradeoff of differential evolution, the interaction among individuals is limited in cellular neighbors instead of controlling parameters in the canonical DE. To improve the optimizing performance of DE, the CLS helps by exploring a large region to avoid immature convergence in the early evolutionary stage and exploiting a small region to refine the final solutions in the later evolutionary stage. What is more, to improve the convergence characteristics and maintain the population diversity, the binomial crossover operator in the canonical DE may be instead by the orthogonal crossover operator without crossover rate. The performance of ccDE is widely evaluated on a set of 14 bound constrained numerical optimization problems compared with the canonical DE and several DE variants. The simulation results show that ccDE has better performances in terms of convergence rate and solution accuracy than other optimizers.

  19. Selfish cellular networks and the evolution of complex organisms.

    Science.gov (United States)

    Kourilsky, Philippe

    2012-03-01

    Human gametogenesis takes years and involves many cellular divisions, particularly in males. Consequently, gametogenesis provides the opportunity to acquire multiple de novo mutations. A significant portion of these is likely to impact the cellular networks linking genes, proteins, RNA and metabolites, which constitute the functional units of cells. A wealth of literature shows that these individual cellular networks are complex, robust and evolvable. To some extent, they are able to monitor their own performance, and display sufficient autonomy to be termed "selfish". Their robustness is linked to quality control mechanisms which are embedded in and act upon the individual networks, thereby providing a basis for selection during gametogenesis. These selective processes are equally likely to affect cellular functions that are not gamete-specific, and the evolution of the most complex organisms, including man, is therefore likely to occur via two pathways: essential housekeeping functions would be regulated and evolve during gametogenesis within the parents before being transmitted to their progeny, while classical selection would operate on other traits of the organisms that shape their fitness with respect to the environment.

  20. Millimeter-Wave Evolution for 5G Cellular Networks

    Science.gov (United States)

    Sakaguchi, Kei; Tran, Gia Khanh; Shimodaira, Hidekazu; Nanba, Shinobu; Sakurai, Toshiaki; Takinami, Koji; Siaud, Isabelle; Strinati, Emilio Calvanese; Capone, Antonio; Karls, Ingolf; Arefi, Reza; Haustein, Thomas

    Triggered by the explosion of mobile traffic, 5G (5th Generation) cellular network requires evolution to increase the system rate 1000 times higher than the current systems in 10 years. Motivated by this common problem, there are several studies to integrate mm-wave access into current cellular networks as multi-band heterogeneous networks to exploit the ultra-wideband aspect of the mm-wave band. The authors of this paper have proposed comprehensive architecture of cellular networks with mm-wave access, where mm-wave small cell basestations and a conventional macro basestation are connected to Centralized-RAN (C-RAN) to effectively operate the system by enabling power efficient seamless handover as well as centralized resource control including dynamic cell structuring to match the limited coverage of mm-wave access with high traffic user locations via user-plane/control-plane splitting. In this paper, to prove the effectiveness of the proposed 5G cellular networks with mm-wave access, system level simulation is conducted by introducing an expected future traffic model, a measurement based mm-wave propagation model, and a centralized cell association algorithm by exploiting the C-RAN architecture. The numerical results show the effectiveness of the proposed network to realize 1000 times higher system rate than the current network in 10 years which is not achieved by the small cells using commonly considered 3.5 GHz band. Furthermore, the paper also gives latest status of mm-wave devices and regulations to show the feasibility of using mm-wave in the 5G systems.

  1. Study on a Possible Darwinian Origin of Quantum Mechanics

    Science.gov (United States)

    Baladrón, C.

    2011-03-01

    A sketchy subquantum theory deeply influenced by Wheeler's ideas (Am. J. Phys. 51:398-404, 1983) and by the de Broglie-Bohm interpretation (Goldstein in Stanford Encyclopedia of Philosophy, 2006) of quantum mechanics is further analyzed. In this theory a fundamental system is defined as a dual entity formed by bare matter and a methodological probabilistic classical Turing machine. The evolution of the system would be determined by three Darwinian informational regulating principles. Some progress in the derivation of the postulates of quantum mechanics from these regulating principles is reported. The entanglement in a bipartite system is preliminarily considered.

  2. Molecular chaperones: The modular evolution of cellular networks

    Indian Academy of Sciences (India)

    Tamás Korcsmáros; István A Kovács; Máté S Szalay; Péter Csermely

    2007-04-01

    Molecular chaperones play a prominent role in signaling and transcriptional regulatory networks of the cell. Recent advances uncovered that chaperones act as genetic buffers stabilizing the phenotype of various cells and organisms and may serve as potential regulators of evolvability. Chaperones have weak links, connect hubs, are in the overlaps of network modules and may uncouple these modules during stress, which gives an additional protection for the cell at the network-level. Moreover, after stress chaperones are essential to re-build inter-modular contacts by their low affinity sampling of the potential interaction partners in different modules. This opens the way to the chaperone-regulated modular evolution of cellular networks, and helps us to design novel therapeutic and anti-aging strategies.

  3. Sexual selection: Another Darwinian process.

    Science.gov (United States)

    Gayon, Jean

    2010-02-01

    the Darwin-Wallace controversy was that most Darwinian biologists avoided the subject of sexual selection until at least the 1950s, Ronald Fisher being a major exception. This controversy still deserves attention from modern evolutionary biologists, because the modern approach inherits from both Darwin and Wallace. The modern approach tends to present sexual selection as a special aspect of the theory of natural selection, although it also recognizes the big difficulties resulting from the inevitable interaction between these two natural processes of selection. And contra Wallace, it considers mate choice as a major process that deserves a proper evolutionary treatment. The paper's conclusion explains why sexual selection can be taken as a test case for a proper assessment of "Darwinism" as a scientific tradition. Darwin's and Wallace's attitudes towards sexual selection reveal two different interpretations of the principle of natural selection: Wallace's had an environmentalist conception of natural selection, whereas Darwin was primarily sensitive to the element of competition involved in the intimate mechanism of any natural process of selection. Sexual selection, which can lack adaptive significance, reveals this exemplarily.

  4. Positive darwinian selection at the imprinted MEDEA locus in plants.

    Science.gov (United States)

    Spillane, Charles; Schmid, Karl J; Laoueillé-Duprat, Sylvia; Pien, Stéphane; Escobar-Restrepo, Juan-Miguel; Baroux, Célia; Gagliardini, Valeria; Page, Damian R; Wolfe, Kenneth H; Grossniklaus, Ueli

    2007-07-19

    In mammals and seed plants, a subset of genes is regulated by genomic imprinting where an allele's activity depends on its parental origin. The parental conflict theory suggests that genomic imprinting evolved after the emergence of an embryo-nourishing tissue (placenta and endosperm), resulting in an intragenomic parental conflict over the allocation of nutrients from mother to offspring. It was predicted that imprinted genes, which arose through antagonistic co-evolution driven by a parental conflict, should be subject to positive darwinian selection. Here we show that the imprinted plant gene MEDEA (MEA), which is essential for seed development, originated during a whole-genome duplication 35 to 85 million years ago. After duplication, MEA underwent positive darwinian selection consistent with neo-functionalization and the parental conflict theory. MEA continues to evolve rapidly in the out-crossing species Arabidopsis lyrata but not in the self-fertilizing species Arabidopsis thaliana, where parental conflicts are reduced. The paralogue of MEA, SWINGER (SWN; also called EZA1), is not imprinted and evolved under strong purifying selection because it probably retained the ancestral function of the common precursor gene. The evolution of MEA suggests a late origin of genomic imprinting within the Brassicaceae, whereas imprinting is thought to have originated early within the mammalian lineage.

  5. Origins of Genius: Darwinian Perspectives on Creativity.

    Science.gov (United States)

    Simonton, Dean Keith

    This study of creative genius argues that creativity can best be understood as a Darwinian process of variation and selection. The artist or scientist generates a wealth of ideas, and then subjects these ideas to aesthetic or scientific judgment, selecting only those that have the best chance to survive and reproduce. The book draws on the latest…

  6. The Post-Darwinian Controversies

    Science.gov (United States)

    Moore, James R.

    1981-11-01

    Preface; Introduction: the terrain of revision; Part I. Historians and Historiography: 1. Draper, White, and the military metaphor; 2. Politics, polemics, and the military milieu; 3. Warfare's toll in historical interpretation; 4. Towards a non-violent history; Part II. Darwinism and Evolutionary Thought: 5. Darwinism in transition; 6. The challenge of Lamarckian evolution; 7. The vogue of Herbert Spencer; 8. Darwinism and Neo-Darwinism; Part III. Theology and Evolution: 9. Christian anti-Darwinism: the realm of certainty and fixity; 10. Christian Darwinism: the role of providence and progress; 11. Christian Darwinism: the relevance of orthodox theology; 12. Darwinism and Darwinisticism in theology; Conclusion; Notes to the text; Bibliography; Index.

  7. Making a Theist out of Darwin: Asa Gray's Post-Darwinian Natural Theology

    Science.gov (United States)

    Russell Hunter, T.

    2012-07-01

    In March of 1860 the eminent Harvard Botanist and orthodox Christian Asa Gray began promoting the Origin of Species in hopes of securing a fair examination of Darwin's evolutionary theory among theistic naturalists. To this end, Gray sought to demonstrate that Darwin had not written atheistically and that his theory of evolution by natural selection had not presented any new scientific or theological difficulties for traditional Christian belief. From his personal correspondence with the author of the Origin, Gray well knew that Darwin did not affirm God's "particular" design of nature but conceded to the possibility that evolution proceeded according to "designed laws." From this concession, Gray attempted to develop a post-Darwinian natural theology which encouraged theistic naturalists to view God's design of nature through the evolutionary process in a manner similar to the way in which they viewed God's Providential interaction with human history. Indeed, securing a fair reading of the Origin was not Gray's sole aim as a promoter of Darwinian ideas. In Darwin's theory of natural selection, Gray believed he had discovered the means by which a more robust natural theological conception of the living and evolving natural world could be developed. In this paper I outline Gray's efforts to produce and popularize a theistic interpretation of Darwinian theory in order to correct various misconceptions concerning Gray's natural theological views and their role in the Darwinian Revolution.

  8. Eukaryotic protein domains as functional units of cellular evolution

    DEFF Research Database (Denmark)

    Jin, Jing; Xie, Xueying; Chen, Chen;

    2009-01-01

    domain compositions and functional properties, termed "domain clubs," which we use to compare multiple eukaryotic proteomes. This analysis shows that different domain types can take distinct evolutionary trajectories, which correlate with the conservation, gain, expansion, or decay of particular...... of different domain types to assess the molecular compartment occupied by each domain. This reveals that specific subsets of domains demarcate particular cellular processes, such as growth factor signaling, chromatin remodeling, apoptotic and inflammatory responses, or vesicular trafficking. We suggest...

  9. The origins of cellular life.

    Science.gov (United States)

    Schrum, Jason P; Zhu, Ting F; Szostak, Jack W

    2010-09-01

    Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of functional information. Recent studies of vesicles composed of fatty-acid membranes have shed considerable light on pathways for protocell growth and division, as well as means by which protocells could take up nutrients from their environment. Additional work with genetic polymers has provided insight into the potential for chemical genome replication and compatibility with membrane encapsulation. The integration of a dynamic fatty-acid compartment with robust, generalized genetic polymer replication would yield a laboratory model of a protocell with the potential for classical Darwinian biological evolution, and may help to evaluate potential pathways for the emergence of life on the early Earth. Here we discuss efforts to devise such an integrated protocell model.

  10. Evolution of Cellular Inclusions in Bietti’s Crystalline Dystrophy

    Directory of Open Access Journals (Sweden)

    Emiko Furusato

    2010-03-01

    Full Text Available Bietti’s crystalline dystrophy (BCD consists of small, yellow-white, glistening intraretinal crystals in the posterior pole, tapetoretinal degeneration with atrophy of the retinal pigment epithelium (RPE and “sclerosis” of the choroid; in addition, sparking yellow crystals in the superficial marginal cornea are also found in many patients. BCD is inherited as an autosomal-recessive trait (4q35-tel and usually has its onset in the third decade of life. This review focuses on the ultrastructure of cellular crystals and lipid inclusions of BCD.

  11. Sub-classes and evolution stability of Wolfram's classesin the total-rule cellular automata

    Institute of Scientific and Technical Information of China (English)

    YAN Guangwu; TIAN Feng; DONG Yinfeng

    2004-01-01

    In this paper, we propose a concept of sub-classes and its evolution stability for the Wolfram's classes. Firstly, we obtain the sub-classes of the Wolfram's class IV, gene-piece of these sub-classes and their existing circumstance. Secondly, we introduce a new concept, the evolution stability, for the Wolfram's classes and sub-classes of Wolfram's class IV. Lastly, we find that Wolfram's classes I, II, and III have the evolution stability, but sub-classes of the Wolfram's class IV have not the evolution stability for the total rule cellular automata.

  12. Cost-effective add-drop fiber optic microcell system for CDMA cellular network evolution

    Science.gov (United States)

    Cheong, Jong M.; Ham, David; Song, Myoung H.; Son, Yong S.

    2001-10-01

    In this paper, we propose a cost effective add-drop fiber-optic microcell system for CDMA cellular network. The add-drop microcell is compatible with the existing PCS or digital cellular services (DCS) systems & networks. The proposed fiber-optic add-drop access network is independent of the different channels and gives flexibility in evolution scenarios. This add-drop network provides the optimum solution to cut-down the additional rental fees by sharing the existing fiber-optic cable for cellular/PCS service providers who want to provide third generation services.

  13. Cellular protein quality control and the evolution of aggregates in spinocerebellar ataxia type 3 (SCA3)

    NARCIS (Netherlands)

    Seidel, K.; Meister, M.; Dugbartey, G. J.; Zijlstra, M. P.; Vinet, J.; Brunt, E. R. P.; van Leeuwen, F. W.; Rueb, U.; Kampinga, H. H.; den Dunnen, W. F. A.

    2012-01-01

    K. Seidel, M. Meister, G. J. Dugbartey, M. P. Zijlstra, J. Vinet, E. R. P. Brunt, F. W. van Leeuwen, U. Rub, H. H. Kampinga and W. F. A. den Dunnen (2012) Neuropathology and Applied Neurobiology38, 548558 Cellular protein quality control and the evolution of aggregates in spinocerebellar ataxia type

  14. Quantum field as a quantum cellular automaton: The Dirac free evolution in one dimension

    Energy Technology Data Exchange (ETDEWEB)

    Bisio, Alessandro; D’Ariano, Giacomo Mauro; Tosini, Alessandro, E-mail: alessandro.tosini@unipv.it

    2015-03-15

    We present a quantum cellular automaton model in one space-dimension which has the Dirac equation as emergent. This model, a discrete-time and causal unitary evolution of a lattice of quantum systems, is derived from the assumptions of homogeneity, parity and time-reversal invariance. The comparison between the automaton and the Dirac evolutions is rigorously set as a discrimination problem between unitary channels. We derive an exact lower bound for the probability of error in the discrimination as an explicit function of the mass, the number and the momentum of the particles, and the duration of the evolution. Computing this bound with experimentally achievable values, we see that in that regime the QCA model cannot be discriminated from the usual Dirac evolution. Finally, we show that the evolution of one-particle states with narrow-band in momentum can be efficiently simulated by a dispersive differential equation for any regime. This analysis allows for a comparison with the dynamics of wave-packets as it is described by the usual Dirac equation. This paper is a first step in exploring the idea that quantum field theory could be grounded on a more fundamental quantum cellular automaton model and that physical dynamics could emerge from quantum information processing. In this framework, the discretization is a central ingredient and not only a tool for performing non-perturbative calculation as in lattice gauge theory. The automaton model, endowed with a precise notion of local observables and a full probabilistic interpretation, could lead to a coherent unification of a hypothetical discrete Planck scale with the usual Fermi scale of high-energy physics. - Highlights: • The free Dirac field in one space dimension as a quantum cellular automaton. • Large scale limit of the automaton and the emergence of the Dirac equation. • Dispersive differential equation for the evolution of smooth states on the automaton. • Optimal discrimination between the

  15. EVOLUTION OF WIRELESS MOBILE COMMUNICATION NETWORKS AND FUTURE OF CELLULAR MARKET IN INDIA

    Directory of Open Access Journals (Sweden)

    Arjun Kondur

    2012-10-01

    Full Text Available In this paper, we discuss the evolution of the mobile communication systems from GSM to LTE (2G to 4G and the trends in the mobile communication industry. The Global System for Mobile Communication (GSM is a well established cellular system targeted here due to its engineering success and the large number of users currently using the services. The flexibility of wireless networks over voice and data transmission makes it one of the most popular modes of communication. Evolution to next generation services depends on an addition of new services and new features to the existing networks or even an integration of different communication technologies. With the invention of the devices such as tablets and smart phones the need to improve the data transmission rates and transmission efficiency has increased to higher than ever before. In this paper, we focus at some of the important issues pertaining to the evolution of mobile communication networks and predict the future of the networks based on the analysis of the cellular market in India. Since GSM networks accounts for more than 75% of the world wide cellular network, only the evolution of GSM network has been discussed in this paper.

  16. Modeling the dendritic evolution and micro-segregation of cast alloy with cellular automaton

    Institute of Scientific and Technical Information of China (English)

    Qiang Li; Dianzhong Li; Bainian Qian

    2004-01-01

    In order to precisely describe the dendritic morphology and micro-segregation during solidification process, a novel continuous model concerning the different physical properties in the solid phase, liquid phase and interface is developed. Coupling the heat and solute diffusion with the transition rules, the dendrite evolution is simulated by cellular automaton method. Then, the solidification microstructure evolution of a small ingot is simulated by using this method. The simulated results indicate that this model can simulate the dendrite growth, show the second dendrite arm and tertiary dendrite arm, and reveal the micro-segregation in the inter-dendritic zones. Furthermore, the columnar-to-equiaxed transition (CET) is predicted.

  17. The Darwinian revolution: rethinking its meaning and significance.

    Science.gov (United States)

    Ruse, Michael

    2009-06-16

    The Darwinian revolution is generally taken to be one of the key events in the history of Western science. In recent years, however, the very notion of a scientific revolution has come under attack, and in the specific case of Charles Darwin and his Origin of Species there are serious questions about the nature of the change (if there was such) and the specifically Darwinian input. This article considers these issues by addressing these questions: Was there a Darwinian revolution? That is, was there a revolution at all? Was there a Darwinian revolution? That is, what was the specific contribution of Charles Darwin? Was there a Darwinian revolution? That is, what was the conceptual nature of what occurred on and around the publication of the Origin? I argue that there was a major change, both scientifically and in a broader metaphysical sense; that Charles Darwin was the major player in the change, although one must qualify the nature and the extent of the change, looking particularly at things in a broader historical context than just as an immediate event; and that the revolution was complex and we need the insights of rather different philosophies of scientific change to capture the whole phenomenon. In some respects, indeed, the process of analysis is still ongoing and unresolved.

  18. Debating Darwin in Spain: anti-darwinian evolutionary theories and modern synthesis

    Directory of Open Access Journals (Sweden)

    Pelayo, Francisco

    2009-12-01

    Full Text Available Centenary celebrations of Darwin’s birth were held in Valencia and Lorca in 1909. Fifty years later, the meetings and the publications of the Spanish scientific community on the occasion of the centenary of the publication of On the Origin of Species showed a proximity and an acceptance towards the theses of the evolutionary modern synthesis. During the first half of the 20th century, there were controversies in Spain between the Darwinian and anti-Darwinian positions. In addition, non-Darwinian evolutionary theories were spread and supported. Though the assumptions of the synthetic theory of evolution were soon known, commented and discussed, the majority trend in the 40’s and 50’s was to incline towards finalist and vitalist interpretations of evolution.

    En 1909 se celebraron en Valencia y Lorca homenajes a Darwin en el primer centenario del nacimiento. Medio siglo después, los actos y publicaciones de la comunidad científica española con motivo del centenario de la publicación de On the Origin of Species, coincidieron en mostrar una cercanía y aceptación hacia las tesis de la síntesis moderna de la evolución. Durante la primera mitad del siglo XX, en España se desarrollaron controversias entre las posturas darwinistas y antidarwinistas y se difundieron y apoyaron teorías evolucionistas no darwinistas. Aunque pronto se conocieron, comentaron y discutieron los supuestos de la teoría sintética de la evolución, la tendencia mayoritaria en los años cuarenta y cincuenta fue inclinarse por interpretaciones vitalistas y finalistas.

  19. 2D cellular automaton model for the evolution of active region coronal plasmas

    CERN Document Server

    Fuentes, Marcelo López

    2016-01-01

    We study a 2D cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops (EBTEL) model to compute the response of the plasma to the heating events. Using the known response of the XRT telescope on board Hinode we also obtain synthetic data. The model obeys easy to understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of -2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in t...

  20. From Darwinian to Technological Evolution: Forgetting the Human Lottery

    Directory of Open Access Journals (Sweden)

    Giorgio Tintino

    2014-01-01

    Full Text Available Las tecnologías GRIN (-geno, -robo, -info, nano prometen cambiar la constitución interna del cuerpo humano y su propia existencia. Esta transformación consiste en la estructura de nuestras vidas y representan un –¿valiente?– nuevo mundo que tenemos que explorar y administrar. En este sentido, lo instrumentos tradicionales del humanismo parecen bastante insuficientes para pensar el siglo de la biotecnología y existe una fuerte demanda de un nuevo pensamiento para la evolución y la historia concreta de la vida. La filosofía posthumana intenta tomar este nuevo camino de la existencia humana en toda su novedad ya que las tecnologías GRIN parecen prometer caminos nuevos y inesperados de la evolución de los seres vivos y, sobre todo, humanos. Por esto, el pensamiento post-humano, como vemos, es una nueva visión antropológica sobre la evolución concreta del ser humano, una visión general que implica una revolución epistemológica de las categorías que el humanismo utiliza para conceptualizar el viaje que divide a los Homo sapiens del hombre. ¿Pero, serà correcto?

  1. Emergence of Darwinian theories on evolution of Homo sapiens (Catarrhini: Hominidae and their relevance for social sciences Origen de las teorías darwinianas de la evolución de Homo sapiens (Catarrhini: Hominidae y su importancia para las ciencias sociales

    Directory of Open Access Journals (Sweden)

    GERMÁN MANRÍQUEZ

    2010-12-01

    Full Text Available Despite the great impact that the Darwinian theories on organic evolution have had in the development and consolidation of biology as an autonomous scientific discipline, their relevance in social sciences, and particularly in archaeology and anthropology still remain ambiguous. This ambiguity is reflected in the classical interpretation of Darwin's work pervading Social Sciences during more than one century, according to which the same ideas that contributed to the understanding of natural processes from a scientific perspective would be at the basis of a misleading interpretation of the evolution of human societies due to the application of the principie of natural selection to the social processes. Here we show how the works of T.H. Huxley and A.R. Wallace positively stimulated Darwin to answer to the question about the origin of human populations considering culture from an evolutionary perspective as a factor opposed to the negative action of natural selection on human societies, thus refuting the classical interpretation of Darwin's work made by Social Sciences. The role played by the biocultural approach in understanding human evolution as well as in promoting the integrative thinking in Social Sciences is also discussed.A pesar del enorme impacto que las teorías de Darwin sobre la evolución orgánica han tenido en el desarrollo y la consolidación de la biología como disciplina científica autónoma, su pertinencia en ciencias sociales, y particularmente en arqueología y antropología sigue siendo ambigua. Esta ambigüedad se refleja en la interpretación clásica de la obra de Darwin que ha permanecido en las ciencias sociales durante más de un siglo, según la cual las mismas ideas que contribuyeron a la comprension de los procesos naturales desde una perspectiva científica estarían en la base de una interpretación errónea de la evolución de las sociedades humanas debido a la aplicación del principio de la selección natural

  2. Medicine in the 21st century: towards a Darwinian medical epistemology.

    Science.gov (United States)

    Román-Franco, Angel A

    2009-12-01

    In this review we reflect upon the new science of Darwinian medicine. It is a tenet of modern biology that evolutionary theory as proposed by Charles Darwin and further refined via the new synthesis is the common thread that ties all of biological inquiry into a coherent whole. This review aims at making clear how evolution by natural selection is relevant to medicine. A set of pertinent examples linking Homo sapiens sapiens' present disease conditions to its evolution during the Late Pleistocene and Holocene epochs are discussed. The review concludes with observations as to the epistemological value of evolutionary theory as a heuristic tool for articulating a medical paradigm in accord with modern biology.

  3. A good Darwinian? Winwood Reade and the making of a late Victorian evolutionary epic.

    Science.gov (United States)

    Hesketh, Ian

    2015-06-01

    In 1871 the travel writer and anthropologist W. Winwood Reade (1838-1875) was inspired by his correspondence with Darwin to turn his narrow ethnological research on West African tribes into the broadest history imaginable, one that would show Darwin's great principle of natural selection at work throughout the evolutionary history of humanity, stretching back to the origins of the universe itself. But when Martyrdom of Man was published in 1872, Reade confessed that Darwin would not likely find him a very good Darwinian, as he was unable to show that natural selection was anything more than a secondary law that arranges all details. When it came to historicising humans within the sweeping history of all creation, Reade argued that the primary law was that of development, a less contentious theory of human evolution that was better suited to Reade's progressive and teleological history of life. By focussing on the extensive correspondence between Reade and Darwin, this paper reconstructs the attempt to make an explicitly Darwinian evolutionary epic in order to shed light on the moral and aesthetic demands that worked to give shape to Victorian efforts to historicise humans within a vastly expanding timeframe.

  4. The Mastodon in the room: how Darwinian is neo-Darwinism?

    Science.gov (United States)

    Brooks, Daniel R

    2011-03-01

    Failing to acknowledge substantial differences between Darwinism and neo-Darwinism impedes evolutionary biology. Darwin described evolution as the outcome of interactions between the nature of the organism and the nature of the conditions, each relatively autonomous but both historically and spatially intertwined. Furthermore, he postulated that the nature of the organism was more important than the nature of the conditions, leading to natural selection as an inevitable emergent product of biological systems. The neo-Darwinian tradition assumed a creative rather than selective view of natural selection, with the nature of the organism determined by the nature of the conditions, rendering the nature of the organism and temporal contingency unnecessary. Contemporary advances in biology, specifically the phylogenetics revolution and evo-devo, underscore the significance of history and the nature of the organism in biology. Darwinism explains more biology better, and better resolves apparent anomalies between living systems and more general natural laws, than does neo-Darwinism. The "extended" or "expanded" synthesis currently called for by neo-Darwinians is Darwinism.

  5. Evolution of altruism in spatial prisoner's dilemma: Intra- and inter-cellular interactions

    Science.gov (United States)

    Yokoi, Hiroki; Uehara, Takashi; Sakata, Tomoyuki; Naito, Hiromi; Morita, Satoru; Tainaka, Kei-ichi

    2014-12-01

    Iterated prisoner's dilemma game is carried out on lattice with “colony” structure. Each cell is regarded as a colony which contains plural players with an identical strategy. Both intra- and inter-cellular interactions are assumed. In the former a player plays with all other players in the same colony, while in the latter he plays with one player each from adjacent colonies. Spatial patterns among four typical strategies exhibit various dynamics and winners. Both theory and simulation reveal that All Cooperation (AC) wins, when the members of colony or the intensity of noise increases. This result explains the evolution of altruism in animal societies, even though errors easily occur in animal communications.

  6. Darwin and Reductionisms: Victorian, Neo-Darwinian and Postgenomic Biologies

    Directory of Open Access Journals (Sweden)

    Angelique Richardson

    2010-10-01

    Full Text Available This article compares the open-ended Darwinism of Charles Darwin, George Lewes, George Eliot and Thomas Hardy with reductive post-Weismann and early eugenist views and more recent neo-Darwinian ideas including literary Darwinism. It argues that some Victorians had a clear sense of the complexities of the natural world, and of the centrality of environment to life. This awareness contrasts with the processes of divorce and isolation that underpin neo-Darwinian understandings of evolutionary development. But biologists and philosophers of biology are now emphasising the complex and dynamic relations between organism and environment in ways that would have appealed to Darwin’s contemporaries. The article establishes that there are significant parallels between mid-Victorian and postgenomic thought.

  7. Was there a Darwinian Revolution? Yes, no, and maybe!

    Science.gov (United States)

    Ruse, Michael

    2014-01-01

    Was there a Darwinian Revolution and was it but part of the Scientific Revolution? Before Thomas Kuhn's Structure of Scientific Revolutions in 1962, most people thought that there was a Darwinian Revolution, that it was in some sense connected to the Scientific Revolution, but that neither question nor answer was terribly interesting. Then revolutions in science became a matter of intense debate, not so much about their very existence but about their nature. Was there a switch in world-views? Did the facts change? What was the importance of social groups? And so forth. Recently however some students of the history of science have started to argue that the very questions are misconceived and that there cannot have been a Darwinian Revolution and its relationship to the Scientific Revolution is imaginary because there are no such revolutions in science! This paper takes a sympathetic look at these issues, concluding that there is still life in the revolution-in-science issue, that Kuhn's book was seminal and still has things of importance to say, but that matters are more complex and more interesting than we thought back then.

  8. The Intracellular Destiny of the Protein Corona: A Study on its Cellular Internalization and Evolution.

    Science.gov (United States)

    Bertoli, Filippo; Garry, David; Monopoli, Marco P; Salvati, Anna; Dawson, Kenneth A

    2016-11-22

    It has been well established that the early stages of nanoparticle-cell interactions are governed, at least in part, by the layer of proteins and other biomolecules adsorbed and slowly exchanged with the surrounding biological media (biomolecular corona). Subsequent to membrane interactions, nanoparticles are typically internalized into the cell and trafficked along defined pathways such as, in many cases, the endolysosomal pathway. Indeed, if the original corona is partially retained on the nanoparticle surface, the biomolecules in this layer may play an important role in determining subsequent cellular processing. In this work, using a combination of organelle separation and fluorescence labeling of the initial extracellular corona, we clarify its intracellular evolution as nanoparticles travel within the cell. We show that specific proteins present in the original protein corona are retained on the nanoparticles until they accumulate in lysosomes, and, once there, they are degraded. We also report on how different bare surfaces (amino and carboxyl modified) affect the details of this evolution. One overarching discovery is that the same serum proteins can exhibit different intracellular processing when carried inside cells by nanoparticles, as components of their corona, compared to what is observed when they are transported freely from the extracellular medium.

  9. Research and Application on Fractional-Order Darwinian PSO Based Adaptive Extended Kalman Filtering Algorithm

    Directory of Open Access Journals (Sweden)

    Qiguang Zhu

    2014-05-01

    Full Text Available To resolve the difficulty in establishing accurate priori noise model for the extended Kalman filtering algorithm, propose the fractional-order Darwinian particle swarm optimization (PSO algorithm has been proposed and introduced into the fuzzy adaptive extended Kalman filtering algorithm. The natural selection method has been adopted to improve the standard particle swarm optimization algorithm, which enhanced the diversity of particles and avoided the premature. In addition, the fractional calculus has been used to improve the evolution speed of particles. The PSO algorithm after improved has been applied to train fuzzy adaptive extended Kalman filter and achieve the simultaneous localization and mapping. The simulation results have shown that compared with the geese particle swarm optimization training of fuzzy adaptive extended Kalman filter localization and mapping algorithm, has been greatly improved in terms of localization and mapping.

  10. 22号初等元胞自动机的演化复杂性%EVOLUTION COMPLEXITY OF THE ELEMENTARY CELLULAR AUTOMATON OF RULE 22

    Institute of Scientific and Technical Information of China (English)

    王益; 江志松

    2002-01-01

    Cellular automata are the discrete dynamical systems of simple construction but with complex and varied behaviors.In this paper,the elementary cellular automaton of rule 22 is studied by the tools of formal language theory and symbolic dynamics.Its temporal evolution orbits are coarse-grained into evolution sequences and the evolution languages are defined.It is proved that for every n≥2 its width n-evolution language is not regular.

  11. BioJazz: in silico evolution of cellular networks with unbounded complexity using rule-based modeling.

    Science.gov (United States)

    Feng, Song; Ollivier, Julien F; Swain, Peter S; Soyer, Orkun S

    2015-10-30

    Systems biologists aim to decipher the structure and dynamics of signaling and regulatory networks underpinning cellular responses; synthetic biologists can use this insight to alter existing networks or engineer de novo ones. Both tasks will benefit from an understanding of which structural and dynamic features of networks can emerge from evolutionary processes, through which intermediary steps these arise, and whether they embody general design principles. As natural evolution at the level of network dynamics is difficult to study, in silico evolution of network models can provide important insights. However, current tools used for in silico evolution of network dynamics are limited to ad hoc computer simulations and models. Here we introduce BioJazz, an extendable, user-friendly tool for simulating the evolution of dynamic biochemical networks. Unlike previous tools for in silico evolution, BioJazz allows for the evolution of cellular networks with unbounded complexity by combining rule-based modeling with an encoding of networks that is akin to a genome. We show that BioJazz can be used to implement biologically realistic selective pressures and allows exploration of the space of network architectures and dynamics that implement prescribed physiological functions. BioJazz is provided as an open-source tool to facilitate its further development and use. Source code and user manuals are available at: http://oss-lab.github.io/biojazz and http://osslab.lifesci.warwick.ac.uk/BioJazz.aspx.

  12. Toward the Darwinian transition: Switching between distributed and speciated states in a simple model of early life

    Science.gov (United States)

    Arnoldt, Hinrich; Strogatz, Steven H.; Timme, Marc

    2015-11-01

    It has been hypothesized that in the era just before the last universal common ancestor emerged, life on earth was fundamentally collective. Ancient life forms shared their genetic material freely through massive horizontal gene transfer (HGT). At a certain point, however, life made a transition to the modern era of individuality and vertical descent. Here we present a minimal model for stochastic processes potentially contributing to this hypothesized "Darwinian transition." The model suggests that HGT-dominated dynamics may have been intermittently interrupted by selection-driven processes during which genotypes became fitter and decreased their inclination toward HGT. Stochastic switching in the population dynamics with three-point (hypernetwork) interactions may have destabilized the HGT-dominated collective state and essentially contributed to the emergence of vertical descent and the first well-defined species in early evolution. A systematic nonlinear analysis of the stochastic model dynamics covering key features of evolutionary processes (such as selection, mutation, drift and HGT) supports this view. Our findings thus suggest a viable direction out of early collective evolution, potentially enabling the start of individuality and vertical Darwinian evolution.

  13. Global Rebalancing of Cellular Resources by Pleiotropic Point Mutations Illustrates a Multi-scale Mechanism of Adaptive Evolution

    DEFF Research Database (Denmark)

    Utrilla, José; O'Brien, Edward J.; Chen, Ke

    2016-01-01

    Pleiotropic regulatory mutations affect diverse cellular processes, posing a challenge to our understanding of genotype-phenotype relationships across multiple biological scales. Adaptive laboratory evolution (ALE) allows for such mutations to be found and characterized in the context of clear...... selection pressures. Here, several ALE-selected single-mutation variants in RNA polymerase (RNAP) of Escherichia coli are detailed using an integrated multi-scale experimental and computational approach. While these mutations increase cellular growth rates in steady environments, they reduce tolerance...... to stress and environmental fluctuations. We detail structural changes in the RNAP that rewire the transcriptional machinery to rebalance proteome and energy allocation toward growth and away from several hedging and stress functions. We find that while these mutations occur in diverse locations in the RNAP...

  14. The Darwinian revolution La revolución darwiniana

    Directory of Open Access Journals (Sweden)

    ÓSCAR M CHAVES

    2010-06-01

    Full Text Available The scientific revolution probably began at 16th century with the heliocentric theory of the eminent astronomer Nicolaus Copernicus, but it was culminated with the masterful discoveries of Galileo Galilei and Isaac Newton at 17th century who revealed that planet movements around the sun and other similar phenomena can be explained by simple mechanical laws of physics and astronomy. However, the origin, complexity and configuration of living beings remained in the mystery until 19th century, with the publication of "On the origin of species". In this essay I discuss the importance of the Darwinian scientific revolution, its beginnings, and the main objections of creationists to his evolutionary ideas. Darwin demonstrated that the origin and complexity of living beings can be explained by natural processes, without the intervention of a supernatural being. However, the beginnings of the Darwinian revolution were particularly difficult and 128 years after his death, the controversy between evolutionists and creationists still persists.Con base en la teoría heliocéntrica formulada por Nicolás Copérnico en el siglo XVI, Galileo Galilei e Isaac Newton iniciaron la revolución científica al demostrar que los movimientos de los planetas alrededor del sol podían ser explicados por las leyes de la física y la astronomía. No obstante, el origen y complejidad del mundo orgánico permaneció en el misterio hasta mediados del siglo XIX, cuando Charles Darwin publicó su célebre obra 'El origen de las especies'. Desde entonces, la selección natural se ha convertido en una de las teorías científicas más umversalmente aceptadas y Darwin en el fundador de la biología moderna. En este ensayo se discute la importancia de la revolución darwiniana, sus inicios y las principales objeciones de sus detractores. Darwin demostró que el origen y la complejidad de los seres vivos pueden ser explicados por procesos naturales sin necesidad de la intervenci

  15. Darwinian hydrology: can the methodology Charles Darwin pioneered help hydrologic science?

    Science.gov (United States)

    Harman, C.; Troch, P. A.

    2013-05-01

    There have been repeated calls for a Darwinian approach to hydrologic science or for a synthesis of Darwinian and Newtonian approaches, to deepen understanding the hydrologic system in the larger landscape context, and so develop a better basis for predictions now and in an uncertain future. But what exactly makes a Darwinian approach to hydrology "Darwinian"? While there have now been a number of discussions of Darwinian approaches, many referencing Harte (2002), the term is potentially a source of confusion while its connections to Darwin remain allusive rather than explicit. Here we discuss the methods that Charles Darwin pioneered to understand a variety of complex systems in terms of their historical processes of change. We suggest that the Darwinian approach to hydrology follows his lead by focusing attention on the patterns of variation in populations, seeking hypotheses that explain these patterns in terms of the mechanisms and conditions that determine their historical development, using deduction and modeling to derive consequent hypotheses that follow from a proposed explanation, and critically testing these hypotheses against new observations. It is not sufficient to catalogue the patterns or predict them statistically. Nor is it sufficient for the explanations to amount to a "just-so" story not subject to critical analysis. Darwin's theories linked present-day variation to mechanisms that operated over history, and could be independently test and falsified by comparing new observations to the predictions of corollary hypotheses they generated. With a Darwinian framework in mind it is easy to see that a great deal of hydrologic research has already been done that contributes to a Darwinian hydrology - whether deliberately or not. The various heuristic methods that Darwin used to develop explanatory theories - extrapolating mechanisms, space for time substitution, and looking for signatures of history - have direct application in hydrologic science. Some

  16. Fractional order Darwinian particle swarm optimization applications and evaluation of an evolutionary algorithm

    CERN Document Server

    Couceiro, Micael

    2015-01-01

    This book examines the bottom-up applicability of swarm intelligence to solving multiple problems, such as curve fitting, image segmentation, and swarm robotics. It compares the capabilities of some of the better-known bio-inspired optimization approaches, especially Particle Swarm Optimization (PSO), Darwinian Particle Swarm Optimization (DPSO) and the recently proposed Fractional Order Darwinian Particle Swarm Optimization (FODPSO), and comprehensively discusses their advantages and disadvantages. Further, it demonstrates the superiority and key advantages of using the FODPSO algorithm, suc

  17. Characterization of the Evolution of Nonlinear Uniform Cellular Automata in the Light of Deviant States

    Directory of Open Access Journals (Sweden)

    Pabitra Pal Choudhury

    2011-01-01

    Full Text Available Dynamics of a nonlinear cellular automaton (CA is, in general asymmetric, irregular, and unpredictable as opposed to that of a linear CA, which is highly systematic and tractable, primarily due to the presence of a matrix handle. In this paper, we present a novel technique of studying the properties of the State Transition Diagram of a nonlinear uniform one-dimensional cellular automaton in terms of its deviation from a suggested linear model. We have considered mainly elementary cellular automata with neighborhood of size three, and, in order to facilitate our analysis, we have classified the Boolean functions of three variables on the basis of number and position(s of bit mismatch with linear rules. The concept of deviant and nondeviant states is introduced, and hence an algorithm is proposed for deducing the State Transition Diagram of a nonlinear CA rule from that of its nearest linear rule. A parameter called the proportion of deviant states is introduced, and its dependence on the length of the CA is studied for a particular class of nonlinear rules.

  18. Inseparable tandem: evolution chooses ATP and Ca2+ to control life, death and cellular signalling.

    Science.gov (United States)

    Plattner, Helmut; Verkhratsky, Alexei

    2016-08-05

    From the very dawn of biological evolution, ATP was selected as a multipurpose energy-storing molecule. Metabolism of ATP required intracellular free Ca(2+) to be set at exceedingly low concentrations, which in turn provided the background for the role of Ca(2+) as a universal signalling molecule. The early-eukaryote life forms also evolved functional compartmentalization and vesicle trafficking, which used Ca(2+) as a universal signalling ion; similarly, Ca(2+) is needed for regulation of ciliary and flagellar beat, amoeboid movement, intracellular transport, as well as of numerous metabolic processes. Thus, during evolution, exploitation of atmospheric oxygen and increasingly efficient ATP production via oxidative phosphorylation by bacterial endosymbionts were a first step for the emergence of complex eukaryotic cells. Simultaneously, Ca(2+) started to be exploited for short-range signalling, despite restrictions by the preset phosphate-based energy metabolism, when both phosphates and Ca(2+) interfere with each other because of the low solubility of calcium phosphates. The need to keep cytosolic Ca(2+) low forced cells to restrict Ca(2+) signals in space and time and to develop energetically favourable Ca(2+) signalling and Ca(2+) microdomains. These steps in tandem dominated further evolution. The ATP molecule (often released by Ca(2+)-regulated exocytosis) rapidly grew to be the universal chemical messenger for intercellular communication; ATP effects are mediated by an extended family of purinoceptors often linked to Ca(2+) signalling. Similar to atmospheric oxygen, Ca(2+) must have been reverted from a deleterious agent to a most useful (intra- and extracellular) signalling molecule. Invention of intracellular trafficking further increased the role for Ca(2+) homeostasis that became critical for regulation of cell survival and cell death. Several mutually interdependent effects of Ca(2+) and ATP have been exploited in evolution, thus turning an originally

  19. Evolution and regulation of cellular periodic processes: a role for paralogues

    DEFF Research Database (Denmark)

    Trachana, Kalliopi; Jensen, Lars Juhl; Bork, Peer

    2010-01-01

    paralogues. Thus, diverged temporal expression of paralogues seems to facilitate cellular orchestration under different periodic stimuli. Lineage-specific functional repertoires of periodic-associated paralogues imply that this mode of regulation might have evolved independently in several organisms....... performed the first systematic comparison in three organisms (Homo sapiens, Arabidopsis thaliana and Saccharomyces cerevisiae) by using public microarray data. We observed that although diurnal-regulated and ultradian-regulated genes are not generally cell-cycle-regulated, they tend to have cell-cycle-regulated...

  20. A model of epigenetic evolution based on theory of open quantum systems.

    Science.gov (United States)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2013-12-01

    We present a very general model of epigenetic evolution unifying (neo-)Darwinian and (neo-)Lamarckian viewpoints. The evolution is represented in the form of adaptive dynamics given by the quantum(-like) master equation. This equation describes development of the information state of epigenome under the pressure of an environment. We use the formalism of quantum mechanics in the purely operational framework. (Hence, our model has no direct relation to quantum physical processes inside a cell.) Thus our model is about probabilities for observations which can be done on epigenomes and it does not provide a detailed description of cellular processes. Usage of the operational approach provides a possibility to describe by one model all known types of cellular epigenetic inheritance.

  1. Darwinian Reasoning and Waltz’s Theory of International Politics:Elimination, imitation and the selection of behaviours

    OpenAIRE

    Wilson, Iain

    2013-01-01

    There are important parallels between the pattern of inference Kenneth Waltz uses in his Theory of International Politics and early Darwinian reasoning. This early Darwinian thinking has needed to be significantly refined by modern evolutionary biologists, and their amendments are equally relevant to Waltz’s model. Waltz allows for states to imitate each other, and also accepts that they are only rarely eliminated from the system. Modern Darwinian analyses show that where elimination is rare ...

  2. Cellular automaton simulation of microstructure evolution during austenite decomposition under continuous cooling conditions

    Indian Academy of Sciences (India)

    M R Varma; R Sasikumar; S G K Pillai; P K Nair

    2001-06-01

    A two-dimensional diffusion based model is developed to describe transformation of austenite into ferrite and pearlite under continuous cooling conditions. The nucleation of ferrite is assumed to occur over grain boundaries and the nucleation of pearlite is assumed to be taking place all over the grain and at growing ferrite–austenite interfaces, when the composition and temperature conditions are favourable. A cellular automaton algorithm, with transformation rules based on this model is used for the growth of ferrite and pearlite. Model predicted results for continuous cooling transformations are verified by comparing the model predicted microstructure features with the experimental measurements for two sets of plain carbon steels of different composition and austenite grain size. Using the model, it is possible to generate results like undercooling to start ferrite and pearlite transformations, which are difficult to obtain experimentally.

  3. Increasing the coverage area through relay node deployment in long term evolution advanced cellular networks

    Science.gov (United States)

    Aldhaibani, Jaafar A.; Ahmad, R. B.; Yahya, A.; Azeez, Suzan A.

    2015-05-01

    Wireless multi-hop relay networks have become very important technologies in mobile communications. These networks ensure high throughput and coverage extension with a low cost. The poor capacity at cell edges is not enough to meet with growing demand of high capacity and throughput irrespective of user's placement in the cellular network. In this paper we propose optimal placement of relay node that provides maximum achievable rate at users and enhances the throughput and coverage at cell edge region. The proposed scheme is based on the outage probability at users and taken on account the interference between nodes. Numerical analyses along with simulation results indicated there are an improvement in capacity for users at the cell edge is 40% increment from all cell capacity.

  4. Time evolution of shear-induced particle margination and migration in a cellular suspension

    Science.gov (United States)

    Qi, Qin M.; Shaqfeh, Eric S. G.

    2016-11-01

    The inhomogeneous center-of-mass distributions of red blood cells and platelets normal to the flow direction in small vessels play a significant role in hemostasis and drug delivery. Under pressure-driven flow in channels, the migration of deformable red blood cells at steady state is characterized by a cell-free or Fahraeus-Lindqvist layer near the vessel wall. Rigid particles such as platelets, however, "marginate" and thus develop a near-wall excess concentration. In order to evaluate the role of branching and design suitable microfluidic devices, it is important to investigate the time evolution of particle margination and migration from a non-equilibrium state and determine the corresponding entrance lengths. From a mechanistic point of view, deformability-induced hydrodynamic lift and shear-induced diffusion are essential mechanisms for the cross-flow migration and margination. In this talk, we determine the concentration distribution of red blood cells and platelets by solving coupled Boltzmann advection-diffusion equations for both species and explore their time evolution. We verify our model by comparing with large-scale, multi-cell simulations and experiments. Our Boltzmann collision theory serves as a fast alternative to large-scale simulations.

  5. Retrovolution: HIV–Driven Evolution of Cellular Genes and Improvement of Anticancer Drug Activation

    Science.gov (United States)

    Rossolillo, Paola; Winter, Flore; Simon-Loriere, Etienne; Gallois-Montbrun, Sarah; Negroni, Matteo

    2012-01-01

    In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK) gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K), an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research. PMID:22927829

  6. Retrovolution: HIV-driven evolution of cellular genes and improvement of anticancer drug activation.

    Science.gov (United States)

    Rossolillo, Paola; Winter, Flore; Simon-Loriere, Etienne; Gallois-Montbrun, Sarah; Negroni, Matteo

    2012-08-01

    In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK) gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K), an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research.

  7. Retrovolution: HIV-driven evolution of cellular genes and improvement of anticancer drug activation.

    Directory of Open Access Journals (Sweden)

    Paola Rossolillo

    2012-08-01

    Full Text Available In evolution strategies aimed at isolating molecules with new functions, screening for the desired phenotype is generally performed in vitro or in bacteria. When the final goal of the strategy is the modification of the human cell, the mutants selected with these preliminary screenings may fail to confer the desired phenotype, due to the complex networks that regulate gene expression in higher eukaryotes. We developed a system where, by mimicking successive infection cycles with HIV-1 derived vectors containing the gene target of the evolution in their genome, libraries of gene mutants are generated in the human cell, where they can be directly screened. As a proof of concept we created a library of mutants of the human deoxycytidine kinase (dCK gene, involved in the activation of nucleoside analogues used in cancer treatment, with the aim of isolating a variant sensitizing cancer cells to the chemotherapy compound Gemcitabine, to be used in gene therapy for anti-cancer approaches or as a poorly immunogenic negative selection marker for cell transplantation approaches. We describe the isolation of a dCK mutant, G12, inducing a 300-fold sensitization to Gemcitabine in cells originally resistant to the prodrug (Messa 10K, an effect 60 times stronger than the one induced by the wt enzyme. The phenotype is observed in different tumour cell lines irrespective of the insertion site of the transgene and is due to a change in specificity of the mutated kinase in favour of the nucleoside analogue. The mutations characterizing G12 are distant from the active site of the enzyme and are unpredictable on a rational basis, fully validating the pragmatic approach followed. Besides the potential interest of the G12 dCK variant for therapeutic purposes, the methodology developed is of interest for a large panel of applications in biotechnology and basic research.

