WorldWideScience

Sample records for cellular copper dynamics

  1. Resveratrol Attenuates Copper-Induced Senescence by Improving Cellular Proteostasis

    Science.gov (United States)

    2017-01-01

    Copper sulfate-induced premature senescence (CuSO4-SIPS) consistently mimetized molecular mechanisms of replicative senescence, particularly at the endoplasmic reticulum proteostasis level. In fact, disruption of protein homeostasis has been associated to age-related cell/tissue dysfunction and human disorders susceptibility. Resveratrol is a polyphenolic compound with proved antiaging properties under particular conditions. In this setting, we aimed to evaluate resveratrol ability to attenuate cellular senescence induction and to unravel related molecular mechanisms. Using CuSO4-SIPS WI-38 fibroblasts, resveratrol is shown to attenuate typical senescence alterations on cell morphology, senescence-associated beta-galactosidase activity, and cell proliferation. The mechanisms implicated in this antisenescence effect seem to be independent of senescence-associated genes and proteins regulation but are reliant on cellular proteostasis improvement. In fact, resveratrol supplementation restores copper-induced increased protein content, attenuates BiP level, and reduces carbonylated and polyubiquitinated proteins by autophagy induction. Our data provide compelling evidence for the beneficial effects of resveratrol by mitigating CuSO4-SIPS stressful consequences by the modulation of protein quality control systems. These findings highlight the importance of a balanced cellular proteostasis and add further knowledge on molecular mechanisms mediating resveratrol antisenescence effects. Moreover, they contribute to identifying specific molecular targets whose modulation will prevent age-associated cell dysfunction and improve human healthspan. PMID:28280523

  2. From Cnn Dynamics to Cellular Wave Computers

    Science.gov (United States)

    Roska, Tamas

    2013-01-01

    Embedded in a historical overview, the development of the Cellular Wave Computing paradigm is presented, starting from the standard CNN dynamics. The theoretical aspects, the physical implementation, the innovation process, as well as the biological relevance are discussed in details. Finally, the latest developments, the physical versus virtual cellular machines, as well as some open questions are presented.

  3. The Dynamics of cellular motility

    OpenAIRE

    Murase, Masatoshi

    1992-01-01

    " This book presents new ideas and theories that account for oscillatory contraction in muscle and the various modes of flagellar and ciliary movements. Despite the great variety of dynamical behaviours, attempts have been made to model some of the specific modes, though not to account for the overall properties. I have tried to develop theoretical models and to interpret nearly all of the dynamical behaviours in terms of these models. This book is intended for students and specialists in bio...

  4. Complexity, dynamic cellular network, and tumorigenesis.

    Science.gov (United States)

    Waliszewski, P

    1997-01-01

    A holistic approach to tumorigenesis is proposed. The main element of the model is the existence of dynamic cellular network. This network comprises a molecular and an energetistic structure of a cell connected through the multidirectional flow of information. The interactions within dynamic cellular network are complex, stochastic, nonlinear, and also involve quantum effects. From this non-reductionist perspective, neither tumorigenesis can be limited to the genetic aspect, nor the initial event must be of molecular nature, nor mutations and epigenetic factors are mutually exclusive, nor a link between cause and effect can be established. Due to complexity, an unstable stationary state of dynamic cellular network rather than a group of unrelated genes determines the phenotype of normal and transformed cells. This implies relativity of tumor suppressor genes and oncogenes. A bifurcation point is defined as an unstable state of dynamic cellular network leading to the other phenotype-stationary state. In particular, the bifurcation point may be determined by a change of expression of a single gene. Then, the gene is called bifurcation point gene. The unstable stationary state facilitates the chaotic dynamics. This may result in a fractal dimension of both normal and tumor tissues. The co-existence of chaotic dynamics and complexity is the essence of cellular processes and shapes differentiation, morphogenesis, and tumorigenesis. In consequence, tumorigenesis is a complex, unpredictable process driven by the interplay between self-organisation and selection.

  5. Cellular and aqueous microcystin-LR following laboratory exposures of Microcystis aeruginosa to copper algaecides.

    Science.gov (United States)

    Iwinski, Kyla J; Calomeni, Alyssa J; Geer, Tyler D; Rodgers, John H

    2016-03-01

    Microcystin release from algal cells influences use of copper-algaecides in water resources. Accurate data regarding relationships between copper-algaecide exposures and responses of microcystin-producing algae are needed to make informed management decisions. Responses of Microcystis aeruginosa were measured in terms of cellular microcystin-LR (MC-LR), aqueous MC-LR, and chlorophyll-a following exposure to CuSO4 and copper-ethanolamine. Comparisons were made between treated and untreated samples, and copper formulations. EC50s and slopes for M. aeruginosa responses to copper exposures were calculated. Algal responses followed a sigmoidal exposure-response relationship, and cellular MC-LR and chlorophyll-a were negatively related to copper concentrations. Aqueous MC-LR increased with copper concentrations, although the increase in aqueous MC-LR was not proportional to decreases in cellular MC-LR and chlorophyll-a. Cellular MC-LR and chlorophyll a declined at a greater rate than aqueous MC-LR increased. Total MC-LR was less than untreated controls following copper exposure. Differences were measured between copper formulations in terms of aqueous and total MC-LR concentrations at concentrations of 0.5 and 1.0 mg Cu L-1. Aqueous and total MC-LR were greater (10-20%) following exposure to CuSO4 compared to copper-ethanolamine one day following exposure. The positive relationship between copper concentration and aqueous MC-LR at 0.07-1.0 mg Cu L-1 demonstrates that lower copper concentrations were as effective as higher concentrations in controlling M. aeruginosa while decreasing the total amount of MC-LR, and minimizing the proportion of MC-LR released to the aqueous-phase. Results serve to support more accurate risk evaluations of MC-LR concentrations when M. aeruginosa is exposed to copper-algaecides and when it is untreated.

  6. Copper transporters and chaperones: Their function on angiogenesis and cellular signalling

    Indian Academy of Sciences (India)

    SR BHARATHI DEVI; DHIVYA M ALOYSIUS; KN SULOCHANA

    2016-09-01

    Copper, although known as a micronutrient, has a pivotal role in modulating the cellular metabolism. Many studieshave reported the role of copper in angiogenesis. Copper chaperones are intracellular proteins that mediate coppertrafficking to various cell organelles. However, the role and function of copper chaperones in relation to angiogenesishas to be further explored. The intracellular copper levels when in excess are deleterious and certain mutations ofcopper chaperones have been shown to induce cell death and influence various cellular metabolisms. The study ofthese chaperones will be helpful in understanding the players in the cascade of events in angiogenesis and their role incellular metabolic pathways. In this review we have briefly listed the copper chaperones associated with angiogenicand metabolic signalling and their function.

  7. Optimal temporal patterns for dynamical cellular signaling

    Science.gov (United States)

    Hasegawa, Yoshihiko

    2016-11-01

    Cells use temporal dynamical patterns to transmit information via signaling pathways. As optimality with respect to the environment plays a fundamental role in biological systems, organisms have evolved optimal ways to transmit information. Here, we use optimal control theory to obtain the dynamical signal patterns for the optimal transmission of information, in terms of efficiency (low energy) and reliability (low uncertainty). Adopting an activation-deactivation decoding network, we reproduce several dynamical patterns found in actual signals, such as steep, gradual, and overshooting dynamics. Notably, when minimizing the energy of the input signal, the optimal signals exhibit overshooting, which is a biphasic pattern with transient and steady phases; this pattern is prevalent in actual dynamical patterns. We also identify conditions in which these three patterns (steep, gradual, and overshooting) confer advantages. Our study shows that cellular signal transduction is governed by the principle of minimizing free energy dissipation and uncertainty; these constraints serve as selective pressures when designing dynamical signaling patterns.

  8. Cellular Dynamics Revealed by Digital Holographic Microscopy☆

    KAUST Repository

    Marquet, P.

    2016-11-22

    Digital holographic microscopy (DHM) is a new optical method that provides, without the use of any contrast agent, real-time, three-dimensional images of transparent living cells, with an axial sensitivity of a few tens of nanometers. They result from the hologram numerical reconstruction process, which permits a sub wavelength calculation of the phase shift, produced on the transmitted wave front, by the optically probed cells, namely the quantitative phase signal (QPS). Specifically, in addition to measurements of cellular surface morphometry and intracellular refractive index (RI), various biophysical cellular parameters including dry mass, absolute volume, membrane fluctuations at the nanoscale and biomechanical properties, transmembrane water permeability as swell as current, can be derived from the QPS. This article presents how quantitative phase DHM (QP-DHM) can explored cell dynamics at the nanoscale with a special attention to both the study of neuronal dynamics and the optical resolution of local neuronal network.

  9. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution.

    Science.gov (United States)

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments.

  10. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution

    Science.gov (United States)

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments. PMID:27729845

  11. Cellular automata modeling of pedestrian's crossing dynamics

    Institute of Scientific and Technical Information of China (English)

    张晋; 王慧; 李平

    2004-01-01

    Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian's crossing dynamics.A conception of "stop point" is introduced to deal with traffic obstacles and resolve conflicts among pedestrians or between pedestrians and the other vehicles on the crosswalk.The model can be easily extended,is very efficient for simulation of pedestrian's crossing dynamics,can be integrated into traffic simulation software,and has been proved feasible by simulation experiments.

  12. Dynamic Channel Allocation in Sectored Cellular Systems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It is known that dynamic channel assignment(DCA) strategy outperforms the fixed channel assignment(FCA) strategy in omni-directional antenna cellular systems. One of the most important methods used in DCA was channel borrowing. But with the emergence of cell sectorization and spatial division multiple access(SDMA) which are used to increase the capacity of cellular systems, the channel assignment faces a series of new problems. In this paper, a dynamic channel allocation scheme based on sectored cellular systems is proposed. By introducing intra-cell channel borrowing (borrowing channels from neighboring sectors) and inter-cell channel borrowing (borrowing channels from neighboring cells) methods, previous DCA strategies, including compact pattern based channel borrowing(CPCB) and greedy based dynamic channel assignment(GDCA) schemes proposed by the author, are improved significantly. The computer simulation shows that either intra-cell borrowing scheme or inter-cell borrowing scheme is efficient enough to uniform and non-uniform traffic service distributions.

  13. Literature Review on Dynamic Cellular Manufacturing System

    Science.gov (United States)

    Nouri Houshyar, A.; Leman, Z.; Pakzad Moghadam, H.; Ariffin, M. K. A. M.; Ismail, N.; Iranmanesh, H.

    2014-06-01

    In previous decades, manufacturers faced a lot of challenges because of globalization and high competition in markets. These problems arise from shortening product life cycle, rapid variation in demand of products, and also rapid changes in manufcaturing technologies. Nowadays most manufacturing companies expend considerable attention for improving flexibility and responsiveness in order to overcome these kinds of problems and also meet customer's needs. By considering the trend toward the shorter product life cycle, the manufacturing environment is towards manufacturing a wide variety of parts in small batches [1]. One of the major techniques which are applied for improving manufacturing competitiveness is Cellular Manufacturing System (CMS). CMS is type of manufacturing system which tries to combine flexibility of job shop and also productivity of flow shop. In addition, Dynamic cellular manufacturing system which considers different time periods for the manufacturing system becomes an important topic and attracts a lot of attention to itself. Therefore, this paper made attempt to have a brief review on this issue and focused on all published paper on this subject. Although, this topic gains a lot of attention to itself during these years, none of previous researchers focused on reviewing the literature of that which can be helpful and useful for other researchers who intend to do the research on this topic. Therefore, this paper is the first study which has focused and reviewed the literature of dynamic cellular manufacturing system.

  14. Dynamics of active cellular response under stress

    Science.gov (United States)

    de, Rumi; Zemel, Assaf; Safran, Samuel

    2008-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. Using a simple theoretical model that includes the forces due to both the mechanosensitive nature of cells and the elastic response of the matrix, we predict the dynamics of orientation of cells. The model predicts many features observed in measurements of cellular forces and orientation including the increase with time of the forces generated by cells in the absence of applied stress and the consequent decrease of the force in the presence of quasi-static stresses. We also explain the puzzling observation of parallel alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material can be used to distinguish systems in which cell activity is controlled by stress from those where cell activity is controlled by strain. Reference: Nature Physics, vol. 3, pp 655 (2007).

  15. IN ABSENCE OF THE CELLULAR PRION PROTEIN, ALTERATIONS IN COPPER METABOLISM AND COPPER-DEPENDENT OXIDASE ACTIVITY AFFECT IRON DISTRIBUTION

    OpenAIRE

    Lisa Gasperini; Elisa Meneghetti; Giuseppe Legname; Federico Benetti

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defin...

  16. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution

    OpenAIRE

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defin...

  17. Cellular membrane accommodation of copper-induced oxidative conditions in the coral Seriatopora caliendrum

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chuan-Ho, E-mail: chtang@nmmba.gov.tw [Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, Pingtung, Taiwan, ROC (China); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, ROC (China); Lin, Ching-Yu [Institute of Environmental Health, National Taiwan University, Taipei City, Taiwan, ROC (China); Lee, Shu-Hui [Center of General Education, National Kaohsiung Marine University, Kaohsiung, Taiwan, ROC (China); Wang, Wei-Hsien [National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, ROC (China); Department of Marine Biotechnology and Resources and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC (China)

    2014-03-01

    Highlights: • Coral cells alter membrane lipid to accommodate copper-induce oxidative conditions • Coral membrane repair occur due to lipid alterations • Zooxanthellae release results from membrane repair by symbiosome fusion • Copper-induced lipid alterations perturb membrane-related functions in coral cells • Copper chronic effect on coral fitness are related to long-term membrane perturbation - Abstract: Oxidative stress has been associated with copper-induced toxicity in scleractinian corals. To gain insight into the accommodation of the cellular membrane to oxidative conditions, a pocilloporid coral, Seriatopora caliendrum, was exposed to copper at distinct, environmentally relevant dose for various lengths of time. Glycerophosphocholine profiling of the response of the coral to copper exposure was characterized using a validated method. The results indicate that coral lipid metabolism is programmed to induce membrane alterations in response to the cellular deterioration that occurs during the copper exposure period. Decreasing lyso-phosphatidylcholines and exchanging polyunsaturated phosphatidylcholines for polyunsaturated plasmanylcholines were the initial actions taken to prevent membrane permeabilization. To relax/resist the resulting membrane strain caused by cell/organelle swelling, the coral cells inversely exchanged polyunsaturated plasmanylcholines for polyunsaturated phosphatidylcholines and further increased the levels of monounsaturated glycerophosphocholines. At the same time, the levels of saturated phosphatidylcholines were also increased to increase membrane rigidity and protect against oxidative attack. Interestingly, such alterations in lipid metabolism were also required for membrane fusion to repair the deteriorated membranes by repopulating them with proximal lipid reservoirs, similar to symbiosome membranes. Additionally, increasing saturated and monounsaturated plasmanylcholines and inhibiting the suppression of saturated lyso

  18. The S2 Cu(I) site in CupA from Streptococcus pneumoniae is required for cellular copper resistance†

    Science.gov (United States)

    Fu, Yue; Bruce, Kevin E.; Wu, Hongwei; Giedroc, David P.

    2015-01-01

    Pathogenic bacteria have evolved copper homeostasis and resistance systems for fighting copper toxicity imposed by the human immune system. Streptococcus pneumoniae is a respiratory pathogen that encodes an obligatorily membrane-anchored Cu(I) binding protein, CupA, and a P1B-type ATPase efflux transporter, CopA. The soluble, cytoplasmic domain of CupA (sCupA) contains a binuclear Cu(I) cluster consisting of S1 and S2 Cu(I) ions. The NMR solution structure of apo-sCupA reveals the same cupredoxin fold of Cu2-sCupA, except that the Cu(I) binding loop (residues 112–116, harboring S2 Cu ligands M113 and M115) is highly dynamic as documented by both backbone and side chain methionine methyl order parameters. In contrast to the more solvent exposed, lower affinity S2 Cu site, the high affinity S1 Cu-coordinating cysteines (C74, C111) are pre-organized in the apo-sCupA structure. Biological experiments reveal that the S1 site is largely dispensable for cellular Cu resistance and may be involved in buffering low cytoplasmic Cu(I). In contrast, the S2 site is essential for Cu resistance. Expression of a chimeric CopZ chaperone fused to the CupA transmembrane helix does not protect S. pneumoniae from copper toxicity and substitution of a predicted cytoplasm-facing Cu(I) entry metal-binding site (MBS) on CopA also gives rise to a Cu-sensitivity phenotype. These findings suggest that CupA and CopA may interact and filling of the CupA S2 site with Cu(I) results in stimulation of cellular copper efflux by CopA. PMID:26346139

  19. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    OpenAIRE

    Close, Dan; Xu, Tingling; Ripp, Steven; Sayler, Gary

    2014-01-01

    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular pop...

  20. Dynamic corrosion of copper-nickel sulfide by Acidithiobacillus ferrooxidans

    Institute of Scientific and Technical Information of China (English)

    TONG Lin-lin; JIANG Mao-fa; YANG Hong-ying; YU Juan; FAN You-jing; ZHANG Yao

    2009-01-01

    The dynamic corrosion process of bio-oxidation of copper-nickel sulfide from Karatungk in northern Xinjiang Province of China was studied. The polished wafer of the copper-nickel sulphide was used to carry on a series of oxidation corrosion experiment by Acidithiobacillus ferrooxidans. The changes of superficial corrosion appearance and the mineral dynamic corrosion process were discovered by microscope observation. Then, the galvanic cell model was established, and the bio-oxidation activation order of typical copper-nickel sulphide minerals was ascertained as pyrrhotite>pentlandite>chalocopyrite.

  1. COPPER STRESS ON CELLULAR CONTENTS AND FATTY ACID PROFILES IN CHLORELLA SPECIES

    Directory of Open Access Journals (Sweden)

    G. Sibi

    2014-01-01

    Full Text Available Higher photosynthetic efficiency and biomass production with rapid growth makes microalgae as potential candidates over other energy crops in many applications. Heavy metals influence the production of secondary metabolites and lipd content of microalgae in particular. A study was conducted using six Chlorella species under heavy metal exposure to evaluate the copper stress on biomass, cellular and lipid contents. Preliminary growth studies indicated the growth tolerance levels of Chlorella in the presence of copper at 4.0 mg L-1 concentration. The total chlorophyll, protein and lipid content of the isolates were 1.7-3.45%, 0.43-0.70 mg g-1 and 0.02-0.11 mg g-1 respectively. Gas Chromatography-Mass Spectroscopy analysis revealed that the percent composition of fatty acids varied among the species studied and the major group of fatty acids were C16:0, C18:1 and C18:2. Highest percent of fatty acids were found in C. vulgaris, C. protothecoides and C. pyrenoidosa. Copper have an impact on Chlorella species where biomass content was directly proportional to the lipid productivity. The results reflects the fact that copper stress on Chlorella species as the evidence of lipid production in both qualitative and quantitative manner. In conclusion, Chlorella species can be used for the sustainable producion of renewable energy through copper stress and removal of copper from aqueous solutions.

  2. Optimal signal patterns for dynamical cellular communication

    CERN Document Server

    Hasegawa, Yoshihiko

    2015-01-01

    Cells transmit information via signaling pathways, using temporal dynamical patterns. As optimality with respect to environments is the universal principle in biological systems, organisms have acquired an optimal way of transmitting information. Here we obtain optimal dynamical signal patterns which can transmit information efficiently (low power) and reliably (high accuracy) using the optimal control theory. Adopting an activation-inactivation decoding network, we reproduced several dynamical patterns found in actual signals, such as steep, gradual and overshooting dynamics. Notably, when minimizing the power of the input signal, optimal signals exhibit the overshooting pattern, which is a biphasic pattern with transient and steady phases; this pattern is prevalent in actual dynamical patterns as it can be generated by an incoherent feed-forward loop (FFL), a common motif in biochemical networks. We also identified conditions when the three patterns, steep, gradual and overshooting, confer advantages.

  3. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity

    Science.gov (United States)

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne

    2017-01-01

    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying

  4. Dynamic Shock Compression of Copper to Multi-Megabar Pressure

    Science.gov (United States)

    Haill, T. A.; Furnish, M. D.; Twyeffort, L. L.; Arrington, C. L.; Lemke, R. W.; Knudson, M. D.; Davis, J.-P.

    2015-11-01

    Copper is an important material for a variety of shock and high energy density applications and experiments. Copper is used as a standard reference material to determine the EOS properties of other materials. The high conductivity of copper makes it useful as an MHD driver layer in high current dynamic materials experiments on Sandia National Laboratories Z machine. Composite aluminum/copper flyer plates increase the dwell time in plate impact experiments by taking advantage of the slower wave speeds in copper. This presentation reports on recent efforts to reinstate a composite Al/Cu flyer capability on Z and to extend the range of equation-of-state shock compression data through the use of hyper-velocity composite flyers and symmetric planar impact with copper targets. We will present results from multi-dimensional ALEGRA MHD simulations, as well as experimental designs and methods of composite flyer fabrication. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Minimal model for complex dynamics in cellular processes.

    Science.gov (United States)

    Suguna, C; Chowdhury, K K; Sinha, S

    1999-11-01

    Cellular functions are controlled and coordinated by the complex circuitry of biochemical pathways regulated by genetic and metabolic feedback processes. This paper aims to show, with the help of a minimal model of a regulated biochemical pathway, that the common nonlinearities and control structures present in biomolecular interactions are capable of eliciting a variety of functional dynamics, such as homeostasis, periodic, complex, and chaotic oscillations, including transients, that are observed in various cellular processes.

  6. Recrystallization kinetics of nanostructured copper processed by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Lin, Fengxiang; Zhang, Yubin; Pantleon, Wolfgang;

    2012-01-01

    The recrystallization kinetics of nanostructured copper samples processed by dynamic plastic deformation was investigated by electron backscatter diffraction. It was found that the evolution of the recrystallized volume fraction as a function of annealing time has a very low slope (n=0.37) when...

  7. Active site modeling in copper azurin molecular dynamics simulations

    NARCIS (Netherlands)

    Rizzuti, B; Swart, M; Sportelli, L; Guzzi, R

    2004-01-01

    Active site modeling in molecular dynamics simulations is investigated for the reduced state of copper azurin. Five simulation runs (5 ns each) were performed at room temperature to study the consequences of a mixed electrostatic/constrained modeling for the coordination between the metal and the po

  8. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    Science.gov (United States)

    Close, Dan; Xu, Tingling; Ripp, Steven; Sayler, Gary

    2015-01-01

    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular population dynamics in real-time. This method, which relies on the detection of a continuous bioluminescent signal produced through expression of the bacterial luciferase gene cassette, provides a low cost, low time-intensive means for generating additional data compared to alternative methods. PMID:24166372

  9. Real-Time Bioluminescent Tracking of Cellular Population Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Close, Dan [University of Tennessee, Knoxville (UTK); Sayler, Gary Steven [ORNL; Xu, Tingting [ORNL; Ripp, Steven Anthony [ORNL

    2014-01-01

    Cellular population dynamics are routinely monitored across many diverse fields for a variety of purposes. In general, these dynamics are assayed either through the direct counting of cellular aliquots followed by extrapolation to the total population size, or through the monitoring of signal intensity from any number of externally stimulated reporter proteins. While both viable methods, here we describe a novel technique that allows for the automated, non-destructive tracking of cellular population dynamics in real-time. This method, which relies on the detection of a continuous bioluminescent signal produced through expression of the bacterial luciferase gene cassette, provides a low cost, low time-intensive means for generating additional data compared to alternative methods.

  10. COX19 mediates the transduction of a mitochondrial redox signal from SCO1 that regulates ATP7A-mediated cellular copper efflux

    OpenAIRE

    Leary, Scot C; Cobine, Paul A.; Nishimura, Tamiko; Verdijk, Robert M; de Krijger, Ronald; Coo, René; Tarnopolsky, Mark A.; Winge, Dennis R; Eric A Shoubridge

    2013-01-01

    SCO1 and SCO2 are metallochaperones whose principal function is to add two copper ions to the catalytic core of cytochrome c oxidase (COX). However, affected tissues of SCO1 and SCO2 patients exhibit a combined deficiency in COX activity and total copper content, suggesting additional roles for these proteins in the regulation of cellular copper homeostasis. Here we show that both the redox state of the copper-binding cysteines of SCO1 and the abundance of SCO2 correlate with cellular copper ...

  11. A differential genome-wide transcriptome analysis: impact of cellular copper on complex biological processes like aging and development.

    Directory of Open Access Journals (Sweden)

    Jörg Servos

    Full Text Available The regulation of cellular copper homeostasis is crucial in biology. Impairments lead to severe dysfunctions and are known to affect aging and development. Previously, a loss-of-function mutation in the gene encoding the copper-sensing and copper-regulated transcription factor GRISEA of the filamentous fungus Podospora anserina was reported to lead to cellular copper depletion and a pleiotropic phenotype with hypopigmentation of the mycelium and the ascospores, affected fertility and increased lifespan by approximately 60% when compared to the wild type. This phenotype is linked to a switch from a copper-dependent standard to an alternative respiration leading to both a reduced generation of reactive oxygen species (ROS and of adenosine triphosphate (ATP. We performed a genome-wide comparative transcriptome analysis of a wild-type strain and the copper-depleted grisea mutant. We unambiguously assigned 9,700 sequences of the transcriptome in both strains to the more than 10,600 predicted and annotated open reading frames of the P. anserina genome indicating 90% coverage of the transcriptome. 4,752 of the transcripts differed significantly in abundance with 1,156 transcripts differing at least 3-fold. Selected genes were investigated by qRT-PCR analyses. Apart from this general characterization we analyzed the data with special emphasis on molecular pathways related to the grisea mutation taking advantage of the available complete genomic sequence of P. anserina. This analysis verified but also corrected conclusions from earlier data obtained by single gene analysis, identified new candidates of factors as part of the cellular copper homeostasis system including target genes of transcription factor GRISEA, and provides a rich reference source of quantitative data for further in detail investigations. Overall, the present study demonstrates the importance of systems biology approaches also in cases were mutations in single genes are analyzed to

  12. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    Science.gov (United States)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  13. Multiscale mathematical modeling and simulation of cellular dynamical process.

    Science.gov (United States)

    Nakaoka, Shinji

    2014-01-01

    Epidermal homeostasis is maintained by dynamic interactions among molecules and cells at different spatiotemporal scales. Mathematical modeling and simulation is expected to provide clear understanding and precise description of multiscaleness in tissue homeostasis under systems perspective. We introduce a stochastic process-based description of multiscale dynamics. Agent-based modeling as a framework of multiscale modeling to achieve consistent integration of definitive subsystems is proposed. A newly developed algorithm that particularly aims to perform stochastic simulations of cellular dynamical process is introduced. Finally we review applications of multiscale modeling and quantitative study to important aspects of epidermal and epithelial homeostasis.

  14. A functional screen for copper homeostasis genes identifies a pharmacologically tractable cellular system

    OpenAIRE

    Schlecht, Ulrich; Suresh, Sundari; Xu, Weihong; Aparicio, Ana Maria; Chu, Angela; Proctor, Michael J; Davis, Ronald W.; Scharfe, Curt; St.Onge, Robert P.

    2014-01-01

    Background Copper is essential for the survival of aerobic organisms. If copper is not properly regulated in the body however, it can be extremely cytotoxic and genetic mutations that compromise copper homeostasis result in severe clinical phenotypes. Understanding how cells maintain optimal copper levels is therefore highly relevant to human health. Results We found that addition of copper (Cu) to culture medium leads to increased respiratory growth of yeast, a phenotype which we then system...

  15. COX19 mediates the transduction of a mitochondrial redox signal from SCO1 that regulates ATP7A-mediated cellular copper efflux

    Science.gov (United States)

    Leary, Scot C.; Cobine, Paul A.; Nishimura, Tamiko; Verdijk, Robert M.; de Krijger, Ronald; de Coo, René; Tarnopolsky, Mark A.; Winge, Dennis R.; Shoubridge, Eric A.

    2013-01-01

    SCO1 and SCO2 are metallochaperones whose principal function is to add two copper ions to the catalytic core of cytochrome c oxidase (COX). However, affected tissues of SCO1 and SCO2 patients exhibit a combined deficiency in COX activity and total copper content, suggesting additional roles for these proteins in the regulation of cellular copper homeostasis. Here we show that both the redox state of the copper-binding cysteines of SCO1 and the abundance of SCO2 correlate with cellular copper content and that these relationships are perturbed by mutations in SCO1 or SCO2, producing a state of apparent copper overload. The copper deficiency in SCO patient fibroblasts is rescued by knockdown of ATP7A, a trans-Golgi, copper-transporting ATPase that traffics to the plasma membrane during copper overload to promote efflux. To investigate how a signal from SCO1 could be relayed to ATP7A, we examined the abundance and subcellular distribution of several soluble COX assembly factors. We found that COX19 partitions between mitochondria and the cytosol in a copper-dependent manner and that its knockdown partially rescues the copper deficiency in patient cells. These results demonstrate that COX19 is necessary for the transduction of a SCO1-dependent mitochondrial redox signal that regulates ATP7A-mediated cellular copper efflux. PMID:23345593

  16. Investigation of drop dynamic contact angle on copper surface

    OpenAIRE

    Orlova Evgenija; Feoktistov Dmitriy; Kuznetsov Geniy

    2015-01-01

    This paper presents experimental results of the studying the effect of surface roughness, microstructure and flow rate on the dynamic contact angle at spreading of distilled non deaerate water drop on a solid horizontal substrates. Copper substrates with different roughness have been investigated. For each substrate static contact angles depending on volume flow rate have been obtained using shadow system. Increasing the volume flow rate resulted in an increase of the static contact angle. It...

  17. Investigation of drop dynamic contact angle on copper surface

    Directory of Open Access Journals (Sweden)

    Orlova Evgenija

    2015-01-01

    Full Text Available This paper presents experimental results of the studying the effect of surface roughness, microstructure and flow rate on the dynamic contact angle at spreading of distilled non deaerate water drop on a solid horizontal substrates. Copper substrates with different roughness have been investigated. For each substrate static contact angles depending on volume flow rate have been obtained using shadow system. Increasing the volume flow rate resulted in an increase of the static contact angle. It was found that with increasing surface roughness dynamic contact angle arises. Also difference in formation of the equilibrium contact angle at low and high rates of drop growth has been detected.

  18. Investigation of drop dynamic contact angle on copper surface

    Science.gov (United States)

    Orlova, Evgenija; Feoktistov, Dmitriy; Kuznetsov, Geniy

    2015-01-01

    This paper presents experimental results of the studying the effect of surface roughness, microstructure and flow rate on the dynamic contact angle at spreading of distilled non deaerate water drop on a solid horizontal substrates. Copper substrates with different roughness have been investigated. For each substrate static contact angles depending on volume flow rate have been obtained using shadow system. Increasing the volume flow rate resulted in an increase of the static contact angle. It was found that with increasing surface roughness dynamic contact angle arises. Also difference in formation of the equilibrium contact angle at low and high rates of drop growth has been detected.

  19. Optical investigation of intra- and extra-cellular dynamics

    DEFF Research Database (Denmark)

    Leijnse, Natascha

    In this thesis we investigated intra- and extra-cellular dynamics with the help of optical tweezers and confocal imaging. Firstly, we measured in vivo diffusion inside endothelial cells by tracking lipid granules and compared the results to in vitro diffusion of polystyrene beads in wormlike...... micelles. Furthermore, we studied F-actin dynamics in, and curvature sensing of, a receptor and its ligand on artificially pulled membrane tethers. Force measurements between a cell and an approaching optically trapped bead were conducted in order to probe the endothelial cell's glycocalyx. Finally...

  20. Simulation of Dynamic Recrystallization Using Cellular Automaton Method

    Institute of Scientific and Technical Information of China (English)

    XIAO Hong; XIE Hong-biao; YAN Yan-hong; Jun YANAGIMOTO

    2004-01-01

    A new modeling approach that couples fundamental metallurgical principles of dynamical recrystallization with the cellular automaton method was developed to simulate the microstructural evolution linking with the plastic flow behavior during thermomechanical processing. The driving force for the nucleation and growth of dynamically recrystallized grain is the volume free energy due to the stored dislocation density of a deformation matrix. The growth terminates the impingement. The model is capable of simulating kinetics, microstructure and texture evolution during recrystallization. The predictions of microstructural evolution agree with the experimental results.

  1. The Cellular Prion Protein Prevents Copper-Induced Inhibition of P2X4 Receptors

    Science.gov (United States)

    Lorca, Ramón A.; Varela-Nallar, Lorena; Inestrosa, Nibaldo C.; Huidobro-Toro, J. Pablo

    2011-01-01

    Although the physiological function of the cellular prion protein (PrPC) remains unknown, several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ through a domain composed by four to five repeats of eight amino acids. Previously, we have shown that the perfusion of this domain prevents and reverses the inhibition by Cu2+ of the adenosine triphosphate (ATP)-evoked currents in the P2X4 receptor subtype, highlighting a modulatory role for PrPC in synaptic transmission through regulation of Cu2+ levels. Here, we study the effect of full-length PrPC in Cu2+ inhibition of P2X4 receptor when both are coexpressed. PrPC expression does not significantly change the ATP concentration-response curve in oocytes expressing P2X4 receptors. However, the presence of PrPC reduces the inhibition by Cu2+ of the ATP-elicited currents in these oocytes, confirming our previous observations with the Cu2+ binding domain. Thus, our observations suggest a role for PrPC in modulating synaptic activity through binding of extracellular Cu2+. PMID:22114745

  2. The Cellular Prion Protein Prevents Copper-Induced Inhibition of P2X4 Receptors

    Directory of Open Access Journals (Sweden)

    Ramón A. Lorca

    2011-01-01

    Full Text Available Although the physiological function of the cellular prion protein (PrPC remains unknown, several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ through a domain composed by four to five repeats of eight amino acids. Previously, we have shown that the perfusion of this domain prevents and reverses the inhibition by Cu2+ of the adenosine triphosphate (ATP-evoked currents in the P2X4 receptor subtype, highlighting a modulatory role for PrPC in synaptic transmission through regulation of Cu2+ levels. Here, we study the effect of full-length PrPC in Cu2+ inhibition of P2X4 receptor when both are coexpressed. PrPC expression does not significantly change the ATP concentration-response curve in oocytes expressing P2X4 receptors. However, the presence of PrPC reduces the inhibition by Cu2+ of the ATP-elicited currents in these oocytes, confirming our previous observations with the Cu2+ binding domain. Thus, our observations suggest a role for PrPC in modulating synaptic activity through binding of extracellular Cu2+.

  3. Molecular dynamics simulation of thermodynamical properties of copper clusters

    Institute of Scientific and Technical Information of China (English)

    Wu Zhi-Min; Wang Xin-Qiang; Yang Yuan-Yuan

    2007-01-01

    The melting and freezing processes of CuN (N = 180, 256, 360, 408, 500, 628 and 736) nanoclusters are simulated by using micro-canonical molecular dynamics simulation technique. The potential energies and the heat capacities as a function of temperature are obtained. The results reveal that the melting and freezing points increase almost linearly with the atom number in the cluster increasing. All copper nanoclusters have negative heat capacity around the melting and freezing points, and hysteresis effect in the melting/freezing transition is derived in CuN nanoclusters for the first time.

  4. Molecular Dynamics Simulation of Microstructure of Nanocrystalline Copper

    Institute of Scientific and Technical Information of China (English)

    WEN Yu-Hua; ZHOU Fu-Xin; LIU Yue-Wu

    2001-01-01

    The microstructure of computer generated nanocrystalline coppers is simulated by using molecular dynamics with the Finnis-Sinclair potential, analysed by means of radial distribution functions, coordination number, atomic energy and local crystalline order. The influence of the grain size on the nanocrystalline structure is studied.The results reveal that as the grain size is reduced, the grain boundary shows no significant structural difference,but the grain interior becomes more disordered, and their structural difference diminishes gradually; however,the density and the atomic average energy of the grain boundary present different tendencies from those of the grain interior.

  5. Wave dynamic processes in cellular detonation reflection from wedges

    Institute of Scientific and Technical Information of China (English)

    Zongmin Hu; Zonglin Jiang

    2007-01-01

    When the cell width of the incident deto-nation wave (IDW) is comparable to or larger than theMach stem height,self-similarity will fail during IDWreflection from a wedge surface.In this paper,the det-onation reflection from wedges is investigated for thewave dynamic processes occurring in the wave front,including transverse shock motion and detonation cellvariations behind the Mach stem.A detailed reactionmodel is implemented to simulate two-dimensional cel-lular detonations in stoichiometric mixtures of H2/O2diluted by Argon.The numerical results show that thetransverse waves,which cross the triple point trajec-tory of Mach reflection,travel along the Mach stem andreflect back from the wedge surface,control the size ofthe cells in the region swept by the Mach stem.It is theenergy carried by these transverse waves that sustainsthe triple-wave-collision with a higher frequency withinthe over-driven Mach stem.In some cases,local wavedynamic processes and wave structures play a dominantrole in determining the pattern of cellular record,lead-ing to the fact that the cellular patterns after the Machstem exhibit some peculiar modes.

  6. Dynamical theory of active cellular response to external stress.

    Science.gov (United States)

    De, Rumi; Safran, Samuel A

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  7. Dynamical theory of active cellular response to external stress

    Science.gov (United States)

    de, Rumi; Safran, Samuel A.

    2008-09-01

    We present a comprehensive, theoretical treatment of the orientational response to external stress of active, contractile cells embedded in a gel-like elastic medium. The theory includes both the forces that arise from the deformation of the matrix as well as forces due to the internal regulation of the stress fibers and focal adhesions of the cell. We calculate the time-dependent response of both the magnitude and the direction of the elastic dipole that characterizes the active forces exerted by the cell, for various situations. For static or quasistatic external stress, cells orient parallel to the stress while for high frequency dynamic external stress, cells orient nearly perpendicular. Both numerical and analytical calculations of these effects are presented. In addition we predict the relaxation time for the cellular response for both slowly and rapidly varying external stresses; several characteristic scaling regimes for the relaxation time as a function of applied frequency are predicted. We also treat the case of cells for which the regulation of the stress fibers and focal adhesions is controlled by strain (instead of stress) and show that the predicted dependence of the cellular orientation on the Poisson ratio of the matrix can differentiate strain vs stress regulation of cellular response.

  8. Mosquito population dynamics from cellular automata-based simulation

    Science.gov (United States)

    Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning

    2016-02-01

    In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.

  9. Oral administration of copper to rats leads to increased lymphocyte cellular DNA degradation by dietary polyphenols: implications for a cancer preventive mechanism.

    Science.gov (United States)

    Khan, Husain Y; Zubair, Haseeb; Ullah, Mohd F; Ahmad, Aamir; Hadi, Sheikh M

    2011-12-01

    To account for the observed anticancer properties of plant polyphenols, we have earlier proposed a mechanism which involves the mobilization of endogenous copper ions by polyphenols leading to the generation of reactive oxygen species (ROS) that serve as proximal DNA cleaving agents and lead to cell death. Over the last decade we have proceeded to validate our hypothesis with considerable success. As a further confirmation of our hypothesis, in this paper we first show that oral administration of copper to rats leads to elevated copper levels in lymphocytes. When such lymphocytes with a copper overload were isolated and treated with polyphenols EGCG, genistein and resveratrol, an increased level of DNA breakage was observed. Further, preincubation of lymphocytes having elevated copper levels with the membrane permeable copper chelator neocuproine, resulted in inhibition of polyphenol induced DNA degradation. However, membrane impermeable chelator of copper bathocuproine, as well as iron and zinc chelators were ineffective in causing such inhibition in DNA breakage, confirming the involvement of endogenous copper in polyphenol induced cellular DNA degradation. It is well established that serum and tissue concentrations of copper are greatly increased in various malignancies. In view of this fact, the present results further confirm our earlier findings and strengthen our hypothesis that an important anticancer mechanism of plant polyphenols could be the mobilization of intracellular copper leading to ROS-mediated cellular DNA breakage. In this context, it may be noted that cancer cells are under considerable oxidative stress and increasing such stress to cytotoxic levels could be a successful anticancer approach.

  10. Dynamic multibody protein interactions suggest versatile pathways for copper trafficking.

    Science.gov (United States)

    Keller, Aaron M; Benítez, Jaime J; Klarin, Derek; Zhong, Linghao; Goldfogel, Matthew; Yang, Feng; Chen, Tai-Yen; Chen, Peng

    2012-05-30

    As part of intracellular copper trafficking pathways, the human copper chaperone Hah1 delivers Cu(+) to the Wilson's Disease Protein (WDP) via weak and dynamic protein-protein interactions. WDP contains six homologous metal binding domains (MBDs) connected by flexible linkers, and these MBDs all can receive Cu(+) from Hah1. The functional roles of the MBD multiplicity in Cu(+) trafficking are not well understood. Building on our previous study of the dynamic interactions between Hah1 and the isolated fourth MBD of WDP, here we study how Hah1 interacts with MBD34, a double-domain WDP construct, using single-molecule fluorescence resonance energy transfer (smFRET) combined with vesicle trapping. By alternating the positions of the smFRET donor and acceptor, we systematically probed Hah1-MBD3, Hah1-MBD4, and MBD3-MBD4 interaction dynamics within the multidomain system. We found that the two interconverting interaction geometries were conserved in both intermolecular Hah1-MBD and intramolecular MBD-MBD interactions. The Hah1-MBD interactions within MBD34 are stabilized by an order of magnitude relative to the isolated single-MBDs, and thermodynamic and kinetic evidence suggest that Hah1 can interact with both MBDs simultaneously. The enhanced interaction stability of Hah1 with the multi-MBD system, the dynamic intramolecular MBD-MBD interactions, and the ability of Hah1 to interact with multiple MBDs simultaneously suggest an efficient and versatile mechanism for the Hah1-to-WDP pathway to transport Cu(+).

  11. Evolutionary principles underlying structure and response dynamics of cellular networks.

    Science.gov (United States)

    Steinacher, Arno; Soyer, Orkun S

    2012-01-01

    The network view in systems biology, in conjunction with the continuing development of experimental technologies, is providing us with the key structural and dynamical features of both cell-wide and pathway-level regulatory, signaling and metabolic systems. These include for example modularity and presence of hub proteins at the structural level and ultrasensitivity and feedback control at the level of dynamics. The uncovering of such features, and the seeming commonality of some of them, makes many systems biologists believe that these could represent design principles that underpin cellular systems across organisms. Here, we argue that such claims on any observed feature requires an understanding of how it has emerged in evolution and how it can shape subsequent evolution. We review recent and past studies that aim to achieve such evolutionary understanding for observed features of cellular networks. We argue that this evolutionary framework could lead to deciphering evolutionary origin and relevance of proposed design principles, thereby allowing to predict their presence or absence in an organism based on its environment and biochemistry and their effect on its future evolution.

  12. A dynamic cellular vertex model of growing epithelial tissues

    Science.gov (United States)

    Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao

    2017-03-01

    Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.

  13. Mitochondria: the cellular hub of the dynamic coordinated network.

    Science.gov (United States)

    Yin, Fei; Cadenas, Enrique

    2015-04-20

    Mitochondria are the powerhouses of the eukaryotic cell. After billions of years of evolution, mitochondria have adaptively integrated into the symbiont. Such integration is not only evidenced by the consolidation of genetic information, that is, the transfer of most mitochondrial genes into the nucleus, but also manifested by the functional recombination by which mitochondria participate seamlessly in various cellular processes. In the past decade, the field of mitochondria biology has been focused on the dynamic and interactive features of these semiautonomous organelles. Aspects of a complex multilayer quality control system coordinating mitochondrial function and environmental changes are being uncovered and refined. This Forum summarizes the recent progress of these critical topics, with a focus on the dynamic quality control of mitochondrial reticulum, including their biogenesis, dynamic remodeling, and degradation, as well as the homeostasis of the mitochondrial proteome. These diverse but interconnected mechanisms are found to be critical in the maintenance of a functional, efficient, and responsive mitochondrial population and could therefore become therapeutic targets in numerous mitochondrion-implicated disorders.

  14. Motor Schema-Based Cellular Automaton Model for Pedestrian Dynamics

    Science.gov (United States)

    Weng, Wenguo; Hasemi, Yuji; Fan, Weicheng

    A new cellular automaton model for pedestrian dynamics based on motor schema is presented. Each pedestrian is treated as an intelligent mobile robot, and motor schemas including move-to-goal, avoid-away and avoid-around drive pedestrians to interact with their environment. We investigate the phenomenon of many pedestrians with different move velocities escaping from a room. The results show that the pedestrian with high velocity have predominance in competitive evacuation, if we only consider repulsion from or avoiding around other pedestrians, and interaction with each other leads to disordered evacuation, i.e., decreased evacuation efficiency. Extensions of the model using learning algorithms for controlling pedestrians, i.e., reinforcement learning, neural network and genetic algorithms, etc. are noted.

  15. Cellular proton dynamics in Elodea canadensis leaves induced by cadmium.

    Science.gov (United States)

    Tariq Javed, M; Lindberg, Sylvia; Greger, Maria

    2014-04-01

    Our earlier investigations showed that Elodea canadensis shoots, grown in the presence of cadmium (Cd), caused basification of the surrounding medium. The present study was aimed to examine the proton dynamics of the apoplastic, cytosolic and vacuolar regions of E. canadensis leaves upon Cd exposure and to establish possible linkage between cellular pH changes and the medium basification. The changes in cytosolic calcium [Ca(2+)]cyt was also investigated as the [Ca(2+)]cyt and [pH]cyt homeostasis are closely linked. The cellular H(+) and Ca(2+) concentrations were monitored by fluorescence microscopy and ion-specific fluorescent dyes. Cadmium concentration of leaf-cell walls was measured after plant cultivation at different fixed levels of starting pH. The protoplasts from E. canadensis leaves were isolated by use of a newly developed enzymatic method. Upon Cd addition, both cytosolic and vacuolar pH of leaf protoplasts increased with a concomitant rise in the cytosolic Ca(2+) concentration. Time course studies revealed that changes in [Ca(2+)]cyt and [pH]cyt followed similar dynamics. Cadmium (0.5 μM) exposure decreased the apoplastic pH by 0.85 units. The maximum cell wall bound Cd-contents were obtained in plants grown at low starting pH. It is concluded that Cd treatment causes apoplastic acidosis in E. canadensis leaves associated with enhanced Cd binding to the cell walls and, consequently, reduced Cd influx into the cytosol.

  16. Parallel Cellular Automata-based simulation of laser dynamics using dynamic load balancing

    NARCIS (Netherlands)

    Guisado, J.L.; Fernández de Vega, F.; Jiménez Morales, F.; Iskra, K.A.; Sloot, P.M.A.; Garnica, Ó.

    2008-01-01

    In order to analyze the feasibility of executing a parallel bioinspired model of laser dynamics on a heterogeneous non-dedicated cluster, we evaluate its performance including artificial load to simulate other tasks or jobs submitted by other users. As the model is based on a synchronous cellular au

  17. Modeling dynamics of HIV infected cells using stochastic cellular automaton

    Science.gov (United States)

    Precharattana, Monamorn; Triampo, Wannapong

    2014-08-01

    Ever since HIV was first diagnosed in human, a great number of scientific works have been undertaken to explore the biological mechanisms involved in the infection and progression of the disease. Several cellular automata (CA) models have been introduced to gain insights into the dynamics of the disease progression but none of them has taken into account effects of certain immune cells such as the dendritic cells (DCs) and the CD8+ T lymphocytes (CD8+ T cells). In this work, we present a CA model, which incorporates effects of the HIV specific immune response focusing on the cell-mediated immunities, and investigate the interaction between the host immune response and the HIV infected cells in the lymph nodes. The aim of our work is to propose a model more realistic than the one in Precharattana et al. (2010) [10], by incorporating roles of the DCs, the CD4+ T cells, and the CD8+ T cells into the model so that it would reproduce the HIV infection dynamics during the primary phase of HIV infection.

  18. The size, shape, and dynamics of cellular blebs

    CERN Document Server

    Lim, Fong Yin; Mahadevan, L

    2015-01-01

    A cellular bleb grows when a portion of the cell membrane detaches from the underlying cortex under the influence of a cytoplasmic pressure. We develop a quantitative model for the growth and dynamics of these objects in a simple two-dimensional setting. In particular, we first find the minimum cytoplasmic pressure and minimum unsupported membrane length for a stationary bleb to nucleate and grow as a function of the membrane-cortex adhesion. We next show how a bleb may travel around the periphery of the cell when the cytoplasmic pressure varies in space and time in a prescribed way and find that the traveling speed is governed by the speed of the pressure change induced by local cortical contraction while the shape of the traveling bleb is governed by the speed of cortical healing. Finally, we relax the assumption that the pressure change is prescribed and couple it hydrodynamically to the cortical contraction and membrane deformation. By quantifying the phase space of bleb formation and dynamics, our framew...

  19. Stochastic cellular automata model for stock market dynamics

    Science.gov (United States)

    Bartolozzi, M.; Thomas, A. W.

    2004-04-01

    In the present work we introduce a stochastic cellular automata model in order to simulate the dynamics of the stock market. A direct percolation method is used to create a hierarchy of clusters of active traders on a two-dimensional grid. Active traders are characterized by the decision to buy, σi (t)=+1 , or sell, σi (t)=-1 , a stock at a certain discrete time step. The remaining cells are inactive, σi (t)=0 . The trading dynamics is then determined by the stochastic interaction between traders belonging to the same cluster. Extreme, intermittent events, such as crashes or bubbles, are triggered by a phase transition in the state of the bigger clusters present on the grid, where almost all the active traders come to share the same spin orientation. Most of the stylized aspects of the financial market time series, including multifractal proprieties, are reproduced by the model. A direct comparison is made with the daily closures of the S&P500 index.

  20. Effects of zinc on static and dynamic mechanical properties of copper-zinc alloy

    Institute of Scientific and Technical Information of China (English)

    马志超; 赵宏伟; 鲁帅; 程虹丙

    2015-01-01

    The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37% (mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.

  1. Cellular Automata Models Applied to the Study of Landslide Dynamics

    Science.gov (United States)

    Liucci, Luisa; Melelli, Laura; Suteanu, Cristian

    2015-04-01

    Landslides are caused by complex processes controlled by the interaction of numerous factors. Increasing efforts are being made to understand the spatial and temporal evolution of this phenomenon, and the use of remote sensing data is making significant contributions in improving forecast. This paper studies landslides seen as complex dynamic systems, in order to investigate their potential Self Organized Critical (SOC) behavior, and in particular, scale-invariant aspects of processes governing the spatial development of landslides and their temporal evolution, as well as the mechanisms involved in driving the system and keeping it in a critical state. For this purpose, we build Cellular Automata Models, which have been shown to be capable of reproducing the complexity of real world features using a small number of variables and simple rules, thus allowing for the reduction of the number of input parameters commonly used in the study of processes governing landslide evolution, such as those linked to the geomechanical properties of soils. This type of models has already been successfully applied in studying the dynamics of other natural hazards, such as earthquakes and forest fires. The basic structure of the model is composed of three modules: (i) An initialization module, which defines the topographic surface at time zero as a grid of square cells, each described by an altitude value; the surface is acquired from real Digital Elevation Models (DEMs). (ii) A transition function, which defines the rules used by the model to update the state of the system at each iteration. The rules use a stability criterion based on the slope angle and introduce a variable describing the weakening of the material over time, caused for example by rainfall. The weakening brings some sites of the system out of equilibrium thus causing the triggering of landslides, which propagate within the system through local interactions between neighboring cells. By using different rates of

  2. Geomorphology and River Dynamics of the Lower Copper River, Alaska

    Science.gov (United States)

    Brabets, Timothy P.; Conaway, Jeffrey S.

    2009-01-01

    Located in south-central Alaska, the Copper River drains an area of more than 24,000 square miles. The average annual flow of the river near its mouth is 63,600 cubic feet per second, but is highly variable between winter and summer. In the winter, flow averages approximately 11,700 cubic feet per second, and in the summer, due to snowmelt, rainfall, and glacial melt, flow averages approximately 113,000 cubic feet per second, an order of magnitude higher. About 15 miles upstream of its mouth, the Copper River flows past the face of Childs Glacier and enters a large, broad, delta. The Copper River Highway traverses this flood plain, and in 2008, 11 bridges were located along this section of the highway. The bridges cross several parts of the Copper River and in recent years, the changing course of the river has seriously damaged some of the bridges. Analysis of aerial photography from 1991, 1996, 2002, 2006, and 2007 indicates the eastward migration of a channel of the Copper River that has resulted in damage to the Copper River Highway near Mile 43.5. Migration of another channel in the flood plain has resulted in damage to the approach of Bridge 339. As a verification of channel change, flow measurements were made at bridges along the Copper River Highway in 2005-07. Analysis of the flow measurements indicate that the total flow of the Copper River has shifted from approximately 50 percent passing through the bridges at Mile 27, near the western edge of the flood plain, and 50 percent passing through the bridges at Mile 36-37 to approximately 5 percent passing through the bridges at Mile 27 and 95 percent through the bridges at Mile 36-37 during average flow periods. The U.S. Geological Survey's Multi-Dimensional Surface-Water Modeling System was used to simulate water-surface elevation and velocity, and to compute bed shear stress at two areas where the Copper River is affecting the Copper River Highway. After calibration, the model was used to examine the

  3. Green synthesis of peptide-templated fluorescent copper nanoclusters for temperature sensing and cellular imaging.

    Science.gov (United States)

    Huang, Hong; Li, Hua; Wang, Ai-Jun; Zhong, Shu-Xian; Fang, Ke-Ming; Feng, Jiu-Ju

    2014-12-21

    A simple and green approach was developed for the preparation of fluorescent Cu nanoclusters (NCs) using the artificial peptide CLEDNN as a template. The as-synthesized Cu NCs exhibited a high fluorescence quantum yield (7.3%) and good stability, along with excitation and temperature dependent fluorescent properties, which could be employed for temperature sensing. Further investigations demonstrated low toxicity of Cu NCs for cellular imaging.

  4. [A dynamic study of HGH, zinc and copper in diabetic girls. Preliminary report].

    Science.gov (United States)

    González Espinosa, C; García Báez, M; Rodríguez, I; González, C; Lopes, S; Duque, R

    1982-11-01

    A dynamic study study on secretion of HGH in diabetic girls under the combined stimulus of L-dopa and L-arginina is performed. Serum levels for Zinc and copper are measured. Results show that as HGH increase, copper levels decrease. Correlation (r = 0.81, p = 0.05) points to an inverse dependence of both parameters. Concomitantly, the values obtained for zinc and copper are correlated (r = 0.82, p = 0.03). During stimulation, all patients showed an increase in glycemia and a significant correlation between both parameters was found (r = 0.76, p = 0.05).

  5. Structure and dynamics of modulated traveling waves in cellular flames

    CERN Document Server

    Bayliss, A; Riecke, H

    1994-01-01

    We describe spatial and temporal patterns in cylindrical premixed flames in the cellular regime, $Le < 1$, where the Lewis number $Le$ is the ratio of thermal to mass diffusivity of a deficient component of the combustible mixture. A transition from stationary, axisymmetric flames to stationary cellular flames is predicted analytically if $Le$ is decreased below a critical value. We present the results of numerical computations to show that as $Le$ is further decreased traveling waves (TWs) along the flame front arise via an infinite-period bifurcation which breaks the reflection symmetry of the cellular array. Upon further decreasing $Le$ different kinds of periodically modulated traveling waves (MTWs) as well as a branch of quasiperiodically modulated traveling waves (QPMTWs) arise. These transitions are accompanied by the development of different spatial and temporal symmetries including period doublings and period halvings. We also observe the apparently chaotic temporal behavior of a disordered cellul...

  6. The dynamic response of Copper 101 under high-rate loading

    NARCIS (Netherlands)

    Bragov, A. M.; Lomunov, A. K.; Abramov, A. V.; Konstantinov, A. Yu.; Sergeichev, I. V.; Braithwaite, C.; Proud, W. G.; Church, P. D.; Cullis, I. G.; Gould, P.

    2006-01-01

    The initial results of an investigation into the dynamic behavior of copper C101 are presented. This study involved several experimental technicques; quasi-static, compressive Split Hopkinson Pressure Bar (SHPB), a modified Taylor test and a direct impact method. From these studies dynamic and stati

  7. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhu [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wu, Longhua, E-mail: lhwu@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Pengjie [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yantai Institute of Coastal Zone Research, Yantai 264003 (China); Christie, Peter [Agri-Environment Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom)

    2013-10-15

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola.

  8. Dynamics and mechanisms of quantum dot nanoparticle cellular uptake

    Directory of Open Access Journals (Sweden)

    Telford William G

    2010-06-01

    Full Text Available Abstract Background The rapid growth of the nanotechnology industry and the wide application of various nanomaterials have raised concerns over their impact on the environment and human health. Yet little is known about the mechanism of cellular uptake and cytotoxicity of nanoparticles. An array of nanomaterials has recently been introduced into cancer research promising for remarkable improvements in diagnosis and treatment of the disease. Among them, quantum dots (QDs distinguish themselves in offering many intrinsic photophysical properties that are desirable for targeted imaging and drug delivery. Results We explored the kinetics and mechanism of cellular uptake of QDs with different surface coatings in two human mammary cells. Using fluorescence microscopy and laser scanning cytometry (LSC, we found that both MCF-7 and MCF-10A cells internalized large amount of QD655-COOH, but the percentage of endocytosing cells is slightly higher in MCF-7 cell line than in MCF-10A cell line. Live cell fluorescent imaging showed that QD cellular uptake increases with time over 40 h of incubation. Staining cells with dyes specific to various intracellular organelles indicated that QDs were localized in lysosomes. Transmission electron microscopy (TEM images suggested a potential pathway for QD cellular uptake mechanism involving three major stages: endocytosis, sequestration in early endosomes, and translocation to later endosomes or lysosomes. No cytotoxicity was observed in cells incubated with 0.8 nM of QDs for a period of 72 h. Conclusions The findings presented here provide information on the mechanism of QD endocytosis that could be exploited to reduce non-specific targeting, thereby improving specific targeting of QDs in cancer diagnosis and treatment applications. These findings are also important in understanding the cytotoxicity of nanomaterials and in emphasizing the importance of strict environmental control of nanoparticles.