  8. Prisoner's Dilemma cellular automata revisited: evolution of cooperation under environmental pressure

    CERN Document Server

    Alonso, J; Fort, H; Alonso, Julia; Fernandez, Ariel; Fort, Hugo

    2005-01-01

    We propose an extension of the evolutionary Prisoner's Dilemma cellular automata introduced by Nowak and May \\cite{nm92}, in which the pressure of the environment is taken into account. This is implemented by requiring that an individual needs to collect a score $U$ above a threshold $U_{min}$, representing vital resources (nutrients, energy, etc.). Thus agents, instead of evolving just by adopting the strategy of the most successful neighbour (who got $U^{msn}$), also take into account if $U^{msn}$ is above or below $U_{min}$. Three different model variants are considered: (1) If $U^{msn}

  9. Molecular and cellular changes associated with the evolution of novel jaw muscles in parrots.

    Science.gov (United States)

    Tokita, Masayoshi; Nakayama, Tomoki; Schneider, Richard A; Agata, Kiyokazu

    2013-02-01

    Vertebrates have achieved great evolutionary success due in large part to the anatomical diversification of their jaw complex, which allows them to inhabit almost every ecological niche. While many studies have focused on mechanisms that pattern the jaw skeleton, much remains to be understood about the origins of novelty and diversity in the closely associated musculature. To address this issue, we focused on parrots, which have acquired two anatomically unique jaw muscles: the ethmomandibular and the pseudomasseter. In parrot embryos, we observe distinct and highly derived expression patterns for Scx, Bmp4, Tgfβ2 and Six2 in neural crest-derived mesenchyme destined to form jaw muscle connective tissues. Furthermore, immunohistochemical analysis reveals that cell proliferation is more active in the cells within the jaw muscle than in surrounding connective tissue cells. This biased and differentially regulated mode of cell proliferation in cranial musculoskeletal tissues may allow these unusual jaw muscles to extend towards their new attachment sites. We conclude that the alteration of neural crest-derived connective tissue distribution during development may underlie the spatial changes in jaw musculoskeletal architecture found only in parrots. Thus, parrots provide valuable insights into molecular and cellular mechanisms that may generate evolutionary novelties with functionally adaptive significance.

  10. Direct Measurements of Human Colon Crypt Stem Cell Niche Genetic Fidelity: The Role of Chance in Non-Darwinian Mutation Selection

    Directory of Open Access Journals (Sweden)

    Haeyoun eKang

    2013-10-01

    Full Text Available Perfect human stem cell genetic fidelity would prevent aging and cancer. However, perfection would be difficult to achieve, and aging is universal and cancers common. A hypothesis is that because mutations are inevitable over a human lifetime, downstream mechanisms have evolved to manage the deleterious effects of beneficial and lethal mutations. In the colon, a crypt stem cell architecture reduces the number of mitotic cells at risk for mutation accumulation, and multiple niche stem cells ensure that a lethal mutation within any single stem cell does not lead to crypt death. In addition, the architecture of the colon crypt stem cell niche may harness probability or chance to randomly discard many beneficial mutations that might lead to cancer. An analysis of somatic chromosome copy number alterations (CNAs reveals a lack of perfect fidelity in individual normal human crypts, with age-related increases and higher frequencies in ulcerative colitis, a proliferative, inflammatory disease. The age-related increase in somatic CNAs appears consistent with relatively normal replication error and cell division rates. Surprisingly, and similar to point mutations in cancer genomes, the types of crypt mutations were more consistent with random fixation rather than selection. In theory, a simple non-Darwinian way to nullify selection is to reduce the size of the reproducing population. Fates are more determined by chance rather than selection in very small populations, and therefore selection may be minimized within small crypt niches. The desired effect is that many beneficial mutations that might lead to cancer are randomly lost by drift rather than fixed by selection. The subdivision of the colon into multiple very small stem cell niches may trade Darwinian evolution for non-Darwinian somatic cell evolution, capitulating to aging but reducing cancer risks.

  11. Chemical evolution and life

    Directory of Open Access Journals (Sweden)

    Malaterre Christophe

    2015-01-01

    Full Text Available In research on the origins of life, the concept of “chemical evolution” aims at explaining the transition from non-living matter to living matter. There is however strong disagreement when it comes to defining this concept more precisely, and in particular with reference to a chemical form of Darwinian evolution: for some, chemical evolution is nothing but Darwinian evolution applied to chemical systems before life appeared; yet, for others, it is the type of evolution that happened before natural selection took place, the latter being the birthmark of living systems. In this contribution, I review the arguments defended by each side and show how both views presuppose a dichotomous definition of “life”.

  12. Darwinian adaptation of proteorhodopsin to different light intensities in the marine environment

    Science.gov (United States)

    Bielawski, Joseph P.; Dunn, Katherine A.; Sabehi, Gazalah; Béjà, Oded

    2004-01-01

    Proteorhodopsin, a retinal-binding protein, represents a potentially significant source of light-driven energy production in the world's oceans. The distribution of photochemically divergent proteorhodopsins is stratified according to depth. Here, we present evidence that such photochemical diversity was tuned by Darwinian selection. By using a Bayesian method, we identified sites targeted by Darwinian selection and mapped them to three-dimensional models of proteorhodopsins. We suggest that spectral fine-tuning results from the combined effect of amino acids that directly interact with retinal and those that influence the confirmation of the retinal-binding pocket. PMID:15466697

  13. 146号初等元胞自动机的演化语言的复杂性%COMPLEXITY OF EVOLUTION LANGUAGES OF THE ELEMENTARY CELLULAR AUTOMATON OF RULE 146

    Institute of Scientific and Technical Information of China (English)

    王益; Morita Kenichi

    2006-01-01

    Symbolic dynamics of cellular automata is introduced by coarse-graining the temporal evolution orbits. Evolution languages are defined. By using the theory of formal languages and automata, the complexity of evolution languages of the elementary cellular automaton of rule 146 is studied and it is proved that its width 1-evolution language is regular, but for every n ≥ 2 its width n-evolution language is not context-free but context-sensitive. Also, the same results hold for the equivalent (under conjugation) elementary cellular automaton of rule 182.

  14. Does constructive neutral evolution play an important role in the origin of cellular complexity? Making sense of the origins and uses of biological complexity

    NARCIS (Netherlands)

    D. Speijer

    2011-01-01

    Recently, constructive neutral evolution has been touted as an important concept for the understanding of the emergence of cellular complexity. It has been invoked to help explain the development and retention of, amongst others, RNA splicing, RNA editing and ribosomal and mitochondrial respiratory

  15. Emerging of Stochastic Dynamical Equalities and Steady State Thermodynamics from Darwinian Dynamics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-Feng; P.Ao

    2008-01-01

    The evolutionary dynamics first conceived by Darwin and Wallace, referring to as Darwinian dynamics in the present paper, has been found to be universally valid in biology. The statistical mechanics and thermodynamics, while enormous successful in physics, have been in an awkward situation of wanting a consistent dynamical understanding. Here we present from a formal point of view an exploration of the connection between thermodynamics and Darwinian dynamics and a few related topics. We first show that the stochasticity in Darwinian dynamics implies the existence temperature, hence the canonical distribution of Boltzmann-Gibbs type. In term of relative entropy the Second Law of thermodynamics is dynamically demonstrated without detailed balance condition, and is valid regardless of size of the system. In particular, the dynamical component responsible for breaking detailed ba/ance condition does not contribute to the change of the relative entropy. Two types of stochastic dynamical equalities of current interest are explicitly discussed in the present approach: One is based on Feynman-Kac formula and another is a generalization of Einstein relation. Both are directly accessible to experimental tests. Our demonstration indicates that Darwinian dynamics represents logically a simple and straightforward starting point for statistical mechanics and thermodynamics and is complementary to and consistent with conservative dynamics that dominates the physical sciences. Present exploration suggests the existence of a unified stochastic dynamical framework both near and far from equilibrium.

  16. Directed Evolution of Enzymes : Library Screening Strategies

    NARCIS (Netherlands)

    Leemhuis, Hans; Kelly, Ronan M.; Dijkhuizen, Lubbert

    2009-01-01

    Directed evolution has become the preferred engineering approach to generate tailor-made enzymes. The method follows the design guidelines of nature: Darwinian selection of genetic variants. This review discusses the different stages of directed evolution experiments with the focus on developments i

  17. Field Studies: Novels as Darwinian Niches, Poetry for Physicists and Mathematicians

    OpenAIRE

    Daniel Walter Brown

    2010-01-01

    This brief forum contribution reflects upon some historical factors in the formation of nineteenth century science and of the literature and science discipline that has since arisen to study its literary receptions. Noting the preponderance of studies focusing upon forms of scientific developmentalism, principally Darwinian biology, and of novels and other prose, and more broadly, on literary figures, rather than the writings of scientists, the paper introduces some poetry on science by scien...

  18. EUGENICS, THE GIRARDIAN THEORY OF SACRIFICE, AND THE NEW DARWINIAN ETHICS

    Directory of Open Access Journals (Sweden)

    THOMAS RYBA

    2011-11-01

    Full Text Available In this paper I argue that, though many ethical systems recognizesacrifice as moral action, the utilitarian appropriation of Neo-Darwinian theory especially as it justifies eugenics as a “winnowing of the human stock” is in Girardian terms analogous to the sacrificial scapegoating of innocents. This argument is accomplished in four steps. (1 I show that within some ethical systems sacrifice is recognized as moral behavior driven by a specific axiology (or theory of value (2 I discuss some of the meta-ethical problems connected with Neo-Darwinian naturalism and naturalism, in general. (3 I show how modern varieties of naturalism and Darwinian naturalism, inparticular are especially inclined to lead to a moral justification of eugenic scapegoating and how Girardian theory is helpful in identifying the moral disorder connected with eugenics. (4 Finally, I conclude by arguing that Darwin’s thought is susceptible to another kind of interpretation, one that need not lead to the valorization of eugenics.

  19. Darwinian sex roles confirmed across the animal kingdom.

    Science.gov (United States)

    Janicke, Tim; Häderer, Ines K; Lajeunesse, Marc J; Anthes, Nils

    2016-02-01

    Since Darwin's conception of sexual selection theory, scientists have struggled to identify the evolutionary forces underlying the pervasive differences between male and female behavior, morphology, and physiology. The Darwin-Bateman paradigm predicts that anisogamy imposes stronger sexual selection on males, which, in turn, drives the evolution of conventional sex roles in terms of female-biased parental care and male-biased sexual dimorphism. Although this paradigm forms the cornerstone of modern sexual selection theory, it still remains untested across the animal tree of life. This lack of evidence has promoted the rise of alternative hypotheses arguing that sex differences are entirely driven by environmental factors or chance. We demonstrate that, across the animal kingdom, sexual selection, as captured by standard Bateman metrics, is indeed stronger in males than in females and that it is evolutionarily tied to sex biases in parental care and sexual dimorphism. Our findings provide the first comprehensive evidence that Darwin's concept of conventional sex roles is accurate and refute recent criticism of sexual selection theory.

  20. Teaching Evolution: A Heuristic Study of Personal and Cultural Dissonance

    Science.gov (United States)

    Grimes, Larry G.

    2012-01-01

    Darwinian evolution is a robustly supported scientific theory. Yet creationists continue to challenge its teaching in American public schools. Biology teachers in all 50 states are responsible for teaching science content standards that include evolution. As products of their backgrounds and affiliations teachers bring personal attitudes and…

  1. The Theory of Evolution: An Educational Perspective.

    Science.gov (United States)

    Johnson, William L.; Johnson, Annabel M.

    The article's thesis is that evolution's intellectual foundations have been steadily eroding, and that few new findings in embryology, taxonomy, fossil remains, and molecular biology are bringing us very near to a formal, logical disproof of Darwinian claims. The paper begins by discussing the evidence of a prehistoric world, then they discuss…

  2. Breeding novel solutions in the brain: a model of Darwinian neurodynamics.

    Science.gov (United States)

    Szilágyi, András; Zachar, István; Fedor, Anna; de Vladar, Harold P; Szathmáry, Eörs

    2016-01-01

    Background: The fact that surplus connections and neurons are pruned during development is well established. We complement this selectionist picture by a proof-of-principle model of evolutionary search in the brain, that accounts for new variations in theory space. We present a model for Darwinian evolutionary search for candidate solutions in the brain. Methods: We combine known components of the brain - recurrent neural networks (acting as attractors), the action selection loop and implicit working memory - to provide the appropriate Darwinian architecture. We employ a population of attractor networks with palimpsest memory. The action selection loop is employed with winners-share-all dynamics to select for candidate solutions that are transiently stored in implicit working memory. Results: We document two processes: selection of stored solutions and evolutionary search for novel solutions. During the replication of candidate solutions attractor networks occasionally produce recombinant patterns, increasing variation on which selection can act. Combinatorial search acts on multiplying units (activity patterns) with hereditary variation and novel variants appear due to (i) noisy recall of patterns from the attractor networks, (ii) noise during transmission of candidate solutions as messages between networks, and, (iii) spontaneously generated, untrained patterns in spurious attractors. Conclusions: Attractor dynamics of recurrent neural networks can be used to model Darwinian search. The proposed architecture can be used for fast search among stored solutions (by selection) and for evolutionary search when novel candidate solutions are generated in successive iterations. Since all the suggested components are present in advanced nervous systems, we hypothesize that the brain could implement a truly evolutionary combinatorial search system, capable of generating novel variants.

  3. Field Studies: Novels as Darwinian Niches, Poetry for Physicists and Mathematicians

    Directory of Open Access Journals (Sweden)

    Daniel Walter Brown

    2010-10-01

    Full Text Available This brief forum contribution reflects upon some historical factors in the formation of nineteenth century science and of the literature and science discipline that has since arisen to study its literary receptions. Noting the preponderance of studies focusing upon forms of scientific developmentalism, principally Darwinian biology, and of novels and other prose, and more broadly, on literary figures, rather than the writings of scientists, the paper introduces some poetry on science by scientists. It concentrates principally on those working and writing in the fields of physics and mathematics, areas that have been neglected in literature and science studies.

  4. Energy Landscape of Cellular Networks

    Science.gov (United States)

    Wang, Jin

    2008-03-01

    Cellular Networks are in general quite robust and perform their biological functions against the environmental perturbations. Progresses have been made from experimental global screenings, topological and engineering studies. However, there are so far few studies of why the network should be robust and perform biological functions from global physical perspectives. In this work, we will explore the global properties of the network from physical perspectives. The aim of this work is to develop a conceptual framework and quantitative physical methods to study the global nature of the cellular network. The main conclusion of this presentation is that we uncovered the underlying energy landscape for several small cellular networks such as MAPK signal transduction network and gene regulatory networks, from the experimentally measured or inferred inherent chemical reaction rates. The underlying dynamics of these networks can show bi-stable as well as oscillatory behavior. The global shapes of the energy landscapes of the underlying cellular networks we have studied are robust against perturbations of the kinetic rates and environmental disturbances through noise. We derived a quantitative criterion for robustness of the network function from the underlying landscape. It provides a natural explanation of the robustness and stability of the network for performing biological functions. We believe the robust landscape is a global universal property for cellular networks. We believe the robust landscape is a quantitative realization of Darwinian principle of natural selection at the cellular network level. It may provide a novel algorithm for optimizing the network connections, which is crucial for the cellular network design and synthetic biology. Our approach is general and can be applied to other cellular networks.

  5. The evolution of isolated bilateral lung contusion from blunt chest trauma in rats: cellular and cytokine responses.

    Science.gov (United States)

    Raghavendran, Krishnan; Davidson, Bruce A; Woytash, James A; Helinski, Jadwiga D; Marschke, Cristi J; Manderscheid, Patricia A; Notter, Robert H; Knight, Paul R

    2005-08-01

    Lung contusion is the leading cause of death from blunt thoracic trauma in adults, but its mechanistic pathophysiology remains unclear. This study uses a recently developed rat model to investigate the evolution of inflammation and injury in isolated lung contusion. Bilateral lung contusion with minimal cardiac trauma was induced in 54 anesthetized rats by dropping a 0.3-kg hollow cylindrical weight onto a precordial shield (impact energy, 2.45 Joules). Arterial oxygenation, pressure-volume (P-V) mechanics, histology, and levels of erythrocytes, leukocytes, albumin, and inflammatory mediators in bronchoalveolar lavage (BAL) were assessed at 8 min, at 4, 12, 24, and 48 h, and at 7 days after injury. The role of neutrophils in the evolution of inflammatory injury was also specifically studied by depleting these cells with intravenous vinblastine before lung contusion. Arterial oxygenation was severely reduced at 8 min to 24 h postcontusion, but became almost normal by 48 h. Levels of erythrocytes, leukocytes, and albumin in BAL were increased at lung injury based on total lung volume at 4 h and on BAL albumin levels at 24 h postcontusion. Inflammatory injury from isolated bilateral lung contusion in rats is most severe in the acute period (8 min-24 h) after initial blunt trauma, and includes a component of neutrophil-dependent pathology.

  6. Mass Extinctions vs. Uniformitarianism in Biological Evolution

    OpenAIRE

    Bak, Per; Paczuski, Maya

    1996-01-01

    It is usually believed that Darwin's theory leads to a smooth gradual evolution, so that mass extinctions must be caused by external shocks. However, it has recently been argued that mass extinctions arise from the intrinsic dynamics of Darwinian evolution. Species become extinct when swept by intermittent avalanches propagating through the global ecology. These ideas are made concrete through studies of simple mathematical models of coevolving species. The models exhibit self-organized criti...

  7. Simulation of microstructural evolution in directional solidification of Ti-45at.%Al alloy using cellular automaton method

    Directory of Open Access Journals (Sweden)

    Wang Kuangfei

    2010-02-01

    Full Text Available The microstructural evolution of Ti-45 at.%Al alloy during directional solidification was simulated by applying a solute diffusion controlled solidification model. The obtained results have shown that under high thermal gradients the stable primary spacing can be adjusted via branching or competitive growth. For dendritic structures formed under a high thermal gradient, the secondary dendrite arms are developed not very well in many cases due to the branching mechanism under a constrained dendritic growth condition. Furthermore, it has been observed that, with increasing pulling velocity, there exists a cell/dendrite transition region consisting of cells and dendrites, which varies with the thermal gradient in a contradicting way, i.e. increase of the thermal gradient leading to the decrease of the range of the transition region. The simulations agree reasonably well with experiment results.

  8. Intratumor diversity and clonal evolution in cancer--a skeptical standpoint.

    Science.gov (United States)

    Gisselsson, David

    2011-01-01

    Clonal evolution in cancer is intimately linked to the concept of intratumor cellular diversity, as the latter is a prerequisite for Darwinian selection at the micro-level. It has been frequently suggested in the literature that clonal evolution can be promoted by an elevated rate of mutation in tumor cells, so-called genomic instability, the mechanisms of which are now becoming increasingly well characterized. However, several issues need clarification before the presumably complex relationship between mutation rate, intratumor diversity, and clonal evolution can be understood sufficiently well to translate into models that predict the course of tumor disease. In particular, it has to be clarified which of the proposed mechanisms for genomic instability that are able to generate daughter cells with sufficient viability to form novel clones, how clones with different genomic changes differ phenotypically from each other, and what the selective forces are that guide competition among diverse clones in different microenvironments. Furthermore, standardized measurements of mutation rates at the chromosome level, as well as genotypic and phenotypic diversity, are essential to compare data from different studies. Finally, the relationship between clonal variation brought about by genomic instability, on the one hand, and cellular differentiation hierarchies, on the other hand, should be explored to put genomic instability in the context of the tumor stem cell hypothesis.

  9. Mean field dynamics of graphs I: Evolution of probabilistic cellular automata for random and small-world graphs

    CERN Document Server

    Waldorp, Lourens J

    2016-01-01

    It was recently shown how graphs can be used to provide descriptions of psychopathologies, where symptoms of, say, depression, affect each other and certain configurations determine whether someone could fall into a sudden depression. To analyse changes over time and characterise possible future behaviour is rather difficult for large graphs. We describe the dynamics of networks using one-dimensional discrete time dynamical systems theory obtained from a mean field approach to (elementary) probabilistic cellular automata (PCA). Often the mean field approach is used on a regular graph (a grid or torus) where each node has the same number of edges and the same probability of becoming active. We show that we can use variations of the mean field of the grid to describe the dynamics of the PCA on a random and small-world graph. Bifurcation diagrams for the mean field of the grid, random, and small-world graphs indicate possible phase transitions for certain parameter settings. Extensive simulations indicate for di...

  10. Science for Survival: The Modern Synthesis of Evolution and the Biological Sciences Curriculum Study

    Science.gov (United States)

    Green, Lisa Anne

    2012-01-01

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called…

  11. Evolution in the Multiverse

    CERN Document Server

    Standish, R K

    2000-01-01

    In the {\\em Many Worlds Interpretation} of quantum mechanics, the range of possible worlds (or histories) provides variation, and the Anthropic Principle is a selective principle analogous to natural selection. When looked on in this way, the ``process'' by which the laws and constants of physics is determined not too different from the process that gave rise to our current biodiversity, i.e. Darwinian evolution. This has implications for the fields of SETI and Artificial Life, which are based on a philosophy of the inevitability of life.

  12. The Darwinian muddle on the division of labour: an attempt at clarification.

    Science.gov (United States)

    D'Hombres, Emmanuel

    2016-04-01

    It is of philosophical and epistemological interest to examine how Darwin conceived the process of division of labour within Natural History. Darwin observed the advantages brought by division of labour to the human economy, and considered that the principle of divergence within nature, which is, according to him, one of the two 'keystones' of his theory, gave comparable advantages. This led him to re-examine Milne-Edwards' view on the notion of division of physiological labour, and to introduce this with modifications into his naturalist writings. After a short review of the Darwinian historiography dealing with this issue, I first show the conceptual confusion into which Darwin plunges, when using a so-called economic argument to defend his thesis of the maximization of beings in a given territory due to division of labour. Following this I propose several hypotheses to explain these shifts, recurring in Darwin's texts, from one conception and from one application to another, of the division of labour.

  13. Darwinian algorithms and the Wason selection task: a factorial analysis of social contract selection task problems.

    Science.gov (United States)

    Platt, R D; Griggs, R A

    1993-08-01

    In four experiments with 760 subjects, the present study examined Cosmides' Darwinian algorithm theory of reasoning: specifically, its explanation of facilitation on the Wason selection task. The first experiment replicated Cosmides' finding of facilitation for social contract versions of the selection task, using both her multiple-problem format and a single-problem format. Experiment 2 examined performance on Cosmides' three main social contract problems while manipulating the perspective of the subject and the presence and absence of cost-benefit information. The presence of cost-benefit information improved performance in two of the three problems while the perspective manipulation had no effect. In Experiment 3, the cost-benefit effect was replicated; and performance on one of the three problems was enhanced by the presence of explicit negatives on the NOT-P and NOT-Q cards. Experiment 4 examined the role of the deontic term "must" in the facilitation observed for two of the social contract problems. The presence of "must" led to a significant improvement in performance. The results of these experiments are strongly supportive of social contract theory in that cost-benefit information is necessary for substantial facilitation to be observed in Cosmides' problems. These findings also suggest the presence of other cues that can help guide subjects to a deontic social contract interpretation when the social contract nature of the problem is not clear.

  14. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read-Write Genome Evolution as an Active Biological Process.

    Science.gov (United States)

    Shapiro, James A

    2016-06-08

    The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess "Read-Write Genomes" they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.

  15. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read–Write Genome Evolution as an Active Biological Process

    Directory of Open Access Journals (Sweden)

    James A. Shapiro

    2016-06-01

    Full Text Available The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess “Read–Write Genomes” they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.

  16. Structural calibration of the rates of amino acid evolution in a search for Darwin in drifting biological systems.

    Science.gov (United States)

    Toft, Christina; Fares, Mario A

    2010-10-01

    In the last two decades, many reports of proteins under positive selection have brought the neutral theory into question. However, the methods used to detect selection have ignored the evolvability of amino acids within proteins, which is fundamental to distinguishing positive selection from the relaxed constraints caused by genetic drift. Disentangling these two counterbalancing forces is essential to test the neutral theory. Here, we calibrate rates of amino acid divergence by using structural information from the full set of crystallized proteins in bacteria. In agreement with previous reports, we show that rates of amino acid evolution correlate negatively with the number of per-amino acid atomic interactions. Calibration of the rates of evolution allows identifying signatures of selection in biological systems that evolve under strong genetic drift, such as endosymbiotic bacteria. Application of this method identifies different rates and dynamics of evolution for highly connected amino acids in the structure compared with sparsely connected ones. We also unearth patterns of Darwinian selection in fundamental cellular proteins in endosymbiotic bacteria including the cochaperonin GroES, ribosomal proteins, proteins involved in cell cycle control, DNA-binding proteins, and proteins involved in DNA replication and repair. This is, to our knowledge, the first attempt to distinguish adaptive evolution from relaxed constraints in biological systems under genetic drift.

  17. Homo sapiens as physician and patient: a view from Darwinian medicine.

    Science.gov (United States)

    Román-Franco, Angel A

    2013-09-01

    Medicine's cardinal diagnostic and therapeutic resource is the clinical encounter. Over the last two centuries and particularly over the last five decades the function of the clinical encounter has been eroded to the point of near irrelevance because of the atomized and atomizing influence of technology and microspecialization. Meanwhile, over the past five decades the exceptionalist view of Homo sapiens inherent in the social and religious traditions of the West has similarly undergone radical changes. H. sapiens is now best understood as a microecosystem integrated into a much broader ecosystem: the biosphere. That human microecosystem is composed of constituents derived from the archaeal, bacterial, and eukaryan domains via endosymbiotic, commensalistic and mutualistic interactions. This amalgamation of 100 trillion cells and viral elements is regulated by a composite genome aggregated over the 3.8 billion years of evolutionary history of organic life. No component of H. sapiens or its genome can be identified as irreducibly and exclusively human. H. sapiens' humanity is an emergent property of the microecosystem. Ironically as H. sapiens is viewed by evolutionary science in a highly integrated manner medicine approaches it as a balkanized, deaggregated entity through the eye of 150 different specialties. To effectively address the needs of H sapiens in its role as patient by the same species in its role as physician the disparate views must be harmonized. Here I review some conceptual elements that would assist a physician in addressing the needs of the patient in integrum, as a microecosystem, by the former address the latter as a historical gestalt being. The optimal way to recover the harmony between patient and physician is through a revitalization of the clinical encounter via an ecological and Darwinian epistemology.

  18. Breeding novel solutions in the brain: a model of Darwinian neurodynamics [version 1; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    András Szilágyi

    2016-09-01

    Full Text Available Background: The fact that surplus connections and neurons are pruned during development is well established. We complement this selectionist picture by a proof-of-principle model of evolutionary search in the brain, that accounts for new variations in theory space. We present a model for Darwinian evolutionary search for candidate solutions in the brain. Methods: We combine known components of the brain – recurrent neural networks (acting as attractors, the action selection loop and implicit working memory – to provide the appropriate Darwinian architecture. We employ a population of attractor networks with palimpsest memory. The action selection loop is employed with winners-share-all dynamics to select for candidate solutions that are transiently stored in implicit working memory. Results: We document two processes: selection of stored solutions and evolutionary search for novel solutions. During the replication of candidate solutions attractor networks occasionally produce recombinant patterns, increasing variation on which selection can act. Combinatorial search acts on multiplying units (activity patterns with hereditary variation and novel variants appear due to (i noisy recall of patterns from the attractor networks, (ii noise during transmission of candidate solutions as messages between networks, and, (iii spontaneously generated, untrained patterns in spurious attractors. Conclusions: Attractor dynamics of recurrent neural networks can be used to model Darwinian search. The proposed architecture can be used for fast search among stored solutions (by selection and for evolutionary search when novel candidate solutions are generated in successive iterations. Since all the suggested components are present in advanced nervous systems, we hypothesize that the brain could implement a truly evolutionary combinatorial search system, capable of generating novel variants.

  19. Nothing in the History of Spanish "Anis" Makes Sense, Except in the Light of Evolution

    Science.gov (United States)

    Delgado, Juan Antonio; Palma, Ricardo Luis

    2011-01-01

    We describe, discuss and illustrate a metaphoric parallel between the history of the most famous Spanish liqueur, "Anis del Mono" ("Anis" of the Monkey), and the evolution of living organisms in the light of Darwinian theory and other biological hypotheses published subsequent to Charles Darwin's "Origin of Species." Also, we report the use of a…

  20. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  1. Evolution, reproduction and definition of life.

    Science.gov (United States)

    Chodasewicz, Krzysztof

    2014-03-01

    Synthetic theory of evolution is a superior integrative biological theory. Therefore, there is nothing surprising about the fact that multiple attempts of defining life are based on this theory. One of them even has a status of NASA's working definition. According to this definition, 'life is a self-sustained chemical system capable of undergoing Darwinian evolution' Luisi (Orig Life Evol Bios 28:613-622, 1998); Cleland, Chyba (Orig Life Evol Bios 32:387-393, 2002). This definition is often considered as one of the more theoretically mature definitions of life. This Darwinian definition has nonetheless provoked a lot of criticism. One of the major arguments claims that this definition is wrong due to 'mule's problem'. Mules (and other infertile hybrids), despite being obviously living organisms, in the light of this definition are considered inanimate objects. It is strongly counterintuitive. The aim of this article was to demonstrate that this reasoning is false. In the later part of the text, I also discuss some other arguments against the Darwinian approach to defining life.

  2. Research in dynamic evolution of software architectures based on cellular automata model%软件体系结构动态演化的元胞自动机模型研究

    Institute of Scientific and Technical Information of China (English)

    刘晓斌; 杨贯中; 欧阳柳波; 李勇军

    2015-01-01

    目前软件体系结构动态演化的元胞自动机模型存在描述单一、元胞间关系不明确、没有详细阐述动态演化过程应用约束条件的缺点。针对这些不足进行相关的研究,重新定义了软件体系结构动态演化的扩展元胞自动机模型,基于扩展元胞自动机模型结合演化应用约束条件,分析了软件体系结构的动态演化过程,运用元胞间控制约束条件和行为相关约束条件来正确地指导SA动态演化。提出了动点稳态转移的概念,对演化程度和一致性进行定义分析,此方法比以往的元胞自动机模型更能准确指导SA动态演化,促进SA动态演化的进一步研究。通过案例验证了该方法的应用价值和可行性,可以更全面地应用于软件体系结构的动态演化。%There are some defects in dynamic evolution of software architecture based on cellular automata model in recent research, including that specification is not detailed and relationship between cellular is not clear, that it can’t describe the constraints in process of dynamic evolution. In regard to these deficiencies, this paper refines the extend-cellular automata model of dynamic evolution of software architecture, which is based on the combination of evolutionary constraints applied to analyze the dynamic evolution of software architecture process, and SA dynamic evolution is correctly guided by applying both inter-cell behavior related constraints and control constraints. Besides, it puts forward the concept of steady-state transfer of moving-point for charactering the degree and consistency of evolution and can more exactly guide SA dynamic evolution than ever on cellular automata model, which advances the further study on dynamic evolution of software archi-tecture. The case study shows that the proposed method is valuable and feasible, which can be more fully applied to the dynamic evolution of software architecture.

  3. Corrections to chance fluctuations: quantum mind in biological evolution?

    Science.gov (United States)

    Damiani, Giuseppe

    2009-01-01

    According to neo-Darwinian theory, biological evolution is produced by natural selection of random hereditary variations. This assumption stems from the idea of a mechanical and deterministic world based on the laws of classic physics. However, the increased knowledge of relationships between metabolism, epigenetic systems, and editing of nucleic acids suggests the existence of self-organized processes of adaptive evolution in response to environmental stresses. Living organisms are open thermodynamic systems which use entropic decay of external source of electromagnetic energy to increase their internal dynamic order and to generate new genetic and epigenetic information with a high degree of coherency and teleonomic creativity. Sensing, information processing, and decision making of biological systems might be mainly quantum phenomena. Amplification of microscopic quantum events using the long-range correlation of fractal structures, at the borderline between deterministic order and unpredictable chaos, may be used to direct a reproducible transition of the biological systems towards a defined macroscopic state. The discoveries of many natural genetic engineering systems, the ability to choose the most effective solutions, and the emergence of complex forms of consciousness at different levels confirm the importance of mind-action directed processes in biological evolution, as suggested by Alfred Russel Wallace. Although the main Darwinian principles will remain a crucial component of our understanding of evolution, a radical rethinking of the conceptual structure of the neo-Darwinian theory is needed.

  4. Mass extinctions vs. uniformitarianism in biological evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bak, P.; Paczuski, M.

    1995-12-31

    It is usually believed that Darwin`s theory leads to a smooth gradual evolution, so that mass extinctions must be caused by external shocks. However, it has recently been argued that mass extinctions arise from the intrinsic dynamics of Darwinian evolution. Species become extinct when swept by intermittent avalanches propagating through the global ecology. These ideas are made concrete through studies of simple mathematical models of co-evolving species. The models exhibit self-organized criticality and describe some general features of the extinction pattern in the fossil record.

  5. D2D Technology Development and Its Impact on Cellular Network Evolution%D2D技术发展及其对蜂窝网络演进的影响

    Institute of Scientific and Technical Information of China (English)

    周伟; 宋玉

    2013-01-01

    It discusses the hybrid cellular network based on D2D communication, application scenarios and system requirements. It also discusses the implementation of LTE-D2D, analyzes the impact on network evolution and business model.%阐述了以端到端直通通信(D2D)为代表的混合蜂窝网络技术及应用场景、系统需求,探讨了LTE-D2D实现方案,分析了D2D对蜂窝网络和现商业模式的冲击。

  6. Light Will be Thrown: The Emerging Science of Cultural Evolution

    CERN Document Server

    Buskes, Chris

    2016-01-01

    Culture evolves, not just in the trivial sense that cultures change over time, but also in the strong sense that such change is governed by Darwinian principles. Both biological and cultural evolution are essentially cumulative selection processes in which information (whether genetic or cultural) is sieved, retained and then transmitted to the next generation. In both domains such a process will result in recognizable lineages and tree-like phylogenies so characteristic of Darwinian evolution. Because a principle of inheritance (i.e., faithful replication of information) holds in both domains, we may trace back particular transmission histories and identify the forces that influenced them. The idea that culture evolves is quite old, but only in recent years there has been a serious effort to turn this idea into science. This article offers a concise analysis of how a rudimentary idea gradually evolved into a thriving research program.

  7. Tangled Trees: Modelling Material Culture Evolution as Host-Associate Co-Speciation

    OpenAIRE

    Riede, F.

    2009-01-01

    Book description: This volume offers an integrative approach to the application of evolutionary theory in studies of cultural transmission and social evolution and reveals the enormous range of ways in which Darwinian ideas can lead to productive empirical research, the touchstone of any worthwhile theoretical perspective. While many recent works on cultural evolution adopt a specific theoretical framework, such as dual inheritance theory or human behavioral ecology, Pattern and Process in Cu...

  8. Quantitative analysis of macroevolutionary patterning in technological evolution: Bicycle design from 1800 to 2000

    OpenAIRE

    Lake, M. W.; Venti, J.

    2009-01-01

    Book description: This volume offers an integrative approach to the application of evolutionary theory in studies of cultural transmission and social evolution and reveals the enormous range of ways in which Darwinian ideas can lead to productive empirical research, the touchstone of any worthwhile theoretical perspective. While many recent works on cultural evolution adopt a specific theoretical framework, such as dual inheritance theory or human behavioral ecology, Pattern and Process in Cu...

  9. Making a Theist out of Darwin: Asa Gray's Post-Darwinian Natural Theology

    Science.gov (United States)

    Hunter, T. Russell

    2012-01-01

    In March of 1860 the eminent Harvard Botanist and orthodox Christian Asa Gray began promoting the Origin of Species in hopes of securing a fair examination of Darwin's evolutionary theory among theistic naturalists. To this end, Gray sought to demonstrate that Darwin had not written atheistically and that his theory of evolution by natural…

  10. Cellular Telephone

    Institute of Scientific and Technical Information of China (English)

    杨周

    1996-01-01

    Cellular phones, used in automobiles, airliners, and passenger trains, are basically low-power radiotelephones. Calls go through radio transmitters that are located within small geographical units called cells. Because each cell’s signals are too weak to interfere with those of other cells operating on the same fre-

  11. A Darwinian approach to the origin of life cycles with group properties.

    Science.gov (United States)

    Rashidi, Armin; Shelton, Deborah E; Michod, Richard E

    2015-06-01

    A selective explanation for the evolution of multicellular organisms from unicellular ones requires knowledge of both selective pressures and factors affecting the response to selection. Understanding the response to selection is particularly challenging in the case of evolutionary transitions in individuality, because these transitions involve a shift in the very units of selection. We develop a conceptual framework in which three fundamental processes (growth, division, and splitting) are the scaffold for unicellular and multicellular life cycles alike. We (i) enumerate the possible ways in which these processes can be linked to create more complex life cycles, (ii) introduce three genes based on growth, division and splitting that, acting in concert, determine the architecture of the life cycles, and finally, (iii) study the evolution of the simplest five life cycles using a heuristic model of coupled ordinary differential equations in which mutations are allowed in the three genes. We demonstrate how changes in the regulation of three fundamental aspects of colonial form (cell size, colony size, and colony cell number) could lead unicellular life cycles to evolve into primitive multicellular life cycles with group properties. One interesting prediction of the model is that selection generally favors cycles with group level properties when intermediate body size is associated with lowest mortality. That is, a universal requirement for the evolution of group cycles in the model is that the size-mortality curve be U-shaped. Furthermore, growth must decelerate with size.

  12. Widespread adaptive evolution during repeated evolutionary radiations in New World lupins

    Science.gov (United States)

    Nevado, Bruno; Atchison, Guy W.; Hughes, Colin E.; Filatov, Dmitry A.

    2016-01-01

    The evolutionary processes that drive rapid species diversification are poorly understood. In particular, it is unclear whether Darwinian adaptation or non-adaptive processes are the primary drivers of explosive species diversifications. Here we show that repeated rapid radiations within New World lupins (Lupinus, Leguminosae) were underpinned by a major increase in the frequency of adaptation acting on coding and regulatory changes genome-wide. This contrasts with far less frequent adaptation in genomes of slowly diversifying lupins and all other plant genera analysed. Furthermore, widespread shifts in optimal gene expression coincided with shifts to high rates of diversification and evolution of perenniality, a putative key adaptation trait thought to have triggered the evolutionary radiations in New World lupins. Our results reconcile long-standing debate about the relative importance of protein-coding and regulatory evolution, and represent the first unambiguous evidence for the rapid onset of lineage- and genome-wide accelerated Darwinian evolution during rapid species diversification. PMID:27498896

  13. The Evolution Research of Mobile Cellular Communication Technology for IoT%移动蜂窝物联网演进方案研究

    Institute of Scientific and Technical Information of China (English)

    邢宇龙; 张力方; 胡云

    2016-01-01

    物联网应用中,低速率业务占比超过了50%。以NB-IoT和LTE-eMTC为代表的低功耗广域蜂窝技术在低功耗、广覆盖业务中扮演着重要角色。对物联网通信技术的分类和演进路线进行了阐述,介绍了NB-IoT和LTE-eMTC 2种典型的蜂窝通信技术的标准进展,最后给出了中国联通物联网的演进策略和蜂窝物联网的部署方案。%More than half of the IoT applications are low data-rate business. Low power wide area(LPWA)cel ular technologies,such as NB-IoT and LTE-eMTC,play an important role in low-power and wide-coverage application. It firstly describes the classifica-tion and the evolution route of IoT communication technology,then introduces the standardization progress of NB-IoT and LTE-eMTC,which are two typical cel ular communication technologies. Final y,it analyzes the IoT evolution strategy of China Unicom and presents the deployment schemes of cel ular IoT.

  14. Simulating of evolution for the aviation service innovation competition with cellular automata%航空服务创新的元胞自动机竞争演化模拟

    Institute of Scientific and Technical Information of China (English)

    寇勇刚; 吴桐水; 朱金福

    2011-01-01

    In order to research the role of airlines service innovation in the competition of the aviation market, the competition model of aviation service innovation is built up with cellular automata. Taken one of Shenzhen Airlinees' Shenzhen to Beijing flight in 2008 as an example, satisfied result have acquired by repeated experiments of simulation to the innovational cabin service evolution during the competition. The research conclusion shows that there are three factors which include the initial data of cellular automata,the service fitness and the sales promotion,all of the three effect the evolutional mutation period and make it into positive trend. Meanwhile, the role of the three factors become decreasing while the parameter of them gradually increasing.%为研究航空公司服务创新在市场竞争中的作用,基于元胞自动机设计了航空服务创新竞争模型.以深航2008年在深圳-北京航线上推出服务创新为例,经过重复试验较好地模拟了在该航线上进行服务创新取得成功的竞争演化过程.研究结果表明:初始接受服务创新的元胞数量、服务匹配度和品牌宣传效应度三个影响因素都对演化的突变周期起正向影响作用,且三个因素对突变周期的正向作用随着取值的增大而逐渐减弱.

  15. The Influence of Darwinian Ideas on Greek Literary Writers of the Late Nineteenth and Early Twentieth Centuries: The Case of Emmanuel Roidis

    Directory of Open Access Journals (Sweden)

    Maria Zarimis

    2008-11-01

    Full Text Available Darwin's works provoked an enormous response in many disciplines including the literary world. This paper presents a portion of my doctoral thesis3, which responds to a blind spot in Greek literary scholarship on evolutionary ideas in comparison to other Western countries. Little work to date focuses on modern Greek writers's responses to Darwinian and other evolutionary ideas. This paper explores the impact of Darwin in selected writings of Emmanuel Roidis and how Roidis satirised Darwinism in his essays and short stories, contributing to the Darwinian discourse on "man's place in nature" and by placing humanity on the same continuum as other primates. The year 2009 marks the 200th anniversary of Darwin's birth and the 150th anniversary of the first publication of his The Origin of Species. It is timely, then, to consider Darwin's impact on modern Greek literature.  

  16. Linking pattern to process in cultural evolution: explaining material culture diversity among the Northern Khanty of Northwest Siberia

    OpenAIRE

    Jordan, P.

    2009-01-01

    Book description: This volume offers an integrative approach to the application of evolutionary theory in studies of cultural transmission and social evolution and reveals the enormous range of ways in which Darwinian ideas can lead to productive empirical research, the touchstone of any worthwhile theoretical perspective. While many recent works on cultural evolution adopt a specific theoretical framework, such as dual inheritance theory or human behavioral ecology, Pattern and Process in Cu...

  17. Spanish Darwinian iconography: Darwin and evolutionism portrayed in Spanish press cartoons.

    Science.gov (United States)

    Domínguez, Martí; Mateu, Anna

    2013-11-01

    The theory of evolution has played a major role in the press since it was put forward by Charles Darwin in 1859. Its key role in biology and human philosophy is reflected by its presence in press cartoons, sections where the image of social reality is depicted in a more direct and satirical light. Through cartoons, artists have used their ingenuity or wit to portray one of the most controversial scientific figures of the past two centuries. This study examines the views portrayed by Spanish cartoonists about Charles Darwin and evolutionary theory in 2009, the bicentenary of the naturalist's birth and the celebration of 150 years since the publication of On the Origin of Species. These cartoons show how the controversy between Darwinism and religion remain latent in the heart of Spanish society, and how the figure of Darwin has become one of the main icons of science.

  18. Molecular analysis of a case of nevus of ota showing progressive evolution to melanoma with intermediate stages resembling cellular blue nevus.

    Science.gov (United States)

    Gerami, Pedram; Pouryazdanparast, Pedram; Vemula, Swapna; Bastian, Boris C

    2010-05-01

    Nevus of Ota is a variant of congenital nevus, which is morphologically paucicellular and resembles a common blue nevus. Although nevus of Ota is a risk factor for uveal melanoma in white people, the development of cutaneous melanoma within nevus of Ota is a very rare occurrence with only a few reported cases. We present a case of a long-standing nevus of Ota, with radiologic imaging demonstrating a large retro-orbital mass and a biopsy showing melanoma. The histopathology of the eye exenteration specimen illustrated various stages of melanocytic progression including areas resembling a nevus of Ota, blue nevus, cellular blue nevus, and melanoma. There was heterogeneity in the overtly malignant sections with some areas displaying expansile nodules of blander appearing spindled cells, whereas other areas were composed of epithelioid cells with higher mitotic counts and zones of necrosis. The extensive lesion also infiltrated the soft tissue and bone. We performed gene mutation analysis for GNAQ, BRAF, NRAS, and KIT and fluorescence in situ hybridization (FISH) targeting commonly altered chromosomal loci in melanoma and comparative genomic hybridization (CGH). Copy number changes typical of melanoma were identified by both FISH and CGH in the morphologically malignant areas illustrating the relationship of tumor progression and the progressive acquisition of genetic aberrations.

  19. Light and electron microscopic characterization of the evolution of cellular pathology in the Hdh(CAG)150 Huntington's disease knock-in mouse.

    Science.gov (United States)

    Bayram-Weston, Zubeyde; Torres, Eduardo M; Jones, Lesley; Dunnett, Stephen B; Brooks, Simon P

    2012-06-01

    Huntington's disease is an autosomal dominant, progressive neurodegenerative disease in which a single mutation in the gene responsible for the protein huntingtin leads to a primarily striatal and cortical neuronal loss, resulting progressive motor, cognitive and psychiatric disability and ultimately death. The mutation induces an abnormal protein accumulation within cells, although the precise role of this accumulation in the disease process is unknown. Several animal models have been created to model the disease. In the present study, the pathology of the Hdh(CAG(150)) mouse model was analyzed longitudinally over 24 months. At 5 months of age, the mutant N-terminal antibody S830 found dense nuclear staining and nuclear inclusions in the olfactory tubercle and striatum of the Hdh(Q150/Q150) mice. Nuclear inclusions increased in number and size with age and disease progression, and spread in ventral to dorsal, and anterior to posterior pattern. Electron microscopy observations at 14 months of age revealed that the neurons showed a normal nucleus having a circular shape and regular membranes in a densely packed cytoplasm, whereas by 21 months the cytoplasm was vacuolated and contained swollen mitochondria with many degenerated cytoplasmic organelles. Immunogold labelling of the S830 antibody was found to be specifically localised to the inner area of the neuronal intra-nuclear inclusions. Our data demonstrate a marked and progressive cellular phenotype that begins at 5 months of age and progresses with time. The pathology the Hdh(Q150/Q150) line was focused on the striatum and cortex until the late stage of the disease, consistent with the human condition.

  20. The Darwinian tension: Romantic science and the causal laws of nature.

    Science.gov (United States)

    Greif, Hajo

    2015-10-01

    There have been attempts to subsume Charles Darwin's theory of evolution under either one of two distinct intellectual traditions: early Victorian natural science and its descendants in political economy (as exemplified by Herschel, Lyell, or Malthus) and the romantic approach to art and science emanating from Germany (as exemplified by Humboldt and Goethe). In this paper, it will be shown how these traditions may have jointly contributed to the design of Darwin's theory. The hypothesis is that their encounter created a particular tension in the conception of his theory which first opened up its characteristic field and mode of explanation. On the one hand, the domain of the explanandum was conceived of under a holistic and aesthetic view of nature that, in its combination with refined techniques of observation, was deeply indebted to Humboldt in particular. On the other hand, Darwin fashioned explanations for natural phenomena, so conceived, in order to identify their proper causes in a Herschelian spirit. The particular interaction between these two traditions in Darwin, it is concluded, paved the way for a transfer of the idea of causal laws to animate nature while salvaging the romantic idea of a complex, teleological and harmonious order of nature.

  1. Consciousness and biological evolution.

    Science.gov (United States)

    Lindahl, B I

    1997-08-21

    It has been suggested that if the preservation and development of consciousness in the biological evolution is a result of natural selection, it is plausible that consciousness not only has been influenced by neural processes, but has had a survival value itself; and it could only have had this, if it had also been efficacious. This argument for mind-brain interaction is examined, both as the argument has been developed by William James and Karl Popper and as it has been discussed by C.D. Broad. The problem of identifying mental phenomena with certain neural phenomena is also addressed. The main conclusion of the analysis is that an explanation of the evolution of consciousness in Darwinian terms of natural selection does not rule out that consciousness may have evolved as a mere causally inert effect of the evolution of the nervous system, or that mental phenomena are identical with certain neural phenomena. However, the interactionistic theory still seems, more plausible and more fruitful for other reasons brought up in the discussion.

  2. Effect of Carbon Distribution During the Microstructure Evolution of Dual-Phase Steels Studied Using Cellular Automata, Genetic Algorithms, and Experimental Strategies

    Science.gov (United States)

    Halder, Chandan; Karmakar, Anish; Hasan, Sk. Md.; Chakrabarti, Debalay; Pietrzyk, Maciej; Chakraborti, Nirupam

    2016-12-01

    The development of ferrite-martensite dual-phase microstructures by cold-rolling and intercritical annealing of 0.06 wt pct carbon steel was systematically studied using a dilatometer for two different heating rates (1 and 10 K/s). A step quenching treatment has been designed to develop dual-phase structures having a similar martensite fraction for two different heating rates. An increase in heating rate seemed to refine the ferrite grain size, but it increased the size and spacing of the martensitic regions. As a result, the strength of the steel increased with heating rate; however, the formability was affected. It has been concluded that the distribution of C during the annealing treatment of cold-rolled steel determines the size, distribution, and morphology of martensite, which ultimately influences the mechanical properties. Experimental detection of carbon distribution in austenite is difficult during annealing of the cold-rolled steel as the phase transformation occurs at a high temperature and C is an interstitial solute, which diffuses fast at that temperature. Therefore, a cellular automata (CA)-based phase transformation model is proposed in the present study for the prediction of C distribution in austenite during annealing of steel as the function of C content and heating rate. The CA model predicts that the carbon distribution in austenite becomes more inhomogeneous when the heating rate increases. In the CA model, the extent of carbon inhomogeneity is measured using a kernel averaging method for different orders of neighbors, which accounts for the different physical space during calculation. The obtained results reveal that the 10th order (covering 10- µm physical spaces around the cell of interest) is showing the maximum inhomogeneity of carbon and the same effect has been investigated and confirmed using auger electron spectroscopy (AES) for 0.06 wt pct carbon steel. Furthermore, the optimization of carbon homogeneity with respect to heating

  3. Internet Public Opinion Evolution Migrant Cellular Model Based on Small World Effect%小世界效应的网络舆情演化迁移元胞模型

    Institute of Scientific and Technical Information of China (English)

    王根生; 勒中坚

    2011-01-01

    依据网民关系网络拓扑的小世界效应特性,提出网民观点的倾向度转换规则,在网络舆情网民关系小世界网络矩阵表示的基础上,构建基于小世界效应的网络舆情演化迁移元胞模型,运用该模型分析网络舆情演化,产生了倾向度转换图、粗细粒度倾向度曲线的仿真结果.通过对试验仿真结果的分析,揭示了网络舆情演化的观点极分化和观点漂移的现象,分析了“核心”区域漂移现象和倾向度曲线多波峰现象的成因,仿真结果表明该模型能较好拟合网络舆情演化的规律.本研究对网络监察部门和新闻管理部门的管理提供了一定的理论依据.%According to the small world effect in netizens relationship network topology,puts forward the opinion tendency conversion rules. Based on the small-world networks matrix of the netizens relationship in the network public opinion,constructs internet public opinion evolution migrant cellular model based on small world effect,uses this model analyzing network public opinion evolution and produces the simulation results,which include tendency conversion figure,curve of course tendency and curve of fine tendency. Through the emulation result analysis,reveals the opinion polarization phenomenon and "core" regional drift phenomenon in network public opinion evolution,analyze the causes of the " core" regional drift phenomenon and tendency multi-wave curve. Emulation results show that the model can better fit with the network public opinion evolution laws. This research provides certain theoretical basis for the management in network supervisory departments and news management department.