  9. Copper diffusivity in boron-doped silicon wafer measured by dynamic secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Songfoo [S.E.H (M) Sdn. Bhd., Lot 2, Lorong Enggang 35, Ulu Klang FTZ, 54200 Selangor (Malaysia); You, Ahheng [Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, Bukit Beruang, 75450 Melaka (Malaysia); Tou, Teckyong, E-mail: tytou@mmu.edu.my [Faculty of Engineering, Multimedia Univesity, Jalan Multimedia, 63100 Cyberjaya (Malaysia)

    2013-03-20

    Highlights: ► Effective copper diffusivity in boron-doped silicon wafer was measured. ► Dynamic secondary ion mass spectrometry was used. ► Interstitial copper ions were first drifted to surface region and allowed to back-diffuse. ► Boron concentration largely influenced the effect copper diffusivity. -- Abstract: The effective copper diffusivity (D{sub eff}) in boron-doped silicon wafer was measured using a Dynamic Secondary Ion Mass Spectrometry (D-SIMS) that was incorporated with an out-drift technique. By this technique, positive interstitial copper ions (Cu{sub I}{sup +}) migrated to the surface region when a continuous charge of electrons showered on the oxidized silicon wafer, which was also bombarded by primary O{sub 2}{sup +} ions. The Cu{sub I}{sup +} ions at the surface region diffused back to the bulk when the electron showering stopped. The D-SIMS recorded the real-time distribution of Cu{sub I}{sup +} ions, generating depth profiles for in-diffusion of copper for silicon-wafer samples with different boron concentrations. These were curve-fitted using the standard diffusion expressions to obtain different D{sub eff} values, and compared with other measurement techniques.

  10. Dynamic modeling of cellular response to DNA damage based on p53 stress response networks

    Institute of Scientific and Technical Information of China (English)

    Jinpeng Qi; Yongsheng Ding; Shihuang Shao

    2009-01-01

    Under acute perturbations from the outside, cells can trigger self-defensive mechanisms to fight against genome stress. To investigate the cellular response to continuous ion radiation (IR), a dynamic model for p53 stress response networks at the cellular level is proposed. The model can successfully be used to simulate the dynamic processes of double-strand breaks (DSBs) generation and their repair, switch-like ataxia telangiectasia mutated (ATM) activation, oscillations occurring in the p53-MDM2 feedback loop, as well as toxins elimination triggered by p53 stress response networks. Especially, the model can predict the plausible outcomes of cellular response under different IR dose regimes.

  11. Metabolic biotransformation of copper-benzo[a]pyrene combined pollutant on the cellular interface of Stenotrophomonas maltophilia.

    Science.gov (United States)

    Chen, Shuona; Yin, Hua; Tang, Shaoyu; Peng, Hui; Liu, Zehua; Dang, Zhi

    2016-03-01

    Previous studies have confirmed that Stenotrophomonas maltophilia can bind an appreciable amount of Cu(II) and degrade BaP. However, the removal mechanisms of Cu(II) coexisted with BaP by S. maltophilia are still unclear. In this study, the micro-interaction of contaminants on the cellular surface was investigated. The results indicated that carboxyl groups played an important role in the binding of copper to the thallus and that the cell walls were the main adsorption sites. Nevertheless, these reactive groups had no obvious effect on the uptake of BaP. Instead, the disruption and modification of cell walls accelerated transportation of BaP across the membrane into cells. The observation of SEM-EDS confirmed that Cu(II) would be adsorbed and precipitated onto the cell surface but would also be removed by extracellular precipitation when BaP coexisted. And the XPS analysis reflected that part of Cu(II) bound onto biosorbents changed into Cu(I) and Cu.

  12. Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus nigerstrains.

    Science.gov (United States)

    Madrigal-Arias, Jorge Enrique; Argumedo-Delira, Rosalba; Alarcón, Alejandro; Mendoza-López, Ma Remedios; García-Barradas, Oscar; Cruz-Sánchez, Jesús Samuel; Ferrera-Cerrato, Ronald; Jiménez-Fernández, Maribel

    2015-01-01

    In an effort to develop alternate techniques to recover metals from waste electrical and electronic equipment (WEEE), this research evaluated the bioleaching efficiency of gold (Au), copper (Cu) and nickel (Ni) by two strains of Aspergillus niger in the presence of gold-plated finger integrated circuits found in computer motherboards (GFICMs) and cellular phone printed circuit boards (PCBs). These three metals were analyzed for their commercial value and their diverse applications in the industry. Au-bioleaching ranged from 42 to 1% for Aspergillus niger strain MXPE6; with the combination of Aspergillus niger MXPE6 + Aspergillus niger MX7, the Au-bioleaching was 87 and 28% for PCBs and GFICMs, respectively. In contrast, the bioleaching of Cu by Aspergillus niger MXPE6 was 24 and 5%; using the combination of both strains, the values were 0.2 and 29% for PCBs and GFICMs, respectively. Fungal Ni-leaching was only found for PCBs, but with no significant differences among treatments. Improvement of the metal recovery efficiency by means of fungal metabolism is also discussed.

  13. Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus nigerstrains

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Madrigal-Arias

    2015-09-01

    Full Text Available In an effort to develop alternate techniques to recover metals from waste electrical and electronic equipment (WEEE, this research evaluated the bioleaching efficiency of gold (Au, copper (Cu and nickel (Ni by two strains of Aspergillus niger in the presence of gold-plated finger integrated circuits found in computer motherboards (GFICMs and cellular phone printed circuit boards (PCBs. These three metals were analyzed for their commercial value and their diverse applications in the industry. Au-bioleaching ranged from 42 to 1% for Aspergillus niger strain MXPE6; with the combination of Aspergillus niger MXPE6 + Aspergillus niger MX7, the Au-bioleaching was 87 and 28% for PCBs and GFICMs, respectively. In contrast, the bioleaching of Cu by Aspergillus niger MXPE6 was 24 and 5%; using the combination of both strains, the values were 0.2 and 29% for PCBs and GFICMs, respectively. Fungal Ni-leaching was only found for PCBs, but with no significant differences among treatments. Improvement of the metal recovery efficiency by means of fungal metabolism is also discussed.

  14. A cellular automata model of Ebola virus dynamics

    Science.gov (United States)

    Burkhead, Emily; Hawkins, Jane

    2015-11-01

    We construct a stochastic cellular automaton (SCA) model for the spread of the Ebola virus (EBOV). We make substantial modifications to an existing SCA model used for HIV, introduced by others and studied by the authors. We give a rigorous analysis of the similarities between models due to the spread of virus and the typical immune response to it, and the differences which reflect the drastically different timing of the course of EBOV. We demonstrate output from the model and compare it with clinical data.

  15. Cellular Proteome Dynamics during Differentiation of Human Primary Myoblasts

    DEFF Research Database (Denmark)

    Le Bihan, Marie-Catherine; Barrio, Inigo; Mortensen, Tenna Pavia;

    2015-01-01

    and the complex temporal protein dynamics accompanying the differentiation of primary human muscle cells remain poorly understood. Here, we demonstrate the advantages of applying a MS-based quantitative approach, stable isotope labeling by amino acids in cell culture (SILAC), for studying human myogenesis...... dynamic expression profiles during the course of myogenic differentiation and quantified 2240 proteins, 243 of which were regulated. These changes in protein expression occurred in sequential waves and underlined vast reprogramming in key processes governing cell fate decisions, i.e., cell cycle...

  16. Phenomenological study of a cellular material behaviour under dynamic loadings

    Science.gov (United States)

    Bouix, R.; Viot, Ph.; Lataillade, J.-L.

    2006-08-01

    Polypropylene foams are cellular materials, which are often use to fill structures subjected to crash or violent impacts. Therefore, it is necessary to know and to characterise in experiments their mechanical behaviour in compression at high strain rates. So, several apparatus have been used in order to highlight the influence of strain rate, material density and also temperature. A split Hopkinson Pressure Bar has been used for impact tests, a fly wheel to test theses materials at medium strain rate and an electro-mechanical testing machine associated to a climatic chamber for temperature tests. Then, a rheological model has been used in order to describe the material behaviour. The mechanical response to compression of these foams presents three typical domains: a linear elastic step, a wide collapse plateau stress, which leads to a densification, which are related to a standard rheological model.

  17. Dynamics of the cellular metabolome during human cytomegalovirus infection.

    Directory of Open Access Journals (Sweden)

    Joshua Munger

    2006-12-01

    Full Text Available Viral replication requires energy and macromolecular precursors derived from the metabolic network of the host cell. Despite this reliance, the effect of viral infection on host cell metabolic composition remains poorly understood. Here we applied liquid chromatography-tandem mass spectrometry to measure the levels of 63 different intracellular metabolites at multiple times after human cytomegalovirus (HCMV infection of human fibroblasts. Parallel microarray analysis provided complementary data on transcriptional regulation of metabolic pathways. As the infection progressed, the levels of metabolites involved in glycolysis, the citric acid cycle, and pyrimidine nucleotide biosynthesis markedly increased. HCMV-induced transcriptional upregulation of specific glycolytic and citric acid cycle enzymes mirrored the increases in metabolite levels. The peak levels of numerous metabolites during infection far exceeded those observed during normal fibroblast growth or quiescence, demonstrating that HCMV markedly disrupts cellular metabolic homeostasis and institutes its own specific metabolic program.

  18. Dynamics of copper-phthalocyanine molecules on Au/Ge(001)

    NARCIS (Netherlands)

    Sotthewes, K.; Heimbuch, R.U.; Zandvliet, H.J.W.

    2015-01-01

    Spatially resolved current-time scanning tunneling spectroscopy combined with current-distance spectroscopy has been used to characterize the dynamic behavior of copper-phthalocyanine (CuPc) molecules adsorbed on a Au-modified Ge(001) surface. The analyzed CuPc molecules are adsorbed in a “molecular

  19. Model peptides provide new insights into the role of histidine residues as potential ligands in human cellular copper acquisition via Ctr1.

    Science.gov (United States)

    Haas, Kathryn L; Putterman, Allison B; White, Daniel R; Thiele, Dennis J; Franz, Katherine J

    2011-03-30

    Cellular acquisition of copper in eukaryotes is primarily accomplished through the Ctr family of copper transport proteins. In both humans and yeast, methionine-rich "Mets" motifs in the amino-terminal extracellular domain of Ctr1 are thought to be responsible for recruitment of copper at the cell surface. Unlike yeast, mammalian Ctr1 also contains extracellular histidine-rich motifs, although a role for these regions in copper uptake has not been explored in detail. Herein, synthetic model peptides containing the first 14 residues of the extracellular domain of human Ctr1 (MDHSHHMGMSYMDS) have been prepared and evaluated for their apparent binding affinity to both Cu(I) and Cu(II). These studies reveal a high affinity Cu(II) binding site (log K = 11.0 ± 0.3 at pH 7.4) at the amino-terminus of the peptide as well as a high affinity Cu(I) site (log K = 10.2 ± 0.2 at pH 7.4) that utilizes adjacent HH residues along with an additional His or Met ligand. These model studies suggest that the histidine domains may play a direct role in copper acquisition from serum copper-binding proteins and in facilitating the reduction of Cu(II) to the active Ctr1 substrate, Cu(I). We tested this hypothesis by expressing a Ctr1 mutant lacking only extracellular histidine residues in Ctr1-knockout mouse embryonic fibroblasts. Results from live cell studies support the hypothesis that extracellular amino-terminal His residues directly participate in the copper transport function of Ctr1.

  20. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  1. Dynamical modeling and analysis of large cellular regulatory networks

    Science.gov (United States)

    Bérenguier, D.; Chaouiya, C.; Monteiro, P. T.; Naldi, A.; Remy, E.; Thieffry, D.; Tichit, L.

    2013-06-01

    The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.

  2. Paradoxical Condensation of Copper with Elevated β-Amyloid in Lipid Rafts under Cellular Copper Deficiency Conditions: IMPLICATIONS FOR ALZHEIMER DISEASE*

    OpenAIRE

    Hung, Ya Hui; Robb, Elysia L.; Volitakis, Irene; Ho, Michael; Evin, Genevieve; Li, Qiao-Xin; Janetta G Culvenor; Masters, Colin L.; Cherny, Robert A.; Bush, Ashley I.

    2009-01-01

    Redox-active copper is implicated in the pathogenesis of Alzheimer disease (AD), β-amyloid peptide (Aβ) aggregation, and amyloid formation. Aβ·copper complexes have been identified in AD and catalytically oxidize cholesterol and lipid to generate H2O2 and lipid peroxides. The site and mechanism of this abnormality is not known. Growing evidence suggests that amyloidogenic processing of the β-amyloid precursor protein (APP) occurs in lipid rafts, membrane microdomains enriched in cholesterol. ...

  3. Response differences between Ectocarpus siliculosus populations to copper stress involve cellular exclusion and induction of the phytochelatin biosynthetic pathway.

    Science.gov (United States)

    Roncarati, Francesca; Sáez, Claudio A; Greco, Maria; Gledhill, Martha; Bitonti, Maria B; Brown, Murray T

    2015-02-01

    Some populations of brown seaweed species inhabit metal-polluted environments and can develop tolerance to metal stress, but the mechanisms by which this is accomplished are still to be elucidated. To address this, the responses of two strains of the model brown alga Ectocarpus siliculosus isolated from sites with different histories of metal contamination exposed to total copper (CuT) concentrations ranging between 0 and 2.4 μM for 10 days were investigated. The synthesis of the metal-chelator phytochelatin (PCs) and relative levels of transcripts encoding the enzymes γ-glutamylcysteine synthetase (γ-GCS), glutathione synthase (GS) and phytochelatin synthase (PCS) that participate in the PC biosynthetic pathway were measured, along with the effects on growth, and adsorption and uptake of Cu. Growth of strain LIA, from a pristine site in Scotland, was inhibited to a greater extent, and at lower concentrations, than that of Es524, isolated from a Cu-contaminated site in Chile. Concentrations of intra-cellular Cu were higher and the exchangeable fraction was lower in LIA than Es524, especially at the highest exposure levels. Total glutathione concentrations increased in both strains with Cu exposure, whereas total PCs levels were higher in Es524 than LIA; PC2 and PC3 were detected in Es524 but PC2 only was found in LIA. The greater production and levels of polymerisation of PCs in Es524 can be explained by the up-regulation of genes encoding for key enzymes involved in the synthesis of PCs. In Es524 there was an increase in the transcripts of γ-GCS, GS and PCS, particularly under high Cu exposure, whereas in LIA4 transcripts of γ-GCS1 increased only slightly, γ-GCS2 and GS decreased and PCS did not change. The consequences of higher intra-cellular concentrations of Cu, lower production of PCs, and lower expression of enzymes involved in GSH-PCs synthesis may be contributing to an induced oxidative stress condition in LIA, which explains, at least in part, the

  4. Cellular transport and membrane dynamics of the glycine receptor

    Directory of Open Access Journals (Sweden)

    Andrea Dumoulin

    2010-02-01

    Full Text Available Regulation of synaptic transmission is essential to tune individual-to-network neuronal activity. One way to modulate synaptic strength is to regulate neurotransmitter receptor numbers at postsynaptic sites. This can be achieved either through plasma membrane insertion of receptors derived from intracellular vesicle pools, a process depending on active cytoskeleton transport, or through surface membrane removal via endocytosis. In parallel, lateral diffusion events along the plasma membrane allow the exchange of receptor molecules between synaptic and extrasynaptic compartments, contributing to synaptic strength regulation. In recent years, results obtained from several groups studying glycine receptor (GlyR trafficking and dynamics shed light on the regulation of synaptic GlyR density. Here, we review i proteins and mechanisms involved in GlyR cytoskeletal transport, ii the diffusion dynamics of GlyR and of its scaffolding protein gephyrin that control receptor numbers, and its relationship with synaptic plasticity, and iii adaptative changes in GlyR diffusion in response to global activity modifications, as a homeostatic mechanism.

  5. Cellular Automata on Graphs: Topological Properties of ER Graphs Evolved towards Low-Entropy Dynamics

    Directory of Open Access Journals (Sweden)

    Marc-Thorsten Hütt

    2012-06-01

    Full Text Available Cellular automata (CA are a remarkably  efficient tool for exploring general properties of complex systems and spatiotemporal patterns arising from local rules. Totalistic cellular automata,  where the update  rules depend  only on the density of neighboring states, are at the same time a versatile  tool for exploring  dynamical  processes on graphs. Here we briefly review our previous results on cellular automata on graphs, emphasizing some systematic relationships between network architecture and dynamics identified in this way. We then extend the investigation  towards graphs obtained in a simulated-evolution procedure, starting from Erdő s–Rényi (ER graphs and selecting for low entropies of the CA dynamics. Our key result is a strong association of low Shannon entropies with a broadening of the graph’s degree distribution.

  6. Logical Modeling and Dynamical Analysis of Cellular Networks.

    Science.gov (United States)

    Abou-Jaoudé, Wassim; Traynard, Pauline; Monteiro, Pedro T; Saez-Rodriguez, Julio; Helikar, Tomáš; Thieffry, Denis; Chaouiya, Claudine

    2016-01-01

    The logical (or logic) formalism is increasingly used to model regulatory and signaling networks. Complementing these applications, several groups contributed various methods and tools to support the definition and analysis of logical models. After an introduction to the logical modeling framework and to several of its variants, we review here a number of recent methodological advances to ease the analysis of large and intricate networks. In particular, we survey approaches to determine model attractors and their reachability properties, to assess the dynamical impact of variations of external signals, and to consistently reduce large models. To illustrate these developments, we further consider several published logical models for two important biological processes, namely the differentiation of T helper cells and the control of mammalian cell cycle.

  7. The effects of lead and copper on the cellular architecture and metabolism of the red alga Gracilaria domingensis.

    Science.gov (United States)

    Gouveia, Claudiane; Kreusch, Marianne; Schmidt, Éder C; Felix, Marthiellen R de L; Osorio, Luz K P; Pereira, Debora T; dos Santos, Rodrigo; Ouriques, Luciane C; Martins, Roberta de Paula; Latini, Alexandra; Ramlov, Fernanda; Carvalho, Tiago José G; Chow, Fungyi; Maraschin, Marcelo; Bouzon, Zenilda L

    2013-06-01

    The effect of lead and copper on apical segments of Gracilaria domingensis was examined. Over a period of 7 days, the segments were cultivated with concentrations of 5 and 10 ppm under laboratory conditions. The samples were processed for light, confocal, and electron microscopy, as well as histochemistry, to evaluate growth rates, mitochondrial activity, protein levels, chlorophyll a, phycobiliproteins, and carotenoids. After 7 days of exposure to lead and copper, growth rates were slower than control, and biomass loss was observed on copper-treated plants. Ultrastructural damage was primarily observed in the internal organization of chloroplasts and cell wall thickness. X-ray microanalysis detected lead in the cell wall, while copper was detected in both the cytoplasm and cell wall. Moreover, lead and copper exposure led to photodamage of photosynthetic pigments and, consequently, changes in photosynthesis. However, protein content and glutathione reductase activity decreased only in the copper treatments. In both treatments, decreased mitochondrial NADH dehydrogenase activity was observed. Taken together, the present study demonstrates that (1) heavy metals such as lead and copper negatively affect various morphological, physiological, and biochemical processes in G. domingensis and (2) copper is more toxic than lead in G. domingensis.

  8. Dynamic recrystallization of electroformed copper liners of shaped charges in high—strain—rate plastic deformation

    Institute of Scientific and Technical Information of China (English)

    WenhuaiTian; QiSun; 等

    2002-01-01

    The microstructures in the electroformed copper liners of shaped charges after high-strain-rate plastic deformation were in vestigated by transmission microscopy(TEM).Meanwhile,the orientation distribution of the grains in the recovered slug was examined by the electron backscattering Kikuchi pattern(EBSP) technique.EBSP analysis illustrated that unlike the as-formed electroformed copper liners of shaped charges the grain orientations in the recovered slug are distributed along randomly all the directions after undergoing heavily strain deformation at high-strain rate.Optical microscopy shows a typical recrystallization structure,and TEM examination reveals dislocation cells existed in the thin foil specimen.These results indicate that dynamic recovery and recrystallization occur during this plastic deformation process,and the associated deformation temperature is considered to be higher than 0.6 times the melting point of copper.

  9. Dynamic recrystallization of electroformed copper liners of shaped charges in high-strain-rate plastic deformation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The microstructures in the electroformed copper liners of shaped charges after high-strain-rate plastic deformation were investigated by transmission electron microscopy (TEM). Meanwhile, the orientation distribution of the grains in the recovered slug was examined by the electron backscattering Kikuchi pattern (EBSP) technique. EBSP analysis illustrated that unlike the as-formed electroformed copper linersof shaped charges the grain orientations in the recovered slug are distributed along randomly all the directions after undergoing heavily strain deformation at high-strain rate. Optical microscopy shows a typical recrystallization structure, and TEM examination reveals dislocation cells existed in the thin foil specimen. These results indicate that dynamic recovery and recrystallization occur during this plastic deformation process, and the associated deformation temperature is considered to be higher than 0.6 times the melting point of copper.

  10. Mobilization of Nuclear Copper by Green Tea Polyphenol Epicatechin-3-Gallate and Subsequent Prooxidant Breakage of Cellular DNA: Implications for Cancer Chemotherapy

    Directory of Open Access Journals (Sweden)

    Mohd Farhan

    2016-12-01

    Full Text Available Epidemiological as well as experimental evidence exists in support of chemopreventive and anticancer properties of green tea and its constituents. The gallocatechin, epicatechin-3-gallate is a major polyphenol present in green tea, shown responsible for these effects. Plant-derived polyphenolic compounds are established natural antioxidants which are capable of catalyzing oxidative DNA degradation of cellular DNA, alone as well as in the presence of transition metal ions, such as copper. Here we present evidence to support that, similar to various other polyphenoic compounds, epicatechin-3-gallate also causes oxidative degradation of cellular DNA. Single cell alkaline gel electrophoresis (Comet assay was used to assess DNA breakage in lymphocytes that were exposed to various concentrations of epicatechin-3-gallate. Inhibition of DNA breakage in the presence of scavengers of reactive oxygen species (ROS suggested involvement of ROS generation. Addition of neocuproine (a cell membrane permeable Cu(I chelator inhibited DNA degradation, dose-dependently, in intact lymphocytes. In contrast, bathocuproine, which does not permeate cell membrane, was observed to be ineffective. We further show that epicatechin-3-gallate degrades DNA in cell nuclei, which can also be inhibited by neocuproine, suggesting mobilization of nuclear copper in this reaction as well. Our results are indicative of ROS generation, possibly through mobilization of endogenous copper ions, and support our long-standing hypothesis of a prooxidant activity of plant-derived polyphenols as a mechanism for their documented anticancer properties.

  11. A signal separation technique for sub-cellular imaging using dynamic optical coherence tomography

    CERN Document Server

    Ammari, Habib; Shi, Cong

    2016-01-01

    This paper aims at imaging the dynamics of metabolic activity of cells. Using dynamic optical coherence tomography, we introduce a new multi-particle dynamical model to simulate the movements of the collagen and the cell metabolic activity and develop an efficient signal separation technique for sub-cellular imaging. We perform a singular-value decomposition of the dynamic optical images to isolate the intensity of the metabolic activity. We prove that the largest eigenvalue of the associated Casorati matrix corresponds to the collagen. We present several numerical simulations to illustrate and validate our approach.

  12. Localization microscopy: mapping cellular dynamics with single molecules.

    Science.gov (United States)

    Nelson, A J; Hess, S T

    2014-04-01

    has helped to illuminate many dynamic biological processes, such as the trajectories of molecules within living cells. This review discusses the concept and process of SRFLM imaging and investigates recent advances in SRFLM functionality. Since its announcement in 2006, SRFLM has been quickly adopted and modified by many researchers to help investigate questions whose answers lie below the diffraction limit. The versatility of the SRFLM technique has great promise for improving our understanding of cell biology at the molecular level.

  13. Glass-like dynamics in the cell and in cellular collectives

    OpenAIRE

    Sadati, Monirosadat; Nourhani, Amir; Fredberg, Jeffrey J.; Qazvini, Nader Taheri

    2014-01-01

    Prominent fluctuations, heterogeneity, and cooperativity dominate the dynamics of the cytoskeleton as well as the dynamics of the cellular collective. Such systems are out of equilibrium, disordered, and remain poorly understood. To explain these findings, here we consider a unifying mechanistic rubric that imagines these systems as comprising phases of soft condensed matter in proximity to a glass or jamming transition, with associated transitions between solid-like versus liquid-like phases...

  14. Tracing Dynamics and Clonal Heterogeneity of Cbx7-Induced Leukemic Stem Cells by Cellular Barcoding

    NARCIS (Netherlands)

    Klauke, Karin; Broekhuis, Mathilde J. C.; Weersing, Ellen; Dethmers-Ausema, Albertina; Ritsema, Martha; Gonzalez, Marta Vila; Zwart, Erik; Bystrykh, Leonid V.; de Haan, Gerald

    2015-01-01

    Accurate monitoring of tumor dynamics and leukemic stem cell (LSC) heterogeneity is important for the development of personalized cancer therapies. In this study, we experimentally induced distinct types of leukemia in mice by enforced expression of Cbx7. Simultaneous cellular barcoding allowed for

  15. A compact multifunctional microfluidic platform for exploring cellular dynamics in real-time using electrochemical detection

    DEFF Research Database (Denmark)

    Zor, Kinga; Heiskanen, Arto; Caviglia, Claudia

    2014-01-01

    and electrochemical analysis platform with in-built fluid handling and detection, enabling complete cell based assays comprising on-line electrode cleaning, sterilization, surface functionalization, cell seeding, cultivation and electrochemical real-time monitoring of cellular dynamics. To demonstrate the versatility...

  16. An Urban Cellular Automata Model for Simulating Dynamic States on a Local Scale

    Directory of Open Access Journals (Sweden)

    Jenni Partanen

    2016-12-01

    Full Text Available In complex systems, flexibility and adaptability to changes are crucial to the systems’ dynamic stability and evolution. Such resilience requires that the system is able to respond to disturbances by self-organizing, which implies a certain level of entropy within the system. Dynamic states (static, cyclical/periodic, complex, and chaotic reflect this generative capacity, and correlate with the level of entropy. For planning complex cities, we need to develop methods to guide such autonomous progress in an optimal manner. A classical apparatus, cellular automaton (CA, provides such a tool. Applications of CA help us to study temporal dynamics in self-organizing urban systems. By exploring the dynamic states of the model’s dynamics resulting from different border conditions it is possible to discover favorable set(s of rules conductive to the self-organizing dynamics and enable the system’s recovery at the time of crises. Level of entropy is a relevant measurement for evaluation of these dynamic states. The 2-D urban cellular automaton model studied here is based on the microeconomic principle that similar urban activities are attracted to each other, especially in certain self-organizing areas, and that the local dynamics of these enclaves affect the dynamics of the urban region by channeling flows of information, goods and people. The results of the modeling experiment indicate that the border conditions have a major impact on the model’s dynamics generating various dynamic states of the system. Most importantly, it seemed that the model could simulate a favorable, complex dynamic state with medium entropy level which may refer to the continuous self-organization of the system. The model provides a tool for exploring and understanding the effects of boundary conditions in the planning process as various scenarios are tested: resulting dynamics of the system can be explored with such “planning rules” prior to decisions, helping to

  17. Simulation of Ab Initio Molecular Dynamics of Shock Wave on Copper

    Institute of Scientific and Technical Information of China (English)

    张林; 蔡灵仓; 向士凯; 经福谦; 陈栋泉

    2003-01-01

    The relation between particle velocity Up, up to 4 km/s, and shock wave velocity Us in copper has been simulated with ab initio molecular dynamics. The simulated relationship without considering the correction of zero-point and finite temperature effects is Us = 4.23 + 1.53Up. After considering the correction the relation becomes Us = 4.08 + 1.53Up, which is consistent with the experimental result.

  18. A mathematical model to study the dynamics of epithelial cellular networks.

    Science.gov (United States)

    Abate, Alessandro; Vincent, Stéphane; Dobbe, Roel; Silletti, Alberto; Master, Neal; Axelrod, Jeffrey D; Tomlin, Claire J

    2012-01-01

    Epithelia are sheets of connected cells that are essential across the animal kingdom. Experimental observations suggest that the dynamical behavior of many single-layered epithelial tissues has strong analogies with that of specific mechanical systems, namely large networks consisting of point masses connected through spring-damper elements and undergoing the influence of active and dissipating forces. Based on this analogy, this work develops a modeling framework to enable the study of the mechanical properties and of the dynamic behavior of large epithelial cellular networks. The model is built first by creating a network topology that is extracted from the actual cellular geometry as obtained from experiments, then by associating a mechanical structure and dynamics to the network via spring-damper elements. This scalable approach enables running simulations of large network dynamics: the derived modeling framework in particular is predisposed to be tailored to study general dynamics (for example, morphogenesis) of various classes of single-layered epithelial cellular networks. In this contribution, we test the model on a case study of the dorsal epithelium of the Drosophila melanogaster embryo during early dorsal closure (and, less conspicuously, germband retraction).

  19. Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions.

    Directory of Open Access Journals (Sweden)

    Thomas Wallach

    2013-03-01

    Full Text Available Essentially all biological processes depend on protein-protein interactions (PPIs. Timing of such interactions is crucial for regulatory function. Although circadian (~24-hour clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc. contributing to temporal organization of cellular physiology in an unprecedented manner.

  20. Elevated glutathione levels confer cellular sensitization to cisplatin toxicity by up-regulation of copper transporter hCtr1.

    Science.gov (United States)

    Chen, Helen H W; Song, Im-Sook; Hossain, Anwar; Choi, Min-Koo; Yamane, Yoshiaki; Liang, Zheng D; Lu, Jia; Wu, Lily Y-H; Siddik, Zahid H; Klomp, Leo W J; Savaraj, Niramol; Kuo, Macus Tien

    2008-09-01

    Previous studies have demonstrated that treating cultured cells with cisplatin (CDDP) up-regulated the expression of glutathione (GSH) and its de novo rate-limiting enzyme glutamate-cysteine ligase (GCL), which consists of a catalytic (GCLC) and a modifier (GCLM) subunit. It has also been shown that many CDDP-resistant cell lines exhibit high levels of GCLC/GCLM and GSH. Because the GSH system is the major intracellular regulator of redox conditions that serve as an important detoxification cytoprotector, these results have been taken into consideration that elevated levels of GCL/GSH are responsible for the CDDP resistance. In contrast to this context, we demonstrated here that overexpression of GSH by transfection with an expression plasmid containing the GCLC cDNA conferred sensitization to CDDP through up-regulation of human copper transporter (hCtr) 1, which is also a transporter for CDDP. Depleting GSH levels in these transfected cells reversed CDDP sensitivity with concomitant reduction of hCtr1 expression. Although rates of copper transport were also up-regulated in the transfected cells, these cells exhibited biochemical signature of copper deficiency, suggesting that GSH functions as an intracellular copper-chelator and that overexpression of GSH can alter copper metabolism. More importantly, our results reveal a new role of GSH in the regulation of CDDP sensitivity. Overproduction of GSH depletes the bioavailable copper pool, leading to up-regulation of hCtr1 and sensitization of CDDP transport and cell killing. These findings also have important implications in that modulation of the intracellular copper pool may be a novel strategy for improving chemotherapeutic efficacy of platinum-based antitumor agents.

  1. Mechanism resulting in chemical imbalance due to cellular damage associated with mechanoporation: A molecular dynamics study

    Science.gov (United States)

    Sliozberg, Yelena R.; Chantawansri, Tanya L.

    2016-05-01

    To elucidate the mechanism of ion transport through a transmembrane pore, all-atom molecular dynamics simulations were employed. A model membrane where a pore connects the intra- and extra-cellular compartment was considered. Pores with radii of 1.5 nm or less exhibited resealing over the course of 135 ns simulations, and ionic disturbance is minimal. Ion transport through a larger pore (2 nm radius) leads to a substantial change in the intra- and extra-cellular ionic concentrations. The influx of Na+ and Cl- ions down their concentration gradients is greater than the efflux of K+ leading to an osmotic influx of water.

  2. Change of Dynamic Contact Angle of a Drop Spreading over Copper Surface

    Directory of Open Access Journals (Sweden)

    Feoktistov D.V.

    2015-01-01

    Full Text Available This work presents the comparison between the change of a dynamic contact angle during drop spreading over copper surfaces obtained in the experiment and calculated by using empirical correlations (Bracke et al., Jiang et al., Seebergh et al.. It is found that these correlations are applicable for the case of drop spreading over a smooth surface or over a rough surface into the low capillary number region (2.5·10−7. Dynamic contact angles obtained experimentally increase with increasing capillary number, besides it increases significantly on more rough surfaces. However the calculated values of angles do not depend on Ca.

  3. Molecular Dynamics Simulations of helium Behaviour in Copper Crystals

    Institute of Scientific and Technical Information of China (English)

    王玲; 宁西京

    2003-01-01

    Molecular dynamics simulations are performed to investigate the behaviour of helium atoms generated from tritium decay in perfect Cu crystals at 300K. At the early stage just after a 3He atom generation, the lattice structure is badly deformed and the local temperature rises considerably above 300 K. Single 3He atom diffuses by interstitial paths, whereas two 3He atoms attract each other and can form a stable dimer, which pushes a Cu atom out of its original lattice site and occupies the vacancy. This dimer can catch another 3He atom and form a trimer with an equilateral triangular structure.

  4. DYNAMIC COMPACTION OF PURE COPPER POWDER USING PULSED MAGNETIC FORCE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The compaction of pure Cu powder was carried out through a series of experiments using dynamic magnetic pulse compaction, and the effects of process parameters, such as discharge energy and compacting direction, on the homogeneity and the compaction density of compacted specimens were presented and discussed. The results indicated that the compaction density of specimens increased with the augment of discharge voltage and time. During unidirectional compaction, there was a density gradient along the loading direction in the compacted specimen, and the minimum compaction density was localized to the center of the bottom of the specimen. The larger the aspect ratio of a powder body, the higher the compaction density of the compacted specimen. And high conductivity drivers were beneficial to the increase of the compaction density. The iterative and the double direction compaction were efficient means to manufacture the homogeneous and high-density powder parts.

  5. A Study on the Structure and Photodetachment Dynamics of Copper Based Molecular Anions Using Photoelectron Spectroscopy

    Science.gov (United States)

    Holtgrewe, Nicholas Stephen

    This dissertation represents a study of the effects of electron molecule interactions in the detachment and dissociation dynamics of copper based molecular anions. Results are presented on the photodetachment of small copper oxide CuOn-- (n = 1, 2) and copper fluoride CuFn-- (n = 1, 2) molecular anions. Effects of different resonances are explored using the photoelectron angular distributions (PADs) and the relative intensity variations in vibrational channel cross sections. The specific resonances studied include dipole bound resonances, in which the electric dipole moment of the neutral molecule captures the outgoing electron, and electronic Feshbach resonances, in which the anion undergoes absorption to an excited anion state (lying energetically above the neutral) followed by relaxation via autodetachment into the electronic continuum. In addition to electron scattering resonances, the effects of dissociation dynamics on linear CuO2-- are studied, wherein the linear anion isomer was found to dissociate to Cu-- fragments. This dissociation process is interpreted with experimental data acquired from nanosecond photoelectron images and a femtosecond time resolved study.

  6. An agent-based model of cellular dynamics and circadian variability in human endotoxemia.

    Directory of Open Access Journals (Sweden)

    Tung T Nguyen

    Full Text Available As cellular variability and circadian rhythmicity play critical roles in immune and inflammatory responses, we present in this study an agent-based model of human endotoxemia to examine the interplay between circadian controls, cellular variability and stochastic dynamics of inflammatory cytokines. The model is qualitatively validated by its ability to reproduce circadian dynamics of inflammatory mediators and critical inflammatory responses after endotoxin administration in vivo. Novel computational concepts are proposed to characterize the cellular variability and synchronization of inflammatory cytokines in a population of heterogeneous leukocytes. Our results suggest that there is a decrease in cell-to-cell variability of inflammatory cytokines while their synchronization is increased after endotoxin challenge. Model parameters that are responsible for IκB production stimulated by NFκB activation and for the production of anti-inflammatory cytokines have large impacts on system behaviors. Additionally, examining time-dependent systemic responses revealed that the system is least vulnerable to endotoxin in the early morning and most vulnerable around midnight. Although much remains to be explored, proposed computational concepts and the model we have pioneered will provide important insights for future investigations and extensions, especially for single-cell studies to discover how cellular variability contributes to clinical implications.

  7. Molecular dynamic simulation of Copper and Platinum nanoparticles Poiseuille flow in a nanochannels

    Science.gov (United States)

    Toghraie, Davood; Mokhtari, Majid; Afrand, Masoud

    2016-10-01

    In this paper, simulation of Poiseuille flow within nanochannel containing Copper and Platinum particles has been performed using molecular dynamic (MD). In this simulation LAMMPS code is used to simulate three-dimensional Poiseuille flow. The atomic interaction is governed by the modified Lennard-Jones potential. To study the wall effects on the surface tension and density profile, we placed two solid walls, one at the bottom boundary and the other at the top boundary. For solid-liquid interactions, the modified Lennard-Jones potential function was used. Velocity profiles and distribution of temperature and density have been obtained, and agglutination of nanoparticles has been discussed. It has also shown that with more particles, less time is required for the particles to fuse or agglutinate. Also, we can conclude that the agglutination time in nanochannel with Copper particles is faster that in Platinum nanoparticles. Finally, it is demonstrated that using nanoparticles raises thermal conduction in the channel.

  8. Dynamics of cellular immune responses in the acute phase of dengue virus infection.

    Science.gov (United States)

    Yoshida, Tomoyuki; Omatsu, Tsutomu; Saito, Akatsuki; Katakai, Yuko; Iwasaki, Yuki; Kurosawa, Terue; Hamano, Masataka; Higashino, Atsunori; Nakamura, Shinichiro; Takasaki, Tomohiko; Yasutomi, Yasuhiro; Kurane, Ichiro; Akari, Hirofumi

    2013-06-01

    In this study, we examined the dynamics of cellular immune responses in the acute phase of dengue virus (DENV) infection in a marmoset model. Here, we found that DENV infection in marmosets greatly induced responses of CD4/CD8 central memory T and NKT cells. Interestingly, the strength of the immune response was greater in animals infected with a dengue fever strain than in those infected with a dengue hemorrhagic fever strain of DENV. In contrast, when animals were re-challenged with the same DENV strain used for primary infection, the neutralizing antibody induced appeared to play a critical role in sterilizing inhibition against viral replication, resulting in strong but delayed responses of CD4/CD8 central memory T and NKT cells. The results in this study may help to better understand the dynamics of cellular and humoral immune responses in the control of DENV infection.

  9. Generation and precise control of dynamic biochemical gradients for cellular assays

    CERN Document Server

    Saka, Yasushi; Giuraniuc, Claudiu V

    2016-01-01

    Spatial gradients of diffusible signalling molecules play crucial roles in controlling diverse cellular behaviour such as cell differentiation, tissue patterning and chemotaxis. Here we present a microfluidic platform for cellular assays that can generate and control diffusion-based gradients dynamically. A unique design of the device eliminates cross-flow between the source and sink channels, thereby stabilising gradients by passive diffusion. The platform also enables quick and flexible control of chemical concentration that makes highly dynamic gradients in diffusion chambers. Budding yeast cells cultured in a gradient of a chemical inducer expressed a reporter fluorescence protein in a concentration-dependent manner. This microfluidic platform serves as a versatile prototype applicable to a broad range of biomedical investigations.

  10. The interstitialcy diffusion in FCC copper: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Bukkuru, S., E-mail: srinivasaraobukkuru@gmail.com; Rao, A. D. P. [Nucl. Phys Dept., Andhra University, Visakhapatnam– 530003 (India); Warrier, M. [Computational Analysis Division, Bhabha Atomic Research Centre, Visakhapatnam – 530012 (India)

    2015-06-24

    Damage of materials due to neutron irradiation occurs via energetic cascades caused by energetic primary knock-on atoms (PKA) created by the energetic neutron as it passes through the material. These cascades result in creation of Frenkel Pairs (interstitials and vacancies). The interstitials and vacancies diffuse and recombine to (I) nullify the damage when an interstitial recombines with a vacancy, (II) form interstitial clusters when two or more interstitials recombine, and (III) form vacancy clusters when several vacancies come together. The latter two processes result in change of material properties. Interstitial diffusion has reported time-scales of microseconds and vacancy diffusion has diffusion time-scales of the order of seconds. We have carried out molecular dynamics (MD) simulations of interstitial diffusion in crystal Cu to study the mechanism of diffusion. It is found that interstitialcy diffusion – wherein an interstitial displaces a lattice atom thereby making the lattice atom an interstitial – has time-scales of a few tens of pico-seconds. Therefore we propose that the “interstitialcy diffusion” mechanism could play a major part in the diffusive-recombinations of the Frenkel Pairs created during the cascade.

  11. High-speed collision of copper nanoparticle with aluminum surface: Molecular dynamics simulation

    Science.gov (United States)

    Pogorelko, Victor V.; Mayer, Alexander E.; Krasnikov, Vasiliy S.

    2016-12-01

    We investigate the effect of the high-speed collision of copper nanoparticles with aluminum surface by means of molecular dynamic simulations. Studied diameter of nanoparticles is varied within the range 7.2-22 nm and the velocity of impact is equal to 500 or 1000 m/s. Dislocation analysis shows that a large quantity of dislocations is formed within the impact area. Overall length of dislocations is determined, first of all, by the impact velocity and by the size of incident copper nanoparticle, in other words, by the kinetic energy of the nanoparticle. Dislocations occupy the total volume of the impacted aluminum single crystal layer (40.5 nm in thickness) in the form of intertwined structure in the case of large kinetic energy of the incident nanoparticle. Decrease in the initial kinetic energy or increase in the layer thickness lead to restriction of the penetration depth of the dislocation net; formation of separate dislocation loops is observed in this case. Increase in the initial system temperature slightly raises the dislocation density inside the bombarded layer and considerably decreases the dislocation density inside the nanoparticle. The temperature increase also leads to a deeper penetration of the copper atoms inside the aluminum. Additional molecular dynamic simulations show that the deposited particles demonstrate a very good adhesion even in the case of the considered relatively large nanoparticles. Medium energy of the nanoparticles corresponding to velocity of about 500 m/s and elevated temperature of the system about 700-900 K are optimal parameters for production of high-quality layers of copper on the aluminum surface. These conditions provide both a good adhesion and a less degree of the plastic deformation. At the same time, higher impact velocities can be used for combined treatment consisting of both the plastic deformation and the coating.

  12. Dynamical critical behavior in a cellular model of superconducting vortex avalanches

    Science.gov (United States)

    Vadakkan, Tegy John

    Bak, Tang, and Wiesenfeld showed that certain driven dissipative systems with many degrees of freedom organize into a critical state characterized by avalanche dynamics and power law distribution of avalanche sizes and durations. They called this phenomenon self-organized criticality and sandpile became the prototype of such dynamical systems. Universality in these systems is not yet well established. Forty years ago, de Gennes noted that the Bean state in a type-II superconductor is similar to a sandpile. Motivated by strong experimental evidences, Bassler and Paczuski (BP) proposed a 2D sandpile model to study self-organization in the dynamics of vortices in superconductors. In this dissertation, the effect of anisotropy in the vortex-vortex interaction, stochasticity in the vortex toppling rule, and the configuration of the pinning centers on the scaling properties of the avalanches in the BP model is studied. Also, universality in the cellular model of vortex dynamics is investigated.

  13. Handling of Copper and Copper Oxide Nanoparticles by Astrocytes.

    Science.gov (United States)

    Bulcke, Felix; Dringen, Ralf

    2016-02-01

    Copper is an essential trace element for many important cellular functions. However, excess of copper can impair cellular functions by copper-induced oxidative stress. In brain, astrocytes are considered to play a prominent role in the copper homeostasis. In this short review we summarise the current knowledge on the molecular mechanisms which are involved in the handling of copper by astrocytes. Cultured astrocytes efficiently take up copper ions predominantly by the copper transporter Ctr1 and the divalent metal transporter DMT1. In addition, copper oxide nanoparticles are rapidly accumulated by astrocytes via endocytosis. Cultured astrocytes tolerate moderate increases in intracellular copper contents very well. However, if a given threshold of cellular copper content is exceeded after exposure to copper, accelerated production of reactive oxygen species and compromised cell viability are observed. Upon exposure to sub-toxic concentrations of copper ions or copper oxide nanoparticles, astrocytes increase their copper storage capacity by upregulating the cellular contents of glutathione and metallothioneins. In addition, cultured astrocytes have the capacity to export copper ions which is likely to involve the copper ATPase 7A. The ability of astrocytes to efficiently accumulate, store and export copper ions suggests that astrocytes have a key role in the distribution of copper in brain. Impairment of this astrocytic function may be involved in diseases which are connected with disturbances in brain copper metabolism.

  14. Effects of heterogeneity on recrystallization kinetics of nanocrystalline copper prepared by dynamic plastic deformation

    DEFF Research Database (Denmark)

    Lin, Fengxiang; Zhang, Yubin; Tao, Nairong;

    2014-01-01

    Recrystallization and mechanical behavior of nanocrystalline copper prepared by dynamic plastic deformation (DPD) and DPD with additional cold-rolling (DPD+CR) were investigated, with an emphasis on the effects of heterogeneity within the deformation microstructure. The DPD sample was found...... than 1, which is explained using a two-stage kinetics model incorporating the heterogeneity. The heterogeneity of the DPD sample is largely reduced by applying additional rolling. This change in deformation path leads to a more random distribution of the recrystallized grains and more conventional...

  15. Estimation of dynamic properties of attractors observed in hollow copper electrode atmospheric pressure arc plasma system

    Indian Academy of Sciences (India)

    S Ghorul; S N Sahasrabudhe; P S S Murthy; A K Das; N Venkatramani

    2002-07-01

    Understanding of the basic nature of arc root fluctuation is still one of the unsolved problems in thermal arc plasma physics. It has direct impact on myriads of thermal plasma applications being implemented at present. Recently, chaotic nature of arc root behavior has been reported through the analysis of voltages, acoustic and optical signals which are generated from a hollow copper electrode arc plasma torch. In this paper we present details of computations involved in the estimation process of various dynamic properties and show how they reflect chaotic behavior of arc root in the system.

  16. Plasticity-mediated collapse and recrystallization in hollow copper nanowires: a molecular dynamics simulation.

    Science.gov (United States)

    Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri

    2016-01-01

    We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.

  17. Yielding and post-yield behaviour of closed-cell cellular materials under multiaxial dynamic loading

    Science.gov (United States)

    Vesenjak, Matej; Ren, Zoran

    2016-05-01

    The paper focuses on characterisation of yielding and post-yield behaviour of metals with closed-cell cellular structure when subjected to multiaxial dynamic loading, considering the influence of the relative density, base material, strain rate and pore gas pressure. Research was conducted by extensive parametric fully-coupled computational simulations using the finite element code LS-DYNA. Results have shown that the macroscopic yield stress of cellular material rises with increase of the relative density, while its dependence on the hydrostatic stress decreases. The yield limit also rises with increase of the strain rate, while the hydrostatic stress influence remains more or less the same at different strain-rates. The macroscopic yield limit of the cellular material is also strongly influenced by the choice of base material since the base materials with higher yield limit contribute also to higher macroscopic yield limit of the cellular material. By increasing the pore gas filler pressure the dependence on hydrostatic stress increases while at the same time the yield surface shifts along the hydrostatic axis in the negative direction. This means that yielding at compression is delayed due to influence of the initial pore pressure and occurs at higher compressive loading, while the opposite is true for tensile loading.

  18. Regeneration in Macrostomum lignano (Platyhelminthes): cellular dynamics in the neoblast stem cell system.

    Science.gov (United States)

    Nimeth, Katharina Theresia; Egger, Bernhard; Rieger, Reinhard; Salvenmoser, Willi; Peter, Roland; Gschwentner, Robert

    2007-03-01

    Neoblasts are potentially totipotent stem cells and the only proliferating cells in adult Platyhelminthes. We have examined the cellular dynamics of neoblasts during the posterior regeneration of Macrostomum lignano. Double-labeling of neoblasts with bromodeoxyuridine and the anti-phospho histone H3 mitosis marker has revealed a complex cellular response in the first 48 h after amputation; this response is different from that known to occur during regeneration in triclad platyhelminths and in starvation/feeding experiments in M. lignano. Mitotic activity is reduced during the first 8 h of regeneration but, at 48 h after amputation, reaches almost twice the value of control animals. The total number of S-phase cells significantly increases after 1 day of regeneration. A subpopulation of fast-cycling neoblasts surprisingly shows the same dynamics during regeneration as those in control animals. Wound healing and regeneration are accompanied by the formation of a distinct blastema. These results present new insights, at the cellular level, into the early regeneration of rhabditophoran Platyhelminthes.

  19. Microfluidics-integrated time-lapse imaging for analysis of cellular dynamics.

    Science.gov (United States)

    Albrecht, Dirk R; Underhill, Gregory H; Resnikoff, Joshua; Mendelson, Avital; Bhatia, Sangeeta N; Shah, Jagesh V

    2010-06-01

    An understanding of the mechanisms regulating cellular responses has recently been augmented by innovations enabling the observation of phenotypes at high spatio-temporal resolution. Technologies such as microfluidics have sought to expand the throughput of these methods, although assimilation with advanced imaging strategies has been limited. Here, we describe the pairing of high resolution time-lapse imaging with microfluidic multiplexing for the analysis of cellular dynamics, utilizing a design selected for facile fabrication and operation, and integration with microscopy instrumentation. This modular, medium-throughput platform enables the long-term imaging of living cells at high numerical aperture (via oil immersion) by using a conserved 96-well, approximately 6 x 5 mm(2) imaging area with a variable input/output channel design chosen for the number of cell types and microenvironments under investigation. In the validation of this system, we examined fundamental features of cell cycle progression, including mitotic kinetics and spindle orientation dynamics, through the high-resolution parallel analysis of model cell lines subjected to anti-mitotic agents. We additionally explored the self-renewal kinetics of mouse embryonic stem cells, and demonstrate the ability to dynamically assess and manipulate stem cell proliferation, detect rare cell events, and measure extended time-scale correlations. We achieved an experimental throughput of >900 cells/experiment, each observed at >40x magnification for up to 120 h. Overall, these studies illustrate the capacity to probe cellular functions and yield dynamic information in time and space through the integration of a simple, modular, microfluidics-based imaging platform.

  20. Molecular modeling of the conformational dynamics of the cellular prion protein

    Science.gov (United States)

    Nguyen, Charles; Colling, Ian; Bartz, Jason; Soto, Patricia

    2014-03-01

    Prions are infectious agents responsible for transmissible spongiform encephalopathies (TSEs), a type of fatal neurodegenerative disease in mammals. Prions propagate biological information by conversion of the non-pathological version of the prion protein to the infectious conformation, PrPSc. A wealth of knowledge has shed light on the nature and mechanism of prion protein conversion. In spite of the significance of this problem, we are far from fully understanding the conformational dynamics of the cellular isoform. To remedy this situation we employ multiple biomolecular modeling techniques such as docking and molecular dynamics simulations to map the free energy landscape and determine what specific regions of the prion protein are most conductive to binding. The overall goal is to characterize the conformational dynamics of the cell form of the prion protein, PrPc, to gain insight into inhibition pathways against misfolding. NE EPSCoR FIRST Award to Patricia Soto.

  1. Generation and precise control of dynamic biochemical gradients for cellular assays

    Science.gov (United States)

    Saka, Yasushi; MacPherson, Murray; Giuraniuc, Claudiu V.

    2017-03-01

    Spatial gradients of diffusible signalling molecules play crucial roles in controlling diverse cellular behaviour such as cell differentiation, tissue patterning and chemotaxis. In this paper, we report the design and testing of a microfluidic device for diffusion-based gradient generation for cellular assays. A unique channel design of the device eliminates cross-flow between the source and sink channels, thereby stabilizing gradients by passive diffusion. The platform also enables quick and flexible control of chemical concentration that makes highly dynamic gradients in diffusion chambers. A model with the first approximation of diffusion and surface adsorption of molecules recapitulates the experimentally observed gradients. Budding yeast cells cultured in a gradient of a chemical inducer expressed a reporter fluorescence protein in a concentration-dependent manner. This microfluidic platform serves as a versatile prototype applicable to a broad range of biomedical investigations.

  2. Dynamic Monitoring of Cellular Remodeling Induced by the Transforming Growth Factor-β1

    Directory of Open Access Journals (Sweden)

    Kubala Lukáš

    2009-01-01

    Full Text Available Abstract The plasticity of differentiated adult cells could have a great therapeutic potential, but at the same time, it is characteristic of progression of serious pathological states such as cancer and fibrosis. In this study, we report on the application of a real-time noninvasive system for dynamic monitoring of cellular plasticity. Analysis of the cell impedance profile recorded as cell index using a real-time cell analyzer revealed its significant increase after the treatment of prostate epithelial cells with the transforming growth factor-β1. Changes in the cell index profile were paralleled with cytoskeleton rebuilding and induction of epithelial–mesenchymal transition and negatively correlated with cell proliferation. This novel application of such approach demonstrated a great potential of the impedance-based system for noninvasive and real-time monitoring of cellular fate.

  3. Predictive modeling of multicellular structure formation by using Cellular Particle Dynamics simulations

    Science.gov (United States)

    McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan

    2014-03-01

    Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  4. Dynamics of reactive oxygen species generation in the presence of copper(II)-histidine complex and cysteine.

    Science.gov (United States)

    Ząbek-Adamska, Anna; Drożdż, Ryszard; Naskalski, Jerzy W

    2013-01-01

    Histidine-copper(II) complex (Cu-His2) is a form of bound copper necessary for cellular copper uptake. Due to the high affinity of histidine to copper(II) ions, the binding of copper(II) by histidine is considered a substantial part of plasma antioxidative defense. Also cysteine plays a role in the antioxidative system. However, we show here that in the presence of oxygen the histidine-copper(II) complex plus cysteine produces reactive oxygen species (ROS). Cysteine concentration was assayed using a thiol specific silver-mercury electrode. Hydrogen peroxide was assayed amperometrically using platinum electrode. ROS formation was followed by chemiluminescence of luminol-fluoresceine-enhanced system. Addition of cysteine to Cu-His2 solution at pH 7.4 in the presence of atmospheric oxygen initiates the synthesis of H2O2 and generation of ROS, which manifests as a burst of chemiluminescence. The reaction has two stages; in the first stage, cysteine is utilized for the synthesis of an unstable intermediary product which becomes a substrate for ROS formation. Anaerobic conditions inhibit ROS formation. Increased cysteine concentration enhances the lag phase of the oxidative burst without influencing the amount of ROS. The synthesis of ROS (measured by chemiluminescence) is proportional to the concentration of Cu-His2 employed. ROS production can be repetitively initiated by further additions of cysteine to the reaction medium. The study suggests that Cu-His2 catalyzes cysteine-dependent reduction of oxygen to superoxide employing an intermediary cysteine-copper(I) complex and enabling Fenton reaction with copper and hydrogen peroxide produced as a secondary product. In effect, Cu-His2 with cysteine may be a source of ROS in biological media.

  5. Rolling Resistance and Mechanical Properties of Grinded Copper Surfaces Using Molecular Dynamics Simulation

    Science.gov (United States)

    Liang, Shih-Wei; Wang, Chih-Hao; Fang, Te-Hua

    2016-09-01

    Mechanical properties of copper (Cu) film under grinding process were accomplished by molecular dynamics simulation. A numerical calculation was carried out to understand the distributions of atomic and slip vector inside the Cu films. In this study, the roller rotation velocity, temperature, and roller rotation direction change are investigated to clarify their effect on the deformation mechanism. The simulation results showed that the destruction of materials was increased proportionally to the roller rotation velocity. The machining process at higher temperature results in larger kinetic energy of atoms than lower temperature during the grinding process of the Cu films. The result also shows that the roller rotation in the counterclockwise direction had the better stability than the roller rotation in the clockwise direction due to significantly increased backfill atoms in the groove of the Cu film surface. Additionally, the effects of the rolling resistances on the Cu film surfaces during the grinding process are studied by the molecular dynamics simulation method.

  6. In Situ XRD Studies of the Process Dynamics During Annealing in Cold-Rolled Copper

    Science.gov (United States)

    Dey, Santu; Gayathri, N.; Bhattacharya, M.; Mukherjee, P.

    2016-09-01

    The dynamics of the release of stored energy during annealing along two different crystallographic planes, i.e., {111} and {220}, in deformed copper have been investigated using in situ X-ray diffraction measurements at 458 K and 473 K (185 °C and 200 °C). The study has been carried out on 50 and 80 pct cold-rolled Cu sheets. The microstructures of the rolled samples have been characterized using optical microscopy and electron backscattered diffraction measurements. The microstructural parameters were evaluated from the X-ray diffractogram using the Scherrer equation and the modified Rietveld method. The stored energy along different planes was determined using the modified Stibitz formula from the X-ray peak broadening, and the bulk stored energy was evaluated using differential scanning calorimetry. The process dynamics of recovery and recrystallization as observed through the release of stored energy have been modeled as the second-order and first-order processes, respectively.