  4. The evolution of wealth transmission in human populations: a stochastic model

    CERN Document Server

    Augustins, G; Ferdy, J-B; Ferrer, R; Godelle, B; Pitard, E; Rousset, F

    2014-01-01

    Reproductive success and survival are influenced by wealth in human populations. Wealth is transmitted to offsprings and strategies of transmission vary over time and among populations, the main variation being how equally wealth is transmitted to children. Here we propose a model where we simulate both the dynamics of wealth in a population and the evolution of a trait that determines how wealth is transmitted from parents to offspring, in a darwinian context.

  5. Cellular Cell Bifurcation of Cylindrical Detonations

    Institute of Scientific and Technical Information of China (English)

    HAN Gui-Lai; JIANG Zong-Lin; WANG Chun; ZHANG Fan

    2008-01-01

    Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.

  6. The edge of neutral evolution in social dilemmas

    Science.gov (United States)

    Cremer, Jonas; Reichenbach, Tobias; Frey, Erwin

    2009-09-01

    The functioning of animal as well as human societies fundamentally relies on cooperation. Yet, defection is often favorable for the selfish individual, and social dilemmas arise. Selection by individuals' fitness, usually the basic driving force of evolution, quickly eliminates cooperators. However, evolution is also governed by fluctuations that can be of greater importance than fitness differences, and can render evolution effectively neutral. Here, we investigate the effects of selection versus fluctuations in social dilemmas. By studying the mean extinction times of cooperators and defectors, a variable sensitive to fluctuations, we are able to identify and quantify an emerging 'edge of neutral evolution' that delineates regimes of neutral and Darwinian evolution. Our results reveal that cooperation is significantly maintained in the neutral regimes. In contrast, the classical predictions of evolutionary game theory, where defectors beat cooperators, are recovered in the Darwinian regimes. Our studies demonstrate that fluctuations can provide a surprisingly simple way to partly resolve social dilemmas. Our methods are generally applicable to estimate the role of random drift in evolutionary dynamics.

  7. The edge of neutral evolution in social dilemmas

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, Jonas; Frey, Erwin [Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universitaet Muenchen, Theresienstrasse 37, D-80333 Muenchen (Germany); Reichenbach, Tobias [Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, Rockefeller University, 1230 York Avenue, New York, NY 10065 (United States)], E-mail: jonas.cremer@physik.uni-muenchen.de

    2009-09-15

    The functioning of animal as well as human societies fundamentally relies on cooperation. Yet, defection is often favorable for the selfish individual, and social dilemmas arise. Selection by individuals' fitness, usually the basic driving force of evolution, quickly eliminates cooperators. However, evolution is also governed by fluctuations that can be of greater importance than fitness differences, and can render evolution effectively neutral. Here, we investigate the effects of selection versus fluctuations in social dilemmas. By studying the mean extinction times of cooperators and defectors, a variable sensitive to fluctuations, we are able to identify and quantify an emerging 'edge of neutral evolution' that delineates regimes of neutral and Darwinian evolution. Our results reveal that cooperation is significantly maintained in the neutral regimes. In contrast, the classical predictions of evolutionary game theory, where defectors beat cooperators, are recovered in the Darwinian regimes. Our studies demonstrate that fluctuations can provide a surprisingly simple way to partly resolve social dilemmas. Our methods are generally applicable to estimate the role of random drift in evolutionary dynamics.

  8. Evolution: like any other science it is predictable.

    Science.gov (United States)

    Morris, Simon Conway

    2010-01-12

    Evolutionary biology rejoices in the diversity of life, but this comes at a cost: other than working in the common framework of neo-Darwinian evolution, specialists in, for example, diatoms and mammals have little to say to each other. Accordingly, their research tends to track the particularities and peculiarities of a given group and seldom enquires whether there are any wider or deeper sets of explanations. Here, I present evidence in support of the heterodox idea that evolution might look to a general theory that does more than serve as a tautology ('evolution explains evolution'). Specifically, I argue that far from its myriad of products being fortuitous and accidental, evolution is remarkably predictable. Thus, I urge a move away from the continuing obsession with Darwinian mechanisms, which are entirely uncontroversial. Rather, I emphasize why we should seek explanations for ubiquitous evolutionary convergence, as well as the emergence of complex integrated systems. At present, evolutionary theory seems to be akin to nineteenth-century physics, blissfully unaware of the imminent arrival of quantum mechanics and general relativity. Physics had its Newton, biology its Darwin: evolutionary biology now awaits its Einstein.

  9. Darwinian Adverse Selection

    CERN Document Server

    Kuhle, Wolfgang

    2015-01-01

    We develop a model to study the role of rationality in economics and biology. The model's agents differ continuously in their ability to make rational choices. The agents' objective is to ensure their individual survival over time or, equivalently, to maximize profits. In equilibrium, however, rational agents who maximize their objective survival probability are, individually and collectively, eliminated by the forces of competition. Instead of rationality, there emerges a unique distribution of irrational players who are individually not fit for the struggle of survival. The selection of irrational players over rational ones relies on the fact that all rational players coordinate on the same optimal action, which leaves them collectively undiversified and thus vulnerable to aggregate risks.

  10. Simulating the competition evolution of the civil aviation industry based on cellular automata%基于元胞自动机的民航运输产业竞争演化模拟

    Institute of Scientific and Technical Information of China (English)

    寇勇刚; 吴桐水; 柳青

    2011-01-01

    为研究民航运输产业的竞争演化,考虑航空公司的资源竞争力、职能竞争力、核心竞争力及动态核心能力四层次竞争力等因素,建立了元胞自动机模型.以中美两国民航运输产业的竞争演化为例,对主导元胞(航空公司)和支持元胞(机场)的协同发展及其盈利状况进行了模拟研究.研究结果表明,美国民航业放松航空管制后因航空公司动态核心能力不强,行业整体盈利状况不佳;我国民航业半放松管制后,盈利状况也不容乐观.然而,提高航空公司的动态核心能力既可以避免美国民航业发展中经营惨淡的局面,同时又能促进我国民航业的快速发展.%In order to research the competition evolution of the aviation industry, built the cellular automata model with consideration of resource, function, core competence and dynamic core competence of airlines four competition factors. Took competition evolution of the civil aviation industry in China and USA for examples, simulated the coordinated development and profit status of the major cells (airlines) and supportive cells (airports). The result indicates the industry profit status of USA are not good after the deregulation because airlines do not have enough dynamic core competence, the industry profit status of China also are not good after the half-deregulation. However, improving the dynamic core competence of airlines could prevent the civil aviation industry from the loss of USA development example, meanwhile, could promote rapidly development of our country's civil aviation industry, too.

  11. Punctuated Equilibrium in Statistical Models of Generalized Coevolutionary Resilience: How Sudden Ecosystem Transitions Can Entrain Both Phenotype Expression and Darwinian Selection

    Science.gov (United States)

    Wallace, Rodrick; Wallace, Deborah

    We argue that mesoscale ecosystem resilience shifts akin to sudden phase transitions in physical systems can entrain similarly punctuated events of gene expression on more rapid time scales, and, in part through such means, slower changes induced by selection pressure, triggering punctuated equilibrium Darwinian evolutionary transitions on geologic time scales. The approach reduces ecosystem, gene expression, and Darwinian genetic dynamics to a least common denominator of information sources interacting by crosstalk at markedly differing rates. Pettini's 'topological hypothesis', via a homology between information source uncertainty and free energy density, generates a regression-like class of statistical models of sudden coevolutionary phase transition based on the Rate Distortion and Shannon-McMillan Theorems of information theory which links all three levels. A mathematical treatment of Holling's extended keystone hypothesis regarding the particular role of mesoscale phenomena in entraining both slower and faster dynamical structures produces the result. A main theme is the necessity of a cognitive paradigm for gene expression, mirroring I. Cohen's cognitive approach to immune function. Invocation of the necessary conditions imposed by the asymptotic limit theorems of communication theory enables us to penetrate one layer more deeply before needing to impose an empirically-derived phenomenological system of 'Onsager relation' recursive coevolutionary stochastic differential equations. Extending the development to second order via a large deviations argument permits modeling the influence of human cultural structures on ecosystems as 'farming'.

  12. A spectre haunts evolution: Haeckel, Heidegger, and the all-too-human history of biology.

    Science.gov (United States)

    Day, Matthew

    2010-01-01

    Since The Meaning of Evolution (1992), Robert J. Richards has argued that modern evolutionary theory is rooted in late 18th-century Romantic science. The publication of The Tragic Sense of Life (2009) provides a fitting occasion to evaluate how this perspective revises the standard history of biological thought. This essay focuses on three aspects of Richards's attempt to rehabilitate the reputation of German Naturphilosophie: (1) the identification of Romantic strains in Charles Darwin's portrait of evolutionary history; (2) the demonstration that any attempt to treat Ernst Haeckel as a "pseudo-Darwinian" inevitably renders Darwin himself a "pseudo-Darwinian"; and (3) the denial of Haeckel's alleged responsibility for the rise of Nazi racial hygiene. This article examines Richards's case for clearing Haeckel's name, as well as the subsequent (slanderous) charge from Daniel Gasman that Richards is guilty of whitewashing the Haeckelian roots of the Holocaust.

  13. Teaching Evolution: A Heuristic Study of Personal and Cultural Dissonance

    Science.gov (United States)

    Grimes, Larry G.

    Darwinian evolution is a robustly supported scientific theory. Yet creationists continue to challenge its teaching in American public schools. Biology teachers in all 50 states are responsible for teaching science content standards that include evolution. As products of their backgrounds and affiliations teachers bring personal attitudes and beliefs to their teaching. The purpose of this study was to explore how biology teachers perceive, describe, and value their teaching of evolution. This research question was explored through a heuristic qualitative methodology. Eight veteran California high school biology teachers were queried as to their beliefs, perceptions, experiences and practices of teaching evolution. Both personal and professional documents were collected. Data was presented in the form of biographical essays that highlight teachers' backgrounds, experiences, perspectives and practices of teaching evolution. Of special interest was how they describe pressure over teaching evolution during a decade of standards and No Child Left Behind high-stakes testing mandates. Five common themes emerged. Standards have increased the overall amount of evolution that is taught. High-stakes testing has decreased the depth at which evolution is taught. Teacher belief systems strongly influence how evolution is taught. Fear of creationist challenges effect evolution teaching strategies. And lastly, concern over the potential effects of teaching evolution on student worldviews was mixed. Three categories of teacher concern over the potential impact of evolution on student worldviews were identified: Concerned, Strategist, and Carefree. In the final analysis teacher beliefs and attitudes still appeared to he the most important factor influencing how evolution is taught.

  14. On the Behavior Characteristics of Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-cai; ZHANG Jiang-ling; FENG Dan

    2005-01-01

    In this paper, the inherent relationships between the running regulations and behavior characteristics of cellular automata are presented; an imprecise taxonomy of such systems is put forward; the three extreme cases of stable systems are discussed; and the illogicalness of evolutional strategies of cellular automata is analyzed. The result is suitable for the emulation and prediction of behavior of discrete dynamics systems; especially it can be taken as an important analysis means of dynamic performance of complex networks.

  15. Evolution before genes

    Directory of Open Access Journals (Sweden)

    Vasas Vera

    2012-01-01

    Full Text Available Abstract Background Our current understanding of evolution is so tightly linked to template-dependent replication of DNA and RNA molecules that the old idea from Oparin of a self-reproducing 'garbage bag' ('coacervate' of chemicals that predated fully-fledged cell-like entities seems to be farfetched to most scientists today. However, this is exactly the kind of scheme we propose for how Darwinian evolution could have occurred prior to template replication. Results We cannot confirm previous claims that autocatalytic sets of organic polymer molecules could undergo evolution in any interesting sense by themselves. While we and others have previously imagined inhibition would result in selectability, we found that it produced multiple attractors in an autocatalytic set that cannot be selected for. Instead, we discovered that if general conditions are satisfied, the accumulation of adaptations in chemical reaction networks can occur. These conditions are the existence of rare reactions producing viable cores (analogous to a genotype, that sustains a molecular periphery (analogous to a phenotype. Conclusions We conclude that only when a chemical reaction network consists of many such viable cores, can it be evolvable. When many cores are enclosed in a compartment there is competition between cores within the same compartment, and when there are many compartments, there is between-compartment competition due to the phenotypic effects of cores and their periphery at the compartment level. Acquisition of cores by rare chemical events, and loss of cores at division, allows macromutation, limited heredity and selectability, thus explaining how a poor man's natural selection could have operated prior to genetic templates. This is the only demonstration to date of a mechanism by which pre-template accumulation of adaptation could occur. Reviewers This article was reviewed by William Martin and Eugene Koonin.

  16. Aesthetic evolution by mate choice: Darwin's really dangerous idea.

    Science.gov (United States)

    Prum, Richard O

    2012-08-19

    Darwin proposed an explicitly aesthetic theory of sexual selection in which he described mate preferences as a 'taste for the beautiful', an 'aesthetic capacity', etc. These statements were not merely colourful Victorian mannerisms, but explicit expressions of Darwin's hypothesis that mate preferences can evolve for arbitrarily attractive traits that do not provide any additional benefits to mate choice. In his critique of Darwin, A. R. Wallace proposed an entirely modern mechanism of mate preference evolution through the correlation of display traits with male vigour or viability, but he called this mechanism natural selection. Wallace's honest advertisement proposal was stridently anti-Darwinian and anti-aesthetic. Most modern sexual selection research relies on essentially the same Neo-Wallacean theory renamed as sexual selection. I define the process of aesthetic evolution as the evolution of a communication signal through sensory/cognitive evaluation, which is most elaborated through coevolution of the signal and its evaluation. Sensory evaluation includes the possibility that display traits do not encode information that is being assessed, but are merely preferred. A genuinely Darwinian, aesthetic theory of sexual selection requires the incorporation of the Lande-Kirkpatrick null model into sexual selection research, but also encompasses the possibility of sensory bias, good genes and direct benefits mechanisms.

  17. Evolution by epigenesis: farewell to Darwinism, neo- and otherwise.

    Science.gov (United States)

    Balon, Eugene K

    2004-01-01

    In the last 25 years, criticism of most theories advanced by Darwin and the neo-Darwinians has increased considerably, and so did their defense. Darwinism has become an ideology, while the most significant theories of Darwin were proven unsupportable. The critics advanced other theories instead of 'natural selection' and the survival of the fittest'. 'Saltatory ontogeny' and 'epigenesis' are such new theories proposed to explain how variations in ontogeny and novelties in evolution are created. They are reviewed again in the present essay that also tries to explain how Darwinians, artificially kept dominant in academia and in granting agencies, are preventing their acceptance. Epigenesis, the mechanism of ontogenies, creates in every generation alternative variations in a saltatory way that enable the organisms to survive in the changing environments as either altricial or precocial forms. The constant production of two such forms and their survival in different environments makes it possible, over a sequence of generations, to introduce changes and establish novelties--the true phenomena of evolution. The saltatory units of evolution remain far-from-stable structures capable of self-organization and self-maintenance (autopoiesis).

  18. Towards Co-evolution of Membranes and Metabolism

    Science.gov (United States)

    Wei, Chenyu; Wilson, Michael A.; Pohorille, Andrew

    2014-01-01

    Conceptually, the most robust way to explain how primitive cell-like structures acquired and increased their capabilities is on the basis of Darwinian evolution. A population of protocells containing material that produced more environmentally fit progeny would increase in time at the expense of other protocells. In this scenario, protocellular boundaries were inextricably connected to the metabolism they encapsulated: to be inheritable, early metabolism must have led to an increased rate of growth and division of vesicles and, similarly, transport through vesicle boundaries must have supported the evolution of metabolism. Everything that could not be delivered from the environment had to be produced and retained inside protocells. Despite their importance to the understanding of the origin of life, only a few cases of coupling between metabolism and membrane-related processes have been identified so far. For example, reactions inside fatty-acid vesicles have been linked to their competitive growth and division, and mechanisms by which membrane permeability might have coupled to information polymers have been proposed and explained. Most recently, it has been shown that a dipeptide inside fatty-acid vesicles catalyzes the formation of another dipeptide that binds to vesicle walls and, by doing so, promotes their growth at the expense of other vesicles, thus demonstrating evolutionary advantage of small, membrane-bound peptides. It has been shown that the appearance of phospholipids imparted selective advantage to protocells bound by phospholipid-containing membranes, eventually driving fatty-acid vesicles to extinction. Phospholipid membranes, however, are nearly impermeable to charged species. Yet, the ability to transport ions across membranes was vital for regulating cellular volume, pH homeostasis, generating energy and sensing the environment. To account for this, evolutionary scenarios for the emergence of simple ion channels, protein structures surrounding

  19. Flat Cellular (UMTS) Networks

    NARCIS (Netherlands)

    Bosch, H.G.P.; Samuel, L.G.; Mullender, S.J.; Polakos, P.; Rittenhouse, G.

    2007-01-01

    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective i

  20. Synthetic genetic polymers capable of heredity and evolution

    DEFF Research Database (Denmark)

    Pinheiro, Vitor B; Taylor, Alexander I; Cozens, Christopher

    2012-01-01

    Genetic information storage and processing rely on just two polymers, DNA and RNA, yet whether their role reflects evolutionary history or fundamental functional constraints is currently unknown. With the use of polymerase evolution and design, we show that genetic information can be stored...... in and recovered from six alternative genetic polymers based on simple nucleic acid architectures not found in nature [xeno-nucleic acids (XNAs)]. We also select XNA aptamers, which bind their targets with high affinity and specificity, demonstrating that beyond heredity, specific XNAs have the capacity...... for Darwinian evolution and folding into defined structures. Thus, heredity and evolution, two hallmarks of life, are not limited to DNA and RNA but are likely to be emergent properties of polymers capable of information storage....

  1. Updating Darwin: Information and entropy drive the evolution of life

    Science.gov (United States)

    Cohen, Irun R.

    2016-01-01

    The evolution of species, according to Darwin, is driven by struggle – by competition between variant autonomous individuals for survival of the fittest and reproductive advantage; the outcome of this struggle for survival is natural selection. The Neo-Darwinians reframed natural selection in terms of DNA: inherited genotypes directly encode expressed phenotypes; a fit phenotype means a fit genotype – thus the evolution of species is the evolution of selfish, reproducing individual genotypes.              Four general characteristics of advanced forms of life are not easily explained by this Neo-Darwinian paradigm: 1) Dependence on cooperation rather than on struggle, manifested by the microbiome, ecosystems and altruism; 2) The pursuit of diversity rather than optimal fitness, manifested by sexual reproduction; 3) Life’s investment in programmed death, rather then in open-ended survival; and 4) The acceleration of complexity, despite its intrinsic fragility.               Here I discuss two mechanisms that can resolve these paradoxical features; both mechanisms arise from viewing life as the evolution of information. Information has two inevitable outcomes; it increases by autocatalyis and it is destroyed by entropy. On the one hand, the autocalalysis of information inexorably drives the evolution of complexity, irrespective of its fragility. On the other hand, only those strategic arrangements that accommodate the destructive forces of entropy survive – cooperation, diversification, and programmed death result from the entropic selection of evolving species. Physical principles of information and entropy thus fashion the evolution of life. PMID:28105315

  2. Updating Darwin: Information and entropy drive the evolution of life.

    Science.gov (United States)

    Cohen, Irun R

    2016-01-01

    The evolution of species, according to Darwin, is driven by struggle - by competition between variant autonomous individuals for survival of the fittest and reproductive advantage; the outcome of this struggle for survival is natural selection. The Neo-Darwinians reframed natural selection in terms of DNA: inherited genotypes directly encode expressed phenotypes; a fit phenotype means a fit genotype - thus the evolution of species is the evolution of selfish, reproducing individual genotypes.              Four general characteristics of advanced forms of life are not easily explained by this Neo-Darwinian paradigm: 1) Dependence on cooperation rather than on struggle, manifested by the microbiome, ecosystems and altruism; 2) The pursuit of diversity rather than optimal fitness, manifested by sexual reproduction; 3) Life's investment in programmed death, rather then in open-ended survival; and 4) The acceleration of complexity, despite its intrinsic fragility.               Here I discuss two mechanisms that can resolve these paradoxical features; both mechanisms arise from viewing life as the evolution of information. Information has two inevitable outcomes; it increases by autocatalyis and it is destroyed by entropy. On the one hand, the autocalalysis of information inexorably drives the evolution of complexity, irrespective of its fragility. On the other hand, only those strategic arrangements that accommodate the destructive forces of entropy survive - cooperation, diversification, and programmed death result from the entropic selection of evolving species. Physical principles of information and entropy thus fashion the evolution of life.

  3. Darwin, microbes and evolution by natural selection.

    Science.gov (United States)

    Moxon, E Richard

    2011-01-01

    Born 200 years ago, Darwin's revolutionary ideas were derived largely from his observations on life forms that evolved relatively recently, including various flowering plants, worms, birds and domesticated animals. Yet, life appeared on planet earth close to 4 billion years ago in the form of unicellular organisms collectively called bacteria. It was only shortly after "On the Origin of Species" was published (1859) that the "germ theory" of infectious diseases was formulated. Microbes (viruses, bacteria, fungi and microparasites) received scant mention in Darwin's writings, although pioneers of the Golden Age of Bacteriology, such as Louis Pasteur (1822-1895), were contemporaries. Today, microbes offer extraordinary testimony and powerful model systems of direct relevance to the essentials of Darwinian selection, such as understanding microbial-host interactions, the evolution of pathogens and the emergence of drug- or vaccine-related resistance.

  4. THE COMPLEXITY OF LIMIT LANGUAGES OF CELLULAR AUTOMATA: AN EXAMPLE

    Institute of Scientific and Technical Information of China (English)

    XIE Huimin

    2001-01-01

    The limit languages of cellular automata are defined and theircomplexity are discussed. New tools, which include skew evolution, skew periodic string, trace string, some algebraic calculation method, and restricted membership problem, are developed through a discussion focusing on the limit language of an elementary cellular automata of rule 94.It is proved that this language is non-regular.

  5. 对“非”达尔文革命的多视角透视(对话)——兼论同时发现者华莱士的境遇%The Multi-angle Perspective on Non-Darwinian Revolution (A Dialogue) --On the Situation of the Codiscoverer Wallace

    Institute of Scientific and Technical Information of China (English)

    曾晓丽; 桂起权

    2012-01-01

    我们从科学思想史、科学哲学、科学知识社会学、系统科学的观点,对达尔文革命进行多视角、全方位的透视:(1)作为达尔文革命的功臣,华莱士确实受了许多委屈,对这种科学史中的“异化”现象,可以用科学知识社会学来进行解读。(2)达尔文的思想历经四次革命的飞跃。(3)达尔文的“自然选择”纲领可以用系统科学观点得到合理解释。(4)作为达尔文纲领的对立面,“宇宙完美设计”纲领仍包含合理内核和启发性。(5)借助于系统科学理解模式,进化论的科学语言与自然神论的宗教语言之间通过转译,有可能进行对话。%Using the theory on history of scientific thought, philosophy of science, Sociology of Scientific Knowledge, systems science, the Darwinian Revolution is assayed in a multiple and a full range of perspectives: (1) as a hero of the Darwinian Revolution, Wallace actually affected by a number of grievances. The "alienation" phenomenon what occurred in the history of science can be interpreted by the sociology of scientific knowledge. (2) Darwin's thinking Experienced four revolutionary leap. (3) Darwin's "natural selection" program can be explicated reasonably by the point of view on systems science. (4) as the antithesis of Darwin's program, "the perfect design of the universe" program still contains the rational kernel and enlightening. (5) Using the means of the understanding model on systems science , the scientific theory of the evolution and the deism, both language can be translated and reinterpreted each other, it's possible to engage in a dialogue.

  6. Punctualism, non-adaptationism, neutralism and evolution.

    Science.gov (United States)

    Volkenstein, M V

    1987-01-01

    In its further development the theory of evolution will incorporate molecular biology, synergetics and the theory of information. Using a simple model it is shown that speciation can be similar to phase transition. This is a thermodynamical statement which does not say anything concerning the sharpness and kinetic features of transition. Hence there is no contradiction between punctuated equilibrium and phyletic gradualism. The notion of punctualism can be used in the sense of phase transition. Evolution is directional because of constraints of natural selection due to the structure of organisms already existing and to the possible pathways of development. Correspondingly many characters are non-adaptative. Not only are the structures of proteins important for speciation but also the exact answers to the questions: "how much", "where" and "when"? These answers can be obtained as the results of regulation of genes, particularly of homeiotic regulation. The basis features of the structure of proteins are considered and the sense of the neutral theory is discussed in connection with degeneracy of correlation between the primary structure of a protein, its spatial structure and biological function. Informational aspects of evolution are discussed. Punctualism, non-adaptationism and neutralism form the triad of internally connected features of evolution. The Darwinian theory preserves its fundamental significance.

  7. Reversible quantum cellular automata

    CERN Document Server

    Schumacher, B

    2004-01-01

    We define quantum cellular automata as infinite quantum lattice systems with discrete time dynamics, such that the time step commutes with lattice translations and has strictly finite propagation speed. In contrast to earlier definitions this allows us to give an explicit characterization of all local rules generating such automata. The same local rules also generate the global time step for automata with periodic boundary conditions. Our main structure theorem asserts that any quantum cellular automaton is structurally reversible, i.e., that it can be obtained by applying two blockwise unitary operations in a generalized Margolus partitioning scheme. This implies that, in contrast to the classical case, the inverse of a nearest neighbor quantum cellular automaton is again a nearest neighbor automaton. We present several construction methods for quantum cellular automata, based on unitaries commuting with their translates, on the quantization of (arbitrary) reversible classical cellular automata, on quantum c...

  8. Evolution vs the number of gene copies per primitive cell.

    Science.gov (United States)

    Koch, A L

    1984-01-01

    Computer simulations are presented of the rate at which an advantageous mutant would displace the prototype in a replicating system without an accurate segregation mechanism. If the number of gene copies in the system is indefinitely large, Darwinian evolution is essentially stopped because there is no coupling of phenotype with genotype, i.e., there is no growth advantage to the advantageous gene relative to the prototype and therefore no "survival of the fittest." The inhibition of evolution due to a number of gene copies less than 100 would have been not insurmountable. Although the presence of multiple copies would have allowed replacement by an advantageous mutant, it provided a way for the primitive cell to conserve less immediately useful genes that could evolve into different or more effective genes. This possibility was lost as accurate segregation mechanisms evolved and cells with few copies of each gene, such as modern procaryotes, arose.

  9. On the thermodynamics of multilevel evolution.

    Science.gov (United States)

    Tessera, Marc; Hoelzer, Guy A

    2013-09-01

    Biodiversity is hierarchically structured both phylogenetically and functionally. Phylogenetic hierarchy is understood as a product of branching organic evolution as described by Darwin. Ecosystem biologists understand some aspects of functional hierarchy, such as food web architecture, as a product of evolutionary ecology; but functional hierarchy extends to much lower scales of organization than those studied by ecologists. We argue that the more general use of the term "evolution" employed by physicists and applied to non-living systems connects directly to the narrow biological meaning. Physical evolution is best understood as a thermodynamic phenomenon, and this perspective comfortably includes all of biological evolution. We suggest four dynamical factors that build on each other in a hierarchical fashion and set the stage for the Darwinian evolution of biological systems: (1) the entropic erosion of structure; (2) the construction of dissipative systems; (3) the reproduction of growing systems and (4) the historical memory accrued to populations of reproductive agents by the acquisition of hereditary mechanisms. A particular level of evolution can underpin the emergence of higher levels, but evolutionary processes persist at each level in the hierarchy. We also argue that particular evolutionary processes can occur at any level of the hierarchy where they are not obstructed by material constraints. This theoretical framework provides an extensive basis for understanding natural selection as a multilevel process. The extensive literature on thermodynamics in turn provides an important advantage to this perspective on the evolution of higher levels of organization, such as the evolution of altruism that can accompany the emergence of social organization.

  10. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    Science.gov (United States)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  11. TAKING PRAGMATISM SERIOUSLY: A REVIEW OF WILLIAM BAUM'S UNDERSTANDING BEHAVIORISM: BEHAVIOR, CULTURE, AND EVOLUTION (SECOND EDITION)

    Science.gov (United States)

    Rachlin, Howard; Frankel, Marvin

    2009-01-01

    This important book has two main purposes. The first is to present, in a non-technical way, accessible to intelligent laypeople, a scientific, behavioral approach to all aspects of human activity including choice, rule-governed behavior, self control, religious belief, linguistic interaction, ethics, and culture. Its scope equals that of Skinner's nontechnical writings, but Baum's approach is more molar and more pragmatic than Skinner's. The book's second purpose is to embed behavioral science firmly in the context of Darwinian evolution. Baum is generally successful, we believe, in both of these ambitious purposes.

  12. Science & Society seminar: Evolution is not only a story of genes

    CERN Multimedia

    2002-01-01

    Memes are behaviours and ideas copied from person to person by imitation. These include songs, habits, skills, inventions and ways of doing things. Darwinian evolutionary theory, which holds that genes control the traits of organisms, has traditionally explained human nature. Susan Blackmore offers a new look at evolution, and considers evolving memes as well as genes. This will be the subject of the next Science and Society seminar, 'The evolution of Meme machines', that will take place on Thursday 24 October. According to the meme idea, everything changed in human evolution when imitation first appeared because imitation let loose a new replicator, the meme. Since that time, two replicators have been driving human evolution, not one. This is why humans have such big brains, and why they alone produce and understand grammatical language, sing, dance, wear clothes and have complex cumulative cultures. Unlike other brains, human brains had to solve the problem of choosing which memes to imitate. In other wor...

  13. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  14. The modern theory of biological evolution: an expanded synthesis

    Science.gov (United States)

    Kutschera, Ulrich; Niklas, Karl J.

    In 1858, two naturalists, Charles Darwin and Alfred Russel Wallace, independently proposed natural selection as the basic mechanism responsible for the origin of new phenotypic variants and, ultimately, new species. A large body of evidence for this hypothesis was published in Darwin's Origin of Species one year later, the appearance of which provoked other leading scientists like August Weismann to adopt and amplify Darwin's perspective. Weismann's neo-Darwinian theory of evolution was further elaborated, most notably in a series of books by Theodosius Dobzhansky, Ernst Mayr, Julian Huxley and others. In this article we first summarize the history of life on Earth and provide recent evidence demonstrating that Darwin's dilemma (the apparent missing Precambrian record of life) has been resolved. Next, the historical development and structure of the ``modern synthesis'' is described within the context of the following topics: paleobiology and rates of evolution, mass extinctions and species selection, macroevolution and punctuated equilibrium, sexual reproduction and recombination, sexual selection and altruism, endosymbiosis and eukaryotic cell evolution, evolutionary developmental biology, phenotypic plasticity, epigenetic inheritance and molecular evolution, experimental bacterial evolution, and computer simulations (in silico evolution of digital organisms). In addition, we discuss the expansion of the modern synthesis, embracing all branches of scientific disciplines. It is concluded that the basic tenets of the synthetic theory have survived, but in modified form. These sub-theories require continued elaboration, particularly in light of molecular biology, to answer open-ended questions concerning the mechanisms of evolution in all five kingdoms of life.

  15. The modern theory of biological evolution: an expanded synthesis.

    Science.gov (United States)

    Kutschera, Ulrich; Niklas, Karl J

    2004-06-01

    In 1858, two naturalists, Charles Darwin and Alfred Russel Wallace, independently proposed natural selection as the basic mechanism responsible for the origin of new phenotypic variants and, ultimately, new species. A large body of evidence for this hypothesis was published in Darwin's Origin of Species one year later, the appearance of which provoked other leading scientists like August Weismann to adopt and amplify Darwin's perspective. Weismann's neo-Darwinian theory of evolution was further elaborated, most notably in a series of books by Theodosius Dobzhansky, Ernst Mayr, Julian Huxley and others. In this article we first summarize the history of life on Earth and provide recent evidence demonstrating that Darwin's dilemma (the apparent missing Precambrian record of life) has been resolved. Next, the historical development and structure of the "modern synthesis" is described within the context of the following topics: paleobiology and rates of evolution, mass extinctions and species selection, macroevolution and punctuated equilibrium, sexual reproduction and recombination, sexual selection and altruism, endosymbiosis and eukaryotic cell evolution, evolutionary developmental biology, phenotypic plasticity, epigenetic inheritance and molecular evolution, experimental bacterial evolution, and computer simulations (in silico evolution of digital organisms). In addition, we discuss the expansion of the modern synthesis, embracing all branches of scientific disciplines. It is concluded that the basic tenets of the synthetic theory have survived, but in modified form. These sub-theories require continued elaboration, particularly in light of molecular biology, to answer open-ended questions concerning the mechanisms of evolution in all five kingdoms of life.

  16. Nanostructured cellular networks.

    Science.gov (United States)

    Moriarty, P; Taylor, M D R; Brust, M

    2002-12-01

    Au nanocrystals spin-coated onto silicon from toluene form cellular networks. A quantitative statistical crystallography analysis shows that intercellular correlations drive the networks far from statistical equilibrium. Spin-coating from hexane does not produce cellular structure, yet a strong correlation is retained in the positions of nanocrystal aggregates. Mechanisms based on Marangoni convection alone cannot account for the variety of patterns observed, and we argue that spinodal decomposition plays an important role in foam formation.

  17. Cellular Automation of Galactic Habitable Zone

    CERN Document Server

    Vukotic, Branislav

    2010-01-01

    We present a preliminary results of our Galactic Habitable Zone (GHZ) 2D probabilistic cellular automata models. The relevant time-scales (emergence of life, it's diversification and evolution influenced with the global risk function) are modeled as the probability matrix elements and are chosen in accordance with the Copernican principle to be well-represented by the data inferred from the Earth's fossil record. With Fermi's paradox as a main boundary condition the resulting histories of astrobiological landscape are discussed.

  18. Software-Defined Cellular Mobile Network Solutions

    Institute of Scientific and Technical Information of China (English)

    Jiandong Li; Peng Liu; Hongyan Li

    2014-01-01

    The emergency relating to software-defined networking (SDN), especially in terms of the prototype associated with OpenFlow, pro-vides new possibilities for innovating on network design. Researchers have started to extend SDN to cellular networks. Such new programmable architecture is beneficial to the evolution of mobile networks and allows operators to provide better services. The typical cellular network comprises radio access network (RAN) and core network (CN); hence, the technique roadmap diverges in two ways. In this paper, we investigate SoftRAN, the latest SDN solution for RAN, and SoftCell and MobileFlow, the latest solu-tions for CN. We also define a series of control functions for CROWD. Unlike in the other literature, we emphasize only software-defined cellular network solutions and specifications in order to provide possible research directions.

  19. Epigenetics and Cellular Metabolism

    Science.gov (United States)

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well. PMID:27695375

  20. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  1. Constructive neutral evolution: exploring evolutionary theory’s curious disconnect

    Directory of Open Access Journals (Sweden)

    Stoltzfus Arlin

    2012-10-01

    Full Text Available Abstract Constructive neutral evolution (CNE suggests that neutral evolution may follow a stepwise path to extravagance. Whether or not CNE is common, the mere possibility raises provocative questions about causation: in classical neo-Darwinian thinking, selection is the sole source of creativity and direction, the only force that can cause trends or build complex features. However, much of contemporary evolutionary genetics departs from the conception of evolution underlying neo-Darwinism, resulting in a widening gap between what formal models allow, and what the prevailing view of the causes of evolution suggests. In particular, a mutationist conception of evolution as a 2-step origin-fixation process has been a source of theoretical innovation for 40 years, appearing not only in the Neutral Theory, but also in recent breakthroughs in modeling adaptation (the “mutational landscape” model, and in practical software for sequence analysis. In this conception, mutation is not a source of raw materials, but an agent that introduces novelty, while selection is not an agent that shapes features, but a stochastic sieve. This view, which now lays claim to important theoretical, experimental, and practical results, demands our attention. CNE provides a way to explore its most significant implications about the role of variation in evolution. Reviewers Alex Kondrashov, Eugene Koonin and Johann Peter Gogarten reviewed this article.

  2. Cellular blue naevus

    Directory of Open Access Journals (Sweden)

    Mittal R

    2001-01-01

    Full Text Available A 31-year-old man had asymptomatic, stationary, 1.5X2 cm, shiny, smooth, dark blue nodule on dorsum of right hand since 12-14 years. In addition he had developed extensive eruption of yellow to orange papulonodular lesions on extensors of limbs and buttocks since one and half months. Investigations confirmed that yellow papules were xanthomatosis and he had associated diabetes mellitus and hyperlipidaemia. Biopsy of blue nodule confirmed the clinical diagnosis of cellular blue naevus. Cellular blue naevus is rare and its association with xanthomatosis and diabetes mellitus were interesting features of above patients which is being reported for its rarity.

  3. Accelerated evolution of the pituitary adenylate cyclase-activating polypeptide precursor gene during human origin

    DEFF Research Database (Denmark)

    Wang, Yin-Qiu; Qian, Ya-Ping; Yang, Su

    2005-01-01

    a strong functional constraint during the course of evolution. However, through comparative sequence analysis, we demonstrated that the PACAP precursor gene underwent an accelerated evolution in the human lineage since the divergence from chimpanzees, and the amino acid substitution rate in humans...... is at least seven times faster than that in other mammal species resulting from strong Darwinian positive selection. Eleven human-specific amino acid changes were identified in the PACAP precursors, which are conserved from murine to African apes. Protein structural analysis suggested that a putative novel...... neuropeptide might have originated during human evolution and functioned in the human brain. Our data suggested that the PACAP precursor gene underwent adaptive changes during human origin and may have contributed to the formation of human cognition. Udgivelsesdato: 2005-Jun...

  4. Bacterial flagella and Type III secretion: case studies in the evolution of complexity.

    Science.gov (United States)

    Pallen, M J; Gophna, U

    2007-01-01

    Bacterial flagella at first sight appear uniquely sophisticated in structure, so much so that they have even been considered 'irreducibly complex' by the intelligent design movement. However, a more detailed analysis reveals that these remarkable pieces of molecular machinery are the product of processes that are fully compatible with Darwinian evolution. In this chapter we present evidence for such processes, based on a review of experimental studies, molecular phylogeny and microbial genomics. Several processes have played important roles in flagellar evolution: self-assembly of simple repeating subunits, gene duplication with subsequent divergence, recruitment of elements from other systems ('molecular bricolage'), and recombination. We also discuss additional tentative new assignments of homology (FliG with MgtE, FliO with YscJ). In conclusion, rather than providing evidence of intelligent design, flagellar and non-flagellar Type III secretion systems instead provide excellent case studies in the evolution of complex systems from simpler components.

  5. Cellular rehabilitation of photobiomodulation

    Science.gov (United States)

    Liu, Timon Cheng-Yi; Yuan, Jian-Qin; Wang, Yan-Fang; Xu, Xiao-Yang; Liu, Song-Hao

    2007-05-01

    Homeostasis is a term that refers to constancy in a system. A cell in homeostasis normally functions. There are two kinds of processes in the internal environment and external environment of a cell, the pathogenic processes (PP) which disrupts the old homeostasis (OH), and the sanogenetic processes (SP) which restores OH or establishes a new homeostasis (NH). Photobiomodualtion (PBM), the cell-specific effects of low intensity monochromatic light or low intensity laser irradiation (LIL) on biological systems, is a kind of modulation on PP or SP so that there is no PBM on a cell in homeostasis. There are two kinds of pathways mediating PBM, the membrane endogenetic chromophores mediating pathways which often act through reactive oxygen species, and membrane proteins mediating pathways which often enhance cellular SP so that it might be called cellular rehabilitation. The cellular rehabilitation of PBM will be discussed in this paper. It is concluded that PBM might modulate the disruption of cellular homeostasis induced by pathogenic factors such as toxin until OH has been restored or NH has been established, but can not change homeostatic processes from one to another one.

  6. Cellular Response to Irradiation

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; YAN Shi-Wei

    2011-01-01

    To explore the nonlinear activities of the cellular signaling system composed of one transcriptional arm and one protein-interaction arm, we use an irradiation-response module to study the dynamics of stochastic interactions.It is shown that the oscillatory behavior could be described in a unified way when the radiation-derived signal and noise are incorporated.

  7. Critical dynamics in the evolution of stochastic strategies for the iterated prisoner's dilemma.

    Directory of Open Access Journals (Sweden)

    Dimitris Iliopoulos

    Full Text Available The observed cooperation on the level of genes, cells, tissues, and individuals has been the object of intense study by evolutionary biologists, mainly because cooperation often flourishes in biological systems in apparent contradiction to the selfish goal of survival inherent in Darwinian evolution. In order to resolve this paradox, evolutionary game theory has focused on the Prisoner's Dilemma (PD, which incorporates the essence of this conflict. Here, we encode strategies for the iterated Prisoner's Dilemma (IPD in terms of conditional probabilities that represent the response of decision pathways given previous plays. We find that if these stochastic strategies are encoded as genes that undergo Darwinian evolution, the environmental conditions that the strategies are adapting to determine the fixed point of the evolutionary trajectory, which could be either cooperation or defection. A transition between cooperative and defective attractors occurs as a function of different parameters such as mutation rate, replacement rate, and memory, all of which affect a player's ability to predict an opponent's behavior. These results imply that in populations of players that can use previous decisions to plan future ones, cooperation depends critically on whether the players can rely on facing the same strategies that they have adapted to. Defection, on the other hand, is the optimal adaptive response in environments that change so quickly that the information gathered from previous plays cannot usefully be integrated for a response.

  8. Critical dynamics in the evolution of stochastic strategies for the iterated prisoner's dilemma.

    Science.gov (United States)

    Iliopoulos, Dimitris; Hintze, Arend; Adami, Christoph

    2010-10-07

    The observed cooperation on the level of genes, cells, tissues, and individuals has been the object of intense study by evolutionary biologists, mainly because cooperation often flourishes in biological systems in apparent contradiction to the selfish goal of survival inherent in Darwinian evolution. In order to resolve this paradox, evolutionary game theory has focused on the Prisoner's Dilemma (PD), which incorporates the essence of this conflict. Here, we encode strategies for the iterated Prisoner's Dilemma (IPD) in terms of conditional probabilities that represent the response of decision pathways given previous plays. We find that if these stochastic strategies are encoded as genes that undergo Darwinian evolution, the environmental conditions that the strategies are adapting to determine the fixed point of the evolutionary trajectory, which could be either cooperation or defection. A transition between cooperative and defective attractors occurs as a function of different parameters such as mutation rate, replacement rate, and memory, all of which affect a player's ability to predict an opponent's behavior. These results imply that in populations of players that can use previous decisions to plan future ones, cooperation depends critically on whether the players can rely on facing the same strategies that they have adapted to. Defection, on the other hand, is the optimal adaptive response in environments that change so quickly that the information gathered from previous plays cannot usefully be integrated for a response.

  9. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes

    Directory of Open Access Journals (Sweden)

    Lynch Vincent J

    2007-01-01

    Full Text Available Abstract Background Gene duplication followed by functional divergence has long been hypothesized to be the main source of molecular novelty. Convincing examples of neofunctionalization, however, remain rare. Snake venom phospholipase A2 genes are members of large multigene families with many diverse functions, thus they are excellent models to study the emergence of novel functions after gene duplications. Results Here, I show that positive Darwinian selection and neofunctionalization is common in snake venom phospholipase A2 genes. The pattern of gene duplication and positive selection indicates that adaptive molecular evolution occurs immediately after duplication events as novel functions emerge and continues as gene families diversify and are refined. Surprisingly, adaptive evolution of group-I phospholipases in elapids is also associated with speciation events, suggesting adaptation of the phospholipase arsenal to novel prey species after niche shifts. Mapping the location of sites under positive selection onto the crystal structure of phospholipase A2 identified regions evolving under diversifying selection are located on the molecular surface and are likely protein-protein interactions sites essential for toxin functions. Conclusion These data show that increases in genomic complexity (through gene duplications can lead to phenotypic complexity (venom composition and that positive Darwinian selection is a common evolutionary force in snake venoms. Finally, regions identified under selection on the surface of phospholipase A2 enzymes are potential candidate sites for structure based antivenin design.

  10. Cultural transmission and the evolution of human behaviour: a general approach based on the Price equation.

    Science.gov (United States)

    El Mouden, C; André, J-B; Morin, O; Nettle, D

    2014-02-01

    Transmitted culture can be viewed as an inheritance system somewhat independent of genes that is subject to processes of descent with modification in its own right. Although many authors have conceptualized cultural change as a Darwinian process, there is no generally agreed formal framework for defining key concepts such as natural selection, fitness, relatedness and altruism for the cultural case. Here, we present and explore such a framework using the Price equation. Assuming an isolated, independently measurable culturally transmitted trait, we show that cultural natural selection maximizes cultural fitness, a distinct quantity from genetic fitness, and also that cultural relatedness and cultural altruism are not reducible to or necessarily related to their genetic counterparts. We show that antagonistic coevolution will occur between genes and culture whenever cultural fitness is not perfectly aligned with genetic fitness, as genetic selection will shape psychological mechanisms to avoid susceptibility to cultural traits that bear a genetic fitness cost. We discuss the difficulties with conceptualizing cultural change using the framework of evolutionary theory, the degree to which cultural evolution is autonomous from genetic evolution, and the extent to which cultural change should be seen as a Darwinian process. We argue that the nonselection components of evolutionary change are much more important for culture than for genes, and that this and other important differences from the genetic case mean that different approaches and emphases are needed for cultural than genetic processes.

  11. Antibiotics and antibiotic resistance: a bitter fight against evolution.

    Science.gov (United States)

    Rodríguez-Rojas, Alexandro; Rodríguez-Beltrán, Jerónimo; Couce, Alejandro; Blázquez, Jesús

    2013-08-01

    One of the most terrible consequences of Darwinian evolution is arguably the emergence and spread of antibiotic resistance, which is becoming a serious menace to modern societies. While spontaneous mutation, recombination and horizontal gene transfer are recognized as the main causes of this notorious phenomenon; recent research has raised awareness that sub-lethal concentrations of antibiotics can also foster resistance as an undesirable side-effect. They can produce genetic changes by different ways, including a raise of free radicals within the cell, induction of error-prone DNA-polymerases mediated by SOS response, imbalanced nucleotide metabolism or affect directly DNA. In addition to certain environmental conditions, subinhibitory concentrations of antimicrobials may increase, even more, the mutagenic effect of antibiotics. Here, we review the state of knowledge on antibiotics as promoters of antibiotic resistance.

  12. Extremal Optimization: Methods Derived from Co-Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Boettcher, S.; Percus, A.G.

    1999-07-13

    We describe a general-purpose method for finding high-quality solutions to hard optimization problems, inspired by self-organized critical models of co-evolution such as the Bak-Sneppen model. The method, called Extremal Optimization, successively eliminates extremely undesirable components of sub-optimal solutions, rather than ''breeding'' better components. In contrast to Genetic Algorithms which operate on an entire ''gene-pool'' of possible solutions, Extremal Optimization improves on a single candidate solution by treating each of its components as species co-evolving according to Darwinian principles. Unlike Simulated Annealing, its non-equilibrium approach effects an algorithm requiring few parameters to tune. With only one adjustable parameter, its performance proves competitive with, and often superior to, more elaborate stochastic optimization procedures. We demonstrate it here on two classic hard optimization problems: graph partitioning and the traveling salesman problem.

  13. There’s plenty of time for evolution

    Science.gov (United States)

    Wilf, Herbert S.; Ewens, Warren J.

    2010-01-01

    Objections to Darwinian evolution are often based on the time required to carry out the necessary mutations. Seemingly, exponential numbers of mutations are needed. We show that such estimates ignore the effects of natural selection, and that the numbers of necessary mutations are thereby reduced to about K log L, rather than KL, where L is the length of the genomic “word,” and K is the number of possible “letters” that can occupy any position in the word. The required theory makes contact with the theory of radix-exchange sorting in theoretical computer science, and the asymptotic analysis of certain sums that occur there. PMID:21149677

  14. Cellular automata in Xenakis's music. Theory and Practice

    OpenAIRE

    Solomos, Makis

    2005-01-01

    International audience; Cellular automata are developed since some decades, belonging to the field of abstract automata. In the beginning of the 1980s, they were popularized in relationship with the study of dynamic systems and chaos theories. They were also applied for modelling the evolution of natural systems (for instance biological ones), especially in relationship with the idea of auto-organization. From the end of the 1980s since nowadays, several composers begin to use cellular automa...

  15. Is Lamarckian evolution relevant to medicine?

    Directory of Open Access Journals (Sweden)

    Handel Adam E

    2010-05-01

    Full Text Available Abstract Background 200 years have now passed since Darwin was born and scientists around the world are celebrating this important anniversary of the birth of an evolutionary visionary. However, the theories of his colleague Lamarck are treated with considerably less acclaim. These theories centre on the tendency for complexity to increase in organisms over time and the direct transmission of phenotypic traits from parents to offspring. Discussion Lamarckian concepts, long thought of no relevance to modern evolutionary theory, are enjoying a quiet resurgence with the increasing complexity of epigenetic theories of inheritance. There is evidence that epigenetic alterations, including DNA methylation and histone modifications, are transmitted transgenerationally, thus providing a potential mechanism for environmental influences to be passed from parents to offspring: Lamarckian evolution. Furthermore, evidence is accumulating that epigenetics plays an important role in many common medical conditions. Summary Epigenetics allows the peaceful co-existence of Darwinian and Lamarckian evolution. Further efforts should be exerted on studying the mechanisms by which this occurs so that public health measures can be undertaken to reverse or prevent epigenetic changes important in disease susceptibility. Perhaps in 2059 we will be celebrating the anniversary of both Darwin and Lamarck.