  7. Rolling Resistance and Mechanical Properties of Grinded Copper Surfaces Using Molecular Dynamics Simulation.

    Science.gov (United States)

    Liang, Shih-Wei; Wang, Chih-Hao; Fang, Te-Hua

    2016-12-01

    Mechanical properties of copper (Cu) film under grinding process were accomplished by molecular dynamics simulation. A numerical calculation was carried out to understand the distributions of atomic and slip vector inside the Cu films. In this study, the roller rotation velocity, temperature, and roller rotation direction change are investigated to clarify their effect on the deformation mechanism. The simulation results showed that the destruction of materials was increased proportionally to the roller rotation velocity. The machining process at higher temperature results in larger kinetic energy of atoms than lower temperature during the grinding process of the Cu films. The result also shows that the roller rotation in the counterclockwise direction had the better stability than the roller rotation in the clockwise direction due to significantly increased backfill atoms in the groove of the Cu film surface. Additionally, the effects of the rolling resistances on the Cu film surfaces during the grinding process are studied by the molecular dynamics simulation method.

  8. Dynamics of copper-phthalocyanine molecules on Au/Ge(001)

    Energy Technology Data Exchange (ETDEWEB)

    Sotthewes, K.; Heimbuch, R.; Zandvliet, H. J. W. [Physics of Interfaces and Nanomaterials, MESA" + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands)

    2015-10-07

    Spatially resolved current-time scanning tunneling spectroscopy combined with current-distance spectroscopy has been used to characterize the dynamic behavior of copper-phthalocyanine (CuPc) molecules adsorbed on a Au-modified Ge(001) surface. The analyzed CuPc molecules are adsorbed in a “molecular bridge” configuration, where two benzopyrrole groups (lobes) are connected to a Au-induced nanowire, whereas the other two lobes are connected to the adjacent nanowire. Three types of lobe configurations are found: a bright lobe, a dim lobe, and a fuzzy lobe. The dim and fuzzy lobes exhibit a well-defined switching behavior between two discrete levels, while the bright lobe shows a broad oscillation band. The observed dynamic behavior is induced by electrons that are injected into the LUMO+1 orbital of the CuPc molecule. By precisely adjusting the tip-molecule distance, the switching frequency of the lobes can be tuned accurately.

  9. Dynamic Kinetics of Methanol Synthesis over a Commercial Copper-Based Catalyst

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Adsorption, surface reaction and process dynamics on the surface of a commercial copper-based cata lyst for methanol synthesis from CO/CO2/H2 were systematically studied by means of temperature programmed desorption (TPD), tsmperature programmed surface reaction (TPSR), in-situ Fourier transform-inferred spec troscopy(FTIR) and stimulua-response techniques. As a part of results, an elementary step sequence was suggested and a group of ordinary differential equations (ODEs) for describing transient conversations relevant to all species on the catalyst surface and in the gas phase in a micro-fixed-bed reactor was derived. The values of the parameters referred to dynamic kinetics were estimated by fitting the solution of the ODEs with the transient response data obtained by the stimulus-response technique with a FTIR analyzer as an on-line detector.

  10. Analysing the uncertain future of copper with three exploratory system dynamics models

    NARCIS (Netherlands)

    Auping, W.; Pruyt, E.; Kwakkel, J.H.

    2012-01-01

    High copper prices, the prospect of a transition to a more sustainable energy mix and increasing copper demands from emerging economies have not led to an in-creased attention to the base metal copper in mineral scarcity discussions. The copper system is well documented, but especially regarding the

  11. Spatiotemporal dynamics of oscillatory cellular patterns in three-dimensional directional solidification.

    Science.gov (United States)

    Bergeon, N; Tourret, D; Chen, L; Debierre, J-M; Guérin, R; Ramirez, A; Billia, B; Karma, A; Trivedi, R

    2013-05-31

    We report results of directional solidification experiments conducted on board the International Space Station and quantitative phase-field modeling of those experiments. The experiments image for the first time in situ the spatially extended dynamics of three-dimensional cellular array patterns formed under microgravity conditions where fluid flow is suppressed. Experiments and phase-field simulations reveal the existence of oscillatory breathing modes with time periods of several 10's of minutes. Oscillating cells are usually noncoherent due to array disorder, with the exception of small areas where the array structure is regular and stable.

  12. Identification of dynamic changes in proteins associated with the cellular cytoskeleton after exposure to okadaic acid

    DEFF Research Database (Denmark)

    Opsahl, Jill A; Ljostveit, Sonja; Solstad, Therese;

    2013-01-01

    wanted to identify these phosphoproteins and searched for them in the cellular lipid rafts, which have been found to contain proteins that regulate cytoskeletal dynamics and cell adhesion. By using stable isotope labeling by amino acids in cell culture cells treated with okadaic acid (400 nM) could...... be combined with control cells before the isolation of lipid rafts. Protein phosphorylation events and translocations induced by okadaic acid were identified by mass spectrometry. Okadaic acid was shown to regulate the phosphorylation status and location of proteins associated with the actin cytoskeleton...

  13. Effect of nanostructure on rapid boiling of water on a hot copper plate: a molecular dynamics study

    Science.gov (United States)

    Fu, Ting; Mao, Yijin; Tang, Yong; Zhang, Yuwen; Yuan, Wei

    2016-08-01

    Molecular dynamic simulations are performed to study the effects of nanostructure on rapid boiling of water that is suddenly heated by a hot copper plate. The results show that the nanostructure has significant effects on energy transfer from solid copper plate to liquid water and phase change process from liquid water to vapor. The liquid water on the solid surface rapidly boil after contacting with an extremely hot copper plate and consequently a cluster of liquid water moves upward during phase change. The temperature of the water film when it separates from solid surface and its final temperature when the system is at equilibrium strongly depend on the size of the nanostructure. These temperatures increase with increasing size of nanostructure. Furthermore, a non-vaporized molecular layer is formed on the surface of the copper plate even continuous heat flux is passing into water domain through the plate.

  14. Tracing dynamics and clonal heterogeneity of Cbx7-induced leukemic stem cells by cellular barcoding.

    Science.gov (United States)

    Klauke, Karin; Broekhuis, Mathilde J C; Weersing, Ellen; Dethmers-Ausema, Albertina; Ritsema, Martha; González, Marta Vilà; Zwart, Erik; Bystrykh, Leonid V; de Haan, Gerald

    2015-01-13

    Accurate monitoring of tumor dynamics and leukemic stem cell (LSC) heterogeneity is important for the development of personalized cancer therapies. In this study, we experimentally induced distinct types of leukemia in mice by enforced expression of Cbx7. Simultaneous cellular barcoding allowed for thorough analysis of leukemias at the clonal level and revealed high and unpredictable tumor complexity. Multiple LSC clones with distinct leukemic properties coexisted. Some of these clones remained dormant but bore leukemic potential, as they progressed to full-blown leukemia after challenge. LSC clones could retain multilineage differentiation capacities, where one clone induced phenotypically distinct leukemias. Beyond a detailed insight into CBX7-driven leukemic biology, our model is of general relevance for the understanding of tumor dynamics and clonal evolution.

  15. Tracing Dynamics and Clonal Heterogeneity of Cbx7-Induced Leukemic Stem Cells by Cellular Barcoding

    Directory of Open Access Journals (Sweden)

    Karin Klauke

    2015-01-01

    Full Text Available Accurate monitoring of tumor dynamics and leukemic stem cell (LSC heterogeneity is important for the development of personalized cancer therapies. In this study, we experimentally induced distinct types of leukemia in mice by enforced expression of Cbx7. Simultaneous cellular barcoding allowed for thorough analysis of leukemias at the clonal level and revealed high and unpredictable tumor complexity. Multiple LSC clones with distinct leukemic properties coexisted. Some of these clones remained dormant but bore leukemic potential, as they progressed to full-blown leukemia after challenge. LSC clones could retain multilineage differentiation capacities, where one clone induced phenotypically distinct leukemias. Beyond a detailed insight into CBX7-driven leukemic biology, our model is of general relevance for the understanding of tumor dynamics and clonal evolution.

  16. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction

    Science.gov (United States)

    Ohta, Seiichi; Glancy, Dylan; Chan, Warren C. W.

    2016-02-01

    Precise control of biosystems requires development of materials that can dynamically change physicochemical properties. Inspired by the ability of proteins to alter their conformation to mediate function, we explored the use of DNA as molecular keys to assemble and transform colloidal nanoparticle systems. The systems consist of a core nanoparticle surrounded by small satellites, the conformation of which can be transformed in response to DNA via a toe-hold displacement mechanism. The conformational changes can alter the optical properties and biological interactions of the assembled nanosystem. Photoluminescent signal is altered by changes in fluorophore-modified particle distance, whereas cellular targeting efficiency is increased 2.5 times by changing the surface display of targeting ligands. These concepts provide strategies for engineering dynamic nanotechnology systems for navigating complex biological environments.

  17. A new method for decreasing cell-load variation in dynamic cellular manufacturing systems

    Directory of Open Access Journals (Sweden)

    Aidin Delgoshaei

    2016-01-01

    Full Text Available Cell load variation is considered a significant shortcoming in scheduling of cellular manufacturing systems. In this article, a new method is proposed for scheduling dynamic cellular manufacturing systems in the presence of bottleneck and parallel machines. The aim of this method is to control cell load variation during the process of determining the best trading off values between in-house manufacturing and outsourcing. A genetic algorithm (GA is developed because of the high potential of trapping in the local optima, and results are compared with the results of LINGO® 12.0 software. The Taguchi method (an L_9 orthogonal optimization is used to estimate parameters of GA in order to solve experiments derived from literature. An in-depth analysis is conducted on the results in consideration of various factors, and control charts are used on machine-load variation. Our findings indicate that the dynamic condition of product demands affects the routing of product parts and may induce machine-load variations that yield to cell-load diversity. An increase in product uncertainty level causes the loading level of each cell to vary, which in turn results in the development of “complex dummy sub-cells”. The effect of the complex sub-cells is measured using another mathematical index. The results showed that the proposed GA can provide solutions with limited cell-load variations.

  18. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.

    Science.gov (United States)

    Weis, P; Driesner, T; Heinrich, C A

    2012-12-21

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  19. Molecular dynamics simulations of void effect of the copper nanocubes under triaxial tensions

    Science.gov (United States)

    Yang, Zailin; Zhang, Guowei; Zhao, Jianwei

    2016-02-01

    The isotropic copper nanocubes with different size cubic voids under triaxial tensions are investigated by the molecular dynamics method. For accuracy we present the hydrostatic stress, Mises stress, true stress, logarithmic strain and relationship between each other. In the simulation the number of model atoms is formulized and the hydrostatic stresses can replace triaxial stresses of model. We demonstrate that the yielding strengths will decrease with increase of void, particularly when the void percentage is reaching 0.2%. The models are breaking at 45 angle dislocation with tiny differences. Also, the Gurson model cannot well describe the trend of damage; instead the authors propose a modified model by relationship between Mises stress and hydrostatic stress.

  20. Validating material modelling for OFHC copper using dynamic tensile extrusion (DTE) test at different velocity impact

    Science.gov (United States)

    Bonora, N.; Testa, G.; Ruggiero, A.; Iannitti, G.; Colliander, M. Hörnquist; Mortazavi, N.

    2017-01-01

    In the Dynamic Tensile Extrusion (DTE) test, the material is subjected to very large strain, high strain rate and elevated temperature. Numerical simulation, validated comparing with measurements obtained on soft-recovered extruded fragments, can be used to probe material response under such extreme conditions and to assess constitutive models. In this work, the results of a parametric investigation on the simulation of DTE test of annealed OFHC copper - at impact velocity ranging from 350 up to 420 m/s - using the modified Rusinek-Klepaczko model, are presented. Simulation of microstructure evolution was performed using the visco-plastic self consistent model (VPSC), providing, as input, the velocity gradient history obtained with FEM at selected locations along the axis of the fragment trapped in the extrusion die. Finally, results are compared with EBSD analysis.

  1. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level. Th

  2. Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity.

    Science.gov (United States)

    Liang, Jie; Qian, Hong

    2010-01-01

    Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand "complex behavior" and complexity theory, and from which important biological insight can be gained.

  3. Dynamics of the HIV infection under antiretroviral therapy: A cellular automata approach

    Science.gov (United States)

    González, Ramón E. R.; Coutinho, Sérgio; Zorzenon dos Santos, Rita Maria; de Figueirêdo, Pedro Hugo

    2013-10-01

    The dynamics of human immunodeficiency virus infection under antiretroviral therapy is investigated using a cellular automata model where the effectiveness of each drug is self-adjusted by the concentration of CD4+ T infected cells present at each time step. The effectiveness of the drugs and the infected cell concentration at the beginning of treatment are the control parameters of the cell population’s dynamics during therapy. The model allows describing processes of mono and combined therapies. The dynamics that emerges from this model when considering combined antiretroviral therapies reproduces with fair qualitative agreement the phases and different time scales of the process. As observed in clinical data, the results reproduce the significant decrease in the population of infected cells and a concomitant increase of the population of healthy cells in a short timescale (weeks) after the initiation of treatment. Over long time scales, early treatment with potent drugs may lead to undetectable levels of infection. For late treatment or treatments starting with a low density of CD4+ T healthy cells it was observed that the treatment may lead to a steady state in which the T cell counts are above the threshold associated with the onset of AIDS. The results obtained are validated through comparison to available clinical trial data.

  4. Molecular dynamics studies of the inhibitory mechanism of copper(Ⅱ) on aggregation of amyloid β-peptide

    Institute of Scientific and Technical Information of China (English)

    Yong Jiao; Pin Yang

    2007-01-01

    The inhibitory mechanism of copper(Ⅱ) on the aggregation of amyloid β-peptide (Aβ) was investigated by molecular dynamics simulations. The binding mode of copper(Ⅱ) with Aβ is characterized by the imidazole nitrogen atom, Nπ, of the histidine residue H13,acting as the anchoring site, and the backbone's deprotoned amide nitrogen atoms as the main binding sites. Drove by the coordination bonds and their induced hydrogen bond net, the conformations of Aβ converted from β-sheet non-β-sheet conformations, which destabilized the aggregation of Aβ into fibrils.

  5. Robust Nash Dynamic Game Strategy for User Cooperation Energy Efficiency in Wireless Cellular Networks

    Directory of Open Access Journals (Sweden)

    Shuhuan Wen

    2012-01-01

    Full Text Available Recently, there is an emerging trend of addressing “energy efficiency” aspect of wireless communications. It has been shown that cooperating users relay each other's information to improve data rates. The energy is limited in the wireless cellular network, but the mobile users refuse to relay. This paper presents an approach that encourages user cooperation in order to improve the energy efficiency. The game theory is an efficient method to solve such conflicts. We present a cellular framework in which two mobile users, who desire to communicate with a common base station, may cooperate via decode-and-forward relaying. In the case of imperfect information assumption, cooperative Nash dynamic game is used between the two users' cooperation to tackle the decision making problems: whether to cooperate and how to cooperate in wireless networks. The scheme based on “cooperative game theory” can achieve general pareto-optimal performance for cooperative games, and thus, maximize the entire system payoff while maintaining fairness.

  6. Mesoscale simulation of discontinuous dynamic recrystallization using the cellular automaton method

    Institute of Scientific and Technical Information of China (English)

    Baojun YU; Xiaojun GUAN; Lijun WANG; Qingkai ZENG; Qianqian LIU; Yu CAO

    2011-01-01

    A dynamic recrystallization (DRX) cellular automaton (CA) model that can mark the microstructure with DRX circle was developed.The effects of initial grain size on the stress-strain curve,mean grain size and DRX fraction were mainly investigated,and the simulated results were compared with those obtained from previous researches.The results show that the shape of the stress-strain curve is sensitive,while the stress and mean grain size at the steady state are insensitive to the initial grain size.The transition from a multiple-peak stress-strain curve to a single-peak one can be explained by variations in DRX circle fraction,and the initial grain size to make this transition is between 70 and 80 μm.

  7. Designing a mathematical model for integrating dynamic cellular manufacturing into supply chain system

    Science.gov (United States)

    Aalaei, Amin; Davoudpour, Hamid

    2012-11-01

    This article presents designing a new mathematical model for integrating dynamic cellular manufacturing into supply chain system with an extensive coverage of important manufacturing features consideration of multiple plants location, multi-markets allocation, multi-period planning horizons with demand and part mix variation, machine capacity, and the main constraints are demand of markets satisfaction in each period, machine availability, machine time-capacity, worker assignment, available time of worker, production volume for each plant and the amounts allocated to each market. The aim of the proposed model is to minimize holding and outsourcing costs, inter-cell material handling cost, external transportation cost, procurement & maintenance and overhead cost of machines, setup cost, reconfiguration cost of machines installation and removal, hiring, firing and salary worker costs. Aimed to prove the potential benefits of such a design, presented an example is shown using a proposed model.

  8. Cellular computational networks--a scalable architecture for learning the dynamics of large networked systems.

    Science.gov (United States)

    Luitel, Bipul; Venayagamoorthy, Ganesh Kumar

    2014-02-01

    Neural networks for implementing large networked systems such as smart electric power grids consist of multiple inputs and outputs. Many outputs lead to a greater number of parameters to be adapted. Each additional variable increases the dimensionality of the problem and hence learning becomes a challenge. Cellular computational networks (CCNs) are a class of sparsely connected dynamic recurrent networks (DRNs). By proper selection of a set of input elements for each output variable in a given application, a DRN can be modified into a CCN which significantly reduces the complexity of the neural network and allows use of simple training methods for independent learning in each cell thus making it scalable. This article demonstrates this concept of developing a CCN using dimensionality reduction in a DRN for scalability and better performance. The concept has been analytically explained and empirically verified through application.

  9. Empirical results for pedestrian dynamics and their implications for cellular automata models

    CERN Document Server

    Schadschneider, Andreas

    2010-01-01

    A large number of models for pedestrian dynamics have been developed over the years. However, so far not much attention has been paid to their quantitative validation. Usually the focus is on the reproduction of empirically observed collective phenomena, as lane formation in counterflow. This can give an indication for the realism of the model, but practical applications, e.g. in safety analysis, require quantitative predictions. We discuss the current experimental situation, especially for the fundamental diagram which is the most important quantity needed for calibration. In addition we consider the implications for the modelling based on cellular automata. As specific example the floor field model is introduced. Apart from the properties of its fundamental diagram we discuss the implications of an egress experiment for the relevance of conflicts and friction effects.

  10. Extrasynaptic glutamate receptor activation as cellular bases for dynamic range compression in pyramidal neurons

    Directory of Open Access Journals (Sweden)

    Katerina D Oikonomou

    2012-08-01

    Full Text Available Repetitive synaptic stimulation overcomes the ability of astrocytic processes to clear glutamate from the extracellular space, allowing some dendritic segments to become submerged in a pool of glutamate. This dynamic arrangement activates extrasynaptic NMDA receptors located on dendritic shafts. We used voltage-sensitive and calcium-sensitive dyes to probe dendritic function in this glutamate-rich location. An excess of glutamate in the extrasynaptic space was achieved either by repetitive synaptic stimulation or by glutamate iontophoresis onto the dendrites of pyramidal neurons. Two successive activations of synaptic inputs produced a typical NMDA spike, whereas five successive synaptic inputs produced characteristic plateau potentials, reminiscent of cortical UP states. While NMDA spikes were coupled with brief calcium transients highly restricted to the glutamate input site, the dendritic plateau potentials were accompanied by calcium influx along the entire dendritic branch. Once initiated, the glutamate-mediated dendritic plateau potentials could not be interrupted by negative voltage pulses. Activation of extrasynaptic NMDA receptors in cellular compartments void of spines is sufficient to initiate and support plateau potentials. The only requirement for sustained depolarizing events is a surplus of free glutamate near a group of extrasynaptic receptors. Highly nonlinear dendritic spikes (plateau potentials are summed in a highly sublinear fashion at the soma, revealing the cellular bases of signal compression in cortical circuits. Extrasynaptic NMDA receptors provide pyramidal neurons with a function analogous to a dynamic range compression in audio engineering. They limit or reduce the volume of loud sounds (i.e. strong glut. inputs and amplify quiet sounds (i.e. glutamatergic inputs that barely cross the dendritic threshold for local spike initiation. Our data also explain why consecutive cortical UP states have uniform amplitudes in a

  11. Molecular dynamics simulation of self-rotation effects on ultra-precision polishing of single-crystal copper

    Directory of Open Access Journals (Sweden)

    Yihan Yang

    2013-10-01

    Full Text Available Understanding the behaviors of the material removal mechanism of ultra-precision polishing process has been a critical issue of generating well-formed surface. In order to make clear the abrasive self-rotation effects on material removal at the atomic level, a three-dimensional molecular dynamics (MD model is conducted to study the mechanics of ultra-precision polishing on single-crystal copper with a diamond abrasive and the effects of abrasive self-rotation velocity and direction. Morse potential energy function and EAM potential energy function are applied to model the copper/diamond and copper/copper interactions, respectively. The simulation results show that the deformation mechanism of single-crystal copper is due to the formation and movement of dislocations in the specimen. In addition, with the increasing of abrasive self-rotation velocity, the deformation mechanism falls from cutting to plowing regimes. The abrasive self-rotation velocity and direction have effects on the morphology and quality of the specimen surface, distribution and evolution of defects under the surface of the specimen. Also, the interatomic force between abrasive and specimen is studied to account for the effects of different polishing conditions.

  12. Molecular dynamics simulation of heat-affected zone of copper metal ablated with femtosecond laser

    Science.gov (United States)

    Hirayama, Yoichi; Obara, Minoru

    2005-03-01

    Femtosecond laser ablation of materials with high thermal conductivity is of paramount importance, because the chemical composition and properties of the area ablated with femtosecond laser are kept unchanged. The material processing by femtosecond laser can well control the heat-affected zone, compared to nanosecond laser ablation. We report on the heat-affected zone of crystalline copper (Cu) by use of femtosecond laser experimentally and theoretically. Laser ablation of Cu is investigated theoretically by two temperature model and molecular dynamics (MD) simulation. The MD simulation takes into account of electron temperature and thermal diffusion length calculated by two temperature model. The dependence of lattice temperature on time and depth is calculated by the MD simulation and two temperature model. The heat-affected zone estimated from the temperature is mainly studied and calculated to be 3 nm at 0.02 J/cm2 which is below the threshold fluence of 0.137 J/cm2. In addition, the thickness of heat-affected zone of copper crystal ablated with femtosecond Ti:sapphire laser is experimentally studied. As a result of X-ray diffraction (XRD) of the ablated surface, the surface crystallinity is partially changed into disordered structure from crystal form. The residual energy left in the metal, which is not used for ablation, will induce liquid phase, leading to the amorphous phase of the metal during resolidification. The thickness of heat-affected zone depends on laser fluence and is experimentally measured to be less than 1 μm at higher laser fluences than the ablation threshold.

  13. Developing land use scenario dynamics model by the integration of system dynamics model and cellular automata model

    Institute of Scientific and Technical Information of China (English)

    HE; Chunyang; SHI; Peijun; CHEN; Jin; Li; Xiaobing; PAN; Ya

    2005-01-01

    Modeling land use scenario changes and its potential impacts on the structure and function of the ecosystem in the typical regions are helpful to understanding the interactive mechanism between land use system and ecological system. A Land Use Scenario Dynamics (LUSD) model by the integration of System Dynamics (SD) model and Cellular Automata (CA) model is developed with land use scenario changes in northern China in the next 20 years simulated in this paper. The basic idea of LUSD model is to simulate the land use scenario demands by using SD model at first, then allocate the land use scenario patterns at the local scale with the considerations of land use suitability, inheritance ability and neighborhood effect by using CA model to satisfy the balance between land use scenario demands and supply. The application of LUSD model in northern China suggests that the model has the ability to reflect the complex behavior of land use system at different scales to some extent and is a useful tool for assessing the potential impacts of land use system on ecological system. In addition, the simulated results also indicate that obvious land use changes will take place in the farming-pastoral zone of northern China in the next 20 years with cultivated land and urban land being the most active land use types.

  14. Traffic dynamics around weaving section influenced by accident: Cellular automata approach

    Science.gov (United States)

    Kong, Lin-Peng; Li, Xin-Gang; Lam, William H. K.

    2015-07-01

    The weaving section, as a typical bottleneck, is one source of vehicle conflicts and an accident-prone area. Traffic accident will block lanes and the road capacity will be reduced. Several models have been established to study the dynamics around traffic bottlenecks. However, little attention has been paid to study the complex traffic dynamics influenced by the combined effects of bottleneck and accident. This paper presents a cellular automaton model to characterize accident-induced traffic behavior around the weaving section. Some effective control measures are proposed and verified for traffic management under accident condition. The total flux as a function of inflow rates, the phase diagrams, the spatial-temporal diagrams, and the density and velocity profiles are presented to analyze the impact of accident. It was shown that the proposed control measures for weaving traffic can improve the capacity of weaving section under both normal and accident conditions; the accidents occurring on median lane in the weaving section are more inclined to cause traffic jam and reduce road capacity; the capacity of weaving section will be greatly reduced when the accident happens downstream the weaving section.

  15. Quasi-elastic neutron scattering studies on dynamics of water confined in nanoporous copper rubeanate hydrates.

    Science.gov (United States)

    Yamada, Takeshi; Yonamine, Ryo; Yamada, Teppei; Kitagawa, Hiroshi; Tyagi, Madhusudan; Nagao, Michihiro; Yamamuro, Osamu

    2011-11-24

    We have investigated the mechanism of the first order transition and proton conductivity in copper rubeanate hydrates from microscopic and dynamical points of view. Three different types of neutron spectrometer-time-of-flight, backscattering, and neutron spin echo-were used to cover a wide dynamic range (1 ps to 100 ns). We found that the water molecules adsorbed in the pore are divided into "free water" having diffusion coefficients similar to those of bulk water at room temperature and "condensed water" which is about 10 times slower than bulk water owing to the interaction with the pore wall. The hydrogen atoms in the pore wall exhibited no relaxation within the measured time scales. The free water has, in the framework of the jump-diffusion model, smaller activation energy, longer residence time, and longer jump distance than bulk water. The neutron spin echo measurement revealed that the first order transition is a kind of liquid-liquid transition at which the free water is condensed on the pore surface in the low temperature phase. On cooling the condensed water, the relaxation time starts to deviate from the VFT equation around 200 K as previously observed in the water confined in nanoporous silicates. The free water plays an important role as the proton carrier but the proton conductivity is mainly governed by the number of protons provided into the adsorbed water from the pore wall.

  16. Laser fluence dependence on emission dynamics of ultrafast laser induced copper plasma

    Energy Technology Data Exchange (ETDEWEB)

    Anoop, K. K.; Harilal, S. S.; Philip, Reji; Bruzzese, R.; Amoruso, S.

    2016-11-14

    The characteristic emission features of a laser-produced plasma strongly depend strongly on the laser fluence. We investigated the spatial and temporal dynamics of neutrals and ions in femtosecond laser (800 nm, ≈ 40 fs, Ti:Sapphire) induced copper plasma in vacuum using both optical emission spectroscopy (OES) and spectrally resolved two-dimensional (2D) imaging methods over a wide fluence range of 0.5 J/cm2-77.5 J/cm2. 2D fast gated monochromatic images showed distinct plume splitting between the neutral and ions especially at moderate to higher fluence ranges. OES studies at low to moderate laser fluence regime confirm intense neutral line emission over the ion emission whereas this trend changes at higher laser fluence with dominance of the latter. This evidences a clear change in the physical processes involved in femtosecond laser matter interaction at high input laser intensity. The obtained ion dynamics resulting from the OES, and spectrally resolved 2D imaging are compared with charged particle measurement employing Faraday cup and Langmuir probe and results showed good correlation.

  17. Investigation of Applications of SA in the Design of Dynamic Cellular Manufacturing Systems

    Directory of Open Access Journals (Sweden)

    V. Jayakumar,

    2010-08-01

    Full Text Available Manufacturing industries are under intense pressure from the increasingly competitive global marketplace. Shorter product lifecycle, time to market and diverse customer needs have challengedmanufacturers to improve the efficiency and productivity of their production activities. Manufacturing systems should be able to adjust or respond quickly to adopt necessary changes in product design and product demand without major investment. Traditional manufacturingsystems are not capable of satisfying such requirements. Although a cellular manufacturing system (CMS provides great benefits, the design of CMS is complex for real life problems. The design of such a kind of manufacturing system under dynamic production environment, with variety and demand varying between each planning horizon, requires pervasive use of a Metaheuristics such as Genetic Algorithm (GA, Simulated Annealing algorithm (SA, and Tabu Search (TS. Thedynamic cell formation (CF problem (involving the formation of a mathematical model depicting the variableproduct mix and demand across the planning horizons is known to be one of the NP-hard combinational problems. Although some optimization algorithms can find the optimal solution for small- and medium-sized problems, they have a disadvantage in that the memory and computational time requirements are extremely high, and increase exponentially, as the problem size increases. In such situations, meta-heuristics are used for exploring and exploiting the search space to obtain good solutions. In contrast to other stochastic searches, SAs in particularhave the following unique features: it does not get trapped in local minimum. Allow uphill moves controlled by parameter called temperature. Final result not dependent on initial state.These features often makes them a preferable choice over traditional heuristics. The objective of this paper is to review how the SA has been applied so far for the Design of Cellular Manufacturing

  18. DMPD: Cellular reprogramming by gram-positive bacterial components: a review. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16885502 Cellular reprogramming by gram-positive bacterial components: a review. Bu...(.csml) Show Cellular reprogramming by gram-positive bacterial components: a review. PubmedID 16885502 Title... Cellular reprogramming by gram-positive bacterial components: a review. Authors

  19. Copper metabolism and copper-mediated alterations in the metabolism of cultured astrocytes

    OpenAIRE

    Scheiber, Ivo Florin

    2012-01-01

    Copper is an essential element that is required for a variety of important cellular functions. Since not only copper deficiency, but also excess of copper can seriously affect cellular functions, cellular copper metabolism is tightly regulated. Disturbances of copper homeostasis are the underlying defect of the inherited diseases Menkes and Wilson s disease and have also been linked to several neurodegenerative diseases including Alzheimer s disease and Parkinson s disease. Known astrocytes f...

  20. Dynamic Topology Re-Configuration in Multihop Cellular Networks Using Sequential Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    B.Shantha Kumari

    2014-10-01

    Full Text Available Cellular communications has experienced explosive growth in the past two decades. Today millions of people around the world use cellular phones. Cellular phones allow a person to make or receive a call from almost anywhere. Likewise, a person is allowed to continue the phone conversation while on the move. Cellular communications is supported by an infrastructure called a cellular network, which integrates cellular phones into the public switched telephone network. The cellular network has gone through three generations.The first generation of cellular networks is analog in nature. To accommodate more cellular phone subscribers, digital TDMA (time division multiple access and CDMA (code division multiple access technologies are used in the second generation (2G to increase the network capacity. With digital technologies, digitized voice can be coded and encrypted. Therefore, the 2G cellular network is also more secure. The third generation (3G integrates cellular phones into the Internet world by providing highspeed packet-switching data transmission in addition to circuit-switching voice transmission. The 3G cellular networks have been deployed in some parts of Asia, Europe, and the United States since 2002 and will be widely deployed in the coming years. The high increase in traffic and data rate for future generations of mobile communication systems, with simultaneous requirement for reduced power consumption, makes Multihop Cellular Networks (MCNs an attractive technology. To exploit the potentials of MCNs a new network paradigm is proposed in this paper. In addition, a novel sequential genetic algorithm (SGA is proposed as a heuristic approximation to reconfigure the optimum relaying topology as the network traffic changes. Network coding is used to combine the uplink and downlink transmissions, and incorporate it into the optimum bidirectional relaying with ICI awareness. Numerical results have shown that the algorithms suggested in this

  1. A conceptual mathematical model of the dynamic self-organisation of distinct cellular organelles.

    Directory of Open Access Journals (Sweden)

    Bernd Binder

    Full Text Available Formation, degradation and renewal of cellular organelles is a dynamic process based on permanent budding, fusion and inter-organelle traffic of vesicles. These processes include many regulatory proteins such as SNAREs, Rabs and coats. Given this complex machinery, a controversially debated issue is the definition of a minimal set of generic mechanisms necessary to enable the self-organization of organelles differing in number, size and chemical composition. We present a conceptual mathematical model of dynamic organelle formation based on interacting vesicles which carry different types of fusogenic proteins (FP playing the role of characteristic marker proteins. Our simulations (ODEs show that a de novo formation of non-identical organelles, each accumulating a different type of FP, requires a certain degree of disproportionation of FPs during budding. More importantly however, the fusion kinetics must indispensably exhibit positive cooperativity among these FPs, particularly for the formation of larger organelles. We compared different types of cooperativity: sequential alignment of corresponding FPs on opposite vesicle/organelles during fusion and pre-formation of FP-aggregates (equivalent, e.g., to SNARE clusters prior to fusion described by Hill kinetics. This showed that the average organelle size in the system is much more sensitive to the disproportionation strength of FPs during budding if the vesicular transport system gets along with a fusion mechanism based on sequential alignments of FPs. Therefore, pre-formation of FP aggregates within the membranes prior to fusion introduce robustness with respect to organelle size. Our findings provide a plausible explanation for the evolution of a relatively large number of molecules to confer specificity on the fusion machinery compared to the relatively small number involved in the budding process. Moreover, we could speculate that a specific cooperativity which may be described by Hill

  2. A refined and dynamic cellular automaton model for pedestrian-vehicle mixed traffic flow

    Science.gov (United States)

    Liu, Mianfang; Xiong, Shengwu

    2016-12-01

    Mixed traffic flow sharing the “same lane” and having no discipline on road is a common phenomenon in the developing countries. For example, motorized vehicles (m-vehicles) and nonmotorized vehicles (nm-vehicles) may share the m-vehicle lane or nm-vehicle lane and pedestrians may share the nm-vehicle lane. Simulating pedestrian-vehicle mixed traffic flow consisting of three kinds of traffic objects: m-vehicles, nm-vehicles and pedestrians, can be a challenge because there are some erratic drivers or pedestrians who fail to follow the lane disciplines. In the paper, we investigate various moving and interactive behavior associated with mixed traffic flow, such as lateral drift including illegal lane-changing and transverse crossing different lanes, overtaking and forward movement, and propose some new moving and interactive rules for pedestrian-vehicle mixed traffic flow based on a refined and dynamic cellular automaton (CA) model. Simulation results indicate that the proposed model can be used to investigate the traffic flow characteristic in a mixed traffic flow system and corresponding complicated traffic problems, such as, the moving characteristics of different traffic objects, interaction phenomenon between different traffic objects, traffic jam, traffic conflict, etc., which are consistent with the actual mixed traffic system. Therefore, the proposed model provides a solid foundation for the management, planning and evacuation of the mixed traffic flow.

  3. Adiponectin fine-tuning of liver regeneration dynamics revealed through cellular network modeling.

    Science.gov (United States)

    Correnti, Jason M; Cook, Daniel; Aksamitiene, Edita; Swarup, Aditi; Ogunnaike, Babatunde; Vadigepalli, Rajanikanth; Hoek, Jan B

    2014-11-10

    Following partial hepatectomy, the liver initiates a regenerative program involving hepatocyte priming and replication driven by coordinated cytokine and growth factor actions. We investigated the mechanisms underlying Adiponectin's (Adn) regulation of liver regeneration through modulation of these mediators. Adn-/- mice showed delayed onset of hepatocyte replication, but accelerated cell cycle progression relative to wild-type mice, suggesting Adn has multiple effects fine-tuning the kinetics of liver regeneration. We developed a computational model describing the molecular and physiological kinetics of liver regeneration in Adn-/- mice. We employed this computational model to evaluate the underlying regulatory mechanisms. Our analysis predicted that Adn is required for an efficient early cytokine response to partial hepatectomy, but is inhibitory to later growth factor actions. Consistent with this prediction, Adn knockout reduced hepatocyte responses to IL-6 during the priming phase, but enhanced growth factor levels through peak hepatocyte replication. By contrast, supraphysiological concentrations of Adn resulting from rosiglitazone treatment suppressed regeneration by reducing growth factor levels during S phase, consistent with computational predictions. Together, these results revealed that Adn fine-tunes the progression of liver regeneration through dynamically modulating molecular mediator networks and cellular interactions within the liver. This article is protected by copyright. All rights reserved.

  4. Adiponectin fine-tuning of liver regeneration dynamics revealed through cellular network modelling.

    Science.gov (United States)

    Correnti, Jason M; Cook, Daniel; Aksamitiene, Edita; Swarup, Aditi; Ogunnaike, Babatunde; Vadigepalli, Rajanikanth; Hoek, Jan B

    2015-01-15

    Following partial hepatectomy, the liver initiates a regenerative programme involving hepatocyte priming and replication driven by the coordinated actions of cytokine and growth factors. We investigated the mechanisms underlying adiponectin's (Adn) regulation of liver regeneration through modulation of these mediators. Adn(-/-) mice showed delayed onset of hepatocyte replication, but accelerated cell cycle progression relative to wild-type mice, suggesting Adn has multiple effects fine-tuning the kinetics of liver regeneration. We developed a computational model describing the molecular and physiological kinetics of liver regeneration in Adn(-/-) mice. We employed this computational model to evaluate the underlying regulatory mechanisms. Our analysis predicted that Adn is required for an efficient early cytokine response to partial hepatectomy, but is inhibitory to later growth factor actions. Consistent with this prediction, Adn knockout reduced hepatocyte responses to interleukin-6 during the priming phase, but enhanced growth factor levels through peak hepatocyte replication. By contrast, supraphysiological concentrations of Adn resulting from rosiglitazone treatment suppressed regeneration by reducing growth factor levels during S phase, consistent with computational predictions. Together, these results revealed that Adn fine-tunes the progression of liver regeneration through dynamically modulating molecular mediator networks and cellular interactions within the liver.

  5. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    Science.gov (United States)

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  6. Time dynamics of the Bacillus cereus exoproteome are shaped by cellular oxidation

    Directory of Open Access Journals (Sweden)

    Jean-Paul eMadeira

    2015-04-01

    Full Text Available At low density, Bacillus cereus cells release a large variety of proteins into the extracellular medium when cultivated in pH-regulated, glucose-containing minimal medium, either in the presence or absence of oxygen. The majority of these exoproteins are putative virulence factors, including toxin-related proteins. Here, B. cereus exoproteome time courses were monitored by nanoLC-MS/MS under low-oxidoreduction potential (ORP anaerobiosis, high-ORP anaerobiosis, and aerobiosis, with a specific focus on oxidative-induced post-translational modifications of methionine residues. Principal component analysis (PCA of the exoproteome dynamics indicated that toxin-related proteins were the most representative of the exoproteome changes, both in terms of protein abundance and their methionine sulfoxide (Met(O content. PCA also revealed an interesting interconnection between toxin-, metabolism-, and oxidative stress–related proteins, suggesting that the abundance level of toxin-related proteins, and their Met(O content in the B. cereus exoproteome, reflected the cellular oxidation under both aerobiosis and anaerobiosis.

  7. Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI)

    Science.gov (United States)

    2003-01-01

    Aboard the International Space Station (ISS), the Tissue Culture Module (TCM) is the stationary bioreactor vessel in which cell cultures grow. However, for the Cellular Biotechnology Operations Support Systems-Fluid Dynamics Investigation (CBOSS-FDI), color polystyrene beads are used to measure the effectiveness of various mixing procedures. Uniform mixing is a crucial component of CBOSS experiments involving the immune response of human lymphoid cell suspensions. In this picture, the beads are trapped in the injection port shortly after injection. Swirls of beads indicate, event to the naked eye, the contents of the TCM are not fully mixed. The beads are similar in size and density to human lymphoid cells. The goal is to develop procedures that are both convenient for the flight crew and are optimal in providing uniform and reproducible mixing of all components, including cells. The average bead density in a well mixed TCM will be uniform, with no bubbles, and it will be measured using the absorption of light

  8. Identification of Dynamic Changes in Proteins Associated with the Cellular Cytoskeleton after Exposure to Okadaic Acid

    Directory of Open Access Journals (Sweden)

    Peter Roepstorff

    2013-05-01

    Full Text Available Exposure of cells to the diarrhetic shellfish poison, okadaic acid, leads to a dramatic reorganization of cytoskeletal architecture and loss of cell-cell contact. When cells are exposed to high concentrations of okadaic acid (100–500 nM, the morphological rearrangement is followed by apoptotic cell death. Okadaic acid inhibits the broad acting Ser/Thr protein phosphatases 1 and 2A, which results in hyperphosphorylation of a large number of proteins. Some of these hyperphosphorylated proteins are most likely key players in the reorganization of the cell morphology induced by okadaic acid. We wanted to identify these phosphoproteins and searched for them in the cellular lipid rafts, which have been found to contain proteins that regulate cytoskeletal dynamics and cell adhesion. By using stable isotope labeling by amino acids in cell culture cells treated with okadaic acid (400 nM could be combined with control cells before the isolation of lipid rafts. Protein phosphorylation events and translocations induced by okadaic acid were identified by mass spectrometry. Okadaic acid was shown to regulate the phosphorylation status and location of proteins associated with the actin cytoskeleton, microtubules and cell adhesion structures. A large number of these okadaic acid-regulated proteins have previously also been shown to be similarly regulated prior to cell proliferation and migration. Our results suggest that okadaic acid activates general cell signaling pathways that induce breakdown of the cortical actin cytoskeleton and cell detachment.

  9. Integrating the system dynamic and cellular automata models to predict land use and land cover change

    Science.gov (United States)

    Xu, Xiaoming; Du, Ziqiang; Zhang, Hong

    2016-10-01

    Land use and land cover change (LULCC) is a widely researched topic in related studies. A number of models have been established to simulate LULCC patterns. However, the integration of the system dynamic (SD) and the cellular automata (CA) model have been rarely employed in LULCC simulations, although it allows for combining the advantages of each approach and therefore improving the simulation accuracy. In this study, we integrated an SD model and a CA model to predict LULCC under three future development scenarios in Northern Shanxi province of China, a typical agro-pastoral transitional zone. The results indicated that our integrated approach represented the impacts of natural and socioeconomic factors on LULCC well, and could accurately simulate the magnitude and spatial pattern of LULCC. The modeling scenarios illustrated that different development pathways would lead to various LULCC patterns. This study demonstrated the advantages of the integration approach for simulating LULCC and suggests that LULCC is affected to a large degree by natural and socioeconomic factors.

  10. Kinetic Monte Carlo and cellular particle dynamics simulations of multicellular systems

    Science.gov (United States)

    Flenner, Elijah; Janosi, Lorant; Barz, Bogdan; Neagu, Adrian; Forgacs, Gabor; Kosztin, Ioan

    2012-03-01

    Computer modeling of multicellular systems has been a valuable tool for interpreting and guiding in vitro experiments relevant to embryonic morphogenesis, tumor growth, angiogenesis and, lately, structure formation following the printing of cell aggregates as bioink particles. Here we formulate two computer simulation methods: (1) a kinetic Monte Carlo (KMC) and (2) a cellular particle dynamics (CPD) method, which are capable of describing and predicting the shape evolution in time of three-dimensional multicellular systems during their biomechanical relaxation. Our work is motivated by the need of developing quantitative methods for optimizing postprinting structure formation in bioprinting-assisted tissue engineering. The KMC and CPD model parameters are determined and calibrated by using an original computational-theoretical-experimental framework applied to the fusion of two spherical cell aggregates. The two methods are used to predict the (1) formation of a toroidal structure through fusion of spherical aggregates and (2) cell sorting within an aggregate formed by two types of cells with different adhesivities.

  11. Time dynamics of the Bacillus cereus exoproteome are shaped by cellular oxidation.

    Science.gov (United States)

    Madeira, Jean-Paul; Alpha-Bazin, Béatrice; Armengaud, Jean; Duport, Catherine

    2015-01-01

    At low density, Bacillus cereus cells release a large variety of proteins into the extracellular medium when cultivated in pH-regulated, glucose-containing minimal medium, either in the presence or absence of oxygen. The majority of these exoproteins are putative virulence factors, including toxin-related proteins. Here, B. cereus exoproteome time courses were monitored by nanoLC-MS/MS under low-oxidoreduction potential (ORP) anaerobiosis, high-ORP anaerobiosis, and aerobiosis, with a specific focus on oxidative-induced post-translational modifications of methionine residues. Principal component analysis (PCA) of the exoproteome dynamics indicated that toxin-related proteins were the most representative of the exoproteome changes, both in terms of protein abundance and their methionine sulfoxide (Met(O)) content. PCA also revealed an interesting interconnection between toxin-, metabolism-, and oxidative stress-related proteins, suggesting that the abundance level of toxin-related proteins, and their Met(O) content in the B. cereus exoproteome, reflected the cellular oxidation under both aerobiosis and anaerobiosis.

  12. Complex dynamics of selection and cellular memory in adaptation to a changing environment

    Science.gov (United States)

    Kussell, Edo; Lin, Wei-Hsiang

    We study a synthetic evolutionary system in bacteria in which an antibiotic resistance gene is controlled by a stochastic on/off switching promoter. At the population level, this system displays all the basic ingredients for evolutionary selection, including diversity, fitness differences, and heritability. At the single cell level, physiological processes can modulate the ability of selection to act. We expose the stochastic switching strains to pulses of antibiotics of different durations in periodically changing environments using microfluidics. Small populations are tracked over a large number of periods at single cell resolution, allowing the visualization and quantification of selective sweeps and counter-sweeps at the population level, as well as detailed single cell analysis. A simple model is introduced to predict long-term population growth rates from single cell measurements, and reveals unexpected aspects of population dynamics, including cellular memory that acts on a fast timescale to modulate growth rates. This work is supported by NIH Grant No. R01-GM097356.

  13. An archived multi-objective simulated annealing for a dynamic cellular manufacturing system

    Science.gov (United States)

    Shirazi, Hossein; Kia, Reza; Javadian, Nikbakhsh; Tavakkoli-Moghaddam, Reza

    2014-05-01

    To design a group layout of a cellular manufacturing system (CMS) in a dynamic environment, a multi-objective mixed-integer non-linear programming model is developed. The model integrates cell formation, group layout and production planning (PP) as three interrelated decisions involved in the design of a CMS. This paper provides an extensive coverage of important manufacturing features used in the design of CMSs and enhances the flexibility of an existing model in handling the fluctuations of part demands more economically by adding machine depot and PP decisions. Two conflicting objectives to be minimized are the total costs and the imbalance of workload among cells. As the considered objectives in this model are in conflict with each other, an archived multi-objective simulated annealing (AMOSA) algorithm is designed to find Pareto-optimal solutions. Matrix-based solution representation, a heuristic procedure generating an initial and feasible solution and efficient mutation operators are the advantages of the designed AMOSA. To demonstrate the efficiency of the proposed algorithm, the performance of AMOSA is compared with an exact algorithm (i.e., ∈-constraint method) solved by the GAMS software and a well-known evolutionary algorithm, namely NSGA-II for some randomly generated problems based on some comparison metrics. The obtained results show that the designed AMOSA can obtain satisfactory solutions for the multi-objective model.

  14. Molecular dynamics simulation of cross-slip and the intersection of dislocations in copper

    CERN Document Server

    Li, Maozhen; Gao, K W; Qiao, L J

    2003-01-01

    The molecular dynamics method is used to simulate cross-slip by thermal activation at 30 K and the intersection of dislocations in copper containing 1.6 x 10 sup 6 atoms using the embedded atom method potential. The results show that an extended screw dislocation can recombine through thermal activation at 30 K into a constriction on the surface because of stress imbalance and the constriction will split again in the other slip plane. Removing the constriction along the extended dislocation results in a cross-slip of the screw dislocation at low temperature. After the intersection between a moving right-hand screw dislocation DC and a perpendicular left-hand dislocation BA, whose ends are fixed on the surfaces, an extended jog corresponding to a row of one-third vacancies forms in BA and a trail of vacancies behind DC. If the intersected dislocation is a right-hand screw dislocation AB, the jog formed in AB corresponds to a row of one-third interstitials and the point defects behind DC are interstitials. Afte...

  15. Molecular Dynamics Study on Lubrication Mechanism in Crystalline Structure between Copper and Sulfur

    Directory of Open Access Journals (Sweden)

    Ken-ichi Saitoh

    2015-01-01

    Full Text Available To clarify the nanosized mechanism of good lubrication in copper disulfide (Cu2S crystal which is used as a sliding material, atomistic modeling of Cu2S is conducted and molecular dynamics (MD simulations are performed in this paper. The interatomic interaction between atoms and crystalline structure in the phase of hexagonal crystal of Cu2S are carefully estimated by first-principle calculations. Then, approximating these interactions, we originally construct a conventional interatomic potential function of Cu2S crystal in its hexagonal phase. By using this potential function, we perform MD simulation of Cu2S crystal which is subjected to shear loading parallel to the basal plane. We compare results obtained by different conditions of sliding directions. Unlike ordinary hexagonal metallic crystals, it is found that the easy-glide direction does not always show small shear stress for Cu2S crystal. Besides, it is found that shearing velocity affects largely the magnitude of averaged shear stress. Generally speaking, higher velocity results in higher resistance against shear deformation. As a result, it is understood that Cu2S crystal exhibits somewhat liquid-like (amorphous behavior in sliding condition and shear resistance increases with increase of sliding speed.

  16. Dynamics of copper and zinc sedimentation in a lagooning system receiving landfill leachate.

    Science.gov (United States)

    Guigue, Julien; Mathieu, Olivier; Lévêque, Jean; Denimal, Sophie; Steinmann, Marc; Milloux, Marie-Jeanne; Grisey, Hervé

    2013-11-01

    This study characterises the sediment dredged from a lagooning system composed of a settling pond and three lagoons that receive leachates from a municipal solid waste (MSW) landfill in France. Organic carbon, carbonate, iron oxyhydroxides, copper (Cu) and zinc (Zn) concentrations were measured in the sediment collected from upstream to downstream in the lagooning system. In order to complete our investigation of sedimentation mechanisms, leachates were sampled in both dry (spring) and wet (winter) seasonal conditions. Precipitation of calcite and amorphous Fe-oxyhydroxides and sedimentation of organic matter occurred in the settling pond. Since different distributions of Zn and Cu concentrations are measured in sediment samples collected downstream in the lagooning system, it is suggested that these elements were not distributed in a similar way in the leachate fractions during the first stage of treatment in the settling pond, so that their sedimentation dynamics in the lagooning system differ. In the lagoons, it was found that organic carbon plays a major role in Cu and Zn mobility and trapping. The presence of macrophytes along the edges provided an input of organic matter that enhanced Cu and Zn scavenging. This edge effect resulted in a two-fold increase in Cu and Zn concentrations in the sediment deposited near the banks of the lagoons, thus confirming the importance of vegetation for the retention of Cu and Zn in lagooning systems.

  17. Molecular dynamics investigation of the effect of copper nanoparticle on the solid contact between friction surfaces

    Science.gov (United States)

    Hu, Chengzhi; Bai, Minli; Lv, Jizu; Liu, Hao; Li, Xiaojie

    2014-12-01

    This study investigated the effect of copper (Cu) nanoparticles on the solid contact between friction surfaces by applying a molecular dynamics method to reveal the mechanisms responsible for the favorable friction properties of nanoparticles. Two models were built, which were named model A (without Cu) and model B (with Cu), respectively. The differences in the mechanical properties between these two models were compared. The simulation results demonstrated that the improvement in friction properties by Cu nanoparticles was more obvious at low velocity than at high velocity. At low velocity, a Cu nano-film was formed on the friction surface, which accommodated the velocity gradient and plastic deformation. Due to the good lubrication effect of the nano-film, the plastic deformation, defect structures and friction force of model B were improved compared with model A. Under high velocity conditions, a transfer layer appeared adjacent to the interface in both models. Because of this, the friction forces of the two models decreased with increased velocity. The fluid mechanics theory was used to explain why the friction force in model B was lower than that in model A at high velocity. The effect of the load on friction properties was also analyzed and the results showed that the mechanisms of anti-wear and friction reduction by Cu nanoparticles under a low load were the same as those under a high load.

  18. Abnormal Copper Homeostasis: Mechanisms and Roles in Neurodegeneration

    OpenAIRE

    Mario Manto

    2014-01-01

    As a cofactor of proteins and enzymes involved in critical molecular pathways in mammals and low eukaryotes, copper is a transition metal essential for life. The intra-cellular and extra-cellular metabolism of copper is under tight control, in order to maintain free copper concentrations at very low levels. Copper is a critical element for major neuronal functions, and the central nervous system is a major target of disorders of copper metabolism. Both the accumulation of copper and copper d...

  19. Copper and angiogenesis: unravelling a relationship key to cancer progression.

    Science.gov (United States)

    Finney, Lydia; Vogt, Stefan; Fukai, Tohru; Glesne, David

    2009-01-01

    1. Angiogenesis, the formation of new capillaries from existing vasculature, is a critical process in normal physiology as well as several physiopathologies. A desire to curb the supportive role angiogenesis plays in the development and metastasis of cancers has driven exploration into anti-angiogenic strategies as cancer therapeutics. Key to this, angiogenesis additionally displays an exquisite sensitivity to bioavailable copper. Depletion of copper has been shown to inhibit angiogenesis in a wide variety of cancer cell and xenograft systems. Several clinical trials using copper chelation as either an adjuvant or primary therapy have been conducted. Yet, the biological basis for the sensitivity of angiogenesis remains unclear. Numerous molecules important to angiogenesis regulation have been shown to be either directly or indirectly influenced by copper, yet a clear probative answer to the connection remains elusive. 2. Measurements of copper in biological systems have historically relied on techniques that, although demonstrably powerful, provide little or no information as to the spatial distribution of metals in a cellular context. Therefore, several new approaches have been developed to image copper in a biological context. One such approach relies on synchrotron-derived X-rays from third-generation synchrotrons and the technique of high resolution X-ray fluorescence microprobe (XFM) analysis. 3. Recent applications of XFM approaches to the role of copper in regulating angiogenesis have provided unique insight into the connection between copper and cellular behaviour. Using XFM, copper has been shown to be highly spatially regulated, as it is translocated from perinuclear areas of the cell towards the tips of extending filopodia and across the cell membrane into the extracellular space during angiogenic processes. Such findings may explain the heightened sensitivity of this cellular process to this transition metal and set a new paradigm for the kinds of

  20. Performance of joint dual links dynamic power control and smart antenna for TDMA/TDD cellular mobile communications

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Interference cancellation is made available by using smart antenna at cellular base stations. Well-distribut ed cumulative probability of signal-to-interference plus noise power ratio appears to be vital for cellular mobile multi media communications. A scenario of dual links dynamic power control combined to a solution of smart antenna is pro posed to adjust the instant transmission power in terms of the disparity from the favorite range. Simulation results show that this method is quite effective to improve the cumulative distribution probability performance. Meanwhile, accom panying low power consumption is also obtained at both base stations and mobile stations.

  1. Redox cycling of endogenous copper by ferulic acid leads to cellular DNA breakage and consequent cell death: A putative cancer chemotherapy mechanism.

    Science.gov (United States)

    Sarwar, Tarique; Zafaryab, Md; Husain, Mohammed Amir; Ishqi, Hassan Mubarak; Rehman, Sayeed Ur; Rizvi, M Moshahid Alam; Tabish, Mohammad

    2015-12-01

    Ferulic acid (FA) is a plant polyphenol showing diverse therapeutic effects against cancer, diabetes, cardiovascular and neurodegenerative diseases. FA is a known antioxidant at lower concentrations, however at higher concentrations or in the presence of metal ions such as copper, it may act as a pro-oxidant. It has been reported that copper levels are significantly raised in different malignancies. Cancer cells are under increased oxidative stress as compared to normal cells. Certain therapeutic substances like polyphenols can further increase this oxidative stress and kill cancer cells without affecting the proliferation of normal cells. Through various in vitro experiments we have shown that the pro-oxidant properties of FA are enhanced in the presence of copper. Comet assay demonstrated the ability of FA to cause oxidative DNA breakage in human peripheral lymphocytes which was ameliorated by specific copper-chelating agent such as neocuproine and scavengers of ROS. This suggested the mobilization of endogenous copper in ROS generation and consequent DNA damage. These results were further validated through cytotoxicity experiments involving different cell lines. Thus, we conclude that such a pro-oxidant mechanism involving endogenous copper better explains the anticancer activities of FA. This would be an alternate non-enzymatic, and copper-mediated pathway for the cytotoxic activities of FA where it can selectively target cancer cells with elevated levels of copper and ROS.

  2. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    OpenAIRE

    Choveaux David L; Przyborski Jude M; Goldring JP

    2012-01-01

    Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper st...

  3. Geochemical speciation and dynamic of copper in tropical semi-arid soils exposed to metal-bearing mine wastes.

    Science.gov (United States)

    Perlatti, Fabio; Otero, Xosé Luis; Macias, Felipe; Ferreira, Tiago Osório

    2014-12-01

    The potentially hazardous effects of rock wastes disposed at open pit in three different areas (Pr: Ore processing; Wr: Waste rock and Bd: Border) of an abandoned copper mine were evaluated in this study, with emphasis on acid drainage generation, metal contamination and copper geochemical dynamics in soils. Samples of waste rock were analyzed by Energy dispersive X-ray fluorescence (XRF), scanning electron microscopy with microanalysis (SEM-EDS) and X-ray diffraction (XRD). Soil samples were analyzed to determine the total metal contents (XRF), mineralogy (XRD), pH (H2O and H2O2), organic and inorganic carbon, % of total N, S and P, particle size, and a sequential extraction procedure was used to identify the different copper fractions. As a result of the prevalence of carbonates over sulphides in the wastes, the soil pH remained close to neutral, with absence of acid mine drainage. The geochemical interaction between these mineral phases seems to be the main mechanism to release Cu(2)(+) ions. Total Cu in soils from the Pr area reached 11,180mg.kg(-1), while in Wr and Bd areas the values reached, on average, 4683 and 1086mg.kg(-1), respectively, indicating a very high level of soil contamination. In the Pr and Wr, the Cu was mainly associated with carbonates and amorphous iron oxides. In the Bd areas, the presence of vegetation has influenced the geochemical behavior of copper by increasing the dissolution of carbonates, affecting the buffer capacity of soils against sulphide oxidation, reducing the pH levels and enhancing the proportion of exchangeable and organic bound Cu. The present findings show that the use of plants or organic amendments in mine sites with high concentration of Cu carbonate-containing wastes should be viewed with caution, as the practice may enhance the mobilization of copper to the environment due to an increase in the rate of carbonates dissolution.

  4. High resolution simulations of energy absorption in dynamically loaded cellular structures

    Science.gov (United States)

    Winter, R. E.; Cotton, M.; Harris, E. J.; Eakins, D. E.; McShane, G.

    2017-03-01

    Cellular materials have potential application as absorbers of energy generated by high velocity impact. CTH, a Sandia National Laboratories Code which allows very severe strains to be simulated, has been used to perform very high resolution simulations showing the dynamic crushing of a series of two-dimensional, stainless steel metal structures with varying architectures. The structures are positioned to provide a cushion between a solid stainless steel flyer plate with velocities ranging from 300 to 900 m/s, and an initially stationary stainless steel target. Each of the alternative architectures under consideration was formed by an array of identical cells each of which had a constant volume and a constant density. The resolution of the simulations was maximised by choosing a configuration in which one-dimensional conditions persisted for the full period over which the specimen densified, a condition which is most readily met by impacting high density specimens at high velocity. It was found that the total plastic flow and, therefore, the irreversible energy dissipated in the fully densified energy absorbing cell, increase (a) as the structure becomes more rodlike and less platelike and (b) as the impact velocity increases. Sequential CTH images of the deformation processes show that the flow of the cell material may be broadly divided into macroscopic flow perpendicular to the compression direction and jetting-type processes (microkinetic flow) which tend to predominate in rod and rodlike configurations and also tend to play an increasing role at increased strain rates. A very simple analysis of a configuration in which a solid flyer impacts a solid target provides a baseline against which to compare and explain features seen in the simulations. The work provides a basis for the development of energy absorbing structures for application in the 200-1000 m/s impact regime.

  5. Geochemical speciation and dynamic of copper in tropical semi-arid soils exposed to metal-bearing mine wastes

    Energy Technology Data Exchange (ETDEWEB)

    Perlatti, Fabio [Department of Environmental Technology, National Department of Mineral Production – DNPM, Rua Dr. José Lourenço, 90560115-280 Fortaleza, CE (Brazil); Graduate Course of Ecology and Natural Resources, Department of Biology, Federal University of Ceará – UFC, Building 906, 60455-760, Fortaleza, CE (Brazil); Otero, Xosé Luis; Macias, Felipe [Department of Edaphology and Agricultural Chemistry, Faculty of Biology, University of Santiago de Compostela – USC, Rúa Lope Gómez de Marzoa, s/n. Campus sur, 15782 Santiago de Compostela (Spain); Ferreira, Tiago Osório, E-mail: toferreira@usp.br [Department of Soil Science, University of São Paulo (ESALQ/USP), Av. Pádua Dias, 11, 13418-900, Piracicaba, SP (Brazil); Graduate Course of Ecology and Natural Resources, Department of Biology, Federal University of Ceará – UFC, Building 906, 60455-760, Fortaleza, CE (Brazil)

    2014-12-01

    The potentially hazardous effects of rock wastes disposed at open pit in three different areas (Pr: Ore processing; Wr: Waste rock and Bd: Border) of an abandoned copper mine were evaluated in this study, with emphasis on acid drainage generation, metal contamination and copper geochemical dynamics in soils. Samples of waste rock were analyzed by Energy dispersive X-ray fluorescence (XRF), scanning electron microscopy with microanalysis (SEM-EDS) and X-ray diffraction (XRD). Soil samples were analyzed to determine the total metal contents (XRF), mineralogy (XRD), pH (H2O and H2O2), organic and inorganic carbon, % of total N, S and P, particle size, and a sequential extraction procedure was used to identify the different copper fractions. As a result of the prevalence of carbonates over sulphides in the wastes, the soil pH remained close to neutral, with absence of acid mine drainage. The geochemical interaction between these mineral phases seems to be the main mechanism to release Cu{sup 2+} ions. Total Cu in soils from the Pr area reached 11,180 mg.kg{sup −1}, while in Wr and Bd areas the values reached, on average, 4683 and 1086 mg.kg{sup −1}, respectively, indicating a very high level of soil contamination. In the Pr and Wr, the Cu was mainly associated with carbonates and amorphous iron oxides. In the Bd areas, the presence of vegetation has influenced the geochemical behavior of copper by increasing the dissolution of carbonates, affecting the buffer capacity of soils against sulphide oxidation, reducing the pH levels and enhancing the proportion of exchangeable and organic bound Cu. The present findings show that the use of plants or organic amendments in mine sites with high concentration of Cu carbonate-containing wastes should be viewed with caution, as the practice may enhance the mobilization of copper to the environment due to an increase in the rate of carbonates dissolution. - Highlights: • The hazardous effects of mine waste rocks at

  6. Cellular automata approach for the dynamics of HIV infection under antiretroviral therapies: The role of the virus diffusion

    Science.gov (United States)

    González, Ramón E. R.; de Figueirêdo, Pedro Hugo; Coutinho, Sérgio

    2013-10-01

    We study a cellular automata model to test the timing of antiretroviral therapy strategies for the dynamics of infection with human immunodeficiency virus (HIV). We focus on the role of virus diffusion when its population is included in previous cellular automata model that describes the dynamics of the lymphocytes cells population during infection. This inclusion allows us to consider the spread of infection by the virus-cell interaction, beyond that which occurs by cell-cell contagion. The results show an acceleration of the infectious process in the absence of treatment, but show better efficiency in reducing the risk of the onset of AIDS when combined antiretroviral therapies are used even with drugs of low effectiveness. Comparison of results with clinical data supports the conclusions of this study.

  7. Evaluation of the Mechanical Properties of Multi-nano Layered Copper-Nickel Thin Film by the Dynamic-Nano Indentation Method

    Science.gov (United States)

    Choi, Yong

    2016-11-01

    The dynamic nano-indentation method was applied to study the effect of interface moving behavior with heat treatment on the nano-mechanical properties of multi-nano-layered copper-nickel thin film. Layer-by-layer depositions of copper and nickel of nano-sized thickness were prepared by two-step pulse electro-deposition in a modified copper-nickel sulfate bath at 25°C. The multi-layered copper-nickel thin sheet was composed of a 20-nm-thick copper-rich nickel phase, and a 25-nm-thick nickel-rich copper phase. Thermal vacuum annealing influenced the interface morphology between copper and nickel nano-layers. Inter-diffusion mainly occurred after annealing at 500°C for 6 h. The interface disappeared after annealing at 600°C to form a completely solid solution. Thermal annealing reduced the nano-hardness and elastic recovery. The average nano-hardness of the multi-layered nano-copper-nickel thin film for the specimens of as-received, 300°C, 500°C and 600°C were 7.9 Gpa, 6.1 Gpa, 4.7 Gpa and 3.0 GPa, respectively. The elastic stiffness was 15.77 × 104 Nm-1 for the as-received specimen, which finally became 2.98 × 104 Nm-1 for the specimen after annealing at 600°C for 6 h.

  8. Evaluation of dynamic behavior forecasting parameters in the process of transition rule induction of unidimensional cellular automata.

    Science.gov (United States)

    Weinert, Wagner Rodrigo; Lopes, Heitor Silvério

    2010-01-01

    The simulation of the dynamics of a cellular systems based on cellular automata (CA) can be computationally expensive. This is particularly true when such simulation is part of a procedure of rule induction to find suitable transition rules for the CA. Several efforts have been described in the literature to make this problem more treatable. This work presents a study about the efficiency of dynamic behavior forecasting parameters (DBFPs) used for the induction of transition rules of CA for a specific problem: the classification by the majority rule. A total of 8 DBFPs were analyzed for the 31 best-performing rules found in the literature. Some of these DBFPs were highly correlated each other, meaning they yield the same information. Also, most rules presented values of the DBFPs very close each other. An evolutionary algorithm, based on gene expression programming, was developed for finding transition rules according a given preestablished behavior. The simulation of the dynamic behavior of the CA is not used to evaluate candidate transition rules. Instead, the average values for the DBFPs were used as reference. Experiments were done using the DBFPs separately and together. In both cases, the best induced transition rules were not acceptable solutions for the desired behavior of the CA. We conclude that, although the DBFPs represent interesting aspects of the dynamic behavior of CAs, the transition rule induction process still requires the simulation of the dynamics and cannot rely only on the DBFPs.

  9. Multi-color fluorescence imaging of sub-cellular dynamics of cancer cells in live mice

    Science.gov (United States)

    Hoffman, Robert M.

    2006-02-01

    We have genetically engineered dual-color fluorescent cells with one color in the nucleus and the other in the cytoplasm that enables real-time nuclear-cytoplasmic dynamics to be visualized in living cells in the cytoplasm in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) was expressed of the cancer cells, and green fluorescent protein (GFP) linked to histone H2B was expressed in the nucleus. Mitotic cells were visualized by whole-body imaging after injection in the mouse ear. Common carotid artery or heart injection of dual-color cells and a reversible skin flap enabled the external visualization of the dual-color cells in microvessels in the mouse where extreme elongation of the cell body as well as the nucleus occurred. The migration velocities of the dual-color cancer cells in the capillaries were measured by capturing individual images of the dual-color fluorescent cells over time. Human HCT-116-GFP-RFP colon cancer and mouse mammary tumor (MMT)-GFP-RFP cells were injected in the portal vein of nude mice. Extensive clasmocytosis (destruction of the cytoplasm) of the HCT-116-GFP-RFP cells occurred within 6 hours. The data suggest rapid death of HCT-116-GFP-RFP cells in the portal vein. In contrast, MMT-GFP-RFP cells injected into the portal vein mostly survived and formed colonies in the liver. However, when the host mice were pretreated with cyclophosphamide, the HCT-116-GFP-RFP cells also survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the HCT-116-GFP-RFP cells but could not effectively kill the MMT-GFP-RFP cells. With the ability to continuously image cancer cells at the subcellular level in the live animal, our understanding of the complex steps of metastasis will significantly increase. In addition, new drugs can be developed to target these newly visible steps of metastasis.

  10. Near-IR absorption saturation and mechanism of picosecond recovery dynamics of copper selenide nanostructured via alumina

    Science.gov (United States)

    Statkutė, G.; Mikulskas, I.; Tomašiùnas, R.; Jagminas, A.

    2009-06-01

    Absorption saturation at 1.064 μm wavelength in Cu2-xSe material nanostructured by means of an original method—formation and hosting in an array of electrochemically grown alumina voids—was investigated. Columnlike channels provide growth of copper selenide in a shape of nanowire with a fixed diameter. Experimental results obtained from measuring nanowires of various diameters (∅10, 15, 20, and 70 nm) revealed that the ∅20 nm case is most efficient for absorption saturation, manifesting highest optical modulation depth and lowest interlevel transition rate evaluated. A model to analyze the conditions for absorption saturation and absorption recovery dynamics was developed. Depending on pump intensity the nonmonotonous increase in recovery time for the highest applied values was interpreted as filling up of states at an intermediate energy level. From modeling, important material science parameters, such as concentration of resonant and trapping/recombination states, interlevel transition rate, capture time, characteristic for copper selenide, have been evaluated and compared for different samples. Finally, the consequence of the model to a working copper selenide energy level scheme was considered.

  11. Molecular Dynamics Study of the Separation Behavior at the Interface between PVDF Binder and Copper Current Collector

    Directory of Open Access Journals (Sweden)

    Seungjun Lee

    2016-01-01

    Full Text Available In Li-ion batteries, the mechanical strengths at the interfaces of binder/particle and binder/current collector play an important role in maintaining the mechanical integrity of the composite electrode. In this work, the separation behaviors between polyvinylidene fluoride (PVDF binders and copper current collectors are studied in the opening and sliding modes using molecular dynamics (MD simulations. The simulation shows that the separation occurs inside the PVDF rather than at the interface due to the strong adhesion between PVDF and copper. This fracture behavior is different from the behavior of the PVDF/graphite basal plane that shows a clear separation at the interface. The results suggest that the adhesion strength of the PVDF/copper is stronger than that of the PVDF/graphite basal plane. The methodology used in MD simulation can directly evaluate the adhesion strength at the interfaces of various materials between binders, substrates, and particles at the atomic scales. The proposed method can therefore provide a guideline for the design of the electrode in order to enhance the mechanical integrity for better battery performance.

  12. Can Dynamics Be Responsible for the Complex Multipeak Infrared Spectra of NO Adsorbed to Copper(II) Sites in Zeolites?

    Science.gov (United States)

    Göltl, Florian; Sautet, Philippe; Hermans, Ive

    2015-06-26

    Copper-exchanged SSZ-13 is a very efficient material in the selective catalytic reduction of NO(x) using ammonia (deNO(x)-SCR) and characterizing the underlying distribution of copper sites in the material is of prime importance to understand its activity. The IR spectrum of NO adsorbed to divalent copper sites are modeled using ab initio molecular dynamics simulations. For most sites, complex multi-peak spectra induced by the thermal motion of the cation as well as the adsorbate are found. A finite temperature spectrum for a specific catalyst was constructed, which shows excellent agreement with previously reported data. Additionally these findings allow active and inactive species in deNO(x)-SCR to be identified. To the best of our knowledge, this is the first time such complex spectra for single molecules adsorbed to single active centers have been reported in heterogeneous catalysis, and we expect similar effects to be important in a large number of systems with mobile active centers.

  13. The Copper Age in the lands of Antequera (Málaga: introduction to the settlement patterns and social dynamics

    Directory of Open Access Journals (Sweden)

    Leonardo GARCÍA SANJUÁN

    2016-12-01

    Full Text Available Antequera (Málaga is home to one of the most important Neolithic and Copper Age megalithic landscapes in Europe, as proven by its recent declaration as a World Heritage Site by unesco on July 15th 2016. This declaration highlights the need to push ahead in the research of the Neolithic and Copper Age periods, when the megalithic phenomenon developed and the three large Antequera megaliths, Menga, Viera and El Romeral, were built. In this paper, stemming from an on-going research project, we present a synthesis of the evidence available for the study of the Copper Age settlement patterns and social dynamics in the Lands of Antequera. Departing from a comprehensive review of the existing literature an assessment is made of the settlement patterns, subsistence economy, exploitation and exchange of abiotic resources, monumentality and burial practices of this time period. The aim is to formulate a preliminary framework of analysis of the cultural and social context in which the construction of El Romeral, the largest tholos monument known in Iberia, took place.

  14. Molecular dynamics simulations of the straining of nanoparticle chain aggregates: the case of copper

    Science.gov (United States)

    Dalis, Adamos; Friedlander, Sheldon K.

    2005-07-01

    Previous studies in our laboratory have shown that individual nanoparticle chain aggregates (NCAs) exhibit unusual mechanical behaviour when under strain inside the transmission electron microscope. NCAs made of various materials (e.g. carbon, metal oxides and metals) were strained by as much as 100% under tension. The nanoparticles that compose the chains were 5-10 nm in diameter and the chains of the order of 1 µm in length. Such aggregates are of technological importance in the manufacture of nanocomposite materials (e.g. rubber), aggregate break-up (e.g. sampling diesel emissions) and chemical-mechanical planarization. The goal of this study was to simulate the mechanical behaviour of chain aggregates with morphological properties similar to those of technological interest. Molecular dynamics (MD) and energy minimization computer simulations are employed to investigate, at the atomic scale, the behaviour of short nanoparticle aggregates under strain and to obtain quantitative information on the forces involved in aggregate straining and fracturing. The interaction potential used is that of copper obtained with the embedded atom method (EAM). Two seven-nanoparticle aggregates are studied, one linear and the other kinked. The seven nanoparticles in both aggregates are single crystals and about 2.5 nm in diameter each. The aggregates are strained along their longest dimension, to the breaking point, at strain rates spanning from 2.5 × 107 to 8.0 × 108 s-1 (MD simulations). The linear aggregate yield strain is about 0.1. The kinked aggregate elastic limit is also about 0.1, but only one-third of the stress develops along the straining direction compared to the linear aggregate. The kinked aggregate breaks at a strain of about 0.5, five times higher than the breaking strain of the linear aggregate. The ability of the kinked aggregate to straighten through combined nanoparticle interface sliding and rotation accounts for the extra strain accommodation. Simulation

  15. Surface chemistry of copper metal and copper oxide atomic layer deposition from copper(ii) acetylacetonate: a combined first-principles and reactive molecular dynamics study.

    Science.gov (United States)

    Hu, Xiao; Schuster, Jörg; Schulz, Stefan E; Gessner, Thomas

    2015-10-28

    Atomistic mechanisms for the atomic layer deposition using the Cu(acac)2 (acac = acetylacetonate) precursor are studied using first-principles calculations and reactive molecular dynamics simulations. The results show that Cu(acac)2 chemisorbs on the hollow site of the Cu(110) surface and decomposes easily into a Cu atom and the acac-ligands. A sequential dissociation and reduction of the Cu precursor [Cu(acac)2 → Cu(acac) → Cu] are observed. Further decomposition of the acac-ligand is unfavorable on the Cu surface. Thus additional adsorption of the precursors may be blocked by adsorbed ligands. Molecular hydrogen is found to be nonreactive towards Cu(acac)2 on Cu(110), whereas individual H atoms easily lead to bond breaking in the Cu precursor upon impact, and thus release the surface ligands into the gas-phase. On the other hand, water reacts with Cu(acac)2 on a Cu2O substrate through a ligand-exchange reaction, which produces gaseous H(acac) and surface OH species. Combustion reactions with the main by-products CO2 and H2O are observed during the reaction between Cu(acac)2 and ozone on the CuO surface. The reactivity of different co-reactants toward Cu(acac)2 follows the order H > O3 > H2O.

  16. Essential dynamics of the cellular retinol-binding protein - Evidence for ligand-induced conformational changes

    NARCIS (Netherlands)

    van Aalten, D.M.F.; Findlay, J.B.C.; Amadei, A; Berendsen, H.J.C.

    1995-01-01

    The cellular retinol-binding protein (CRBP) is an intracellular retinol carrier protein belonging to a family of hydrophobic ligand-binding proteins, It transports retinol to specific locations in the cell where, for instance, it is esterified for storage, Recently solved crystallographic structures

  17. A comparison of the uniaxial deformation of copper and nickel (1 1 19) surfaces: a molecular dynamics study

    Science.gov (United States)

    Pukšič, Nuša; Jenko, Monika; Godec, Matjaž; McGuiness, Paul J.

    2017-02-01

    While a lot is known about the deformation of metallic surfaces from experiments, elasticity theory and simulations, this investigation represents the first molecular-dynamics-based simulation of uniaxial deformation for the vicinal surfaces in a comparison of copper and nickel. These vicinal surfaces are composed of terraces divided by equidistant, mono-atomic steps. The periodicity of vicinals makes them good candidates for the study of the surface steps’ influences on surface dynamics. The simulations of tensile and compressive uniaxial deformations were performed for the (1 1 19) vicinal surfaces. Since the steps on the surfaces serve as stress concentrators, the first defects were expected to nucleate here. In the case of copper, this was found to be the case. In the case of nickel, however, dislocations nucleated beneath the near-surface layer affected by the displacement field generated by the steps. Slip was hindered at the surface step by the vortex in the displacement field. The differences in the deformation mechanisms for the Ni(1 1 19) and Cu(1 1 19) surfaces can be linked to the differences in their displacement fields. This could lead to novel bottom-up approaches to the nanostructuring of surfaces using strain.

  18. Novel optical-based methods and analyses for elucidating cellular mechanics and dynamics

    Science.gov (United States)

    Koo, Peter K.

    Resolving distinct biochemical interaction states by analyzing the diffusive behaviors of individual protein trajectories is challenging due to the limited statistics provided by short trajectories and experimental noise sources, which are intimately coupled into each proteins localization. In the first part of this thesis, we introduce a novel, a machine-learning based classification methodology, called perturbation expectation-maximization (pEM), which simultaneously analyzes a population of protein trajectories to uncover the system of short-time diffusive behaviors which collectively result from distinct biochemical interactions. We then discuss an experimental application of pEM to Rho GTPase, an integral regulator of cytoskeletal dynamics and cellular homeostasis, inside live cells. We also derive the maximum likelihood estimator (MLE) for driven diffusion, confined diffusion, and fractional Brownian motion. We demonstrate that MLE yields improved estimates in comparison with traditional diffusion analysis, namely mean squared displacement analysis. In addition, we also introduce mleBayes, which is an empirical Bayesian model selection scheme to classify an individual protein trajectory to a given diffusion mode. By employing mleBayes on simulated data, we demonstrate that accurate determination of the underlying diffusive properties, beyond normal diffusion, remains challenging when analyzing particle trajectories on an individual basis. To improve upon the statistical limitations of classification from analyzing trajectories on an individual basis, we extend pEM with a new version (pEMv2) to simultaneously analyzing a collection of particle trajectories to uncover the system of interactions which give rise to unique normal or non-normal diffusive states. We test the performance of pEMv2 on various sets of simulated particle trajectories which transition between various modes of normal and non-normal diffusive states to highlight considerations when

  19. Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization

    Science.gov (United States)

    Lovreglio, Ruggiero; Ronchi, Enrico; Nilsson, Daniel

    2015-11-01

    The formulation of pedestrian floor field cellular automaton models is generally based on hypothetical assumptions to represent reality. This paper proposes a novel methodology to calibrate these models using experimental trajectories. The methodology is based on likelihood function optimization and allows verifying whether the parameters defining a model statistically affect pedestrian navigation. Moreover, it allows comparing different model specifications or the parameters of the same model estimated using different data collection techniques, e.g. virtual reality experiment, real data, etc. The methodology is here implemented using navigation data collected in a Virtual Reality tunnel evacuation experiment including 96 participants. A trajectory dataset in the proximity of an emergency exit is used to test and compare different metrics, i.e. Euclidean and modified Euclidean distance, for the static floor field. In the present case study, modified Euclidean metrics provide better fitting with the data. A new formulation using random parameters for pedestrian cellular automaton models is also defined and tested.

  20. DMPD: Cellular signaling in macrophage migration and chemotaxis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available e (.png) SVG File (.svg) HTML File (.html) CSML File (.csml) Open .csml file with CIOPlayer Open .csml file ...koc Biol. 2000 Nov;68(5):593-602. (.png) (.svg) (.html) (.csml) Show Cellular signaling in macrophage migrat...with CIOPlayer - ※CIO Playerのご利用上の注意 Open .csml file with CIO Open .csml file with CIO - ※CIOのご利用上の注意 ...

  1. Cellular Automaton Rule 184++C A Simple Model for the Complex Dynamics of Various Particles Flow

    CERN Document Server

    Awazu, A

    1999-01-01

    A cellular automaton named Rule 184++C is proposed as a meta-model to investigate the flow of various complex particles. In this model, unlike the granular pipe flow and the traffic flow, not only the free-jam phase transition but also the free-intermediate, the intermediate-jam, and the dilute-dense phase transitions appear. Moreover, the freezing phenomena appear if the system contains two types of different particles.

  2. ECM signaling regulates collective cellular dynamics to control pancreas branching morphogenesis

    OpenAIRE

    2015-01-01

    During pancreas development, epithelial buds undergo branching morphogenesis to form an exocrine and endocrine gland. Proper morphogenesis is necessary for correct lineage allocation of pancreatic progenitors; however, the cellular events underlying pancreas morphogenesis are unknown. Here, we employed time-lapse microscopy and fluorescent labeling of cells to analyze cell behaviors associated with pancreas morphogenesis. We observed that outer bud cells adjacent to the basement membrane are ...

  3. Simple and Flexible Self-Reproducing Structures in Asynchronous Cellular Automata and Their Dynamics

    Science.gov (United States)

    Huang, Xin; Lee, Jia; Yang, Rui-Long; Zhu, Qing-Sheng

    2013-03-01

    Self-reproduction on asynchronous cellular automata (ACAs) has attracted wide attention due to the evident artifacts induced by synchronous updating. Asynchronous updating, which allows cells to undergo transitions independently at random times, might be more compatible with the natural processes occurring at micro-scale, but the dark side of the coin is the increment in the complexity of an ACA in order to accomplish stable self-reproduction. This paper proposes a novel model of self-timed cellular automata (STCAs), a special type of ACAs, where unsheathed loops are able to duplicate themselves reliably in parallel. The removal of sheath cannot only allow various loops with more flexible and compact structures to replicate themselves, but also reduce the number of cell states of the STCA as compared to the previous model adopting sheathed loops [Y. Takada, T. Isokawa, F. Peper and N. Matsui, Physica D227, 26 (2007)]. The lack of sheath, on the other hand, often tends to cause much more complicated interactions among loops, when all of them struggle independently to stretch out their constructing arms at the same time. In particular, such intense collisions may even cause the emergence of a mess of twisted constructing arms in the cellular space. By using a simple and natural method, our self-reproducing loops (SRLs) are able to retract their arms successively, thereby disentangling from the mess successfully.

  4. Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds.

    Science.gov (United States)

    Schrand, Amanda M; Lin, Jonathan B; Hens, Suzanne Ciftan; Hussain, Saber M

    2011-02-01

    Nanoparticles (NPs) offer promise for a multitude of biological applications including cellular probes at the bio-interface for targeted delivery of anticancer substances, Raman and fluorescent-based imaging and directed cell growth. Nanodiamonds (NDs), in particular, have several advantages compared to other carbon-based nanomaterials - including a rich surface chemistry useful for chemical conjugation, high biocompatibility with little reactive oxygen species (ROS) generation, physical and chemical stability that affords sterilization, high surface area to volume ratio, transparency and a high index of refraction. The visualization of ND internalization into cells is possible via photoluminescence, which is produced by direct dye conjugation or high energy irradiation that creates nitrogen vacancy centers. Here, we explore the kinetics and mechanisms involved in the intracellular uptake and localization of novel, highly-stable, fluorophore-conjugated NDs. Examination in a neuronal cell line (N2A) shows ND localization to early endosomes and lysosomes with eventual release into the cytoplasm. The addition of endocytosis and exocytosis inhibitors allows for diminished uptake and increased accumulation, respectively, which further corroborates cellular behavior in response to NDs. Ultimately, the ability of the NDs to travel throughout cellular compartments of varying pH without degradation of the surface-conjugated fluorophore or alteration of cell viability over extended periods of time is promising for their use in biomedical applications as stable, biocompatible, fluorescent probes.

  5. The Intrinsic Cause-Effect Power of Discrete Dynamical Systems—From Elementary Cellular Automata to Adapting Animats

    Directory of Open Access Journals (Sweden)

    Larissa Albantakis

    2015-07-01

    Full Text Available Current approaches to characterize the complexity of dynamical systems usually rely on state-space trajectories. In this article instead we focus on causal structure, treating discrete dynamical systems as directed causal graphs—systems of elements implementing local update functions. This allows us to characterize the system’s intrinsic cause-effect structure by applying the mathematical and conceptual tools developed within the framework of integrated information theory (IIT. In particular, we assess the number of irreducible mechanisms (concepts and the total amount of integrated conceptual information Φ specified by a system. We analyze: (i elementary cellular automata (ECA; and (ii small, adaptive logic-gate networks (“animats”, similar to ECA in structure but evolving by interacting with an environment. We show that, in general, an integrated cause-effect structure with many concepts and high Φ is likely to have high dynamical complexity. Importantly, while a dynamical analysis describes what is “happening” in a system from the extrinsic perspective of an observer, the analysis of its cause-effect structure reveals what a system “is” from its own intrinsic perspective, exposing its dynamical and evolutionary potential under many different scenarios.

  6. Data set for comparison of cellular dynamics between human AAVS1 locus-modified and wild-type cells

    Directory of Open Access Journals (Sweden)

    Takeomi Mizutani

    2016-03-01

    Full Text Available This data article describes cellular dynamics, such as migration speed and mobility of the cytoskeletal protein, of wild-type human fibroblast cells and cells with a modified adeno-associated virus integration site 1 (AAVS1 locus on human chromosome 19. Insertion of exogenous gene into the AAVS1 locus has been conducted in recent biological researches. Previously, our data showed that the AAVS1-modification changes cellular contractile force (Mizutani et al., 2015 [1]. To assess if this AAVS1-modification affects cell migration, we compared cellular migration speed and turnover of cytoskeletal protein in human fibroblasts and fibroblasts with a green fluorescent protein gene knocked-in at the AAVS1 locus in this data article. Cell nuclei were stained and changes in their position attributable to cell migration were analyzed. Fluorescence recovery was observed after photobleaching for the fluorescent protein-tagged myosin regulatory light chain. Data here are related to the research article “Transgene Integration into the Human AAVS1 Locus Enhances Myosin II-Dependent Contractile Force by Reducing Expression of Myosin Binding Subunit 85” [1].

  7. Data set for comparison of cellular dynamics between human AAVS1 locus-modified and wild-type cells.

    Science.gov (United States)

    Mizutani, Takeomi; Haga, Hisashi; Kawabata, Kazushige

    2016-03-01

    This data article describes cellular dynamics, such as migration speed and mobility of the cytoskeletal protein, of wild-type human fibroblast cells and cells with a modified adeno-associated virus integration site 1 (AAVS1) locus on human chromosome 19. Insertion of exogenous gene into the AAVS1 locus has been conducted in recent biological researches. Previously, our data showed that the AAVS1-modification changes cellular contractile force (Mizutani et al., 2015 [1]). To assess if this AAVS1-modification affects cell migration, we compared cellular migration speed and turnover of cytoskeletal protein in human fibroblasts and fibroblasts with a green fluorescent protein gene knocked-in at the AAVS1 locus in this data article. Cell nuclei were stained and changes in their position attributable to cell migration were analyzed. Fluorescence recovery was observed after photobleaching for the fluorescent protein-tagged myosin regulatory light chain. Data here are related to the research article "Transgene Integration into the Human AAVS1 Locus Enhances Myosin II-Dependent Contractile Force by Reducing Expression of Myosin Binding Subunit 85" [1].

  8. Study on the Functional Dynamic Changes of Peri-Operative Cellular Immunity in Esophageal and Cardiac Cancer

    Institute of Scientific and Technical Information of China (English)

    Chen Sheng; Li Shiting; Fang Youping

    2014-01-01

    Objective: To explore the systemic and local cellular immune function of patients with esophageal carcinoma or cardiac cancer. Methods: The distribution of tumor-infiltrating lymphocyte (TIL) and cancer-associated macrophage (TAM) in local tumor tissues of 52 patients with esophageal cancer or cardiac cancer were observed by immunehistochemical method. The level of peripheral SIL-2R and TNF-α of preoperative and postoperative 1, 2, 3 weeks were detected by ELISA and ABC-ELISA methods respectively, then the acquired results were compared with 30 cases of normal control group. Results:The peritumor inifltration densities of TIL and TAM was greater than that of cancer nest stroma (P<0.05). Compared with the normal control group, the levels of sIL-2R and TNF-α increased signiifcantly (P<0.01). Immune function could be suppressed by operative wound in a short time of post-operation, whose damage severity was closely associated with tumor TNM stages. Conclusion: Patients with esophageal or cardiac cancer have cellular immune function disorders. Dynamic testing of peripheral sIL-2R and TNT-α level in patients with esophageal or cardiac cancer has positive clinical signiifcance in the evaluation of cellular immune function, tumor lesion degree and curative effect.

  9. Imaging Cellular Dynamics with Spectral Relaxation Imaging Microscopy: Distinct Spectral Dynamics in Golgi Membranes of Living Cells

    Science.gov (United States)

    Lajevardipour, Alireza; Chon, James W. M.; Chattopadhyay, Amitabha; Clayton, Andrew H. A.

    2016-11-01

    Spectral relaxation from fluorescent probes is a useful technique for determining the dynamics of condensed phases. To this end, we have developed a method based on wide-field spectral fluorescence lifetime imaging microscopy to extract spectral relaxation correlation times of fluorescent probes in living cells. We show that measurement of the phase and modulation of fluorescence from two wavelengths permit the identification and determination of excited state lifetimes and spectral relaxation correlation times at a single modulation frequency. For NBD fluorescence in glycerol/water mixtures, the spectral relaxation correlation time determined by our approach exhibited good agreement with published dielectric relaxation measurements. We applied this method to determine the spectral relaxation dynamics in membranes of living cells. Measurements of the Golgi-specific C6-NBD-ceramide probe in living HeLa cells revealed sub-nanosecond spectral dynamics in the intracellular Golgi membrane and slower nanosecond spectral dynamics in the extracellular plasma membrane. We interpret the distinct spectral dynamics as a result of structural plasticity of the Golgi membrane relative to more rigid plasma membranes. To the best of our knowledge, these results constitute one of the first measurements of Golgi rotational dynamics.

  10. Capturing the dynamic nascent transcriptome during acute cellular responses: The serum response

    Directory of Open Access Journals (Sweden)

    Killeen S. Kirkconnell

    2016-06-01

    Full Text Available Dynamic regulation of gene expression via signal transduction pathways is of fundamental importance during many biological processes such as cell state transitioning, cell cycle progression and stress responses. In this study we used serum stimulation as a cell response paradigm to apply the nascent RNA Bru-seq technique in order to capture early dynamic changes in the nascent transcriptome. Our data provides an unprecedented view of the dynamics of genome-wide transcription during the first two hours of serum stimulation in human fibroblasts. While some genes showed sustained induction or repression, other genes showed transient or delayed responses. Surprisingly, the dynamic patterns of induction and suppression of response genes showed a high degree of similarity, suggesting that these opposite outcomes are triggered by a common set of signals. As expected, early response genes such as those encoding components of the AP-1 transcription factor and those involved in the circadian clock were immediately but transiently induced. Surprisingly, transcription of important DNA damage response genes and histone genes were rapidly repressed. We also show that RNA polymerase II accelerates as it transcribes large genes and this was independent of whether the gene was induced or not. These results provide a unique genome-wide depiction of dynamic patterns of transcription of serum response genes and demonstrate the utility of Bru-seq to comprehensively capture rapid and dynamic changes of the nascent transcriptome.

  11. Enhanced interfacial strength of carbon nanotube/copper nanocomposites via Ni-coating: Molecular-dynamics insights

    Science.gov (United States)

    Duan, Ke; Li, Li; Hu, Yujin; Wang, Xuelin

    2017-04-01

    The molecular bridging between carbon nanotube (CNT) within the meta matrix is hopeful for enhancing nanocomposite's mechanical performance. One of the main problems for nanocomposites is the inadequate bonding between nonstructural reinforcement and meta matrix. Ni-coating on CNT is an effective method to overcome the drawback of the inadequate strength, but the enhancing mechanism has not well interpreted yet. In this paper, the enhancing mechanism will be interpreted from the molecular-dynamics insights. The pullout process of CNT and Ni-coated CNT against copper matrix is investigated. The effects of geometric parameters, including CNT length and diameter, are taken into considerations and discussed. Results show that the interfacial strength is significantly improved after the Ni-coated CNT, which shows a good agreement with the experimental results available in the open literature. Besides, the sliding mechanism of Ni-coated CNTs against copper matrix is much more like a kind of friction sliding and directly related to the embedded zone. However, the pullout force of the CNT without Ni-coating is nearly proportional to its diameter, but independent of embedded length.

  12. A polynomial chaos expansion based molecular dynamics study for probabilistic strength analysis of nano-twinned copper

    Science.gov (United States)

    Mahata, Avik; Mukhopadhyay, Tanmoy; Adhikari, Sondipon

    2016-03-01

    Nano-twinned structures are mechanically stronger, ductile and stable than its non-twinned form. We have investigated the effect of varying twin spacing and twin boundary width (TBW) on the yield strength of the nano-twinned copper in a probabilistic framework. An efficient surrogate modelling approach based on polynomial chaos expansion has been proposed for the analysis. Effectively utilising 15 sets of expensive molecular dynamics simulations, thousands of outputs have been obtained corresponding to different sets of twin spacing and twin width using virtual experiments based on the surrogates. One of the major outcomes of this work is that there exists an optimal combination of twin boundary spacing and twin width until which the strength can be increased and after that critical point the nanowires weaken. This study also reveals that the yield strength of nano-twinned copper is more sensitive to TBW than twin spacing. Such robust inferences have been possible to be drawn only because of applying the surrogate modelling approach, which makes it feasible to obtain results corresponding to 40 000 combinations of different twin boundary spacing and twin width in a computationally efficient framework.

  13. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Quesnel, David J. [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical properties of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the

  14. A tunable cancer cell filter using magnetic beads: cellular and fluid dynamic simulations

    CERN Document Server

    Gusenbauer, Markus; Bance, Simon; Exl, Lukas; Reichel, Franz; Oezelt, Harald; Schrefl, Thomas

    2011-01-01

    In the field of biomedicine magnetic beads are used for drug delivery and to treat hyperthermia. Here we propose to use self-organized bead structures to isolate circulating tumor cells using lab-on-chip technologies. Typically blood flows past microposts functionalized with antibodies for circulating tumor cells. Creating these microposts with interacting magnetic beads makes it possible to tune the geometry in size, position and shape. We develop a simulation tool that combines micromagnetics, discrete particle dynamics and fluid dynamics, in order to design micropost arrays made of interacting beads. For the simulation of blood flow we use the Lattice-Boltzmann method with immersed elastic blood cell models. Parallelization distributes large fluid and particle dynamic simulations over available resources to reduce overall calculation time.

  15. Theoretical design of a novel copper doped gold cluster supported on graphene utilizing ab initio molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Kenichi; Nobusada, Katsuyuki [Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan); Boero, Mauro [Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504, University of Strasbourg and CNRS, 23 rue du Loess, F-67034 Strasbourg (France)

    2015-12-31

    Ab initio molecular dynamics simulations have been used to inspect the adsorption of O{sub 2} to a small gold-copper alloy cluster supported on graphene. The exposed Cu atom in this cluster acts as a crucial attractive site for the approaching of O{sub 2} and consequently widens the reaction channel for the adsorption process. Conversely, a pure Au cluster on the same graphene support is inactive for the O{sub 2} adsorption because the corresponding reaction channel for the adsorption is very narrow. These results clearly indicate that doping a different metal to the Au cluster is a way to enhance the oxygen adsorption and to promote catalytic reactions.

  16. A study of the propagation, dynamics, and extinguishment of cellular flames using microgravity techniques

    Science.gov (United States)

    Ronney, Paul D.

    1989-01-01

    The characteristics of premixed gas flames in mixtures with low Lewis numbers, free of natural convection effects, were investigated and found to be dominated by diffusive-thermal instabilities. For sufficiently reactive mixtures, cellular structures resulting from these instabilities were observed and found to spawn new cells in regular patterns. For less reactive mixtures, cells formed shortly after ignition but did not spawn new cells; instead these cells evolved into a flame structure composed of stationary, apparently stable spherical flamelets. As a result of these phenomena, well-defined flammability limits were not observed. The experimental results are found to be in qualitative agreement with a simple analytical model based on the interaction of heat release due to chemical reaction, differential diffusion of thermal energy and mass, flame front curvature, and heat losses due to gas radiation.

  17. ECM Signaling Regulates Collective Cellular Dynamics to Control Pancreas Branching Morphogenesis.

    Science.gov (United States)

    Shih, Hung Ping; Panlasigui, Devin; Cirulli, Vincenzo; Sander, Maike

    2016-01-12

    During pancreas development, epithelial buds undergo branching morphogenesis to form an exocrine and endocrine gland. Proper morphogenesis is necessary for correct lineage allocation of pancreatic progenitors; however, the cellular events underlying pancreas morphogenesis are unknown. Here, we employed time-lapse microscopy and fluorescent labeling of cells to analyze cell behaviors associated with pancreas morphogenesis. We observed that outer bud cells adjacent to the basement membrane are pleomorphic and rearrange frequently; additionally, they largely remain in the outer cell compartment even after mitosis. These cell behaviors and pancreas branching depend on cell contacts with the basement membrane, which induce actomyosin cytoskeleton remodeling via integrin-mediated activation of FAK/Src signaling. We show that integrin signaling reduces E-cadherin-mediated cell-cell adhesion in outer cells and provide genetic evidence that this regulation is necessary for initiation of branching. Our study suggests that regulation of cell motility and adhesion by local niche cues initiates pancreas branching morphogenesis.

  18. Dynamic computational model suggests that cellular citizenship is fundamental for selective tumor apoptosis.

    Directory of Open Access Journals (Sweden)

    Megan Olsen

    Full Text Available Computational models in the field of cancer research have focused primarily on estimates of biological events based on laboratory generated data. We introduce a novel in-silico technology that takes us to the next level of prediction models and facilitates innovative solutions through the mathematical system. The model's building blocks are cells defined phenotypically as normal or tumor, with biological processes translated into equations describing the life protocols of the cells in a quantitative and stochastic manner. The essentials of communication in a society composed of normal and tumor cells are explored to reveal "protocols" for selective tumor eradication. Results consistently identify "citizenship properties" among cells that are essential for the induction of healing processes in a healthy system invaded by cancer. These properties act via inter-cellular communication protocols that can be optimized to induce tumor eradication along with system recovery. Within the computational systems, the protocols universally succeed in removing a wide variety of tumors defined by proliferation rates, initial volumes, and apoptosis resistant phenotypes; they show high adaptability for biological details and allow incorporation of population heterogeneity. These protocols work as long as at least 32% of cells obey extra-cellular commands and at least 28% of cancer cells report their deaths. This low percentage implies that the protocols are resilient to the suboptimal situations often seen in biological systems. We conclude that our in-silico model is a powerful tool to investigate, to propose, and to exercise logical anti-cancer solutions. Functional results should be confirmed in a biological system and molecular findings should be loaded into the computational model for the next level of directed experiments.

  19. Modeling water sorption dynamics of cellular solid food systems using free volume theory

    NARCIS (Netherlands)

    Meinders, M.B.J.; Vliet, van T.

    2009-01-01

    Water sorption and dynamical properties of bread crust were studied using gravimetric sorption experiments. Water uptake and loss were measured while relative humidity (RH) was step-wise in- or decreased. Experimental results were compared with Fickian diffusion models and empirical models like the

  20. Mechanics and dynamics of triglyceride-phospholipid model membranes: Implications for cellular properties and function

    DEFF Research Database (Denmark)

    Pakkanen, Kirsi I.; Duelund, Lars; Qvortrup, Klaus

    2011-01-01

    We demonstrate here that triolein alters the mechanical properties of phospholipid membranes and induces extraordinary conformational dynamics. Triolein containing membranes exhibit fluctuations up to size range of 100µm and with the help of these are e.g. able to squeeze through narrow passages ...

  1. The dynamic and geometric phase transition in the cellular network of pancreatic islet

    Science.gov (United States)

    Wang, Xujing

    2013-03-01

    The pancreatic islet is a micro-organ that contains several thousands of endocrine cells, majority of which being the insulin releasing β - cells . - cellsareexcitablecells , andarecoupledtoeachother through gap junctional channels. Here, using percolation theory, we investigate the role of network structure in determining the dynamics of the β-cell network. We show that the β-cell synchronization depends on network connectivity. More specifically, as the site occupancy is reducing, initially the β-cell synchronization is barely affected, until it reaches around a critical value, where the synchronization exhibit a sudden rapid decline, followed by an slow exponential tail. This critical value coincides with the critical site open probability for percolation transition. The dependence over bond strength is similar, exhibiting critical-behavior like dependence around a certain value of bond strength. These results suggest that the β-cell network undergoes a dynamic phase transition when the network is percolated. We further apply the findings to study diabetes. During the development of diabetes, the β - cellnetworkconnectivitydecreases . Siteoccupancyreducesfromthe reducing β-cell mass, and the bond strength is increasingly impaired from β-cell stress and chronic hyperglycemia. We demonstrate that the network dynamics around the percolation transition explain the disease dynamics around onset, including a long time mystery in diabetes, the honeymoon phenomenon.

  2. Universality in the Self Organized Critical behavior of a cellular model of superconducting vortex dynamics

    Science.gov (United States)

    Sun, Yudong; Vadakkan, Tegy; Bassler, Kevin

    2007-03-01

    We study the universality and robustness of variants of the simple model of superconducting vortex dynamics first introduced by Bassler and Paczuski in Phys. Rev. Lett. 81, 3761 (1998). The model is a coarse-grained model that captures the essential features of the plastic vortex motion. It accounts for the repulsive interaction between vortices, the pining of vortices at quenched disordered locations in the material, and the over-damped dynamics of the vortices that leads to tearing of the flux line lattice. We report the results of extensive simulations of the critical ``Bean state" dynamics of the model. We find a phase diagram containing four distinct phases of dynamical behavior, including two phases with distinct Self Organized Critical (SOC) behavior. Exponents describing the avalanche scaling behavior in the two SOC phases are determined using finite-size scaling. The exponents are found to be robust within each phase and for different variants of the model. The difference of the scaling behavior in the two phases is also observed in the morphology of the avalanches.

  3. Electron-phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors.

    Science.gov (United States)

    Reznik, D; Pintschovius, L; Ito, M; Iikubo, S; Sato, M; Goka, H; Fujita, M; Yamada, K; Gu, G D; Tranquada, J M

    2006-04-27

    The attempt to understand copper oxide superconductors is complicated by the presence of multiple strong interactions in these systems. Many believe that antiferromagnetism is important for superconductivity, but there has been renewed interest in the possible role of electron-lattice coupling. The conventional superconductor MgB2 has a very strong electron-lattice coupling, involving a particular vibrational mode (phonon) that was predicted by standard theory and confirmed quantitatively by experiment. Here we present inelastic scattering measurements that show a similarly strong anomaly in the Cu-O bond-stretching phonon in the copper oxide superconductors La(2-x)Sr(x)CuO4 (with x = 0.07, 0.15). Conventional theory does not predict such behaviour. The anomaly is strongest in La(1.875)Ba(0.125)CuO4 and La(1.48)Nd(0.4)Sr(0.12)CuO4, compounds that exhibit spatially modulated charge and magnetic order, often called stripe order; it occurs at a wave vector corresponding to the charge order. These results suggest that this giant electron-phonon anomaly, which is absent in undoped and over-doped non-superconductors, is associated with charge inhomogeneity. It follows that electron-phonon coupling may be important to our understanding of superconductivity, although its contribution is likely to be indirect.

  4. Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics.

    Science.gov (United States)

    Guvendiren, Murat; Burdick, Jason A

    2012-04-24

    Biological processes are dynamic in nature, and growing evidence suggests that matrix stiffening is particularly decisive during development, wound healing and disease; yet, nearly all in vitro models are static. Here we introduce a step-wise approach, addition then light-mediated crosslinking, to fabricate hydrogels that stiffen (for example, ~3-30 kPa) in the presence of cells, and investigated the short-term (minutes-to-hours) and long-term (days-to-weeks) cell response to dynamic stiffening. When substrates are stiffened, adhered human mesenchymal stem cells increase their area from ~500 to 3,000 μm(2) and exhibit greater traction from ~1 to 10 kPa over a timescale of hours. For longer cultures up to 14 days, human mesenchymal stem cells selectively differentiate based on the period of culture, before or after stiffening, such that adipogenic differentiation is favoured for later stiffening, whereas osteogenic differentiation is favoured for earlier stiffening.

  5. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies.

    Directory of Open Access Journals (Sweden)

    Nils Giordano

    2016-03-01

    Full Text Available Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin's Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment.

  6. Mean field dynamics of graphs I: Evolution of probabilistic cellular automata for random and small-world graphs

    CERN Document Server

    Waldorp, Lourens J

    2016-01-01

    It was recently shown how graphs can be used to provide descriptions of psychopathologies, where symptoms of, say, depression, affect each other and certain configurations determine whether someone could fall into a sudden depression. To analyse changes over time and characterise possible future behaviour is rather difficult for large graphs. We describe the dynamics of networks using one-dimensional discrete time dynamical systems theory obtained from a mean field approach to (elementary) probabilistic cellular automata (PCA). Often the mean field approach is used on a regular graph (a grid or torus) where each node has the same number of edges and the same probability of becoming active. We show that we can use variations of the mean field of the grid to describe the dynamics of the PCA on a random and small-world graph. Bifurcation diagrams for the mean field of the grid, random, and small-world graphs indicate possible phase transitions for certain parameter settings. Extensive simulations indicate for di...

  7. Simulation of Evacuation Characteristics Using a 2-Dimensional Cellular Automata Model for Pedestrian Dynamics

    Directory of Open Access Journals (Sweden)

    Liqiang Ji

    2013-01-01

    Full Text Available In public places, the high pedestrian density is one of the direct causes leading to crowding and trample disaster, so it is very necessary to investigate the collective and evacuation characteristics for pedestrian movement. In the occupants’ evacuation process, the people-people interaction and the people-environment interaction are sufficiently considered in this paper, which have been divided into the exit attraction, the repulsion force between people, the friction between people, the repulsion force between human and barrier, and the attraction of surrounding people. Through analyzing the existing models, a new occupant evacuation cellular automata (CA model based on the social force model is presented, which overcomes the shortage of the high density crowd simulation and combines the advantages that CA has sample rules and faster calculating speed. The simulating result shows a great applicability for evacuation under the high density crowd condition, and the segregation phenomena have also been found in the bidirectional pedestrian flow. Besides these, setting isolated belt near the exit or entrance of underpass not only remarkably decreases the density and the risk of tramper disaster but also increases the evacuation efficiency, so it provides a new idea for infrastructure design about the exits and entrances.

  8. Dynamic changes in cellular infiltrates with repeated cutaneous vaccination: a histologic and immunophenotypic analysis

    Directory of Open Access Journals (Sweden)

    Schaefer Jochen T

    2010-08-01

    Full Text Available Abstract Background Melanoma vaccines have not been optimized. Adjuvants are added to activate dendritic cells (DCs and to induce a favourable immunologic milieu, however, little is known about their cellular and molecular effects in human skin. We hypothesized that a vaccine in incomplete Freund's adjuvant (IFA would increase dermal Th1 and Tc1-lymphocytes and mature DCs, but that repeated vaccination may increase regulatory cells. Methods During and after 6 weekly immunizations with a multipeptide vaccine, immunization sites were biopsied at weeks 0, 1, 3, 7, or 12. In 36 participants, we enumerated DCs and lymphocyte subsets by immunohistochemistry and characterized their location within skin compartments. Results Mature DCs aggregated with lymphocytes around superficial vessels, however, immature DCs were randomly distributed. Over time, there was no change in mature DCs. Increases in T and B-cells were noted. Th2 cells outnumbered Th1 lymphocytes after 1 vaccine 6.6:1. Eosinophils and FoxP3+ cells accumulated, especially after 3 vaccinations, the former cell population most abundantly in deeper layers. Conclusions A multipeptide/IFA vaccine may induce a Th2-dominant microenvironment, which is reversed with repeat vaccination. However, repeat vaccination may increase FoxP3+T-cells and eosinophils. These data suggest multiple opportunities to optimize vaccine regimens and potential endpoints for monitoring the effects of new adjuvants. Trail Registration ClinicalTrials.gov Identifier: NCT00705640

  9. On Green Cognitive Radio Cellular Networks: Dynamic Spectrum and Operation Management

    KAUST Repository

    Sboui, Lokman

    2016-07-18

    We study a profit maximization problem related to cognitive radio cellular networks in an environmentally- friendly framework. The objective of the primary network (PN) and secondary network (SN) is to maximize their profits while respecting a certain carbon dioxide (CO2) emissions threshold. In this study, the PN can switch off some of its base stations (BSs) powered by mircogrids, and hence leases the spectrum in the corresponding cells, to reduce its footprint. The corresponding users are roamed to the SN infrastructure. In return, the SN receives a certain roaming cost and its users can freely exploit the spectrum. We study two scenarios in which the profits are either separately or jointly maximized. In the disjoint maximization problem, two low complexity algorithms for PN and SN BS on/off switching are proposed to maximize the profit per CO2 emissions utility and determine the amount of the shared bandwidth. In the joint maximization approach, the low complexity algorithm is based on maximizing the sum of weighted profits per CO2. Selected numerical results illustrate the collaboration performance versus various system parameters. We show that the proposed algorithms achieve performances close to those obtained with the exhaustive search method, and that the roaming price and the renewable energy availability are crucial parameters that control the collaboration of both networks.

  10. ECM Signaling Regulates Collective Cellular Dynamics to Control Pancreas Branching Morphogenesis

    Directory of Open Access Journals (Sweden)

    Hung Ping Shih

    2016-01-01

    Full Text Available During pancreas development, epithelial buds undergo branching morphogenesis to form an exocrine and endocrine gland. Proper morphogenesis is necessary for correct lineage allocation of pancreatic progenitors; however, the cellular events underlying pancreas morphogenesis are unknown. Here, we employed time-lapse microscopy and fluorescent labeling of cells to analyze cell behaviors associated with pancreas morphogenesis. We observed that outer bud cells adjacent to the basement membrane are pleomorphic and rearrange frequently; additionally, they largely remain in the outer cell compartment even after mitosis. These cell behaviors and pancreas branching depend on cell contacts with the basement membrane, which induce actomyosin cytoskeleton remodeling via integrin-mediated activation of FAK/Src signaling. We show that integrin signaling reduces E-cadherin-mediated cell-cell adhesion in outer cells and provide genetic evidence that this regulation is necessary for initiation of branching. Our study suggests that regulation of cell motility and adhesion by local niche cues initiates pancreas branching morphogenesis.

  11. Evaluation of Spatiotemporal Dynamics of Simulated Land Use/Cover in China Using a Probabilistic Cellular Automata-Markov Model

    Institute of Scientific and Technical Information of China (English)

    CHEN Xu; YU Shi-Xiao; ZHANG Ya-Ping

    2013-01-01

    Using the fuzzy rule-based classification method,normalized difference vegetation index (NDVI) images acquired from 1982 to 1998 were classified into seventeen phases.Based on these classification images,a probabilistic cellular automata-Markov Chain model was developed and used to simulate a land cover scenario of China for the year 2014.Spatiotemporal dynamics of land use/cover in China from 1982 to 2014 were then analyzed and evaluated.The results showed that the change trends of land cover type from 1998 to 2014 would be contrary to those from 1982 to 1998.In particular,forestland and grassland areas decreased by 1.56% and 1.46%,respectively,from 1982 to 1998,and should increase by 1.5% and 2.3% from 1998 to 2014,respectively.

  12. Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination

    Science.gov (United States)

    Therrien, O. D.; Aubé, B.; Pagès, S.; Koninck, P. De; Côté, D.

    2011-01-01

    Wide-field temporal focusing is a novel technique that provides optical sectioning for imaging without the need for beam scanning. However, illuminating over large areas greatly reduces the photon density which limits the technique applicability to small regions, precluding functional imaging of cellular networks. Here we present a strategy that combines beam shaping and temporal focusing of amplified pulses (>1 µJ/pulse) for fast imaging of cells from the central nervous system in acute slices. Multiphoton video-rate imaging over total areas as wide as 4800 µm2 with an optical sectioning under 10 µm at 800 nm is achieved with our setup, leading to imaging of calcium dynamics of multiple cells simultaneously in thick tissue. PMID:21412473

  13. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates

    Science.gov (United States)

    Pönisch, Wolfram; Weber, Christoph A.; Juckeland, Guido; Biais, Nicolas; Zaburdaev, Vasily

    2017-01-01

    Neisseria gonorrhoeae is the causative agent of one of the most common sexually transmitted diseases, gonorrhea. Over the past two decades there has been an alarming increase of reported gonorrhea cases where the bacteria were resistant to the most commonly used antibiotics thus prompting for alternative antimicrobial treatment strategies. The crucial step in this and many other bacterial infections is the formation of microcolonies, agglomerates consisting of up to several thousands of cells. The attachment and motility of cells on solid substrates as well as the cell-cell interactions are primarily mediated by type IV pili, long polymeric filaments protruding from the surface of cells. While the crucial role of pili in the assembly of microcolonies has been well recognized, the exact mechanisms of how they govern the formation and dynamics of microcolonies are still poorly understood. Here, we present a computational model of individual cells with explicit pili dynamics, force generation and pili-pili interactions. We employ the model to study a wide range of biological processes, such as the motility of individual cells on a surface, the heterogeneous cell motility within the large cell aggregates, and the merging dynamics and the self-assembly of microcolonies. The results of numerical simulations highlight the central role of pili generated forces in the formation of bacterial colonies and are in agreement with the available experimental observations. The model can quantify the behavior of multicellular bacterial colonies on biologically relevant temporal and spatial scales and can be easily adjusted to include the geometry and pili characteristics of various bacterial species. Ultimately, the combination of the microbiological experimental approach with the in silico model of bacterial colonies might provide new qualitative and quantitative insights on the development of bacterial infections and thus pave the way to new antimicrobial treatments.