  16. The beak of the other finch: coevolution of genetic covariance structure and developmental modularity during adaptive evolution.

    Science.gov (United States)

    Badyaev, Alexander V

    2010-04-12

    The link between adaptation and evolutionary change remains the most central and least understood evolutionary problem. Rapid evolution and diversification of avian beaks is a textbook example of such a link, yet the mechanisms that enable beak's precise adaptation and extensive adaptability are poorly understood. Often observed rapid evolutionary change in beaks is particularly puzzling in light of the neo-Darwinian model that necessitates coordinated changes in developmentally distinct precursors and correspondence between functional and genetic modularity, which should preclude evolutionary diversification. I show that during first 19 generations after colonization of a novel environment, house finches (Carpodacus mexicanus) express an array of distinct, but adaptively equivalent beak morphologies-a result of compensatory developmental interactions between beak length and width in accommodating microevolutionary change in beak depth. Directional selection was largely confined to the elimination of extremes formed by these developmental interactions, while long-term stabilizing selection along a single axis-beak depth-was mirrored in the structure of beak's additive genetic covariance. These results emphasize three principal points. First, additive genetic covariance structure may represent a historical record of the most recurrent developmental and functional interactions. Second, adaptive equivalence of beak configurations shields genetic and developmental variation in individual components from depletion by natural selection. Third, compensatory developmental interactions among beak components can generate rapid reorganization of beak morphology under novel conditions and thus greatly facilitate both the evolution of precise adaptation and extensive diversification, thereby linking adaptation and adaptability in this classic example of Darwinian evolution.

  17. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  18. LA SELECCIÓN NATURAL Y LOS CULTIVOS TRANSGÉNICOS: ¿UN HIATO DARWINISTA? Natural Selection and Transgenic Crops: A Darwinian Hiatus?

    Directory of Open Access Journals (Sweden)

    ALEJANDRO CHAPARRO-GIRALDO

    . En el contexto de la evidencia analizada, parecería que los cultivos transgénicos no escapan a la selección natural darwinista, sin embargo es muy temprano en términos evolutivos para llegar a una conclusión sobre este asunto.In December 2008, 125 million hectares of transgenic varieties of soybean, corn, cotton and canola, were reported planted in 23 countries on five continents. These varieties were transformed with genes of prokaryote origin, rendering them resistant to lepidopteran insects attack or toleratant to commercial herbicides. Since the beginning of genetic engineering, the question whether mass release of these crops in agroecosystems, can cause either negative environmental effects in the medium term or evolutionary effects in the long term, has been raised. One way of analyzing this problem is to consider whether they can escape Darwinian natural selection, because foreign genes have been introduced through human manipulation. To this end, I study the available literature on gene flow from modified crops to their wild closely related relatives. There is empirical evidence of hybridization between improved materials, by both conventional methods (hybridization, backcross, selections and biotechnological (transfer of foreign genes, and closely related wild relatives. In any case, the effects of these hybrids depend on the interaction between the transferred gene and the wild relative, the particular ecosystem in which it occurs. The biggest environmental and evolutionary impact is the result of introgression of a transgene in the wild relative, a process that involves stabilization of the transgene in the host genome, as a result of successive generations of hybridization and backcrossing. The introgression depends more upon the nature of the gene and its localization in the donnor s genome, than on the mechanism of introduction. No negative effects on the genetic diversity of species genetically modified, have been reported, neither on the

  19. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  20. Quantum features of natural cellular automata

    Science.gov (United States)

    Elze, Hans-Thomas

    2016-03-01

    Cellular automata can show well known features of quantum mechanics, such as a linear rule according to which they evolve and which resembles a discretized version of the Schrödinger equation. This includes corresponding conservation laws. The class of “natural” Hamiltonian cellular automata is based exclusively on integer-valued variables and couplings and their dynamics derives from an Action Principle. They can be mapped reversibly to continuum models by applying Sampling Theory. Thus, “deformed” quantum mechanical models with a finite discreteness scale l are obtained, which for l → 0 reproduce familiar continuum results. We have recently demonstrated that such automata can form “multipartite” systems consistently with the tensor product structures of nonrelativistic many-body quantum mechanics, while interacting and maintaining the linear evolution. Consequently, the Superposition Principle fully applies for such primitive discrete deterministic automata and their composites and can produce the essential quantum effects of interference and entanglement.

  1. Quantum features of natural cellular automata

    CERN Document Server

    Elze, Hans-Thomas

    2016-01-01

    Cellular automata can show well known features of quantum mechanics, such as a linear rule according to which they evolve and which resembles a discretized version of the Schroedinger equation. This includes corresponding conservation laws. The class of "natural" Hamiltonian cellular automata is based exclusively on integer-valued variables and couplings and their dynamics derives from an Action Principle. They can be mapped reversibly to continuum models by applying Sampling Theory. Thus, "deformed" quantum mechanical models with a finite discreteness scale $l$ are obtained, which for $l\\rightarrow 0$ reproduce familiar continuum results. We have recently demonstrated that such automata can form "multipartite" systems consistently with the tensor product structures of nonrelativistic many-body quantum mechanics, while interacting and maintaining the linear evolution. Consequently, the Superposition Principle fully applies for such primitive discrete deterministic automata and their composites and can produce...

  2. SELF-ORGANIZED CRITICALITY AND CELLULAR AUTOMATA

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,M.

    2007-01-01

    Cellular automata provide a fascinating class of dynamical systems based on very simple rules of evolution yet capable of displaying highly complex behavior. These include simplified models for many phenomena seen in nature. Among other things, they provide insight into self-organized criticality, wherein dissipative systems naturally drive themselves to a critical state with important phenomena occurring over a wide range of length and the scales. This article begins with an overview of self-organized criticality. This is followed by a discussion of a few examples of simple cellular automaton systems, some of which may exhibit critical behavior. Finally, some of the fascinating exact mathematical properties of the Bak-Tang-Wiesenfeld sand-pile model [1] are discussed.

  3. Cellular communication through light.

    Directory of Open Access Journals (Sweden)

    Daniel Fels

    Full Text Available Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  4. Cellular automata: structures

    OpenAIRE

    Ollinger, Nicolas

    2002-01-01

    Jury : François Blanchard (Rapporteur), Marianne Delorme (Directeur), Jarkko Kari (Président), Jacques Mazoyer (Directeur), Dominique Perrin, Géraud Sénizergues (Rapporteur); Cellular automata provide a uniform framework to study an important problem of "complex systems" theory: how and why do system with a easily understandable -- local -- microscopic behavior can generate a more complicated -- global -- macroscopic behavior? Since its introduction in the 40s, a lot of work has been done to ...

  5. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  6. Failover in cellular automata

    CERN Document Server

    Kumar, Shailesh

    2010-01-01

    A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.

  7. 基于 C5.0决策树算法的元胞自动机的洪河湿地演化模拟%Cellular Automata Simulation Hong he Wetland Evolution Based on C5 .0 Decision Tree

    Institute of Scientific and Technical Information of China (English)

    于振华; 万鲁河

    2014-01-01

    以洪河自然保护区1992年、2001年、2010年三期TM遥感影像为数据源,利用C5.0决策树算法从已有的数据及其影响因子数据中挖掘出洪河湿地的演变规则,并将获得的转换规则应用到元胞自动机模型中进行洪河湿地演变的动态模拟与预测,分析和探讨了元胞自动机模型在湿地景观模拟和预测中的重要作用。结果表明,在现有的空间变量和条件不变的情况下,在未来的洪河自然保护区湿地面积将减小,洪河自然保护区干旱化将加重。通过对湿地景观的动态变化模拟和预测研究,能够较好地反映湿地景观的动态变化情况。%In this paper, Hong he Nature Reserve in 1992,2001,2010 three TM image as a data source.C5.0 decision tree algorithm using the data from the existing data mining and its influencing factors of the evolution of rules .Hong he Wetland and the obtained transformation rules applied to the cellular automaton model for the evolution of Hong he Wetland dynamic simulation and forecasting analysis and discussion of cellular automata in simulation and prediction of wetland landscape in an important role The results show that the existing spatial variables and conditions remain unchanged in the future Hong he Nature Reserve wetland area will be reduced . Hong he National Nature Reserve drought will increase .Through the study of the dynamic simulation and prediction of wetland land-scape, to better reflect the dynamic changes of wetland landscape .

  8. Forced Evolution in Silico by Artificial Transposons and their Genetic Operators: The John Muir Ant Problem

    CERN Document Server

    Spirov, Alexander V; Zamdborg, Leonid; Merelo, Juan J; Levchenko, Vladimir F

    2009-01-01

    Modern evolutionary computation utilizes heuristic optimizations based upon concepts borrowed from the Darwinian theory of natural selection. We believe that a vital direction in this field must be algorithms that model the activity of genomic parasites, such as transposons, in biological evolution. This publication is our first step in the direction of developing a minimal assortment of algorithms that simulate the role of genomic parasites. Specifically, we started in the domain of genetic algorithms (GA) and selected the Artificial Ant Problem as a test case. We define these artificial transposons as a fragment of an ant's code that possesses properties that cause it to stand apart from the rest. We concluded that artificial transposons, analogous to real transposons, are truly capable of acting as intelligent mutators that adapt in response to an evolutionary problem in the course of co-evolution with their hosts.

  9. [Lamarck needs Darwin: the search for purpose in the study of evolution and of history].

    Science.gov (United States)

    Moreno, Juan

    2009-01-01

    Lamarck's theory of the inheritance of acquired characteristics and immediate responses to environmental challenges has offered a promise of protagonism of human beings and their fellow travellers, the other organisms, in the evolutionary process. Darwin's theory about evolution by natural selection does not offer this consolation and does not presuppose anything else other than gradual changes in the composition of natural populations. The study of ecology, ethology, neurobiology, animal culture, psychology and human history reveals that the lamarckian interpretations of change and character transmission processes always assume what they intend to explain, that is previous processes of darwinian evolution that guarantee the adaptive nature of the observed responses. The permanent search of direction and intentionality in evolutionary processes by many scientists suggests the limited acceptance of materialistic explanations as those offered by Darwin's theory.

  10. Children of time: the extended synthesis and major metaphors of evolution

    Directory of Open Access Journals (Sweden)

    Daniel R. Brooks

    2012-12-01

    Full Text Available It is time for an expansion and enrichment of evolutionary theory. The "back to the future" proposal contained herein is based on three postulates: 1 Neo-Darwinism is too impoverished for this task; 2 its predecessor, Darwinism, contained the necessary breadth of vision and metaphor to be the basis for an inclusive and unifying theory of biology; and 3 the necessary framework for this new stage in the evolution of evolutionary theory is largely in place. We make our case through the use of a number of metaphorical dualisms designed to help focus discussions toward a more cooperative and productive approach to the study of living systems. Along the way, we suggest a number of self-induced paradoxes in neo-Darwinian accounts of evolution that are resolved by our perspective.

  11. Simulation of Dynamic Recrystallization Using Cellular Automaton Method

    Institute of Scientific and Technical Information of China (English)

    XIAO Hong; XIE Hong-biao; YAN Yan-hong; Jun YANAGIMOTO

    2004-01-01

    A new modeling approach that couples fundamental metallurgical principles of dynamical recrystallization with the cellular automaton method was developed to simulate the microstructural evolution linking with the plastic flow behavior during thermomechanical processing. The driving force for the nucleation and growth of dynamically recrystallized grain is the volume free energy due to the stored dislocation density of a deformation matrix. The growth terminates the impingement. The model is capable of simulating kinetics, microstructure and texture evolution during recrystallization. The predictions of microstructural evolution agree with the experimental results.

  12. On Cellular Darwinism: Mitochondria.

    Science.gov (United States)

    Bull, Larry

    2016-01-01

    The significant role of mitochondria within cells is becoming increasingly clear. This letter uses the NKCS model of coupled fitness landscapes to explore aspects of organelle-nucleus coevolution. The phenomenon of mitochondrial diversity is allowed to emerge under a simple intracellular evolutionary process, including varying the relative rate of evolution by the organelle. It is shown how the conditions for the maintenance of more than one genetic variant of mitochondria are similar to those previously suggested as needed for the original symbiotic origins of the relationship using the NKCS model.

  13. Cellular image classification

    CERN Document Server

    Xu, Xiang; Lin, Feng

    2017-01-01

    This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical...

  14. Multiuser Cellular Network

    CERN Document Server

    Bao, Yi; Chen, Ming

    2011-01-01

    Modern radio communication is faced with a problem about how to distribute restricted frequency to users in a certain space. Since our task is to minimize the number of repeaters, a natural idea is enlarging coverage area. However, coverage has restrictions. First, service area has to be divided economically as repeater's coverage is limited. In this paper, our fundamental method is to adopt seamless cellular network division. Second, underlying physics content in frequency distribution problem is interference between two close frequencies. Consequently, we choose a proper frequency width of 0.1MHz and a relevantly reliable setting to apply one frequency several times. We make a few general assumptions to simplify real situation. For instance, immobile users yield to homogenous distribution; repeaters can receive and transmit information in any given frequency in duplex operation; coverage is mainly decided by antenna height. Two models are built up to solve 1000 users and 10000 users situations respectively....

  15. Engineering Cellular Metabolism.

    Science.gov (United States)

    Nielsen, Jens; Keasling, Jay D

    2016-03-10

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation.

  16. Linking sub-cellular biomarkers to embryo aberrations in the benthic amphipod Monoporeia affinis.

    Science.gov (United States)

    Reutgard, Martin; Furuhagen, Sara

    2016-04-01

    To adequately assess and monitor environmental status in the aquatic environment a broad approach is needed that integrates physical variables, chemical analyses and biological effects at different levels of the biological organization. Embryo aberrations in the Baltic Sea key species Monoporeia affinis can be induced by both metals and organic substances as well as by hypoxia, increasing temperatures and malnutrition. This amphipod has therefore been used for more than three decades as a biological effect indicator in monitoring and assessment of chemical pollution and environmental stress. However, little is known about the sub-cellular mechanisms underlying embryo aberrations. An improved mechanistic understanding may open up the possibility of including sub-cellular alterations as sensitive warning signals of stress-induced embryo aberrations. In the present study, M. affinis was exposed in microcosms to 4 different sediments from the Baltic Sea. After 88-95 days of exposure, survival and fecundity were determined as well as the frequency and type of embryo aberrations. Moreover, oxygen radical absorption capacity (ORAC) was assayed as a proxy for antioxidant defense, thiobarbituric acid reactive substances (TBARS) level as a measure of lipid peroxidation and acetylcholinesterase (AChE) activity as an indicator of neurotoxicity. The results show that AChE and ORAC can be linked to the frequency of malformed embryos and arrested embryo development. The occurrence of dead broods was significantly associated with elevated TBARS levels. It can be concluded that these sub-cellular biomarkers are indicative of effects that could affect Darwinian fitness and that oxidative stress is a likely mechanism in the development of aberrant embryos in M. affinis.

  17. A Real Space Cellular Automaton Laboratory

    Science.gov (United States)

    Rozier, O.; Narteau, C.

    2013-12-01

    Investigations in geomorphology may benefit from computer modelling approaches that rely entirely on self-organization principles. In the vast majority of numerical models, instead, points in space are characterised by a variety of physical variables (e.g. sediment transport rate, velocity, temperature) recalculated over time according to some predetermined set of laws. However, there is not always a satisfactory theoretical framework from which we can quantify the overall dynamics of the system. For these reasons, we prefer to concentrate on interaction patterns using a basic cellular automaton modelling framework, the Real Space Cellular Automaton Laboratory (ReSCAL), a powerful and versatile generator of 3D stochastic models. The objective of this software suite released under a GNU license is to develop interdisciplinary research collaboration to investigate the dynamics of complex systems. The models in ReSCAL are essentially constructed from a small number of discrete states distributed on a cellular grid. An elementary cell is a real-space representation of the physical environment and pairs of nearest neighbour cells are called doublets. Each individual physical process is associated with a set of doublet transitions and characteristic transition rates. Using a modular approach, we can simulate and combine a wide range of physical, chemical and/or anthropological processes. Here, we present different ingredients of ReSCAL leading to applications in geomorphology: dune morphodynamics and landscape evolution. We also discuss how ReSCAL can be applied and developed across many disciplines in natural and human sciences.

  18. Review: Placenta, evolution and lifelong health.

    Science.gov (United States)

    Lewis, R M; Cleal, J K; Hanson, M A

    2012-02-01

    The intrauterine environment has an important influence on lifelong health, and babies who grew poorly in the womb are more likely to develop chronic diseases in later life. Placental function is a major determinant of fetal growth and is therefore also a key influence on lifelong health. The capacity of the placenta to transport nutrients to the fetus and regulate fetal growth is determined by both maternal and fetal signals. The way in which the placenta responds to these signals will have been subject to evolutionary selective pressures. The responses selected are those which increase Darwinian fitness, i.e. reproductive success. This review asks whether in addition to responding to short-term signals, such as a rise in maternal nutrient levels, the placenta also responds to longer-term signals representing the mother's phenotype as a measure of environmental influences across her life course. Understanding how the placenta responds to maternal signals is therefore not only important for promoting optimal fetal growth but can also give insights into how human evolution affected developmental history with long-term effects on health and disease.

  19. Evolution of cooperation among tumor cells.

    Science.gov (United States)

    Axelrod, Robert; Axelrod, David E; Pienta, Kenneth J

    2006-09-01

    The evolution of cooperation has a well established theoretical framework based on game theory. This approach has made valuable contributions to a wide variety of disciplines, including political science, economics, and evolutionary biology. Existing cancer theory suggests that individual clones of cancer cells evolve independently from one another, acquiring all of the genetic traits or hallmarks necessary to form a malignant tumor. It is also now recognized that tumors are heterotypic, with cancer cells interacting with normal stromal cells within the tissue microenvironment, including endothelial, stromal, and nerve cells. This tumor cell-stromal cell interaction in itself is a form of commensalism, because it has been demonstrated that these nonmalignant cells support and even enable tumor growth. Here, we add to this theory by regarding tumor cells as game players whose interactions help to determine their Darwinian fitness. We marshal evidence that tumor cells overcome certain host defenses by means of diffusible products. Our original contribution is to raise the possibility that two nearby cells can protect each other from a set of host defenses that neither could survive alone. Cooperation can evolve as by-product mutualism among genetically diverse tumor cells. Our hypothesis supplements, but does not supplant, the traditional view of carcinogenesis in which one clonal population of cells develops all of the necessary genetic traits independently to form a tumor. Cooperation through the sharing of diffusible products raises new questions about tumorigenesis and has implications for understanding observed phenomena, designing new experiments, and developing new therapeutic approaches.

  20. Evolution of evolvability in gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Anton Crombach

    Full Text Available Gene regulatory networks are perhaps the most important organizational level in the cell where signals from the cell state and the outside environment are integrated in terms of activation and inhibition of genes. For the last decade, the study of such networks has been fueled by large-scale experiments and renewed attention from the theoretical field. Different models have been proposed to, for instance, investigate expression dynamics, explain the network topology we observe in bacteria and yeast, and for the analysis of evolvability and robustness of such networks. Yet how these gene regulatory networks evolve and become evolvable remains an open question. An individual-oriented evolutionary model is used to shed light on this matter. Each individual has a genome from which its gene regulatory network is derived. Mutations, such as gene duplications and deletions, alter the genome, while the resulting network determines the gene expression pattern and hence fitness. With this protocol we let a population of individuals evolve under Darwinian selection in an environment that changes through time. Our work demonstrates that long-term evolution of complex gene regulatory networks in a changing environment can lead to a striking increase in the efficiency of generating beneficial mutations. We show that the population evolves towards genotype-phenotype mappings that allow for an orchestrated network-wide change in the gene expression pattern, requiring only a few specific gene indels. The genes involved are hubs of the networks, or directly influencing the hubs. Moreover, throughout the evolutionary trajectory the networks maintain their mutational robustness. In other words, evolution in an alternating environment leads to a network that is sensitive to a small class of beneficial mutations, while the majority of mutations remain neutral: an example of evolution of evolvability.

  1. Evolution of Life and SETI (Evo-SETI)

    Science.gov (United States)

    Maccone, Claudio

    When SETI scientists will be able to discover a signal or just some signs of an Extra-Terrestrial (ET) Civilization, those ETs should turn out to be technologically advanced at least as much as Humans, if not more, or much more so. Comparing the technological level of two different Civilizations is then a key issue in SETI. But at the moment we only know about the development of life on Earth over the last 3.5 billion years. We thus need to mathematically model the evolution of life on Earth (RNA to Humans) and then apply our results to other extra-solar planets to find out “where they stand” along their evolution of life. In a series of recent papers and in a book (refs. [1] through [4]) this author introduced a new statistical model embracing SETI, Darwinian Evolution and Human History into a unified statistical picture and concisely called Evo-SETI (Evolution & SETI). The relevant mathematical instruments are: 1) The statistical generalization of the Drake equation yielding the number N of communicating ET civilizations in the Galaxy. Assuming that each input variable in the Drake equation was a random variable, rather than just a pure number, N was shown to follow the lognormal probability distribution having as mean value the sum of the input mean values, and as variance the sum of the input variances (ref. [1]). 2) Geometric Brownian Motion (GBM), the stochastic process representing Evolution as the stochastic increase of the number of Species living on Earth over the last 3.5 billion years. This GBM is well-known in the mathematics of finances (Black-Sholes models). Its main features are that its probability density function (pdf) is a lognormal pdf, and its mean value is either an increasing, or, more rarely (as in the Mass Extinctions of the past) a decreasing exponential of the time. 3) The probability distributions known as b-lognormals, i.e. lognormals starting at a certain positive instant b>0 rather than at the origin. These b-lognormals were then

  2. The ancient Virus World and evolution of cells

    OpenAIRE

    Dolja Valerian V; Senkevich Tatiana G; Koonin Eugene V

    2006-01-01

    Abstract Background Recent advances in genomics of viruses and cellular life forms have greatly stimulated interest in the origins and evolution of viruses and, for the first time, offer an opportunity for a data-driven exploration of the deepest roots of viruses. Here we briefly review the current views of virus evolution and propose a new, coherent scenario that appears to be best compatible with comparative-genomic data and is naturally linked to models of cellular evolution that, from ind...

  3. CATALAN NUMBERS, DYCK LANGUAGE AND TIME SERIES OF ELEMENTARY CELLULAR AUTOMATON OF RULE 56

    Institute of Scientific and Technical Information of China (English)

    QIN Dakang; XIE Huimin

    2005-01-01

    A new approach to study the evolution complexity of cellular automata is proposed and explained thoroughly by an example of elementary cellular automaton of rule 56. Using the tools of distinct excluded blocks, computational search and symbolic dynamics, the mathematical structure underlying the time series generated from the elementary cellular automaton of rule 56 is analyzed and its complexity is determined, in which the Dyck language and Catalan numbers emerge naturally.

  4. Cellular bioluminescence imaging.

    Science.gov (United States)

    Welsh, David K; Noguchi, Takako

    2012-08-01

    Bioluminescence imaging of live cells has recently been recognized as an important alternative to fluorescence imaging. Fluorescent probes are much brighter than bioluminescent probes (luciferase enzymes) and, therefore, provide much better spatial and temporal resolution and much better contrast for delineating cell structure. However, with bioluminescence imaging there is virtually no background or toxicity. As a result, bioluminescence can be superior to fluorescence for detecting and quantifying molecules and their interactions in living cells, particularly in long-term studies. Structurally diverse luciferases from beetle and marine species have been used for a wide variety of applications, including tracking cells in vivo, detecting protein-protein interactions, measuring levels of calcium and other signaling molecules, detecting protease activity, and reporting circadian clock gene expression. Such applications can be optimized by the use of brighter and variously colored luciferases, brighter microscope optics, and ultrasensitive, low-noise cameras. This article presents a review of how bioluminescence differs from fluorescence, its applications to cellular imaging, and available probes, optics, and detectors. It also gives practical suggestions for optimal bioluminescence imaging of single cells.

  5. Cellular neurothekeoma with melanocytosis.

    Science.gov (United States)

    Wu, Ren-Chin; Hsieh, Yi-Yueh; Chang, Yi-Chin; Kuo, Tseng-Tong

    2008-02-01

    Cellular neurothekeoma (CNT) is a benign dermal tumor mainly affecting the head and neck and the upper extremities. It is characterized histologically by interconnecting fascicles of plump spindle or epithelioid cells with ample cytoplasm infiltrating in the reticular dermis. The histogenesis of CNT has been controversial, although it is generally regarded as an immature counterpart of classic/myxoid neurothekeoma, a tumor with nerve sheath differentiation. Two rare cases of CNT containing melanin-laden cells were described. Immunohistochemical study with NKI/C3, vimentin, epithelial membrane antigen, smooth muscle antigen, CD34, factor XIIIa, collagen type IV, S100 protein and HMB-45 was performed. Both cases showed typical growth pattern of CNT with interconnecting fascicles of epithelioid cells infiltrating in collagenous stroma. One of the nodules contained areas exhibiting atypical cytological features. Melanin-laden epithelioid or dendritic cells were diffusely scattered throughout one nodule, and focally present in the peripheral portion of the other nodule. Both nodules were strongly immunoreactive to NKI/C3 and vimentin, but negative to all the other markers employed. CNT harboring melanin-laden cells may pose diagnostic problems because of their close resemblance to nevomelanocytic lesions and other dermal mesenchymal tumors. These peculiar cases may also provide further clues to the histogenesis of CNT.

  6. Evolution and History in a new "Mathematical SETI" model

    Science.gov (United States)

    Maccone, Claudio

    2014-01-01

    In a recent paper (Maccone, 2011 [15]) and in a recent book (Maccone, 2012 [17]), this author proposed a new mathematical model capable of merging SETI and Darwinian Evolution into a single mathematical scheme. This model is based on exponentials and lognormal probability distributions, called "b-lognormals" if they start at any positive time b ("birth") larger than zero. Indeed: Darwinian evolution theory may be regarded as a part of SETI theory in that the factor fl in the Drake equation represents the fraction of planets suitable for life on which life actually arose, as it happened on Earth. In 2008 (Maccone, 2008 [9]) this author firstly provided a statistical generalization of the Drake equation where the number N of communicating ET civilizations in the Galaxy was shown to follow the lognormal probability distribution. This fact is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution if the number of factors is increased at will, i.e. it approaches infinity. Also, in Maccone (2011 [15]), it was shown that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of b-lognormal distributions constrained between the time axis and the exponential growth curve. This was a brand-new result. And one more new and far-reaching idea was to define Darwinian Evolution as a particular realization of a stochastic process called Geometric Brownian Motion (GBM) having the above exponential as its own mean value curve. The b-lognormals may be also be interpreted as the lifespan of any living being, let it be a cell, or an animal, a plant, a human, or even the historic lifetime of any civilization. In Maccone, (2012 [17, Chapters 6, 7, 8 and 11]), as well as in the present paper, we give

  7. LAMARCKIAN EVOLUTION OF THE GIANT MIMIVIRUS IN ALLOPATRIC LABORATORY CULTURE ON AMOEBAE

    Directory of Open Access Journals (Sweden)

    Philippe eColson

    2012-07-01

    Full Text Available Acanthamoeba polyphaga Mimivirus has been subcultured 150 times on germ-free amoebae. This allopatric niche is very different from that found in the natural environment, where the virus is in competition with many other organisms. In this experiment, substantial gene variability and loss occurred concurrently with the emergence of phenotypically different viruses. We sought to quantify the respective roles of Lamarckian and Darwinian evolution during this experiment. We postulated that the Mimivirus genes that were down-regulated at the beginning of the allopatric laboratory culture and inactivated after 150 passages experienced Lamarckian evolution because phenotypic modifications preceded genotypic modifications, whereas we considered that genes that were highly transcribed in the new niche but were later inactivated obeyed Darwinian rules. We used the total transcript abundances and sequences described for the genes of Mimivirus at the beginning of its laboratory life and after 150 passages in allopatric culture on Acanthamoeba spp. We found a statistically significant positive correlation between the level of gene expression at the beginning of the culture and gene inactivation during the 150 passages. In particular, the mean transcript abundance at baseline was significantly lower for inactivated genes than for unchanged genes (165±589 vs. 470±1,625; p<1e-3, and the mean transcript levels during the replication cycle of Mimivirus M1 were up to 8.5-fold lower for inactivated genes than for unchanged genes. In addition, proteins tended to be less frequently identified from purified virions in their early life in allopatric laboratory culture if they were encoded by variable genes than if they were encoded by conserved genes (9% vs. 15%; p= 0.062. Finally, Lamarckian evolution represented the evolutionary process encountered by 63% of the inactivated genes. Such observations may be explained by the lower level of DNA repair of useless genes.

  8. Free fall and cellular automata

    Directory of Open Access Journals (Sweden)

    Pablo Arrighi

    2016-03-01

    Full Text Available Three reasonable hypotheses lead to the thesis that physical phenomena can be described and simulated with cellular automata. In this work, we attempt to describe the motion of a particle upon which a constant force is applied, with a cellular automaton, in Newtonian physics, in Special Relativity, and in General Relativity. The results are very different for these three theories.

  9. About Strongly Universal Cellular Automata

    Directory of Open Access Journals (Sweden)

    Maurice Margenstern

    2013-09-01

    Full Text Available In this paper, we construct a strongly universal cellular automaton on the line with 11 states and the standard neighbourhood. We embed this construction into several tilings of the hyperbolic plane and of the hyperbolic 3D space giving rise to strongly universal cellular automata with 10 states.

  10. Reactive Programming of Cellular Automata

    OpenAIRE

    Boussinot, Frédéric

    2004-01-01

    Implementation of cellular automata using reactive programming gives a way to code cell behaviors in an abstract and modular way. Multiprocessing also becomes possible. The paper describes the implementation of cellular automata with the reactive programming language LOFT, a thread-based extension of C. Self replicating loops considered in artificial life are coded to show the interest of the approach.

  11. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  12. Cellular automaton rules conserving the number of active sites

    CERN Document Server

    Boccara, N; Boccara, Nino; Fuks, Henryk

    1997-01-01

    This paper shows how to determine all the unidimensional two-state cellular automaton rules of a given number of inputs which conserve the number of active sites. These rules have to satisfy a necessary and sufficient condition. If the active sites are viewed as cells occupied by identical particles, these cellular automaton rules represent evolution operators of systems of identical interacting particles whose total number is conserved. Some of these rules, which allow motion in both directions, mimic ensembles of one-dimensional pseudo-random walkers. The corresponding stochastic processes are, however, not Gaussian.

  13. Nothing in the History of Spanish Anís Makes Sense, Except in the Light of Evolution

    Science.gov (United States)

    Delgado, Juan Antonio; Palma, Ricardo Luis

    2011-02-01

    We describe, discuss and illustrate a metaphoric parallel between the history of the most famous Spanish liqueur, " Anís del Mono" ( Anís of the Monkey), and the evolution of living organisms in the light of Darwinian theory and other biological hypotheses published subsequent to Charles Darwin's Origin of Species. Also, we report the use of a caricature of a simian Darwin with a positive connotation, perhaps the only one ever produced. We conclude that, like some species in the natural world, Anís of the Monkey has evolved, adapted, survived and become the fittest and most successful anís in the Spanish market and possibly the world. We hope this paper will contribute a new useful metaphor for the teaching of biological evolution.

  14. Neuron-Based Heredity and Human Evolution

    Directory of Open Access Journals (Sweden)

    Don Marshall Gash

    2015-06-01

    Full Text Available Abstract:Abstract: It is widely recognized that human evolution has been driven by two systems of heredity: one DNA-based and the other based on the transmission of behaviorally acquired information via nervous system functions. The genetic system is ancient, going back to the appearance of life on Earth. It is responsible for the evolutionary processes described by Darwin. By comparison, the nervous system is relatively newly minted and in its highest form, responsible for ideation and mind-to-mind transmission of information. Here the informational capabilities and functions of the two systems are compared. While employing quite different mechanisms for encoding, storing and transmission of information, both systems perform these generic hereditary functions. Three additional features of neuron-based heredity in humans are identified: the ability to transfer hereditary information to other members of their population, not just progeny; a selection process for the information being transferred; and a profoundly shorter time span for creation and dissemination of survival-enhancing information in a population. The mechanisms underlying neuron-based heredity involve hippocampal neurogenesis and memory and learning processes modifying and creating new neural assemblages changing brain structure and functions. A fundamental process in rewiring brain circuitry is through increased neural activity (use strengthening and increasing the number of synaptic connections. Decreased activity in circuitry (disuse leads to loss of synapses. Use and disuse modifying an organ to bring about new modes of living, habits and functions are processes are in line with Neolamarckian concepts of evolution (Packard, 1901. Evidence is presented of bipartite evolutionary processes – Darwinian and Neolamarckian – driving human descent from a common ancestor shared with the great apes.

  15. Cellular systems biology profiling applied to cellular models of disease.

    Science.gov (United States)

    Giuliano, Kenneth A; Premkumar, Daniel R; Strock, Christopher J; Johnston, Patricia; Taylor, Lansing

    2009-11-01

    Building cellular models of disease based on the approach of Cellular Systems Biology (CSB) has the potential to improve the process of creating drugs as part of the continuum from early drug discovery through drug development and clinical trials and diagnostics. This paper focuses on the application of CSB to early drug discovery. We discuss the integration of protein-protein interaction biosensors with other multiplexed, functional biomarkers as an example in using CSB to optimize the identification of quality lead series compounds.

  16. Simulation of earthquakes with cellular automata

    Directory of Open Access Journals (Sweden)

    P. G. Akishin

    1998-01-01

    Full Text Available The relation between cellular automata (CA models of earthquakes and the Burridge–Knopoff (BK model is studied. It is shown that the CA proposed by P. Bak and C. Tang,although they have rather realistic power spectra, do not correspond to the BK model. We present a modification of the CA which establishes the correspondence with the BK model.An analytical method of studying the evolution of the BK-like CA is proposed. By this method a functional quadratic in stress release, which can be regarded as an analog of the event energy, is constructed. The distribution of seismic events with respect to this “energy” shows rather realistic behavior, even in two dimensions. Special attention is paid to two-dimensional automata; the physical restrictions on compression and shear stiffnesses are imposed.

  17. Particles and Patterns in Cellular Automata

    Energy Technology Data Exchange (ETDEWEB)

    Jen, E.; Das, R.; Beasley, C.E.

    1999-06-03

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Our objective has been to develop tools for studying particle interactions in a class of dynamical systems characterized by discreteness, determinism, local interaction, and an inherently parallel form of evolution. These systems can be described by cellular automata (CA) and the behavior we studied has improved our understanding of the nature of patterns generated by CAs, their ability to perform global computations, and their relationship to continuous dynamical systems. We have also developed a rule-table mathematics that enables one to custom-design CA rule tables to generate patterns of specified types, or to perform specified computational tasks.

  18. Simulation Modeling by Classification of Problems: A Case of Cellular Manufacturing

    Science.gov (United States)

    Afiqah, K. N.; Mahayuddin, Z. R.

    2016-02-01

    Cellular manufacturing provides good solution approach to manufacturing area by applying Group Technology concept. The evolution of cellular manufacturing can enhance performance of the cell and to increase the quality of the product manufactured but it triggers other problem. Generally, this paper highlights factors and problems which emerge commonly in cellular manufacturing. The aim of the research is to develop a thorough understanding of common problems in cellular manufacturing. A part from that, in order to find a solution to the problems exist using simulation technique, this classification framework is very useful to be adapted during model building. Biology evolution tool was used in the research in order to classify the problems emerge. The result reveals 22 problems and 25 factors using cladistic technique. In this research, the expected result is the cladogram established based on the problems in cellular manufacturing gathered.

  19. A los 150 años desde "El origen de las especies": ¿es darwinista la biología contemporánea? At 150 years since "The origin of species": Is contemporary biology Darwinian?

    Directory of Open Access Journals (Sweden)

    GUILLERMO FOLGUERA

    2009-12-01

    Full Text Available A los 150 años de la publicación de "El origen de las especies" de Charles Darwin, numerosos homenajes se han realizado en diferentes ciudades del mundo. Sin embargo, es importante preguntarse hacia el seno de la comunidad científica acerca del alcance efectivo del darwinisimo dentro de la biología. En este trabajo analizamos este supuesto intentando responder, al menos de una manera aproximativa, la pregunta: ¿es darwinista la biología en la actualidad? A estos fines, consideramos algunos de los principales aportes que suelen asignarse al darwinismo en las ciencias de los sistemas vivos: el análisis y centro en la diversidad, un origen único de los sistemas vivos, la incorporación del azar y el reconocimiento de las causas proximales. En términos generales detectamos importantes líneas de continuidad entre el darwinismo y las diferentes disciplinas que componen a la biología contemporánea. Sin embargo, esta situación dista de ser general y no ocurre para todas las ideas analizadas. En este sentido, en algunas áreas del conocimiento el darwinismo solo se ha filtrado mediante la implementación de recortes significativos (tal como el caso de la reducción de los procesos evolutivos a la selección natural, o bien a través de aspectos que aún no son debidamente incorporados en la investigación científica (tal como en el caso del estudio de la variabilidad. Por lo tanto, la futura incorporación de estos elementos se presenta como un desafío importante para lograr una biología integradora.After 150 years of the publication of the Origin of Species by Charles Darwin, a number of tributes had honored him worldwide. However, it seems important to ask about the effective application of Darwin's ideas within the biological disciplines. Herein we analyze this problem trying to answer the question: is contemporary biology Darwinian? To this end, we consider some of the main assumed contributions of Darwinism to the sciences of living

  20. Engineering Cellular Photocomposite Materials Using Convective Assembly

    Directory of Open Access Journals (Sweden)

    Orlin D. Velev

    2013-05-01

    Full Text Available Fabricating industrial-scale photoreactive composite materials containing living cells, requires a deposition strategy that unifies colloid science and cell biology. Convective assembly can rapidly deposit suspended particles, including whole cells and waterborne latex polymer particles into thin (<10 µm thick, organized films with engineered adhesion, composition, thickness, and particle packing. These highly ordered composites can stabilize the diverse functions of photosynthetic cells for use as biophotoabsorbers, as artificial leaves for hydrogen or oxygen evolution, carbon dioxide assimilation, and add self-cleaning capabilities for releasing or digesting surface contaminants. This paper reviews the non-biological convective assembly literature, with an emphasis on how the method can be modified to deposit living cells starting from a batch process to its current state as a continuous process capable of fabricating larger multi-layer biocomposite coatings from diverse particle suspensions. Further development of this method will help solve the challenges of engineering multi-layered cellular photocomposite materials with high reactivity, stability, and robustness by clarifying how process, substrate, and particle parameters affect coating microstructure. We also describe how these methods can be used to selectively immobilize photosynthetic cells to create biomimetic leaves and compare these biocomposite coatings to other cellular encapsulation systems.

  1. A Course in Cellular Bioengineering.

    Science.gov (United States)

    Lauffenburger, Douglas A.

    1989-01-01

    Gives an overview of a course in chemical engineering entitled "Cellular Bioengineering," dealing with how chemical engineering principles can be applied to molecular cell biology. Topics used are listed and some key references are discussed. Listed are 85 references. (YP)

  2. Lgals6, a 2-million-year-old gene in mice: a case of positive Darwinian selection and presence/absence polymorphism.

    Science.gov (United States)

    Houzelstein, Denis; Gonçalves, Isabelle R; Orth, Annie; Bonhomme, François; Netter, Pierre

    2008-03-01

    Duplications of genes are widely considered to be a driving force in the evolutionary process. The fate of such duplicated genes (paralogs) depends mainly on the early stages of their evolution. Therefore, the study of duplications that have already started to diverge is useful to better understand their evolution. We present here the example of a 2-million-year-old segmental duplication at the origin of the Lgals4 and Lgals6 genes in the mouse genome. We analyzed the distribution of these genes in samples from 110 wild individuals and wild-derived inbred strains belonging to eight mouse species from Mus (Coelomys) pahari to M. musculus and 28 laboratory strains. Using a maximum-likelihood method, we show that the sequence of the Lgals6 gene has evolved under the influence of strong positive selection that is likely to result in its neofunctionalization. Surprisingly, despite this selection pressure, the Lgals6 gene is present in some mouse species, but not all. Furthermore, even within the species and populations where it is present, the Lgals6 gene is never fixed. To explain this paradox, we propose different hypotheses such as balanced selection and neutral retention of ancient polymophism and we discuss this unexpected result with regard to known galectin properties and response to infections by pathogens.

  3. The Evolution of Biological Complexity in Digital Organisms

    Science.gov (United States)

    Ofria, Charles

    2013-03-01

    When Darwin first proposed his theory of evolution by natural selection, he realized that it had a problem explaining the origins of traits of ``extreme perfection and complication'' such as the vertebrate eye. Critics of Darwin's theory have latched onto this perceived flaw as a proof that Darwinian evolution is impossible. In anticipation of this issue, Darwin described the perfect data needed to understand this process, but lamented that such data are ``scarcely ever possible'' to obtain. In this talk, I will discuss research where we use populations of digital organisms (self-replicating and evolving computer programs) to elucidate the genetic and evolutionary processes by which new, highly-complex traits arise, drawing inspiration directly from Darwin's wistful thinking and hypotheses. During the process of evolution in these fully-transparent computational environments we can measure the incorporation of new information into the genome, a process akin to a natural Maxwell's Demon, and identify the original source of any such information. We show that, as Darwin predicted, much of the information used to encode a complex trait was already in the genome as part of simpler evolved traits, and that many routes must be possible for a new complex trait to have a high probability of successfully evolving. In even more extreme examples of the evolution of complexity, we are now using these same principles to examine the evolutionary dynamics the drive major transitions in evolution; that is transitions to higher-levels of organization, which are some of the most complex evolutionary events to occur in nature. Finally, I will explore some of the implications of this research to other aspects of evolutionary biology and as well as ways that these evolutionary principles can be applied toward solving computational and engineering problems.

  4. Mathematical Modeling of Cellular Metabolism.

    Science.gov (United States)

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    2016-01-01

    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.

  5. Danes commemorating Darwin: apes and evolution at the 1909 anniversary.

    Science.gov (United States)

    Hjermitslev, Hans Henrik

    2010-10-01

    This article analyses the Danish 1909 celebrations of the centenary of Charles Darwin's birth on 12 February 1809. I argue that the 1909 meetings, lectures and publications devoted to Darwin and his theory of evolution by natural selection can be characterised by ambivalence: on the one hand, tribute to a great man of science who established a new view of nature and, on the other hand, scepticism towards the Darwinian mechanism of natural selection and the wider religious and political implications drawn from his theory. The article examines both professional and popular commemorative activities, focusing primarily on celebratory articles carried in widely circulated magazines and newspapers. I identify three types of interpretations of Darwin's ideas which I characterise as 'radical', 'evangelical' and 'safe' science. These different positions were closely linked to the political and cultural divisions of the periodical press. Moreover, my analysis of the popular press offers a solid basis for asserting that to most people Darwinism was associated with human evolution, primarily the relationship between man and apes, while more sophisticated discussions about the crisis of Darwinism prominent among naturalists played only a secondary role in the public arena. This article demonstrates the value of using newspapers as historical sources when looking for public images of Darwin, popular receptions of Darwinism and representations of science in general.

  6. Origin of evolution versus origin of life: a shift of paradigm.

    Science.gov (United States)

    Tessera, Marc

    2011-01-01

    The question of the primordial ancestor must be approached through the search for the origin of evolution, not through the search for the origin of life. There is a major issue with the concept of life because it is impossible to define, thus is not a scientific but a metaphysical concept. On the contrary, evolution may be defined by as few as three conditions. These do not necessarily involve biopolymers. However, such an approach must give clues to explain the emergence of distinct lineages to allow Darwinian natural selection. A plausible solution exists within an autotrophic lipidic vesicle-based model that is presented. The model requires the existence of hydrothermal sites such as the Lost City Hydrothermal Field leading to specific constraints. For this reason Mars and Europa may be questioned as possible cradles of evolution. If we replace the search for the origin of life by the one for the origin of evolution our priority first is to find a consensus on the minimal conditions that would allow evolution to emerge and persist anywhere in the universe.

  7. Origin of Evolution versus Origin of Life: A Shift of Paradigm

    Directory of Open Access Journals (Sweden)

    Marc Tessera

    2011-06-01

    Full Text Available The question of the primordial ancestor must be approached through the search for the origin of evolution, not through the search for the origin of life. There is a major issue with the concept of life because it is impossible to define, thus is not a scientific but a metaphysical concept. On the contrary, evolution may be defined by as few as three conditions. These do not necessarily involve biopolymers. However, such an approach must give clues to explain the emergence of distinct lineages to allow Darwinian natural selection. A plausible solution exists within an autotrophic lipidic vesicle-based model that is presented. The model requires the existence of hydrothermal sites such as the Lost City Hydrothermal Field leading to specific constraints. For this reason Mars and Europa may be questioned as possible cradles of evolution. If we replace the search for the origin of life by the one for the origin of evolution our priority first is to find a consensus on the minimal conditions that would allow evolution to emerge and persist anywhere in the universe.

  8. A New Take on John Maynard Smith's Concept of Protein Space for Understanding Molecular Evolution.

    Science.gov (United States)

    Ogbunugafor, C Brandon; Hartl, Daniel L

    2016-10-01

    Much of the public lacks a proper understanding of Darwinian evolution, a problem that can be addressed with new learning and teaching approaches to be implemented both inside the classroom and in less formal settings. Few analogies have been as successful in communicating the basics of molecular evolution as John Maynard Smith's protein space analogy (1970), in which he compared protein evolution to the transition between the terms WORD and GENE, changing one letter at a time to yield a different, meaningful word (in his example, the preferred path was WORD → WORE → GORE → GONE → GENE). Using freely available computer science tools (Google Books Ngram Viewer), we offer an update to Maynard Smith's analogy and explain how it might be developed into an exploratory and pedagogical device for understanding the basics of molecular evolution and, more specifically, the adaptive landscape concept. We explain how the device works through several examples and provide resources that might facilitate its use in multiple settings, ranging from public engagement activities to formal instruction in evolution, population genetics, and computational biology.

  9. The mind of primitive anthropologists: hemoglobin and HLA, patterns of molecular evolution.

    Science.gov (United States)

    Williams, Robert C

    2003-08-01

    Frank Livingstone played a central role in defining the population genetics of the sickle cell mutation at position 6 of the human beta globin gene, the most famous amino acid substitution in evolutionary biology. Its discovery occurred at a time when traditional, 19th-century principles of natural selection were being joined with the newly discovered mechanics of DNA structure and protein synthesis to produce Neo-Darwinian theory. When combined with the epidemiology of malaria in Africa, differential mortality for both homozygotes, and the resulting advantage of the heterozygote, sickle cell became the classic balanced polymorphism. Human HLA-A has 237 molecular alleles. The histocompatibility system has as its primary function the presentation of peptides to T-cell receptors and plays an essential role in the immune system. Nearly all of the alleles are codominant and fully functional. Despite almost 30 years of disease-association studies with HLA-A, no convincing evidence has been found for differential fertility or mortality at this locus. Yet the dogma in the histocompatibility field is that this extensive human polymorphism is maintained by "balancing selection." Explaining HLA-A polymorphism is what one might call the sickle-cell-effect. This one mutation, coming as it did at the historical convergence of Darwinian theory and modern genetics, and carrying with it the strong relationship between mutation, disease, and allele frequency, has conditioned our discussion of human genetic variation and population genetics. Has the strength of this early idea made evolutionary biologists uncritical of systems like HLA-A and retarded the search for new mechanisms of molecular evolution? Is it now time to move away from a focus on mutation and polymorphism in evolutionary genetics and toward a systems theory that would explain the origin and evolution of hemoglobin and HLA-A and the biochemical pathways that surround them?

  10. Schumpeter's Evolution

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    reworking of his basic theory of economic evolution in Development from 1934, and this reworking was continued in Cycles from 1939. Here Schumpeter also tried to handle the statistical and historical evidence on the waveform evolution of the capitalist economy. Capitalism from 1942 modified the model...

  11. Hierarchical Cellular Structures in High-Capacity Cellular Communication Systems

    CERN Document Server

    Jain, R K; Agrawal, N K

    2011-01-01

    In the prevailing cellular environment, it is important to provide the resources for the fluctuating traffic demand exactly in the place and at the time where and when they are needed. In this paper, we explored the ability of hierarchical cellular structures with inter layer reuse to increase the capacity of mobile communication network by applying total frequency hopping (T-FH) and adaptive frequency allocation (AFA) as a strategy to reuse the macro and micro cell resources without frequency planning in indoor pico cells [11]. The practical aspects for designing macro- micro cellular overlays in the existing big urban areas are also explained [4]. Femto cells are inducted in macro / micro / pico cells hierarchical structure to achieve the required QoS cost effectively.