  14. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Boudreau, Aaron; Bissell, Mina J

    2008-12-23

    Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ's microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly 'encoded' by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemical cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra - to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.

  15. Biodynsensing: Sensing Through Dynamics of Hybrid Affinity/Cellular Platforms; Towards Appraisal of Environmental and Biological Risks of Nanobiotechnology

    Science.gov (United States)

    Gheorghiu, E.; Gheorghiu, M.; David, S.; Polonschii, C.

    Chemical cues and nano-topographies present on the surface or in the extracellular medium strongly influence the fate and adhesion of biological cells. Careful tuning of cell—matrix interaction via engineered surfaces, either attractive or repulsive, require non-invasive, long time monitoring capabilities and lay the foundation of sensing platforms for risk assessment. Aiming to assess changes underwent by biointerfaces due to cell—environment interaction (in particular nanotechnology products), we have developed hybrid cellular platforms allowing for time based dual assays, i.e., impedance/dielectric spectroscopy (IS) and Surface Plasmon Resonance (SPR). Such platforms comprising Flow Injection Analysis (FIA) have been advanced to assess the interaction between selected (normal and malignant) cells and nano-patterned and/or chemically modified surfaces, as well as the impact of engineered nanoparticles, revealed by the related changes exhibited by cell membrane, morphology, adhesion and monolayer integrity. Besides experimental aspects dealing with measurement set-up, we will emphasize theoretical aspects related to: dielectric modeling. Aiming for a quantitative approach, microscopic models on dielectric behavior of ensembles of interconnected cells have been developed and their capabilities will be outlined within the presentation. Assessment of affinity reactions as revealed by dielectric/impedance assays of biointerfaces. Modeling the dynamics of the impedance in relation to the “quality” of cell layer and sensor's active surface, this study presents further developments of our approach described in Analytical Chemistry, 2002. Data analysis. This issue is related to the following basic question: Are there “simple” Biosensing Platforms? When coping with cellular platforms, either in suspension or immobilized (on filters, adhered on surfaces or entrapped, e.g., on using set-ups) there is an intrinsic nonlinear behavior of biological systems related

  16. Mapping the spatiotemporal dynamics of calcium signaling in cellular neural networks using optical flow

    CERN Document Server

    Buibas, Marius; Nizar, Krystal; Silva, Gabriel A

    2009-01-01

    An optical flow gradient algorithm was applied to spontaneously forming networks of neurons and glia in culture imaged by fluorescence optical microscopy in order to map functional calcium signaling with single pixel resolution. Optical flow estimates the direction and speed of motion of objects in an image between subsequent frames in a recorded digital sequence of images (i.e. a movie). Computed vector field outputs by the algorithm were able to track the spatiotemporal dynamics of calcium signaling patterns. We begin by briefly reviewing the mathematics of the optical flow algorithm, describe how to solve for the displacement vectors, and how to measure their reliability. We then compare computed flow vectors with manually estimated vectors for the progression of a calcium signal recorded from representative astrocyte cultures. Finally, we applied the algorithm to preparations of primary astrocytes and hippocampal neurons and to the rMC-1 Muller glial cell line in order to illustrate the capability of the ...

  17. Canine Models for Copper Homeostasis Disorders

    NARCIS (Netherlands)

    Wu, Xiaoyan; Leegwater, Peter A J; Fieten, Hille

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurolog

  18. Cellular automaton model with dynamical 2D speed-gap relation reproduces empirical and experimental features of traffic flow

    CERN Document Server

    Tian, Junfang; Ma, Shoufeng; Zhu, Chenqiang; Jiang, Rui; Ding, YaoXian

    2015-01-01

    This paper proposes an improved cellular automaton traffic flow model based on the brake light model, which takes into account that the desired time gap of vehicles is remarkably larger than one second. Although the hypothetical steady state of vehicles in the deterministic limit corresponds to a unique relationship between speeds and gaps in the proposed model, the traffic states of vehicles dynamically span a two-dimensional region in the plane of speed versus gap, due to the various randomizations. It is shown that the model is able to well reproduce (i) the free flow, synchronized flow, jam as well as the transitions among the three phases; (ii) the evolution features of disturbances and the spatiotemporal patterns in a car-following platoon; (iii) the empirical time series of traffic speed obtained from NGSIM data. Therefore, we argue that a model can potentially reproduce the empirical and experimental features of traffic flow, provided that the traffic states are able to dynamically span a 2D speed-gap...

  19. Cellular automata approach for investigation of low power light effects on the dynamics of plant-inhabiting

    Energy Technology Data Exchange (ETDEWEB)

    Bandini, S. (Milan Univ. (Italy). Dip. di Scienza dell' Informazione); Casati, R.; Milani, M. (Milan Univ. (Italy). Dip. di Fisica)

    1998-10-01

    The prey-predator competition is a typical problem exhibited by the dynamics of phytophagous and predaceous mite population. Biological parameters of Tetranychus urticae Koch (Acari: Tetranychidae) and Amblyseius californicus McGregor (Acari: Phytoseiidae) are set up in order to establish the fundamental aspects to be embodied into a simulation model. The paper introduces the Lotka-Volterra differential equations as the classical approach to the problem and present the Cellular-Automata (CA) approach as an alternative one. It reports preliminary results which account for a number of interesting features such as: 1) oscillations in time of the population, 2) a link between the populations' initial conditions and the obtained solution, 3) the appearance of spatial structures, and 4) the effect on the population dynamics of parameters which may be linked to photoperiodic and circadian features. Furthermore, it is shown that several sophisticated features affecting populations evolution, such as the egg opening time, the sexual maturation time, the limited lifetime, the limited survival capability of predators in fasting condition and juvenile mortality can be easily included in a CA-based model.

  20. Dynamic Resource Management in MC-CDMA Based Cellular Wireless Networks

    Directory of Open Access Journals (Sweden)

    Bala Jeevitha Vani

    2009-10-01

    Full Text Available Most of the multimedia and Internet services today are asymmetric in nature, and require high data rate support. Allocating equal band width in both uplink and downlink is not prudent solution, as most of the time user requirement is more either in uplink or downlink. The Multi Carrier Code Division Multiple Access (MC-CDMA system with time division duplex mode can easily met this requirement by dynamically declaring traffic direction in TDD slot, and adaptively allocating the sub channels. In this paper, we propose a adaptive slot and sub carrier allocation algorithm, that can be independently implemented in each cell of mobile communication network. Our analytical model is generalization of two cell concept to represent a multi cell model. Based on two cell concept four cases of interference pattern has been considered and simulated separately in presence of Additive White Gaussian Noise (AWGN and Rayleigh Channel. The simulated result suggests the requirement of approximately 9dB of Signal to Noise Ratio (SNR to maintain Bit Error Rate below 10-3. We also analyze the average delay incurred by the proposed algorithm in allocating resources.

  1. The characteristics of nonlinear chaotic dynamics in quantum cellular neural networks

    Institute of Scientific and Technical Information of China (English)

    Wang Sen; Cai Li; Kang Qiang; Wu Gang; Li Qin

    2008-01-01

    With the polarization of quantum-dot cell and quantum phase serving as state variables, this paper does both theoretical analysis and simulation for the complex nonlinear dynamical behaviour of a three-cell-coupled Quantum Cel- lular Neural Network (QCNN), including equilibrium points, bifurcation and chaotic behaviour. Different phenomena, such as quasi-periodic, chaotic and hyper-chaotic states as well as bifurcations are revealed. The system's bifurcation and chaotic behaviour under the influence of the different coupling parameters are analysed. And it finds that the unbalanced ceils coupled QCNN is easy to cause chaotic oscillation and the system response enters into chaotic state from quasi-periodic state by quasi-period bifurcation; however, the balanced cells coupled QCNN also can be chaotic when coupling parameters is in some region. Additionally, both the unbalanced and balanced cells coupled QCNNs can possess hyper-chaotic behaviour. It provides valuable information about QCNNs for future application in high-parallel signal processing and novel ultra-small chaotic generators.

  2. DNA replication restart and cellular dynamics of Hef helicase/nuclease protein in Haloferax volcanii.

    Science.gov (United States)

    Lestini, Roxane; Delpech, Floriane; Myllykallio, Hannu

    2015-11-01

    Understanding how frequently spontaneous replication arrests occur and how archaea deal with these arrests are very interesting and challenging research topics. Here we will described how genetic and imaging studies have revealed the central role of the archaeal helicase/nuclease Hef belonging to the XPF/MUS81/FANCM family of endonucleases in repair of arrested replication forks. Special focus will be on description of a recently developed combination of genetic and imaging tools to study the dynamic localization of a functional Hef::GFP (Green Fluorescent Protein) fusion protein in the living cells of halophilic archaea Haloferax volcanii. As Archaea provide an excellent and unique model for understanding how DNA replication is regulated to allow replication of a circular DNA molecule either from single or multiple replication origins, we will also summarize recent studies that have revealed peculiar features regarding DNA replication, particularly in halophilic archaea. We strongly believe that fundamental knowledge of our on-going studies will shed light on the evolutionary history of the DNA replication machinery and will help to establish general rules concerning replication restart and the key role of recombination proteins not only in bacteria, yeast and higher eukaryotes but also in archaea.

  3. Cellular Dynamics Drives the Emergence of Supracellular Structure in the Cyanobacterium, Phormidium sp. KS

    Directory of Open Access Journals (Sweden)

    Naoki Sato

    2014-11-01

    Full Text Available Motile filamentous cyanobacteria, such as Oscillatoria, Phormidium and Arthrospira, are ubiquitous in terrestrial and aquatic environments. As noted by Nägeli in 1860, many of them form complex three-dimensional or two-dimensional structures, such as biofilm, weed-like thalli, bundles of filaments and spirals, which we call supracellular structures. In all of these structures, individual filaments incessantly move back and forth. The structures are, therefore, macroscopic, dynamic structures that are continuously changing their microscopic arrangement of filaments. In the present study, we analyzed quantitatively the movement of individual filaments of Phormidium sp. KS grown on agar plates. Junctional pores, which have been proposed to drive cell movement by mucilage/slime secretion, were found to align on both sides of each septum. The velocity of movement was highest just after the reversal of direction and, then, attenuated exponentially to a final value before the next reversal of direction. This kinetics is compatible with the “slime gun” model. A higher agar concentration restricts the movement more severely and, thus, resulted in more spiral formation. The spiral is a robust form compatible with non-homogeneous movements of different parts of a long filament. We propose a model of spiral formation based on the microscopic movement of filaments.

  4. A molecular dynamics study of void initiation and growth in monocrystalline and nanocrystalline copper

    Science.gov (United States)

    Traiviratana, Sirirat

    MD simulations in monocrystalline and nanocrystalline copper were carried out with LAMMPS to reveal void growth mechanisms. The specimens were subjected to both tensile uniaxial and hydrostatic strains; the results confirm that the emission of (shear) loops is the primary mechanism of void growth. The expansion of the loops and their cross slip leads to the severely work hardened layer surrounding a growing void. Calculations were carried out on voids with different sizes, and a size dependence of the stress response to emitted dislocations was observed, in disagreement with the Gurson model [1] which is scale independent. The growth of voids simulated by MD is compared with the Cocks-Ashby constitutive model and significant agreement is found. The density of geometrically-necessary dislocations as a function of void size is calculated based on the emission of shear loops and their outward propagation. Calculations were also carried out for a void at the interface between two grains sharing a tilt boundary. The results show similar dislocation behaviors. A code that uses Voronoi tessellation for constructing nanocrystalline structures was developed and used to prepare the structures for simulations. Nanocrystal simulations reveal grain sliding and grain rotation as the nanocrystal deformed. Voids were nucleated at grain junctions and grew to coalescence as dislocations accommodated the material transfer. A code that can be used during post-processing to extract useful dislocation information from MD simulation data was partially developed and proved the feasibility of automatically analyzing dislocations.

  5. Canine Models for Copper Homeostasis Disorders

    OpenAIRE

    Xiaoyan Wu; Leegwater, Peter A. J.; Hille Fieten

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper me...

  6. Accumulation dynamics and cellular locations of Pb, Zn and Cd in resident and transplanted Flavocetraria nivalis lichens near a former Pb-Zn mine

    DEFF Research Database (Denmark)

    Søndergaard, Jens

    2013-01-01

    Accumulation dynamics and cellular locations of lead (Pb), zinc (Zn) and cadmium (Cd) were studied in Flavocetraria nivalis lichens near the former Black Angel Pb-Zn Mine in West Greenland. Natural resident thalli were collected from four dust-contaminated sites near the mine. In addition, thalli...

  7. On the spatial dynamics and oscillatory behavior of a predator-prey model based on cellular automata and local particle swarm optimization.

    Science.gov (United States)

    Molina, Mario Martínez; Moreno-Armendáriz, Marco A; Carlos Seck Tuoh Mora, Juan

    2013-11-07

    A two-dimensional lattice model based on Cellular Automata theory and swarm intelligence is used to study the spatial and population dynamics of a theoretical ecosystem. It is found that the social interactions among predators provoke the formation of clusters, and that by increasing the mobility of predators the model enters into an oscillatory behavior.

  8. Modeling industrial thickener using computational fluid dynamics (CFD), a case study:Tailing thickener in the Sarcheshmeh copper mine

    Institute of Scientific and Technical Information of China (English)

    Majid Ebrahimzadeh Gheshlaghi; Ataallah Soltani Goharrizi; Alireza Aghajani Shahrivar; Hadi Abdollahi

    2013-01-01

    Separation of particles from liquid in the large gravitational tanks is widely used in mining and industrial wastewater treatment process. Thickener is key unit in the operational processes of hydrometallurgy and is used to separate solid from liquid. In this study, population balance models were combined with com-putational fluid dynamics (CFD) for modeling the tailing thickener. Parameters such as feed flow rate, flocculant dosage, inlet solid percent and feedwell were investigated. CFD was used to simulate the industrial tailing thickener with settled bed of 120 m diameter which is located in the Sarcheshmeh cop-per mine. Important factor of drag force that defines the rake torque of rotating paddles on the bed was also determined. Two phases turbulence model of Eulerian/Eulerian in accordance with turbulence model of k-e was used in the steady-state. Also population balance model consists of 15 groups of particle sizes with Luo and Lehr kernel was used for aggregation/breakage kernel. The simulation results showed good agreement with the operational data.

  9. A quantitative analysis of L-glutamate-regulated Na+ dynamics in mouse cortical astrocytes: implications for cellular bioenergetics.

    Science.gov (United States)

    Chatton, J Y; Marquet, P; Magistretti, P J

    2000-11-01

    The mode of Na+ entry and the dynamics of intracellular Na+ concentration ([Na+]i) changes consecutive to the application of the neurotransmitter glutamate were investigated in mouse cortical astrocytes in primary culture by video fluorescence microscopy. An elevation of [Na+]i was evoked by glutamate, whose amplitude and initial rate were concentration dependent. The glutamate-evoked Na+ increase was primarily due to Na+-glutamate cotransport, as inhibition of non-NMDA ionotropic receptors by 6-cyano-7-nitroquinoxiline-2,3-dione (CNQX) only weakly diminished the response and D-aspartate, a substrate of the glutamate transporter, produced [Na+]i elevations similar to those evoked by glutamate. Non-NMDA receptor activation could nevertheless be demonstrated by preventing receptor desensitization using cyclothiazide. Thus, in normal conditions non-NMDA receptors do not contribute significantly to the glutamate-evoked Na+ response. The rate of Na+ influx decreased during glutamate application, with kinetics that correlate well with the increase in [Na+]i and which depend on the extracellular concentration of glutamate. A tight coupling between Na+ entry and Na+/K+ ATPase activity was revealed by the massive [Na+]i increase evoked by glutamate when pump activity was inhibited by ouabain. During prolonged glutamate application, [Na+]i remains elevated at a new steady-state where Na+ influx through the transporter matches Na+ extrusion through the Na+/K+ ATPase. A mathematical model of the dynamics of [Na+]i homeostasis is presented which precisely defines the critical role of Na+ influx kinetics in the establishment of the elevated steady state and its consequences on the cellular bioenergetics. Indeed, extracellular glutamate concentrations of 10 microM already markedly increase the energetic demands of the astrocytes.

  10. Dynamic cellular manufacturing system design considering alternative routing and part operation tradeoff using simulated annealing based genetic algorithm

    Indian Academy of Sciences (India)

    KAMAL DEEP; PARDEEP K SINGH

    2016-09-01

    In this paper, an integrated mathematical model of multi-period cell formation and part operation tradeoff in a dynamic cellular manufacturing system is proposed in consideration with multiple part process route. This paper puts emphasize on the production flexibility (production/subcontracting part operation) to satisfy the product demand requirement in different period segments of planning horizon considering production capacity shortage and/or sudden machine breakdown. The proposed model simultaneously generates machine cells and part families and selects the optimum process route instead of the user specifying predetermined routes. Conventional optimization method for the optimal cell formation problem requires substantial amount of time and memory space. Hence a simulated annealing based genetic algorithm is proposed to explore the solution regions efficiently and to expedite the solution search space. To evaluate the computability of the proposed algorithm, different problem scenarios are adopted from literature. The results approve the effectiveness of theproposed approach in designing the manufacturing cell and minimization of the overall cost, considering various manufacturing aspects such as production volume, multiple process route, production capacity, machine duplication, system reconfiguration, material handling and subcontracting part operation.

  11. Influence of co-existed benzo[a]pyrene and copper on the cellular characteristics of Stenotrophomonas maltophilia during biodegradation and transformation.

    Science.gov (United States)

    Chen, Shuona; Yin, Hua; Ye, Jinshao; Peng, Hui; Liu, Zehua; Dang, Zhi; Chang, Jingjing

    2014-04-01

    Microbial remediation has been proposed as a promising technique to remove pollutions, however, its application has been hindered by the lack of understanding the mechanisms involved in contaminants conversion and the influence of pollutants on cellular characteristics. To address this problem, biodegradation and transformation of BaP-Cu(II) by Stenotrophomonas maltophilia, along with interactions of these pollutants with microbial cells through FCM assay were investigated. The results indicated that BaP and Cu(II) were rapidly removed by S. maltophilia on the 1st d, but only less than 10% BaP was broken down due to temporary store in cells, instead of being decomposed immediately. The key ATP enzymes in cells were then activated by BaP to promote bacteria to further decompose BaP. Stimulation of co-existed contaminants strengthened cell membrane permeability and altered cell structure, but a higher esterase activity and DNA in cells of S. maltophilia were still retained.

  12. Synthesis, DNA binding, cellular DNA lesion and cytotoxicity of a series of new benzimidazole-based Schiff base copper(II) complexes.

    Science.gov (United States)

    Paul, Anup; Anbu, Sellamuthu; Sharma, Gunjan; Kuznetsov, Maxim L; Koch, Biplob; Guedes da Silva, M Fátima C; Pombeiro, Armando J L

    2015-12-14

    A series of new benzimidazole containing compounds 2-((1-R-1-H-benzimidazol-2-yl)phenyl-imino)naphthol HL(1-3) (R = methyl, ethyl or propyl, respectively) have been synthesized by Schiff base condensation of 2-(1-R-1-H-benzo[d]imidazol-2-yl)aniline and 2-hydroxy-1-naphthaldehyde. The reactions of HL(1-3) with Cu(NO3)2·2.5H2O led to the corresponding copper(II) complexes [Cu(L)(NO3)] 1-3. All the compounds were characterized by conventional analytical techniques and, for 1 and 3, also by single-crystal X-ray analysis. The interactions of complexes 1-3 with calf thymus DNA were studied by absorption and fluorescence spectroscopic techniques and the calculated binding constants (K(b)) are in the range of 3.5 × 10(5) M(-1)-3.2 × 10(5) M(-1). Complexes 1-3 effectively bind DNA through an intercalative mode, as proved by molecular docking studies. The binding affinity of the complexes decreases with the size increase of the N-alkyl substituent, in the order of 1 > 2 > 3, which is also in accord with the calculated LUMO(complex) energies. They show substantial in vitro cytotoxic effect against human lung (A-549), breast (MDA-MB-231) and cervical (HeLa) cancer cell lines. Complex 1 exhibits a significant inhibitory effect on the proliferation of the A-549 cancer cells. The antiproliferative efficacy of 1 has also been analysed by a DNA fragmentation assay, fluorescence activated cell sorting (FACS) and nuclear morphology using a fluorescence microscope. The possible mode for the apoptosis pathway of 1 has also been evaluated by a reactive oxygen species (ROS) generation study.

  13. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation

    Science.gov (United States)

    Zhu, Bo; Zhao, Hongwei; Zhao, Dan; Zhang, Peng; Yang, Yihan; Han, Lei; Kui, Hailin

    2016-03-01

    It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM), especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD) model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM) potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

  14. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    2016-03-01

    Full Text Available It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM, especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

  15. The copper metallome in prokaryotic cells.

    Science.gov (United States)

    Rensing, Christopher; McDevitt, Sylvia Franke

    2013-01-01

    As a trace element copper has an important role in cellular function like many other transition metals. Its ability to undergo redox changes [Cu(I) ↔ Cu(II)] makes copper an ideal cofactor in enzymes catalyzing electron transfers. However, this redox change makes copper dangerous for a cell since it is able to be involved in Fenton-like reactions creating reactive oxygen species (ROS). Cu(I) also is a strong soft metal and can attack and destroy iron-sulfur clusters thereby releasing iron which can in turn cause oxidative stress. Therefore, copper homeostasis has to be highly balanced to ensure proper cellular function while avoiding cell damage.Throughout evolution bacteria and archaea have developed a highly regulated balance in copper metabolism. While for many prokaryotes copper uptake seems to be unspecific, others have developed highly sophisticated uptake mechanisms to ensure the availability of sufficient amounts of copper. Within the cytoplasm copper is sequestered by various proteins and molecules, including specific copper chaperones, to prevent cellular damage. Copper-containing proteins are usually located in the cytoplasmic membrane with the catalytic domain facing the periplasm, in the periplasm of Gram-negative bacteria, or they are secreted, limiting the necessity of copper to accumulate in the cytoplasm. To prevent cellular damage due to excess copper, bacteria and archaea have developed various copper detoxification strategies. In this chapter we attempt to give an overview of the mechanisms employed by bacteria and archaea to handle copper and the importance of the metal for cellular function as well as in the global nutrient cycle.

  16. Numerical Studies of Infiltration Dynamics of Liquid-Copper and Silicon/Solid-Carbon System

    Science.gov (United States)

    Iqbal, K.; Sha, J. J.; Lei, Zhen-Kun; Maqsood, A.; Mujahid, M.

    2014-06-01

    Mathematical modeling of infiltration dynamics of liquid Cu-Si alloy into porous carbon is presented. Two-dimensional infiltration equations are developed using the Washburn equation in the limit of both interface and diffusion control, for situations where the capillary radius decreases either linear or parabolic, and the contact angles are assumed to exponentially decrease with time during infiltration. One major manufacturing process for the Cu-Si/C composites is liquid melt infiltration. This article focuses on nonequilibrium wetting effects and offers a fundamental approach to these complex kinetic phenomena.

  17. Analytical investigation of the boundary-triggered phase transition dynamics in a cellular automata model with a slow-to-start rule

    Institute of Scientific and Technical Information of China (English)

    Jia Ning; Ma Shou-Feng; Zhong Shi-Quan

    2012-01-01

    Previous studies suggest that there are three different jam phases in the cellular automata automaton model with a slow-to-start rule under open boundaries.In the present paper,the dynamics of each free-flow-jam phase transition is studied.By analysing the microscopic behaviour of the traffic flow,we obtain analytical results on the phase transition dynamics.Our results can describe the detailed time evolution of the system during phase transition,while they provide good approximation for the numerical simulation data.These findings can perfectly explain the microscopic mechanism and details of the boundary-triggered phase transition dynamics.

  18. Copper hypersensitivity.

    Science.gov (United States)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-10-01

    The world production of copper is steadily increasing. Although humans are widely exposed to copper-containing items on the skin and mucosa, allergic reactions to copper are only infrequently reported. To review the chemistry, biology and accessible data to clarify the implications of copper hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common. As a metal, it possesses many of the same qualities as nickel, which is a known strong sensitizer. Cumulative data on subjects with presumed related symptoms and/or suspected exposure showed that a weighted average of 3.8% had a positive patch test reaction to copper. We conclude that copper is a very weak sensitizer as compared with other metal compounds. However, in a few and selected cases, copper can result in clinically relevant allergic reactions.

  19. DMPD: Anti-inflammatory actions of PPAR ligands: new insights on cellular andmolecular mechanisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17981503 Anti-inflammatory actions of PPAR ligands: new insights on cellular andmol...) (.html) (.csml) Show Anti-inflammatory actions of PPAR ligands: new insights on cellular andmolecular mech...anisms. PubmedID 17981503 Title Anti-inflammatory actions of PPAR ligands: new in

  20. Copper dynamics under alternating redox conditions is influenced by soil properties and contamination source.

    Science.gov (United States)

    Balint, Ramona; Said-Pullicino, Daniel; Ajmone-Marsan, Franco

    2015-02-01

    Understanding the effect of soil redox conditions on contaminant dynamics is of significant importance for evaluating their lability, mobility and potential transfer to other environmental compartments. Under changing redox conditions, soil properties and constituents such as Fe and Mn (hydr)oxides and organic matter (OM) may influence the behavior of associated metallic elements (MEs). In this work, the redox-driven release and redistribution of Cu between different soil pools was studied in three soils having different contamination sources. This was achieved by subjecting soil columns to a series of alternating reducing and oxidizing cycles under non-limiting C conditions, and assessing their influence on soil pore water, leachate and solid phase composition. Results showed that, in all soils, alternating redox conditions led to an increase in the distribution of Cu in the more labile fractions, consequently enhancing its susceptibility to loss. This was generally linked to the redox-driven cycling of Fe, Mn and dissolved organic matter (DOM). In fact, results suggested that the reductive dissolution of Fe and Mn (hydr)oxides and subsequent reprecipitation as poorly-ordered phases under oxic conditions contributed to the release and mobilization of Cu and/or Cu-containing organometallic complexes. However, the behavior of Cu, as well as the mechanisms controlling Cu release and loss with redox cycling, was influenced by both soil properties (e.g. pH, contents of easily reducible Fe and Mn (hydr)oxides) and source of Cu contamination.

  1. DNA binding dynamics and energetics of cobalt, nickel, and copper metallopeptides.

    Science.gov (United States)

    Galindo-Murillo, Rodrigo; Cheatham, Thomas E

    2014-06-01

    We present molecular dynamics (MD) and Quantum Theory of Atoms in Molecules (QTAIM) analysis of the DNA binding properties of three metallopeptides to the Drew-Dickerson dodecamer DNA: Co(II) -Gly(1) -Gly(2) -His, Ni(II) -Gly(1) -Gly(2) -His and Cu(II) -Gly(1) -Gly(2) -His. Fairly extensive MD simulations were run on each system until a stable binding mode for each ligand was sampled. Clustering analysis was used in an attempt to find representative structures for the most populated clusters sampled during the MD, and a QTAIM analysis was performed. Additionally, MM-PBSA analysis was performed to obtain approximate binding energies for each complex. The results suggest that stable DNA-metallopeptide complexes are formed with each of the three ligands, and that the most stable interaction is with Co(GGH), then Ni(GGH), and finally Cu(GGH). Bond Critical Points (BCP) information between the minor groove of the DNA and the metallopeptides shows an increase in electronic density between Gly(1) , the His residues, and the oxygen atoms of the thymine nucleotide. Overall, we present a detailed theoretical study of the specific interactions involved and the binding properties of each complex formed.

  2. Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells.

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-06-01

    Copper ferrite (CuFe2O4) nanoparticles (NPs) are important magnetic materials currently under research due to their applicability in nanomedicine. However, information concerning the biological interaction of copper ferrite NPs is largely lacking. In this study, we investigated the cellular response of copper ferrite NPs in human breast cancer (MCF-7) cells. Copper ferrite NPs were prepared by co-precipitation technique with the thermal effect. Prepared NPs were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM) and dynamic light scattering (DLS). Characterization data showed that copper ferrite NPs were crystalline, spherical with smooth surfaces and average diameter of 15nm. Biochemical studies showed that copper ferrite NPs induce cell viability reduction and membrane damage in MCF-7 cells and degree of induction was dose- and time-dependent. High SubG1 cell population during cell cycle progression and MMP loss with a concomitant up-regulation of caspase-3 and caspase-9 genes suggested that copper ferrite NP-induced cell death through mitochondrial pathway. Copper ferrite NP was also found to induce oxidative stress in MCF-7 cells as indicated by reactive oxygen species (ROS) generation and glutathione depletion. Cytotoxicity due to copper ferrite NPs exposure was effectively abrogated by N-acetyl-cysteine (ROS scavenger) suggesting that oxidative stress could be the plausible mechanism of copper ferrite NPs toxicity. Further studies are underway to explore the toxicity mechanisms of copper ferrite NPs in different types of human cells. This study warrants further generation of extensive biointeraction data before their application in nanomedicine.

  3. Copper transport.

    Science.gov (United States)

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats.

  4. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  5. Tempo-spatially resolved cellular dynamics of human immunodeficiency virus transacting activator of transcription (Tat) peptide-modified nanocargos in living cells

    Science.gov (United States)

    Wei, Lin; Yang, Qiaoyu; Xiao, Lehui

    2014-08-01

    Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs could not actively target the cell nuclei, which is contrary to previous observations based on fixed cell results. More importantly, the inheritance of TGNPs to the daughter cells through mitosis was found to be the major route to metabolize TGNPs by HeLa cells. These understandings on the cellular uptake mechanism and intracellular fate of nanocargos in living cells would provide deep insight on how to improve and controllably manipulate their translocation efficiency for targeted drug delivery.Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs

  6. Trace elements in human physiology and pathology. Copper.

    Science.gov (United States)

    Tapiero, H; Townsend, D M; Tew, K D

    2003-11-01

    Copper is a trace element, important for the function of many cellular enzymes. Copper ions can adopt distinct redox states oxidized Cu(II) or reduced (I), allowing the metal to play a pivotal role in cell physiology as a catalytic cofactor in the redox chemistry of enzymes, mitochondrial respiration, iron absorption, free radical scavenging and elastin cross-linking. If present in excess, free copper ions can cause damage to cellular components and a delicate balance between the uptake and efflux of copper ions determines the amount of cellular copper. In biological systems, copper homeostasis has been characterized at the molecular level. It is coordinated by several proteins such as glutathione, metallothionein, Cu-transporting P-type ATPases, Menkes and Wilson proteins and by cytoplasmic transport proteins called copper chaperones to ensure that it is delivered to specific subcellular compartments and thereby to copper-requiring proteins.

  7. Dynamic contrast enhanced MRI parameters and tumor cellularity in a rat model of cerebral glioma at 7T

    Science.gov (United States)

    Aryal, Madhava Prasad

    This dissertation mainly focuses on establishing and evaluating a stable and reproducible procedure for assessing tumor microvasculature by measuring the tissue parameters: plasma volume (vp), forward transfer constant (Ktrans), interstitial volume (ve) and distribution volume (VD), utilizing T1-weighted dynamic contrast enhanced MRI (DCE-MRI) and examining their relationship with a histo measure, cell counting. In the first part of the work, two T1-weighted DCE-MRI studies at 24 hrs time interval, using a dual-echo gradient-echo pulse sequence, were performed in 18 athymic rats implanted with U251 cerebral glioma. Using the "standard," or "consensus" model, and a separate Logan graphical analysis, T1-weighted images before, during and after the injection of a gadolinium contrast agent were used to estimate the tissue parameters mentioned above. After MRI study rats were sacrificed, and sectioned brain tissues were stained with Hematoxylin and Eosin for cell counting. Measurements in a region where a model selection process demonstrates that it can be reliably shown that contrast agent leaks from the capillary into the interstitial space quickly enough, and a concentration sufficient to measure its back flux to the vasculature, especially for Ktrans and ve, showed a remarkable stability. The combined mean parameter values in this region were: vp = (0.79+/-0.36)%, Ktrans = (2.23+/-0.71) x10-2 min -1, ve = (6.99+/-2.14)%, and VD = (7.57+/-2.32)%. In the second part of this work, the Logan graphical approach, after establishing its stability in an untreated control group, was applied to investigate a cohort of animals in which a therapeutic dose of 20 Gy radiation had been administered. In this cohort, tissue normalization appeared to be the most effective at 8 h after irradiation; this implies that the 8 hrs post-treatment time might be an ideal combination time for optimized therapeutic outcome in combined modalities. The relationship between non-invasive DCE

  8. Cellular and Molecular Dynamics of Th17 Differentiation and its Developmental Plasticity in the Intestinal Immune Response

    Science.gov (United States)

    Bhaumik, Suniti; Basu, Rajatava

    2017-01-01

    After emerging from the thymus, naive CD4 T cells circulate through secondary lymphoid tissues, including gut-associated lymphoid tissue of the intestine. The activation of naïve CD4 T cells by antigen-presenting cells offering cognate antigen initiate differentiation programs that lead to the development of highly specialized T helper (Th) cell lineages. Although initially believed that developmental programing of effector T cells such as T helper 1 (Th1) or T helper 2 (Th2) resulted in irreversible commitment to a fixed fate, subsequent studies have demonstrated greater flexibility, or plasticity, in effector T cell stability than originally conceived. This is particularly so for the Th17 subset, differentiation of which is a highly dynamic process with overlapping developmental axes with inducible regulatory T (iTreg), T helper 22 (Th22), and Th1 cells. Accordingly, intermediary stages of Th17 cells are found in various tissues, which co-express lineage-specific transcription factor(s) or cytokine(s) of developmentally related CD4 T cell subsets. A highly specialized tissue like that of the intestine, which harbors the largest immune compartment of the body, adds several layers of complexity to the intricate process of Th differentiation. Due to constant exposure to millions of commensal microbes and periodic exposure to pathogens, the intestinal mucosa maintains a delicate balance between regulatory and effector T cells. It is becoming increasingly clear that equilibrium between tolerogenic and inflammatory axes is maintained in the intestine by shuttling the flexible genetic programming of a developing CD4 T cell along the developmental axis of iTreg, Th17, Th22, and Th1 subsets. Currently, Th17 plasticity remains an unresolved concern in the field of clinical research as targeting Th17 cells to cure immune-mediated disease might also target its related subsets. In this review, we discuss the expanding sphere of Th17 plasticity through its shared

  9. Cellular and Pectin Dynamics during Abscission Zone Development and Ripe Fruit Abscission of the Monocot Oil Palm

    Science.gov (United States)

    Roongsattham, Peerapat; Morcillo, Fabienne; Fooyontphanich, Kim; Jantasuriyarat, Chatchawan; Tragoonrung, Somvong; Amblard, Philippe; Collin, Myriam; Mouille, Gregory; Verdeil, Jean-Luc; Tranbarger, Timothy J.

    2016-01-01

    The oil palm (Elaeis guineensis Jacq.) fruit primary abscission zone (AZ) is a multi-cell layered boundary region between the pedicel (P) and mesocarp (M) tissues. To examine the cellular processes that occur during the development and function of the AZ cell layers, we employed multiple histological and immunohistochemical methods combined with confocal, electron and Fourier-transform infrared (FT-IR) microspectroscopy approaches. During early fruit development and differentiation of the AZ, the orientation of cell divisions in the AZ was periclinal compared with anticlinal divisions in the P and M. AZ cell wall width increased earlier during development suggesting cell wall assembly occurred more rapidly in the AZ than the adjacent P and M tissues. The developing fruit AZ contain numerous intra-AZ cell layer plasmodesmata (PD), but very few inter-AZ cell layer PD. In the AZ of ripening fruit, PD were less frequent, wider, and mainly intra-AZ cell layer localized. Furthermore, DAPI staining revealed nuclei are located adjacent to PD and are remarkably aligned within AZ layer cells, and remain aligned and intact after cell separation. The polarized accumulation of ribosomes, rough endoplasmic reticulum, mitochondria, and vesicles suggested active secretion at the tip of AZ cells occurred during development which may contribute to the striated cell wall patterns in the AZ cell layers. AZ cells accumulated intracellular pectin during development, which appear to be released and/or degraded during cell separation. The signal for the JIM5 epitope, that recognizes low methylesterified and un-methylesterified homogalacturonan (HG), increased in the AZ layer cell walls prior to separation and dramatically increased on the separated AZ cell surfaces. Finally, FT-IR microspectroscopy analysis indicated a decrease in methylesterified HG occurred in AZ cell walls during separation, which may partially explain an increase in the JIM5 epitope signal. The results obtained

  10. Paramyxovirus Infection Mimics In Vivo Cellular Dynamics in Three-Demensional Human Bronchio-Epithelial Tissue-Like Assemblies

    Science.gov (United States)

    Deatly, Anne M.; Lin, Yen-Huei; McCarthy, Maureen; Chen, Wei; Miller, Lynn Z.; Quiroz, Jorge; Nowak, Becky M.; Lerch, Robert A.; Udem, Stephen A.; Goodwin, Thomas J.

    2012-01-01

    recapitulated by mimicking the structural organization of the HRE. In vivo, airway epithelial cells play a significant and dynamic role in host defense by blocking paracellular permeability and modulating airway function through cellular interactions or tight junctions. As regulators of the innate immune response, epithelial cells constitutively express cytokines, chemokines, and colony stimulating factors including RANTES, IL-8, IL-6, GM-CSF, and G-CSF for proactive host defense. In response to viral infection, epithelial cells induce potent immuno-modulatory and pro-inflammatory cytokines that recruit phagocytic and inflammatory cells to clear the virus and enhance protection. Although disease pathogenesis is classically attributed to the cytopathic effects of the pathogen, severe disease states associated with RSV and PIV3 are attributed to the inflammatory response, especially in infants. RSV is a potent inducer of cytokines and pro-inflammatory mediators in epithelial cells in vivo. A differentiated human epithelial model independent of the complete functional immune system will help elucidate the role of epithelial cells in respiratory disease. We reported here, virus and host cell interactions in 3D HBE TLAs are similar to that in vivo. Because the epithelial cell organization of the TLAs impacts not only the expression of airway epithelial characteristics, but also cellular communication, the TLAs represent a more physiologically relevant model of the HRE than BEAS-2B or other non-tumour monolayer models of respiratory disease. As a result, wild type respiratory viruses have a clear growth advantage over attenuated viruses in TLAs unlike traditional monolayers. In addition, the TLAs respond to wild type virus infection by secreting pro-inflammatory mediators characteristic of infected HRE. TLAs expressing microbial defense mechanisms provide an excellent model to study the interactions of respiratory pathogens with their host and to identify the innate immunity

  11. Cellular Composition of the Spleen and Changes in Splenic Lysosomes in the Dynamics of Dyslipidemia in Mice Caused by Repeated Administration of Poloxamer 407.

    Science.gov (United States)

    Goncharova, N V; Shurlygina, A V; Mel'nikova, E V; Karmatskikh, O L; Avrorov, P A; Loktev, K V; Korolenko, T A

    2015-11-01

    We studied the effect of dyslipidemia induced by poloxamer 407 (300 mg/kg twice a week for 30 days) on cellular composition of the spleen and splenocyte lysosomes in mice. Changes in blood lipid profile included elevated concentrations of total cholesterol, aterogenic LDL, and triglycerides most pronounced in 24 h after the last poloxamer 407 injection; gradual normalization of lipid profile was observed in 4 days (except triglycerides) and 10 days. The most pronounced changes in the spleen (increase in organ weight and number of cells, inhibition in apoptosis, and reduced accumulation of vital dye acridine orange in lysosomes) were detected on day 4; on day 10, the indices returned to normal. Cathepsin D activity in the spleen also increased at these terms. The relationship between changes in the cellular composition of the spleen and dynamics of serum lipid profile in mice in dyslipidemia caused by repeated administrations of relatively low doses of poloxamer 407 is discussed.

  12. Effects of silicon, copper and iron on static and dynamic properties of alloy 206 (aluminum-copper) in semi-solids produced by the SEED process

    Science.gov (United States)

    Lemieux, Alain

    The advantages of producing metal parts by rheocasting are generally recognised for common foundry alloys of Al-Si. However, other more performing alloys in terms of mechanical properties could have a great interest in specialized applications in the automotive industry, while remaining competitive in the forming. Indeed, the growing demand for more competitive products requires the development of new alloys better suited to semi-solid processes. Among others, Al-Cu alloys of the 2XX series are known for their superior mechanical strength. However, in the past, 2XX alloys were never candidates for pressure die casting. The main reason is their propensity to hot tearing. Semi-solid processes provide better conditions for molding with the rheological behavior of dough and molding temperatures lower reducing this type of defect. In the initial phase, this research has studied factors that reduce hot tearing susceptibility of castings produced by semi-solid SEED of alloy 206. Subsequently, a comparative study on the tensile properties and fatigue was performed on four variants of the alloy 206. The results of tensile strength and fatigue were compared with the specifications for applications in the automotive industry and also to other competing processes and alloys. During this study, several metallurgical aspects were analyzed. The following main points have been validated: i) the main effects of compositional variations of silicon, iron and copper alloy Al-Cu (206) on the mechanical properties, and ii) certain relationships between the mechanism of hot cracking and the solidification rate in semi-solid. Parts produced from the semi-solid paste coming from the SEED process combined with modified 206 alloys have been successfully molded and achieved superior mechanical properties than the requirements of the automotive industry. The fatigue properties of the two best modified 206 alloys were higher than those of A357 alloy castings and are close to those of the

  13. ReaDDy--a software for particle-based reaction-diffusion dynamics in crowded cellular environments.

    Directory of Open Access Journals (Sweden)

    Johannes Schöneberg

    Full Text Available We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations. ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific implementations or dynamical models that are different from Brownian dynamics.

  14. Decoding Cellular Dynamics in Epidermal Growth Factor Signaling Using a New Pathway-Based Integration Approach for Proteomics and Transcriptomics Data

    Science.gov (United States)

    Wachter, Astrid; Beißbarth, Tim

    2016-01-01

    Identification of dynamic signaling mechanisms on different cellular layers is now facilitated as the increased usage of various high-throughput techniques goes along with decreasing costs for individual experiments. A lot of these signaling mechanisms are known to be coordinated by their dynamics, turning time-course data sets into valuable information sources for inference of regulatory mechanisms. However, the combined analysis of parallel time-course measurements from different high-throughput platforms still constitutes a major challenge requiring sophisticated bioinformatic tools in order to ease biological interpretation. We developed a new pathway-based integration approach for the analysis of coupled omics time-series data, which we implemented in the R package pwOmics. Unlike many other approaches, our approach acknowledges the role of the different cellular layers of measurement and infers consensus profiles and time profile clusters for further biological interpretation. We investigated a time-course data set on epidermal growth factor stimulation of human mammary epithelial cells generated on the two layers of RNA and proteins. The data was analyzed using our new approach with a focus on feedback signaling and pathway crosstalk. We could confirm known regulatory patterns relevant in the physiological cellular response to epidermal growth factor stimulation as well as identify interesting new interactions in this signaling context, such as the regulatory influence of the connective tissue growth factor on transferrin receptor or the influence of growth arrest and DNA-damage-inducible alpha on the connective tissue growth factor. Thus, we show that integrated cross-platform analysis provides a deeper understanding of regulatory signaling mechanisms. Combined with time-course information it enables the characterization of dynamic signaling processes and leads to the identification of important regulatory interactions which might be dysregulated in disease

  15. Adsorption of lead and copper ions from aqueous effluents on rice husk ash in a dynamic system

    Directory of Open Access Journals (Sweden)

    M. G. A. Vieira

    2014-06-01

    Full Text Available This study evaluated the kinetic adsorption of Pb and Cu ions using rice husk ash as adsorbent in a fixed bed. The maximum adsorption capacities obtained for lead and copper ions in the fixed bed were 0.0561 and 0.0682 mmol/g (at 20 ºC, respectively. The thermodynamic studies indicated that the lead adsorption process was exothermic and spontaneous, while the copper adsorption process was endothermic and spontaneous. Characterization results indicated the presence of several functional groups, amorphous silica and a fibrous and longitudinal structure of rice husks. Rice husk ash (RHA from northern Brazil can be used as a bioadsorbent for the individual removal of Pb(II and Cu(II ions from metal-containing effluents.

  16. Reversible quantum cellular automata

    CERN Document Server

    Schumacher, B

    2004-01-01

    We define quantum cellular automata as infinite quantum lattice systems with discrete time dynamics, such that the time step commutes with lattice translations and has strictly finite propagation speed. In contrast to earlier definitions this allows us to give an explicit characterization of all local rules generating such automata. The same local rules also generate the global time step for automata with periodic boundary conditions. Our main structure theorem asserts that any quantum cellular automaton is structurally reversible, i.e., that it can be obtained by applying two blockwise unitary operations in a generalized Margolus partitioning scheme. This implies that, in contrast to the classical case, the inverse of a nearest neighbor quantum cellular automaton is again a nearest neighbor automaton. We present several construction methods for quantum cellular automata, based on unitaries commuting with their translates, on the quantization of (arbitrary) reversible classical cellular automata, on quantum c...

  17. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp.and Chlamydomonas sp.isolated from rivers in Penang, Malaysia

    Institute of Scientific and Technical Information of China (English)

    W.O.Wan Maznah; A.T. Al-Fawwaz; Misni Surif

    2012-01-01

    In this study,the biosorption of copper and zinc ions by Chlorella sp.and Chlamydomonas sp.isolated from local environments in Malaysia was investigated in a batch system and by microscopic analyses.Under optimal biosorption conditions,the biosorption capacity of Chlorella sp.for copper and zinc ions was 33.4 and 28.5 mg/g,respectively,after 6 hr of biosorption in an immobilised system.Batch experiments showed that the biosorption capacity of algal biomass immobilised in the form of sodium alginate beads was higher than that of the free biomass.Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that copper and zinc were mainly sorbed at the cell surface during biosorption.Exposure to 5 mg/L of copper and zinc affected both the chlorophyll content and cell count of the algal cells after the first 12 hr of contact time.

  18. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia.

    Science.gov (United States)

    Maznah, W O Wan; Al-Fawwaz, A T; Surif, Misni

    2012-01-01

    In this study, the biosorption of copper and zinc ions by Chlorella sp. and Chlamydomonas sp. isolated from local environments in Malaysia was investigated in a batch system and by microscopic analyses. Under optimal biosorption conditions, the biosorption capacity of Chlorella sp. for copper and zinc ions was 33.4 and 28.5 mg/g, respectively, after 6 hr of biosorption in an immobilised system. Batch experiments showed that the biosorption capacity of algal biomass immobilised in the form of sodium alginate beads was higher than that of the free biomass. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that copper and zinc were mainly sorbed at the cell surface during biosorption. Exposure to 5 mg/L of copper and zinc affected both the chlorophyll content and cell count of the algal cells after the first 12 hr of contact time.

  19. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    Directory of Open Access Journals (Sweden)

    Choveaux David L

    2012-11-01

    Full Text Available Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369, containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds.

  20. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  1. The Role of Copper Chaperone Atox1 in Coupling Redox Homeostasis to Intracellular Copper Distribution

    Science.gov (United States)

    Hatori, Yuta; Lutsenko, Svetlana

    2016-01-01

    Human antioxidant protein 1 (Atox1) is a small cytosolic protein with an essential role in copper homeostasis. Atox1 functions as a copper carrier facilitating copper transfer to the secretory pathway. This process is required for activation of copper dependent enzymes involved in neurotransmitter biosynthesis, iron efflux, neovascularization, wound healing, and regulation of blood pressure. Recently, new cellular roles for Atox1 have emerged. Changing levels of Atox1 were shown to modulate response to cancer therapies, contribute to inflammatory response, and protect cells against various oxidative stresses. It has also become apparent that the activity of Atox1 is tightly linked to the cellular redox status. In this review, we summarize biochemical information related to a dual role of Atox1 as a copper chaperone and an antioxidant. We discuss how these two activities could be linked and contribute to establishing the intracellular copper balance and functional identity of cells during differentiation. PMID:27472369

  2. The interplay among chromatin dynamics, cell cycle checkpoints and repair mechanisms modulates the cellular response to DNA damage.

    Science.gov (United States)

    Lazzaro, Federico; Giannattasio, Michele; Muzi-Falconi, Marco; Plevani, Paolo

    2007-06-01

    Cells are continuously under the assault of endogenous and exogenous genotoxic stress that challenges the integrity of DNA. To cope with such a formidable task cells have evolved surveillance mechanisms, known as checkpoints, and a variety of DNA repair systems responding to different types of DNA lesions. These lesions occur in the context of the chromatin structure and, as expected for all DNA transactions, the cellular response to DNA damage is going to be influenced by the chromatin enviroment. In this review, we will discuss recent studies implicating chromatin remodelling factors and histone modifications in the response to DNA double-strand breaks (DSBs) and in checkpoint activation in response to UV lesions.

  3. Validity of Dynamic Light Scattering Method to Analyze a Range of Gold and Copper Nanoparticle Sizes Attained by Solids Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Yu. V. Golubenko

    2014-01-01

    Full Text Available Nanoparticles of metals possess a whole series of features, concerned with it’s sizes, this leads to appearing or unusual electromagnetic and optical properties, which are untypical for particulates.An extended method of receiving nanoparticles by means of laser radiation is pulse laser ablation of hard targets in liquid medium.Varying the parameters of laser radiation, such as wavelength of laser radiation, energy density, etc., we can operate the size and shape of the resultant particles.The greatest trend of application in medicine have the nanoparticles of iron, copper, silver, silicon, magnesium, gold and zinc.The subject matter in this work is nanoparticles of copper and gold, received by means of laser ablation of hard targets in liquid medium.The aim of exploration, represented in the article, is the estimation of application of the dynamic light scattering method for determination of the range of nanoparticles sizes in the colloidal solution.For studying of the laser ablation process was chosen the second harmonic of Nd:YAG laser with the wavelength of 532 nm. Special attention was spared for the description of the experiment technique of receiving of nanoparticles.As the liquid medium ethanol and distillation water were used.For exploration of the received colloidal system have been used the next methods: DLS, transmission electron microscopy (TEM and scanning electron microscopy (SEM.The results of measuring by DLS method showed that colloidal solution of the copper in the ethanol is the steady system. Copper nanoparticle’s size reaches 200 nm and is staying in the same size for some time.Received system from the gold’s nanoparticles is polydisperse, unsteady and has a big range of the nanoparticle’s sizes. This fact was confirmed by means of photos, got from the TEM FEI Tecnai G2F20 + GIF and SEM Helios NanoLab 660. The range of the gold nanoparticle’s sizes is from 5 to 60 nm. So, it has been proved that the DLS method is

  4. Effect of Copper Treatment on the Composition and Function of the Bacterial Community in the Sponge Haliclona cymaeformis

    KAUST Repository

    Tian, R.-M.

    2014-11-04

    Marine sponges are the most primitive metazoan and host symbiotic microorganisms. They are crucial components of the marine ecological system and play an essential role in pelagic processes. Copper pollution is currently a widespread problem and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S rRNA gene sequencing results showed that the sponge Haliclona cymaeformis harbored symbiotic sulfur-oxidizing Ectothiorhodospiraceae and photosynthetic Cyanobacteria as dominant species. However, these autotrophic bacteria decreased substantially after treatment with a high copper concentration, which enriched for a heterotrophic-bacterium-dominated community. Metagenomic comparison revealed a varied profile of functional genes and enriched functions, including bacterial motility and chemotaxis, extracellular polysaccharide and capsule synthesis, virulence-associated genes, and genes involved in cell signaling and regulation, suggesting short-period mechanisms of the enriched bacterial community for surviving copper stress in the microenvironment of the sponge. Microscopic observation and comparison revealed dynamic bacterial aggregation within the matrix and lysis of sponge cells. The bacteriophage community was also enriched, and the complete genome of a dominant phage was determined, implying that a lytic phage cycle was stimulated by the high copper concentration. This study demonstrated a copper-induced shift in the composition of functional genes of the sponge-associated bacterial community, revealing the selective effect of copper treatment on the functions of the bacterial community in the microenvironment of the sponge. IMPORTANCE This study determined the bacterial community structure of the common sponge Haliclona cymaeformis and examined the effect of copper

  5. Relating the dynamics of road traffic in a stochastic cellular automaton to a macroscopic first-order model

    CERN Document Server

    Maerivoet, S; Immers, B; De Moor, B; Maerivoet, Sven; Logghe, Steven; Immers, Ben; Moor, Bart De

    2005-01-01

    In this paper, we describe a relation between a microscopic traffic cellular automaton (TCA) model (i.e., the stochastic TCA model of Nagel and Schreckenberg) and the macroscopic first-order hydrodynamic model of Lighthill, Whitham, and Richards (LWR). The innovative aspect of our approach, is that we explicitly derive the LWR's fundamental diagram directly from the STCA's rule set, by assuming a stationarity condition that converts the STCA's rules into a set of linear inequalities. In turn, these constraints define the shape of the fundamental diagram, which is then specified to the LWR model. Application of our methodology to a simulation case study, allows us to compare the tempo-spatial behavior of both models. Our results indicate that, in the presence of noise, the capacity flows in the derived fundamental diagram are overestimations of those of the STCA model. Directly specifying the STCA's capacity flows to the LWR fundamental diagram, effectively remedies most of the mismatches between both approach...

  6. Cellular Response to Irradiation

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; YAN Shi-Wei

    2011-01-01

    To explore the nonlinear activities of the cellular signaling system composed of one transcriptional arm and one protein-interaction arm, we use an irradiation-response module to study the dynamics of stochastic interactions.It is shown that the oscillatory behavior could be described in a unified way when the radiation-derived signal and noise are incorporated.

  7. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics.

    Science.gov (United States)

    Dai, Jin; Niemi, Antti J; He, Jianfeng

    2016-07-28

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  8. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics

    Science.gov (United States)

    Dai, Jin; Niemi, Antti J.; He, Jianfeng

    2016-07-01

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  9. Canine Models for Copper Homeostasis Disorders

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wu

    2016-02-01

    Full Text Available Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted.

  10. Role of the human high-affinity copper transporter in copper homeostasis regulation and cisplatin sensitivity in cancer chemotherapy.

    Science.gov (United States)

    Kuo, Macus Tien; Fu, Siqing; Savaraj, Niramol; Chen, Helen H W

    2012-09-15

    The high-affinity copper transporter (Ctr1; SCLC31A1) plays an important role in regulating copper homeostasis because copper is an essential micronutrient and copper deficiency is detrimental to many important cellular functions, but excess copper is toxic. Recent research has revealed that human copper homeostasis is tightly controlled by interregulatory circuitry involving copper, Sp1, and human (hCtr1). This circuitry uses Sp1 transcription factor as a copper sensor in modulating hCtr1 expression, which in turn controls cellular copper and Sp1 levels in a 3-way mutual regulatory loop. Posttranslational regulation of hCtr1 expression by copper stresses has also been described in the literature. Because hCtr1 can also transport platinum drugs, this finding underscores the important role of hCtr1 in platinum-drug sensitivity in cancer chemotherapy. Consistent with this notion is the finding that elevated hCtr1 expression was associated with favorable treatment outcomes in cisplatin-based cancer chemotherapy. Moreover, cultured cell studies showed that elevated hCtr1 expression can be induced by depleting cellular copper levels, resulting in enhanced cisplatin uptake and its cell-killing activity. A phase I clinical trial using a combination of trientine (a copper chelator) and carboplatin has been carried out with encouraging results. This review discusses new insights into the role of hCtr1 in regulating copper homeostasis and explains how modulating cellular copper availability could influence treatment efficacy in platinum-based cancer chemotherapy through hCtr1 regulation.

  11. Molecular dynamics studies of simple membrane-water interfaces: Structure and functions in the beginnings of cellular life

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    1995-01-01

    Molecular dynamics computer simulations of the structure and functions of a simple membrane are performed in order to examine whether membranes provide an environment capable of promoting protobiological evolution. Our model membrane is composed of glycerol 1-monooleate. It is found that the bilayer surface fluctuates in time and space, occasionally creating thinning defects in the membrane. These defects are essential for passive transport of simple ions across membranes because they reduce the Born barrier to this process by approximately 40%. Negative ions are transferred across the bilayer more readily than positive ions due to favorable interactions with the electric field at the membrane-water interface. Passive transport of neutral molecules is, in general, more complex than predicted by the solubility-diffusion model. In particular, molecules which exhibit sufficient hydrophilicity and lipophilicity concentrate near membrane surfaces and experience 'interfacial resistance' to transport. The membrane-water interface forms an environment suitable for heterogeneous catalysis. Several possible mechanisms leading to an increase of reaction rates at the interface are discussed. We conclude that vesicles have many properties that make them very good candidates for earliest protocells. Some potentially fruitful directions of experimental and theoretical research on this subject are proposed.