  12. CELLULAR INTERACTIONS MEDIATED BY GLYCONECTIDS

    Directory of Open Access Journals (Sweden)

    O.Popescu

    1999-01-01

    Full Text Available Cellular interactions involve many types of cell surface molecules and operate via homophilic and/or heterophilic protein-protein and protein-carbohydrate binding. Our investigations in different model-systems (marine invertebrates and mammals have provided direct evidence that a novel class of primordial proteoglycans, named by us gliconectins, can mediate cell adhesion via a new alternative molecular mechanism of polyvalent carbohydrate-carbohydrate binding. Biochemical characterization of isolated and purified glyconectins revealed the presence of specific carbohydrate structures, acidic glycans, different from classical glycosaminoglycans. Such acidic glycans of high molecular weight containing fucose, glucuronic or galacturonic acids, and sulfate groups, originally found in sponges and sea urchin embryos, may represent a new class of carbohydrate carcino-embryonal antigens in mice and humans. Such interactions between biological macromolecules are usually investigated by kinetic binding studies, calorimetric methods, X-ray diffraction, nuclear magnetic resonance, and other spectroscopic analyses. However, these methods do not supply a direct estimation of the intermolecular binding forces that are fundamental for the function of the ligand-receptor association. Recently, we have introduced atomic force microscopy to quantify the binding strength between cell adhesion proteoglycans. Measurement of binding forces intrinsic to cell adhesion proteoglycans is necessary to assess their contribution to the maintenance of the anatomical integrity of multicellular organisms. As a model, we selected the glyconectin 1, a cell adhesion proteoglycan isolated from the marine sponge Microciona prolifera. This glyconectin mediates in vivo cell recognition and aggregation via homophilic, species-specific, polyvalent, and calcium ion-dependent carbohydrate-carbohydrate interactions. Under physiological conditions, an adhesive force of up to 400 piconewtons

  13. Classifying cellular automata using grossone

    Science.gov (United States)

    D'Alotto, Louis

    2016-10-01

    This paper proposes an application of the Infinite Unit Axiom and grossone, introduced by Yaroslav Sergeyev (see [7] - [12]), to the development and classification of one and two-dimensional cellular automata. By the application of grossone, new and more precise nonarchimedean metrics on the space of definition for one and two-dimensional cellular automata are established. These new metrics allow us to do computations with infinitesimals. Hence configurations in the domain space of cellular automata can be infinitesimally close (but not equal). That is, they can agree at infinitely many places. Using the new metrics, open disks are defined and the number of points in each disk computed. The forward dynamics of a cellular automaton map are also studied by defined sets. It is also shown that using the Infinite Unit Axiom, the number of configurations that follow a given configuration, under the forward iterations of cellular automaton maps, can now be computed and hence a classification scheme developed based on this computation.

  14. Prognosis of Different Cellular Generations

    Directory of Open Access Journals (Sweden)

    Preetish Ranjan

    2013-04-01

    Full Text Available Technological advancement in mobile telephony from 1G to 3G, 4G and 5G has a very axiomatic fact that made an entire world a global village. The cellular system employs a different design approach and technology that most commercial radio and television system use. In the cellular system, the service area is divided into cells and a transmitter is designed to serve an individual cell. The system seeks to make efficient use of available channels by using low-power transmitters to allow frequency reuse at a smaller distance. Maximizing the number of times each channel can be reused in a given geographical area is the key to an efficient cellular system design. During the past three decades, the world has seen significant changes in telecommunications industry. There have been some remarkable aspects to the rapid growth in wireless communications, as seen by the large expansion in mobile systems. This paper focuses on “Past, Present & Future of Cellular Telephony” and some light has been thrown upon the technologies of the cellular systems, namely 1G, 2G, 2.5G, 3G and future generations like 4G and 5G systems as well.

  15. Science for Survival: The Modern Synthesis of Evolution and The Biological Sciences Curriculum Study

    Science.gov (United States)

    Green, Lisa Anne

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called "the modern synthesis of evolution." Building primarily on the work of historians Vassiliki Smocovitis and John L. Rudolph, I used the archival papers and published writings of the four architects of the modern synthesis and the four most influential leaders of the BSCS in regards to evolution to investigate how the modern synthetic theory of evolution shaped the BSCS curriculum. The central question was "Why was evolution so important to the BSCS to make it the central theme of the texts?" Important answers to this question had already been offered in the historiography, but it was still not clear why every citizen in the world needed to understand evolution. I found that the emphasis on natural selection in the modern synthesis shifted the focus away from humans as passive participants to the recognition that humans are active agents in their own cultural and biological evolution. This required re-education of the world citizenry, which was accomplished in part by the BSCS textbooks. I also found that BSCS leaders Grobman, Glass, and Muller had serious concerns regarding the effects of nuclear radiation on the human gene pool, and were actively involved in informing th public. Lastly, I found that concerns of 1950s reform eugenicists were addressed in the BSCS textbooks, without mentioning eugenics by name. I suggest that the leaders of the BSCS, especially Bentley Glass and Hermann J. Muller, thought that students needed to understand genetics and evolution to be able to make some of the tough choices they might be called on to make as the dominant species on earth and the next reproductive generation in the nuclear age. This

  16. Phase-field simulation of formation of cellular dendrites and fine cellular structures at high growth velocities during directional solidification of Ti56Al44 alloy

    Institute of Scientific and Technical Information of China (English)

    LI Xin-zhong; GUO Jing-jie; SU Yan-qing; WU Shi-ping; FU Heng-zhi

    2005-01-01

    A phase-field model whose free energy of the solidification system derived from the Calphad thermodynamic modeling of phase diagram was used to simulate formation of cellular dendrites and fine cellular structures of Ti56Al44 alloy during directional solidification at high growth velocities. The liquid-solid phase transition of L→β was chosen. The dynamics of breakdown of initially planar interfaces into cellular dendrites and fine cellular structures were shown firstly at two growth velocities. Then the unidirectional free growths of two initial nucleations evolving to fine cellular dendrites were investigated. The tip splitting phenomenon is observed and the negative temperature gradient in the liquid represents its supercooling directional solidification. The simulation results show the realistic evolution of interfaces and microstructures and they agree with experimental one.

  17. Novel Materials for Cellular Nanosensors

    DEFF Research Database (Denmark)

    Sasso, Luigi

    The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...... and that offer advantages of functionalization, and conducting polymers were used as electrochemical sensor surface modifications for increasing the sensitivity towards relevant analytes, with focus on the detection of dopamine released from cells via exocytosis. Vertical peptide nanowires were synthesized from...

  18. Arrayed cellular environments for stem cells and regenerative medicine.

    Science.gov (United States)

    Titmarsh, Drew M; Chen, Huaying; Wolvetang, Ernst J; Cooper-White, Justin J

    2013-02-01

    The behavior and composition of both multipotent and pluripotent stem cell populations are exquisitely controlled by a complex, spatiotemporally variable interplay of physico-chemical, extracellular matrix, cell-cell interaction, and soluble factor cues that collectively define the stem cell niche. The push for stem cell-based regenerative medicine models and therapies has fuelled demands for increasingly accurate cellular environmental control and enhanced experimental throughput, driving an evolution of cell culture platforms away from conventional culture formats toward integrated systems. Arrayed cellular environments typically provide a set of discrete experimental elements with variation of one or several classes of stimuli across elements of the array. These are based on high-content/high-throughput detection, small sample volumes, and multiplexing of environments to increase experimental parameter space, and can be used to address a range of biological processes at the cell population, single-cell, or subcellular level. Arrayed cellular environments have the capability to provide an unprecedented understanding of the molecular and cellular events that underlie expansion and specification of stem cell and therapeutic cell populations, and thus generate successful regenerative medicine outcomes. This review focuses on recent key developments of arrayed cellular environments and their contribution and potential in stem cells and regenerative medicine.

  19. Cellular models for Parkinson's disease.

    Science.gov (United States)

    Falkenburger, Björn H; Saridaki, Theodora; Dinter, Elisabeth

    2016-10-01

    Developing new therapeutic strategies for Parkinson's disease requires cellular models. Current models reproduce the two most salient changes found in the brains of patients with Parkinson's disease: The degeneration of dopaminergic neurons and the existence of protein aggregates consisting mainly of α-synuclein. Cultured cells offer many advantages over studying Parkinson's disease directly in patients or in animal models. At the same time, the choice of a specific cellular model entails the requirement to focus on one aspect of the disease while ignoring others. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types the aspects of Parkinson's disease they model along with technical advantages and disadvantages. It might also be helpful for researchers from other fields consulting literature on cellular models of Parkinson's disease. Important models for the study of dopaminergic neuron degeneration include Lund human mesencephalic cells and primary neurons, and a case is made for the use of non-dopaminergic cells to model pathogenesis of non-motor symptoms of Parkinson's disease. With regard to α-synuclein aggregates, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. Cellular models reproduce the two most salient changes of Parkinson's disease, the degeneration of dopaminergic neurons and the existence of α-synuclein aggregates. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types and treatments the aspects of Parkinson's disease they model along with technical advantages and disadvantages. Furthermore, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. This article is part of a special issue on Parkinson disease.

  20. Stellar evolution

    CERN Document Server

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  1. Cellular basis of Alzheimer's disease.

    Science.gov (United States)

    Bali, Jitin; Halima, Saoussen Ben; Felmy, Boas; Goodger, Zoe; Zurbriggen, Sebastian; Rajendran, Lawrence

    2010-12-01

    Alzheimer's disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD.

  2. Evolution of trappin genes in mammals

    Directory of Open Access Journals (Sweden)

    Furutani Yutaka

    2010-01-01

    Full Text Available Abstract Background Trappin is a multifunctional host-defense peptide that has antiproteolytic, antiinflammatory, and antimicrobial activities. The numbers and compositions of trappin paralogs vary among mammalian species: human and sheep have a single trappin-2 gene; mouse and rat have no trappin gene; pig and cow have multiple trappin genes; and guinea pig has a trappin gene and two other derivativegenes. Independent duplications of trappin genes in pig and cow were observed recently after the species were separated. To determine whether these trappin gene duplications are restricted only to certain mammalian lineages, we analyzed recently-developed genome databases for the presence of duplicate trappin genes. Results The database analyses revealed that: 1 duplicated trappin multigenes were found recently in the nine-banded armadillo; 2 duplicated two trappin genes had been found in the Afrotherian species (elephant, tenrec, and hyrax since ancient days; 3 a single trappin-2 gene was found in various eutherians species; and 4 no typical trappin gene has been found in chicken, zebra finch, and opossum. Bayesian analysis estimated the date of the duplication of trappin genes in the Afrotheria, guinea pig, armadillo, cow, and pig to be 244, 35, 11, 13, and 3 million-years ago, respectively. The coding regions of trappin multigenes of almadillo, bovine, and pig evolved much faster than the noncoding exons, introns, and the flanking regions, showing that these genes have undergone accelerated evolution, and positive Darwinian selection was observed in pig-specific trappin paralogs. Conclusion These results suggest that trappin is an eutherian-specific molecule and eutherian genomes have the potential to form trappin multigenes.

  3. Cytogenetics and the evolution of medical genetics.

    Science.gov (United States)

    Ferguson-Smith, Malcolm A

    2008-08-01

    Interest in cytogenetics may be traced to the development of the chromosomal theory of inheritance that emerged from efforts to provide the basis for Darwin's theory "On the origin of species by means of natural selection." Despite their fundamental place in biology, chromosomes and genetics had little impact on medical practice until the 1960s. The discovery that a chromosomal defect caused Down syndrome was the spark responsible for the emergence of medical genetics as a clinical discipline. Prenatal diagnosis of trisomies, biochemical disorders, and neural tube defects became possible and hence the proliferation of genetic counseling clinics. Maternal serum screening for neural tube defects and Down syndrome followed, taking the new discipline into social medicine. Safe amniocentesis needed ultrasound, and ultrasound soon found other applications in obstetrics, including scanning for fetal malformations. Progress in medical genetics demanded a gene map, and cytogeneticists initiated the mapping workshops that led to the human genome project and the complete sequence of the human genome. As a result, conventional karyotyping has been augmented by molecular cytogenetics, and molecular karyotyping has been achieved by microarrays. Genetic diagnosis at the level of the DNA sequence is with us at last. It has been a remarkable journey from disease phenotype to karyotype to genotype, and it has taken <50 years. Our mission now is to ensure that the recent advances such as prenatal screening, microarrays, and noninvasive prenatal diagnosis are available to our patients. History shows that it is by increased use that costs are reduced and better methods discovered. Chromosome research has been behind the major advances in our field, and it will continue to be the key to future progress, not least in our appreciation of chromosomal variation and its importance as a mechanism in Darwinian evolution.

  4. On Cellular MIMO Channel Capacity

    Science.gov (United States)

    Adachi, Koichi; Adachi, Fumiyuki; Nakagawa, Masao

    To increase the transmission rate without bandwidth expansion, the multiple-input multiple-output (MIMO) technique has recently been attracting much attention. The MIMO channel capacity in a cellular system is affected by the interference from neighboring co-channel cells. In this paper, we introduce the cellular channel capacity and evaluate its outage capacity, taking into account the frequency-reuse factor, path loss exponent, standard deviation of shadowing loss, and transmission power of a base station (BS). Furthermore, we compare the cellular MIMO downlink channel capacity with those of other multi-antenna transmission techniques such as single-input multiple-output (SIMO) and space-time block coded multiple-input single-output (STBC-MISO). We show that the optimum frequency-reuse factor F that maximizes 10%-outage capacity is 3 and both 50%- and 90%-outage capacities is 1 irrespective of the type of multi-antenna transmission technique, where q%-outage capacity is defined as the channel capacity that gives an outage probability of q%. We also show that the cellular MIMO channel capacity is always higher than those of SIMO and STBC-MISO.

  5. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, MQT; Stürup, Stefan; Lambert, Ian H.;

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN(-...

  6. Non-local quantum evolution of entangled ensemble states in neural nets and its significance for brain function and a theory of consciousness

    CERN Document Server

    Bieberich, E

    1999-01-01

    Current quantum theories of consciousness suggest a configuration space of an entangled ensemble state as global work space for conscious experience. This study will describe a procedure for adjustment of the singlet evolution of a quantum computation to a classical signal input by action potentials. The computational output of an entangled state in a single neuron will be selected in a network environment by "survival of the fittest" coupling with other neurons. Darwinian evolution of this coupling will result in a binding of action potentials to a convoluted orbit of phase-locked oscillations with harmonic, m-adic, or fractal periodicity. Progressive integration of signal inputs will evolve a present memory space independent from the history of construction. Implications for mental processes, e.g., associative memory, creativity, and consciousness will be discussed. A model for the generation of quantum coherence in a single neuron will be suggested.

  7. Transmission of clonal hepatitis C virus genomes reveals the dominant but transitory role of CD8¿ T cells in early viral evolution

    DEFF Research Database (Denmark)

    Callendret, Benoît; Bukh, Jens; Eccleston, Heather B;

    2011-01-01

    The RNA genome of the hepatitis C virus (HCV) diversifies rapidly during the acute phase of infection, but the selective forces that drive this process remain poorly defined. Here we examined whether Darwinian selection pressure imposed by CD8(+) T cells is a dominant force driving early amino acid...... occurred slowly over several years of chronic infection. Together these observations indicate that during acute hepatitis C, virus evolution was driven primarily by positive selection pressure exerted by CD8(+) T cells. This influence of immune pressure on viral evolution appears to subside as chronic...... replacement in HCV viral populations. This question was addressed in two chimpanzees followed for 8 to 10 years after infection with a well-defined inoculum composed of a clonal genotype 1a (isolate H77C) HCV genome. Detailed characterization of CD8(+) T cell responses combined with sequencing of recovered...

  8. The Theory of Evolution - A Jewish Perspective

    Directory of Open Access Journals (Sweden)

    Avraham Steinberg

    2010-07-01

    Full Text Available All possible pro and con arguments regarding the theory of evolution have been discussed and debated in the vast literature—scientific, religious, and lay—in the past 150 years. There is usually great zealotry in all debating parties, with mutual intolerance of ideas and concepts, disrespect toward opposing opinions and positions, and usage of very harsh language. This prejudiced approach usually does not allow for a reasonable debate. It is important to look at the facts, assumptions, and beliefs of the theory of evolution in a more calm and humble way. In this article a comparative analysis is offered between the scientific aspects of the theory of evolution and a Judaic approach to these aspects. The two sets of human thought—religion and science—are fundamentally different in their aims and purposes, in their methods of operation, in their scope of interest and issues, and in their origin and ramifications. Whenever science surpasses its limits, or religion exceeds its boundaries, it actually is a form of an abuse of both. This has happened to the theory of evolution in a more powerful mode than any other interaction between science and religion. The agenda of many scientists who promote the theory of evolution is to achieve the goal of understanding the existence of the universe as a random, purposeless, natural development, evolved slowly over billions of years from a common ancestor by way of natural selection, devoid of any supernatural metaphysical power. Jewish faith perceives the development of the universe in a different way: God created the world, with a purpose known to Him; He established natural laws that govern the world; and He imposed a moral-religious set of requirements upon Man. The discussion and comparative analysis in this article is based upon the current neo-Darwinian theory, although it seems almost certain that even the new and modern assumptions and speculations will continue to be challenged, changed, and

  9. Urban DNA for cities evolutions. Cities as physical expression of dynamic equilibriums between competitive and cooperative forces

    CERN Document Server

    D'Acci, Luca

    2014-01-01

    Cities are physical manifestations of our competitive and cooperative behaviours. The tension between these two forces generates dynamic equilibriums whose material expressions are cities and their evolutions. In a Darwinian cooperative view, as Darwinism does not involve only competition, the public benefit obtained by cooperation, return in terms of private benefit too. An urban genetic code is proposed, according to which cities emerge connecting nature and urbanity, and as sum of multiuse, independent micro-areas, each one with its centrality, job locations, parks and daily shops-services and amenities. This mechanism, called Isobenefit Urbanism, is not static and pre-designed, but allows infinitely dynamic changes and expansions. Rather than describing The ideal city, which doesn't exist outside our own minds, Isobenefit Urbanism describes what a city should avoid to be in order to not become an unideal city. Its six principles are the urban DNA which does not give predetermined forms but indications to ...

  10. Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup

    DEFF Research Database (Denmark)

    Yu, Xiao-Jing; Zheng, Hong-Kun; Wang, Jun;

    2006-01-01

    Comparative genetic analysis between human and chimpanzee may detect genetic divergences responsible for human-specific characteristics. Previous studies have identified a series of genes that potentially underwent Darwinian positive selection during human evolution. However, without a closely...... related species as outgroup, it is difficult to identify human-lineage-specific changes, which is critical in delineating the biological uniqueness of humans. In this study, we conducted phylogeny-based analyses of 2633 human brain-expressed genes using rhesus macaque as the outgroup. We identified 47...... candidate genes showing strong evidence of positive selection in the human lineage. Genes with maximal expression in the brain showed a higher evolutionary rate in human than in chimpanzee. We observed that many immune-defense-related genes were under strong positive selection, and this trend was more...

  11. Galaxy Evolution

    Science.gov (United States)

    Matteucci, F.

    We review both the observational and theoretical constraints on the evolution of the abundances of heavy elements in gas and stars in galaxies of different morphological type. The main aim of this work is to document the progress made in our understanding of the physical processes regulating the chemical evolution of galaxies during the last sixteen years since the appearance, in this same journal (volume 5, page 287), of the well know review of Beatrice Tinsley, to whom I dedicate this paper. Finally, this article is addressed particularly to readers who do not actively work on galactic chemical evolution and who might use it as a cook book where the main ingredients are discussed and useful recipes can be found.

  12. Reversibly assembled cellular composite materials.

    Science.gov (United States)

    Cheung, Kenneth C; Gershenfeld, Neil

    2013-09-13

    We introduce composite materials made by reversibly assembling a three-dimensional lattice of mass-produced carbon fiber-reinforced polymer composite parts with integrated mechanical interlocking connections. The resulting cellular composite materials can respond as an elastic solid with an extremely large measured modulus for an ultralight material (12.3 megapascals at a density of 7.2 milligrams per cubic centimeter). These materials offer a hierarchical decomposition in modeling, with bulk properties that can be predicted from component measurements and deformation modes that can be determined by the placement of part types. Because site locations are locally constrained, structures can be produced in a relative assembly process that merges desirable features of fiber composites, cellular materials, and additive manufacturing.

  13. Glycosylation regulates prestin cellular activity.

    Science.gov (United States)

    Rajagopalan, Lavanya; Organ-Darling, Louise E; Liu, Haiying; Davidson, Amy L; Raphael, Robert M; Brownell, William E; Pereira, Fred A

    2010-03-01

    Glycosylation is a common post-translational modification of proteins and is implicated in a variety of cellular functions including protein folding, degradation, sorting and trafficking, and membrane protein recycling. The membrane protein prestin is an essential component of the membrane-based motor driving electromotility changes (electromotility) in the outer hair cell (OHC), a central process in auditory transduction. Prestin was earlier identified to possess two N-glycosylation sites (N163, N166) that, when mutated, marginally affect prestin nonlinear capacitance (NLC) function in cultured cells. Here, we show that the double mutant prestin(NN163/166AA) is not glycosylated and shows the expected NLC properties in the untreated and cholesterol-depleted HEK 293 cell model. In addition, unlike WT prestin that readily forms oligomers, prestin(NN163/166AA) is enriched as monomers and more mobile in the plasma membrane, suggesting that oligomerization of prestin is dependent on glycosylation but is not essential for the generation of NLC in HEK 293 cells. However, in the presence of increased membrane cholesterol, unlike the hyperpolarizing shift in NLC seen with WT prestin, cells expressing prestin(NN163/166AA) exhibit a linear capacitance function. In an attempt to explain this finding, we discovered that both WT prestin and prestin(NN163/166AA) participate in cholesterol-dependent cellular trafficking. In contrast to WT prestin, prestin(NN163/166AA) shows a significant cholesterol-dependent decrease in cell-surface expression, which may explain the loss of NLC function. Based on our observations, we conclude that glycosylation regulates self-association and cellular trafficking of prestin(NN163/166AA). These observations are the first to implicate a regulatory role for cellular trafficking and sorting in prestin function. We speculate that the cholesterol regulation of prestin occurs through localization to and internalization from membrane microdomains by

  14. Stochastic Nature in Cellular Processes

    Institute of Scientific and Technical Information of China (English)

    刘波; 刘圣君; 王祺; 晏世伟; 耿轶钊; SAKATA Fumihiko; GAO Xing-Fa

    2011-01-01

    The importance of stochasticity in cellular processes is increasingly recognized in both theoretical and experimental studies. General features of stochasticity in gene regulation and expression are briefly reviewed in this article, which include the main experimental phenomena, classification, quantization and regulation of noises. The correlation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methods that can capture effects of intrinsic and extrinsic noise are described.

  15. Cellular fiber–reinforced concrete

    OpenAIRE

    Isachenko S.; Kodzoev M.

    2016-01-01

    Methods disperse reinforcement of concrete matrix using polypropylene, glass, basalt and metal fibers allows to make the construction of complex configuration, solve the problem of frost products. Dispersed reinforcement reduces the overall weight of the structures. The fiber replaces the secondary reinforcement, reducing the volume of use of structural steel reinforcement. Cellular Fiber concretes are characterized by high-performance properties, especially increased bending strength and...

  16. Identification of Nonstationary Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    AndrewI.Adamatzky

    1992-01-01

    The principal feature of nonstationary cellular automata(NCA) is that a local transitiol rule of each cell is changed at each time step depending on neighborhood configuration at previous time step.The identification problem for NCA is extraction of local transition rules and the establishment of mechanism for changing these rules using sequence of NCA configurations.We present serial and parallel algorithms for identification of NCA.

  17. CELLULAR INTERACTIONS MEDIATED BY GLYCONECTIDS

    OpenAIRE

    Popescu, O.; Sumanovski, L. T.; I. Checiu; Elisabeta Popescu; G. N. Misevic

    1999-01-01

    Cellular interactions involve many types of cell surface molecules and operate via homophilic and/or heterophilic protein-protein and protein-carbohydrate binding. Our investigations in different model-systems (marine invertebrates and mammals) have provided direct evidence that a novel class of primordial proteoglycans, named by us gliconectins, can mediate cell adhesion via a new alternative molecular mechanism of polyvalent carbohydrate-carbohydrate binding. Biochemical characterization of...

  18. Evolutionary principles underlying structure and response dynamics of cellular networks.

    Science.gov (United States)

    Steinacher, Arno; Soyer, Orkun S

    2012-01-01

    The network view in systems biology, in conjunction with the continuing development of experimental technologies, is providing us with the key structural and dynamical features of both cell-wide and pathway-level regulatory, signaling and metabolic systems. These include for example modularity and presence of hub proteins at the structural level and ultrasensitivity and feedback control at the level of dynamics. The uncovering of such features, and the seeming commonality of some of them, makes many systems biologists believe that these could represent design principles that underpin cellular systems across organisms. Here, we argue that such claims on any observed feature requires an understanding of how it has emerged in evolution and how it can shape subsequent evolution. We review recent and past studies that aim to achieve such evolutionary understanding for observed features of cellular networks. We argue that this evolutionary framework could lead to deciphering evolutionary origin and relevance of proposed design principles, thereby allowing to predict their presence or absence in an organism based on its environment and biochemistry and their effect on its future evolution.

  19. The insect cellular immune response

    Institute of Scientific and Technical Information of China (English)

    Michael R. Strand

    2008-01-01

    The innate immune system of insects is divided into humoral defenses that include the production of soluble effector molecules and cellular defenses like phagocytosis and encapsulation that are mediated by hemocytes. This review summarizes current understanding of the cellular immune response. Insects produce several terminally differentiated types of hemocytes that are distinguished by morphology, molecular and antigenic markers, and function. The differentiated hemocytes that circulate in larval or nymphal stage insects arise from two sources: progenitor cells produced during embryogenesis and mesodermally derived hematopoietic organs. Regulation of hematopoiesis and hemocyte differentiation also involves several different signaling pathways. Phagocytosis and encapsulation require that hemocytes first recognize a given target as foreign followed by activation of downstream signaling and effector responses. A number of humoral and cellular receptors have been identified that recognize different microbes and multicellular parasites. In turn, activation of these receptors stimulates a number of signaling pathways that regulate different hemocyte functions. Recent studies also identify hemocytes as important sources of a number of humoral effector molecules required for killing different foreign invaders.

  20. Progress of cellular dedifferentiation research

    Institute of Scientific and Technical Information of China (English)

    LIU Hu-xian; HU Da-hai; JIA Chi-yu; FU Xiao-bing

    2006-01-01

    Differentiation, the stepwise specialization of cells, and transdifferentiation, the apparent switching of one cell type into another, capture much of the stem cell spotlight. But dedifferentiation, the developmental reversal of a cell before it reinvents itself, is an important process too. In multicellular organisms, cellular dedifferentiation is the major process underlying totipotency, regeneration and formation of new stem cell lineages. In humans,dedifferentiation is often associated with carcinogenesis.The study of cellular dedifferentiation in animals,particularly early events related to cell fate-switch and determination, is limited by the lack of a suitable,convenient experimental system. The classic example of dedifferentiation is limb and tail regeneration in urodele amphibians, such as salamanders. Recently, several investigators have shown that certain mammalian cell types can be induced to dedifferentiate to progenitor cells when stimulated with the appropriate signals or materials. These discoveries open the possibility that researchers might enhance the endogenous regenerative capacity of mammals by inducing cellular dedifferentiation in vivo.

  1. Stability of Cellular Automata Trajectories Revisited: Branching Walks and Lyapunov Profiles

    Science.gov (United States)

    Baetens, Jan M.; Gravner, Janko

    2016-10-01

    We study non-equilibrium defect accumulation dynamics on a cellular automaton trajectory: a branching walk process in which a defect creates a successor on any neighborhood site whose update it affects. On an infinite lattice, defects accumulate at different exponential rates in different directions, giving rise to the Lyapunov profile. This profile quantifies instability of a cellular automaton evolution and is connected to the theory of large deviations. We rigorously and empirically study Lyapunov profiles generated from random initial states. We also introduce explicit and computationally feasible variational methods to compute the Lyapunov profiles for periodic configurations, thus developing an analog of Floquet theory for cellular automata.

  2. Regional selection of the brain size regulating gene CASC5 provides new insight into human brain evolution.

    Science.gov (United States)

    Shi, Lei; Hu, Enzhi; Wang, Zhenbo; Liu, Jiewei; Li, Jin; Li, Ming; Chen, Hua; Yu, Chunshui; Jiang, Tianzi; Su, Bing

    2017-02-01

    Human evolution is marked by a continued enlargement of the brain. Previous studies on human brain evolution focused on identifying sequence divergences of brain size regulating genes between humans and nonhuman primates. However, the evolutionary pattern of the brain size regulating genes during recent human evolution is largely unknown. We conducted a comprehensive analysis of the brain size regulating gene CASC5 and found that in recent human evolution, CASC5 has accumulated many modern human specific amino acid changes, including two fixed changes and six polymorphic changes. Among human populations, 4 of the 6 amino acid polymorphic sites have high frequencies of derived alleles in East Asians, but are rare in Europeans and Africans. We proved that this between-population allelic divergence was caused by regional Darwinian positive selection in East Asians. Further analysis of brain image data of Han Chinese showed significant associations of the amino acid polymorphic sites with gray matter volume. Hence, CASC5 may contribute to the morphological and structural changes of the human brain during recent evolution. The observed between-population divergence of CASC5 variants was driven by natural selection that tends to favor a larger gray matter volume in East Asians.

  3. The teaching of evolution in Portugal in the early 20th century through the programs and textbooks of Zoology

    Directory of Open Access Journals (Sweden)

    Bento CAVADAS

    2011-11-01

    Full Text Available The teaching of evolution in the Portuguese secondary schools is not yet fully understood. This research aimed to contribute to this clarification, in the framework of the history of the curriculum and the biology subject, by showing the expressions of the evolutionism teaching in the first three decades of the twentieth century. To this end we analyzed the programs of Zoology of 1905 and 1919, as well as two textbooks, entitled «Lições de Zoologia» and written by Bernardo Aires in accordance with these programs. This analysis showed that the study of evolution, eliminated from the program in 1905, was again recognized in the program in 1919. In textbooks, the exposure of evolution focused on the subject of evolution, in the grounds of competition and natural selection, adaptation, the biogenetic law and the essential differences between Lamarckism and Darwinism. The comparative study of these textbooks showed that the text which addresses the evolution is essentially Darwinian. However, neoLamarckians sections have been identified that show the influence of the «eclipse of Darwinism» on the teaching of evolutionism.

  4. Paleontology and Darwin's Theory of Evolution: The Subversive Role of Statistics at the End of the 19th Century.

    Science.gov (United States)

    Tamborini, Marco

    2015-11-01

    This paper examines the subversive role of statistics paleontology at the end of the 19th and the beginning of the 20th centuries. In particular, I will focus on German paleontology and its relationship with statistics. I argue that in paleontology, the quantitative method was questioned and strongly limited by the first decade of the 20th century because, as its opponents noted, when the fossil record is treated statistically, it was found to generate results openly in conflict with the Darwinian theory of evolution. Essentially, statistics questions the gradual mode of evolution and the role of natural selection. The main objections to statistics were addressed during the meetings at the Kaiserlich-Königliche Geologische Reichsanstalt in Vienna in the 1880s. After having introduced the statistical treatment of the fossil record, I will use the works of Charles Léo Lesquereux (1806-1889), Joachim Barrande (1799-1833), and Henry Shaler Williams (1847-1918) to compare the objections raised in Vienna with how the statistical treatment of the data worked in practice. Furthermore, I will discuss the criticisms of Melchior Neumayr (1845-1890), one of the leading German opponents of statistical paleontology, to show why, and to what extent, statistics were questioned in Vienna. The final part of this paper considers what paleontologists can derive from a statistical notion of data: the necessity of opening a discussion about the completeness and nature of the paleontological data. The Vienna discussion about which method paleontologists should follow offers an interesting case study in order to understand the epistemic tensions within paleontology surrounding Darwin's theory as well as the variety of non-Darwinian alternatives that emerged from the statistical treatment of the fossil record at the end of the 19th century.

  5. Return of the Quantum Cellular Automata: Episode VI

    Science.gov (United States)

    Carr, Lincoln D.; Hillberry, Logan E.; Rall, Patrick; Halpern, Nicole Yunger; Bao, Ning; Montangero, Simone

    2016-05-01

    There are now over 150 quantum simulators or analog quantum computers worldwide. Although exploring quantum phase transitions, many-body localization, and the generalized Gibbs ensemble are exciting and worthwhile endeavors, there are totally untapped directions we have not yet pursued. One of these is quantum cellular automata. In the past a principal goal of quantum cellular automata was to reproduce continuum single particle quantum physics such as the Schrodinger or Dirac equation from simple rule sets. Now that we begin to really understand entanglement and many-body quantum physics at a deeper level, quantum cellular automata present new possibilities. We explore several time evolution schemes on simple spin chains leading to high degrees of quantum complexity and nontrivial quantum dynamics. We explain how the 256 known classical elementary cellular automata reduce to just a few exciting quantum cases. Our analysis tools include mutual information based complex networks as well as more familiar quantifiers like sound speed and diffusion rate. Funded by NSF and AFOSR.

  6. Cellular communications a comprehensive and practical guide

    CERN Document Server

    Tripathi, Nishith

    2014-01-01

    Even as newer cellular technologies and standards emerge, many of the fundamental principles and the components of the cellular network remain the same. Presenting a simple yet comprehensive view of cellular communications technologies, Cellular Communications provides an end-to-end perspective of cellular operations, ranging from physical layer details to call set-up and from the radio network to the core network. This self-contained source forpractitioners and students represents a comprehensive survey of the fundamentals of cellular communications and the landscape of commercially deployed

  7. Three-level description of the domino cellular automaton

    CERN Document Server

    Czechowski, Zbigniew

    2010-01-01

    Inspired by the approach of kinetic theory of gases, a three-level description (microscopic, mesoscopic and macroscopic) of cellular automaton is presented. To provide an analytical treatment a simple domino cellular automaton with avalanches was constructed. Formulas concerning exact relations for density, clusters, avalanches and other parameters in an equilibrium state were derived. It appears that some relations are approximately valid for deviations from the equilibrium, so the adequate Ito equation could be constructed. The equation provides the time evolution description of some variable on the macroscopic level. The results also suggest a motive for applying of the procedure of construction of the Ito equation (from time series data) to natural time series.

  8. Representing Evolution

    DEFF Research Database (Denmark)

    Hedin, Gry

    2012-01-01

    . This article discusses Willumsen's etching in the context of evolutionary theory, arguing that Willumsen is a rare example of an artist who not only let the theory of evolution fuel his artistic imagination, but also concerned himself with a core issue of the theory, namely to what extent it could be applied...

  9. Capturing Genomic Evolution of Lung Cancers through Liquid Biopsy for Circulating Tumor DNA

    Directory of Open Access Journals (Sweden)

    Michael Offin

    2017-01-01

    Full Text Available Genetic sequencing of malignancies has become increasingly important to uncover therapeutic targets and capture the tumor’s dynamic changes to drug sensitivity and resistance through genomic evolution. In lung cancers, the current standard of tissue biopsy at the time of diagnosis and progression is not always feasible or practical and may underestimate intratumoral heterogeneity. Technological advances in genetic sequencing have enabled the use of circulating tumor DNA (ctDNA analysis to obtain information on both targetable mutations and capturing real-time Darwinian evolution of tumor clones and drug resistance mechanisms under selective therapeutic pressure. The ability to analyze ctDNA from plasma, CSF, or urine enables a comprehensive view of cancers as systemic diseases and captures intratumoral heterogeneity. Here, we describe these recent advances in the setting of lung cancers and advocate for further research and the incorporation of ctDNA analysis in clinical trials of targeted therapies. By capturing genomic evolution in a noninvasive manner, liquid biopsy for ctDNA analysis could accelerate therapeutic discovery and deliver the next leap forward in precision medicine for patients with lung cancers and other solid tumors.

  10. Ultrastructure, macromolecules, and evolution

    CERN Document Server

    Dillon, Lawrence S

    1981-01-01

    Thus far in the history of biology, two, and only two, fundamental principles have come to light that pervade and unify the entire science-the cell theory and the concept of evolution. While it is true that recently opened fields of inves­ tigation have given rise to several generalizations of wide impact, such as the universality of DNA and the energetic dynamics of ecology, closer inspection reveals them to be part and parcel of either of the first two mentioned. Because in the final analysis energy can act upon an organism solely at the cellular level, its effects may be perceived basically to represent one facet of cell me­ tabolism. Similarly, because the DNA theory centers upon the means by which cells build proteins and reproduce themselves, it too proves to be only one more, even though an exciting, aspect of the cell theory. In fact, if the matter is given closer scrutiny, evolution itself can be viewed as being a fundamental portion of the cell concept, for its effects arise only as a consequence ...

  11. Cellular automata modelling of phase-change memories

    Institute of Scientific and Technical Information of China (English)

    Wanhua Yu; David Wright

    2008-01-01

    A novel approach to modelling phase-transition processes in phase change materials used for optical and electrical data storage applications is presented. The model is based on a cellular automaton (CA) approach to predict crystallization behaviour that is linked to thermal and electrical simulations to enable the study of the data writing and erasing processes. The CA approach is shown to be able to predict the evolution of the microstructure during the rapid heating and cooling cycles pertinent to data storage technology, and maps crystallization behaviour on the nanoscale. A simple example based on possible future nonvolatile phase-change random access solid-state memory is presented.

  12. A Simple n-Dimensional Intrinsically Universal Quantum Cellular Automaton

    CERN Document Server

    Arrighi, Pablo

    2010-01-01

    We describe a simple n-dimensional quantum cellular automaton (QCA) capable of simulating all others, in that the initial configuration and the forward evolution of any n-dimensional QCA can be encoded within the initial configuration of the intrinsically universal QCA. Several steps of the intrinsically universal QCA then correspond to one step of the simulated QCA. The simulation preserves the topology in the sense that each cell of the simulated QCA is encoded as a group of adjacent cells in the universal QCA.

  13. Microbial Growth Modeling and Simulation Based on Cellular Automata

    Directory of Open Access Journals (Sweden)

    Hong Men

    2013-07-01

    Full Text Available In order to simulate the micro-evolutionary process of the microbial growth, [Methods] in this study, we adopt two-dimensional cellular automata as its growth space. Based on evolutionary mechanism of microbial and cell-cell interactions, we adopt Moore neighborhood and make the transition rules. Finally, we construct the microbial growth model. [Results] It can describe the relationships among the cell growth, division and death. And also can effectively reflect spatial inhibition effect and substrate limitation effect. [Conclusions] The simulation results show that CA model is not only consistent with the classic microbial kinetic model, but also be able to simulate the microbial growth and evolution.

  14. Multiuser Scheduling on the Downlink of an LTE Cellular System

    Directory of Open Access Journals (Sweden)

    Raymond Kwan

    2008-01-01

    Full Text Available The challenge of scheduling user transmissions on the downlink of a long-term evolution (LTE cellular communication system is addressed. In particular, a novel optimalmultiuser scheduler is proposed. Numerical results show that the system performance improves with increasing correlation among OFDMA subcarriers. It is found that only a limited amount of feedback information is needed to achieve relatively good performance. A suboptimal reduced-complexity scheduler is also proposed and shown to provide good performance. The suboptimal scheme is especially attractive when the number of users is large, in which case the complexity of the optimal scheme is high.

  15. Chaotic Encryption Method Based on Life-Like Cellular Automata

    CERN Document Server

    Machicao, Marina Jeaneth; Bruno, Odemir M

    2011-01-01

    We propose a chaotic encryption method based on Cellular Automata(CA), specifically on the family called the "Life-Like" type. Thus, the encryption process lying on the pseudo-random numbers generated (PRNG) by each CA's evolution, which transforms the password as the initial conditions to encrypt messages. Moreover, is explored the dynamical behavior of CA to reach a "good" quality as PRNG based on measures to quantify "how chaotic a dynamical system is", through the combination of the entropy, Lyapunov exponent, and Hamming distance. Finally, we present the detailed security analysis based on experimental tests: DIEHARD and ENT suites, as well as Fouriers Power Spectrum, used as a security criteria.

  16. Cellular immune responses to HIV

    Science.gov (United States)

    McMichael, Andrew J.; Rowland-Jones, Sarah L.

    2001-04-01

    The cellular immune response to the human immunodeficiency virus, mediated by T lymphocytes, seems strong but fails to control the infection completely. In most virus infections, T cells either eliminate the virus or suppress it indefinitely as a harmless, persisting infection. But the human immunodeficiency virus undermines this control by infecting key immune cells, thereby impairing the response of both the infected CD4+ T cells and the uninfected CD8+ T cells. The failure of the latter to function efficiently facilitates the escape of virus from immune control and the collapse of the whole immune system.

  17. Repaglinide at a cellular level

    DEFF Research Database (Denmark)

    Krogsgaard Thomsen, M; Bokvist, K; Høy, M

    2002-01-01

    To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in rat...... pancreatic alpha-cells and somatotrophs. We found a pharmacological dissociation between the actions on KATP channels and exocytosis and suggest that compounds that, unlike repaglinide, have direct stimulatory effects on exocytosis in somatotrophs and alpha- and beta-cells, such as sulphonylureas...

  18. Game of Life Cellular Automata

    CERN Document Server

    Adamatzky, Andrew

    2010-01-01

    In the late 1960s, British mathematician John Conway invented a virtual mathematical machine that operates on a two-dimensional array of square cell. Each cell takes two states, live and dead. The cells' states are updated simultaneously and in discrete time. A dead cell comes to life if it has exactly three live neighbours. A live cell remains alive if two or three of its neighbours are alive, otherwise the cell dies. Conway's Game of Life became the most programmed solitary game and the most known cellular automaton. The book brings together results of forty years of study into computational

  19. Cellular automata a parallel model

    CERN Document Server

    Mazoyer, J

    1999-01-01

    Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.

  20. ING proteins in cellular senescence.

    Science.gov (United States)

    Menéndez, Camino; Abad, María; Gómez-Cabello, Daniel; Moreno, Alberto; Palmero, Ignacio

    2009-05-01

    Cellular senescence is an effective anti-tumor barrier that acts by restraining the uncontrolled proliferation of cells carrying potentially oncogenic alterations. ING proteins are putative tumor suppressor proteins functionally linked to the p53 pathway and to chromatin regulation. ING proteins exert their tumor-protective action through different types of responses. Here, we review the evidence on the participation of ING proteins, mainly ING1 and ING2, in the implementation of the senescent response. The currently available data support an important role of ING proteins as regulators of senescence, in connection with the p53 pathway and chromatin organization.

  1. Cellular Analogs of Operant Behavior.

    Science.gov (United States)

    1992-07-31

    ing of single units can be demonstrated, does such a cellular subset of neighboring pyramidal cells and interneurons as well as process contribute...excite dopamine neurons by -hyperpolarization of local interneurons . J. Neurosci. 12:483-488; 1992. Kosterlitz, H. W. Biosynthesis of morphine in the...II 197 1 1 ocation preltereite iindiis- HOIdlod VA. artdo \\M I . \\.ill I ’’’’i i R i l’)89) ( pioid mediationl lserilI1 reintoree-Cd bK amlphetcamine

  2. 5G Ultra-Dense Cellular Networks

    OpenAIRE

    Ge, Xiaohu; Tu, Song; Mao, Guoqiang; Wang, Cheng-xiang; Han, Tao

    2015-01-01

    Traditional ultra-dense wireless networks are recommended as a complement for cellular networks and are deployed in partial areas, such as hotspot and indoor scenarios. Based on the massive multiple-input multi-output (MIMO) antennas and the millimeter wavecommunication technologies, the 5G ultra-dense cellular network is proposed to deploy in overall cellular scenarios. Moreover, a distribution network architecture is presented for 5G ultra-dense cellular networks. Furthermore, the backhaul ...

  3. Applying causality principles to the axiomatization of probabilistic cellular automata

    CERN Document Server

    Arrighi, Pablo; Nesme, Vincent; Thierry, Eric

    2011-01-01

    Cellular automata (CA) consist of an array of identical cells, each of which may take one of a finite number of possible states. The entire array evolves in discrete time steps by iterating a global evolution G. Further, this global evolution G is required to be shift-invariant (it acts the same everywhere) and causal (information cannot be transmitted faster than some fixed number of cells per time step). At least in the classical, reversible and quantum cases, these two top-down axiomatic conditions are sufficient to entail more bottom-up, operational descriptions of G. We investigate whether the same is true in the probabilistic case. Keywords: Characterization, noise, Markov process, stochastic Einstein locality, screening-off, common cause principle, non-signalling, Multi-party non-local box.

  4. Quantum state transfer through noisy quantum cellular automata

    Science.gov (United States)

    Avalle, Michele; Genoni, Marco G.; Serafini, Alessio

    2015-05-01

    We model the transport of an unknown quantum state on one dimensional qubit lattices by means of a quantum cellular automata (QCA) evolution. We do this by first introducing a class of discrete noisy dynamics, in the first excitation sector, in which a wide group of classical stochastic dynamics is embedded within the more general formalism of quantum operations. We then extend the Hilbert space of the system to accommodate a global vacuum state, thus allowing for the transport of initial on-site coherences besides excitations, and determine the dynamical constraints that define the class of noisy QCA in this subspace. We then study the transport performance through numerical simulations, showing that for some instances of the dynamics perfect quantum state transfer is attainable. Our approach provides one with a natural description of both unitary and open quantum evolutions, where the homogeneity and locality of interactions allow one to take into account several forms of quantum noise in a plausible scenario.

  5. A paradigm for viewing biologic systems as scale-free networks based on energy efficiency: implications for present therapies and the future of evolution.

    Science.gov (United States)

    Yun, Anthony J; Lee, Patrick Y; Doux, John D

    2006-01-01

    A network constitutes an abstract description of the relationships among entities, respectively termed links and nodes. If a power law describes the probability distribution of the number of links per node, the network is said to be scale-free. Scale-free networks feature link clustering around certain hubs based on preferential attachments that emerge due either to merit or legacy. Biologic systems ranging from sub-atomic to ecosystems represent scale-free networks in which energy efficiency forms the basis of preferential attachments. This paradigm engenders a novel scale-free network theory of evolution based on energy efficiency. As environmental flux induces fitness dislocations and compels a new meritocracy, new merit-based hubs emerge, previously merit-based hubs become legacy hubs, and network recalibration occurs to achieve system optimization. To date, Darwinian evolution, characterized by innovation sampling, variation, and selection through filtered termination, has enabled biologic progress through optimization of energy efficiency. However, as humans remodel their environment, increasing the level of unanticipated fitness dislocations and inducing evolutionary stress, the tendency of networks to exhibit inertia and retain legacy hubs engender maladaptations. Many modern diseases may fundamentally derive from these evolutionary displacements. Death itself may constitute a programmed adaptation, terminating individuals who represent legacy hubs and recalibrating the network. As memes replace genes as the basis of innovation, death itself has become a legacy hub. Post-Darwinian evolution may favor indefinite persistence to optimize energy efficiency. We describe strategies to reprogram or decommission legacy hubs that participate in human disease and death.

  6. [Social institutions and tempering of affects as "contraints" of social change. Norbert Elias' theory on the civilization theory in light of the biologic system theory of evolution].

    Science.gov (United States)

    Weinich, Detlef

    2005-01-01

    This study is to be regarded as a contribution to interdisciplinary research and represents an attempt to clarify the question of whether and to what extent concepts that have been developed in the field of theoretical biology and which have a high degree of importance here can also be applied to sociological phenomena. In particular it is intended to examine the question of whether the civilizing process can be adequately treated using the evolutionary concept of "Constraints". This term, which has only recently been introduced into the discussion by PERE ALBERCH as an evolutionary factor, comprises all of the internal factors which influence the further course of the evolution of a system by ruling out certain possibilities, thus showing a limiting effect. Although "Constraints" go beyond the scope of Darwinian teachings about selection by the environment, they are increasingly accepted today as evolution factors by well-known exponents of Darwinian theory (cf. MAYNARD-SMITH 1985). The increase in popularity of "constraints" is also an expression of the rediscovery of a phenomenon which was originally expressed by RUPERT RIEDL and was introduced by him into German literature in the seventies. In the clarification of this question, special reference is made to the "theory of the civilizing process" by NORBERT ELIAS, since here a highly respected scholar has presented an important sociological theory. Moreover, there is such good scientific access to ELIAS because this author exemplifies his theses in historical terms and thus to a certain extent makes his explanations verifiable in scientific terms. In the treatment of this topic, the central terms and theses of ELIAS will be presented from the considerable scope of his work, and then illustrated with the help of several selected historical case studies. Furthermore, reference will be made at the relevant points to parallels and analogies which the works of ELIAS have to other, predominantly system

  7. Melanoma screening with cellular phones.

    Directory of Open Access Journals (Sweden)

    Cesare Massone

    Full Text Available BACKGROUND: Mobile teledermatology has recently been shown to be suitable for teledermatology despite limitations in image definition in preliminary studies. The unique aspect of mobile teledermatology is that this system represents a filtering or triage system, allowing a sensitive approach for the management of patients with emergent skin diseases. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigated the feasibility of teleconsultation using a new generation of cellular phones in pigmented skin lesions. 18 patients were selected consecutively in the Pigmented Skin Lesions Clinic of the Department of Dermatology, Medical University of Graz, Graz (Austria. Clinical and dermoscopic images were acquired using a Sony Ericsson with a built-in two-megapixel camera. Two teleconsultants reviewed the images on a specific web application (http://www.dermahandy.net/default.asp where images had been uploaded in JPEG format. Compared to the face-to-face diagnoses, the two teleconsultants obtained a score of correct telediagnoses of 89% and of 91.5% reporting the clinical and dermoscopic images, respectively. CONCLUSIONS/SIGNIFICANCE: The present work is the first study performing mobile teledermoscopy using cellular phones. Mobile teledermatology has the potential to become an easy applicable tool for everyone and a new approach for enhanced self-monitoring for skin cancer screening in the spirit of the eHealth program of the European Commission Information for Society and Media.

  8. Cellular functions of the microprocessor.

    Science.gov (United States)

    Macias, Sara; Cordiner, Ross A; Cáceres, Javier F

    2013-08-01

    The microprocessor is a complex comprising the RNase III enzyme Drosha and the double-stranded RNA-binding protein DGCR8 (DiGeorge syndrome critical region 8 gene) that catalyses the nuclear step of miRNA (microRNA) biogenesis. DGCR8 recognizes the RNA substrate, whereas Drosha functions as an endonuclease. Recent global analyses of microprocessor and Dicer proteins have suggested novel functions for these components independent of their role in miRNA biogenesis. A HITS-CLIP (high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation) experiment designed to identify novel substrates of the microprocessor revealed that this complex binds and regulates a large variety of cellular RNAs. The microprocessor-mediated cleavage of several classes of RNAs not only regulates transcript levels, but also modulates alternative splicing events, independently of miRNA function. Importantly, DGCR8 can also associate with other nucleases, suggesting the existence of alternative DGCR8 complexes that may regulate the fate of a subset of cellular RNAs. The aim of the present review is to provide an overview of the diverse functional roles of the microprocessor.