  12. Cellular Telephone

    Institute of Scientific and Technical Information of China (English)

    杨周

    1996-01-01

    Cellular phones, used in automobiles, airliners, and passenger trains, are basically low-power radiotelephones. Calls go through radio transmitters that are located within small geographical units called cells. Because each cell’s signals are too weak to interfere with those of other cells operating on the same fre-

  13. Dynamics and cellular localization of Bmp2, Bmp4, and Noggin transcription in the postnatal mouse skeleton.

    Science.gov (United States)

    Pregizer, Steven K; Mortlock, Douglas P

    2015-01-01

    Transcription of BMPs and their antagonists in precise spatiotemporal patterns is essential for proper skeletal development, maturation, maintenance, and repair. Nevertheless, transcriptional activity of these molecules in skeletal tissues beyond embryogenesis has not been well characterized. In this study, we used several transgenic reporter mouse lines to define the transcriptional activity of two potent BMP ligands, Bmp2 and Bmp4, and their antagonist, Noggin, in the postnatal skeleton. At 3 to 4 weeks of age, Bmp4 and Noggin reporter activity was readily apparent in most cells of the osteogenic or chondrogenic lineages, respectively, whereas Bmp2 reporter activity was strongest in terminally differentiated cells of both lineages. By 5 to 6 months, activity of the reporters had generally abated; however, the Noggin and Bmp2 reporters remained remarkably active in articular chondrocytes and persisted there indefinitely. We further found that endogenous Bmp2, Bmp4, and Noggin transcript levels in postnatal bone and cartilage mirrored the activity of their respective reporters in these tissues. Finally, we found that the activity of the Bmp2, Bmp4, and Noggin reporters in bone and cartilage at 3 to 4 weeks could be recapitulated in both osteogenic and chondrogenic culture models. These results reveal that Bmp2, Bmp4, and Noggin transcription persists to varying degrees in skeletal tissues postnatally, with each gene exhibiting its own cell type-specific pattern of activity. Illuminating these patterns and their dynamics will guide future studies aimed at elucidating both the causes and consequences of aberrant BMP signaling in the postnatal skeleton.

  14. Comparison of microstructures in electroformed and spin-formed copper liners of shaped charge undergone high-strain-rate deformation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The as-formed and post-deformed microstructures in both electroformed and spin-formed copper liners of shaped charge were studied by optical microscopy(OM), electron backscattering Kikuchi patterns(EBSP) technique and transmission electron microscopy(TEM). The deformation was carried out at an ultra-high strain rate. OM analysis shows that the initial grains of the electroformed copper liner are finer than those of the spin-formed copper liners. Meanwhile, EBSP analysis reveals that the fiber texture exists in the electroformed copper liners, whereas there is no texture observed in the spin-formed copper liners before deformation. Having undergone high-strain-rate deformation the grains in the recovered slugs, which are transformed from both the electroformed and spin-formed copper liners, all become small. TEM observations of the above two kinds of post-deformed specimens show the existence of cellular structures characterized by tangled dislocations and subgrain boundaries consisting of dislocation arrays. These experimental results indicate that dynamic recovery and recrystallization play an important role in the high-strain-rate deformation process.

  15. Multiscale modeling of nanoindentation in copper thin films via the concurrent coupling of the meshless Hermite-Cloud method with molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ng, T.Y., E-mail: MTYNG@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Pandurangan, Venkataraman; Li Hua [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2011-10-01

    This paper investigates the 2D nanoindentation of a copper thin film using a concurrent multiscale method. The method uses molecular dynamics (MD) simulation in the atomistic region, the strong-form meshless Hermite-Cloud method in the continuum region and a handshaking algorithm to concurrently couple them. A fully atomistic simulation is also carried out to validate the multiscale method. The results, namely the load versus indentation depth graph obtained from the multiscale method shows only slight quantitative variation from that of the full atomistic model. More importantly, the graphs from both simulations show a similar trend thus validating the 2D multiscale method. The displacement profile without discontinuities further supports the efficiency of the multiscale method in ensuring smooth exchange of information between the atomistic and continuum domains. The material properties extracted from the simulation include the force/unit length values obtained by dividing the maximum load on the indenter by its contact perimeter, instead of the hardness value obtained in 3D simulations. By restricting the atomic scale detail to the critical regions beneath the indenter, the multiscale method effectively saves computational resources to more than one order (close to 13 times less for this problem), thus making it feasible to simulate problems of larger dimensions that are not amenable to complete atomistic simulations.

  16. The effects of pore and second-phase particle on the mechanical properties of machining copper matrix from molecular dynamic simulation

    Science.gov (United States)

    Li, Jia; Fang, Qihong; Liu, Bin; Liu, Youwen

    2016-10-01

    The subsurface damage and surface integrity of a spherical diamond indenter sliding against a face-centred cubic copper (100) surface considering the pore and second-phase particle effects is investigated by means of molecular dynamic simulations of nanoindentation followed by nanomachining. In this investigation, we establish an analytical model for pore healing, and provide a criteria to determine whether or not pore can be healed. The results show that with increase of machining distance pore becomes smaller and then closes due to machining-induced compressive stress, resulting in low material damage and strong structure stability. Compared to free pore workpiece, machining force slightly relies upon the existence of pore and second-phase particle while friction coefficient strongly depends on the existence of that. In addition, particle induces work hardening due to Lomere-Cottrel lock and dislocation slip during machining metal matrix composites. It is helpful to understand the relation of machining performance and material parameter for obtaining higher surface integrity and lower subsurface damage during machining porous metals and particle reinforced metal matrix composites.

  17. Copper(II) ions increase plasminogen activator inhibitor type 1 dynamics in key structural regions that govern stability

    DEFF Research Database (Denmark)

    Bucci, Joel C; Trelle, Morten Beck; McClintock, Carlee S;

    2016-01-01

    demonstrated that Cu(II) and other transition metals modulate the stability of PAI-1, exhibiting effects that are dependent on the presence or absence of the somatomedin B (SMB) domain of VN. The study presented here dissects the changes in molecular dynamics underlying the destabilizing effects of Cu...... effects are not a result of coordination of Cu(II) to these histidine residues. Finally, addition of Cu(II) results in an acceleration of the local unfolding kinetics of PAI-1 presumed to be on pathway to the latency conversion. The effect of ligands on the dynamics of PAI-1 adds another intriguing......Plasminogen activator inhibitor type 1 (PAI-1) regulates the fibrinolysis pathway by inhibiting the protease activity of plasminogen activators. PAI-1 works in concert with vitronectin (VN), an extracellular protein that aids in localization of active PAI-1 to tissues. The Peterson laboratory...

  18. Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Carrière, Marie; Diemer, Hélène; Proamer, Fabienne; Habert, Aurélie; Chevallet, Mireille; Collin-Faure, Véronique; Strub, Jean-Marc; Hanau, Daniel; Van Dorsselaer, Alain; Herlin-Boime, Nathalie; Rabilloud, Thierry

    2013-11-01

    The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents.

  19. Molecular Responses of Mouse Macrophages to Copper and Copper Oxide Nanoparticles Inferred from Proteomic Analyses*

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Carrière, Marie; Diemer, Hélène; Proamer, Fabienne; Habert, Aurélie; Chevallet, Mireille; Collin-Faure, Véronique; Strub, Jean-Marc; Hanau, Daniel; Van Dorsselaer, Alain; Herlin-Boime, Nathalie; Rabilloud, Thierry

    2013-01-01

    The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents. PMID:23882024

  20. Discrete mathematics and physics on the Planck-scale exemplified by means of a class of "cellular network models" and their dynamics

    CERN Document Server

    Requardt, M

    1996-01-01

    Starting from the hypothesis that both physics, in particular space-time and the physical vacuum, and the corresponding mathematics are discrete on the Planck scale we develop a certain framework in form of a class of '{\\it cellular networks}' consisting of cells (nodes) interacting with each other via bonds according to a certain {\\it 'local law'} which governs their evolution. Both the internal states of the cells and the strength/orientation of the bonds are assumed to be dynamical variables. We introduce a couple of candidates of such local laws which, we think, are capable of catalyzing the unfolding of the network towards increasing complexity and pattern formation. In section 3 the basis is laid for a version of '{\\it discrete analysis}' and {\\it 'discrete topology/geometry'} which, starting from different, perhaps more physically oriented principles, manages to make contact with the much more abstract machinery of Connes et al. and may complement the latter approach. In section 4 a, as far as we can s...

  1. Simple Rules, Complex Behaviors-Symbolic Dynamics of Elementary Cellular Automata%细胞自动机:简单的规则,复杂的行为

    Institute of Scientific and Technical Information of China (English)

    陈芳跃; 金伟锋

    2015-01-01

    Cellular automata (CA) are mathematical models with discrete time , space and states.Symbolic dynamics is a critical approach and technique for nonlinear dynamical analysis .This work conducts the literature review of investigations of symbolic dynamics of elementary cellular automata and their applications . Based on the extensive statistics properties and exhaustive simulations of elementary cellular automata (ECA), this paper proposes an effective method to unveil symbolic dynamics of Bernoulli-shift rules under the viewpoint of symbolic dynamics in the space of bi-infinite symbolic sequences .These results uncovers the chaotic and complex symbolic dynamics of simple ECA rules , enrich the symbolic dynamics of ECA , and promote the theory and technology of dynamical system , especially symbolic dynamics .%细胞自动机是一种时间、空间与状态都离散的数学模型。回顾了初等细胞自动机模型的应用及其符号动力学刻画的相关文献,在大量统计性质和计算机模拟基础上,着重分析具有鲁棒Bernoulli移位特征的细胞自动机规则的一些符号动力学性质,揭示了细胞自动机的简单规则中蕴含着复杂、混沌的非线性动力学特性。这些结果丰富了细胞自动机的理论基础,也将促进符号动力系统的理论和应用的研究。

  2. Calculations of hyperfine coupling constant of copper(II) in aqueous environment. Finite temperature molecular dynamics and relativistic effects.

    Science.gov (United States)

    Malček, Michal; Bučinský, Lukáš; Valko, Marián; Biskupič, Stanislav

    2015-09-01

    The presented paper is focused on the calculation of hyperfine coupling constants (HFCC) of Cu (2+) ion in water environment. To simulate the conditions of the electron paramagnetic resonance (EPR) experiment in aqueous phase, molecular dynamics using the density functional theory (DFT) was employed. In total three different functionals (BLYP, B3LYP, M06) were employed for studying their suitability in describing coordination of Cu (2+) by water molecules. The system of our interest was composed of one Cu (2+) cation surrounded by a selected number (between thirty and fifty) of water molecules. Besides the non-relativistic HFCCs (Fermi contact terms) of Cu (2+) also the four-component relativistic HFCC calculations are presented. The importance of the proper evaluation of HFCCs, the inclusion of spin-orbit term, for Cu (2+) containing systems (Neese, J. Chem. Phys. 118, 3939 2003; Almeida et al., Chem. Phys. 332, 176 2007) is confirmed at the relativistic four-component level of theory.

  3. Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments

    Science.gov (United States)

    Khare, Ankur; Himmetoglu, Burak; Johnson, Melissa; Norris, David J.; Cococcioni, Matteo; Aydil, Eray S.

    2012-04-01

    The electronic structure, lattice dynamics, and Raman spectra of the kesterite, stannite, and pre-mixed Cu-Au (PMCA) structures of Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) were calculated using density functional theory (DFT). Differences in longitudinal and transverse optical (LO-TO) splitting in kesterite, stannite, and PMCA structures can be used to differentiate them. The Γ-point phonon frequencies, which give rise to Raman scattering, exhibit small but measurable shifts, for these three structures. Experimentally measured Raman scattering from CZTS and CZTSe thin films were examined in light of DFT calculations and deconvoluted to explain subtle shifts and asymmetric line shapes often observed in CZTS and CZTSe Raman spectra. Raman spectroscopy in conjunction with ab initio calculations can be used to differentiate between kesterite, stannite, and PMCA structures of CZTS and CZTSe.

  4. EXPERIMENTAL STUDY OF THERMODYNAMICS OF LOADED COPPER

    OpenAIRE

    Barannikov, V.; Nikolaeva, E; Kasatkina, S.

    2005-01-01

    This paper presents an experimental technique to investigate the dynamic behavior of copper under compression using the split Hopkinson pressure bar. We propose to measure thermophysical characteristics of copper specimens with the use of a classic adiabatic calorimeter. The measurements of heat energy, microand macrohardness and density of deformed specimens are made. The obtained results indicate that the evolution of the material structure plays a leading role in the dynamic process of pla...

  5. Bioavailable copper modulates oxidative phosphorylation and growth of tumors.

    Science.gov (United States)

    Ishida, Seiko; Andreux, Pénélope; Poitry-Yamate, Carole; Auwerx, Johan; Hanahan, Douglas

    2013-11-26

    Copper is an essential trace element, the imbalances of which are associated with various pathological conditions, including cancer, albeit via largely undefined molecular and cellular mechanisms. Here we provide evidence that levels of bioavailable copper modulate tumor growth. Chronic exposure to elevated levels of copper in drinking water, corresponding to the maximum allowed in public water supplies, stimulated proliferation of cancer cells and de novo pancreatic tumor growth in mice. Conversely, reducing systemic copper levels with a chelating drug, clinically used to treat copper disorders, impaired both. Under such copper limitation, tumors displayed decreased activity of the copper-binding mitochondrial enzyme cytochrome c oxidase and reduced ATP levels, despite enhanced glycolysis, which was not accompanied by increased invasiveness of tumors. The antiproliferative effect of copper chelation was enhanced when combined with inhibitors of glycolysis. Interestingly, larger tumors contained less copper than smaller tumors and exhibited comparatively lower activity of cytochrome c oxidase and increased glucose uptake. These results establish copper as a tumor promoter and reveal that varying levels of copper serves to regulate oxidative phosphorylation in rapidly proliferating cancer cells inside solid tumors. Thus, activation of glycolysis in tumors may in part reflect insufficient copper bioavailability in the tumor microenvironment.

  6. Redox transformation, solid phase speciation and solution dynamics of copper during soil reduction and reoxidation as affected by sulfate availability

    Science.gov (United States)

    Fulda, Beate; Voegelin, Andreas; Ehlert, Katrin; Kretzschmar, Ruben

    2013-12-01

    In periodically flooded soils, interactions of Cu with biogenic sulfide formed during soil reduction lead to the precipitation of sparingly soluble Cu-sulfides. In contaminated soils, however, the amounts of Cu can exceed the amount of sulfate available for microbial reduction to sulfide. In laboratory batch experiments, we incubated a paddy soil spiked to ∼4.4 mmol kg-1 (280 mg kg-1) Cu(II) to monitor temporal changes in the concentrations of dissolved Cu and the speciation of solid-phase Cu during 40 days of soil reduction and 28 days of reoxidation as a function of initially available reducible sulfate (0.06, 2.09 or 5.92 mmol kg-1). Using Cu K-edge EXAFS spectroscopy, we found that a large fraction of Cu(II) became rapidly reduced to Cu(I) (23-39%) and Cu(0) (7-17%) before the onset of sulfate reduction. Combination with results from sequential Cu extraction and chromium reducible sulfur (CRS) data suggested that complexation of Cu(I) by reduced organic S groups (Sorg) may be an important process during this early stage. In sulfate-depleted soil, Cu(0) and Cu(I)-Sorg remained the dominant species over the entire reduction period, whereas in soils with sufficient sulfate, initially formed Cu(0) and (remaining) Cu(II) became transformed into Cu-sulfide during continuing sulfate reduction. The formation of Cu(0), Cu(I)-Sorg, and Cu-sulfide led to an effective decrease in dissolved Cu concentrations. Differences in Cu speciation at the end of soil reduction however affected the dynamics of Cu during reoxidation. Whereas Cu(0) was rapidly oxidized to Cu(II), more than half of the S-coordinated Cu fraction persisted over 14 days of aeration. Our results show that precipitation of Cu(0) and complexation of Cu(I) by reduced organic S groups are important processes in periodically flooded soils if sulfide formation is limited by the amount of available sulfate or the duration of soil flooding. The speciation changes of Cu described in this study may also affect the

  7. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation.

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  8. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  9. Accumulation dynamics and cellular locations of Pb, Zn and Cd in resident and transplanted Flavocetraria nivalis lichens near a former Pb-Zn mine.

    Science.gov (United States)

    Søndergaard, Jens

    2013-12-01

    Accumulation dynamics and cellular locations of lead (Pb), zinc (Zn) and cadmium (Cd) were studied in Flavocetraria nivalis lichens near the former Black Angel Pb-Zn Mine in West Greenland. Natural resident thalli were collected from four dust-contaminated sites near the mine. In addition, thalli were taken from an uncontaminated reference site and transplanted to the contaminated sites followed by a collection 1 year after. Total thalli metal contents were determined, and thalli were subjected to a sequential extraction procedure. After 1 year of transplantation, total Pb thalli contents were significantly elevated compared with initial concentrations at all sites (for Zn and Cd contents only at the two sites closest to the mine). However, transplanted thalli contained significantly less Pb (26 ± 12%), Zn (64 ± 13%) and Cd (34 ± 7 %) compared with resident thalli from these sites. Results from the sequential extraction procedure showed marked differences among Pb, Zn and Cd in the extracellular, intracellular and residual fraction. The lower total metal concentrations in transplanted compared with resident thalli at the contaminated sites were mostly due to a larger metal content bound in the residual fraction in resident thalli. In contrast, the metal content bound in the extracellular fraction were not significantly different in transplanted and resident thalli. The results indicate that extracellular-bound Pb, Zn and Cd in F. nivalis can be used as a proxy for recent (annual) atmospheric metal deposition whereas the large residual metal fraction in resident lichens indicate an accumulation of metal-containing particles in the thalli over time that includes several years of uptake.

  10. A BACTERIA FORAGING ALGORITHM FOR SOLVING INTEGRATED MULTI-PERIOD CELL FORMATION AND SUBCONTRACTING PRODUCTION PLANNING IN A DYNAMIC CELLULAR MANUFACTURING SYSTEM

    Directory of Open Access Journals (Sweden)

    S.H. Tang

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The bacteria foraging algorithm (BFA is a new computation technique inspired by the social foraging behaviour of Escherichia coli (E. coli bacteria. Since the introduction of the BFA by Kevin M. Passino, there have been many challenges in employing this algorithm to problems other than those for which the algorithm was proposed. This research aims to apply this emerging optimisation algorithm to develop a mixed-integer programming model for designing cellular manufacturing systems (CMSs, and production planning in dynamic environments. In dynamic environments, product mix and part demand vary under multi-period planning horizons. Thus the best-designed cells for one period may not be adequate for subsequent periods, requiring their reconstruction. The advantages of the proposed model are as follows: consideration of batch inter-cell and intra-cell material handling by assuming the sequence of operations, allowing for alternative process plans for part types, and consideration of machine copying, with an emphasis on the effect of trade-offs between production and outsourcing costs. The goal is to minimise the sum of the machines’ constant and variable costs, inter-cell and intra-cell material handling costs, reconstruction costs, partial subcontracting costs, and inventory carrying costs. In addition, a newly-developed BFA-based optimisation algorithm has been compared with the branch and bound algorithm. The results suggest that the proposed algorithm performs better than related works.

    AFRIKAANSE OPSOMMING: Die ‘bacteria foraging algorithm’ (BFA is ‘n berekeningstegniek gebaseeer op die sosiale soekgedrag van Escherichia coli (E. coli bakterieë. Sedert die bekendstelling van BFA was daar talle uitdagings oor toepassings van die algoritme op ander probleme as dié waarvoor dit ontwikkel is. Dié navorsing poog om deur toepassing van die algoritme ‘n gemengde heelgetalprogrammeringmodel te ontwikkel vir die

  11. Cellular prion protein is required for neuritogenesis: fine-tuning of multiple signaling pathways involved in focal adhesions and actin cytoskeleton dynamics

    Directory of Open Access Journals (Sweden)

    Alleaume-Butaux A

    2013-07-01

    Full Text Available Aurélie Alleaume-Butaux,1,2 Caroline Dakowski,1,2 Mathéa Pietri,1,2 Sophie Mouillet-Richard,1,2 Jean-Marie Launay,3,4 Odile Kellermann,1,2 Benoit Schneider1,2 1INSERM, UMR-S 747, 2Paris Descartes University, Sorbonne Paris Cité, UMR-S 747, 3Public Hospital of Paris, Department of Biochemistry, INSERM UMR-S 942, Lariboisière Hospital, Paris, France; 4Pharma Research Department, Hoffmann La Roche Ltd, Basel, Switzerland Abstract: Neuritogenesis is a dynamic phenomenon associated with neuronal differentiation that allows a rather spherical neuronal stem cell to develop dendrites and axon, a prerequisite for the integration and transmission of signals. The acquisition of neuronal polarity occurs in three steps: (1 neurite sprouting, which consists of the formation of buds emerging from the postmitotic neuronal soma; (2 neurite outgrowth, which represents the conversion of buds into neurites, their elongation and evolution into axon or dendrites; and (3 the stability and plasticity of neuronal polarity. In neuronal stem cells, remodeling and activation of focal adhesions (FAs associated with deep modifications of the actin cytoskeleton is a prerequisite for neurite sprouting and subsequent neurite outgrowth. A multiple set of growth factors and interactors located in the extracellular matrix and the plasma membrane orchestrate neuritogenesis by acting on intracellular signaling effectors, notably small G proteins such as RhoA, Rac, and Cdc42, which are involved in actin turnover and the dynamics of FAs. The cellular prion protein (PrPC, a glycosylphosphatidylinositol (GPI-anchored membrane protein mainly known for its role in a group of fatal neurodegenerative diseases, has emerged as a central player in neuritogenesis. Here, we review the contribution of PrPC to neuronal polarization and detail the current knowledge on the signaling pathways fine-tuned by PrPC to promote neurite sprouting, outgrowth, and maintenance. We emphasize that Pr

  12. Copper Products Capacity Expansion Stimulate the Copper Consumption

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>The dramatic growth of copper consumption in China can directly be seen from the expansion of copper products capacity.According to sta- tistics,in the past 4 years,the improvement on the balance of trade on copper bar,copper,and copper alloy and copper wire & cable has driven the growth of copper consumption a lot.

  13. Rheological behavior and dynamic mechanical properties of nano-copper powder/PP composite material%纳米铜粉/PP复合材料的流变性能及动态力学性能研究

    Institute of Scientific and Technical Information of China (English)

    徐德增; 赵婷; 刘智超; 白麓楠; 郭静

    2012-01-01

    将纳米铜粉经硅烷偶联剂KH550处理后,按不同的配比与聚丙烯(PP)混合,经螺杆挤压制得纳米铜粉/PP复合材料,研究了纳米铜粉在PP复合材料中的分散性以及PP复合材料的流变性能和动态力学性能.结果表明:经改性后的纳米铜粉均匀分散在PP中;纳米铜粉/PP复合材料为非牛顿假塑性流体;在低剪切速率下,复合材料熔体的黏度高于纯PP的,随着纳米铜粉的含量增加,复合材料体系的表观黏度增大,高剪切速率时,纳米铜粉的添加量对复合材料的流动性能影响较小;当复合材料体系中纳米铜粉的质量分数小于或等于0.5%时,其熔体流动性能提高,储能模量小于纯PP的,当纳米铜粉质量分数大于0.5%时,其储能模量提高并高于纯PP的.%Nano-copper powder/polypropylene (PP) composite material was prepared by blending PP and nano-copper powder modified with silane coupling agent KH550 at different ratios prior to screw extrusion. The dispersion of nano-copper powder in PP composite material was studied, as were the rheological behavior and dynamic mechanical properties of PP composite material. The results showed that nano-copper powder uniformly dispersed in PP matrix after modification; nano-copper powder/PP composite material was non-Newtonian pseudoplastic fluid; the viscosity of the composite material melt was higher than that of pure PP at low shearing rate; the apparent viscosity of the composite material system was increased with the addition of nano-copper powder; the addition of nano-copper powder had a slight effect on the rheological behavior of composite material at high shearing rate; the flowability of the composite material melt was improved, the storage modulus was lower than that of pure PP when the addition of nano-copper powder was not more than 0. 5% by mass fraction in the composite material system; and the storage modulus was higher than that of pure PP when the mass fraction of nano-copper

  14. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  15. Preparation of copper nanofluids using an appropriate technique

    Directory of Open Access Journals (Sweden)

    Hamid Reza Ghorbani

    2014-12-01

    Full Text Available This work focuses on the synthesis of copper nanoparticles. The synthesis involves the use of copper nitrate, polyvinylpyrrolidone (pvp, dextrose and water as the copper precursor, stabilizing agent, reducing agent and solvent respectively.The nanoparticles were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM and dynamic light scattering (DLS. An absorption peak at 580 nm in Uv–Vis spectrophotometer was detected indicating the presence of copper nanoparticles. The DLS analysis showed Copper nanoparticles with size of 5-25 nm.

  16. Copper and copper proteins in Parkinson's disease.

    Science.gov (United States)

    Montes, Sergio; Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  17. Copper as a key regulator of cell signalling pathways.

    Science.gov (United States)

    Grubman, Alexandra; White, Anthony R

    2014-05-22

    Copper is an essential element in many biological processes. The critical functions associated with copper have resulted from evolutionary harnessing of its potent redox activity. This same property also places copper in a unique role as a key modulator of cell signal transduction pathways. These pathways are the complex sequence of molecular interactions that drive all cellular mechanisms and are often associated with the interplay of key enzymes including kinases and phosphatases but also including intracellular changes in pools of smaller molecules. A growing body of evidence is beginning to delineate the how, when and where of copper-mediated control over cell signal transduction. This has been driven by research demonstrating critical changes to copper homeostasis in many disorders including cancer and neurodegeneration and therapeutic potential through control of disease-associated cell signalling changes by modulation of copper-protein interactions. This timely review brings together for the first time the diverse actions of copper as a key regulator of cell signalling pathways and discusses the potential strategies for controlling disease-associated signalling processes using copper modulators. It is hoped that this review will provide a valuable insight into copper as a key signal regulator and stimulate further research to promote our understanding of copper in disease and therapy.

  18. Pathological mitochondrial copper overload in livers of Wilson's disease patients and related animal models.

    Science.gov (United States)

    Zischka, Hans; Lichtmannegger, Josef

    2014-05-01

    In Wilson's disease (WD) and related animal models, liver mitochondria are confronted with an increasing copper burden. Physiologically, the mitochondrial matrix may act as a dynamic copper buffer that efficiently distributes the metal to its copper-dependent enzymes. Mitochondria are the first responders in the event of an imbalanced copper homeostasis, as typical changes of their structure are among the earliest observable pathological features in WD. These changes are due to accumulating copper in the mitochondrial membranes and can be reversed by copper-chelating therapies. At the early stage, copper-dependent oxidative stress does not seem to occur. On the contrary, however, when copper is massively deposited in mitochondria, severe structural and respiratory impairments are observed upon disease progression. This provokes reactive oxygen species and consequently causes the mitochondrial membranes to disintegrate, which triggers hepatocyte death. Thus, in WD mitochondria are prime targets for copper, and the excessive copper burden causes their destruction, subsequently provoking tissue failure and death.

  19. Novel insights in the molecular pathogenesis of human copper homeostasis disorders through studies of protein-protein interactions

    NARCIS (Netherlands)

    Bie, P. de

    2007-01-01

    Copper is an essential element for living organisms, yet it is very toxic when present in amounts exceeding cellular needs. Delicate mechanisms have evolved to ensure proper copper homeostasis is maintained for the organism, as well as at a cellular level, and perturbations in these mechanisms give

  20. Spall measurements in shock-loaded hemispherical shells from free-surface velocity histories. [Dynamic fracture of hemishells of copper and tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Cagliostro, D.J.; Warnes, R.H.; Johnson, N.L.; Fujita, R.K.

    1987-01-01

    Copper and tantalum hemishells are externally loaded by a hemishell of PBX 9501 detonated at its pole. Free-surface velocity histories of the metal hemishells are measured at the pole and at 50 from the pole with a Fabry-Perot interferometer. These histories are used to determine spall strengths and depths by simple wave-interaction analyses and are compared with hydro-code (CAVEAT) predictions using simple and void-growth spall models. 8 refs., 4 figs., 1 tab.

  1. Differential cytotoxicity of copper ferrite nanoparticles in different human cells.

    Science.gov (United States)

    Ahmad, Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Siddiqui, Maqsood A; Saquib, Quaiser; Khan, Shams T; Wahab, Rizwan; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Akhtar, Mohd Javed; Ahamed, Maqusood

    2016-10-01

    Copper ferrite nanoparticles (NPs) have the potential to be applied in biomedical fields such as cell labeling and hyperthermia. However, there is a lack of information concerning the toxicity of copper ferrite NPs. We explored the cytotoxic potential of copper ferrite NPs in human lung (A549) and liver (HepG2) cells. Copper ferrite NPs were crystalline and almost spherically shaped with an average diameter of 35 nm. Copper ferrite NPs induced dose-dependent cytotoxicity in both types of cells, evident by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide and neutral red uptake assays. However, we observed a quite different susceptibility in the two kinds of cells regarding toxicity of copper ferrite NPs. Particularly, A549 cells showed higher susceptibility against copper ferrite NP exposure than those of HepG2 cells. Loss of mitochondrial membrane potential due to copper ferrite NP exposure was observed. The mRNA level as well as activity of caspase-3 enzyme was higher in cells exposed to copper ferrite NPs. Cellular redox status was disturbed as indicated by induction of reactive oxygen species (oxidant) generation and depletion of the glutathione (antioxidant) level. Moreover, cytotoxicity induced by copper ferrite NPs was efficiently prevented by N-acetylcysteine treatment, which suggests that reactive oxygen species generation might be one of the possible mechanisms of cytotoxicity caused by copper ferrite NPs. To the best of our knowledge, this is the first report showing the cytotoxic potential of copper ferrite NPs in human cells. This study warrants further investigation to explore the mechanisms of differential toxicity of copper ferrite NPs in different types of cells. Copyright © 2016 John Wiley & Sons, Ltd.

  2. The role of copper ions in pathophysiology and fluorescent sensors for the detection thereof.

    Science.gov (United States)

    Verwilst, Peter; Sunwoo, Kyoung; Kim, Jong Seung

    2015-04-04

    Copper ions are indispensible to life and maintaining tight control over the homeostasis of copper ions in the body is a prerequisite to sustaining health. Aberrations in normal copper levels, both systemic as well as on a tissue or cellular scale, are implicated in a wide range of diseases, such as Menkes disease, Wilson's disease, Alzheimer's disease, Parkinson's disease and transmissible spongiform encephalopathy (prion diseases). The current understanding of how copper influences these diseases is described. The field of fluorescent copper sensors both functioning via a reaction based mechanism as well as by directly binding copper ions has known an inflation in recent years, and the importance of this field to elucidating the role of copper in cell biology is pointed out. Progress in these tightly interwoven fields has resulted in a better understanding of a number of diseases related to copper imbalances and current developments might open the path for novel and innovating therapies to address these diseases.

  3. Electrochromism in copper oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  4. [Copper pathology (author's transl)].

    Science.gov (United States)

    Mallet, B; Romette, J; Di Costanzo, J D

    1982-01-30

    Copper is an essential dietary component, being the coenzyme of many enzymes with oxidase activity, e.g. ceruloplasmin, superoxide dismutase, monoamine oxidase, etc. The metabolism of copper is complex and imperfectly known. Active transport of copper through the intestinal epithelial cells involves metallothionein, a protein rich in sulfhydryl groups which also binds the copper in excess and probably prevents absorption in toxic amounts. In hepatocytes a metallothionein facilitates absorption by a similar mechanism and regulates copper distribution in the liver: incorporation in an apoceruloplasmin, storage and synthesis of copper-dependent enzymes. Metallothioneins and ceruloplasmin are essential to adequate copper homeostasis. Apart from genetic disorders, diseases involving copper usually result from hypercupraemia of varied origin. Wilson's disease and Menkes' disease, although clinically and pathogenetically different, are both marked by low ceruloplasmin and copper serum levels. The excessive liver retention of copper in Wilson's disease might be due to increased avidity of hepatic metallothioneins for copper and decreased biliary excretion through lysosomal dysfunction. Menkes' disease might be due to low avidity of intestinal and hepatic metallothioneins for copper. The basic biochemical defect responsible for these two hereditary conditions has not yet been fully elucidated.

  5. [Copper IUDs (author's transl)].

    Science.gov (United States)

    Thiery, M

    1983-10-01

    Following initial development of the Grafenberg ring in the 1920's, IUDs fell into disuse until the late 1950s, when plastic devices inserted using new technology began to gain worldwide acceptance. Further research indicated that copper had a significant antifertility effect which increased with increasing surface area, and several copper IUDs were developed and adapted, including the Copper T 200, the Copper T 220C, and the Copper T 380 A, probably the most effective yet. The Gravigard and Multiload are 2 other copper devices developed according to somewhat different principles. Copper devices are widely used not so much because of their great effectiveness as because of their suitability for nulliparous patients and their ease of insertion, which minimizes risk of uterine perforation. Records of 2584 women using Copper IUDs for 7190 women-years and 956 women using devices without copper for 6059 women-years suggest that the copper devices were associated with greater effectiveness and fewer removals for complications. Research suggests that the advantages of copper IUDs become more significant with increased duration of use. Contraindications to copper devices include allergy to copper and hepatolenticular degeneration. No carcinogenic or teratogenic effect of copper devices has been found, but further studies are needed to rule out other undesirable effects. Significant modifications of copper devices in recent years have been developed to increase their effectiveness, prolong their duration of usefulness, facilitate insertion and permit insertion during abortion or delivery. The upper limit of the surface area of copper associated with increased effectiveness appears to be between 200-300 sq mm, and at some point increases in copper exposure may provoke expulsion of the IUD. The duration of fertility inhibition of copper IUDs is usually estimated at 2-3 years, but recent research indicates that it may be 6-8 years, and some devices may retain copper surface

  6. Effect of the strain rate in the dynamic recrystallization of ETP copper during its hot compression with descending temperatures; Efecto de la velocidad de deformacion en la recristalizacion dinamica de un cobre ETPdurante su compresion en caliente con temperatura descendente

    Energy Technology Data Exchange (ETDEWEB)

    Torrente, G.; Torres, M.; Sanoja, L.

    2011-07-01

    The main purpose of this project is to establish the effect of strain rate in the dynamic recrystallization of an ETP copper during its hot deformation with descending temperature. For this, there were made some tests of hot compression until true deformations close to one, with four strain rates while the temperature was descending. The tests that were made to the two lowest strain rates, showed a multiple peaks dynamic recrystallization with a rise of the tension instead it reaches the steady state, maybe due a continuous decline of the temperature.With the increase of rate the rest of the tests showed simple peak recrystallization and recovering respectively. The experimental results were compared with the results of a simulation based on the Damped Cosine Avrami Model. The simulation produced results closed to those measured during the multiple peaks dynamic recrystallization. These suggest that the application of this Model may be extended to multiple peaks dynamic recrystallization processes with changeable temperature. (Author) 33 refs.

  7. Energy Landscape of Cellular Networks

    Science.gov (United States)

    Wang, Jin

    2008-03-01

    Cellular Networks are in general quite robust and perform their biological functions against the environmental perturbations. Progresses have been made from experimental global screenings, topological and engineering studies. However, there are so far few studies of why the network should be robust and perform biological functions from global physical perspectives. In this work, we will explore the global properties of the network from physical perspectives. The aim of this work is to develop a conceptual framework and quantitative physical methods to study the global nature of the cellular network. The main conclusion of this presentation is that we uncovered the underlying energy landscape for several small cellular networks such as MAPK signal transduction network and gene regulatory networks, from the experimentally measured or inferred inherent chemical reaction rates. The underlying dynamics of these networks can show bi-stable as well as oscillatory behavior. The global shapes of the energy landscapes of the underlying cellular networks we have studied are robust against perturbations of the kinetic rates and environmental disturbances through noise. We derived a quantitative criterion for robustness of the network function from the underlying landscape. It provides a natural explanation of the robustness and stability of the network for performing biological functions. We believe the robust landscape is a global universal property for cellular networks. We believe the robust landscape is a quantitative realization of Darwinian principle of natural selection at the cellular network level. It may provide a novel algorithm for optimizing the network connections, which is crucial for the cellular network design and synthetic biology. Our approach is general and can be applied to other cellular networks.

  8. Inherited copper transport disorders: biochemical mechanisms, diagnosis, and treatment.

    Science.gov (United States)

    Kodama, Hiroko; Fujisawa, Chie; Bhadhprasit, Wattanaporn

    2012-03-01

    Copper is an essential trace element required by all living organisms. Excess amounts of copper, however, results in cellular damage. Disruptions to normal copper homeostasis are hallmarks of three genetic disorders: Menkes disease, occipital horn syndrome, and Wilson's disease. Menkes disease and occipital horn syndrome are characterized by copper deficiency. Typical features of Menkes disease result from low copper-dependent enzyme activity. Standard treatment involves parenteral administration of copper-histidine. If treatment is initiated before 2 months of age, neurodegeneration can be prevented, while delayed treatment is utterly ineffective. Thus, neonatal mass screening should be implemented. Meanwhile, connective tissue disorders cannot be improved by copper-histidine treatment. Combination therapy with copper-histidine injections and oral administration of disulfiram is being investigated. Occipital horn syndrome characterized by connective tissue abnormalities is the mildest form of Menkes disease. Treatment has not been conducted for this syndrome. Wilson's disease is characterized by copper toxicity that typically affects the hepatic and nervous systems severely. Various other symptoms are observed as well, yet its early diagnosis is sometimes difficult. Chelating agents and zinc are effective treatments, but are inefficient in most patients with fulminant hepatic failure. In addition, some patients with neurological Wilson's disease worsen or show poor response to chelating agents. Since early treatment is critical, a screening system for Wilson's disease should be implemented in infants. Patients with Wilson's disease may be at risk of developing hepatocellular carcinoma. Understanding the link between Wilson's disease and hepatocellular carcinoma will be beneficial for disease treatment and prevention.

  9. On the Behavior Characteristics of Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    CHEN Jin-cai; ZHANG Jiang-ling; FENG Dan

    2005-01-01

    In this paper, the inherent relationships between the running regulations and behavior characteristics of cellular automata are presented; an imprecise taxonomy of such systems is put forward; the three extreme cases of stable systems are discussed; and the illogicalness of evolutional strategies of cellular automata is analyzed. The result is suitable for the emulation and prediction of behavior of discrete dynamics systems; especially it can be taken as an important analysis means of dynamic performance of complex networks.

  10. Electrochemical nucleation and growth of copper and copper alloys

    Science.gov (United States)

    Shao, Wenbo

    This dissertation aims to contribute to a fundamental understanding of the physicochemical processes occurring in electrochemical nucleation and growth. To this end, the effects of various anions (chloride (Cl-), sulfate (SO42-) and sulfamate (NH2SO 3-)) on the electrochemical kinetics and the mechanism of copper reduction, as well as on the microstructure of the resulting films, were studied. On the basis of this work, the deposition of copper alloys (Cu-Ag with positive heat of mixing, Cu-Au with negative heat of mixing) was investigated with the main objective to achieve an insight on the role of solid state thermodynamics on the electrocrystallization process. Chloride ions cause two competing effects: at low chloride concentration the formation of an adsorbed chloride layer introduces an additional reaction pathway, resulting in an overall depolarization of the reduction process with no significant change of the Tafel slope. At high chloride concentration, complexation phenomena induce a cathodic polarization of the deposition process and a decrease in the Tafel slope. Chlorides cause a decrease in the density and an increased size of copper nuclei. Sulfamate depolarizes copper reduction the most and results in the largest nucleus density. Chloride promotes the faceting, and dendritic growth of copper deposits along direction by introducing interfacial anisotropy. Addition of Ag in the solution or in the electrode substrate enhances copper deposition and results in an additional reduction peak. Codeposition of Cu-Ag increases nucleus density and decreases nucleus size. Such enhancement of copper deposition, the increase in nucleus density and the decrease in nucleus size by Ag could be due to the continued formation of a surface alloy of Cu-Ag and the fast interface dynamics of Ag deposition. Cu can be underpotentially codeposited in the Cu-Au alloy. Homogeneous solid solutions are grown under conditions of underpotential deposition of Cu, while precipitation

  11. Research in dynamic evolution of software architectures based on cellular automata model%软件体系结构动态演化的元胞自动机模型研究

    Institute of Scientific and Technical Information of China (English)

    刘晓斌; 杨贯中; 欧阳柳波; 李勇军

    2015-01-01

    目前软件体系结构动态演化的元胞自动机模型存在描述单一、元胞间关系不明确、没有详细阐述动态演化过程应用约束条件的缺点。针对这些不足进行相关的研究,重新定义了软件体系结构动态演化的扩展元胞自动机模型,基于扩展元胞自动机模型结合演化应用约束条件,分析了软件体系结构的动态演化过程,运用元胞间控制约束条件和行为相关约束条件来正确地指导SA动态演化。提出了动点稳态转移的概念,对演化程度和一致性进行定义分析,此方法比以往的元胞自动机模型更能准确指导SA动态演化,促进SA动态演化的进一步研究。通过案例验证了该方法的应用价值和可行性,可以更全面地应用于软件体系结构的动态演化。%There are some defects in dynamic evolution of software architecture based on cellular automata model in recent research, including that specification is not detailed and relationship between cellular is not clear, that it can’t describe the constraints in process of dynamic evolution. In regard to these deficiencies, this paper refines the extend-cellular automata model of dynamic evolution of software architecture, which is based on the combination of evolutionary constraints applied to analyze the dynamic evolution of software architecture process, and SA dynamic evolution is correctly guided by applying both inter-cell behavior related constraints and control constraints. Besides, it puts forward the concept of steady-state transfer of moving-point for charactering the degree and consistency of evolution and can more exactly guide SA dynamic evolution than ever on cellular automata model, which advances the further study on dynamic evolution of software archi-tecture. The case study shows that the proposed method is valuable and feasible, which can be more fully applied to the dynamic evolution of software architecture.

  12. Gene expression profiling and phenotype analyses of S. cerevisiae in response to changing copper reveals six genes with new roles in copper and iron metabolism.

    Science.gov (United States)

    van Bakel, Harm; Strengman, Eric; Wijmenga, Cisca; Holstege, Frank C P

    2005-08-11

    Exhaustive microarray time course analyses of Saccharomyces cerevisiae during copper starvation and copper excess reveal new aspects of metal-induced gene regulation. Aside from identifying targets of established copper- and iron-responsive transcription factors, we find that genes encoding mitochondrial proteins are downregulated and that copper-independent iron transport genes are preferentially upregulated, both during prolonged copper deprivation. The experiments also suggest the presence of a small regulatory iron pool that links copper and iron responses. One hundred twenty-eight genes with putative roles in metal metabolism were further investigated by several systematic phenotype screens. Of the novel phenotypes uncovered, hsp12-Delta and arn1-Delta display increased sensitivity to copper, cyc1-Delta and crr1-Delta show resistance to high copper, vma13-Delta exhibits increased sensitivity to iron deprivation, and pep12-Delta results in reduced growth in high copper and low iron. Besides revealing new components of eukaryotic metal trafficking pathways, the results underscore the previously determined intimate links between iron and copper metabolism and mitochondrial and vacuolar function in metal trafficking. The analyses further suggest that copper starvation can specifically lead to downregulation of respiratory function to preserve iron and copper for other cellular processes.

  13. Novel Materials for Cellular Nanosensors

    DEFF Research Database (Denmark)

    Sasso, Luigi

    The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...... and that offer advantages of functionalization, and conducting polymers were used as electrochemical sensor surface modifications for increasing the sensitivity towards relevant analytes, with focus on the detection of dopamine released from cells via exocytosis. Vertical peptide nanowires were synthesized from...

  14. Computational studies on DNA recognition of novel organic and copper anti-tumor compounds

    Science.gov (United States)

    Nascimento, Rafael R.; Gonçalves, Marcos B.; Petrilli, Helena M.; Ferreira, Ana M. D. C.; Ippoliti, Emiliano; Dreyer, Jens; Carloni, Paolo

    2013-03-01

    The ability of many organic and coordination compounds to bind to DNA and/or damage cellular structures has been largely exploited in anticancer research. Identifying DNA recognition mechanisms have thus important impact on the chemical biology of gene expression and the development of new drugs and therapies. Previous studies on copper(II) complexes with oxindole-Schiff base ligands have shown their potential anti-tumor activity towards different cells, inducing apoptosis through a preferential attack to DNA and/or mitochondria [SIL11]. The binding mechanism of the organic and copper(II) complexes [Cu(isaepy)2]2 + (1) and [Cu(isaenim)]2 + (2) and their modulation at DNA is investigated through theoretical studies. Here we adopted a multi-scale procedure to simulate this large system using molecular docking and classical molecular dynamics. Hybrid Car-Parrinello/Molecular Mechanics calculations were applied to parameterize the copper(II) complexes by using the force matching approach. Free energies of binding are investigated by metadynamics enhanced sampling methods[VAR08]. [SIL11] V. C. da Silveira et. al. JIB 105 (2011) 1692.[VAR08] A. V. Vargiu et. al. Nucl. Acids Res. 36 (2008) 5910.

  15. Analysis by numerical calculations of the depth and dynamics of the penetration of ordered cellular structure made by casting from AlSi10Mg eutectic alloy

    Directory of Open Access Journals (Sweden)

    M. Małysza

    2011-07-01

    Full Text Available Owing to high plastic deformability while maintaining stress values constant and relatively low, ordered cellular structures arecharacterised by excellent properties and the ability to dissipate the impact energy. Due to the low weight, structures of this type can beused, among others, for different parts of motor vehicles. For tests, a trapezoidal ordered cellular structure of 50.8 x 50.8 x 25.4 (mmoverall dimensions was selected. It was made as an investment casting from AlSi9Mg eutectic alloy by the method of Rapid Prototyping(RP. During FEM computations using an Abaqus programme, it was assumed that the material is isotropic and exhibits the features of anelastic – plastic body, introducing to calculations the, listed in a table, values of the stress-strain curve obtained in tensile tests performedon a MTS testing machine (10T. The computations used Johnson - Cook model, which is usually sufficiently accurate when modelling thephenomena of penetration of an element by an object of high initial velocity. The performed numerical calculations allowed identification

  16. The Universe as a Cellular System

    CERN Document Server

    Aragón-Calvo, Miguel A

    2014-01-01

    Cellular systems are observed everywhere in nature, from crystal domains in metals, soap froth and cucumber cells to the network of cosmological voids. Surprisingly, despite their disparate scale and origin all cellular systems follow certain scaling laws relating their geometry, topology and dynamics. Using a cosmological N-body simulation we found that the Cosmic Web, the largest known cellular system, follows the same scaling relations seen elsewhere in nature. Our results extend the validity of scaling relations in cellular systems by over 30 orders of magnitude in scale with respect to previous studies. The dynamics of cellular systems can be used to interpret local observations such as the local velocity anomaly as the result of a collapsing void in our cosmic backyard. Moreover, scaling relations depend on the curvature of space, providing an independent measure of geometry.

  17. Classifying cellular automata using grossone

    Science.gov (United States)

    D'Alotto, Louis

    2016-10-01

    This paper proposes an application of the Infinite Unit Axiom and grossone, introduced by Yaroslav Sergeyev (see [7] - [12]), to the development and classification of one and two-dimensional cellular automata. By the application of grossone, new and more precise nonarchimedean metrics on the space of definition for one and two-dimensional cellular automata are established. These new metrics allow us to do computations with infinitesimals. Hence configurations in the domain space of cellular automata can be infinitesimally close (but not equal). That is, they can agree at infinitely many places. Using the new metrics, open disks are defined and the number of points in each disk computed. The forward dynamics of a cellular automaton map are also studied by defined sets. It is also shown that using the Infinite Unit Axiom, the number of configurations that follow a given configuration, under the forward iterations of cellular automaton maps, can now be computed and hence a classification scheme developed based on this computation.

  18. Simultaneous Platinum and Copper Ion Attachment to a Human Copper Chaperone Protein

    Science.gov (United States)

    Hodak, Miroslav; Cvitkovic, John; Yu, Corey; Dmitriev, Oleg; Kaminski, George; Bernholc, Jerry

    2015-03-01

    Cisplatin is a potent anti-cancer drug based on a platinum ion. However, its effectiveness is decreased by cellular resistance, which involves cisplatin attaching to copper transport proteins. One of such proteins is Atox1, where cisplatin attaches to the copper binding site. Surprisingly, it was shown that both cisplatin and copper can attach to Atox1 at the same time. To study this double metal ion attachment, we use the KS/FD DFT method, which combines Kohn-Sham DFT with frozen-density DFT to achieve efficient quantum-mechanical description of explicit solvent. Calculations have so far investigated copper ion attachment to CXXC motifs present in Atox1. The addition of the platinum ion and the competition between the two metals is currently being studied. These calculations start from a molecular mechanics (MM) structural model, in which glutathione groups provide additional ligands to the Pt ion. Our goals are to identify possible Cu-Pt structures and to determine whether copper/platinum attachment is competitive, independent, or cooperative. Results will be compared to the 1H, N1 5 -HSQC NMR experiments, in which binding of copper and cisplatin to Atox1 produces distinct secondary chemical shift signatures, allowing for kinetic studies of simultaneous metal binding.

  19. Role of access charges in the migration from copper to FTTH

    OpenAIRE

    Jeanjean, François; Liang, Julienne

    2011-01-01

    We consider a horizontally and vertically differentiated duopoly model in order to analyze both intra- and inter-platform competition in an always corvered broadband access market (Copper-Copper, Copper-FTTH and FTTH-FTTH competitions). The model is purely static and does not address dynamic efficiency issues. It shows that the access charges play a significant role in the migration from copper to FTTH and in FTTH investment incentives, provided that consumers are segmented. In FTTH-infrastru...

  20. Characteristics and antimicrobial activity of copper-based materials

    Science.gov (United States)

    Li, Bowen

    antibacterial activity than copper vermiculite against E. coli. With 200 ppm exfoliated copper vermiculite in bacteria suspension (4.68 ppm of metal copper), the reduction of viable bacteria are 99.8% at 1 hour, and >99.9% at 2 hours. With 10 ppm exfoliated copper vermiculite in bacteria dilution (0.234 ppm of copper atoms), the reduction of viable E. coli reached 98.7% at 1 hour, and >95.6% at 2 hours. Molds have the potential to cause health problems, such as allergic reactions, irritations, and mycotoxins, and damage to buildings, historic relics, properties, etc. Since copper has better antifungal property, an initial antifungal activity of copper vermiculite was evaluated in this study. Fat-free milk was used to develop molds in the test samples by saturated samples. Incubated at 36°C for 48 hours, all of the surfaces of untreated control samples, including micron-sized vermiculite, exfoliated vermiculite, bentonite, and kaolin, have been covered by thick mold layers. However, there were no mold showed on copper vermiculite and exfoliated copper vermiculite. Even after the incubation was lasted for 10 days, copper vermiculite and exfoliated copper vermiculite did not show any mold on the surface. These results exhibited copper vermiculite has excellent antifungal activities against mold. Stability of copper ions in copper vermiculite was measured by aqueous leaching process. Copper vermiculite and exfoliated copper vermiculite were put into distilled water in a ratio of 2.0g/100ml, and then implemented leaching processes by continuously shaking (leaching) and statically storing (soaking) for desired periods of time, respectively. According to the analytic result by inductively coupled plasma spectroscopy (ICP), the major metals released were copper, magnesium, iron, silicon, and aluminum. The release rate of copper depends on the environmental conditions. Under the dynamic leaching condition, all the major elements had shown linear leaching rates, and slowly increases

  1. 基于遗传算法的蜂窝网络动态信道分配建模及算法实现%Dynamic channel allocation modeling and algorithm in cellular networks based on a genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    杨钦民; 刘海林

    2011-01-01

    针对蜂窝网络现有动态信道分配模型不足的问题,提出了一种基于最小化小区间违反电磁兼容约束的小区数目以及信道数目的动态信道分配模型.针对建立的教学模型,基于遗传算法提出了蜂窝网络的动态信道分配算法,获得了一组干扰最小的信道分配,避免了移动用户间的干扰.对几个著名的21小区Philadelphia benchmark问题进行了计算机仿真,结果表明本研究提出的算法能够得到一组有效的信道分配,提高了频谱利用率及系统容量.%Aimed at overcoming the shortages of the current dynamic channel allocation model in cellular networks, a dynamic channel allocation model based on minimizing the number of cells and channel among cells that violated the electromagnetic compatibility constraints was proposed.Aimed at the mathematical model, a dynamic channel allocation algorithm in cellular networks based on a genetic algorithm was proposed, which could obtain a set of channel assignments with minimum interference and avoid the interference among mobile users.Simulations on several well-known twenty-one cell Philadelphia benchmark problems showed that this algorithm could obtain an efficient channel assignment and improved specurum utilization and system capacity.

  2. Cellular Dynamics of Memory B Cell Populations: IgM+ and IgG+ Memory B Cells Persist Indefinitely as Quiescent Cells.

    Science.gov (United States)

    Jones, Derek D; Wilmore, Joel R; Allman, David

    2015-11-15

    Despite their critical role in long-term immunity, the life span of individual memory B cells remains poorly defined. Using a tetracycline-regulated pulse-chase system, we measured population turnover rates and individual t1/2 of pre-established Ag-induced Ig class-switched and IgM-positive memory B cells over 402 d. Our results indicate that, once established, both IgG-positive and less frequent IgM-positive memory populations are exceptionally stable, with little evidence of attrition or cellular turnover. Indeed, the vast majority of cells in both pools exhibited t1/2 that appear to exceed the life span of the mouse, contrasting dramatically with mature naive B cells. These results indicate that recall Ab responses are mediated by stable pools of extremely long-lived cells, and suggest that Ag-experienced B cells employ remarkably efficient survival mechanisms.

  3. Cellular dynamics of memory B cell populations: IgM+ and IgG+ memory B cells persist indefinitely as quiescent cells1

    Science.gov (United States)

    Jones, Derek D.; Wilmore, Joel R.; Allman, David

    2015-01-01

    Despite their critical role in long-term immunity, the lifespan of individual memory B cells remains poorly defined. Using a tetracycline-regulated pulse-chase system, we measured population turnover rates and individual half-lives of pre-established antigen-induced immunoglobulin (Ig) class-switched and IgM-positive memory B cells over 402 days. Our results indicate that, once established, both IgG-positive and less frequent IgM-positive memory populations are exceptionally stable, with little evidence of attrition or cellular turnover. Indeed, the vast majority of cells in both pools exhibited half-lives that appear to exceed the lifespan of the mouse, contrasting dramatically with mature naïve B cells. These results indicate that recall antibody responses are mediated by stable pools of extremely long-lived cells, and suggest that antigen-experienced B cells employ remarkably efficient survival mechanisms. PMID:26438523

  4. The effect of New Zealand kanuka, manuka and clover honeys on bacterial growth dynamics and cellular morphology varies according to the species.

    Directory of Open Access Journals (Sweden)

    Jing Lu

    Full Text Available Treatment of chronic wounds is becoming increasingly difficult due to antibiotic resistance. Complex natural products with antimicrobial activity, such as honey, are now under the spotlight as alternative treatments to antibiotics. Several studies have shown honey to have broad-spectrum antibacterial activity at concentrations present in honey dressings, and resistance to honey has not been attainable in the laboratory. However not all honeys are the same and few studies have used honey that is well defined both in geographic and chemical terms. Here we have used a range of concentrations of clover honey and a suite of manuka and kanuka honeys from known geographical locations, and for which the floral source and concentration of methylglyoxal and hydrogen peroxide potential were defined, to determine their effect on growth and cellular morphology of four bacteria: Bacillus subtilis, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. While the general trend in effectiveness of growth inhibition was manuka>manuka-kanuka blend>kanuka>clover, the honeys had varying and diverse effects on the growth and cellular morphology of each bacterium, and each organism had a unique response profile to these honeys. P. aeruginosa showed a markedly different pattern of growth inhibition to the other three organisms when treated with sub-inhibitory concentrations of honey, being equally sensitive to all honeys, including clover, and the least sensitive to honey overall. While hydrogen peroxide potential contributed to the antibacterial activity of the manuka and kanuka honeys, it was never essential for complete growth inhibition. Cell morphology analysis also showed a varied and diverse set of responses to the honeys that included cell length changes, cell lysis, and alterations to DNA appearance. These changes are likely to reflect the different regulatory circuits of the organisms that are activated by the stress of honey treatment.

  5. The Copper Metabolism MURR1 Domain protein 1 (COMMD1) modulates the aggregation of misfolded protein species in a client-specific manner

    NARCIS (Netherlands)

    W.I.M. Vonk (Willianne I.); V. Kakkar (Vaishali); P. Bartuzi (Paulina); D. Jaarsma (Dick); R. Berger (Ruud); M.A. Hofker (Marten); L.W.J. Klomp (Leo W.); C. Wijmenga (Cisca); H. Kampinga (Harm); B. van de Sluis (Bart)

    2014-01-01

    textabstractThe Copper Metabolism MURR1 domain protein 1 (COMMD1) is a protein involved in multiple cellular pathways, including copper homeostasis, NF-κB and hypoxia signalling. Acting as a scaffold protein, COMMD1 mediates the levels, stability and proteolysis of its substrates (e.g. the copper-tr

  6. The Copper Metabolism MURR1 Domain Protein 1 (COMMD1) Modulates the Aggregation of Misfolded Protein Species in a Client-Specific Manner

    NARCIS (Netherlands)

    Vonk, Willianne I. M.; Kakkar, Vaishali; Bartuzi, Paulina; Jaarsma, Dick; Berger, Ruud; Hofker, Marten H.; Klomp, Leo W. J.; Wijmenga, Cisca; Kampinga, Harm H.; van de Sluis, Bart

    2014-01-01

    The Copper Metabolism MURR1 domain protein 1 (COMMD1) is a protein involved in multiple cellular pathways, including copper homeostasis, NF-kappa B and hypoxia signalling. Acting as a scaffold protein, COMMD1 mediates the levels, stability and proteolysis of its substrates (e.g. the copper-transport

  7. Canine models of copper toxicosis for understanding mammalian copper metabolism

    OpenAIRE

    Fieten, Hille; Leegwater, Peter A. J.; Watson, Adrian L.; Rothuizen, Jan

    2011-01-01

    Hereditary forms of copper toxicosis exist in man and dogs. In man, Wilson’s disease is the best studied disorder of copper overload, resulting from mutations in the gene coding for the copper transporter ATP7B. Forms of copper toxicosis for which no causal gene is known yet are recognized as well, often in young children. Although advances have been made in unraveling the genetic background of disorders of copper metabolism in man, many questions regarding disease mechanisms and copper homeo...

  8. Determination of copper in coal fly ash in the presence of excess titanium by dynamic reaction cell inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Liu, Hui-Tao; Jiang, Shiuh-Jen

    2003-01-01

    Inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) was used for the accurate determination of copper in coal fly ash samples in the presence of excess titanium, using the reaction of Cu(+) ions with NH(3) in the cell. The method eliminated the effect of polyatomic isobaric interferences at m/z 63 and 65 caused by the formation of (47)Ti(16)O(+), (49)Ti(16)O(+) and (47)Ti(18)O(+) on (63)Cu(+) and (65)Cu(+) by detecting Cu(+) as the product cluster ion Cu(NH(3))(2)(+). As the signal of (63)Cu(NH(3))(2)(+) overlapped with that of (97)Mo(+) which existed in the samples, (65)Cu(NH(3))(2)(+) was detected at m/z 99. The effect of the operating conditions of DRC system was studied in order to obtain the best signal to noise ratio for Cu(NH(3))(2)(+) at m/z 99. The formation of Cu(NH(3))(2)(+) was through the clustering reaction Cu(+)+2NH(3)-->Cu(NH(3))(2)(+) which resulted in the separation of analyte from the interfering oxide. The detection limit for Cu(NH(3))(2)(+) was 0.015 ng mL(-1) as Cu. The method was applied to the determination of copper in NIST SRM 1633a and 1633b coal fly ash reference materials. The precision between sample replicates was better than 2.0% and the analysis results were in good agreement with the certified values.

  9. Determination of copper in coal fly ash in the presence of excess titanium by dynamic reaction cell inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-Tao [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Jiang, Shiuh-Jen [Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424 (Taiwan)

    2003-01-01

    Inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) was used for the accurate determination of copper in coal fly ash samples in the presence of excess titanium, using the reaction of Cu{sup +} ions with NH{sub 3} in the cell. The method eliminated the effect of polyatomic isobaric interferences at m/z 63 and 65 caused by the formation of {sup 47}Ti{sup 16}O{sup +}, {sup 49}Ti{sup 16}O{sup +} and {sup 47}Ti{sup 18}O{sup +} on {sup 63}Cu{sup +} and {sup 65}Cu{sup +} by detecting Cu{sup +} as the product cluster ion Cu(NH{sub 3}){sub 2}{sup +}. As the signal of {sup 63}Cu(NH{sub 3}){sub 2}{sup +} overlapped with that of {sup 97}Mo{sup +} which existed in the samples, {sup 65}Cu(NH{sub 3}){sub 2}{sup +} was detected at m/z 99. The effect of the operating conditions of DRC system was studied in order to obtain the best signal to noise ratio for Cu(NH{sub 3}){sub 2}{sup +} at m/z 99. The formation of Cu(NH{sub 3}){sub 2}{sup +} was through the clustering reaction Cu{sup +}+2NH{sub 3}{yields}Cu(NH{sub 3}){sub 2}{sup +} which resulted in the separation of analyte from the interfering oxide. The detection limit for Cu(NH{sub 3}){sub 2}{sup +} was 0.015 ng mL{sup -1} as Cu. The method was applied to the determination of copper in NIST SRM 1633a and 1633b coal fly ash reference materials. The precision between sample replicates was better than 2.0% and the analysis results were in good agreement with the certified values. (orig.)

  10. Flat Cellular (UMTS) Networks

    NARCIS (Netherlands)

    Bosch, H.G.P.; Samuel, L.G.; Mullender, S.J.; Polakos, P.; Rittenhouse, G.

    2007-01-01

    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective i

  11. Hair copper in intrauterine copper device users.

    Science.gov (United States)

    Thiery, M; Heyndrickx, A; Uyttersprot, C

    1984-03-01

    The antifertility effect of copper-bearing IUDs is based on continuous release of copper, which is a result of the reaction between the metal and the uterine secretions. Released cupric ions collect in the endometrium and in the uterine fluid but significant accumulation has not been found in the bloodstream or elsewhere. Following Laker's suggestion that hair be used for monitoring essential trace elements, e.g., copper, we checked the copper content of the hair of women wearing copper-bearing IUDs. Samples of untreated pubic hair removed by clipping before diagnostic curettage were obtained from 10 young (24-34 years old), white caucasian females who until then had been wearing an MLCu250 IUD for more than 1 year. Pubes from 10 comparable (sex, age, race) subjects who had never used a Cu-containing device served as controls. The unwashed material was submitted to the toxicology laboratory, where the copper content was assessed by flameless atomic absorption, a technique whose lower limit of measurement lies at a concentration of 0.05 mcg Cu/ml fluid (50 ppb). Hair samples were washed to remove extraneous traces of metal according to the prescriptions of the International Atomic Energy Agency, weighed, and mineralized, after which a small volume (10 mcl) of the diluted fluid was fed into the graphite furnace. Each sample (75-150 mg) was analyzed 4 times, both before and after washing. Since the cleaning procedure reduces the weight of the sample (mainly by the removal of fat, dust, etc.) this explains why the percentage copper content of washed hair is higher than that of unwashed hair belonging to the same subject. The results indicate that there was no significant difference (Mann-Whitney U test) between the mean copper levels of both unwashed and washed pubes from women who were using or had never used an MLCu250 IUD. We therefore conclude that the use of this copper-containing device is not associated with significant accumulation of copper in (pubic) hair.

  12. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications.

    Science.gov (United States)

    Rubilar, Olga; Rai, Mahendra; Tortella, Gonzalo; Diez, Maria Cristina; Seabra, Amedea B; Durán, Nelson

    2013-09-01

    Copper nanoparticles have been the focus of intensive study due to their potential applications in diverse fields including biomedicine, electronics, and optics. Copper-based nanostructured materials have been used in conductive films, lubrification, nanofluids, catalysis, and also as potent antimicrobial agent. The biogenic synthesis of metallic nanostructured nanoparticles is considered to be a green and eco-friendly technology since neither harmful chemicals nor high temperatures are involved in the process. The present review discusses the synthesis of copper nanostructured nanoparticles by bacteria, fungi, and plant extracts, showing that biogenic synthesis is an economically feasible, simple and non-polluting process. Applications for biogenic copper nanoparticles are also discussed.

  13. China Copper Processing Industry Focus

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>1. Market Consumption The ’China Factor’ and Copper Price Fluctuation We all know China is an enormous consumer of copper,but the exact levels of consumption and where the copper has gone remains a mystery.

  14. Metallo-pathways to Alzheimer's disease: lessons from genetic disorders of copper trafficking.

    Science.gov (United States)

    Greenough, M A; Ramírez Munoz, A; Bush, A I; Opazo, C M

    2016-09-01

    Copper is an essential metal ion that provides catalytic function to numerous enzymes and also regulates neurotransmission and intracellular signaling. Conversely, a deficiency or excess of copper can cause chronic disease in humans. Menkes and Wilson disease are two rare heritable disorders of copper transport that are characterized by copper deficiency and copper overload, respectively. Changes to copper status are also a common feature of several neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). In the case of AD, which is characterized by brain copper depletion, changes in the distribution of copper has been linked with various aspects of the disease process; protein aggregation, defective protein degradation, oxidative stress, inflammation and mitochondrial dysfunction. Although AD is a multifactorial disease that is likely caused by a breakdown in multiple cellular pathways, copper and other metal ions such as iron and zinc play a central role in many of these cellular processes. Pioneering work by researchers who have studied relatively rare copper transport diseases has shed light on potential metal ion related disease mechanisms in other forms of neurodegeneration such as AD.

  15. Magnetic Particle Spectroscopy Reveals Dynamic Changes in the Magnetic Behavior of Very Small Superparamagnetic Iron Oxide Nanoparticles During Cellular Uptake and Enables Determination of Cell-Labeling Efficacy.

    Science.gov (United States)

    Poller, Wolfram C; Löwa, Norbert; Wiekhorst, Frank; Taupitz, Matthias; Wagner, Susanne; Möller, Konstantin; Baumann, Gert; Stangl, Verena; Trahms, Lutz; Ludwig, Antje

    2016-02-01

    In vivo tracking of nanoparticle-labeled cells by magnetic resonance imaging (MRI) crucially depends on accurate determination of cell-labeling efficacy prior to transplantation. Here, we analyzed the feasibility and accuracy of magnetic particle spectroscopy (MPS) for estimation of cell-labeling efficacy in living THP-1 cells incubated with very small superparamagnetic iron oxide nanoparticles (VSOP). Cell viability and proliferation capacity were not affected by the MPS measurement procedure. In VSOP samples without cell contact, MPS enabled highly accurate quantification. In contrast, MPS constantly overestimated the amount of cell associated and internalized VSOP. Analyses of the MPS spectrum shape expressed as harmonic ratio A₅/A₃ revealed distinct changes in the magnetic behavior of VSOP in response to cellular uptake. These changes were proportional to the deviation between MPS and actual iron amount, therefore allowing for adjusted iron quantification. Transmission electron microscopy provided visual evidence that changes in the magnetic properties correlated with cell surface interaction of VSOP as well as with alterations of particle structure and arrangement during the phagocytic process. Altogether, A₅/A₃-adjusted MPS enables highly accurate, cell-preserving VSOP quantification and furthermore provides information on the magnetic characteristics of internalized VSOP.

  16. Understanding the sub-cellular dynamics of silicon transportation and synthesis in diatoms using population-level data and computational optimization.

    Science.gov (United States)

    Javaheri, Narjes; Dries, Roland; Kaandorp, Jaap

    2014-06-01

    Controlled synthesis of silicon is a major challenge in nanotechnology and material science. Diatoms, the unicellular algae, are an inspiring example of silica biosynthesis, producing complex and delicate nano-structures. This happens in several cell compartments, including cytoplasm and silica deposition vesicle (SDV). Considering the low concentration of silicic acid in oceans, cells have developed silicon transporter proteins (SIT). Moreover, cells change the level of active SITs during one cell cycle, likely as a response to the level of external nutrients and internal deposition rates. Despite this topic being of fundamental interest, the intracellular dynamics of nutrients and cell regulation strategies remain poorly understood. One reason is the difficulties in measurements and manipulation of these mechanisms at such small scales, and even when possible, data often contain large errors. Therefore, using computational techniques seems inevitable. We have constructed a mathematical model for silicon dynamics in the diatom Thalassiosira pseudonana in four compartments: external environment, cytoplasm, SDV and deposited silica. The model builds on mass conservation and Michaelis-Menten kinetics as mass transport equations. In order to find the free parameters of the model from sparse, noisy experimental data, an optimization technique (global and local search), together with enzyme related penalty terms, has been applied. We have connected population-level data to individual-cell-level quantities including the effect of early division of non-synchronized cells. Our model is robust, proven by sensitivity and perturbation analysis, and predicts dynamics of intracellular nutrients and enzymes in different compartments. The model produces different uptake regimes, previously recognized as surge, externally-controlled and internally-controlled uptakes. Finally, we imposed a flux of SITs to the model and compared it with previous classical kinetics. The model

  17. Copper Induces Vasorelaxation and Antagonizes Noradrenaline -Induced Vasoconstriction in Rat Mesenteric Artery

    Directory of Open Access Journals (Sweden)

    Yu-Chun Wang

    2013-11-01

    Full Text Available Background/Aims: Copper is an essential trace element for normal cellular function and contributes to critical physiological or pathological processes. The aim of the study was to investigate the effects of copper on vascular tone of rat mesenteric artery and compare the effects of copper on noradrenaline (NA and high K+ induced vasoconstriction. Methods: The rat mesenteric arteries were isolated and the vessel tone was measured by using multi wire myograph system in vitro. Blood pressure of carotid artery in rabbits was measured by using physiological data acquisition and analysis system in vivo. Results: Copper dose-dependently blunted NA-induced vasoconstriction of rat mesenteric artery. Copper-induced vasorelaxation was inhibited when the vessels were pretreated with NG-nitro-L-arginine methyl ester (L-NAME. Copper did not blunt high K+-induced vasoconstriction. Copper preincubation inhibited NA-evoked vasoconstriction and the inhibition was not affected by the presence of L-NAME. Copper preincubation showed no effect on high K+-evoked vasoconstriction. Copper chelator diethyldithiocarbamate trihydrate (DTC antagonized the vasoactivity induced by copper in rat mesenteric artery. In vivo experiments showed that copper injection (iv significantly decreased blood pressure of rabbits and NA or DTC injection (iv did not rescue the copper-induced hypotension and animal death. Conclusion: Copper blunted NA but not high K+-induced vasoconstriction of rat mesenteric artery. The acute effect of copper on NA-induced vasoconstriction was depended on nitric oxide (NO, but the effect of copper pretreatment on NA-induced vasoconstriction was independed on NO, suggesting that copper affected NA-induced vasoconstriction by two distinct mechanisms.

  18. Vitis labrusca extract effects on cellular dynamics and redox modulations in a SH-SY5Y neuronal cell model: a similar role to lithium.

    Science.gov (United States)

    Scola, Gustavo; Laliberte, Victoria Louise Marina; Kim, Helena Kyunghee; Pinguelo, Arsene; Salvador, Mirian; Young, L Trevor; Andreazza, Ana Cristina

    2014-12-01

    Oxidative stress and calcium imbalance are consistently reported in bipolar disorder (BD). Polymorphism of voltage-dependent calcium channel, L type, alpha 1C subunit (CACNA1c), which is responsible for the regulation of calcium influx, was also shown to have a strong association with BD. These alterations can lead to a number of different consequences in the cell including production of reactive species causing oxidative damage to proteins, lipids and DNA. Lithium is the most frequent medication used for the treatment of BD. Despite lithium's effects, long-term use can result in many negative side effects. Therefore, there is an urgent need for the development of drugs that may have similar biological effects as lithium without the negative consequences. Moreover, polyphenols are secondary metabolites of plants that present multi-faceted molecular abilities, such as regulation of cellular responses. Vitis labrusca extract (VLE), a complex mixture of polyphenols obtained from seeds of winery wastes of V. labrusca, was previously characterized by our group. This extract presented powerful antioxidant and neuroprotective properties. Therefore, the ability of VLE to ameliorate the consequences of hydrogen peroxide (H2O2)-induced redox alterations to cell viability, intracellular calcium levels and the relative levels of the calcium channel CACNA1c in comparison to lithium's effects were evaluated using a neuroblastoma cell model. H2O2 treatment increased cell mortality through apoptotic and necrotic pathways leading to an increase in intracellular calcium levels and alterations to relative CACNA1c levels. VLE and lithium were found to similarly ameliorate cell mortality through regulation of the apoptotic/necrotic pathways, decreasing intracellular calcium levels and preventing alterations to the relative levels of CACNA1c. The findings of this study suggest that VLE exhibits protective properties against oxidative stress-induced alterations similar to that of lithium

  19. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly.

    Science.gov (United States)

    Welch, M D; DePace, A H; Verma, S; Iwamatsu, A; Mitchison, T J

    1997-07-28

    The Arp2/3 protein complex has been implicated in the control of actin polymerization in cells. The human complex consists of seven subunits which include the actin related proteins Arp2 and Arp3, and five others referred to as p41-Arc, p34-Arc, p21-Arc, p20-Arc, and p16-Arc (p omplex). We have determined the predicted amino acid sequence of all seven subunits. Each has homologues in diverse eukaryotes, implying that the structure and function of the complex has been conserved through evolution. Human Arp2 and Arp3 are very similar to family members from other species. p41-Arc is a new member of the Sop2 family of WD (tryptophan and aspartate) repeat-containing proteins and may be posttranslationally modified, suggesting that it may be involved in regulating the activity and/or localization of the complex. p34-Arc, p21-Arc, p20-Arc, and p16-Arc define novel protein families. We sought to evaluate the function of the Arp2/3 complex in cells by determining its intracellular distribution. Arp3, p34-Arc, and p21-Arc were localized to the lamellipodia of stationary and locomoting fibroblasts, as well to Listeria monocytogenes assembled actin tails. They were not detected in cellular bundles of actin filaments. Taken together with the ability of the Arp2/3 complex to induce actin polymerization, these observations suggest that the complex promotes actin assembly in lamellipodia and may participate in lamellipodial protrusion.

  20. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis.

    Science.gov (United States)

    Telianidis, Jonathon; Hung, Ya Hui; Materia, Stephanie; Fontaine, Sharon La

    2013-01-01

    Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer's, Parkinson's, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.

  1. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis

    Directory of Open Access Journals (Sweden)

    Jonathon eTelianidis

    2013-08-01

    Full Text Available Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer’s, Parkinson’s and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-Type ATPases (copper-ATPases, ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.

  2. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  3. Coping with copper

    DEFF Research Database (Denmark)

    Nunes, Ines; Jacquiod, Samuel; Brejnrod, Asker

    2016-01-01

    Copper has been intensively used in industry and agriculture since mid-18(th) century and is currently accumulating in soils. We investigated the diversity of potential active bacteria by 16S rRNA gene transcript amplicon sequencing in a temperate grassland soil subjected to century-long exposure......, suggesting a potential promising role as bioindicators of copper contamination in soils....

  4. Dynamic contrast enhanced MRI detects early response to adoptive NK cellular immunotherapy targeting the NG2 proteoglycan in a rat model of glioblastoma.

    Directory of Open Access Journals (Sweden)

    Cecilie Brekke Rygh

    groups. In conclusion, ve was the most reliable radiological parameter for detecting response to intralesional NK cellular therapy.

  5. Dynamic contrast enhanced MRI detects early response to adoptive NK cellular immunotherapy targeting the NG2 proteoglycan in a rat model of glioblastoma.

    Science.gov (United States)

    Rygh, Cecilie Brekke; Wang, Jian; Thuen, Marte; Gras Navarro, Andrea; Huuse, Else Marie; Thorsen, Frits; Poli, Aurelie; Zimmer, Jacques; Haraldseth, Olav; Lie, Stein Atle; Enger, Per Øyvind; Chekenya, Martha

    2014-01-01

    conclusion, ve was the most reliable radiological parameter for detecting response to intralesional NK cellular therapy.

  6. Predicting the impacts of climate change on plant dynamics and tree-grass-shrub competition using a Cellular Automata model in a Mediterranean catchment in Sicily, Italy

    Science.gov (United States)

    Noto, L. V.; Caracciolo, D.; Fatichi, S.; Istanbulluoglu, E.

    2013-12-01

    Understanding and predicting vegetation change along ecosystem boundaries is among paramount challenges in ecohydrology. In this study, Cellular-Automaton Tree Grass Shrub Simulator (CATGraSS) is implemented in a small upland catchment in Sicily, IT, where north-facing slopes are characterized by quercus (trees), and south-facing slopes exhibit plant coexistence, composed of Opuntia ficus-indaca (shrub) and grasses, to examine the control of solar radiation on plant development and predict potential trajectories of vegetation change under the stress of global warming. CATGraSS is driven by stochastic rainfall and variable solar radiation on topography, represented by a fine-scale gridded domain where vegetation type at each cell is represented individually. In the model, each cell can hold a single plant type or remain empty. Plant competition is modeled explicitly by keeping track of mortality and establishment of plants, both calculated probabilistically based on soil moisture stress. Spatially explicit treatment of solar radiation, and a lower limit to soil moisture storage imposed by bedrock depth lead to spatial organization in evapotranspiration, soil moisture, runoff, and plant type. CATGraSS is first calibrated at the field site driven by stochastic climate that represent the current climate at the study site. Calibrated model results are examined against Google-Earth images. Implications of future climate change are examined using the advanced weather generator (AWE-GEN). AWE-GEN characterizes the statistical characteristics of selected climate variables and their change over time based on a multi-model ensemble of outputs from General Circulation Models (GCMs). Stochastic downscaling is carried out using simulations of twelve GCMs adopted in the IPCC 4AR, A1B emission scenario for the future scenarios 2046-2065 and 2081-2100. Future vegetation changed is predicted to bring a dramatic reorganization of the plant composition based mainly on the topography

  7. Kunpeng Copper:The largest Copper Smelting Company of Sichuan

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>On September 9,Liangshan Mining Company’s 100,000 tons/year cathode copper project kicked off.It is another key project of the company following the successful launch of the 100,000 tons/year anode copper project.Based on ISA copper smelting technology of the largest open-cast copper mine in southwest China,

  8. Turning tumor-promoting copper into an anti-cancer weapon via high-throughput chemistry.

    Science.gov (United States)

    Wang, F; Jiao, P; Qi, M; Frezza, M; Dou, Q P; Yan, B

    2010-01-01

    Copper is an essential element for multiple biological processes. Its concentration is elevated to a very high level in cancer tissues for promoting cancer development through processes such as angiogenesis. Organic chelators of copper can passively reduce cellular copper and serve the role as inhibitors of angiogenesis. However, they can also actively attack cellular targets such as proteasome, which plays a critical role in cancer development and survival. The discovery of such molecules initially relied on a step by step synthesis followed by biological assays. Today high-throughput chemistry and high-throughput screening have significantly expedited the copper-binding molecules discovery to turn "cancer-promoting" copper into anti-cancer agents.

  9. PprA, a pleiotropic protein for radioresistance, works through DNA gyrase and shows cellular dynamics during postirradiation recovery in Deinococcus radiodurans

    Indian Academy of Sciences (India)

    Swathi Kota; Vijaya Kumar Charaka; H. S. Misra

    2014-08-01

    PprA, a pleiotropic protein involved in radioresistance of Deinococcus radiodurans was detected in multiprotein DNA processing complex identified from this bacterium. pprA mutant expressing GFP-PprA could restore its wild type resistance of radiation. Under normal conditions, GFP-PprA expressing cells showed PprA localization on both septum trapped nucleoids (STN) and nucleoids located elsewhere (MCN). Cell exposed to 4 kGy radiation showed nearly 2 h growth lag and during this growth arrest phase, the majority of the cells had GFP-PprA located on MCN. While in late phase (∼120 min) PIR cells, when cells are nearly out of growth arrest, PprA was maximally found with STN. These cells when treated with nalidixic acid showed diffused localization of PprA across the septum. gyrA disruption mutant of D. radiodurans showed growth inhibition, which increased further in gyrA pprA mutant. Interestingly, gyrA mutant showed ∼20-fold less resistance to radiation as compared to wild type, which did increase further in gyrA pprA mutant. These results suggested that PprA localization undergoes a dynamic change during PIR, and its localization on nucleoid near septum and functional interaction with gyrase A might suggest a mechanism that could explain PprA role in genome segregation possibly through topoisomerase II.

  10. Effect of copper excess on peripheral blood T-lymphocytes in the chicken

    Institute of Scientific and Technical Information of China (English)

    Cui Hengnmin; Peng Xi; Deng Junliang; Xu Zhiyong; Zhu Kuicheng

    2008-01-01

    Experimental study was conducted to examine the effect of copper excess on the peripheral blood Tlymphocyte by the methods of flow cytometry (FCM) and experimental pathology.420 one-day-old Avian chickens were randomly divided into seven groups, and fed on diets as follows: 1 .controls (Cu 11mg/kg)and 2.copper excess( Cu 100mg/kg, copper excess group Ⅰ; Cu 200mg/kg, copper excess group Ⅱ; Cu 300mg/kg, copper excess group Ⅲ; Cu 400mg/kg, copper excess group Ⅳ; Cu 500mg/kg, copper excess group V;Cu 600mg/kg,copper excess group Ⅵ) for six weeks.The results were as follows: 1) In thymus, lymphocytes in the medulla were decreased in number in copper excess groups Ⅲ, Ⅳ,Ⅴ and Ⅵ,and the increased and enlarged thymic corpuscles and the proliferated reticular cells were also observed in both copper excess group Ⅴ and copper excess group Ⅵ in comparison with those of control group.2) The percentage of CD4 + T cells was markedly decreased from 2 to 6 weeks of age in copper excess groups Ⅳ,Ⅴ and Ⅵ (P<0.05 or P<0.01).3) The percentage of CD8+ T cell was not varied in six copper excess groups during the experiment when compared with that of control group ( P>0.05).4) The CD4+ /CDs + ratio was lower from 2 to 6 weeks of age in copper excess groups Ⅳ, Ⅴ and Ⅵ than in control group (P<0.05 or P<0.01).5) It was concluded that dietary copper in excess of 300rag / kg suppressed the development of T-lymphocytes and reduced the percentage of CD4+ T ceils and the CD4+/CD8+ ratio, and resulted in pathological injury of the thymus.Cellular immune function was finally impaired.

  11. Influence of estrogens on copper indicators: in vivo and in vitro studies.

    Science.gov (United States)

    Arredondo, Miguel; Núñez, Héctor; López, Guadalupe; Pizarro, Fernando; Ayala, Mariana; Araya, Magdalena

    2010-06-01

    Classic copper indicators are not sensitive and specific for detecting excess copper exposure when this is higher than customary but not markedly elevated. Serum copper and ceruloplasmin (Cp) are the most commonly used indicators to assess nutritional status of copper. The objective of this paper was to study the influence of estrogens on these indicators and others used to assess early effects of excess copper exposure in humans and the expression of a set of copper related proteins in a hepatic cellular model. For the studies in humans, 107 healthy participants (18-50 years) were allocated as follows: group 1 (n = 39), women assessed on day 7 of their hormonal cycle; group 2 (n = 34), women assessed on day 21 of their hormonal cycle, and group 3 (n = 34, comparison group), healthy men. Participants received 8 mg Cu/day (as copper sulfate) during 6 months. Serum Cp and Cu, Cu-Zn-superoxide dismutase activity, liver function indicators [aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma glutamyltransferase (GGT)], and serum Fe and Zn concentrations were measured monthly. In addition, the influence of estradiol on intracellular total copper content, hctr1, dmt1 and shbg mRNA abundance and hCTR1, and DMT1 expression was measured in HepG2 cells. Serum Cu, Fe, and Zn and liver aminotransferases but not Cu-Zn-superoxide dismutase varied depending on sex. Fe nutrition indicators, GGT, and ALT activities showed significant differences between the hormonal phases. Cellular experiments showed that estradiol increased cellular Cu concentration and hCTR1 and DMT1 mRNA expression and changed these proteins expression patterns. Estradiols significantly influence the responses to copper at the whole body and the cellular levels, suggesting that they help maintaining copper availability for metabolic needs.

  12. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  13. Cellular automata a parallel model

    CERN Document Server

    Mazoyer, J

    1999-01-01

    Cellular automata can be viewed both as computational models and modelling systems of real processes. This volume emphasises the first aspect. In articles written by leading researchers, sophisticated massive parallel algorithms (firing squad, life, Fischer's primes recognition) are treated. Their computational power and the specific complexity classes they determine are surveyed, while some recent results in relation to chaos from a new dynamic systems point of view are also presented. Audience: This book will be of interest to specialists of theoretical computer science and the parallelism challenge.

  14. Targeting copper in cancer therapy: 'Copper That Cancer'.

    Science.gov (United States)

    Denoyer, Delphine; Masaldan, Shashank; La Fontaine, Sharon; Cater, Michael A

    2015-11-01

    Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents.

  15. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  16. A study of the effects of phosphates on copper corrosion in drinking water: Copper release, electrochemical, and surface analysis approach

    Science.gov (United States)

    Kang, Young C.

    by ToF-SIMS. Dynamic SIMS provided shallow depth profile of corroded copper sample. The third set of the experiments was related to electrochemical noise (EN) measurement through copper coupons to pipes. Calculating corrosion rate of a metal and predicting exactly how long it lasts are problematic since the metal corrosion may be caused by combined corrosion types. Many other metals undergo not only uniform corrosion, but localized corrosion. Uniform corrosion may be conducive for copper pipe to prevent it from further severe corrosion and form passivated film, but localized corrosion causes pinhole leaks and limits the copper pipe applications. The objective of this set of experiment is to discuss the application of electrochemical noise approaches to drinking water copper corrosion problems. Specially, a fundamental description of EN is presented including a discussion of how to interpret the results and technique limitations. Although it was indicated with electrochemical analysis that the corrosion activity was affected by orthophosphate addition in the short-term test, no copper-phosphate complex or compound was found by copper surface characterization. Apparently, orthophosphate can inhibit corrosion by adsorption on the copper surface, but cannot form solid complexes with copper in such a short time, 2 days. When polyphosphate was added into recirculating copper pipe system, copper level increased and polarization resistance decreased. Greenish blue residue on the copper pipe was suspected as copper phosphate complex and corrosion inhibition mechanism was proposed.

  17. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  18. Mapping of cellular iron using hyperspectral fluorescence imaging in a cellular model of Parkinson's disease

    Science.gov (United States)

    Oh, Eung Seok; Heo, Chaejeong; Kim, Ji Seon; Lee, Young Hee; Kim, Jong Min

    2013-05-01

    Parkinson's disease (PD) is characterized by progressive dopaminergic cell loss in the substantianigra (SN) and elevated iron levels demonstrated by autopsy and with 7-Tesla magnetic resonance imaging. Direct visualization of iron with live imaging techniques has not yet been successful. The aim of this study is to visualize and quantify the distribution of cellular iron using an intrinsic iron hyperspectral fluorescence signal. The 1-methyl-4-phenylpyridinium (MPP+)-induced cellular model of PD was established in SHSY5Y cells. The cells were exposed to iron by treatment with ferric ammonium citrate (FAC, 100 μM) for up to 6 hours. The hyperspectral fluorescence imaging signal of iron was examined usinga high- resolution dark-field optical microscope system with signal absorption for the visible/ near infrared (VNIR) spectral range. The 6-hour group showed heavy cellular iron deposition compared with the small amount of iron accumulation in the 1-hour group. The cellular iron was dispersed in a small, particulate form, whereas extracellular iron was detected in an aggregated form. In addition, iron particles were found to be concentrated on the cell membrane/edge of shrunken cells. The cellular iron accumulation readily occurred in MPP+-induced cells, which is consistent with previous studies demonstrating elevated iron levels in the SN in PD. This direct iron imaging methodology could be applied to analyze the physiological role of iron in PD, and its application might be expanded to various neurological disorders involving other metals, such as copper, manganese or zinc.

  19. The future of copper in China--A perspective based on analysis of copper flows and stocks.

    Science.gov (United States)

    Zhang, Ling; Cai, Zhijian; Yang, Jiameng; Yuan, Zengwei; Chen, Yan

    2015-12-01

    This study attempts to speculate on the future of copper metabolism in China based on dynamic substance flow analysis. Based on tremendous growth of copper consumption over the past 63 years, China will depict a substantially increasing trend of copper in-use stocks for the next 30 years. The highest peak will be possibly achieved in 2050, with the maximum ranging between 163 Mt and 171 Mt. After that, total stocks are expected to slowly decline 147-154 Mt by the year 2080. Owing to the increasing demand of in-use stocks, China will continue to have a profound impact on global copper consumption with its high import dependence until around 2020, and the peak demand for imported copper are expected to approach 5.5 Mt/year. Thereafter, old scrap generated by domestic society will occupy an increasingly important role in copper supply. In around 2060, approximately 80% of copper resources could come from domestic recycling of old scrap, implying a major shift from primary production to secondary production. With regard to the effect of lifetime distribution uncertainties in different end-use sectors of copper stocks on the predict results, uncertainty evaluation was performed and found the model was relatively robust to these changes.

  20. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  1. Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

  2. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    Science.gov (United States)

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-03

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most.

  3. Estudo da difusão da tecnologia móvel celular no Brasil: uma abordagem com o uso de Dinâmica de Sistemas Study of the cellular phone diffusion in Brazil: a system dynamics approach

    Directory of Open Access Journals (Sweden)

    Júlio César Bastos de Figueiredo

    2009-04-01

    Full Text Available Este trabalho apresenta um modelo para estudo da difusão da tecnologia móvel celular. Baseado na teoria de difusão de produtos de Frank Bass (1969, e na metodologia de Dinâmica de Sistemas, o modelo foi aplicado ao caso brasileiro. Como resultado, foi possível reproduzir, com bom grau de aderência, as curvas acumuladas de celulares adotados no Brasil (pós-pagos, pré-pagos e total, bem como a curva de vendas anuais. Os resultados das projeções apontam para uma saturação da penetração de telefones celulares no Brasil por volta do ano de 2013, quando então o mercado deverá atingir um total aproximado de 150 milhões de aparelhos.This work presents a model to study the diffusion of the mobile cell phone technology. Based on the Frank Bass' theory of Products Diffusion (1969, and on the System Dynamics methodology, the model was applied to the Brazilian case. As a result, it was possible to reproduce, with a good degree of adherence, the accumulated curves of cellular adopted in Brazil (post-paid, pre-paid and total, as so the annual sales curve. The projected results indicates a saturation of cell phones diffusion in Brazil around the year 2013, when the market will supposed to reach a total of approximately 150 millions of devices.

  4. Nanostructured cellular networks.

    Science.gov (United States)

    Moriarty, P; Taylor, M D R; Brust, M

    2002-12-01

    Au nanocrystals spin-coated onto silicon from toluene form cellular networks. A quantitative statistical crystallography analysis shows that intercellular correlations drive the networks far from statistical equilibrium. Spin-coating from hexane does not produce cellular structure, yet a strong correlation is retained in the positions of nanocrystal aggregates. Mechanisms based on Marangoni convection alone cannot account for the variety of patterns observed, and we argue that spinodal decomposition plays an important role in foam formation.

  5. Asymptotic Behavior of Excitable Cellular Automata

    CERN Document Server

    Durrett, R; Durrett, Richard; Griffeath, David

    1993-01-01

    Abstract: We study two families of excitable cellular automata known as the Greenberg-Hastings Model (GHM) and the Cyclic Cellular Automaton (CCA). Each family consists of local deterministic oscillating lattice dynamics, with parallel discrete-time updating, parametrized by the range of interaction, the "shape" of its neighbor set, threshold value for contact updating, and number of possible states per site. GHM and CCA are mathematically tractable prototypes for the spatially distributed periodic wave activity of so-called excitable media observed in diverse disciplines of experimental science. Earlier work by Fisch, Gravner, and Griffeath studied the ergodic behavior of these excitable cellular automata on Z^2, and identified two distinct (but closely-related) elaborate phase portraits as the parameters vary. In particular, they noted the emergence of asymptotic phase diagrams (and Euclidean dynamics) in a well-defined threshold-range scaling limit. In this study we present several rigorous results and som...

  6. A Quantum Relativistic Prisoner's Dilemma Cellular Automaton

    Science.gov (United States)

    Alonso-Sanz, Ramón; Carvalho, Márcio; Situ, Haozhen

    2016-10-01

    The effect of variable entangling on the dynamics of a spatial quantum relativistic formulation of the iterated prisoner's dilemma game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests.

  7. Copper and Copper Proteins in Parkinson’s Disease

    OpenAIRE

    Sergio Montes; Susana Rivera-Mancia; Araceli Diaz-Ruiz; Luis Tristan-Lopez; Camilo Rios

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased pr...

  8. Probing Cellular Dynamics with Mesoscopic Simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2010-01-01

    . But these models struggle to represent processes that are localized in space and time or involve the transport of material through a crowded environment. A novel class of mesoscopic simulation techniques are now able to span length and time scales from nanometers to microns for hundreds of microseconds, and may......-based simulation techniques cannot capture such a broad range. Consequently, at long length scales, models have often been of the Mass Action variety, in which molecular constituents are represented by density fields that vary continuously in space and time, rather than involving discrete molecules...

  9. Computational model of cellular metabolic dynamics

    DEFF Research Database (Denmark)

    Li, Yanjun; Solomon, Thomas; Haus, Jacob M

    2010-01-01

    Identifying the mechanisms by which insulin regulates glucose metabolism in skeletal muscle is critical to understanding the etiology of insulin resistance and type 2 diabetes. Our knowledge of these mechanisms is limited by the difficulty of obtaining in vivo intracellular data. To quantitativel...

  10. Metallochaperones regulate intracellular copper levels.

    Directory of Open Access Journals (Sweden)

    W Lee Pang

    Full Text Available Copper (Cu is an important enzyme co-factor that is also extremely toxic at high intracellular concentrations, making active efflux mechanisms essential for preventing Cu accumulation. Here, we have investigated the mechanistic role of metallochaperones in regulating Cu efflux. We have constructed a computational model of Cu trafficking and efflux based on systems analysis of the Cu stress response of Halobacterium salinarum. We have validated several model predictions via assays of transcriptional dynamics and intracellular Cu levels, discovering a completely novel function for metallochaperones. We demonstrate that in addition to trafficking Cu ions, metallochaperones also function as buffers to modulate the transcriptional responsiveness and efficacy of Cu efflux. This buffering function of metallochaperones ultimately sets the upper limit for intracellular Cu levels and provides a mechanistic explanation for previously observed Cu metallochaperone mutation phenotypes.

  11. Dynamic response of a cellular metallic sandwich panel subjected to metal foam projectile impact%泡沫金属子弹撞击载荷下多孔金属夹芯板的动态响应

    Institute of Scientific and Technical Information of China (English)

    敬霖; 王志华; 宋延泽; 赵隆茂

    2011-01-01

    The plastic dynamic response of a clamped cellular metallic sandwich panel was investigated experimentally using metal foam projectile. The deformation and failure modes of the sandwich panel subjected to impact load were discussed. Experimental results showed that the sandwich panel under impact loading can fail with several modes; indentation deformation, penetration failure, core compression and core shear. Based on experiments, the corresponding finite element simulations were done using LS-DYNA software. A good agreement was obtained between the numerical and experimental results. The effects of face thickness, core thickness, relative density of core and applied impulse on the shock-resistance behaviors of the sandwich panel were studied. It was shown that the structural response of the sandwich panel is sensitive to its configuration and the permanent deflection of the back face decreases with increase in face-sheet and core thickness. The studying results were a reference for optimal design of cellular metallic sandwich structures.%应用泡沫金属子弹撞击加载的方式研究固支多孔金属夹芯板的塑性动力响应.讨论了多孔金属夹芯板在冲击载荷作用下的破坏模式.结果表明夹芯板的破坏主要表现在前面板的压痕与侵彻失效、芯层压缩和芯层剪切破坏.基于实验研究,应用LS-DYNA3D非线性动力学有限元分析软件对夹芯板动力响应进行有限元分析.数值研究结果与实验结果吻合较好.考察了加载冲量、面板厚度、芯层厚度及相对密度对多孔金属夹芯板抗撞击性能的影响.夹芯板的结构响应对其结构配置比较敏感,增加面板厚度或芯层厚度能够明显地减小后面板的挠度,提高夹芯板的抗撞击能力.研究结果对多孔金属夹芯板的优化设计具有一定的参考价值.

  12. Jiangxi Copper Plans to Increase its Refined Copper Output

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>According to news published on March 30th, China’s largest copper producer--Jiangxi Copper alleged in its 2010 Financial Report Statement that it plans to improve its output of refined copper by 4.4% in 2011, to increase from 900,000 tonnes last year to 940,000 tons.

  13. Copper as an antibacterial agent for human pathogenic multidrug resistant Burkholderia cepacia complex bacteria.

    Science.gov (United States)

    Ibrahim, Muhammad; Wang, Fang; Lou, Miao-miao; Xie, Guan-lin; Li, Bin; Bo, Zhu; Zhang, Gou-qing; Liu, He; Wareth, Abdul

    2011-12-01

    The Burkholderia cepacia complex (Bcc) consists of 17 closely related multidrug resistant bacterial species that are difficult to eradicate. Copper has recently gained attention as an antimicrobial agent because of its inhibitory effects on bacteria, yeast, and viruses. The objective of this study was to evaluate the antibacterial activity of copper surfaces and copper powder against members of the B. cepacia complex. The antibacterial activity of different copper surfaces was evaluated by incubating them with Bcc strain suspensions (5×10(7)cfu/ml). The bacterial survival counts were calculated and the data for various copper surfaces were compared to the data for stainless steel and polyvinylchloride, which were used as control surfaces. The antibacterial activity of copper powder was determined with the diffusimetrical technique and the zone of inhibition was evaluated with paper disks. A single cell gel electrophoresis assay, staining assays, and inductively coupled plasma mass spectroscopy were performed to determine the mechanism responsible for the bactericidal activity. The results showed a significant decrease in the viable bacterial count after exposure to copper surfaces. Moreover, the copper powder produced a large zone of inhibition and there was a significantly higher influx of copper ions into the bacterial cells that were exposed to copper surfaces compared to the controls. The present study demonstrates that metallic copper has an antibacterial effect against Bcc bacteria and that copper adversely affects the bacterial cellular structure, thus resulting in cell death. These findings suggest that copper could be utilized in health care facilities to reduce the bioburden of Bcc species, which may protect susceptible members of the community from bacterial infection.

  14. [Copper metabolism and genetic disorders].

    Science.gov (United States)

    Shimizu, Norikazu

    2016-07-01

    Copper is one of essential trace elements. Copper deficiency lead to growth and developmental failure and/or neurological dysfunction. However, excess copper is also problems for human life. There are two disorders of inborn error of copper metabolism, Menkes disease and Wilson disease. Menkes disease is an X linked recessive disorder with copper deficiency and Wilson disease is an autosomal recessive disorder with copper accumulation. These both disorders result from the defective functioning of copper transport P-type ATPase, ATP7A of Menkes disease and ATP7B of Wilson disease. In this paper, the author describes about copper metabolism of human, and clinical feature, diagnosis and treatment of Menkes disease and Wilson disease.

  15. A tri-copper(II) complex displaying DNA-cleaving properties and antiproliferative activity against cancer cells.

    Science.gov (United States)

    Suntharalingam, Kogularamanan; Hunt, Douglas J; Duarte, Alexandra A; White, Andrew J P; Mann, David J; Vilar, Ramon

    2012-11-19

    A new disubstituted terpyridine ligand and the corresponding tri-copper(II) complex have been prepared and characterised. The binding affinity and binding mode of this tri-copper complex (as well as the previously reported mono- and di-copper analogues) towards duplex DNA were determined by using UV/Vis spectroscopic titrations and fluorescent indicator displacement (FID) assays. These studies showed the three complexes to bind moderately (in the order of 10(4)  M(-1)) to duplex DNA (ct-DNA and a 26-mer sequence). Furthermore, the number of copper centres and the nature of the substituents were found to play a significant role in defining the binding mode (intercalative or groove binding). The nuclease potential of the three complexes was investigated by using circular plasmid DNA as a substrate and analysing the products by agarose-gel electrophoresis. The cleaving activity was found to be dependent on the number of copper centres present (cleaving potency was in the order: tri-copper>di-copper>mono-copper). Interestingly, the tri-copper complex was able to cleave DNA without the need of external co-reductants. As this complex displayed the most promising nuclease properties, cell-based studies were carried out to establish if there was a direct link between DNA cleavage and cellular toxicity. The tri-copper complex displayed high cytotoxicity against four cancer cell lines. Of particular interest was that it displayed high cytotoxicity against the cisplatin-resistant MOLT-4 leukaemia cell line. Cellular uptake studies showed that the tri-copper complex was able to enter the cell and more importantly localise in the nucleus. Immunoblotting analysis (used to monitor changes in protein levels related to the DNA damage response pathway) and DNA-flow cytometric studies suggested that this tri-copper(II) complex is able to induce cellular DNA damage.

  16. Laser micro welding of copper and aluminum

    Science.gov (United States)

    Mys, Ihor; Schmidt, Michael

    2006-02-01

    Aluminum combines comparably good thermal and electrical properties with a low price and a low material weight. These properties make aluminum a promising alternative to copper for a large number of electronic applications, especially when manufacturing high volume components. However, a main obstacle for a wide use of this material is the lack of a reliable joining process for the interconnection of copper and aluminum. The reasons for this are a large misalignment in the physical properties and even more a poor metallurgical affinity of both materials that cause high crack sensitivity and the formation of brittle intermetallic phases during fusion welding. This paper presents investigations on laser micro welding of copper and aluminum with the objective to eliminate brittle intermetallic phases in the welding structure. For these purposes a combination of spot welding, a proper beam offset and special filler material are applied. The effect of silver, nickel and tin filler materials in the form of thin foils and coatings in a thickness range 3-100 μm has been investigated. Use of silver and tin filler materials yields to a considerable improvement of the static and dynamic mechanical stability of welded joints. The analysis of the weld microstructure shows that an application even of small amounts of suitable filler materials helps to avoid critical, very brittle intermetallic phases on the interface between copper and solidified melt in the welded joints.

  17. Inducible Sequential Oxidation Process in Water-Soluble Copper Nanoclusters for Direct Colorimetric Assay of Hydrogen Peroxide in a Wide Dynamic and Sampling Range.

    Science.gov (United States)

    Du, Yibing; Fang, Jun; Wang, Hongli; Yang, Yang

    2017-03-15

    Direct and fast detection methods for H2O2 have great demand in materials science, biology, and medicine. Colorimetric assay of H2O2 has been regarded as one versatile approach that can avoid tedious operation and complicated setup. In this report, we provided a cost-effective and time-saving H2O2 colorimetric assay strategy based on a mercaptosuccinic acid (MSA)-stabilized Cu nanocluster (NC) probe without using any chromogenic reagent. Direct and fast colorimetric detection of H2O2 was realized based on the color change of MSA-capped Cu NCs in aqueous medium. It was found that the Cu NCs presented eligible resistance to natural oxidation either in concentrated solution or in the powder state. However, the dissolved oxygen in a highly diluted solution of the Cu NCs could trigger the aggregation of the Cu NCs and their further fusion into small Cu nanoparticles (NPs). When this diluted solution served as a probe solution for detecting H2O2, a sequential oxidation process occurred in the newly formed Cu NPs, including the cleavage of MSAs on the surface and conversion of Cu into Cu2O, leading to the probe with capacity for H2O2 assay in a wide dynamic and sampling range. The sensitive solution color change was attributed to the growth of the Cu NPs (fading of plasmonic absorption) upon the addition of low levels of H2O2 and the transition of the valence states of Cu (color reactions) upon the addition of high levels of H2O2. A concentration range of H2O2 from 1 μM to 1 M could be detected by a small dose of the probe. Moreover, the Cu NCs powder subsequent to storage for 10 months could maintain a similar sensitivity for H2O2 assay, which provides possibilities for a wide range of practical applications in water samples.

  18. Effective inhibition of the early copper ion burst release with ultra-fine grained copper and single crystal copper for intrauterine device application.

    Science.gov (United States)

    Xu, X X; Nie, F L; Wang, Y B; Zhang, J X; Zheng, W; Li, L; Zheng, Y F

    2012-02-01

    To solve the main problems of existing coarse grained copper (CG Cu) intrauterine devices (IUD)-namely burst release and a low transfer efficiency of the cupric ions during usage-ultra-fine grained copper (UFG Cu) and single crystal copper (SC Cu) have been investigated as potential substitutes. Their corrosion properties with CG Cu as a control have been studied in simulated uterine fluid (SUF) under different conditions using electrochemical measurement methods. Long-term immersion of UFG Cu, SC Cu and CG Cu samples in SUF at 37 °C have been studied for 300 days. A lower copper ion burst release and a higher efficiency release of cupric ions were observed for UFG Cu and SC Cu compared with CG Cu in the first month of immersion and 2 months later. The respective corrosion mechanisms for UFG Cu, SC Cu and CG Cu in SUF are proposed. In vitro biocompatibility tests show a better cellular response to UFG Cu and SC Cu than CG Cu. In terms of instantaneous corrosion behavior, long-term corrosion performance and in vitro biocompatibility, the three pure copper materials follow the order: UFG Cu>SC Cu>CG Cu, which indicates that UFG Cu could be the most suitable candidate material for intrauterine devices.

  19. Cell biology of the future: Nanometer-scale cellular cartography.

    Science.gov (United States)

    Taraska, Justin W

    2015-10-26

    Understanding cellular structure is key to understanding cellular regulation. New developments in super-resolution fluorescence imaging, electron microscopy, and quantitative image analysis methods are now providing some of the first three-dimensional dynamic maps of biomolecules at the nanometer scale. These new maps--comprehensive nanometer-scale cellular cartographies--will reveal how the molecular organization of cells influences their diverse and changeable activities.

  20. Chinese Copper Manufacturers Expand Overseas

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>In 2012,China’s apparent copper consumption reached 8.84 million tons,accounting for 43%of the global total demand.Spurred by strong demand,China’s copper smelting capacity roars with annual average growth in domestic copper smelting capacity reaching approx-

  1. Epigenetics and Cellular Metabolism

    Science.gov (United States)

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well. PMID:27695375

  2. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  3. Fabrication and Characterization of Metallic Copper and Copper Oxide Nanoflowers

    Directory of Open Access Journals (Sweden)

    *H. S. Virk

    2011-12-01

    Full Text Available Copper nanoflowers have been fabricated using two different techniques; electro-deposition of copper in polymer and anodic alumina templates, and cytyltrimethal ammonium bromide (CTAB-assisted hydrothermal method. Scanning Electron Microscope (SEM images record some interesting morphologies of metallic copper nanoflowers. Field Emission Scanning Electron Microscope (FESEM has been used to determine morphology and composition of copper oxide nanoflowers. X-ray diffraction (XRD pattern reveals the monoclinic phase of CuO in the crystallographic structure of copper oxide nanoflowers. There is an element of random artistic design of nature, rather than science, in exotic patterns of nanoflowers fabricated in our laboratory.

  4. Dynamics

    CERN Document Server

    Goodman, Lawrence E

    2001-01-01

    Beginning text presents complete theoretical treatment of mechanical model systems and deals with technological applications. Topics include introduction to calculus of vectors, particle motion, dynamics of particle systems and plane rigid bodies, technical applications in plane motions, theory of mechanical vibrations, and more. Exercises and answers appear in each chapter.

  5. Cellular blue naevus

    Directory of Open Access Journals (Sweden)

    Mittal R

    2001-01-01

    Full Text Available A 31-year-old man had asymptomatic, stationary, 1.5X2 cm, shiny, smooth, dark blue nodule on dorsum of right hand since 12-14 years. In addition he had developed extensive eruption of yellow to orange papulonodular lesions on extensors of limbs and buttocks since one and half months. Investigations confirmed that yellow papules were xanthomatosis and he had associated diabetes mellitus and hyperlipidaemia. Biopsy of blue nodule confirmed the clinical diagnosis of cellular blue naevus. Cellular blue naevus is rare and its association with xanthomatosis and diabetes mellitus were interesting features of above patients which is being reported for its rarity.

  6. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  7. Industrial experiment of copper electrolyte purification by copper arsenite

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ya-jie; XIAO Fa-xin; WANG Yong; LI Chun-hua; XU Wei; JIAN Hong-sheng; MA Yut-ian

    2008-01-01

    Copper electrolyte was purified by copper arsenite that was prepared with As2O3. And electrolysis experiments of purified electrolyte were carried out at 235 and 305 A/m2, respectively. The results show that the yield of copper arsenite is up to 98.64% when the molar ratio of Cu to As is 1.5 in the preparation of copper arsenite. The removal rates of Sb and Bi reach 74.11% and 65.60% respectively after copper arsenite is added in electrolyte. The concentrations of As, Sb and Bi in electrolyte nearly remain constant during electrolysis of 13 d. The appearances of cathode copper obtained at 235 and 305 A/m2 are slippery and even, and the qualification rate is 100% according to the Chinese standard of high-pure cathode copper(GB/T467-97).

  8. Fluorescopic evaluation of protein-lipid relations in cellular signalling.

    NARCIS (Netherlands)

    Pap, E.H.W.

    1994-01-01

    IntroductionCellular communication is partly mediated through the modulation of protein activity, structure and dynamics by lipids. In contrast to the biochemical aspects of lipid signalling, relatively little is known about the physical properties of the "signal" lipids (lipids involved in cellular

  9. Insights Into Quantitative Biology: analysis of cellular adaptation

    OpenAIRE

    Agoni, Valentina

    2013-01-01

    In the last years many powerful techniques have emerged to measure protein interactions as well as gene expression. Many progresses have been done since the introduction of these techniques but not toward quantitative analysis of data. In this paper we show how to study cellular adaptation and how to detect cellular subpopulations. Moreover we go deeper in analyzing signal transduction pathways dynamics.

  10. Refining cellular automata with routing constraints

    OpenAIRE

    Millo, Jean-Vivien; De Simone, Robert

    2012-01-01

    A cellular automaton (CA) is an infinite array of cells, each containing the same automaton. The dynamics of a CA is distributed over the cells where each computes its next state as a function of the previous states of its neighborhood. Thus, the transmission of such states between neighbors is considered as feasible directly, in no time. When considering the implementation of a cellular automaton on a many-cores System-on-Chip (SoC), this state transmission is no longer abstract and instanta...

  11. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  12. Elements of the Cellular Metabolic Structure

    Directory of Open Access Journals (Sweden)

    Ildefonso Martínez De La Fuente

    2015-04-01

    Full Text Available A large number of studies have shown the existence of metabolic covalent modifications in different molecular structures, able to store biochemical information that is not encoded by the DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes. Recently, the emergence of Hopfield-like attractor dynamics has been observed in the self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by the specific input stimuli. The Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in the covalent post-translational modulation so that determined functional memory can be embedded in multiple stable molecular marks. Both the metabolic dynamics governed by Hopfield-type attractors (functional processes and the enzymatic covalent modifications of determined molecules (structural dynamic processes seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory. Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory and an essentially conservative system (genetic memory. The molecular information of both systems seems to coordinate the physiological development of the whole cell.

  13. Regression of Copper-Deficient Heart Hypertrophy: Reduction in the Size of Hypertrophic Cardiomyocytes

    Science.gov (United States)

    Dietary copper deficiency causes cardiac hypertrophy and its transition to heart failure in a mouse model. Copper repletion results in a rapid regression of cardiac hypertrophy and prevention of heart failure. The present study was undertaken to understand dynamic changes of cardiomyocytes in the hy...

  14. Discrete geodesics and cellular automata

    CERN Document Server

    Arrighi, Pablo

    2015-01-01

    This paper proposes a dynamical notion of discrete geodesics, understood as straightest trajectories in discretized curved spacetime. The notion is generic, as it is formulated in terms of a general deviation function, but readily specializes to metric spaces such as discretized pseudo-riemannian manifolds. It is effective: an algorithm for computing these geodesics naturally follows, which allows numerical validation---as shown by computing the perihelion shift of a Mercury-like planet. It is consistent, in the continuum limit, with the standard notion of timelike geodesics in a pseudo-riemannian manifold. Whether the algorithm fits within the framework of cellular automata is discussed at length. KEYWORDS: Discrete connection, parallel transport, general relativity, Regge calculus.

  15. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells.

    Science.gov (United States)

    Liu, Hao; Zhang, Yikai; Zheng, Shanyuan; Weng, Zeping; Ma, Jun; Li, Yangqiu; Xie, Xinyuan; Zheng, Wenjie

    2016-09-01

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to "copper" cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper.

  16. Cellular rehabilitation of photobiomodulation

    Science.gov (United States)

    Liu, Timon Cheng-Yi; Yuan, Jian-Qin; Wang, Yan-Fang; Xu, Xiao-Yang; Liu, Song-Hao

    2007-05-01

    Homeostasis is a term that refers to constancy in a system. A cell in homeostasis normally functions. There are two kinds of processes in the internal environment and external environment of a cell, the pathogenic processes (PP) which disrupts the old homeostasis (OH), and the sanogenetic processes (SP) which restores OH or establishes a new homeostasis (NH). Photobiomodualtion (PBM), the cell-specific effects of low intensity monochromatic light or low intensity laser irradiation (LIL) on biological systems, is a kind of modulation on PP or SP so that there is no PBM on a cell in homeostasis. There are two kinds of pathways mediating PBM, the membrane endogenetic chromophores mediating pathways which often act through reactive oxygen species, and membrane proteins mediating pathways which often enhance cellular SP so that it might be called cellular rehabilitation. The cellular rehabilitation of PBM will be discussed in this paper. It is concluded that PBM might modulate the disruption of cellular homeostasis induced by pathogenic factors such as toxin until OH has been restored or NH has been established, but can not change homeostatic processes from one to another one.

  17. Vascular metallomics: copper in the vasculature.

    Science.gov (United States)

    Easter, Renee N; Qilin Chan; Lai, Barry; Ritman, Erik L; Caruso, Joseph A; Zhenyu Qin

    2010-02-01

    Owing to recent progress in analytical techniques, metallomics are evolving from detecting distinct trace metals in a defined state to monitor the dynamic changes in the abundance and location of trace metals in vitro and in vivo. Vascular metallomics is an emerging field that studies the role of trace metals in vasculature. This review will introduce common metallomics techniques including atomic absorption spectrometry, inductively coupled plasma-atomic emission spectrometry, inductively coupled plasma-mass spectrometry and X-ray fluorescence spectrometry with a summary table to compare these techniques. Moreover, we will summarize recent research findings that have applied these techniques to human population studies in cardiovascular diseases, with a particular emphasis on the role of copper in these diseases. In order to address the issue of interdisciplinary studies between metallomics and vascular biology, we will review the progress of efforts to understand the role of copper in neovascularization. This recent advance in the metallomics field may be a powerful tool to elucidate the signaling pathways and specific biological functions of these trace metals. Finally, we summarize the evidence to support the notion that copper is a dynamic signaling molecule. As a future direction, vascular metallomics studies may lead to the identification of targets for diagnosis and therapy in cardiovascular disease.