  9. Cellular automata modelling of SEIRS

    Institute of Scientific and Technical Information of China (English)

    Liu Quan-Xing; Jin Zhen

    2005-01-01

    In this paper the SEIRS epidemic spread is analysed, and a two-dimensional probability cellular automata model for SEIRS is presented. Each cellular automation cell represents a part of the population that may be found in one of five states of individuals: susceptible, exposed (or latency), infected, immunized (or recovered) and death. Here studied are the effects of two cases on the epidemic spread. i.e. the effects of non-segregation and segregation on the latency and the infected of population. The conclusion is reached that the epidemic will persist in the case of non-segregation but it will decrease in the case of segregation. The proposed model can serve as a basis for the development of algorithms to simulate real epidemics based on real data. Last we find the density series of the exposed and the infected will fluctuate near a positive equilibrium point, when the constant for the immunized is less than its corresponding constant τ0. Our theoretical results are verified by numerical simulations.

  10. A study of a main-road cellular automata traffic flow model

    Institute of Scientific and Technical Information of China (English)

    黄乒花; 孔令江; 刘慕仁

    2002-01-01

    A main-road cellular automata traffic flow model on two dimensions is presented based on the Biham-Middleton-Levine traffic model. Its evolution equations are given and the self-organization and organization cooperation phenomenain this model are also studied by using computer simulation.

  11. Floating point based Cellular Automata simulations using a dual FPGA-enabled system

    NARCIS (Netherlands)

    Murtaza, S.; Hoekstra, A.G.; Sloot, P.M.A.; Kindratenko, V.

    2008-01-01

    With the recent emergence of multicore architectures, the age of multicore computing might have already dawned upon us. This shift might have triggered the evolution of von Neumann architecture towards a parallel processing paradigm. Cellular Automata- inherently decentralized spatially extended sys

  12. How Darwinian reductionism refutes genetic determinism.

    Science.gov (United States)

    Rosoff, Philip M; Rosenberg, Alex

    2006-03-01

    Genetic determinism labels the morally problematical claim that some socially significant traits, traits we care about, such as sexual orientation, gender roles, violence, alcoholism, mental illness, intelligence, are largely the results of the operation of genes and not much alterable by environment, learning or other human intervention. Genetic determinism does not require that genes literally fix these socially significant traits, but rather that they constrain them within narrow channels beyond human intervention. In this essay we analyze genetic determinism in light of what is now known about the inborn error of metabolism phenylketonuria (PKU), which has for so long been the poster child 'simple' argument in favor of some form of genetic determinism. We demonstrate that this case proves the exact opposite of what it has been proposed to support and provides a strong refutation of genetic determinism in all its guises.

  13. PROBLEMAS ALTRUISTAS DARWINIANOS Darwinian Altruistic Issues

    Directory of Open Access Journals (Sweden)

    JORGE MARTÍNEZ-CONTRERAS

    Full Text Available Darwin propuso en 1871 que preferiría descender de un mono que de los -salvajes-. El mono es un babuino Papio hamadryas que, en un relato de Brehm, salva a un infante de una jauría. Los -salvajes- son los fueguinos a los que visitó en el año 1833. ¿Por qué Darwin, a pesar de haber sido tan buen observador del comportamiento animal, no pudo discernir en qué consistía la sociedad de cazadores-recolectores de los cuatro grupos humanos de Tierra del Fuego? Esto es lo que tratamos de dilucidar en este trabajo.In 1871 Darwin mentioned that he would rather descent from a monkey than from -savages-. The monkey in question was a Papio hamadryas baboon that, in Brehm's account, saves an infant from a pack of dogs. The -savages- were the now disappeared Fuegians, whom he visited in the Beagle's voyage, in 1833. Why Darwin through he was a very good observer of animal behavior could not discern the social characteristics of the four hunter-gatherer human societies he knew in Tierra del Fuego? Our aim in this work is to try to elucidate this dilemma.

  14. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN...... including [Cbl-OH2](+), [{Co}-CN-{cis-PtCl(NH3)2}](+), [{Re}-{Co}-CN-{cis-PtCl(NH3)2}](+), and [{Co}-CN-{trans-Pt(Cyt)(NH3)2}](2+) (Cyt = cytarabin) was high compared to neutral B12, which implied the existence of an additional internalization pathway for charged B12 vitamin analogs. The affinities...

  15. Discrete geodesics and cellular automata

    CERN Document Server

    Arrighi, Pablo

    2015-01-01

    This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which allows numerical validation---as shown by computing the perihelion shift of a Mercury-like planet. It is consistent, in the continuum limit, with the standard notion of timelike geodesics in a pseudo-riemannian manifold. Whether the algorithm fits within the framework of cellular automata is discussed at length. KEYWORDS: Discrete connection, parallel transport, general relativity, Regge calculus.

  16. Thermomechanical characterisation of cellular rubber

    Science.gov (United States)

    Seibert, H.; Scheffer, T.; Diebels, S.

    2016-09-01

    This contribution discusses an experimental possibility to characterise a cellular rubber in terms of the influence of multiaxiality, rate dependency under environmental temperature and its behaviour under hydrostatic pressure. In this context, a mixed open and closed cell rubber based on an ethylene propylene diene monomer is investigated exemplarily. The present article intends to give a general idea of the characterisation method and the considerable effects of this special type of material. The main focus lies on the experimental procedure and the used testing devices in combination with the analysis methods such as true three-dimensional digital image correlation. The structural compressibility is taken into account by an approach for a material model using the Theory of Porous Media with additional temperature dependence.

  17. Cellular compartmentalization of secondary metabolism

    Directory of Open Access Journals (Sweden)

    H. Corby eKistler

    2015-02-01

    Full Text Available Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g. amino acids, acetyl CoA, NADPH, enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported.

  18. Endosymbiosis and Eukaryotic Cell Evolution.

    Science.gov (United States)

    Archibald, John M

    2015-10-05

    Understanding the evolution of eukaryotic cellular complexity is one of the grand challenges of modern biology. It has now been firmly established that mitochondria and plastids, the classical membrane-bound organelles of eukaryotic cells, evolved from bacteria by endosymbiosis. In the case of mitochondria, evidence points very clearly to an endosymbiont of α-proteobacterial ancestry. The precise nature of the host cell that partnered with this endosymbiont is, however, very much an open question. And while the host for the cyanobacterial progenitor of the plastid was undoubtedly a fully-fledged eukaryote, how - and how often - plastids moved from one eukaryote to another during algal diversification is vigorously debated. In this article I frame modern views on endosymbiotic theory in a historical context, highlighting the transformative role DNA sequencing played in solving early problems in eukaryotic cell evolution, and posing key unanswered questions emerging from the age of comparative genomics.

  19. Fundamental Limits to Cellular Sensing

    Science.gov (United States)

    ten Wolde, Pieter Rein; Becker, Nils B.; Ouldridge, Thomas E.; Mugler, Andrew

    2016-03-01

    In recent years experiments have demonstrated that living cells can measure low chemical concentrations with high precision, and much progress has been made in understanding what sets the fundamental limit to the precision of chemical sensing. Chemical concentration measurements start with the binding of ligand molecules to receptor proteins, which is an inherently noisy process, especially at low concentrations. The signaling networks that transmit the information on the ligand concentration from the receptors into the cell have to filter this receptor input noise as much as possible. These networks, however, are also intrinsically stochastic in nature, which means that they will also add noise to the transmitted signal. In this review, we will first discuss how the diffusive transport and binding of ligand to the receptor sets the receptor correlation time, which is the timescale over which fluctuations in the state of the receptor, arising from the stochastic receptor-ligand binding, decay. We then describe how downstream signaling pathways integrate these receptor-state fluctuations, and how the number of receptors, the receptor correlation time, and the effective integration time set by the downstream network, together impose a fundamental limit on the precision of sensing. We then discuss how cells can remove the receptor input noise while simultaneously suppressing the intrinsic noise in the signaling network. We describe why this mechanism of time integration requires three classes (groups) of resources—receptors and their integration time, readout molecules, energy—and how each resource class sets a fundamental sensing limit. We also briefly discuss the scheme of maximum-likelihood estimation, the role of receptor cooperativity, and how cellular copy protocols differ from canonical copy protocols typically considered in the computational literature, explaining why cellular sensing systems can never reach the Landauer limit on the optimal trade

  20. Membrane-Based Functions in the Origin of Cellular Life

    Science.gov (United States)

    Chipot, Christophe; New, Michael H.; Schweighofer, Karl; Pohorille, Andrew; Wilson, Michael A.

    1999-01-01

    Our objective is to help explain how the earliest ancestors of contemporary cells (protocells) performed their essential functions employing only the molecules available in the protobiological milieu. Our hypothesis is that vesicles, built of amphiphilic, membrane-forming materials, emerged early in protobiological evolution and served as precursors to protocells. We further assume that the cellular functions associated with contemporary membranes, such as capturing and, transducing of energy, signaling, or sequestering organic molecules and ions, evolved in these membrane environments. An alternative hypothesis is that these functions evolved in different environments and were incorporated into membrane-bound structures at some later stage of evolution. We focus on the application of the fundamental principles of physics and chemistry to determine how they apply to the formation of a primitive, functional cell. Rather than attempting to develop specific models for cellular functions and to identify the origin of the molecules which perform these functions, our goal is to define the structural and energetic conditions that any successful model must fulfill, therefore providing physico-chemical boundaries for these models. We do this by carrying out large-scale, molecular level computer simulations on systems of interest.

  1. A comparative cellular and molecular biology of longevity database.

    Science.gov (United States)

    Stuart, Jeffrey A; Liang, Ping; Luo, Xuemei; Page, Melissa M; Gallagher, Emily J; Christoff, Casey A; Robb, Ellen L

    2013-10-01

    Discovering key cellular and molecular traits that promote longevity is a major goal of aging and longevity research. One experimental strategy is to determine which traits have been selected during the evolution of longevity in naturally long-lived animal species. This comparative approach has been applied to lifespan research for nearly four decades, yielding hundreds of datasets describing aspects of cell and molecular biology hypothesized to relate to animal longevity. Here, we introduce a Comparative Cellular and Molecular Biology of Longevity Database, available at ( http://genomics.brocku.ca/ccmbl/ ), as a compendium of comparative cell and molecular data presented in the context of longevity. This open access database will facilitate the meta-analysis of amalgamated datasets using standardized maximum lifespan (MLSP) data (from AnAge). The first edition contains over 800 data records describing experimental measurements of cellular stress resistance, reactive oxygen species metabolism, membrane composition, protein homeostasis, and genome homeostasis as they relate to vertebrate species MLSP. The purpose of this review is to introduce the database and briefly demonstrate its use in the meta-analysis of combined datasets.

  2. CHEMICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1965-06-01

    How did life come to be on the surface of the earth? Darwin himself recognized that his basic idea of evolution by variation and natural selection must be a continuous process extending backward in time through that period in which the first living things arose and into the period of 'Chemical Evolution' which preceded it. We are approaching the examination of these events by two routes. One is to seek for evidence in the ancient rocks of the earth which were laid down prior to that time in which organisms capable of leaving their skeletons in the rocks to be fossilized were in existence. This period is sometime prior to approximately 600 million years ago. The earth is believed to have taken its present form approximately 4700 million years ago. We have found in rocks whose age is about 1000 million years certain organic molecules which are closely related to the green pigment of plants, chlorophyll. This seems to establish that green plants were already fluorishing prior to that time. We have now found in rocks of still greater age, namely, 2500 million years, the same kinds of molecules mentioned above which can be attributed to the presence of living organisms. If these molecules are as old as the rocks, we have thus shortened the time available for the generation of the complex biosynthetic sequences which give rise to these specific hydrocarbons (polyisoprenoids) to less than 2000 million years.

  3. Social evolution in multispecies biofilms.

    Science.gov (United States)

    Mitri, Sara; Xavier, João B; Foster, Kevin R

    2011-06-28

    Microbial ecology is revealing the vast diversity of strains and species that coexist in many environments, ranging from free-living communities to the symbionts that compose the human microbiome. In parallel, there is growing evidence of the importance of cooperative phenotypes for the growth and behavior of microbial groups. Here we ask: How does the presence of multiple species affect the evolution of cooperative secretions? We use a computer simulation of spatially structured cellular groups that captures key features of their biology and physical environment. When nutrient competition is strong, we find that the addition of new species can inhibit cooperation by eradicating secreting strains before they can become established. When nutrients are abundant and many species mix in one environment, however, our model predicts that secretor strains of any one species will be surrounded by other species. This "social insulation" protects secretors from competition with nonsecretors of the same species and can improve the prospects of within-species cooperation. We also observe constraints on the evolution of mutualistic interactions among species, because it is difficult to find conditions that simultaneously favor both within- and among-species cooperation. Although relatively simple, our model reveals the richness of interactions between the ecology and social evolution of multispecies microbial groups, which can be critical for the evolution of cooperation.

  4. Modelling river history and evolution.

    Science.gov (United States)

    Coulthard, T J; Van de Wiel, M J

    2012-05-13

    Over the last few decades, a suite of numerical models has been developed for studying river history and evolution that is almost as diverse as the subject of river history itself. A distinction can be made between landscape evolution models (LEMs), alluvial architecture models, meander models, cellular models and computational fluid dynamics models. Although these models share some similarities, there also are notable differences between them, which make them more or less suitable for simulating particular aspects of river history and evolution. LEMs embrace entire drainage basins at the price of detail; alluvial architecture models simulate sedimentary facies but oversimplify flow characteristics; and computational fluid dynamics models have to assume a fixed channel form. While all these models have helped us to predict erosion and depositional processes as well as fluvial landscape evolution, some areas of prediction are likely to remain limited and short-term owing to the often nonlinear response of fluvial systems. Nevertheless, progress in model algorithms, computing and field data capture will lead to greater integration between these approaches and thus the ability to interpret river history more comprehensively.

  5. Intrinsic Simulations between Stochastic Cellular Automata

    Directory of Open Access Journals (Sweden)

    Pablo Arrighi

    2012-08-01

    Full Text Available The paper proposes a simple formalism for dealing with deterministic, non-deterministic and stochastic cellular automata in a unifying and composable manner. Armed with this formalism, we extend the notion of intrinsic simulation between deterministic cellular automata, to the non-deterministic and stochastic settings. We then provide explicit tools to prove or disprove the existence of such a simulation between two stochastic cellular automata, even though the intrinsic simulation relation is shown to be undecidable in dimension two and higher. The key result behind this is the caracterization of equality of stochastic global maps by the existence of a coupling between the random sources. We then prove that there is a universal non-deterministic cellular automaton, but no universal stochastic cellular automaton. Yet we provide stochastic cellular automata achieving optimal partial universality.

  6. The origin of cellular life

    Science.gov (United States)

    Ingber, D. E.

    2000-01-01

    This essay presents a scenario of the origin of life that is based on analysis of biological architecture and mechanical design at the microstructural level. My thesis is that the same architectural and energetic constraints that shape cells today also guided the evolution of the first cells and that the molecular scaffolds that support solid-phase biochemistry in modern cells represent living microfossils of past life forms. This concept emerged from the discovery that cells mechanically stabilize themselves using tensegrity architecture and that these same building rules guide hierarchical self-assembly at all size scales (Sci. Amer 278:48-57;1998). When combined with other fundamental design principles (e.g., energy minimization, topological constraints, structural hierarchies, autocatalytic sets, solid-state biochemistry), tensegrity provides a physical basis to explain how atomic and molecular elements progressively self-assembled to create hierarchical structures with increasingly complex functions, including living cells that can self-reproduce.

  7. THE RELATIONSHIPS OF THREE ELEMENTARY CELLULAR AUTOMATA

    Institute of Scientific and Technical Information of China (English)

    Zhisong JIANG

    2006-01-01

    Limit language complexity of cellular automata which is first posed by S. Wolfram has become a new branch of cellular automata. In this paper, we obtain two interesting relationships between elementary cellular automata of rules 126, 146(182) and 18, and prove that if the limit language of rule 18 is not regular, nor are the limit languages of rules 126 and 146(182).

  8. Autophagy and mitophagy in cellular damage control

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2013-01-01

    Full Text Available Autophagy and mitophagy are important cellular processes that are responsible for breaking down cellular contents, preserving energy and safeguarding against accumulation of damaged and aggregated biomolecules. This graphic review gives a broad summary of autophagy and discusses examples where autophagy is important in controlling protein degradation. In addition we highlight how autophagy and mitophagy are involved in the cellular responses to reactive species and mitochondrial dysfunction. The key signaling pathways for mitophagy are described in the context of bioenergetic dysfunction.

  9. Cellular scaling rules for the brain of afrotherians

    Directory of Open Access Journals (Sweden)

    Kleber eNeves

    2014-02-01

    Full Text Available Quantitative analysis of the cellular composition of rodent, primate and eulipotyphlan brains has shown that nonneuronal scaling rules are similar across these mammalian orders that diverged about 95 million years ago, and therefore appear to be conserved in evolution, while neuronal scaling rules appear to be free to vary in evolution in a clade-specific manner. Here we analyze the cellular scaling rules that apply to the brain of afrotherians, believed to be the first clade to radiate from the common eutherian ancestor. We find that afrotherians share nonneuronal scaling rules with rodents, primates and eulipotyphlans, as well as the coordinated scaling of numbers of neurons in the cerebral cortex and cerebellum. Afrotherians share with rodents and eulipotyphlans, but not with primates, the scaling of number of neurons in the cortex and in the cerebellum as a function of the number of neurons in the rest of the brain. Afrotheria also share with rodents and eulipotyphlans the neuronal scaling rules that apply to the cerebral cortex. Afrotherians share with rodents, but not with eulipotyphlans nor primates, the neuronal scaling rules that apply to the cerebellum. Importantly, the scaling of the folding index of the cerebral cortex with the number of neurons in the cerebral cortex is not shared by either afrotherians, rodents, or primates. The sharing of some neuronal scaling rules between afrotherians and rodents, and of some additional features with eulipotyphlans and primates, raise the interesting possibility that these shared characteristics applied to the common eutherian ancestor. In turn, the clade-specific characteristics that relate to the distribution of neurons along the surface of the cerebral cortex and to its degree of gyrification suggest that these characteristics compose an evolutionarily plastic suite of features that may have defined and distinguished mammalian groups in evolution.

  10. Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study

    Directory of Open Access Journals (Sweden)

    Eads Jonathan R

    2005-08-01

    Full Text Available Abstract Background Completed genomes and environmental genomic sequences are bringing a significant contribution to understanding the evolution of gene families, microbial metabolism and community eco-physiology. Here, we used comparative genomics and phylogenetic analyses in conjunction with enzymatic data to probe the evolution and functions of a microbial nitrilase gene family. Nitrilases are relatively rare in bacterial genomes, their biological function being unclear. Results We examined the genetic neighborhood of the different subfamily genes and discovered conserved gene clusters or operons associated with specific nitrilase clades. The inferred evolutionary transitions that separate nitrilases which belong to different gene clusters correlated with changes in their enzymatic properties. We present evidence that Darwinian adaptation acted during one of those transitions and identified sites in the enzyme that may have been under positive selection. Conclusion Changes in the observed biochemical properties of the nitrilases associated with the different gene clusters are consistent with a hypothesis that those enzymes have been recruited to a novel metabolic pathway following gene duplication and neofunctionalization. These results demonstrate the benefits of combining environmental genomic sampling and completed genomes data with evolutionary and biochemical analyses in the study of gene families. They also open new directions for studying the functions of nitrilases and the genes they are associated with.

  11. Molecular evolution of scorpion a-toxins--Accelerated substitutions and functional divergence

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Scorpion α-toxins are a family of toxic proteins with similar scaffold, but possess divergent pharmacological properties.Analysis of cDNA sequences reveals that the numbers of nucleotide substitutions per site (K) for 5' and 3' UTRs are smaller than those per synonymous site (Ks) for the mature peptide-coding sequences, whereas the numbers of nucleotide substitutions per nonsynonymous site (Ka) are close to or larger than Ks values for relevant pairs of cDNAs. These results, together with phylogenetic analysis, indicate that scorpion a-toxins have evolved by accelerated substitutions in the mature toxin regions. In addition, the 15 amino acids, absolutely conserved in all the scorpion α-toxins described so far, are mostly located in molecular interior, which may be involved in structural constraints for stabilizing the CSαβ fold in evolution of these molecules. Four hot spot mutation sites in the molecular surface are found to dis tribute in the putative functional regions of α-toxins, suggesting that positive Darwinian selection drives the accelerated evolution of scorpion α-toxins. These findings reasonably explain the relationship between three-dimensional structure conservation and functional divergence of scorpion α-toxins and are of important value in guiding us in our engineering experiments to obtain higher affinity ligands to Na+ channels.

  12. Thought Evolution

    Directory of Open Access Journals (Sweden)

    Shadrikov V.D.

    2015-08-01

    Full Text Available The thought evolution is studied by historical reconstruction method that is based on the propositions of the theory of culturalhistorical determination of the psyche development, and the data of the morphological analysis and child development, and the conception of the psyche neuroontogenesis. The grounds for advisability of protothinking are presented. The protothinking is understood as the use of objective thought in cases of awareness absence. It is shown that protothinking is a form of transition from animal thinking to human speech. The particular attention is paid to the process of the word producing and thought generation in that process. The conditions of word producing as cooccurring acoustic pattern served for though expression are discussed. It is emphasized that a word is produced by a particular person. The historical development of the language and the specificity of this development are pointed out

  13. Community Evolution

    CERN Document Server

    Bródka, Piotr; Kazienko, Przemysław

    2016-01-01

    The continuous interest in the social network area contributes to the fast development of this field. The new possibilities of obtaining and storing data facilitate deeper analysis of the entire social network, extracted social groups and single individuals as well. One of the most interesting research topic is the network dynamics and dynamics of social groups in particular, it means analysis of group evolution over time. It is the natural step forward after social community extraction. Having communities extracted, appropriate knowledge and methods for dynamic analysis may be applied in order to identify changes as well as to predict the future of all or some selected groups. Furthermore, knowing the most probably change of a given group some additional steps may be performed in order to change this predicted future according to specific needs. Such ability would be a powerful tool in the hands of human resource managers, personnel recruitment, marketing, telecommunication companies, etc.

  14. Efficiency of cellular information processing

    CERN Document Server

    Barato, Andre C; Seifert, Udo

    2014-01-01

    We show that a rate of conditional Shannon entropy reduction, characterizing the learning of an internal process about an external process, is bounded by the thermodynamic entropy production. This approach allows for the definition of an informational efficiency that can be used to study cellular information processing. We analyze three models of increasing complexity inspired by the E. coli sensory network, where the external process is an external ligand concentration jumping between two values. We start with a simple model for which ATP must be consumed so that a protein inside the cell can learn about the external concentration. With a second model for a single receptor we show that the rate at which the receptor learns about the external environment can be nonzero even without any dissipation inside the cell since chemical work done by the external process compensates for this learning rate. The third model is more complete, also containing adaptation. For this model we show inter alia that a bacterium i...

  15. The cellular toxicity of aluminium.

    Science.gov (United States)

    Exley, C; Birchall, J D

    1992-11-07

    Aluminium is a serious environmental toxicant and is inimical to biota. Omnipresent, it is linked with a number of disorders in man including Alzheimer's disease, Parkinson's dementia and osteomalacia. Evidence supporting aluminium as an aetiological agent in such disorders is not conclusive and suffers principally from a lack of consensus with respect to aluminium's toxic mode of action. Obligatory to the elucidation of toxic mechanisms is an understanding of the biological availability of aluminium. This describes the fate of and response to aluminium in any biological system and is thus an important influence of the toxicity of aluminium. A general theme in much aluminium toxicity is an accelerated cell death. Herein mechanisms are described to account for cell death from both acute and chronic aluminium challenges. Aluminium associations with both extracellular surfaces and intracellular ligands are implicated. The cellular response to aluminium is found to be biphasic having both stimulatory and inhibitory components. In either case the disruption of second messenger systems is observed and GTPase cycles are potential target sites. Specific ligands for aluminium at these sites are unknown though are likely to be proteins upon which oxygen-based functional groups are orientated to give exceptionally strong binding with the free aluminium ion.

  16. Integration of mobile satellite and cellular systems

    Science.gov (United States)

    Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.

  17. Optimized Cellular Core for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Patz Materials and Technologies proposes to develop a unique structural cellular core material to improve mechanical performance, reduce platform weight and lower...

  18. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  19. The coevolutionary roots of biochemistry and cellular organization challenge the RNA world paradigm.

    Science.gov (United States)

    Caetano-Anollés, Gustavo; Seufferheld, Manfredo J

    2013-01-01

    The origin and evolution of modern biochemistry and cellular structure is a complex problem that has puzzled scientists for almost a century. While comparative, functional and structural genomics has unraveled considerable complexity at the molecular level, there is very little understanding of the origin, evolution and structure of the molecules responsible for cellular or viral features in life. Recent efforts, however, have dissected the emergence of the very early molecules that populated primordial cells. Deep historical signal was retrieved from a census of molecular structures and functions in thousands of nucleic acid and protein structures and hundreds of genomes using powerful phylogenomic methods. Together with structural, chemical and cell biology considerations, this information reveals that modern biochemistry is the result of the gradual evolutionary appearance and accretion of molecular parts and molecules. These patterns comply with the principle of continuity and lead to molecular and cellular complexity. Here, we review findings and report possible origins of molecular and cellular structure, the early rise of lipid biosynthetic pathways and components of cytoskeletal microstructures, the piecemeal accumulation of domains in ATP synthase complexes and the origin and evolution of the ribosome. Phylogenomic studies suggest the last universal common ancestor of life, the 'urancestor', had already developed complex cellular structure and bioenergetics. Remarkably, our findings falsify the existence of an ancient RNA world. Instead they are compatible with gradually coevolving nucleic acids and proteins in interaction with increasingly complex cofactors, lipid membrane structures and other cellular components. This changes the perception we have of the rise of modern biochemistry and prompts further analysis of the emergence of biological complexity in an ever-expanding coevolving world of macromolecules.

  20. Four Dimensional (4-D BioChemInfoPhysics Models of Cardiac Cellular and Sub-Cellular Vibrations (Oscillations

    Directory of Open Access Journals (Sweden)

    Chang-Hua Zou

    2009-01-01

    Full Text Available Problem statement: Cardiovascular Diseases (CVD continued to be the leading cause of death. Failure or abnormal cardiac cellular or sub-cellular vibrations (oscillations could lead failure or abnormal heart beats that could cause CVD. Understanding the mechanisms of the vibrations (oscillations could help to prevent or to treat the diseases. Scientists have studied the mechanisms for more than 100 years. To our knowledge, the mechanisms are still unclear today. In this investigation, based on published data or results, conservation laws of the momentum as well as the energy, in views of biology, biochemistry, informatics and physics (BioChemInfoPhysics, we proposed our models of cardiac cellular and sub-cellular vibrations (oscillations of biological components, such as free ions in Biological Fluids (BF, Biological Membranes (BM, Ca++H+ (Ca++ and Na+K+ ATPases, Na+Ca++ exchangers (NCX, Ca++ carriers and myosin heads. Approach: Our models were described with 4-D (x, y, z, t or r, ?, z, t momentum transfer equations in mathematical physics. Results: The momentum transfer equations were solved with free and forced, damped, un-damped and over-damped, vibrations (oscillations. The biological components could be modeled as resonators or vibrators (oscillators, such as liquid plasmas, membranes, active springs, passive springs and active swings. Conclusion: We systematically provided new insights of automation (ignition and maintain, transportation, propagation and orientation of the cardiac cellular and sub-cellular vibrations (oscillations and resonances, with our BioChemInfoPhysics models of 4-D momentum transfer equations. Our modeling results implied: Auto-rhythmic cells (Sinoatrial Node Cells (SANC, Atrioventricular Node Cells (AVNC, Purkinje fibers, non-Auto-rhythmic ventricular myocytes and their Sarcoplasmic Reticulums (SR work as Biological Liquid Plasma Resonators (BLPR. The resonators were

  1. Recent development of cellular manufacturing systems

    Indian Academy of Sciences (India)

    P K Arora; A Haleem; M K Singh

    2013-06-01

    Cellular manufacturing system has been proved a vital approach for batch and job shop production systems. Group technology has been an essential tool for developing a cellular manufacturing system. The paper aims to discuss various cell formation techniques and highlights the significant research work done in past over the years and attempts to points out the gap in research.

  2. Cellular encoding for interactive evolutionary robotics

    NARCIS (Netherlands)

    Gruau, F.C.; Quatramaran, K.

    1996-01-01

    This work reports experiments in interactive evolutionary robotics. The goal is to evolve an Artificial Neural Network (ANN) to control the locomotion of an 8-legged robot. The ANNs are encoded using a cellular developmental process called cellular encoding. In a previous work similar experiments ha

  3. LMS filters for cellular CDMA overlay

    OpenAIRE

    1996-01-01

    This paper extends and complements previous research we have performed on the performance of nonadaptive narrowband suppression filters when used in cellular CDMA overlay situations. In this paper, an adaptive LMS filter is applied to cellular CDMA overlay situations in order to reject narrowband interference.

  4. From Cnn Dynamics to Cellular Wave Computers

    Science.gov (United States)

    Roska, Tamas

    2013-01-01

    Embedded in a historical overview, the development of the Cellular Wave Computing paradigm is presented, starting from the standard CNN dynamics. The theoretical aspects, the physical implementation, the innovation process, as well as the biological relevance are discussed in details. Finally, the latest developments, the physical versus virtual cellular machines, as well as some open questions are presented.

  5. Groupware requirements evolution patterns

    NARCIS (Netherlands)

    Pumareja, Dulce Trinidad

    2013-01-01

    Requirements evolution is a generally known problem in software development. Requirements are known to change all throughout a system's lifecycle. Nevertheless, requirements evolution is a poorly understood phenomenon. Most studies on requirements evolution focus on changes to written specifications

  6. The Universe as a Cellular System

    CERN Document Server

    Aragón-Calvo, Miguel A

    2014-01-01

    Cellular systems are observed everywhere in nature, from crystal domains in metals, soap froth and cucumber cells to the network of cosmological voids. Surprisingly, despite their disparate scale and origin all cellular systems follow certain scaling laws relating their geometry, topology and dynamics. Using a cosmological N-body simulation we found that the Cosmic Web, the largest known cellular system, follows the same scaling relations seen elsewhere in nature. Our results extend the validity of scaling relations in cellular systems by over 30 orders of magnitude in scale with respect to previous studies. The dynamics of cellular systems can be used to interpret local observations such as the local velocity anomaly as the result of a collapsing void in our cosmic backyard. Moreover, scaling relations depend on the curvature of space, providing an independent measure of geometry.

  7. The mammary cellular hierarchy and breast cancer.

    Science.gov (United States)

    Oakes, Samantha R; Gallego-Ortega, David; Ormandy, Christopher J

    2014-11-01

    Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and regulation of the mammary cellular hierarchy and we describe the development of the concepts that have guided our investigations. We outline recent advances in in vivo lineage tracing that is now challenging many of our assumptions regarding the behavior of mammary stem cells, and we show how understanding these cellular lineages has altered our view of breast cancer.

  8. Has Human Evolution Stopped?

    OpenAIRE

    TEMPLETON, Alan R

    2010-01-01

    It has been argued that human evolution has stopped because humans now adapt to their environment via cultural evolution and not biological evolution. However, all organisms adapt to their environment, and humans are no exception. Culture defines much of the human environment, so cultural evolution has actually led to adaptive evolution in humans. Examples are given to illustrate the rapid pace of adaptive evolution in response to cultural innovations. These adaptive responses have important ...

  9. Expanding the metabolic engineering toolbox with directed evolution.

    Science.gov (United States)

    Abatemarco, Joseph; Hill, Andrew; Alper, Hal S

    2013-12-01

    Cellular systems can be engineered into factories that produce high-value chemicals from renewable feedstock. Such an approach requires an expanded toolbox for metabolic engineering. Recently, protein engineering and directed evolution strategies have started to play a growing and critical role within metabolic engineering. This review focuses on the various ways in which directed evolution can be applied in conjunction with metabolic engineering to improve product yields. Specifically, we discuss the application of directed evolution on both catalytic and non-catalytic traits of enzymes, on regulatory elements, and on whole genomes in a metabolic engineering context. We demonstrate how the goals of metabolic pathway engineering can be achieved in part through evolving cellular parts as opposed to traditional approaches that rely on gene overexpression and deletion. Finally, we discuss the current limitations in screening technology that hinder the full implementation of a metabolic pathway-directed evolution approach.

  10. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification

    Science.gov (United States)

    Schlüter, Lothar; Lohbeck, Kai T.; Gröger, Joachim P.; Riebesell, Ulf; Reusch, Thorsten B. H.

    2016-01-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2–adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses. PMID:27419227

  11. Forced evolution in silico by artificial transposons and their genetic operators: The ant navigation problem

    Science.gov (United States)

    Zamdborg, Leonid; Holloway, David M.; Merelo, Juan J.; Levchenko, Vladimir F.; Spirov, Alexander V.

    2015-01-01

    Modern evolutionary computation utilizes heuristic optimizations based upon concepts borrowed from the Darwinian theory of natural selection. Their demonstrated efficacy has reawakened an interest in other aspects of contemporary biology as an inspiration for new algorithms. However, amongst the many excellent candidates for study, contemporary models of biological macroevolution attract special attention. We believe that a vital direction in this field must be algorithms that model the activity of “genomic parasites”, such as transposons, in biological evolution. Many evolutionary biologists posit that it is the co-evolution of populations with their genomic parasites that permits the high efficiency of evolutionary searches found in the living world. This publication is our first step in the direction of developing a minimal assortment of algorithms that simulate the role of genomic parasites. Specifically, we started in the domain of genetic algorithms (GA) and selected the Artificial Ant Problem as a test case. This navigation problem is widely known as a classical benchmark test and possesses a large body of literature. We add new objects to the standard toolkit of GA - artificial transposons and a collection of operators that operate on them. We define these artificial transposons as a fragment of an ant's code with properties that cause it to stand apart from the rest. The minimal set of operators for transposons is a transposon mutation operator, and a transposon reproduction operator that causes a transposon to multiply within the population of hosts. An analysis of the population dynamics of transposons within the course of ant evolution showed that transposons are involved in the processes of propagation and selection of blocks of ant navigation programs. During this time, the speed of evolutionary search increases significantly. We concluded that artificial transposons, analogous to real transposons, are truly capable of acting as intelligent

  12. Nudging Evolution?

    Directory of Open Access Journals (Sweden)

    Katharine N. Farrell

    2013-12-01

    Full Text Available This Special Feature, "Nudging Evolution? Critical Exploration of the Potential and Limitations of the Concept of Institutional Fit for the Study and Adaptive Management of Social-Ecological Systems," aims to contribute toward the development of social theory and social research methods for the study of social-ecological system dynamics. Our objective is to help strengthen the academic discourse concerning if, and if so, how, to what extent, and in what concrete ways the concept of institutional "fit" might play a role in helping to develop better understanding of the social components of interlinkages between the socioeconomic-cultural and ecological dynamics of social-ecological systems. Two clearly discernible patterns provide a map of this Special Feature: (1 One pattern is the authors' positions regarding the place and role of normativity within their studies and assessment of institutional fit. Some place this at the center of their studies, exploring phenomena endogenous to the process of defining what constitutes institutional fit, whereas others take the formation of norms as a phenomenon exogenous to their study. (2 Another pattern is the type of studies presented: critiques and elaborations of the theory, methods for judging qualities of fit, and/or applied case studies using the concept. As a body of work, these contributions highlight that self-understanding of social-ecological place, whether explicit or implicit, constitutes an important part of the study object, i.e., the role of institutions in social-ecological systems, and that this is, at the same time, a crucial point of reference for the scholar wishing to evaluate what constitutes institutional fit and how it might be brought into being.

  13. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence.

    Science.gov (United States)

    Bernadotte, Alexandra; Mikhelson, Victor M; Spivak, Irina M

    2016-01-01

    The cellular senescence definition comes to the fact of cells irreversible proliferation disability. Besides the cell cycle arrest, senescent cells go through some morphological, biochemical, and functional changes which are the signs of cellular senescence. The senescent cells (including replicative senescence and stress-induced premature senescence) of all the tissues look alike. They are metabolically active and possess the set of characteristics in vitro and in vivo, which are known as biomarkers of aging and cellular senescence. Among biomarkers of cellular senescence telomere shortening is a rather elegant frequently used biomarker. Validity of telomere shortening as a marker for cellular senescence is based on theoretical and experimental data.

  14. Intrinsically universal n-dimensional quantum cellular automata

    CERN Document Server

    Arrighi, Pablo

    2009-01-01

    We describe an n-dimensional quantum cellular automaton (QCA) capable of simulating all others, in that the initial configuration and the forward evolution of any n-dimensional QCA can be encoded within the initial configuration of the universal QCA. Several steps of the universal QCA then correspond to one step of the simulated QCA. The simulation preserves the topology in the sense that each cell of the simulated QCA is encoded as a group of adjacent cells in the universal QCA. The encoding is linear and hence does not carry any of the cost of the computation. Part of our proof consists of showing that any QCA can be presented in the more canonical, operational form of a Partitioned QCA, thereby showing an equivalence between many definitions of QCA that are present in the literature.

  15. Cellular and Molecular Biological Approaches to Interpreting Ancient Biomarkers

    Science.gov (United States)

    Newman, Dianne K.; Neubauer, Cajetan; Ricci, Jessica N.; Wu, Chia-Hung; Pearson, Ann

    2016-06-01

    Our ability to read the molecular fossil record has advanced significantly in the past decade. Improvements in biomarker sampling and quantification methods, expansion of molecular sequence databases, and the application of genetic and cellular biological tools to problems in biomarker research have enabled much of this progress. By way of example, we review how attempts to understand the biological function of 2-methylhopanoids in modern bacteria have changed our interpretation of what their molecular fossils tell us about the early history of life. They were once thought to be biomarkers of cyanobacteria and hence the evolution of oxygenic photosynthesis, but we now believe that 2-methylhopanoid biosynthetic capacity originated in the Alphaproteobacteria, that 2-methylhopanoids are regulated in response to stress, and that hopanoid 2-methylation enhances membrane rigidity. We present a new interpretation of 2-methylhopanes that bridges the gap between studies of the functions of 2-methylhopanoids and their patterns of occurrence in the rock record.

  16. Optimal Band Allocation for Cognitive Cellular Networks

    CERN Document Server

    Liu, Tingting

    2011-01-01

    FCC new regulation for cognitive use of the TV white space spectrum provides a new means for improving traditional cellular network performance. But it also introduces a number of technical challenges. This letter studies one of the challenges, that is, given the significant differences in the propagation property and the transmit power limitations between the cellular band and the TV white space, how to jointly utilize both bands such that the benefit from the TV white space for improving cellular network performance is maximized. Both analytical and simulation results are provided.

  17. Cryptographic primitives based on cellular transformations

    Directory of Open Access Journals (Sweden)

    B.V. Izotov

    2003-11-01

    Full Text Available Design of cryptographic primitives based on the concept of cellular automata (CA is likely to be a promising trend in cryptography. In this paper, the improved method performing data transformations by using invertible cyclic CAs (CCA is considered. Besides, the cellular operations (CO as a novel CAs application in the block ciphers are introduced. Proposed CCAs and COs, integrated under the name of cellular transformations (CT, suit well to be used in cryptographic algorithms oriented to fast software and cheap hardware implementation.

  18. Imaging in cellular and tissue engineering

    CERN Document Server

    Yu, Hanry

    2013-01-01

    Details on specific imaging modalities for different cellular and tissue engineering applications are scattered throughout articles and chapters in the literature. Gathering this information into a single reference, Imaging in Cellular and Tissue Engineering presents both the fundamentals and state of the art in imaging methods, approaches, and applications in regenerative medicine. The book underscores the broadening scope of imaging applications in cellular and tissue engineering. It covers a wide range of optical and biological applications, including the repair or replacement of whole tiss

  19. On-Chip Detection of Cellular Activity

    Science.gov (United States)

    Almog, R.; Daniel, R.; Vernick, S.; Ron, A.; Ben-Yoav, H.; Shacham-Diamand, Y.

    The use of on-chip cellular activity monitoring for biological/chemical sensing is promising for environmental, medical and pharmaceutical applications. The miniaturization revolution in microelectronics is harnessed to provide on-chip detection of cellular activity, opening new horizons for miniature, fast, low cost and portable screening and monitoring devices. In this chapter we survey different on-chip cellular activity detection technologies based on electrochemical, bio-impedance and optical detection. Both prokaryotic and eukaryotic cell-on-chip technologies are mentioned and reviewed.

  20. Cellular Factors Required for Lassa Virus Budding

    OpenAIRE

    Urata, Shuzo; Noda, Takeshi; Kawaoka, Yoshihiro; Yokosawa, Hideyoshi; Yasuda, Jiro

    2006-01-01

    It is known that Lassa virus Z protein is sufficient for the release of virus-like particles (VLPs) and that it has two L domains, PTAP and PPPY, in its C terminus. However, little is known about the cellular factor for Lassa virus budding. We examined which cellular factors are used in Lassa virus Z budding. We demonstrated that Lassa Z protein efficiently produces VLPs and uses cellular factors, Vps4A, Vps4B, and Tsg101, in budding, suggesting that Lassa virus budding uses the multivesicula...

  1. A new mechanistic scenario for the origin and evolution of vertebrate cartilage.

    Directory of Open Access Journals (Sweden)

    Maria Cattell

    Full Text Available The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate "new head". Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs. While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of

  2. A new mechanistic scenario for the origin and evolution of vertebrate cartilage.

    Science.gov (United States)

    Cattell, Maria; Lai, Su; Cerny, Robert; Medeiros, Daniel Meulemans

    2011-01-01

    The appearance of cellular cartilage was a defining event in vertebrate evolution because it made possible the physical expansion of the vertebrate "new head". Despite its central role in vertebrate evolution, the origin of cellular cartilage has been difficult to understand. This is largely due to a lack of informative evolutionary intermediates linking vertebrate cellular cartilage to the acellular cartilage of invertebrate chordates. The basal jawless vertebrate, lamprey, has long been considered key to understanding the evolution of vertebrate cartilage. However, histological analyses of the lamprey head skeleton suggest it is composed of modern cellular cartilage and a putatively unrelated connective tissue called mucocartilage, with no obvious transitional tissue. Here we take a molecular approach to better understand the evolutionary relationships between lamprey cellular cartilage, gnathostome cellular cartilage, and lamprey mucocartilage. We find that despite overt histological similarity, lamprey and gnathostome cellular cartilage utilize divergent gene regulatory networks (GRNs). While the gnathostome cellular cartilage GRN broadly incorporates Runx, Barx, and Alx transcription factors, lamprey cellular cartilage does not express Runx or Barx, and only deploys Alx genes in certain regions. Furthermore, we find that lamprey mucocartilage, despite its distinctive mesenchymal morphology, deploys every component of the gnathostome cartilage GRN, albeit in different domains. Based on these findings, and previous work, we propose a stepwise model for the evolution of vertebrate cellular cartilage in which the appearance of a generic neural crest-derived skeletal tissue was followed by a phase of skeletal tissue diversification in early agnathans. In the gnathostome lineage, a single type of rigid cellular cartilage became dominant, replacing other skeletal tissues and evolving via gene cooption to become the definitive cellular cartilage of modern jawed

  3. Evolution and the complexity of bacteriophages

    Directory of Open Access Journals (Sweden)

    Serwer Philip

    2007-03-01

    Full Text Available Abstract Background The genomes of both long-genome (> 200 Kb bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Hypothesis Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1 Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2 Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection. (3 The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection. (4 The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. Testing the hypothesis I propose testing this hypothesis by controlled evolution in microbial communities to (1 determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2 find the environmental conditions that

  4. The cosmological model of eternal inflation and the transition from chance to biological evolution in the history of life

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2007-05-01

    Full Text Available Abstract Background Recent developments in cosmology radically change the conception of the universe as well as the very notions of "probable" and "possible". The model of eternal inflation implies that all macroscopic histories permitted by laws of physics are repeated an infinite number of times in the infinite multiverse. In contrast to the traditional cosmological models of a single, finite universe, this worldview provides for the origin of an infinite number of complex systems by chance, even as the probability of complexity emerging in any given region of the multiverse is extremely low. This change in perspective has profound implications for the history of any phenomenon, and life on earth cannot be an exception. Hypothesis Origin of life is a chicken and egg problem: for biological evolution that is governed, primarily, by natural selection, to take off, efficient systems for replication and translation are required, but even barebones cores of these systems appear to be products of extensive selection. The currently favored (partial solution is an RNA world without proteins in which replication is catalyzed by ribozymes and which serves as the cradle for the translation system. However, the RNA world faces its own hard problems as ribozyme-catalyzed RNA replication remains a hypothesis and the selective pressures behind the origin of translation remain mysterious. Eternal inflation offers a viable alternative that is untenable in a finite universe, i.e., that a coupled system of translation and replication emerged by chance, and became the breakthrough stage from which biological evolution, centered around Darwinian selection, took off. A corollary of this hypothesis is that an RNA world, as a diverse population of replicating RNA molecules, might have never existed. In this model, the stage for Darwinian selection is set by anthropic selection of complex systems that rarely but inevitably emerge by chance in the infinite universe

  5. Directed Evolution of Enzymes for Industrial Biocatalysis.

    Science.gov (United States)

    Porter, Joanne L; Rusli, Rukhairul A; Ollis, David L

    2016-02-01

    Enzymes have the potential to catalyse a wide variety of chemical reactions. They are increasingly being sought as environmentally friendly and cost-effective alternatives to conventional catalysts used in industries ranging from bioremediation to applications in medicine and pharmaceutics. Despite the benefits, they are not without their limitations. Many naturally occurring enzymes are not suitable for use outside of their native cellular environments. However, protein engineering can be used to generate enzymes tailored for specific industrial applications. Directed evolution is particularly useful and can be employed even when lack of structural information impedes the use of rational design. The aim of this review is to provide an overview of current industrial applications of enzyme technology and to show how directed evolution can be used to modify and to enhance enzyme properties. This includes a brief discussion on library generation and a more detailed focus on library screening methods, which are critical to any directed evolution experiment.

  6. Dirac Cellular Automaton from Split-step Quantum Walk.

    Science.gov (United States)

    Mallick, Arindam; Chandrashekar, C M

    2016-05-17

    Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory.

  7. Dirac Cellular Automaton from Split-step Quantum Walk

    Science.gov (United States)

    Mallick, Arindam; Chandrashekar, C. M.

    2016-05-01

    Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory.

  8. Combining cellular automata and Monte Carlo algorithm to simulate three-dimensional grain growth

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; CHEN Ju-hua; GUO Pei-quan; ZHAO Ping

    2006-01-01

    A 3-D simulation of grain growth was conducted by utilizing cellular automata (CA) and Monte Carlo (MC) algorithm. In the simulating procedure, the three-dimensional space is divided into a large number of 2-D isometric planes. Then, each of the planes is divided into identical square cells. Finally, the cellular automata and Monte Carlo algorithm are combined together to simulate the grain growth. Through an evolutionary simulation, the recrystallized microstructure, the grain growth rate and the grain size distribution are acceptably predicted. The simulation routine can be used to simulate the real physical-metallurgy processes and to predict quantitative dynamic information of the evolution of microstructure. Further more, the method is also useful for optimization of materials properties by controlling the microstructure evolution.

  9. Predictive modeling of multicellular structure formation by using Cellular Particle Dynamics simulations

    Science.gov (United States)

    McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan

    2014-03-01

    Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  10. Evolution prediction from tomography

    Science.gov (United States)

    Dominy, Jason M.; Venuti, Lorenzo Campos; Shabani, Alireza; Lidar, Daniel A.

    2017-03-01

    Quantum process tomography provides a means of measuring the evolution operator for a system at a fixed measurement time t. The problem of using that tomographic snapshot to predict the evolution operator at other times is generally ill-posed since there are, in general, infinitely many distinct and compatible solutions. We describe the prediction, in some "maximal ignorance" sense, of the evolution of a quantum system based on knowledge only of the evolution operator for finitely many times 0evolution at times away from the measurement times. Even if the original evolution is unitary, the predicted evolution is described by a non-unitary, completely positive map.

  11. A Matrix Construction of Cellular Algebras

    Institute of Scientific and Technical Information of China (English)

    Dajing Xiang

    2005-01-01

    In this paper, we give a concrete method to construct cellular algebras from matrix algebras by specifying certain fixed matrices for the data of inflations. In particular,orthogonal matrices can be chosen for such data.

  12. Cellular Defect May Be Linked to Parkinson's

    Science.gov (United States)

    ... 160862.html Cellular Defect May Be Linked to Parkinson's: Study Abnormality might apply to all forms of ... that may be common to all forms of Parkinson's disease. The defect plays a major role in ...

  13. Integration of Mobil Satellite and Cellular Systems

    Science.gov (United States)

    Drucker, E. H.; Estabrook, P.; Pinck, D.; Ekroot, L.

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established.

  14. Cellular Automaton Modeling of Pattern Formation

    NARCIS (Netherlands)

    Boerlijst, M.C.

    2006-01-01

    Book review Andreas Deutsch and Sabine Dormann, Cellular Automaton Modeling of Biological Pattern Formation, Characterization, Applications, and Analysis, Birkhäuser (2005) ISBN 0-8176-4281-1 331pp..

  15. Optimized Cellular Core for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Patz Materials and Technologies has developed, produced and tested, as part of the Phase-I SBIR, a new form of composite cellular core material, named Interply Core,...

  16. Densities and entropies in cellular automata

    CERN Document Server

    Guillon, Pierre

    2012-01-01

    Following work by Hochman and Meyerovitch on multidimensional SFT, we give computability-theoretic characterizations of the real numbers that can appear as the topological entropies of one-dimensional and two-dimensional cellular automata.

  17. Sponging of Cellular Proteins by Viral RNAs

    OpenAIRE

    Charley, Phillida A.; Wilusz, Jeffrey

    2014-01-01

    Viral RNAs accumulate to high levels during infection and interact with a variety of cellular factors including miRNAs and RNA-binding proteins. Although many of these interactions exist to directly modulate replication, translation and decay of viral transcripts, evidence is emerging that abundant viral RNAs may in certain cases serve as a sponge to sequester host non coding RNAs and proteins. By effectively reducing the ability of cellular RNA binding proteins to regulate host cell gene exp...

  18. Increase in Complexity and Information through Molecular Evolution

    Directory of Open Access Journals (Sweden)

    Peter Schuster

    2016-11-01

    Full Text Available Biological evolution progresses by essentially three different mechanisms: (I optimization of properties through natural selection in a population of competitors; (II development of new capabilities through cooperation of competitors caused by catalyzed reproduction; and (III variation of genetic information through mutation or recombination. Simplified evolutionary processes combine two out of the three mechanisms: Darwinian evolution combines competition (I and variation (III and is represented by the quasispecies model, major transitions involve cooperation (II of competitors (I, and the third combination, cooperation (II and variation (III provides new insights in the role of mutations in evolution. A minimal kinetic model based on simple molecular mechanisms for reproduction, catalyzed reproduction and mutation is introduced, cast into ordinary differential equations (ODEs, and analyzed mathematically in form of its implementation in a flow reactor. Stochastic aspects are investigated through computer simulation of trajectories of the corresponding chemical master equations. The competition-cooperation model, mechanisms (I and (II, gives rise to selection at low levels of resources and leads to symbiontic cooperation in case the material required is abundant. Accordingly, it provides a kind of minimal system that can undergo a (major transition. Stochastic effects leading to extinction of the population through self-enhancing oscillations destabilize symbioses of four or more partners. Mutations (III are not only the basis of change in phenotypic properties but can also prevent extinction provided the mutation rates are sufficiently large. Threshold phenomena are observed for all three combinations: The quasispecies model leads to an error threshold, the competition-cooperation model allows for an identification of a resource-triggered bifurcation with the transition, and for the cooperation-mutation model a kind of stochastic threshold for

  19. Polymersomes containing quantum dots for cellular imaging

    Directory of Open Access Journals (Sweden)

    Camblin M

    2014-05-01

    Full Text Available Marine Camblin,1 Pascal Detampel,1 Helene Kettiger,1 Dalin Wu,2 Vimalkumar Balasubramanian,1,* Jörg Huwyler1,*1Division of Pharmaceutical Technology, 2Department of Chemistry, University of Basel, Basel, Switzerland*These authors contributed equally to this workAbstract: Quantum dots (QDs are highly fluorescent and stable probes for cellular and molecular imaging. However, poor intracellular delivery, stability, and toxicity of QDs in biological compartments hamper their use in cellular imaging. To overcome these limitations, we developed a simple and effective method to load QDs into polymersomes (Ps made of poly(dimethylsiloxane-poly(2-methyloxazoline (PDMS-PMOXA diblock copolymers without compromising the characteristics of the QDs. These Ps showed no cellular toxicity and QDs were successfully incorporated into the aqueous compartment of the Ps as confirmed by transmission electron microscopy, fluorescence spectroscopy, and fluorescence correlation spectroscopy. Ps containing QDs showed colloidal stability over a period of 6 weeks if stored in phosphate-buffered saline (PBS at physiological pH (7.4. Efficient intracellular delivery of Ps containing QDs was achieved in human liver carcinoma cells (HepG2 and was visualized by confocal laser scanning microscopy (CLSM. Ps containing QDs showed a time- and concentration-dependent uptake in HepG2 cells and exhibited better intracellular stability than liposomes. Our results suggest that Ps containing QDs can be used as nanoprobes for cellular imaging.Keywords: quantum dots, polymersomes, cellular imaging, cellular uptake

  20. Modeling Recrystallization of Austenite for C-Mn Steels during Hot Deformation by Cellular Automaton

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By using a cellular automaton method, microstructure evolution of recrystallization in austenite during hot deformation was simulated for C-Mn steels. A model takes into account the influence of deformation temperature, strain, and strain rate on the dynamic recrystallization fraction, and the effect of the keeping time on the static recrystallization fraction based on a hot deformation test on a Gleeble-1500 simulator. In addition, the size changing of γ grains during continuous hot deformation was simulated by applying the model.

  1. On the Influence of Selection Operators on Performances in Cellular Genetic Algorithms

    CERN Document Server

    Simoncini, David; Verel, Sébastien; Clergue, Manuel

    2008-01-01

    In this paper, we study the influence of the selective pressure on the performance of cellular genetic algorithms. Cellular genetic algorithms are genetic algorithms where the population is embedded on a toroidal grid. This structure makes the propagation of the best so far individual slow down, and allows to keep in the population potentially good solutions. We present two selective pressure reducing strategies in order to slow down even more the best solution propagation. We experiment these strategies on a hard optimization problem, the quadratic assignment problem, and we show that there is a value for of the control parameter for both which gives the best performance. This optimal value does not find explanation on only the selective pressure, measured either by take over time and diversity evolution. This study makes us conclude that we need other tools than the sole selective pressure measures to explain the performances of cellular genetic algorithms.

  2. Cellular Automata on Graphs: Topological Properties of ER Graphs Evolved towards Low-Entropy Dynamics

    Directory of Open Access Journals (Sweden)

    Marc-Thorsten Hütt

    2012-06-01

    Full Text Available Cellular automata (CA are a remarkably  efficient tool for exploring general properties of complex systems and spatiotemporal patterns arising from local rules. Totalistic cellular automata,  where the update  rules depend  only on the density of neighboring states, are at the same time a versatile  tool for exploring  dynamical  processes on graphs. Here we briefly review our previous results on cellular automata on graphs, emphasizing some systematic relationships between network architecture and dynamics identified in this way. We then extend the investigation  towards graphs obtained in a simulated-evolution procedure, starting from Erdő s–Rényi (ER graphs and selecting for low entropies of the CA dynamics. Our key result is a strong association of low Shannon entropies with a broadening of the graph’s degree distribution.

  3. Darwinian and neo-Darwinian selection mechanisms in bacteria: Effects on antibiotic resistance

    Science.gov (United States)

    Darwin’s concept of survival of the fittest is as critical when applied to bacteria as it is to animals. Bacteria live in a highly competitive environment that is similar to the macrobiological world with its selective pressures. Neo-Darwinism views genes as selfish and as the ultimate unit of nat...

  4. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wenhu [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Gao, Yang, E-mail: gaoyang-00@mails.tsinghua.edu.cn [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Wang, Cheng [Beijing Institute of Technology, Beijing 100081 (China); Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-10-15

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale. Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies.

  5. Determining the cellular diversity of hepatitis C virus quasispecies by single-cell viral sequencing.

    Science.gov (United States)

    McWilliam Leitch, E Carol; McLauchlan, John

    2013-12-01

    Single-cell genomics is emerging as an important tool in cellular biology. We describe for the first time a system to investigate RNA virus quasispecies diversity at the cellular level utilizing hepatitis C virus (HCV) replicons. A high-fidelity nested reverse transcription (RT)-PCR assay was developed, and validation using control transcripts of known copy number indicated a detection limit of 3 copies of viral RNA/reaction. This system was used to determine the cellular diversity of subgenomic JFH-1 HCV replicons constitutively expressed in Huh7 cells. Each cell contained a unique quasispecies that was much less diverse than the quasispecies of the bulk cell population from which the single cells were derived, suggesting the occurrence of independent evolution at the cellular level. An assessment of the replicative fitness of the predominant single-cell quasispecies variants indicated a modest reduction in fitness compared to the wild type. Real-time RT-PCR methods capable of determining single-cell viral loads were developed and indicated an average of 113 copies of replicon RNA per cell, correlating with calculated RNA copy numbers in the bulk cell population. This study introduces a single-cell RNA viral-sequencing method with numerous potential applications to explore host-virus interactions during infection. HCV quasispecies diversity varied greatly between cells in vitro, suggesting different within-cell evolutionary pathways. Such divergent trajectories in vivo could have implications for the evolution and establishment of antiviral-resistant variants and host immune escape mutants.

  6. The RNA-world and co-evolution hypothesis and the origin of life: Implications, research strategies and perspectives

    Science.gov (United States)

    Lahav, Noam

    1993-01-01

    The applicability of the RNA-world and co-evolution hypothesis to the study of the very first stages of the origin of life is discussed. The discussion focuses on the basic differences between the two hypotheses and their implications, with regard to the reconstruction methodology, ribosome emergence, balance between ribozymes and protein enzymes, and their major difficultites. Additional complexities of the two hypotheses, such as membranes and the energy source of the first reactions, are not treated in the present work. A central element in the proposed experimental strategies is the study of the catalytic activites of very small peptides and RNA-like oligomers, according to existing, as well as to yet-to-be-invented scenarios of the two hypothesis under consideration. It is suggested that the novel directed molecular evolution technology, and molecular computational modeling, can be applied to this research. This strategy is assumed to be essential for the suggested goal of future studies of the origin of life, namely, the establishment of a `Primordial Darwinian entity'.

  7. The meaning of death: evolution and ecology of apoptosis in protozoan parasites.

    Science.gov (United States)

    Reece, Sarah E; Pollitt, Laura C; Colegrave, Nick; Gardner, Andy

    2011-12-01

    The discovery that an apoptosis-like, programmed cell death (PCD) occurs in a broad range of protozoan parasites offers novel therapeutic tools to treat some of the most serious infectious diseases of humans, companion animals, wildlife, and livestock. Whilst apoptosis is an essential part of normal development, maintenance, and defence in multicellular organisms, its occurrence in unicellular parasites appears counter-intuitive and has proved highly controversial: according to the Darwinian notion of "survival of the fittest", parasites are expected to evolve strategies to maximise their proliferation, not death. The prevailing, and untested, opinion in the literature is that parasites employ apoptosis to "altruistically" self-regulate the intensity of infection in the host/vector. However, evolutionary theory tells us that at most, this can only be part of the explanation, and other non-mutually exclusive hypotheses must also be tested. Here, we explain the evolutionary concepts that can explain apoptosis in unicellular parasites, highlight the key questions, and outline the approaches required to resolve the controversy over whether parasites "commit suicide". We highlight the need for integration of proximate and functional approaches into an evolutionary framework to understand apoptosis in unicellular parasites. Understanding how, when, and why parasites employ apoptosis is central to targeting this process with interventions that are sustainable in the face of parasite evolution.

  8. The meaning of death: evolution and ecology of apoptosis in protozoan parasites.

    Directory of Open Access Journals (Sweden)

    Sarah E Reece

    2011-12-01

    Full Text Available The discovery that an apoptosis-like, programmed cell death (PCD occurs in a broad range of protozoan parasites offers novel therapeutic tools to treat some of the most serious infectious diseases of humans, companion animals, wildlife, and livestock. Whilst apoptosis is an essential part of normal development, maintenance, and defence in multicellular organisms, its occurrence in unicellular parasites appears counter-intuitive and has proved highly controversial: according to the Darwinian notion of "survival of the fittest", parasites are expected to evolve strategies to maximise their proliferation, not death. The prevailing, and untested, opinion in the literature is that parasites employ apoptosis to "altruistically" self-regulate the intensity of infection in the host/vector. However, evolutionary theory tells us that at most, this can only be part of the explanation, and other non-mutually exclusive hypotheses must also be tested. Here, we explain the evolutionary concepts that can explain apoptosis in unicellular parasites, highlight the key questions, and outline the approaches required to resolve the controversy over whether parasites "commit suicide". We highlight the need for integration of proximate and functional approaches into an evolutionary framework to understand apoptosis in unicellular parasites. Understanding how, when, and why parasites employ apoptosis is central to targeting this process with interventions that are sustainable in the face of parasite evolution.

  9. Genetic architecture and evolution of the S locus supergene in Primula vulgaris.

    Science.gov (United States)

    Li, Jinhong; Cocker, Jonathan M; Wright, Jonathan; Webster, Margaret A; McMullan, Mark; Dyer, Sarah; Swarbreck, David; Caccamo, Mario; Oosterhout, Cock van; Gilmartin, Philip M

    2016-12-02

    Darwin's studies on heterostyly in Primula described two floral morphs, pin and thrum, with reciprocal anther and stigma heights that promote insect-mediated cross-pollination. This key innovation evolved independently in several angiosperm families. Subsequent studies on heterostyly in Primula contributed to the foundation of modern genetic theory and the neo-Darwinian synthesis. The established genetic model for Primula heterostyly involves a diallelic S locus comprising several genes, with rare recombination events that result in self-fertile homostyle flowers with anthers and stigma at the same height. Here we reveal the S locus supergene as a tightly linked cluster of thrum-specific genes that are absent in pins. We show that thrums are hemizygous not heterozygous for the S locus, which suggests that homostyles do not arise by recombination between S locus haplotypes as previously proposed. Duplication of a floral homeotic gene 51.7 million years (Myr) ago, followed by its neofunctionalization, created the current S locus assemblage which led to floral heteromorphy in Primula. Our findings provide new insights into the structure, function and evolution of this archetypal supergene.

  10. Evolution of cooperation: combining kin selection and reciprocal altruism into matrix games with social dilemmas.

    Directory of Open Access Journals (Sweden)

    Som B Ale

    Full Text Available Darwinian selection should preclude cooperation from evolving; yet cooperation is widespread among organisms. We show how kin selection and reciprocal altruism can promote cooperation in diverse 2×2 matrix games (prisoner's dilemma, snowdrift, and hawk-dove. We visualize kin selection as non-random interactions with like-strategies interacting more than by chance. Reciprocal altruism emerges from iterated games where players have some likelihood of knowing the identity of other players. This perspective allows us to combine kin selection and reciprocal altruism into a general matrix game model. Both mechanisms operating together should influence the evolution of cooperation. In the absence of kin selection, reciprocal altruism may be an evolutionarily stable strategy but is unable to invade a population of non-co-operators. Similarly, it may take a high degree of relatedness to permit cooperation to supplant non-cooperation. Together, a little bit of reciprocal altruism can, however, greatly reduce the threshold at which kin selection promotes cooperation, and vice-versa. To properly frame applications and tests of cooperation, empiricists should consider kin selection and reciprocal altruism together rather than as alternatives, and they should be applied to a broader class of social dilemmas than just the prisoner's dilemma.

  11. Physicochemical evolution and positive selection of the gymnosperm matK proteins

    Indian Academy of Sciences (India)

    Da Cheng Hao; Jun Mu; Shi Lin Chen; Pei Gen Xiao

    2010-04-01

    It is not clear whether matK evolves under Darwinian selection. In this study, the gymnosperm Taxaceae, Cephalotaxaceae and Pinaceae were used to illustrate the physicochemical evolution, molecular adaptation and evolutionary dynamics of gene divergence in matKs. matK sequences were amplified from 27 Taxaceae and 12 Cephalotaxaceae species. matK sequences of 19 Pinaceae species were retrieved from GenBank. The phylogenetic tree was generated using conceptual-translated amino acid sequences. Selective influences were investigated using standard $d_{\\text{N}}/d_{\\text{S}}$ ratio methods and more sensitive techniques investigating the amino acid property changes resulting from nonsynonymous replacements in a phylogenetic context. Analyses revealed the presence of positive selection in matKs (N-terminal region, RT domain and domain X) of Taxaceae and Pinaceae, and found positive destabilizing selection in N-terminal region and RT domain of Cephalotaxaceae matK. Moreover, various amino acid properties were found to be influenced by destabilizing positive selection. Amino acid sites relating to these properties and to different secondary structures were found and have the potential to affect group II intron maturase function. Despite the evolutionary constraint on the rapidly evolving matK, this protein evolves under positive selection in gymnosperm. Several regions of matK have experienced molecular adaptation which fine-tunes maturase performance.

  12. Optimization of Inter Cellular Movement of Parts in Cellular Manufacturing System Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Siva Prasad Darla

    2014-01-01

    Full Text Available In the modern manufacturing environment, Cellular Manufacturing Systems (CMS have gained greater importance in job shop or batch-type production to gain economic advantage similar to those of mass production. Successful implementation of CMS highly depends on the determination of part families; machine cells and minimizing inter cellular movement. This study considers machine component grouping problems namely inter-cellular movement and cell load variation by developing a mathematical model and optimizing the solution using Genetic Algorithm to arrive at a cell formation to minimize the inter-cellular movement and cell load variation. The results are presented with a numerical example.

  13. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  14. Characterizing heterogeneous cellular responses to perturbations.

    Science.gov (United States)

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-01

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  15. Complexity, dynamic cellular network, and tumorigenesis.

    Science.gov (United States)

    Waliszewski, P

    1997-01-01

    A holistic approach to tumorigenesis is proposed. The main element of the model is the existence of dynamic cellular network. This network comprises a molecular and an energetistic structure of a cell connected through the multidirectional flow of information. The interactions within dynamic cellular network are complex, stochastic, nonlinear, and also involve quantum effects. From this non-reductionist perspective, neither tumorigenesis can be limited to the genetic aspect, nor the initial event must be of molecular nature, nor mutations and epigenetic factors are mutually exclusive, nor a link between cause and effect can be established. Due to complexity, an unstable stationary state of dynamic cellular network rather than a group of unrelated genes determines the phenotype of normal and transformed cells. This implies relativity of tumor suppressor genes and oncogenes. A bifurcation point is defined as an unstable state of dynamic cellular network leading to the other phenotype-stationary state. In particular, the bifurcation point may be determined by a change of expression of a single gene. Then, the gene is called bifurcation point gene. The unstable stationary state facilitates the chaotic dynamics. This may result in a fractal dimension of both normal and tumor tissues. The co-existence of chaotic dynamics and complexity is the essence of cellular processes and shapes differentiation, morphogenesis, and tumorigenesis. In consequence, tumorigenesis is a complex, unpredictable process driven by the interplay between self-organisation and selection.

  16. Online isolation of defects in cellular nanocomputers

    Institute of Scientific and Technical Information of China (English)

    Teijiro Isokawa; Shin'ya Kowada; Ferdinand Peper; Naotake Kamiura; Nobuyuki Matsui

    2007-01-01

    Unreliability will be a major issue for computers built from components at nanometer scales.Thus,it's to be expected that such computers will need a high degree of defect-tolerance to overcome components' defects which have arisen during the process of manufacturing.This paper presents a novel approach to defect-tolerance that is especially geared towards nanocomputers based on asynchronous cellular automata.According to this approach,defective cells are detected and isolated by small configurations that move around randomly in cellular space.These configurations,called random flies,will attach to configurations that are static,which is typical for configurations that contain defective cells.On the other hand,dynamic configurations,like those that conduct computations,will not be isolated from the rest of the cellular space by the random flies,and will be able to continue their operations unaffectedly.

  17. Cellular Signaling in Health and Disease

    CERN Document Server

    Beckerman, Martin

    2009-01-01

    In today’s world, three great classes of non-infectious diseases – the metabolic syndromes (such as type 2 diabetes and atherosclerosis), the cancers, and the neurodegenerative disorders – have risen to the fore. These diseases, all associated with increasing age of an individual, have proven to be remarkably complex and difficult to treat. This is because, in large measure, when the cellular signaling pathways responsible for maintaining homeostasis and health of the body become dysregulated, they generate equally stable disease states. As a result the body may respond positively to a drug, but only for a while and then revert back to the disease state. Cellular Signaling in Health and Disease summarizes our current understanding of these regulatory networks in the healthy and diseased states, showing which molecular components might be prime targets for drug interventions. This is accomplished by presenting models that explain in mechanistic, molecular detail how a particular part of the cellular sign...

  18. Infrared image enhancement using Cellular Automata

    Science.gov (United States)

    Qi, Wei; Han, Jing; Zhang, Yi; Bai, Lian-fa

    2016-05-01

    Image enhancement is a crucial technique for infrared images. The clear image details are important for improving the quality of infrared images in computer vision. In this paper, we propose a new enhancement method based on two priors via Cellular Automata. First, we directly learn the gradient distribution prior from the images via Cellular Automata. Second, considering the importance of image details, we propose a new gradient distribution error to encode the structure information via Cellular Automata. Finally, an iterative method is applied to remap the original image based on two priors, further improving the quality of enhanced image. Our method is simple in implementation, easy to understand, extensible to accommodate other vision tasks, and produces more accurate results. Experiments show that the proposed method performs better than other methods using qualitative and quantitative measures.

  19. Asymptotic Behavior of Excitable Cellular Automata

    CERN Document Server

    Durrett, R; Durrett, Richard; Griffeath, David

    1993-01-01

    Abstract: We study two families of excitable cellular automata known as the Greenberg-Hastings Model (GHM) and the Cyclic Cellular Automaton (CCA). Each family consists of local deterministic oscillating lattice dynamics, with parallel discrete-time updating, parametrized by the range of interaction, the "shape" of its neighbor set, threshold value for contact updating, and number of possible states per site. GHM and CCA are mathematically tractable prototypes for the spatially distributed periodic wave activity of so-called excitable media observed in diverse disciplines of experimental science. Earlier work by Fisch, Gravner, and Griffeath studied the ergodic behavior of these excitable cellular automata on Z^2, and identified two distinct (but closely-related) elaborate phase portraits as the parameters vary. In particular, they noted the emergence of asymptotic phase diagrams (and Euclidean dynamics) in a well-defined threshold-range scaling limit. In this study we present several rigorous results and som...

  20. Spin Echo Studies on Cellular Water

    CERN Document Server

    Chang, D C; Nichols, B L; Rorschach, H E

    2014-01-01

    Previous studies indicated that the physical state of cellular water could be significantly different from pure liquid water. To experimentally investigate this possibility, we conducted a series of spin-echo NMR measurements on water protons in rat skeletal muscle. Our result indicated that the spin-lattice relaxation time and the spin-spin relaxation time of cellular water protons are both significantly shorter than that of pure water (by 4.3-fold and 34-fold, respectively). Furthermore, the spin diffusion coefficient of water proton is almost 1/2 of that of pure water. These data suggest that cellular water is in a more ordered state in comparison to pure water.

  1. Cellular biosensing: chemical and genetic approaches.

    Science.gov (United States)

    Haruyama, Tetsuya

    2006-05-24

    Biosensors have been developed to determine the concentration of specific compounds in situ. They are already widely employed as a practical technology in the clinical and healthcare fields. Recently, another concept of biosensing has been receiving attention: biosensing for the evaluation of molecular potency. The development of this novel concept has been supported by the development of related technologies, as such as molecular design, molecular biology (genetic engineering) and cellular/tissular engineering. This review is addresses this new concept of biosensing and its application to the evaluation of the potency of chemicals in biological systems, in the field of cellular/tissular engineering. Cellular biosensing may provide information on both pharmaceutical and chemical safety, and on drug efficacy in vitro as a screening tool.

  2. Crack Propagation in Bamboo's Hierarchical Cellular Structure

    Science.gov (United States)

    Habibi, Meisam K.; Lu, Yang

    2014-07-01

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well.

  3. Alleviate Cellular Congestion Through Opportunistic Trough Filling

    Directory of Open Access Journals (Sweden)

    Yichuan Wang

    2014-04-01

    Full Text Available The demand for cellular data service has been skyrocketing since the debut of data-intensive smart phones and touchpads. However, not all data are created equal. Many popular applications on mobile devices, such as email synchronization and social network updates, are delay tolerant. In addition, cellular load varies significantly in both large and small time scales. To alleviate network congestion and improve network performance, we present a set of opportunistic trough filling schemes that leverage the time-variation of network congestion and delay-tolerance of certain traffic in this paper. We consider average delay, deadline, and clearance time as the performance metrics. Simulation results show promising performance improvement over the standard schemes. The work shed lights on addressing the pressing issue of cellular overload.

  4. Cellularity of certain quantum endomorphism algebras

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Lehrer, G. I.; Zhang, R.

    Let $\\tA=\\Z[q^{\\pm \\frac{1}{2}}][([d]!)\\inv]$ and let $\\Delta_{\\tA}(d)$ be an integral form of the Weyl module of highest weight $d \\in \\N$ of the quantised enveloping algebra $\\U_{\\tA}$ of $\\fsl_2$. We exhibit for all positive integers $r$ an explicit cellular structure for $\\End...... of endomorphism algebras, and another which relates the multiplicities of indecomposable summands to the dimensions of simple modules for an endomorphism algebra. Our cellularity result then allows us to prove that knowledge of the dimensions of the simple modules of the specialised cellular algebra above...... is equivalent to knowledge of the weight multiplicities of the tilting modules for $\\U_{\\zeta}(\\fsl_2)$. In the final section we independently determine the weight multiplicities of indecomposable tilting modules for $U_\\zeta(\\fsl_2)$ and the decomposition numbers of the endomorphism algebras. We indicate how...

  5. Functional continuity: did field-induced oriented aperiodic constraints at Life's origin aid its sequence-based evolution?

    Science.gov (United States)

    Mitra-Delmotte, G.; Mitra, A. N.

    2014-04-01

    A non-biological analog undergoing Darwinian-like evolution could have enhanced the probability of many crucial independent bottom-up emergent steps, engendered within its premises, and smoothen the inanimate-animate transition. Now, the higher-level environment-mutable DNA sequences influence the lower-level pattern of oriented templates (enzymes, lipid membranes, RNA) in the organized cell matrix and hence their associated substrate-dynamics; note how templates are akin to local fields, kinetically constraining reactant orientations. Since the lowerlevel is likely the more primitive of the two (rather than Cairns-Smith's "readily available" rigid clay crystal sequence-based replicators as a memory-like basis for slowly mutating predecessor-patterns enroute to complex RNA-based Darwinian evolution), a gradual thermodynamic-to-kinetic transition in an isotropic medium, is proposed as driven by some order-parameter --via "available" field-responsive dipolar colloid networks, as apart from bio-organics, mineral colloids also can display liquid crystal (LC) phases (see [1]). An access to solid-like orientational order in a fluid matrix suggests how aperiodic patterns can be influenced and sustained (a la homeostasis) via external inhomogeneous fields (e.g. magnetic rocks); this renders these cooperative networks with potential as confining host-media, whose environment-sensitivity can not only influence their sterically-coupled guest-substrates but also their network properties (the latter can enable 'functions' like spontaneous transport under non-equilibrium suggesting a natural basis for their selection by the environment). In turn LC systems could have been preceded by even simpler anisotropic fluid hosts, viz., external field-induced mineral magnetic nanoparticle (MNP) aggregates. Indeed, the capacity of an MNP to couple its magnetic and rotational d.o.f.s suggests how an environment-sensitive field-influenced network of interacting dipolar colloids close to

  6. Performance comparison of virtual cellular manufacturing with functional and cellular layouts in DRC settings

    NARCIS (Netherlands)

    Suresh, N.; Slomp, J.

    2005-01-01

    This study investigates the performance of virtual cellular manufacturing (VCM) systems, comparing them with functional layouts (FL) and traditional, physical cellular layout (CL), in a dual-resource-constrained (DRC) system context. VCM systems employ logical cells, retaining the process layouts of

  7. Virtual networks in the cellular domain

    OpenAIRE

    Söderström, Gustav

    2003-01-01

     Data connectivity between cellular devices can be achieved in different ways. It is possible to enable full IPconnectivity in the cellular networks. However this connectivity is combined with a lot of issues such as security problems and the IPv4 address space being depleted. As a result of this many operators use Network Address Translation in their packet data networks, preventing users in different networks from being able to contact each other. Even if a transition to IPv6 takes place an...

  8. The cellular decision between apoptosis and autophagy

    Institute of Scientific and Technical Information of China (English)

    Yong-Jun Fan; Wei-Xing Zong

    2013-01-01

    Apoptosis and autophagy are important molecular processes that maintain organismal and cellular homeostasis,respectively.While apoptosis fulfills its role through dismantling damaged or unwanted cells,autophagy maintains cellular homeostasis through recycling selective intracellular organelles and molecules.Yet in some conditions,autophagy can lead to cell death.Apoptosis and autophagy can be stimulated by the same stresses.Emerging evidence indicates an interplay between the core proteins in both pathways,which underlies the molecular mechanism of the crosstalk between apoptosis and autophagy.This review summarizes recent literature on molecules that regulate both the apoptotic and autophagic processes.

  9. Cellular basis of Alzheimer′s disease

    Directory of Open Access Journals (Sweden)

    Bali Jitin

    2010-10-01

    Full Text Available Alzheimer′s disease (AD is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD.

  10. Cellular basis of Alzheimer’s disease

    Science.gov (United States)

    Bali, Jitin; Halima, Saoussen Ben; Felmy, Boas; Goodger, Zoe; Zurbriggen, Sebastian; Rajendran, Lawrence

    2010-01-01

    Alzheimer’s disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD. PMID:21369424

  11. Cellular-based sea level gauge

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.

    , and cellular modem are mounted on the top portion of this structure. The pressure sensor and the logger are continuously powered on, and their electrical current consumption is 30 and 15 mA respectively. The cellular modem consumes 15 mA and 250 mA during... standby and data transmission modes, respectively. The pressure sensor located below the low-tide level measures the hydrostatic pressure of the overlying water layer. An indigenously designed and developed microprocessor-based data logger interrogates...

  12. Refining cellular automata with routing constraints

    OpenAIRE

    Millo, Jean-Vivien; De Simone, Robert

    2012-01-01

    A cellular automaton (CA) is an infinite array of cells, each containing the same automaton. The dynamics of a CA is distributed over the cells where each computes its next state as a function of the previous states of its neighborhood. Thus, the transmission of such states between neighbors is considered as feasible directly, in no time. When considering the implementation of a cellular automaton on a many-cores System-on-Chip (SoC), this state transmission is no longer abstract and instanta...

  13. Cellular telephone use and cancer risk

    DEFF Research Database (Denmark)

    2006-01-01

    -up of a large nationwide cohort of 420,095 persons whose first cellular telephone subscription was between 1982 and 1995 and who were followed through 2002 for cancer incidence. Standardized incidence ratios (SIRs) were calculated by dividing the number of observed cancer cases in the cohort by the number....... The risk for smoking-related cancers was decreased among men (SIR = 0.88, 95% CI = 0.86 to 0.91) but increased among women (SIR = 1.11, 95% CI = 1.02 to 1.21). Additional data on income and smoking prevalence, primarily among men, indicated that cellular telephone users who started subscriptions in the mid...

  14. External insulation with cellular plastic materials

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2014-01-01

    External thermal insulation composite systems (ETICS) can be used as extra insulation of existing buildings. The system can be made of cellular plastic materials or mineral wool. There is a European Technical guideline, ETAG 004, that describe the tests that shall be conducted on such systems....... This paper gives a comparison of systems with mineral wool and cellular plastic, based on experience from practice and literature. It is important to look at the details in the system and at long time stability of the properties such as thermal insulation, moisture and fire. Investigation of fire properties...... insulation....

  15. Toxicology and cellular effect of manufactured nanomaterials

    Science.gov (United States)

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  16. The Molecular Basis of Human Brain Evolution.

    Science.gov (United States)

    Enard, Wolfgang

    2016-10-24

    Humans are a remarkable species, especially because of the remarkable properties of their brain. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size and has acquired abilities for vocal learning, language and intense cooperation. To better understand the molecular basis of these changes is of great biological and biomedical interest. However, all the about 16 million fixed genetic changes that occurred during human evolution are fully correlated with all molecular, cellular, anatomical and behavioral changes that occurred during this time. Hence, as humans and chimpanzees cannot be crossed or genetically manipulated, no direct evidence for linking particular genetic and molecular changes to human brain evolution can be obtained. Here, I sketch a framework how indirect evidence can be obtained and review findings related to the molecular basis of human cognition, vocal learning and brain size. In particular, I discuss how a comprehensive comparative approach, leveraging cellular systems and genomic technologies, could inform the evolution of our brain in the future.

  17. Green Cellular - Optimizing the Cellular Network for Minimal Emission from Mobile Stations

    CERN Document Server

    Ezri, Doron

    2009-01-01

    Wireless systems, which include cellular phones, have become an essential part of the modern life. However the mounting evidence that cellular radiation might adversely affect the health of its users, leads to a growing concern among authorities and the general public. Radiating antennas in the proximity of the user, such as antennas of mobile phones are of special interest for this matter. In this paper we suggest a new architecture for wireless networks, aiming at minimal emission from mobile stations, without any additional radiation sources. The new architecture, dubbed Green Cellular, abandons the classical transceiver base station design and suggests the augmentation of transceiver base stations with receive only devices. These devices, dubbed Green Antennas, are not aiming at coverage extension but rather at minimizing the emission from mobile stations. We discuss the implications of the Green Cellular architecture on 3G and 4G cellular technologies. We conclude by showing that employing the Green Cell...

  18. Elastic, not plastic species: Frozen plasticity theory and the origin of adaptive evolution in sexually reproducing organisms

    Directory of Open Access Journals (Sweden)

    Flegr Jaroslav

    2010-01-01

    Full Text Available Abstract Background Darwin's evolutionary theory could easily explain the evolution of adaptive traits (organs and behavioral patterns in asexual but not in sexual organisms. Two models, the selfish gene theory and frozen plasticity theory were suggested to explain evolution of adaptive traits in sexual organisms in past 30 years. Results The frozen plasticity theory suggests that sexual species can evolve new adaptations only when their members are genetically uniform, i.e. only after a portion of the population of the original species had split off, balanced on the edge of extinction for several generations, and then undergone rapid expansion. After a short period of time, estimated on the basis of paleontological data to correspond to 1-2% of the duration of the species, polymorphism accumulates in the gene pool due to frequency-dependent selection; and thus, in each generation, new mutations occur in the presence of different alleles and therefore change their selection coefficients from generation to generation. The species ceases to behave in an evolutionarily plastic manner and becomes evolutionarily elastic on a microevolutionary time-scale and evolutionarily frozen on a macroevolutionary time-scale. It then exists in this state until such changes accumulate in the environment that the species becomes extinct. Conclusion Frozen plasticity theory, which includes the Darwinian model of evolution as a special case - the evolution of species in a plastic state, not only offers plenty of new predictions to be tested, but also provides explanations for a much broader spectrum of known biological phenomena than classic evolutionary theories. Reviewers This article was reviewed by Rob Knight, Fyodor Kondrashov and Massimo Di Giulio (nominated by David H. Ardell.

  19. Cellular chain formation in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2009-01-01

    In this study we report on a novel structural phenotype in Escherichia coli biofilms: cellular chain formation. Biofilm chaining in E. coli K-12 was found to occur primarily by clonal expansion, but was not due to filamentous growth. Rather, chain formation was the result of intercellular...

  20. Cellular grafts in management of leucoderma

    Directory of Open Access Journals (Sweden)

    Mysore Venkataram

    2009-01-01

    Full Text Available Cellular grafting methods constitute important advances in the surgical management of leucoderma. Different methods such as noncultured epidermal suspensions, melanocyte cultures, and melanocyte-keratinocyte cultures have all been shown to be effective. This article reviews these methods.

  1. Cellular basis of memory for addiction.

    Science.gov (United States)

    Nestler, Eric J

    2013-12-01

    DESPITE THE IMPORTANCE OF NUMEROUS PSYCHOSOCIAL FACTORS, AT ITS CORE, DRUG ADDICTION INVOLVES A BIOLOGICAL PROCESS: the ability of repeated exposure to a drug of abuse to induce changes in a vulnerable brain that drive the compulsive seeking and taking of drugs, and loss of control over drug use, that define a state of addiction. Here, we review the types of molecular and cellular adaptations that occur in specific brain regions to mediate addiction-associated behavioral abnormalities. These include alterations in gene expression achieved in part via epigenetic mechanisms, plasticity in the neurophysiological functioning of neurons and synapses, and associated plasticity in neuronal and synaptic morphology mediated in part by altered neurotrophic factor signaling. Each of these types of drug-induced modifications can be viewed as a form of "cellular or molecular memory." Moreover, it is striking that most addiction-related forms of plasticity are very similar to the types of plasticity that have been associated with more classic forms of "behavioral memory," perhaps reflecting the finite repertoire of adaptive mechanisms available to neurons when faced with environmental challenges. Finally, addiction-related molecular and cellular adaptations involve most of the same brain regions that mediate more classic forms of memory, consistent with the view that abnormal memories are important drivers of addiction syndromes. The goal of these studies which aim to explicate the molecular and cellular basis of drug addiction is to eventually develop biologically based diagnostic tests, as well as more effective treatments for addiction disorders.

  2. Cellular Plasticity in Prostate Cancer Bone Metastasis

    Directory of Open Access Journals (Sweden)

    Dima Y. Jadaan

    2015-01-01

    Full Text Available Purpose. Experimental data suggest that tumour cells can reversibly transition between epithelial and mesenchymal states (EMT and MET, a phenomenon known as cellular plasticity. The aim of this review was to appraise the clinical evidence for the role of cellular plasticity in prostate cancer (PC bone metastasis. Methods. An electronic search was performed using PubMed for studies that have examined the differential expression of epithelial, mesenchymal, and stem cell markers in human PC bone metastasis tissues. Results. The review included nineteen studies. More than 60% of the studies used ≤20 bone metastasis samples, and there were several sources of heterogeneity between studies. Overall, most stem cell markers analysed, except for CXCR4, were positively expressed in bone metastasis tissues, while the expression of EMT and MET markers was heterogeneous between and within samples. Several EMT and stemness markers that are involved in osteomimicry, such as Notch, Met receptor, and Wnt/β pathway, were highly expressed in bone metastases. Conclusions. Clinical findings support the role of cellular plasticity in PC bone metastasis and suggest that epithelial and mesenchymal states cannot be taken in isolation when targeting PC bone metastasis. The paper also highlights several challenges in the clinical detection of cellular plasticity.

  3. Corneal cellular proliferation and wound healing

    OpenAIRE

    Gan, Lisha

    2000-01-01

    Background. Cellular proliferation plays an important role in both physiological and pathological processes. Epithelial hyperplasia in the epithelium, excessive scar formation in retrocorneal membrane formation and neovascularization are examples of excessive proliferation of cornea cells. Lack of proliferative ability causes corneal degeneration. The degree of proliferative and metabolic activity will directly influence corneal transparency and very evidently refractive res...

  4. A Quantum Relativistic Prisoner's Dilemma Cellular Automaton

    Science.gov (United States)

    Alonso-Sanz, Ramón; Carvalho, Márcio; Situ, Haozhen

    2016-10-01

    The effect of variable entangling on the dynamics of a spatial quantum relativistic formulation of the iterated prisoner's dilemma game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests.

  5. Recursive definition of global cellular-automata mappings

    DEFF Research Database (Denmark)

    Feldberg, Rasmus; Knudsen, Carsten; Rasmussen, Steen

    1994-01-01

    A method for a recursive definition of global cellular-automata mappings is presented. The method is based on a graphical representation of global cellular-automata mappings. For a given cellular-automaton rule the recursive algorithm defines the change of the global cellular-automaton mapping as...

  6. Quantitative proteomics reveals cellular targets of celastrol.

    Directory of Open Access Journals (Sweden)

    Jakob Hansen

    Full Text Available Celastrol, a natural substance isolated from plant extracts used in traditional Chinese medicine, has been extensively investigated as a possible drug for treatment of cancer, autoimmune diseases, and protein misfolding disorders. Although studies focusing on celastrol's effects in specific cellular pathways have revealed a considerable number of targets in a diverse array of in vitro models there is an essential need for investigations that can provide a global view of its effects. To assess cellular effects of celastrol and to identify target proteins as biomarkers for monitoring treatment regimes, we performed large-scale quantitative proteomics in cultured human lymphoblastoid cells, a cell type that can be readily prepared from human blood samples. Celastrol substantially modified the proteome composition and 158 of the close to 1800 proteins with robust quantitation showed at least a 1.5 fold change in protein levels. Up-regulated proteins play key roles in cytoprotection with a prominent group involved in quality control and processing of proteins traversing the endoplasmic reticulum. Increased levels of proteins essential for the cellular protection against oxidative stress including heme oxygenase 1, several peroxiredoxins and thioredoxins as well as proteins involved in the control of iron homeostasis were also observed. Specific analysis of the mitochondrial proteome strongly indicated that the mitochondrial association of certain antioxidant defense and apoptosis-regulating proteins increased in cells exposed to celastrol. Analysis of selected mRNA transcripts showed that celastrol activated several different stress response pathways and dose response studies furthermore showed that continuous exposure to sub-micromolar concentrations of celastrol is associated with reduced cellular viability and proliferation. The extensive catalog of regulated proteins presented here identifies numerous cellular effects of celastrol and constitutes

  7. Cellular circadian clocks in mood disorders.

    Science.gov (United States)

    McCarthy, Michael J; Welsh, David K

    2012-10-01

    Bipolar disorder (BD) and major depressive disorder (MDD) are heritable neuropsychiatric disorders associated with disrupted circadian rhythms. The hypothesis that circadian clock dysfunction plays a causal role in these disorders has endured for decades but has been difficult to test and remains controversial. In the meantime, the discovery of clock genes and cellular clocks has revolutionized our understanding of circadian timing. Cellular circadian clocks are located in the suprachiasmatic nucleus (SCN), the brain's primary circadian pacemaker, but also throughout the brain and peripheral tissues. In BD and MDD patients, defects have been found in SCN-dependent rhythms of body temperature and melatonin release. However, these are imperfect and indirect indicators of SCN function. Moreover, the SCN may not be particularly relevant to mood regulation, whereas the lateral habenula, ventral tegmentum, and hippocampus, which also contain cellular clocks, have established roles in this regard. Dysfunction in these non-SCN clocks could contribute directly to the pathophysiology of BD/MDD. We hypothesize that circadian clock dysfunction in non-SCN clocks is a trait marker of mood disorders, encoded by pathological genetic variants. Because network features of the SCN render it uniquely resistant to perturbation, previous studies of SCN outputs in mood disorders patients may have failed to detect genetic defects affecting non-SCN clocks, which include not only mood-regulating neurons in the brain but also peripheral cells accessible in human subjects. Therefore, reporters of rhythmic clock gene expression in cells from patients or mouse models could provide a direct assay of the molecular gears of the clock, in cellular clocks that are likely to be more representative than the SCN of mood-regulating neurons in patients. This approach, informed by the new insights and tools of modern chronobiology, will allow a more definitive test of the role of cellular circadian clocks

  8. Evolution of plant senescence

    Directory of Open Access Journals (Sweden)

    Young Mike

    2009-07-01

    characteristics of senescence-related genes allow a framework to be constructed of decisive events in the evolution of the senescence syndrome of modern land-plants. Combining phylogenetic, comparative sequence, gene expression and morphogenetic information leads to the conclusion that biochemical, cellular, integrative and adaptive systems were progressively added to the ancient primary core process of senescence as the evolving plant encountered new environmental and developmental contexts.

  9. Human more complex than mouse at cellular level.

    Directory of Open Access Journals (Sweden)

    Alexander E Vinogradov

    Full Text Available The family of transcription factors with the C2H2 zinc finger domain is expanding in the evolution of vertebrates, reaching its highest numbers in the mammals. The question arises: whether an increased amount of these transcription factors is related to embryogenesis, nervous system, pathology or more of them are expressed in individual cells? Among mammals, the primates have a more complex anatomical structure than the rodents (e.g., brain. In this work, I show that a greater number of C2H2-ZF genes are expressed in the human cells than in the mouse cells. The effect is especially pronounced for C2H2-ZF genes accompanied with the KRAB domain. The relative difference between the numbers of C2H2-ZF(-KRAB genes in the human and mouse cellular transcriptomes even exceeds their difference in the genomes (i.e. a greater subset of existing in the genome genes is expressed in the human cellular transcriptomes compared to the mouse transcriptomes. The evolutionary turnover of C2H2-ZF(-KRAB genes acts in the direction of the revealed phenomenon, i.e. gene duplication and loss enhances the difference in the relative number of C2H2-ZF(-KRAB genes between human and mouse cellular transcriptomes. A higher amount of these genes is expressed in the brain and embryonic cells (compared with other tissues, whereas a lower amount--in the cancer cells. It is specifically the C2H2-ZF transcription factors whose repertoire is poorer in the cancer and richer in the brain (other transcription factors taken together do not show this trend. These facts suggest that increase of anatomical complexity is accompanied by a more complex intracellular regulation involving these transcription factors. Malignization is associated with simplification of this regulation. These results agree with the known fact that human cells are more resistant to oncogenic transformation than mouse cells. The list of C2H2-ZF genes whose suppression might be involved in malignization is provided.

  10. The cellular and molecular basis of cnidarian neurogenesis.

    Science.gov (United States)

    Rentzsch, Fabian; Layden, Michael; Manuel, Michaël

    2017-01-01

    Neurogenesis initiates during early development and it continues through later developmental stages and in adult animals to enable expansion, remodeling, and homeostasis of the nervous system. The generation of nerve cells has been analyzed in detail in few bilaterian model organisms, leaving open many questions about the evolution of this process. As the sister group to bilaterians, cnidarians occupy an informative phylogenetic position to address the early evolution of cellular and molecular aspects of neurogenesis and to understand common principles of neural development. Here we review studies in several cnidarian model systems that have revealed significant similarities and interesting differences compared to neurogenesis in bilaterian species, and between different cnidarian taxa. Cnidarian neurogenesis is currently best understood in the sea anemone Nematostella vectensis, where it includes epithelial neural progenitor cells that express transcription factors of the soxB and atonal families. Notch signaling regulates the number of these neural progenitor cells, achaete-scute and dmrt genes are required for their further development and Wnt and BMP signaling appear to be involved in the patterning of the nervous system. In contrast to many vertebrates and Drosophila, cnidarians have a high capacity to generate neurons throughout their lifetime and during regeneration. Utilizing this feature of cnidarian biology will likely allow gaining new insights into the similarities and differences of embryonic and regenerative neurogenesis. The use of different cnidarian model systems and their expanding experimental toolkits will thus continue to provide a better understanding of evolutionary and developmental aspects of nervous system formation. WIREs Dev Biol 2017, 6:e257. doi: 10.1002/wdev.257 For further resources related to this article, please visit the WIREs website.

  11. Has Human Evolution Stopped?

    Directory of Open Access Journals (Sweden)

    Alan R. Templeton

    2010-07-01

    Full Text Available It has been argued that human evolution has stopped because humans now adapt to their environment via cultural evolution and not biological evolution. However, all organisms adapt to their environment, and humans are no exception. Culture defines much of the human environment, so cultural evolution has actually led to adaptive evolution in humans. Examples are given to illustrate the rapid pace of adaptive evolution in response to cultural innovations. These adaptive responses have important implications for infectious diseases, Mendelian genetic diseases, and systemic diseases in current human populations. Moreover, evolution proceeds by mechanisms other than natural selection. The recent growth in human population size has greatly increased the reservoir of mutational variants in the human gene pool, thereby enhancing the potential for human evolution. The increase in human population size coupled with our increased capacity to move across the globe has induced a rapid and ongoing evolutionary shift in how genetic variation is distributed within and among local human populations. In particular, genetic differences between human populations are rapidly diminishing and individual heterozygosity is increasing, with beneficial health effects. Finally, even when cultural evolution eliminates selection on a trait, the trait can still evolve due to natural selection on other traits. Our traits are not isolated, independent units, but rather are integrated into a functional whole, so selection on one trait can cause evolution to occur on another trait, sometimes with mildly maladaptive consequences.

  12. Has human evolution stopped?

    Science.gov (United States)

    Templeton, Alan R

    2010-07-01

    It has been argued that human evolution has stopped because humans now adapt to their environment via cultural evolution and not biological evolution. However, all organisms adapt to their environment, and humans are no exception. Culture defines much of the human environment, so cultural evolution has actually led to adaptive evolution in humans. Examples are given to illustrate the rapid pace of adaptive evolution in response to cultural innovations. These adaptive responses have important implications for infectious diseases, Mendelian genetic diseases, and systemic diseases in current human populations. Moreover, evolution proceeds by mechanisms other than natural selection. The recent growth in human population size has greatly increased the reservoir of mutational variants in the human gene pool, thereby enhancing the potential for human evolution. The increase in human population size coupled with our increased capacity to move across the globe has induced a rapid and ongoing evolutionary shift in how genetic variation is distributed within and among local human populations. In particular, genetic differences between human populations are rapidly diminishing and individual heterozygosity is increasing, with beneficial health effects. Finally, even when cultural evolution eliminates selection on a trait, the trait can still evolve due to natural selection on other traits. Our traits are not isolated, independent units, but rather are integrated into a functional whole, so selection on one trait can cause evolution to occur on another trait, sometimes with mildly maladaptive consequences.

  13. Contributions of stochastic events to biological evolution and cancer

    Directory of Open Access Journals (Sweden)

    Anderson KM

    2015-10-01

    Full Text Available Stochastic genetic and epigenetic events have been fundamental in contributing to the development of manifold life-forms, past and present. The development of malignant cell clones and the role of stochasticity as a driving force in cancer cell evolution complements, in a perverse way evidence for the role of chance in normal cellular development and evolution. Stochastic events at multiple levels of cellular control and implementation represent a primary driving force and an ultimate filter through which evolutionary innovation occurs. Stochasticity provides the opportunity for a random assortment of disparate genetic and epigenetic events, in some instances resulting in altered metabolic and developmental capabilities of sufficient stability and uniqueness to contribute to deterministic sequelae that promote the viability and procreation of cells under stress. Cellular evolution has so far resulted in a “survival of a (sic fittest”, often dependent mechanistically on and determined by stochastic events. The implications of this are mirrored in the evolution of malignant change, to some extent as a variant of “reverse engineering” of dedifferentiation. Efforts to reduce the incidence of malignant change will have to take in to account its random nature and further the understanding of this feature.

  14. Molecular kinesis in cellular function and plasticity.

    Science.gov (United States)

    Tiedge, H; Bloom, F E; Richter, D

    2001-06-19

    Intracellular transport and localization of cellular components are essential for the functional organization and plasticity of eukaryotic cells. Although the elucidation of protein transport mechanisms has made impressive progress in recent years, intracellular transport of RNA remains less well understood. The National Academy of Sciences Colloquium on Molecular Kinesis in Cellular Function and Plasticity therefore was devised as an interdisciplinary platform for participants to discuss intracellular molecular transport from a variety of different perspectives. Topics covered at the meeting included RNA metabolism and transport, mechanisms of protein synthesis and localization, the formation of complex interactive protein ensembles, and the relevance of such mechanisms for activity-dependent regulation and synaptic plasticity in neurons. It was the overall objective of the colloquium to generate momentum and cohesion for the emerging research field of molecular kinesis.

  15. Designing beauty the art of cellular automata

    CERN Document Server

    Martínez, Genaro

    2016-01-01

    This fascinating, colourful book offers in-depth insights and first-hand working experiences in the production of art works, using simple computational models with rich morphological behaviour, at the edge of mathematics, computer science, physics and biology. It organically combines ground breaking scientific discoveries in the theory of computation and complex systems with artistic representations of the research results. In this appealing book mathematicians, computer scientists, physicists, and engineers brought together marvelous and esoteric patterns generated by cellular automata, which are arrays of simple machines with complex behavior. Configurations produced by cellular automata uncover mechanics of dynamic patterns formation, their propagation and interaction in natural systems: heart pacemaker, bacterial membrane proteins, chemical rectors, water permeation in soil, compressed gas, cell division, population dynamics, reaction-diffusion media and self-organisation. The book inspires artists to tak...