  18. Creative Copper Crests

    Science.gov (United States)

    Knab, Thomas

    2011-01-01

    In this article, the author discusses how to create an art activity that would link the computer-created business cards of fourth-grade students with an upcoming school-wide medieval event. Creating family crests from copper foil would be a great connection, since they, like business cards, are an individual's way to identify themselves to others.…

  19. Presenilin promotes dietary copper uptake.

    Directory of Open Access Journals (Sweden)

    Adam Southon

    Full Text Available Dietary copper is essential for multicellular organisms. Copper is redox active and required as a cofactor for enzymes such as the antioxidant Superoxide Dismutase 1 (SOD1. Copper dyshomeostasis has been implicated in Alzheimer's disease. Mutations in the presenilin genes encoding PS1 and PS2 are major causes of early-onset familial Alzheimer's disease. PS1 and PS2 are required for efficient copper uptake in mammalian systems. Here we demonstrate a conserved role for presenilin in dietary copper uptake in the fly Drosophila melanogaster. Ubiquitous RNA interference-mediated knockdown of the single Drosophila presenilin (PSN gene is lethal. However, PSN knockdown in the midgut produces viable flies. These flies have reduced copper levels and are more tolerant to excess dietary copper. Expression of a copper-responsive EYFP construct was also lower in the midgut of these larvae, indicative of reduced dietary copper uptake. SOD activity was reduced by midgut PSN knockdown, and these flies were sensitive to the superoxide-inducing chemical paraquat. These data support presenilin being needed for dietary copper uptake in the gut and so impacting on SOD activity and tolerance to oxidative stress. These results are consistent with previous studies of mammalian presenilins, supporting a conserved role for these proteins in mediating copper uptake.

  20. EVOLUTION COMPLEXITY OF THEELEMENTARY CELLULAR AUTOMATON OF RULE 22

    Institute of Scientific and Technical Information of China (English)

    WangYi; JiangZhisong

    2002-01-01

    Cellular automata are the discrete dynamical systems of simple construction but with complex and varied behaviors. In this paper, the elementary cellular automaton of rule 22 is studied by the tools of formal language theory and symbolic dynamics. Its temporal evolution orbits are coarse-grained into evolution sequences and the evolution languages are defined. It is proved that for every n≥2 its width n evolution language is not regular.

  1. Copper binding regulates intracellular alpha-synuclein localisation, aggregation and toxicity.

    Science.gov (United States)

    Wang, Xiaoyan; Moualla, Dima; Wright, Josephine A; Brown, David R

    2010-05-01

    Alpha-synuclein is a natively unfolded protein that aggregates and forms inclusions that are associated with a range of diseases that include Parkinson's Disease and Dementia with Lewy Bodies. The mechanism behind the formation of these inclusions and their possible role in disease remains unclear. Alpha-synuclein has also been shown to bind metals including copper and iron. We used a cell culture model of alpha-synuclein aggregation to examine the relationship between metals and formation of aggregates of the protein. While the levels of iron appear to have no role in aggregate formation or localisation of the protein in cells, copper appears to be important for both aggregation and cellular localisation of alpha-synuclein. Reduction in cellular copper resulted in a great decrease in aggregate formation both in terms of large aggregates visible in cells and oligomers observed in western blot analysis of cell extracts. Reduction in copper also resulted in a change in localisation of the protein which became more intensely localised to the plasma membrane in medium with low copper. These changes were reversed when copper was restored to the cells. Mutants of the copper binding domains altered the response to copper. Deletion of either the N- or C-termini resulted in a loss of aggregation while deletion of the C-termini also resulted in a loss of membrane association. Increased expression of alpha-synuclein also increased cell sensitivity to the toxicity of copper. These results suggest that the potential pathological role of alpha-synuclein aggregates is dependent upon the copper binding capacity of the protein.

  2. Spreading Modes on Copper and Steel Surfaces

    Directory of Open Access Journals (Sweden)

    Feoktistov Dmitry

    2016-01-01

    Full Text Available This work presents the experimental results of the studying the effect of surface roughness, microstructure and liquid flow rate on the dynamic contact angle during spreading of distilled nondeaerated water drop on a solid horizontal substrate. Copper and steel substrates with different roughness have been investigated. Three spreading modes were conventionally indicated. It was found that the spreading of drops on substrates made of different materials occurs in similar modes. However, the duration of each mode for substrates made of copper and steel are different. Spreading of a liquid above the asperities of a surface micro relief was observed to be dominant for large volumetric flow rates of drops (0.01 ml/s. Liquid was spreading inside the grooves of a rough substrate at low rates (0.005 ml/s.

  3. Comparative characteristics of copper, copper chloride, and copper bromide vapor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, M.A.; Petrash, G.G.; Trofimov, A.N.

    1980-03-01

    The paper reports the results of a comparative study of copper and copper halide vapor lasers emitting in a repetitively-pulsed regime. Copper chloride and copper bromide vapor lasers are found to have identical lasing characteristics under any excitation conditions. These characteristics are different from those of a copper vapor laser. An average lasing power of 13 W has been obtained for all lasers studied for an efficiency of 1%. It is shown that the choice of a laser will largely depend on the laser design suitability for a specific application.

  4. Online isolation of defects in cellular nanocomputers

    Institute of Scientific and Technical Information of China (English)

    Teijiro Isokawa; Shin'ya Kowada; Ferdinand Peper; Naotake Kamiura; Nobuyuki Matsui

    2007-01-01

    Unreliability will be a major issue for computers built from components at nanometer scales.Thus,it's to be expected that such computers will need a high degree of defect-tolerance to overcome components' defects which have arisen during the process of manufacturing.This paper presents a novel approach to defect-tolerance that is especially geared towards nanocomputers based on asynchronous cellular automata.According to this approach,defective cells are detected and isolated by small configurations that move around randomly in cellular space.These configurations,called random flies,will attach to configurations that are static,which is typical for configurations that contain defective cells.On the other hand,dynamic configurations,like those that conduct computations,will not be isolated from the rest of the cellular space by the random flies,and will be able to continue their operations unaffectedly.

  5. Tension and robustness in multitasking cellular networks.

    Directory of Open Access Journals (Sweden)

    Jeffrey V Wong

    Full Text Available Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters that generate a particular dynamic are often sub-optimal for others, defining a source of "tension" between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between "one-size-fits-all" solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks.

  6. Host-Imposed Copper Poisoning Impacts Fungal Micronutrient Acquisition during Systemic Candida albicans Infections.

    Directory of Open Access Journals (Sweden)

    Joanna Mackie

    Full Text Available Nutritional immunity is a process whereby an infected host manipulates essential micronutrients to defend against an invading pathogen. We reveal a dynamic aspect of nutritional immunity during infection that involves copper assimilation. Using a combination of laser ablation inductively coupled mass spectrometry (LA-ICP MS and metal mapping, immunohistochemistry, and gene expression profiling from infected tissues, we show that readjustments in hepatic, splenic and renal copper homeostasis accompany disseminated Candida albicans infections in the mouse model. Localized host-imposed copper poisoning manifests itself as a transient increase in copper early in the kidney infection. Changes in renal copper are detected by the fungus, as revealed by gene expression profiling and fungal virulence studies. The fungus responds by differentially regulating the Crp1 copper efflux pump (higher expression during early infection and down-regulation late in infection and the Ctr1 copper importer (lower expression during early infection, and subsequent up-regulation late in infection to maintain copper homeostasis during disease progression. Both Crp1 and Ctr1 are required for full fungal virulence. Importantly, copper homeostasis influences other virulence traits-metabolic flexibility and oxidative stress resistance. Our study highlights the importance of copper homeostasis for host defence and fungal virulence during systemic disease.

  7. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  8. Cellular Responses to the Metal-Binding Properties of Metformin

    Science.gov (United States)

    Logie, Lisa; Harthill, Jean; Patel, Kashyap; Bacon, Sandra; Hamilton, D. Lee; Macrae, Katherine; McDougall, Gordon; Wang, Huan-Huan; Xue, Lin; Jiang, Hua; Sakamoto, Kei; Prescott, Alan R.; Rena, Graham

    2012-01-01

    In recent decades, the antihyperglycemic biguanide metformin has been used extensively in the treatment of type 2 diabetes, despite continuing uncertainty over its direct target. In this article, using two independent approaches, we demonstrate that cellular actions of metformin are disrupted by interference with its metal-binding properties, which have been known for over a century but little studied by biologists. We demonstrate that copper sequestration opposes known actions of metformin not only on AMP-activated protein kinase (AMPK)-dependent signaling, but also on S6 protein phosphorylation. Biguanide/metal interactions are stabilized by extensive π-electron delocalization and by investigating analogs of metformin; we provide evidence that this intrinsic property enables biguanides to regulate AMPK, glucose production, gluconeogenic gene expression, mitochondrial respiration, and mitochondrial copper binding. In contrast, regulation of S6 phosphorylation is prevented only by direct modification of the metal-liganding groups of the biguanide structure, supporting recent data that AMPK and S6 phosphorylation are regulated independently by biguanides. Additional studies with pioglitazone suggest that mitochondrial copper is targeted by both of these clinically important drugs. Together, these results suggest that cellular effects of biguanides depend on their metal-binding properties. This link may illuminate a better understanding of the molecular mechanisms enabling antihyperglycemic drug action. PMID:22492524

  9. Production of ultrahigh purity copper using waste copper nitrate solution.

    Science.gov (United States)

    Choi, J Y; Kim, D S

    2003-04-25

    The production of ultrahigh purity copper (99.9999%) by electrolysis in the presence of a cementation barrier has been attempted employing a waste nitric copper etching solution as the electrolyte. The amount of copper deposited on the cathode increased almost linearly with electrolysis time and the purity of copper was observed to increase as the electrolyte concentration was increased. At some point, however, as the electrolyte concentration increased, the purity of copper decreased slightly. As the total surface area of cementation barrier increased, the purity of product increased. The electrolyte temperature should be maintained below 35 degrees C in the range of investigated electrolysis conditions to obtain the ultrahigh purity copper. Considering that several industrial waste solutions contain valuable metallic components the result of present study may support a claim that electrowinning is a very desirable process for their treatment and recovery.

  10. Tongling:Copper Industry Giant Takes Shape

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>Centering on the strategic goal of building "World Copper Capital", Tongling constantly extends its product lines and improves the copper industry chain. Now, the copper industry with a production value of RMB 100 billion has taken shape.As the largest copper wire rod manufacturer in Asia, Tongling Quanwei Copper Technologies Co., Ltd., upon its moving into the local market,

  11. 考虑动态车间距的一维元胞自动机交通流模型∗%One-dimensional cellular automaton mo del of traffic flow considering dynamic headway

    Institute of Scientific and Technical Information of China (English)

    张柠溪; 祝会兵; 林亨; 黄梦圆

    2015-01-01

    基于NaSch元胞自动机交通流模型,考虑司机复杂的性格特征和驾驶行为差异,引入相邻车辆的动态车间距,提出了一个改进的单车道元胞自动机交通流模型。通过数值模拟得到了流量-密度关系,在中高密度区域呈现出一种弥散分布的状态而非惟一确定的关系,再现了交通系统中的自由流、同步流及宽幅运动阻塞,表明道路上即使没有交通瓶颈也会出现同步流和拥挤交通,同时揭示了在同步流中存在的车辆高速跟驰现象,高速跟驰率与交通实测结果较为符合。%Based on the NaSch cellular automaton traffic model, a modified single lane traffic model is proposed by considering the dynamic headway of successive vehicles, in which the complex characteristic and driving behavior difference between drivers are taken into account. The relationship between the flow rate and the traffic density is obtained by the numerical simulation, and it shows a two-dimensional region in the flow density plane. The three traffic phases, i.e., free flow, synchronized flow, and wide moving jams, are exhibited. It indicates that the synchronized flow and traffic jams can appear even if there is no traffic bottleneck. Besides, the high speed car-following phenomenon is indicated when the traffic is in the synchronized flow. The rate of the high speed car-following is in good agreement with the measured result.

  12. Designing beauty the art of cellular automata

    CERN Document Server

    Martínez, Genaro

    2016-01-01

    This fascinating, colourful book offers in-depth insights and first-hand working experiences in the production of art works, using simple computational models with rich morphological behaviour, at the edge of mathematics, computer science, physics and biology. It organically combines ground breaking scientific discoveries in the theory of computation and complex systems with artistic representations of the research results. In this appealing book mathematicians, computer scientists, physicists, and engineers brought together marvelous and esoteric patterns generated by cellular automata, which are arrays of simple machines with complex behavior. Configurations produced by cellular automata uncover mechanics of dynamic patterns formation, their propagation and interaction in natural systems: heart pacemaker, bacterial membrane proteins, chemical rectors, water permeation in soil, compressed gas, cell division, population dynamics, reaction-diffusion media and self-organisation. The book inspires artists to tak...

  13. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  14. Alpha-synuclein is a cellular ferrireductase.

    Directory of Open Access Journals (Sweden)

    Paul Davies

    Full Text Available α-synuclein (αS is a cellular protein mostly known for the association of its aggregated forms with a variety of diseases that include Parkinson's disease and Dementia with Lewy Bodies. While the role of αS in disease is well documented there is currently no agreement on the physiological function of the normal isoform of the protein. Here we provide strong evidence that αS is a cellular ferrireductase, responsible for reducing iron (III to bio available iron (II. The recombinant form of the protein has a V(Max of 2.72 nmols/min/mg and K(m 23 µM. This activity is also evident in lysates from neuronal cell lines overexpressing αS. This activity is dependent on copper bound to αS as a cofactor and NADH as an electron donor. Overexpression of α-synuclein by cells significantly increases the percentage of iron (II in cells. The common disease mutations associated with increased susceptibility to PD show no [corrected] differences in activity or iron (II levels. This discovery may well provide new therapeutic targets for PD and Lewy body dementias.

  15. Direct Production of Copper

    Science.gov (United States)

    Victorovich, G. S.; Bell, M. C.; Diaz, C. M.; Bell, J. A. E.

    1987-09-01

    The use of commercially pure oxygen in flash smelting a typical chalcopyrite concentrate or a low grade comminuted matte directly to copper produces a large excess of heat. The heat balance is controlled by adjusting the calorific value of the solid feed. A portion of the sulfide material is roasted to produce a calcine which is blended with unroasted material, and the blend is then autogeneously smelted with oxygen and flux directly to copper. Either iron silicate or iron calcareous slags are produced, both being subject to a slag cleaning treatment. Practically all of the sulfur is contained in a continuous stream of SO2 gas, most of which is strong enough for liquefaction. A particularly attractive feature of these technologies is that no radically new metallurgical equipment needs to be developed. The oxygen smelting can be carried out not only in the Inco type flash furnace but in other suitable smelters such as cyclone furnaces. Another major advantage stems from abolishion of the ever-troublesome converter aisle, which is replaced with continuous roasting of a fraction of the copper sulfide feed.

  16. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway.

    Science.gov (United States)

    Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana

    2016-01-01

    Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transition from a broad range of redox states to a uniformly reducing cytosol facilitates reduction of the copper chaperone Atox1, liberating its metal-binding site. Concomitantly, expression of Atox1 and its partner, a copper transporter ATP7A, is upregulated. These events produce a higher flux of copper through the secretory pathway that balances copper in the cytosol and increases supply of the cofactor to copper-dependent enzymes, expression of which is elevated in differentiated neurons. Direct link between glutathione oxidation and copper compartmentalization allows for rapid metabolic adjustments essential for normal neuronal function.

  17. Susceptibility of Opportunistic Burkholderia glumae to Copper Surfaces Following Wet or Dry Surface Contact

    Directory of Open Access Journals (Sweden)

    Zhouqi Cui

    2014-07-01

    Full Text Available Burkholderia glumae has been proposed to have a potential risk to vulnerable communities. In this work, we investigated the antibacterial activity and mechanism of copper surfaces against multi-drug resistant B. glumae from both patients and rice plants. The susceptibility of B. glumae to copper surfaces was noted by a significant decline in viable bacterial counts, relative to the slight reduction of stainless steel and polyvinylchloride, both of which were used as control surfaces. The mode of action of bacterial killing was determined by examing the mutagenicity, DNA damage, copper ions accumulation, and membrane damage in bacterial cells. The results indicated that the cells exposed to copper surfaces did not cause severe DNA lesions or increase the mutation frequencies, but resulted in a loss of cell membrane integrity within minutes. Furthermore, bacterial cells exposed to copper surfaces accumulated significantly higher amounts of copper compared to control surfaces. Overall, this study showed that metallic copper had strong antibacterial effect against B. glumae by causing DNA and membrane damage, cellular accumulation of copper, and cell death following DNA degradation, which could be utilized to reduce the risk of bacterial contamination and infection.

  18. Susceptibility of opportunistic Burkholderia glumae to copper surfaces following wet or dry surface contact.

    Science.gov (United States)

    Cui, Zhouqi; Ibrahim, Muhammad; Yang, Chunlan; Fang, Yuan; Annam, Hussain; Li, Bin; Wang, Yanli; Xie, Guan-Lin; Sun, Guochang

    2014-07-09

    Burkholderia glumae has been proposed to have a potential risk to vulnerable communities. In this work, we investigated the antibacterial activity and mechanism of copper surfaces against multi-drug resistant B. glumae from both patients and rice plants. The susceptibility of B. glumae to copper surfaces was noted by a significant decline in viable bacterial counts, relative to the slight reduction of stainless steel and polyvinylchloride, both of which were used as control surfaces. The mode of action of bacterial killing was determined by examing the mutagenicity, DNA damage, copper ions accumulation, and membrane damage in bacterial cells. The results indicated that the cells exposed to copper surfaces did not cause severe DNA lesions or increase the mutation frequencies, but resulted in a loss of cell membrane integrity within minutes. Furthermore, bacterial cells exposed to copper surfaces accumulated significantly higher amounts of copper compared to control surfaces. Overall, this study showed that metallic copper had strong antibacterial effect against B. glumae by causing DNA and membrane damage, cellular accumulation of copper, and cell death following DNA degradation, which could be utilized to reduce the risk of bacterial contamination and infection.

  19. Mild copper deficiency alters gene expression of proteins involved in iron metabolism.

    Science.gov (United States)

    Auclair, Sylvain; Feillet-Coudray, Christine; Coudray, Charles; Schneider, Susanne; Muckenthaler, Martina U; Mazur, Andrzej

    2006-01-01

    Iron and copper homeostasis share common proteins and are therefore closely linked to each other. For example, copper-containing proteins like ceruloplasmin and hephaestin oxidize Fe(2+) during cellular export processes for transport in the circulation bound to transferrin. Indeed, copper deficiency provokes iron metabolism disorders leading to anemia and liver iron accumulation. The aim of the present work was to understand the cross-talk between copper status and iron metabolism. For this purpose we have established dietary copper deficiency in C57BL6 male mice during twelve weeks. Hematological parameters, copper and iron status were evaluated. cDNA microarray studies were performed to investigate gene expression profiles of proteins involved in iron metabolism in the liver, duodenum and spleen. Our results showed that copper deficiency induces microcytic and hypochromic anemia as well as liver iron overload. Gene expression profiles, however, indicate that hepatic and intestinal mRNA expression neither compensates for hepatic iron overload nor the anemia observed in this mouse model. Instead, major modifications of gene expression occurred in the spleen. We observed increased mRNA levels of the transferrin receptors 1 and 2 and of several proteins involved in the heme biosynthesis pathway (ferrochelatase, UroD, UroS,...). These results suggest that copper-deficient mice respond to the deficiency induced anemia by an adaptation leading to an increase in erythrocyte synthesis.

  20. Lingual dyskinesia and tics: a novel presentation of copper-metabolism disorder.

    Science.gov (United States)

    Goez, Helly R; Jacob, Francois D; Yager, Jerome Y

    2011-02-01

    Copper is a trace element that is required for cellular respiration, neurotransmitter biosynthesis, pigment formation, antioxidant defense, peptide amidation, and formation of connective tissue. Abnormalities of copper metabolism have been linked with neurologic disorders that affect movement, such as Wilson disease and Menkes disease; however, the diagnosis of non-Wilson, non-Menkes-type copper-metabolism disorders has been more elusive, especially in cases with atypical characteristics. We present here the case of an adolescent with a novel presentation of copper-metabolism disorder who exhibited acute severe hemilingual dyskinesia and prominent tics, with ballismus of the upper limbs, but had normal brain and spinal MRI results and did not show any signs of dysarthria or dysphagia. His serum copper and ceruloplasmin levels were low, but his urinary copper level was elevated after penicillamine challenge. We conclude that copper-metabolism disorders should be included in the differential diagnosis for movement disorders, even in cases with highly unusual presentations, because many of them are treatable. Moreover, a connection between copper-metabolism disorders and tics is presented, to our knowledge, for the first time in humans; further investigation is needed to better establish this connection and understand its underlying pathophysiology.

  1. Reduced glutathione biosynthesis in Drosophila melanogaster causes neuronal defects linked to copper deficiency.

    Science.gov (United States)

    Mercer, Stephen W; La Fontaine, Sharon; Warr, Coral G; Burke, Richard

    2016-05-01

    Glutathione (GSH) is a tripeptide often considered to be the master antioxidant in cells. GSH plays an integral role in cellular redox regulation and is also known to have a role in mammalian copper homeostasis. In vitro evidence suggests that GSH is involved in copper uptake, sequestration and efflux. This study was undertaken to further investigate the roles that GSH plays in neuronal copper homeostasis in vivo, using the model organism Drosophila melanogaster. RNA interference-mediated knockdown of the Glutamate-cysteine ligase catalytic subunit gene (Gclc) that encodes the rate-limiting enzyme in GSH biosynthesis was utilised to genetically deplete GSH levels. When Gclc was knocked down in all neurons, this caused lethality, which was partially rescued by copper supplementation and was exacerbated by additional knockdown of the copper uptake transporter Ctr1A, or over-expression of the copper efflux transporter ATP7. Furthermore, when Gclc was knocked down in a subset of neuropeptide-producing cells, this resulted in adult progeny with unexpanded wings, a phenotype previously associated with copper dyshomeostasis. In these cells, Gclc suppression caused a decrease in axon branching, a phenotype further enhanced by ATP7 over-expression. Therefore, we conclude that GSH may play an important role in regulating neuronal copper levels and that reduction in GSH may lead to functional copper deficiency in neurons in vivo. We provide genetic evidence that glutathione (GSH) levels influence Cu content or distribution in vivo, in Drosophila neurons. GSH could be required for binding Cu imported by Ctr1A and distributing it to chaperones, such as Mtn, CCS and Atox1. Alternatively, GSH could modify the copper-binding and transport activities of Atox1 and the ATP7 efflux protein via glutathionylation of copper-binding cysteines.

  2. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju [Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu (India); Shivashangari, Kanchi Subramanian, E-mail: shivashangari@gmail.com [Regional Forensic Science Laboratory, Tiruchirapalli, Tamilnadu (India); Ravikumar, Vilwanathan, E-mail: ravikumarbdu@gmail.com [Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu (India)

    2014-11-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV–vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. - Highlights: • Biogenic synthesis of copper oxide nanoparticles by leaf extract of Ficus religiosa • Characterized via UV–vis, FT-IR, DLS, FE-SEM with EDAX and XRD • Protein may act as an encapsulating, reducing and stabilizing

  3. Oxidation Mechanism of Copper Selenide

    Science.gov (United States)

    Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri

    2014-09-01

    The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.

  4. Cellular communication through light.

    Directory of Open Access Journals (Sweden)

    Daniel Fels

    Full Text Available Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  5. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  6. Mechanochemical reactions on copper-based compounds

    NARCIS (Netherlands)

    Castricum, H.L.; Bakker, H.; Poels, E.K.

    1999-01-01

    Mechanochemical reactions of copper and copper oxides with oxygen and carbon dioxide are discussed, as well as decomposition and reduction of copper compounds by mechanical milling under high-vacuum conditions.

  7. Cellular automata: structures

    OpenAIRE

    Ollinger, Nicolas

    2002-01-01

    Jury : François Blanchard (Rapporteur), Marianne Delorme (Directeur), Jarkko Kari (Président), Jacques Mazoyer (Directeur), Dominique Perrin, Géraud Sénizergues (Rapporteur); Cellular automata provide a uniform framework to study an important problem of "complex systems" theory: how and why do system with a easily understandable -- local -- microscopic behavior can generate a more complicated -- global -- macroscopic behavior? Since its introduction in the 40s, a lot of work has been done to ...

  8. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  9. Failover in cellular automata

    CERN Document Server

    Kumar, Shailesh

    2010-01-01

    A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.

  10. Removal of copper from ferrous scrap

    Science.gov (United States)

    Blander, Milton; Sinha, Shome N.

    1990-01-01

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  11. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  12. Study of Copper Substitute in High Copper Price Market Environment

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>The high price of copper drives up industry cost,also it is difficult for terminal products to raise price to transfer the cost pressure brought by increase in copper price,as a result downstream consumption markets instead try to seek

  13. Fixation Property of Copper Triazole Wood Preservatives

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to AWPA E11-2006 standard,copper fixation rates of several copper-based formulations,such as ammoniacal copper,amine copper,and ammoniacal-ethanolamine copper,as well as alkaline copper quaternary(ACQ),were tested and compared in this paper.And the fixation rates of tebuconazole(TEB) and propiconazole(PPZ) in several formulations,such as copper azole,emulsified type and solvent type,were also compared.The determination of copper content in the leachate was analyzed by atomic absorption spectrom...

  14. Synthesis of copper/copper oxide nanoparticles by solution plasma

    Science.gov (United States)

    Saito, Genki; Hosokai, Sou; Tsubota, Masakatsu; Akiyama, Tomohiro

    2011-07-01

    This paper describes the synthesis of copper/copper oxide nanoparticles via a solution plasma, in which the effect of the electrolyte and electrolysis time on the morphology of the products was mainly examined. In the experiments, a copper wire as a cathode was immersed in an electrolysis solution of a K2CO3 with the concentration from 0.001 to 0.50 M or a citrate buffer (pH = 4.8), and was melted by the local-concentration of current. The results demonstrated that by using the K2CO3 solution, we obtained CuO nanoflowers with many sharp nanorods, the size of which decreased with decreasing the concentration of the solution. Spherical particles of copper with/without pores formed when the citrate buffer was used. The pores in the copper nanoparticles appeared when the applied voltage changed from 105 V to 130 V, due to the dissolution of Cu2O.

  15. Electroleaching of Copper Waste with Recovery of Copper by Electrodialysis

    Directory of Open Access Journals (Sweden)

    Nuñez P.

    2013-04-01

    Full Text Available A new process to leach and recover copper from solid waste using electric fields was designed. The leaching with electro migration is presented as an alternative to traditional leaching. Preliminary data indicate that the copper ion migration is facilitated by using the electrical potential difference; therefore applying a potential difference in the processes of leaching facilitates the removal of copper. This is especially useful when mineral concentrations are very low. Different phenomena associated with transport of copper in solution are studied to generate a model able predict the state of the copper ion concentration in time. A kinetic model for the process was developed and fitted very well the experimental data.

  16. Studies of copper transport in mammalian cells using copper radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M. [University of Melbourne, Parkville, VIC (Australia). Department of Genetics; Smith, S. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Radiopharmaceuticals Division; Mercer, J. [Deakin University, Clayton, VIC (Australia). Centre of Cellular and Molecular Biology

    1998-12-31

    The trace element copper poses a major problem for all organisms. It is essential as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Using the copper radioisotopes {sup 64}Cu (t1/2 = 12.8 hr) and {sup 67}Cu (t1/2 = 61 hr) we have developed a number of systems for studying copper transport in mammalian cells. These include investigation of copper uptake, copper efflux and ligand blot assays for Cu-binding proteins. Our studies have focused on Menkes disease which is an inherited and usually lethal copper deficiency disorder in humans. We have demonstrated that the Menkes protein is directly involved as a copper efflux pump in mammalian cells. Using cells overexpressing the Menkes protein we have provided the first biochemical evidence that this functions as a Cu translocating (across the membrane) P-type ATPase (Voskoboinik et al., FEBS Letters, in press). These studies were carried out using purified plasma membrane vesicles. We are now carrying out structure- function studies on this protein using targeted mutations and assaying using the radiocopper vesicle assay. Recently we have commenced studies on the role of amyloid precursor protein (APP) in copper transport and relationship of this to Alzheimers disease

  17. Intrinsic Strengthening of Coherent Twin Boundaries in Copper

    Institute of Scientific and Technical Information of China (English)

    Yanfen Luo; Yuchen Wang; Yanbo Wang; Yuanming Wang; Manling Sui

    2009-01-01

    Molecular dynamics (MD) simulations were applied to simulate the deformation process of copper with different density of parallel coherent twin boundaries (TBs). It is shown that the strength of perfect copper crystal enhances with increasing coherent TB density. Based on the local hydrostatic pressure analysis, we found that stress concentrations are more likely to form in the interior of the crystal rather than around the TBs.Since the dislocation nucleation is suppressed in the vicinity of the coherent TBs and each TB plane hinders dislocations from propagating, the coherent TBs can be regarded as an intrinsic strengthening phase relative to perfect crystal.

  18. Nanocrystalline copper based microcomposites

    OpenAIRE

    J.P. Stobrawa; Z.M. Rdzawski; W. Głuchowski; J. Domagała-Dubiel

    2012-01-01

    Purpose: The aim of this work was to investigate microstructure, mechanical properties and deformation behavior of copper microcomposites: Cu- Y2O3, Cu- ZrO2 and Cu-WC produced by powder metallurgy techniques.Design/methodology/approach: Tests were made with Cu-Y2O3, Cu-ZrO2 and Cu-WC microcomposites containing up to 2% of a strengthening phase. The materials were fabricated by powder metallurgy techniques, including milling of powders, followed by their compacting and sintering. The main mec...

  19. The Bauschinger Effect in Copper

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Brown, L .M.; Stobbs, W. M.

    1981-01-01

    A study of the Bauschinger effect in pure copper shows that by comparison with dispersion hardened copper the effect is very small and independent of temperature. This suggests that the obstacles to flow are deformable. A simple composite model based on this principle accounts for the data semi...

  20. Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson’s disease and other neurological disorders

    Directory of Open Access Journals (Sweden)

    Sarah evan Veen

    2014-05-01

    Full Text Available Mutations in ATP13A2 lead to Kufor-Rakeb syndrome, a parkinsonism with dementia. ATP13A2 belongs to the P-type transport ATPases, a large family of primary active transporters that exert vital cellular functions. However, the cellular function and transported substrate of ATP13A2 remain unknown. To discuss the role of ATP13A2 in neurodegeneration, we first provide a short description of the architecture and transport mechanism of P-type transport ATPases. Then, we briefly highlight key P-type ATPases involved in neuronal disorders such as the copper transporters ATP7A (Menkes disease, ATP7B (Wilson disease, the Na+/K+-ATPases ATP1A2 (familial hemiplegic migraine and ATP1A3 (rapid-onset dystonia parkinsonism. Finally, we review the recent literature of ATP13A2 and discuss ATP13A2’s putative cellular function in the light of what is known concerning the functions of other, better-studied P-type ATPases. We critically review the available data concerning the role of ATP13A2 in heavy metal transport and propose a possible alternative hypothesis that ATP13A2 might be a flippase. As a flippase, ATP13A2 may transport an organic molecule, such as a lipid or a peptide, from one membrane leaflet to the other. A flippase might control local lipid dynamics during vesicle formation and membrane fusion events.

  1. Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson's disease and other neurological disorders.

    Science.gov (United States)

    van Veen, Sarah; Sørensen, Danny M; Holemans, Tine; Holen, Henrik W; Palmgren, Michael G; Vangheluwe, Peter

    2014-01-01

    Mutations in ATP13A2 lead to Kufor-Rakeb syndrome, a parkinsonism with dementia. ATP13A2 belongs to the P-type transport ATPases, a large family of primary active transporters that exert vital cellular functions. However, the cellular function and transported substrate of ATP13A2 remain unknown. To discuss the role of ATP13A2 in neurodegeneration, we first provide a short description of the architecture and transport mechanism of P-type transport ATPases. Then, we briefly highlight key P-type ATPases involved in neuronal disorders such as the copper transporters ATP7A (Menkes disease), ATP7B (Wilson disease), the Na(+)/K(+)-ATPases ATP1A2 (familial hemiplegic migraine) and ATP1A3 (rapid-onset dystonia parkinsonism). Finally, we review the recent literature of ATP13A2 and discuss ATP13A2's putative cellular function in the light of what is known concerning the functions of other, better-studied P-type ATPases. We critically review the available data concerning the role of ATP13A2 in heavy metal transport and propose a possible alternative hypothesis that ATP13A2 might be a flippase. As a flippase, ATP13A2 may transport an organic molecule, such as a lipid or a peptide, from one membrane leaflet to the other. A flippase might control local lipid dynamics during vesicle formation and membrane fusion events.

  2. Cellular image classification

    CERN Document Server

    Xu, Xiang; Lin, Feng

    2017-01-01

    This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical...

  3. Multiuser Cellular Network

    CERN Document Server

    Bao, Yi; Chen, Ming

    2011-01-01

    Modern radio communication is faced with a problem about how to distribute restricted frequency to users in a certain space. Since our task is to minimize the number of repeaters, a natural idea is enlarging coverage area. However, coverage has restrictions. First, service area has to be divided economically as repeater's coverage is limited. In this paper, our fundamental method is to adopt seamless cellular network division. Second, underlying physics content in frequency distribution problem is interference between two close frequencies. Consequently, we choose a proper frequency width of 0.1MHz and a relevantly reliable setting to apply one frequency several times. We make a few general assumptions to simplify real situation. For instance, immobile users yield to homogenous distribution; repeaters can receive and transmit information in any given frequency in duplex operation; coverage is mainly decided by antenna height. Two models are built up to solve 1000 users and 10000 users situations respectively....

  4. Engineering Cellular Metabolism.

    Science.gov (United States)

    Nielsen, Jens; Keasling, Jay D

    2016-03-10

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation.

  5. Effects of copper(II) and copper oxides on THMs formation in copper pipe.

    Science.gov (United States)

    Li, Bo; Qu, Jiuhui; Liu, Huijuan; Hu, Chengzhi

    2007-08-01

    Little is known about how the growth of trihalomethanes (THMs) in drinking water is affected in copper pipe. The formation of THMs and chlorine consumption in copper pipe under stagnant flow conditions were investigated. Experiments for the same water held in glass bottles were performed for comparison. Results showed that although THMs levels firstly increased in the presence of chlorine in copper pipe, faster decay of chlorine as compared to the glass bottle affected the rate of THMs formation. The analysis of water phase was supplemented by surface analysis of corrosion scales using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDX). The results showed the scales on the pipe surface mainly consisted of Cu(2)O, CuO and Cu(OH)(2) or CuCO(3). Designed experiments confirmed that the fast depletion of chlorine in copper pipe was mainly due to effect of Cu(2)O, CuO in corrosion scales on copper pipe. Although copper(II) and copper oxides showed effect on THMs formation, the rapid consumption of chlorine due to copper oxide made THM levels lower than that in glass bottles after 4h. The transformations of CF, DCBM and CDBM to BF were accelerated in the presence of copper(II), cupric oxide and cuprous oxide. The effect of pH on THMs formation was influenced by effect of pH on corrosion of copper pipe. When pH was below 7, THMs levels in copper pipe was higher as compared to glass bottle, but lower when pH was above 7.

  6. The origins of cellular life.

    Science.gov (United States)

    Schrum, Jason P; Zhu, Ting F; Szostak, Jack W

    2010-09-01

    Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of functional information. Recent studies of vesicles composed of fatty-acid membranes have shed considerable light on pathways for protocell growth and division, as well as means by which protocells could take up nutrients from their environment. Additional work with genetic polymers has provided insight into the potential for chemical genome replication and compatibility with membrane encapsulation. The integration of a dynamic fatty-acid compartment with robust, generalized genetic polymer replication would yield a laboratory model of a protocell with the potential for classical Darwinian biological evolution, and may help to evaluate potential pathways for the emergence of life on the early Earth. Here we discuss efforts to devise such an integrated protocell model.

  7. Copper: From neurotransmission to neuroproteostasis

    Directory of Open Access Journals (Sweden)

    Carlos M Opazo

    2014-07-01

    Full Text Available Copper is critical for the Central Nervous System (CNS development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of AMPA receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (neuroproteostasis in the CNS with focus in the Ubiquitin Proteasome System, which is particularly relevant to neurological disorders such Alzheimer’s disease (AD where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients.

  8. A Real Space Cellular Automaton Laboratory

    Science.gov (United States)

    Rozier, O.; Narteau, C.

    2013-12-01

    Investigations in geomorphology may benefit from computer modelling approaches that rely entirely on self-organization principles. In the vast majority of numerical models, instead, points in space are characterised by a variety of physical variables (e.g. sediment transport rate, velocity, temperature) recalculated over time according to some predetermined set of laws. However, there is not always a satisfactory theoretical framework from which we can quantify the overall dynamics of the system. For these reasons, we prefer to concentrate on interaction patterns using a basic cellular automaton modelling framework, the Real Space Cellular Automaton Laboratory (ReSCAL), a powerful and versatile generator of 3D stochastic models. The objective of this software suite released under a GNU license is to develop interdisciplinary research collaboration to investigate the dynamics of complex systems. The models in ReSCAL are essentially constructed from a small number of discrete states distributed on a cellular grid. An elementary cell is a real-space representation of the physical environment and pairs of nearest neighbour cells are called doublets. Each individual physical process is associated with a set of doublet transitions and characteristic transition rates. Using a modular approach, we can simulate and combine a wide range of physical, chemical and/or anthropological processes. Here, we present different ingredients of ReSCAL leading to applications in geomorphology: dune morphodynamics and landscape evolution. We also discuss how ReSCAL can be applied and developed across many disciplines in natural and human sciences.

  9. Copper Modulation as a Therapy for Alzheimer's Disease?

    Directory of Open Access Journals (Sweden)

    Yasmina Manso

    2011-01-01

    Full Text Available The role of metals in the pathophysiology of Alzheimer's disease (AD has gained considerable support in recent years, with both in vitro and in vivo data demonstrating that a mis-metabolism of metal ions, such as copper and zinc, may affect various cellular cascades that ultimately leads to the development and/or potentiation of AD. In this paper, we will provide an overview of the preclinical and clinical literature that specifically relates to attempts to affect the AD cascade by the modulation of brain copper levels. We will also detail our own novel animal data, where we treated APP/PS1 (7-8 months old mice with either high copper (20 ppm in the drinking water, high cholesterol (2% supplement in the food or a combination of both and then assessed β-amyloid (Aβ burden (soluble and insoluble Aβ, APP levels and behavioural performance in the Morris water maze. These data support an interaction between copper/cholesterol and both Aβ and APP and further highlight the potential role of metal ion dyshomeostasis in AD.

  10. Effect of copper on extracellular levels of key pro-inflammatory molecules in hypothalamic GN11 and primary neurons.

    Science.gov (United States)

    Spisni, Enzo; Valerii, Maria Chiara; Manerba, Marcella; Strillacci, Antonio; Polazzi, Elisabetta; Mattia, Toni; Griffoni, Cristiana; Tomasi, Vittorio

    2009-07-01

    Copper dyshomeostasis is responsible for the neurological symptoms observed in the genetically inherited copper-dependent disorders (e.g., Menkes' and Wilson's diseases), but it has been also shown to have an important role in neurodegenerative diseases such as Alzheimer disease, prion diseases, Parkinson's disease and amyotrophic lateral sclerosis. It is widely accepted that increased extracellular copper levels contribute to neuronal pathogenic process by increasing the production of dangerous radical oxygen species, but the existence of other molecular mechanisms explaining copper neurotoxicity has not been investigated yet. By using a cellular model based on hypothalamic GN11 cultured neurons exposed to copper supplementation and by analysing the cell conditioned media, we try here to identify new molecular events explaining the association between extracellular copper accumulation and neuronal damages. We show here that increased extracellular copper levels produce a wide complex of alterations in the neuronal extracellular environment. In particular, copper affects the secretion of molecules involved in the protection of neurons against oxidative stress, such as cyclophilin A (CypA), or of molecules capable of shifting neuronal cells towards a pro-inflammatory state, such as IL-1alpha, IL-12, Rantes, neutrophil gelatinase-associated lipocalin (NGAL) and secreted protein acidic and rich in cysteine (SPARC). Copper pro-inflammatory properties have been confirmed by using primary neurons.

  11. Wireless traffic steering for green cellular networks

    CERN Document Server

    Zhang, Shan; Zhou, Sheng; Niu, Zhisheng; Shen, Xuemin (Sherman)

    2016-01-01

    This book introduces wireless traffic steering as a paradigm to realize green communication in multi-tier heterogeneous cellular networks. By matching network resources and dynamic mobile traffic demand, traffic steering helps to reduce on-grid power consumption with on-demand services provided. This book reviews existing solutions from the perspectives of energy consumption reduction and renewable energy harvesting. Specifically, it explains how traffic steering can improve energy efficiency through intelligent traffic-resource matching. Several promising traffic steering approaches for dynamic network planning and renewable energy demand-supply balancing are discussed. This book presents an energy-aware traffic steering method for networks with energy harvesting, which optimizes the traffic allocated to each cell based on the renewable energy status. Renewable energy demand-supply balancing is a key factor in energy dynamics, aimed at enhancing renewable energy sustainability to reduce on-grid energy consum...

  12. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles.

    Science.gov (United States)

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-11-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV-vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent.

  13. Microfluidic Devices for the Measurement of Cellular Secretion

    Science.gov (United States)

    Schrell, Adrian M.; Mukhitov, Nikita; Yi, Lian; Wang, Xue; Roper, Michael G.

    2016-06-01

    The release of chemical information from cells and tissues holds the key to understanding cellular behavior and dysfunction. The development of methodologies that can measure cellular secretion in a time-dependent fashion is therefore essential. Often these measurements are made difficult by the high-salt conditions of the cellular environment, the presence of numerous other secreted factors, and the small mass samples that are produced when frequent sampling is used to resolve secretory dynamics. In this review, the methods that we have developed for measuring hormone release from islets of Langerhans are dissected to illustrate the practical difficulties of studying cellular secretions. Other methods from the literature are presented that provide alternative approaches to particularly challenging areas of monitoring cellular secretion. The examples presented in this review serve as case studies and should be adaptable to other cell types and systems for unique applications.

  14. Comprehensive set of integrative plasmid vectors for copper-inducible gene expression in Myxococcus xanthus.

    Science.gov (United States)

    Gómez-Santos, Nuria; Treuner-Lange, Anke; Moraleda-Muñoz, Aurelio; García-Bravo, Elena; García-Hernández, Raquel; Martínez-Cayuela, Marina; Pérez, Juana; Søgaard-Andersen, Lotte; Muñoz-Dorado, José

    2012-04-01

    Myxococcus xanthus is widely used as a model system for studying gliding motility, multicellular development, and cellular differentiation. Moreover, M. xanthus is a rich source of novel secondary metabolites. The analysis of these processes has been hampered by the limited set of tools for inducible gene expression. Here we report the construction of a set of plasmid vectors to allow copper-inducible gene expression in M. xanthus. Analysis of the effect of copper on strain DK1622 revealed that copper concentrations of up to 500 μM during growth and 60 μM during development do not affect physiological processes such as cell viability, motility, or aggregation into fruiting bodies. Of the copper-responsive promoters in M. xanthus reported so far, the multicopper oxidase cuoA promoter was used to construct expression vectors, because no basal expression is observed in the absence of copper and induction linearly depends on the copper concentration in the culture medium. Four different plasmid vectors have been constructed, with different marker selection genes and sites of integration in the M. xanthus chromosome. The vectors have been tested and gene expression quantified using the lacZ gene. Moreover, we demonstrate the functional complementation of the motility defect caused by lack of PilB by the copper-induced expression of the pilB gene. These versatile vectors are likely to deepen our understanding of the biology of M. xanthus and may also have biotechnological applications.

  15. Copper transport systems are involved in multidrug resistance and drug transport.

    Science.gov (United States)

    Furukawa, Tatsuhiko; Komatsu, Masaharu; Ikeda, Ryuji; Tsujikawa, Kazutake; Akiyama, Shin-ichi

    2008-01-01

    Copper is an essential trace element and several copper containing proteins are indispensable for such processes as oxidative respiration, neural development and collagen remodeling. Copper metabolism is precisely regulated by several transporters and chaperone proteins. Copper Transport Protein 1 (CTR1) selectively uptakes copper into cells. Subsequently three chaperone proteins, HAH1 (human atx1 homologue 1), Cox17p and CCS (copper chaperone for superoxide dismutase) transport copper to the Golgi apparatus, mitochondria and copper/zinc superoxide dismutase respectively. Defects in the copper transporters ATP7A and ATP7B are responsible for Menkes disease and Wilson's disease respectively. These proteins transport copper via HAH1 to the Golgi apparatus to deliver copper to cuproenzymes. They also prevent cellular damage from an excess accumulation of copper by mediating the efflux of copper from the cell. There is increasing evidence that copper transport mechanisms may play a role in drug resistance. We, and others, found that ATP7A and ATP7B are involved in drug resistance against the anti-tumor drug cis-diamminedichloroplatinum (II) (CDDP). A relationship between the expression of ATP7A or ATP7B in tumors and CDDP resistance is supported by clinical studies. In addition, the copper uptake transporter CTR1 has also been reported to play a role in CDDP sensitivity. Furthermore, we have recently found that the effect of ATP7A on drug resistance is not limited to CDDP. Using an ex vivo drug sensitivity assay, the histoculture drug response assay (HDRA), the expression of ATP7A in human surgically resected colon cancer cells correlated with sensitivity to 7-ethyl-10-hydroxy-camptothecin (SN-38). ATP7A-overexpressing cells are resistant to many anticancer drugs including SN-38, 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxycamptothecin (CPT-11), vincristine, paclitaxel, etoposide, doxorubicin (Dox), and mitoxantron. The mechanism by which ATP7A and copper

  16. Yeast CUP1 protects HeLa cells against copper-induced stress

    Energy Technology Data Exchange (ETDEWEB)

    Xie, X.X. [Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai (China); College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou (China); Ma, Y.F.; Wang, Q.S.; Chen, Z.L.; Liao, R.R.; Pan, Y.C. [Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai (China)

    2015-06-12

    As an essential trace element, copper can be toxic in mammalian cells when present in excess. Metallothioneins (MTs) are small, cysteine-rich proteins that avidly bind copper and thus play an important role in detoxification. YeastCUP1 is a member of the MT gene family. The aim of this study was to determine whether yeast CUP1 could bind copper effectively and protect cells against copper stress. In this study,CUP1 expression was determined by quantitative real-time PCR, and copper content was detected by inductively coupled plasma mass spectrometry. Production of intracellular reactive oxygen species (ROS) was evaluated using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay. Cellular viability was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the cell cycle distribution of CUP1 was analyzed by fluorescence-activated cell sorting. The data indicated that overexpression of yeast CUP1 in HeLa cells played a protective role against copper-induced stress, leading to increased cellular viability (P<0.05) and decreased ROS production (P<0.05). It was also observed that overexpression of yeast CUP1 reduced the percentage of G1 cells and increased the percentage of S cells, which suggested that it contributed to cell viability. We found that overexpression of yeast CUP1 protected HeLa cells against copper stress. These results offer useful data to elucidate the mechanism of the MT gene on copper metabolism in mammalian cells.

  17. Cellular non-deterministic automata and partial differential equations

    Science.gov (United States)

    Kohler, D.; Müller, J.; Wever, U.

    2015-09-01

    We define cellular non-deterministic automata (CNDA) in the spirit of non-deterministic automata theory. They are different from the well-known stochastic automata. We propose the concept of deterministic superautomata to analyze the dynamical behavior of a CNDA and show especially that a CNDA can be embedded in a deterministic cellular automaton. As an application we discuss a connection between certain partial differential equations and CNDA.

  18. A Nanocrystal Sensor for Luminescence Detection of Cellular Forces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Charina; Chou, Jonathan; Lutker, Katie; Werb, Zena; Alivisatos, Paul

    2011-09-29

    Quantum dots have been used as bright fluorescent tags with high photostability to probe numerous biological systems. In this work we present the tetrapod quantum dot as a dynamic, next-generation nanocrystal probe that fluorescently reports cellular forces with spatial and temporal resolution. Its small size and colloidal state suggest that the tetrapod may be further developed as a tool to measure cellular forces in vivo and with macromolecular spatial resolution.

  19. Cellular automata in Xenakis's music. Theory and Practice

    OpenAIRE

    Solomos, Makis

    2005-01-01

    International audience; Cellular automata are developed since some decades, belonging to the field of abstract automata. In the beginning of the 1980s, they were popularized in relationship with the study of dynamic systems and chaos theories. They were also applied for modelling the evolution of natural systems (for instance biological ones), especially in relationship with the idea of auto-organization. From the end of the 1980s since nowadays, several composers begin to use cellular automa...

  20. Jiangxi Copper Corporation Builds 900,000-Ton Copper Production Capacity

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>The Eastward Refined Copper Expansion Pro- ject of Guixi Smelting Plant under Jiangxi Copper Corporation has output its first lot of Copper cathode,marking the company’s pos- session of a 900,000-ton copper production ca- pacity.Thus the company further strengthens its position as the top 3 of the copper world.

  1. Understanding the superconductivity in copper oxides

    CERN Document Server

    2016-01-01

    The aim of this book is to clarify the situation by adopting a very different approach from the above electronic/magnetic models, where explicitly local dynamical distortions are considered. These are distinctly different from conventional phonons which are a property of the infinite translational invariant symmetric lattice. The local dynamical distortions are shown to account for bulk properties and provide consistent and quantitative agreement with experimental data together with explicit predictions. Selected published experimental and theoretical papers are presented which support the above arguments, but have been ignored on purpose by the originators of the RVB/t-J bubble. To summarize the scope of this book, comprising nine chapters, it is shown, that the phenomenon of HTS in copper oxides is much better understood than publically claimed by RVB/t-J followers. Using the words of B. Laughlin, the presence of the antiferromagnetism in HTS masks the underlying physics where vibronic bipolarons with spin...

  2. Quantum features of natural cellular automata

    Science.gov (United States)

    Elze, Hans-Thomas

    2016-03-01

    Cellular automata can show well known features of quantum mechanics, such as a linear rule according to which they evolve and which resembles a discretized version of the Schrödinger equation. This includes corresponding conservation laws. The class of “natural” Hamiltonian cellular automata is based exclusively on integer-valued variables and couplings and their dynamics derives from an Action Principle. They can be mapped reversibly to continuum models by applying Sampling Theory. Thus, “deformed” quantum mechanical models with a finite discreteness scale l are obtained, which for l → 0 reproduce familiar continuum results. We have recently demonstrated that such automata can form “multipartite” systems consistently with the tensor product structures of nonrelativistic many-body quantum mechanics, while interacting and maintaining the linear evolution. Consequently, the Superposition Principle fully applies for such primitive discrete deterministic automata and their composites and can produce the essential quantum effects of interference and entanglement.

  3. Quantum features of natural cellular automata

    CERN Document Server

    Elze, Hans-Thomas

    2016-01-01

    Cellular automata can show well known features of quantum mechanics, such as a linear rule according to which they evolve and which resembles a discretized version of the Schroedinger equation. This includes corresponding conservation laws. The class of "natural" Hamiltonian cellular automata is based exclusively on integer-valued variables and couplings and their dynamics derives from an Action Principle. They can be mapped reversibly to continuum models by applying Sampling Theory. Thus, "deformed" quantum mechanical models with a finite discreteness scale $l$ are obtained, which for $l\\rightarrow 0$ reproduce familiar continuum results. We have recently demonstrated that such automata can form "multipartite" systems consistently with the tensor product structures of nonrelativistic many-body quantum mechanics, while interacting and maintaining the linear evolution. Consequently, the Superposition Principle fully applies for such primitive discrete deterministic automata and their composites and can produce...

  4. SELF-ORGANIZED CRITICALITY AND CELLULAR AUTOMATA

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,M.

    2007-01-01

    Cellular automata provide a fascinating class of dynamical systems based on very simple rules of evolution yet capable of displaying highly complex behavior. These include simplified models for many phenomena seen in nature. Among other things, they provide insight into self-organized criticality, wherein dissipative systems naturally drive themselves to a critical state with important phenomena occurring over a wide range of length and the scales. This article begins with an overview of self-organized criticality. This is followed by a discussion of a few examples of simple cellular automaton systems, some of which may exhibit critical behavior. Finally, some of the fascinating exact mathematical properties of the Bak-Tang-Wiesenfeld sand-pile model [1] are discussed.

  5. Unravelling the Chemical Nature of Copper Cuprizone

    OpenAIRE

    Messori, L.; Casini, A.; C.Gabbiani; Sorace, L.; Muniz-Miranda, M.; Zatta, P

    2007-01-01

    During the last 50 years, formation of the highly chromogenic copper cuprizone complex has been exploited for spectrophotometric determinations of copper although the precise chemical nature of the resulting species has never been ascertained; we eventually show here, in contrast to current opinion, that copper cuprizone is a copper(III) complex.

  6. Secondary Copper Industry Entered Rapid Growth Period

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    In China’s copper output,secondary copper accounts for about 40%,for power cable industry,the usage percentage of secondary copper is about 50%.Under the favorable policy of the government to vigorously support recycling industry,secondary copper rod enterprises begin to expand,and are confident toward the industry’s potentials.

  7. 49 CFR 192.279 - Copper pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Copper pipe. 192.279 Section 192.279 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings...

  8. Cellular bioluminescence imaging.

    Science.gov (United States)

    Welsh, David K; Noguchi, Takako

    2012-08-01

    Bioluminescence imaging of live cells has recently been recognized as an important alternative to fluorescence imaging. Fluorescent probes are much brighter than bioluminescent probes (luciferase enzymes) and, therefore, provide much better spatial and temporal resolution and much better contrast for delineating cell structure. However, with bioluminescence imaging there is virtually no background or toxicity. As a result, bioluminescence can be superior to fluorescence for detecting and quantifying molecules and their interactions in living cells, particularly in long-term studies. Structurally diverse luciferases from beetle and marine species have been used for a wide variety of applications, including tracking cells in vivo, detecting protein-protein interactions, measuring levels of calcium and other signaling molecules, detecting protease activity, and reporting circadian clock gene expression. Such applications can be optimized by the use of brighter and variously colored luciferases, brighter microscope optics, and ultrasensitive, low-noise cameras. This article presents a review of how bioluminescence differs from fluorescence, its applications to cellular imaging, and available probes, optics, and detectors. It also gives practical suggestions for optimal bioluminescence imaging of single cells.

  9. Cellular neurothekeoma with melanocytosis.

    Science.gov (United States)

    Wu, Ren-Chin; Hsieh, Yi-Yueh; Chang, Yi-Chin; Kuo, Tseng-Tong

    2008-02-01

    Cellular neurothekeoma (CNT) is a benign dermal tumor mainly affecting the head and neck and the upper extremities. It is characterized histologically by interconnecting fascicles of plump spindle or epithelioid cells with ample cytoplasm infiltrating in the reticular dermis. The histogenesis of CNT has been controversial, although it is generally regarded as an immature counterpart of classic/myxoid neurothekeoma, a tumor with nerve sheath differentiation. Two rare cases of CNT containing melanin-laden cells were described. Immunohistochemical study with NKI/C3, vimentin, epithelial membrane antigen, smooth muscle antigen, CD34, factor XIIIa, collagen type IV, S100 protein and HMB-45 was performed. Both cases showed typical growth pattern of CNT with interconnecting fascicles of epithelioid cells infiltrating in collagenous stroma. One of the nodules contained areas exhibiting atypical cytological features. Melanin-laden epithelioid or dendritic cells were diffusely scattered throughout one nodule, and focally present in the peripheral portion of the other nodule. Both nodules were strongly immunoreactive to NKI/C3 and vimentin, but negative to all the other markers employed. CNT harboring melanin-laden cells may pose diagnostic problems because of their close resemblance to nevomelanocytic lesions and other dermal mesenchymal tumors. These peculiar cases may also provide further clues to the histogenesis of CNT.

  10. Secondary Copper Consumption and Location in China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> China is short of copper resources and is alsothe second largest copper consuming country inthe world.The way to overcome the contradic-tion between the resource shortage and fastgrowth in consumption is to import copper rawmaterial in large quantities.Since the 1990’s,China’s import quantity of copper scrap hasincreased considerably.During the last twoyears,China has imported copper scrap worthof US$2.25 billion,1.32 times of the value ofimported copper concentrates in the same pe-riod.China is one of the biggest copper scrap

  11. Natural polyphenols may ameliorate damage induced by copper overload.

    Science.gov (United States)

    Arnal, Nathalie; Tacconi de Alaniz, María J; Marra, Carlos Alberto

    2012-02-01

    The effect of the simultaneous exposure to transition metals and natural antioxidants frequently present in food is a question that needs further investigation. We aimed to explore the possible use of the natural polyphenols caffeic acid (CA), resveratrol (RES) and curcumin (CUR) to prevent damages induced by copper-overload on cellular molecules in HepG2 and A-549 human cells in culture. Exposure to 100μM/24h copper (Cu) caused extensive pro-oxidative damage evidenced by increased TBARS, protein carbonyls and nitrite productions in both cell types. Damage was aggravated by simultaneous incubation with 100μM of CA or RES, and it was also reflected in a decrease on cellular viability explored by trypan blue dye exclusion test and LDH leakage. Co-incubation with CUR produced opposite effects demonstrating a protective action which restored the level of biomarkers and cellular viability almost to control values. Thus, while CA and RES might aggravate the oxidative/nitrative damage of Cu, CUR should be considered as a putative protective agent. These results could stimulate further research on the possible use of natural polyphenols as neutralizing substances against the transition metal over-exposure in specific populations such as professional