  16. A cellular glass substrate solar concentrator

    Science.gov (United States)

    Bedard, R.; Bell, D.

    1980-01-01

    The design of a second generation point focusing solar concentration is discussed. The design is based on reflective gores fabricated of thin glass mirror bonded continuously to a contoured substrate of cellular glass. The concentrator aperture and structural stiffness was optimized for minimum concentrator cost given the performance requirement of delivering 56 kWth to a 22 cm diameter receiver aperture with a direct normal insolation of 845 watts sq m and an operating wind of 50 kmph. The reflective panel, support structure, drives, foundation and instrumentation and control subsystem designs, optimized for minimum cost, are summarized. The use of cellular glass as a reflective panel substrate material is shown to offer significant weight and cost advantages compared to existing technology materials.

  17. Cellular senescence and the aging brain.

    Science.gov (United States)

    Chinta, Shankar J; Woods, Georgia; Rane, Anand; Demaria, Marco; Campisi, Judith; Andersen, Julie K

    2015-08-01

    Cellular senescence is a potent anti-cancer mechanism that arrests the proliferation of mitotically competent cells to prevent malignant transformation. Senescent cells accumulate with age in a variety of human and mouse tissues where they express a complex 'senescence-associated secretory phenotype' (SASP). The SASP includes many pro-inflammatory cytokines, chemokines, growth factors and proteases that have the potential to cause or exacerbate age-related pathology, both degenerative and hyperplastic. While cellular senescence in peripheral tissues has recently been linked to a number of age-related pathologies, its involvement in brain aging is just beginning to be explored. Recent data generated by several laboratories suggest that both aging and age-related neurodegenerative diseases are accompanied by an increase in SASP-expressing senescent cells of non-neuronal origin in the brain. Moreover, this increase correlates with neurodegeneration. Senescent cells in the brain could therefore constitute novel therapeutic targets for treating age-related neuropathologies.

  18. Cellular and Molecular Basis of Cerebellar Development

    Directory of Open Access Journals (Sweden)

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  19. Astrobiological Complexity with Probabilistic Cellular Automata

    CERN Document Server

    Vukotić, B

    2012-01-01

    Search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous input parameters' space. We perform a simple clustering analysis of typical astrobiological histories and discuss the relevant boundary conditions of practical importance for planning and guiding actual empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and ne...

  20. Cellular automata in image processing and geometry

    CERN Document Server

    Adamatzky, Andrew; Sun, Xianfang

    2014-01-01

    The book presents findings, views and ideas on what exact problems of image processing, pattern recognition and generation can be efficiently solved by cellular automata architectures. This volume provides a convenient collection in this area, in which publications are otherwise widely scattered throughout the literature. The topics covered include image compression and resizing; skeletonization, erosion and dilation; convex hull computation, edge detection and segmentation; forgery detection and content based retrieval; and pattern generation. The book advances the theory of image processing, pattern recognition and generation as well as the design of efficient algorithms and hardware for parallel image processing and analysis. It is aimed at computer scientists, software programmers, electronic engineers, mathematicians and physicists, and at everyone who studies or develops cellular automaton algorithms and tools for image processing and analysis, or develops novel architectures and implementations of mass...

  1. Prodrug Approach for Increasing Cellular Glutathione Levels

    Directory of Open Access Journals (Sweden)

    Ivana Cacciatore

    2010-03-01

    Full Text Available Reduced glutathione (GSH is the most abundant non-protein thiol in mammalian cells and the preferred substrate for several enzymes in xenobiotic metabolism and antioxidant defense. It plays an important role in many cellular processes, such as cell differentiation, proliferation and apoptosis. GSH deficiency has been observed in aging and in a wide range of pathologies, including neurodegenerative disorders and cystic fibrosis (CF, as well as in several viral infections. Use of GSH as a therapeutic agent is limited because of its unfavorable biochemical and pharmacokinetic properties. Several reports have provided evidence for the use of GSH prodrugs able to replenish intracellular GSH levels. This review discusses different strategies for increasing GSH levels by supplying reversible bioconjugates able to cross the cellular membrane more easily than GSH and to provide a source of thiols for GSH synthesis.

  2. Mobile node localization in cellular networks

    CERN Document Server

    Malik, Yasir; Abdulrazak, Bessam; Tariq, Usman; 10.5121/ijwmn.2011.3607

    2012-01-01

    Location information is the major component in location based applications. This information is used in different safety and service oriented applications to provide users with services according to their Geolocation. There are many approaches to locate mobile nodes in indoor and outdoor environments. In this paper, we are interested in outdoor localization particularly in cellular networks of mobile nodes and presented a localization method based on cell and user location information. Our localization method is based on hello message delay (sending and receiving time) and coordinate information of Base Transceiver Station (BTSs). To validate our method across cellular network, we implemented and simulated our method in two scenarios i.e. maintaining database of base stations in centralize and distributed system. Simulation results show the effectiveness of our approach and its implementation applicability in telecommunication systems.

  3. Mobile Node Localization in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Yasir Malik

    2012-01-01

    Full Text Available Location information is the major component in location based applications. This information is used in different safety and service oriented applications to provide users with services according to their Geolocation. There are many approaches to locate mobile nodes in indoor and outdoor environments. In thispaper, we are interested in outdoor localization particularly in cellular networks of mobile nodes andpresented a localization method based on cell and user location information. Our localization method is based on hello message delay (sending and receiving time and coordinate information of Base Transceiver Station (BTSs. To validate our method across cellular network, we implemented and simulated our method in two scenarios i.e. maintaining database of base stations in centralize and distributed system. Simulation results show the effectiveness of our approach and its implementation applicability in telecommunication systems.

  4. A Modified Sensitive Driving Cellular Automaton Model

    Institute of Scientific and Technical Information of China (English)

    GE Hong-Xia; DAI Shi-Qiang; DONG Li-Yun; LEI Li

    2005-01-01

    A modified cellular automaton model for traffic flow on highway is proposed with a novel concept about the variable security gap. The concept is first introduced into the original Nagel-Schreckenberg model, which is called the non-sensitive driving cellular automaton model. And then it is incorporated with a sensitive driving NaSch model,in which the randomization brake is arranged before the deterministic deceleration. A parameter related to the variable security gap is determined through simulation. Comparison of the simulation results indicates that the variable security gap has different influence on the two models. The fundamental diagram obtained by simulation with the modified sensitive driving NaSch model shows that the maximumflow are in good agreement with the observed data, indicating that the presented model is more reasonable and realistic.

  5. WD40 proteins propel cellular networks.

    Science.gov (United States)

    Stirnimann, Christian U; Petsalaki, Evangelia; Russell, Robert B; Müller, Christoph W

    2010-10-01

    Recent findings indicate that WD40 domains play central roles in biological processes by acting as hubs in cellular networks; however, they have been studied less intensely than other common domains, such as the kinase, PDZ or SH3 domains. As suggested by various interactome studies, they are among the most promiscuous interactors. Structural studies suggest that this property stems from their ability, as scaffolds, to interact with diverse proteins, peptides or nucleic acids using multiple surfaces or modes of interaction. A general scaffolding role is supported by the fact that no WD40 domain has been found with intrinsic enzymatic activity despite often being part of large molecular machines. We discuss the WD40 domain distributions in protein networks and structures of WD40-containing assemblies to demonstrate their versatility in mediating critical cellular functions.

  6. Cellular Dynamics Revealed by Digital Holographic Microscopy☆

    KAUST Repository

    Marquet, P.

    2016-11-22

    Digital holographic microscopy (DHM) is a new optical method that provides, without the use of any contrast agent, real-time, three-dimensional images of transparent living cells, with an axial sensitivity of a few tens of nanometers. They result from the hologram numerical reconstruction process, which permits a sub wavelength calculation of the phase shift, produced on the transmitted wave front, by the optically probed cells, namely the quantitative phase signal (QPS). Specifically, in addition to measurements of cellular surface morphometry and intracellular refractive index (RI), various biophysical cellular parameters including dry mass, absolute volume, membrane fluctuations at the nanoscale and biomechanical properties, transmembrane water permeability as swell as current, can be derived from the QPS. This article presents how quantitative phase DHM (QP-DHM) can explored cell dynamics at the nanoscale with a special attention to both the study of neuronal dynamics and the optical resolution of local neuronal network.

  7. Cellular responses to environmental DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  8. Leiomyoma cellulare in postoperative material: clinical cases

    OpenAIRE

    2013-01-01

    Introduction: Leiomyoma in one of the most common benign endometrial cancers. Location of the myoma in the cervix and the area of the broad ligament of the uterus is rare. Leiomyoma cellulare (LC) occurs in about 5.0% of leiomyoma cases. Aim of the research: To determine the occurrence of LC among 294 cases of myomas as well as myomas and uterine endometriosis, found in postoperative examinations. Material and methods: Patients were qualified for the surgery based on a gynaecolog...

  9. Imaging cellular and molecular biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Shorte, S.L. [Institut Pasteur, 75 - Paris (France). Plateforme d' Imagerie Dynamique PFID-Imagopole; Frischknecht, F. (eds.) [Heidelberg Univ. Medical School (Germany). Dept. of Parasitology

    2007-07-01

    'Imaging cellular and molecular biological function' provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. Indeed the philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions. (orig.)

  10. Cognitive resource management for heterogeneous cellular networks

    CERN Document Server

    Liu, Yongkang

    2014-01-01

    This Springer Brief focuses on cognitive resource management in heterogeneous cellular networks (Het Net) with small cell deployment for the LTE-Advanced system. It introduces the Het Net features, presents practical approaches using cognitive radio technology in accommodating small cell data relay and optimizing resource allocation and examines the effectiveness of resource management among small cells given limited coordination bandwidth and wireless channel uncertainty. The authors introduce different network characteristics of small cell, investigate the mesh of small cell access points in

  11. Cellular immune findings in Lyme disease.

    Science.gov (United States)

    Sigal, L. H.; Moffat, C. M.; Steere, A. C.; Dwyer, J. M.

    1984-01-01

    From 1981 through 1983, we did the first testing of cellular immunity in Lyme disease. Active established Lyme disease was often associated with lymphopenia, less spontaneous suppressor cell activity than normal, and a heightened response of lymphocytes to phytohemagglutinin and Lyme spirochetal antigens. Thus, a major feature of the immune response during active disease seems to be a lessening of suppression, but it is not yet known whether this response plays a role in the pathophysiology of the disease. PMID:6240164

  12. Light weight cellular structures based on aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, O. [Indian Inst. of Tech., Kanpur (India); Embury, J.D.; Sinclair, C. [McMaster Univ., Hamilton, ON (Canada); Sang, H. [Queen`s Univ., Kingston, ON (Canada); Silvetti, P. [Cordoba Univ. Nacional (Argentina). Facultad de Ciencias Exactas, Fisicas y Naturales

    1997-02-01

    An interesting form of lightweight material which has emerged in the past 2 decades is metallic foam. This paper deals with the basic concepts of making metallic foams and a detailed study of foams produced from Al-SiC. In addition, some aspects of cellular solids based on honeycomb structures are outlined including the concept of producing both two-phase foams and foams with composite walls.

  13. Cellularity of certain quantum endomorphism algebras

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Lehrer, Gus; Zhang, Ruibin

    2015-01-01

    structure are described in terms of certain Temperley–Lieb-like diagrams. We also prove general results that relate endomorphism algebras of specialisations to specialisations of the endomorphism algebras. When ζ is a root of unity of order bigger than d we consider the Uζ-module structure...... we independently recover the weight multiplicities of indecomposable tilting modules for Uζ(sl2) from the decomposition numbers of the endomorphism algebras, which are known through cellular theory....

  14. Empirical multiscale networks of cellular regulation.

    Directory of Open Access Journals (Sweden)

    Benjamin de Bivort

    2007-10-01

    Full Text Available Grouping genes by similarity of expression across multiple cellular conditions enables the identification of cellular modules. The known functions of genes enable the characterization of the aggregate biological functions of these modules. In this paper, we use a high-throughput approach to identify the effective mutual regulatory interactions between modules composed of mouse genes from the Alliance for Cell Signaling (AfCS murine B-lymphocyte database which tracks the response of approximately 15,000 genes following chemokine perturbation. This analysis reveals principles of cellular organization that we discuss along four conceptual axes. (1 Regulatory implications: the derived collection of influences between any two modules quantifies intuitive as well as unexpected regulatory interactions. (2 Behavior across scales: trends across global networks of varying resolution (composed of various numbers of modules reveal principles of assembly of high-level behaviors from smaller components. (3 Temporal behavior: tracking the mutual module influences over different time intervals provides features of regulation dynamics such as duration, persistence, and periodicity. (4 Gene Ontology correspondence: the association of modules to known biological roles of individual genes describes the organization of functions within coexpressed modules of various sizes. We present key specific results in each of these four areas, as well as derive general principles of cellular organization. At the coarsest scale, the entire transcriptional network contains five divisions: two divisions devoted to ATP production/biosynthesis and DNA replication that activate all other divisions, an "extracellular interaction" division that represses all other divisions, and two divisions (proliferation/differentiation and membrane infrastructure that activate and repress other divisions in specific ways consistent with cell cycle control.

  15. pna - assisted cellular migration on patterned surfaces

    OpenAIRE

    2013-01-01

    ABSTRACT - The ability to control the cellular microenvironment, such as cell-substrate and cell-cell interactions at the micro- and nanoscale, is important for advances in several fields such as medicine and immunology, biochemistry, biomaterials, and tissue engineering. In order to undergo fundamental biological processes, most mammalian cells must adhere to the underlying extracellular matrix (ECM), eliciting cell adhesion and migration processes that are critical to embryogenesis, angioge...

  16. Introduction to Tissular and Cellular Engineering

    Institute of Scientific and Technical Information of China (English)

    JF; STOLTZ

    2005-01-01

    Most human tissues do not regenerate spontaneously, which is why cellular therapies and tissular engineering are promising alternatives. The principle is simple: cells are sampled in a patient and introduced in the damaged tissue or in a tridimentional porous support and cultivated in a bioreactor in which the physico-chemical and mechanical parameters are controlled. Once the tissues (or the cells) are mature they may be implanted. In parallel, the development of biotherapies with stem cells is a field of ...

  17. Cellular Kinetics of Perivascular MSC Precursors

    Directory of Open Access Journals (Sweden)

    William C. W. Chen

    2013-01-01

    Full Text Available Mesenchymal stem/stromal cells (MSCs and MSC-like multipotent stem/progenitor cells have been widely investigated for regenerative medicine and deemed promising in clinical applications. In order to further improve MSC-based stem cell therapeutics, it is important to understand the cellular kinetics and functional roles of MSCs in the dynamic regenerative processes. However, due to the heterogeneous nature of typical MSC cultures, their native identity and anatomical localization in the body have remained unclear, making it difficult to decipher the existence of distinct cell subsets within the MSC entity. Recent studies have shown that several blood-vessel-derived precursor cell populations, purified by flow cytometry from multiple human organs, give rise to bona fide MSCs, suggesting that the vasculature serves as a systemic reservoir of MSC-like stem/progenitor cells. Using individually purified MSC-like precursor cell subsets, we and other researchers have been able to investigate the differential phenotypes and regenerative capacities of these contributing cellular constituents in the MSC pool. In this review, we will discuss the identification and characterization of perivascular MSC precursors, including pericytes and adventitial cells, and focus on their cellular kinetics: cell adhesion, migration, engraftment, homing, and intercellular cross-talk during tissue repair and regeneration.

  18. Cellular arsenic transport pathways in mammals.

    Science.gov (United States)

    Roggenbeck, Barbara A; Banerjee, Mayukh; Leslie, Elaine M

    2016-11-01

    Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described.

  19. [Cellular and molecular mechanisms of memory].

    Science.gov (United States)

    Laroche, Serge

    2010-01-01

    A defining characteristic of the brain is its remarkable capacity to undergo activity-dependent functional and morphological remodelling via mechanisms of plasticity that form the basis of our capacity to encode and retain memories. Today, it is generally accepted that one key neurobiological mechanism underlying the formation of memories reside in activity-driven modifications of synaptic strength and structural remodelling of neural networks activated during learning. The discovery and detailed report of the phenomenon generally known as long-term potentiation, a long-lasting activity-dependent form of synaptic strengthening, opened a new chapter in the study of the neurobiological substrate of memory in the vertebrate brain, and this form of synaptic plasticity has now become the dominant model in the search for the cellular bases of learning and memory. To date, the key events in the cellular and molecular mechanisms underlying synaptic plasticity and memory formation are starting to be identified. They require the activation of specific receptors and of several molecular cascades to convert extracellular signals into persistent functional changes in neuronal connectivity. Accumulating evidence suggests that the rapid activation of neuronal gene programs is a key mechanism underlying the enduring modification of neural networks required for the laying down of memory. The recent developments in the search for the cellular and molecular mechanisms of memory storage are reviewed.

  20. Literature Review on Dynamic Cellular Manufacturing System

    Science.gov (United States)

    Nouri Houshyar, A.; Leman, Z.; Pakzad Moghadam, H.; Ariffin, M. K. A. M.; Ismail, N.; Iranmanesh, H.

    2014-06-01

    In previous decades, manufacturers faced a lot of challenges because of globalization and high competition in markets. These problems arise from shortening product life cycle, rapid variation in demand of products, and also rapid changes in manufcaturing technologies. Nowadays most manufacturing companies expend considerable attention for improving flexibility and responsiveness in order to overcome these kinds of problems and also meet customer's needs. By considering the trend toward the shorter product life cycle, the manufacturing environment is towards manufacturing a wide variety of parts in small batches [1]. One of the major techniques which are applied for improving manufacturing competitiveness is Cellular Manufacturing System (CMS). CMS is type of manufacturing system which tries to combine flexibility of job shop and also productivity of flow shop. In addition, Dynamic cellular manufacturing system which considers different time periods for the manufacturing system becomes an important topic and attracts a lot of attention to itself. Therefore, this paper made attempt to have a brief review on this issue and focused on all published paper on this subject. Although, this topic gains a lot of attention to itself during these years, none of previous researchers focused on reviewing the literature of that which can be helpful and useful for other researchers who intend to do the research on this topic. Therefore, this paper is the first study which has focused and reviewed the literature of dynamic cellular manufacturing system.

  1. Coordination of autophagy with other cellular activities

    Institute of Scientific and Technical Information of China (English)

    Yan WANG; Zheng-hong QIN

    2013-01-01

    The cell biological phenomenon of autophagy has attracted increasing attention in recent years,partly as a consequence of the discovery of key components of its cellular machinery.Autophagy plays a crucial role in a myriad of cellular functions.Autophagy has its own regulatory mechanisms,but this process is not isolated.Autophagy is coordinated with other cellular activities to maintain cell homeostasis.Autophagy is critical for a range of human physiological processes.The multifunctional roles of autophagy are explained by its ability to interact with several key components of various cell pathways.In this review,we focus on the coordination between autophagy and other physiological processes,including the ubiquitin-proteasome system (UPS),energy homeostasis,aging,programmed cell death,the immune responses,microbial invasion and inflammation.The insights gained from investigating autophagic networks should increase our understanding of their roles in human diseases and their potential as targets for therapeutic intervention.

  2. Dynamic Channel Allocation in Sectored Cellular Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is known that dynamic channel assignment(DCA) strategy outperforms the fixed channel assignment(FCA) strategy in omni-directional antenna cellular systems. One of the most important methods used in DCA was channel borrowing. But with the emergence of cell sectorization and spatial division multiple access(SDMA) which are used to increase the capacity of cellular systems, the channel assignment faces a series of new problems. In this paper, a dynamic channel allocation scheme based on sectored cellular systems is proposed. By introducing intra-cell channel borrowing (borrowing channels from neighboring sectors) and inter-cell channel borrowing (borrowing channels from neighboring cells) methods, previous DCA strategies, including compact pattern based channel borrowing(CPCB) and greedy based dynamic channel assignment(GDCA) schemes proposed by the author, are improved significantly. The computer simulation shows that either intra-cell borrowing scheme or inter-cell borrowing scheme is efficient enough to uniform and non-uniform traffic service distributions.

  3. HDACi: cellular effects, opportunities for restorative dentistry.

    LENUS (Irish Health Repository)

    Duncan, H F

    2011-12-01

    Acetylation of histone and non-histone proteins alters gene expression and induces a host of cellular effects. The acetylation process is homeostatically balanced by two groups of cellular enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HAT activity relaxes the structure of the human chromatin, rendering it transcriptionally active, thereby increasing gene expression. In contrast, HDAC activity leads to gene silencing. The enzymatic balance can be \\'tipped\\' by histone deacetylase inhibitors (HDACi), leading to an accumulation of acetylated proteins, which subsequently modify cellular processes including stem cell differentiation, cell cycle, apoptosis, gene expression, and angiogenesis. There is a variety of natural and synthetic HDACi available, and their pleiotropic effects have contributed to diverse clinical applications, not only in cancer but also in non-cancer areas, such as chronic inflammatory disease, bone engineering, and neurodegenerative disease. Indeed, it appears that HDACi-modulated effects may differ between \\'normal\\' and transformed cells, particularly with regard to reactive oxygen species accumulation, apoptosis, proliferation, and cell cycle arrest. The potential beneficial effects of HDACi for health, resulting from their ability to regulate global gene expression by epigenetic modification of DNA-associated proteins, also offer potential for application within restorative dentistry, where they may promote dental tissue regeneration following pulpal damage.

  4. Oxygen evolution reaction catalysis

    Science.gov (United States)

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  5. Museums teach evolution.

    Science.gov (United States)

    Diamond, Judy; Evans, E Margaret

    2007-06-01

    Natural history museums play a significant role in educating the general public about evolution. This article describes Explore Evolution, one of the largest evolution education projects funded by the National Science Foundation. A group of regional museums from the Midwestern United States worked with leading evolutionary scientists to create multiple permanent exhibit galleries and a curriculum book for youth. This program invites the public to experience current evolutionary research on organisms that range in size from HIV to whales. Learning research is being conducted on museum visitors to understand how they reason about evolution and to determine what influences the process of conceptual change.

  6. Internal lattice reconfiguration for diversity tuning in Cellular Genetic Algorithms.

    Science.gov (United States)

    Morales-Reyes, Alicia; Erdogan, Ahmet T

    2012-01-01

    Cellular Genetic Algorithms (cGAs) have attracted the attention of researchers due to their high performance, ease of implementation and massive parallelism. Maintaining an adequate balance between exploitative and explorative search is essential when studying evolutionary optimization techniques. In this respect, cGAs inherently possess a number of structural configuration parameters that are able to sustain diversity during evolution. In this study, the internal reconfiguration of the lattice is proposed to constantly or adaptively control the exploration-exploitation trade-off. Genetic operators are characterized in their simplest form since algorithmic performance is assessed on implemented reconfiguration mechanisms. Moreover, internal reconfiguration allows the adjacency of individuals to be maintained. Hence, any improvement in performance is only a consequence of topological changes. Two local selection methods presenting opposite selection pressures are used in order to evaluate the influence of the proposed techniques. Problems ranging from continuous to real world and combinatorial are tackled. Empirical results are supported statistically in terms of efficiency and efficacy.

  7. Mitochondria: the cellular hub of the dynamic coordinated network.

    Science.gov (United States)

    Yin, Fei; Cadenas, Enrique

    2015-04-20

    Mitochondria are the powerhouses of the eukaryotic cell. After billions of years of evolution, mitochondria have adaptively integrated into the symbiont. Such integration is not only evidenced by the consolidation of genetic information, that is, the transfer of most mitochondrial genes into the nucleus, but also manifested by the functional recombination by which mitochondria participate seamlessly in various cellular processes. In the past decade, the field of mitochondria biology has been focused on the dynamic and interactive features of these semiautonomous organelles. Aspects of a complex multilayer quality control system coordinating mitochondrial function and environmental changes are being uncovered and refined. This Forum summarizes the recent progress of these critical topics, with a focus on the dynamic quality control of mitochondrial reticulum, including their biogenesis, dynamic remodeling, and degradation, as well as the homeostasis of the mitochondrial proteome. These diverse but interconnected mechanisms are found to be critical in the maintenance of a functional, efficient, and responsive mitochondrial population and could therefore become therapeutic targets in numerous mitochondrion-implicated disorders.

  8. Membrane-Based Functions in the Origin of Cellular Life

    Science.gov (United States)

    Wilson, Michael A.

    2003-01-01

    How simple membrane peptides performed such essential proto-cellular functions as transport of ions and organic matter across membranes separating the interior of the cell from the environment, capture and utilization of energy, and transduction of environmental signals, is a key question in protobiological evolution. On the basis of detailed, molecular-level computer simulations we investigate how these peptides insert into membranes, self-assemble into higher-order structures and acquire functions. We have studied the insertion of an a-helical peptide containing leucine (L) and serine (S) of the form (LSLLLSL)S into a model membrane. The transmembrane state is metastable, and approximately 15 kcal/mol is required to insert the peptide into the membrane. Investigations of dimers formed by (LSLLLSL)S and glycophorin A demonstrate how the favorable free energy of helix association can offset the unfavorable free energy of insertion, leading to self- assembly of peptide helices in the membrane. An example of a self-assembled structure is the tetrameric transmembrane pore of the influenza virus M2 protein, which is an efficient and selective voltage-gated proton channel. Our simulations explain the gating mechanism and provide guidelines how to reengineering the channel to act as a simple proton pump. In general, emergence of integral membrane proteins appears to be quite feasible and may be easier to envision than the emergence of water-soluble proteins.

  9. Pancreatic islets under attack: cellular and molecular effectors.

    Science.gov (United States)

    Pearl-Yafe, Michal; Kaminitz, Ayelet; Yolcu, Esma S; Yaniv, Isaac; Stein, Jerry; Askenasy, Nadir

    2007-01-01

    Abundant information is available on the involvement of various cellular and molecular mechanisms in beta cell apoptosis. The experimental evidence is controversial and difficult to reconcile, and the mechanisms of evasion of the autoreactive clones from immune surveillance are poorly understood. Multiple apoptotic pathways play a role in destructive insulitis, including perforin/granzyme, Fas/Fas-ligand (FasL), and other members of the necrosis factor superfamily. These pathways present redundant behaviors in both the initial and late stages of beta cell injury, and at the same time, each molecular mechanism is dispensable in the evolution of autoimmune diabetes. There may be a preferential use of perforin/granzyme in CD8(+) T cell-mediated lysis, which participates in onset of autoimmunity, and a predominance of FasL in CD4(+) T cell-mediated insulitis. Several cytokines released in the inflammatory infiltrate induce Fas expression in beta cells, priming them to FasL-mediated apoptosis. In this review, we focus on the possible participation of multiple cell subsets and molecular mechanisms in the pathogenesis of diabetes to the point where inflammation incites an irreversible vicious cycle that perpetuates beta cell death.

  10. Characterization of Morphological and Cellular Events Underlying Oral Regeneration in the Sea Anemone, Nematostella vectensis

    Directory of Open Access Journals (Sweden)

    Aldine R. Amiel

    2015-12-01

    Full Text Available Cnidarians, the extant sister group to bilateria, are well known for their impressive regenerative capacity. The sea anemone Nematostella vectensis is a well-established system for the study of development and evolution that is receiving increased attention for its regenerative capacity. Nematostella is able to regrow missing body parts within five to six days after its bisection, yet studies describing the morphological, cellular, and molecular events underlying this process are sparse and very heterogeneous in their experimental approaches. In this study, we lay down the basic framework to study oral regeneration in Nematostella vectensis. Using various imaging and staining techniques we characterize in detail the morphological, cellular, and global molecular events that define specific landmarks of this process. Furthermore, we describe in vivo assays to evaluate wound healing success and the initiation of pharynx reformation. Using our described landmarks for regeneration and in vivo assays, we analyze the effects of perturbing either transcription or cellular proliferation on the regenerative process. Interestingly, neither one of these experimental perturbations has major effects on wound closure, although they slightly delay or partially block it. We further show that while the inhibition of transcription blocks regeneration in a very early step, inhibiting cellular proliferation only affects later events such as pharynx reformation and tentacle elongation.

  11. Theoretical model for cellular shapes driven by protrusive and adhesive forces.

    Directory of Open Access Journals (Sweden)

    Doron Kabaso

    2011-05-01

    Full Text Available The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix.

  12. [Division of regulatory cellular systems (Lvov)].

    Science.gov (United States)

    Kusen', S I

    1995-01-01

    Two departments of the A. V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine were founded in 1969 in Lviv. These were: the Department of Biochemistry of Cell Differentiation headed by Professor S. I. Kusen and Department of Regulation of Cellular Synthesis of Low Molecular Weight Compounds headed by Professor G. M. Shavlovsky. The Lviv Division of the A. V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine with Professor S. I. Kusen as its chief, was founded in 1974 on the basis of these departments and the Laboratory of Modelling of Regulatory Cellular Systems headed by Professor M. P. Derkach. The above mentioned laboratory which was not the structural unit obtained the status of Structural Laboratory of Cellular Biophysics in 1982 and was headed by O. A. Goida, Candidate of biological sciences. From 1983 the Laboratory of Correcting Therapy of Malignant Tumors and Hemoblastoses at the Institute of Molecular Biology and Genetics, Academy of Sciences of Ukraine (Chief--S. V. Ivasivka, Candidate of medical sciences) was included in the structure of the Division. That Laboratory was soon transformed into the Department of Carbohydrate Metabolism Regulation headed by Professor I. D. Holovatsky. In 1988 this Department was renamed into the Department of Glycoprotein Biochemistry and headed by M. D. Lutsik, Doctor of biological sciences. In 1982 one more Laboratory of Biochemical Genetics was founded at the Department of Regulation of Cellular Synthesis of Low Molecular Weight Compounds, in 1988 it was transformed into the Department of Biochemical Genetics (Chief--Professor A. A. Sibirny). In 1989 the Laboratory of Anion Transport was taken from A. V. Palladin Institute of Biochemistry, Academy of Sciences of Ukraine to Lviv Division of this Institute. This laboratory was headed by Professor M. M. Veliky. One more reorganization in the Division structure took place in 1994. The Department of

  13. Cellular membrane trafficking of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, I-Ju [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  14. A paradigm shift in neurobiology: peripheral nerves deliver cellular material and control development.

    Science.gov (United States)

    Ivashkin, Evgeny; Voronezhskaya, Elena E; Adameyko, Igor

    2014-10-01

    Living beings are extremely complex. Multiple structures, especially evolutionarily young ones, develop or take their final shape during late stages of embryonic development, when the body of an embryo is large and comprised of a huge number of cells. Yet, these late structures frequently need cellular sources from other locations and, sometimes, developmental stages. During recent years it became obvious that nerves provide a perfect solution for transporting and hosting multipotent cells that are later recruited to become new cellular sources in the innervated organs. Moreover, the role of nerves and nerve-dwelling cells in morphogenesis and regeneration seems to be much broader than was previously appreciated in invertebrate and vertebrate animals. In a broader view, nerves can provide material for morphological plasticity and evolutional diversity.

  15. A cellular automata traffic flow model considering the heterogeneity of acceleration and delay probability

    Science.gov (United States)

    Li, Qi-Lang; Wong, S. C.; Min, Jie; Tian, Shuo; Wang, Bing-Hong

    2016-08-01

    This study examines the cellular automata traffic flow model, which considers the heterogeneity of vehicle acceleration and the delay probability of vehicles. Computer simulations are used to identify three typical phases in the model: free-flow, synchronized flow, and wide moving traffic jam. In the synchronized flow region of the fundamental diagram, the low and high velocity vehicles compete with each other and play an important role in the evolution of the system. The analysis shows that there are two types of bistable phases. However, in the original Nagel and Schreckenberg cellular automata traffic model, there are only two kinds of traffic conditions, namely, free-flow and traffic jams. The synchronized flow phase and bistable phase have not been found.

  16. Least dissipation cost as a design principle for robustness and function of cellular networks

    Science.gov (United States)

    Han, Bo; Wang, Jin

    2008-03-01

    From a study of the budding yeast cell cycle, we found that the cellular network evolves to have the least cost for realizing its biological function. We quantify the cost in terms of the dissipation or heat loss characterized through the steady-state properties: the underlying landscape and the associated flux. We found that the dissipation cost is intimately related to the stability and robustness of the network. With the least dissipation cost, the network becomes most stable and robust under mutations and perturbations on the sharpness of the response from input to output as well as self-degradations. The least dissipation cost may provide a general design principle for the cellular network to survive from the evolution and realize the biological function.

  17. Conserved and novel functions of programmed cellular senescence during vertebrate development

    Science.gov (United States)

    Davaapil, Hongorzul; Brockes, Jeremy P.

    2017-01-01

    Cellular senescence, a form of stable cell cycle arrest that is traditionally associated with tumour suppression, has been recently found to occur during mammalian development. Here, we show that cell senescence is an intrinsic part of the developmental programme in amphibians. Programmed senescence occurs in specific structures during defined time windows during amphibian development. It contributes to the physiological degeneration of the amphibian pronephros and to the development of the cement gland and oral cavity. In both contexts, senescence depends on TGFβ but is independent of ERK/MAPK activation. Furthermore, elimination of senescent cells through temporary TGFβ inhibition leads to developmental defects. Our findings uncover conserved and new roles of senescence in vertebrate organogenesis and support the view that cellular senescence may have arisen in evolution as a developmental mechanism. PMID:27888193

  18. Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes.

    Science.gov (United States)

    Nakashima, K; Nobuhisa, I; Deshimaru, M; Nakai, M; Ogawa, T; Shimohigashi, Y; Fukumaki, Y; Hattori, M; Sakaki, Y; Hattori, S

    1995-06-06

    The nucleotide sequences of four genes encoding Trimeresurus gramineus (green habu snake, crotalinae) venom gland phospholipase A2 (PLA2; phosphatidylcholine 2-acylhydrolase, EC 3.1.1.4) isozymes were compared internally and externally with those of six genes encoding Trimeresurus flavoviridis (habu snake, crotalinae) venom gland PLA2 isozymes. The numbers of nucleotide substitutions per site (KN) for the noncoding regions including introns were one-third to one-eighth of the numbers of nucleotide substitutions per synonymous site (KS) for the protein-coding regions of exons, indicating that the noncoding regions are much more conserved than the protein-coding regions. The KN values for the introns were found to be nearly equivalent to those of introns of T. gramineus and T. flavoviridis TATA box-binding protein genes, which are assumed to be a general (nonvenomous) gene. Thus, it is evident that the introns of venom gland PLA2 isozyme genes have evolved at a similar rate to those of nonvenomous genes. The numbers of nucleotide substitutions per nonsynonymous site (KA) were close to or larger than the KS values for the protein-coding regions in venom gland PLA2 isozyme genes. All of the data combined reveal that Darwinian-type accelerated evolution has universally occurred only in the protein-coding regions of crotalinae snake venom PLA2 isozyme genes.

  19. Systems biology of cancer: entropy, disorder, and selection-driven evolution to independence, invasion and "swarm intelligence".

    Science.gov (United States)

    Tarabichi, M; Antoniou, A; Saiselet, M; Pita, J M; Andry, G; Dumont, J E; Detours, V; Maenhaut, C

    2013-12-01

    Our knowledge of the biology of solid cancer has greatly progressed during the last few years, and many excellent reviews dealing with the various aspects of this biology have appeared. In the present review, we attempt to bring together these subjects in a general systems biology narrative. It starts from the roles of what we term entropy of signaling and noise in the initial oncogenic events, to the first major transition of tumorigenesis: the independence of the tumor cell and the switch in its physiology, i.e., from subservience to the organism to its own independent Darwinian evolution. The development after independence involves a constant dynamic reprogramming of the cells and the emergence of a sort of collective intelligence leading to invasion and metastasis and seldom to the ultimate acquisition of immortality through inter-individual infection. At each step, the probability of success is minimal to infinitesimal, but the number of cells possibly involved and the time scale account for the relatively high occurrence of tumorigenesis and metastasis in multicellular organisms.

  20. A deep phylogeny of viral and cellular right-hand polymerases.

    Science.gov (United States)

    Černý, Jiří; Černá Bolfíková, Barbora; de A Zanotto, Paolo M; Grubhoffer, Libor; Růžek, Daniel

    2015-12-01

    Right-hand polymerases are important players in genome replication and repair in cellular organisms as well as in viruses. All right-hand polymerases are grouped into seven related protein families: viral RNA-dependent RNA polymerases, reverse transcriptases, single-subunit RNA polymerases, and DNA polymerase families A, B, D, and Y. Although the evolutionary relationships of right-hand polymerases within each family have been proposed, evolutionary relationships between families remain elusive because their sequence similarity is too low to allow classical phylogenetic analyses. The structure of viral RNA-dependent RNA polymerases recently was shown to be useful in inferring their evolution. Here, we address evolutionary relationships between right-hand polymerase families by combining sequence and structure information. We used a set of 22 viral and cellular polymerases representing all right-hand polymerase families with known protein structure. In contrast to previous studies, which focused only on the evolution of particular families, the current approach allowed us to present the first robust phylogenetic analysis unifying evolution of all right-hand polymerase families. All polymerase families branched into discrete lineages, following a fairly robust adjacency pattern. Only single-subunit RNA polymerases formed an inner group within DNA polymerase family A. RNA-dependent RNA polymerases of RNA viruses and reverse transcriptases of retroviruses formed two sister groups and were distinguishable from all other polymerases. DNA polymerases of DNA bacteriophages did not form a monophyletic group and are phylogenetically mixed with cellular DNA polymerase families A and B. Based on the highest genetic variability and structural simplicity, we assume that RNA-dependent RNA polymerases are the most ancient group of right-hand polymerases, in agreement with the RNA World hypothesis, because RNA-dependent RNA polymerases are enzymes that could serve in replication of

  1. REDUCING TRANSMITTED POWER OF MOVING RELAY NODE IN LONG-TERM EVOLUTION-ADVANCED CELLULAR NETWORKS

    Directory of Open Access Journals (Sweden)

    Jaafar A. Aldhaibani

    2014-01-01

    Full Text Available Wireless multi-hop relay networks have become very significant technologies in mobile communications. These networks ensure data rate transfer and coverage extension with a low cost. In this study two types of relay are studied; Fixed Relay Node (FRN and Moving Relay Node (MRN. Where system analyses for uplink and downlink transmission are derived in this study. Moreover the optimal relay location of FRN was proposed to provide a maximum achievable rate at user in cell edge region. Finally, a new algorithm was suggested to balance and control on the transmitted power of MRN over cell size to provide the required SNR and throughput at the users inside vehicle with reducing the consumption transmitted relay power. Numerical results indicate an enhancement in received signal strength for users at the cell edge from (-90 to -65 dBm and 40% increment from all cell size after deploying FRN at proposed locations. As well as, the results revealed that there is saving nearly 75% from transmitted power in MRN after using proposed algorithm. ATDI simulator was used to verify the numerical results, which deals with real digital cartographic and standard formats for terrain.

  2. The Intracellular Destiny of the Protein Corona : A Study on its Cellular Internalization and Evolution

    NARCIS (Netherlands)

    Bertoli, Filippo; Garry, David; Monopoli, Marco P.; Salvati, Anna; Dawson, Kenneth A.

    2016-01-01

    It has been well established that the early stages of nanoparticle cell interactions are governed, at least in part, by the layer of proteins and other biomolecules adsorbed and slowly exchanged with the surrounding biological media (biomolecular corona). Subsequent to membrane interactions, nanopar

  3. X-Ray imaging applied to the characterization of polymer foam's cellular structure and its evolution

    OpenAIRE

    Pardo Alonso, Samuel

    2014-01-01

    Las espumas poliméricas son materiales celulares que poseen una fase sólida continua y otra gaseosa bien discontinua (celda cerrada) o continua (celda abierta). Habitualmente estas estructuras se describen mediante parámetros macroscópicos como la densidad relativa y otros microscópicos como el tamaño de celda o la densidad de celdas. Además, estos materiales poseen características peculiares como anisotropía, orientación de los poros y tortuosidad que les proporcionan propiedades físicas sin...

  4. Microstructural descriptors and cellular automata simulation of the effects of non-random nuclei location on recrystallization in two dimensions

    Directory of Open Access Journals (Sweden)

    Paulo Rangel Rios

    2006-06-01

    Full Text Available The effect of non-random nuclei location and the efficiency of microstructural descriptors in assessing such a situation are studied. Cellular automata simulation of recrystallization in two dimensions is carried out to simulate microstrutural evolution for nuclei distribution ranging from a periodic arrangement to clusters of nuclei. The simulation results are compared in detail with microstrutural descriptors normally used to follow transformation evolution. It is shown that the contiguity is particularly relevant to detect microstructural deviations from randomness. This work focuses on recrystallization but its results are applicable to any nucleation and growth transformation.

  5. Mapping of cellular iron using hyperspectral fluorescence imaging in a cellular model of Parkinson's disease

    Science.gov (United States)

    Oh, Eung Seok; Heo, Chaejeong; Kim, Ji Seon; Lee, Young Hee; Kim, Jong Min

    2013-05-01

    Parkinson's disease (PD) is characterized by progressive dopaminergic cell loss in the substantianigra (SN) and elevated iron levels demonstrated by autopsy and with 7-Tesla magnetic resonance imaging. Direct visualization of iron with live imaging techniques has not yet been successful. The aim of this study is to visualize and quantify the distribution of cellular iron using an intrinsic iron hyperspectral fluorescence signal. The 1-methyl-4-phenylpyridinium (MPP+)-induced cellular model of PD was established in SHSY5Y cells. The cells were exposed to iron by treatment with ferric ammonium citrate (FAC, 100 μM) for up to 6 hours. The hyperspectral fluorescence imaging signal of iron was examined usinga high- resolution dark-field optical microscope system with signal absorption for the visible/ near infrared (VNIR) spectral range. The 6-hour group showed heavy cellular iron deposition compared with the small amount of iron accumulation in the 1-hour group. The cellular iron was dispersed in a small, particulate form, whereas extracellular iron was detected in an aggregated form. In addition, iron particles were found to be concentrated on the cell membrane/edge of shrunken cells. The cellular iron accumulation readily occurred in MPP+-induced cells, which is consistent with previous studies demonstrating elevated iron levels in the SN in PD. This direct iron imaging methodology could be applied to analyze the physiological role of iron in PD, and its application might be expanded to various neurological disorders involving other metals, such as copper, manganese or zinc.

  6. Modeling solidification structure evolution and microsegregation under pressure condition

    Institute of Scientific and Technical Information of China (English)

    Qiang Li; Qiaoyi Guo; Rongde Li

    2006-01-01

    Solidification microstructure and microsegregation were simulated under a constant pressure condition using the cellular automaton method. First, a single dendrite evolution was simulated and compared under pressure condition and under normal condition,respectively. The solidification microstructure and microsegregation were then simulated. Through simulation, it may be concluded that if the growth direction of the dendrite is parallel to the pressure direction, dendrite growth will be hindered. On the other hand,pressure has no influence on the dendrite evolution. However, when two dendrites grow in close contact, solute enrichment occurs in the dendrites, which hinders the growth of the dendrites. In addition, the solute is preferentially enriched along the pressure direction.

  7. Framing Evolution Discussion Intellectually

    Science.gov (United States)

    Oliveira, Alandeom W.; Cook, Kristin; Buck, Gayle A.

    2011-01-01

    This study examines how a first-year biology teacher facilitates a series of whole-class discussions about evolution during the implementation of a problem-based unit. A communicative theoretical perspective is adopted wherein evolution discussions are viewed as social events that the teacher can frame intellectually (i.e., present or organize as…

  8. Evolution for Young Victorians

    Science.gov (United States)

    Lightman, Bernard

    2012-01-01

    Evolution was a difficult topic to tackle when writing books for the young in the wake of the controversies over Darwin's "Origin of Species." Authors who wrote about evolution for the young experimented with different ways of making the complex concepts of evolutionary theory accessible and less controversial. Many authors depicted presented…

  9. Software evolution with XVCL

    DEFF Research Database (Denmark)

    Zhang, Weishan; Jarzabek, Stan; Zhang, Hongyu

    2004-01-01

    This chapter introduces software evolution with XVCL (XML-based Variant Configuration Language), which is an XML-based metaprogramming technique. As the software evolves, a large number of variants may arise, especially whtn such kinds of evolutions are related to multiple platforms as shown in o...

  10. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  11. Kognition, evolution og Bibel

    DEFF Research Database (Denmark)

    Jensen, Hans Jørgen Lundager

    2012-01-01

    En opfordring til, at Bibelvidneskaberne oprienterer sig i retning af aktuelle teorier om bio-kulturel evolution (Merlin Donald, aksetids-teori hos fx Robert Bellah)......En opfordring til, at Bibelvidneskaberne oprienterer sig i retning af aktuelle teorier om bio-kulturel evolution (Merlin Donald, aksetids-teori hos fx Robert Bellah)...

  12. Self and Evolution.

    Science.gov (United States)

    Csikszentmihalyi, Mihaly

    1998-01-01

    Suggests the time has come for humans to direct their own individual evolution and the evolution of the entire species. Argues that ways must be found to encourage individuals, families, and cultures to discover and develop their differentiating characteristics and help these groups integrate with other cultures, customs, and belief systems.…

  13. Evolution of Constructivism

    Science.gov (United States)

    Liu, Chu Chih; Chen, I Ju

    2010-01-01

    The contrast between social constructivism and cognitive constructivism are depicted in different ways in many studies. The purpose of this paper is to summarize the evolution of constructivism and put a focus on social constructivism from the perception of Vygotsky. This study provides a general idea of the evolution of constructivism for people…

  14. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  15. Inhomogeneous Poisson point process nucleation: comparison of analytical solution with cellular automata simulation

    Directory of Open Access Journals (Sweden)

    Paulo Rangel Rios

    2009-06-01

    Full Text Available Microstructural evolution in three dimensions of nucleation and growth transformations is simulated by means of cellular automata (CA. In the simulation, nuclei are located in space according to a heterogeneous Poisson point processes. The simulation is compared with exact analytical solution recently obtained by Rios and Villa supposing that the intensity is a harmonic function of the spatial coordinate. The simulated data gives very good agreement with the analytical solution provided that the correct shape factor for the growing CA grains is used. This good agreement is auspicious because the analytical expressions were derived and thus are exact only if the shape of the growing regions is spherical.

  16. Scalable asynchronous execution of cellular automata

    Science.gov (United States)

    Folino, Gianluigi; Giordano, Andrea; Mastroianni, Carlo

    2016-10-01

    The performance and scalability of cellular automata, when executed on parallel/distributed machines, are limited by the necessity of synchronizing all the nodes at each time step, i.e., a node can execute only after the execution of the previous step at all the other nodes. However, these synchronization requirements can be relaxed: a node can execute one step after synchronizing only with the adjacent nodes. In this fashion, different nodes can execute different time steps. This can be a notable advantageous in many novel and increasingly popular applications of cellular automata, such as smart city applications, simulation of natural phenomena, etc., in which the execution times can be different and variable, due to the heterogeneity of machines and/or data and/or executed functions. Indeed, a longer execution time at a node does not slow down the execution at all the other nodes but only at the neighboring nodes. This is particularly advantageous when the nodes that act as bottlenecks vary during the application execution. The goal of the paper is to analyze the benefits that can be achieved with the described asynchronous implementation of cellular automata, when compared to the classical all-to-all synchronization pattern. The performance and scalability have been evaluated through a Petri net model, as this model is very useful to represent the synchronization barrier among nodes. We examined the usual case in which the territory is partitioned into a number of regions, and the computation associated with a region is assigned to a computing node. We considered both the cases of mono-dimensional and two-dimensional partitioning. The results show that the advantage obtained through the asynchronous execution, when compared to the all-to-all synchronous approach is notable, and it can be as large as 90% in terms of speedup.

  17. Cellular regulation of the dopamine transporter

    DEFF Research Database (Denmark)

    Eriksen, Jacob

    2010-01-01

    The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft and is a target for widely abused psychostimulants such as cocaine and amphetamine. Nonetheless, little is known about the cellular distribution and trafficking of natively expressed DAT. DAT and its trafficking...... in heterologous cells and in cultured DA neurons. DAT has been shown to be regulated by the dopamine D2 receptor (D2R), the primary target foranti-psychotics, through a direct interaction. D2R is among other places expressed as an autoreceptor in DA neurons. Transient over-expression of DAT with D2R in HEK293...

  18. Cellular automata models for synchronized traffic flow

    CERN Document Server

    Jiang Rui

    2003-01-01

    This paper presents a new cellular automata model for describing synchronized traffic flow. The fundamental diagrams, the spacetime plots and the 1 min average data have been analysed in detail. It is shown that the model can describe the outflow from the jams, the light synchronized flow as well as heavy synchronized flow with average speed greater than approximately 24 km h sup - sup 1. As for the synchronized flow with speed lower than 24 km h sup - sup 1 , it is unstable and will evolve into the coexistence of jams, free flow and light synchronized flow. This is consistent with the empirical findings (Kerner B S 1998 Phys. Rev. Lett. 81 3797).

  19. Enantioselective cellular uptake of chiral semiconductor nanocrystals

    Science.gov (United States)

    Martynenko, I. V.; Kuznetsova, V. A.; Litvinov, I. K.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Dubavik, A.; Purcell-Milton, F.; Gun'ko, Yu K.; Baranov, A. V.

    2016-02-01

    The influence of the chirality of semiconductor nanocrystals, CdSe/ZnS quantum dots (QDs) capped with L- and D-cysteine, on the efficiency of their uptake by living Ehrlich Ascite carcinoma cells is studied by spectral- and time-resolved fluorescence microspectroscopy. We report an evident enantioselective process where cellular uptake of the L-Cys QDs is almost twice as effective as that of the D-Cys QDs. This finding paves the way for the creation of novel approaches to control the biological properties and behavior of nanomaterials in living cells.

  20. Cellular trafficking of nicotinic acetylcholine receptors

    Institute of Scientific and Technical Information of China (English)

    Paul A ST JOHN

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular location and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs.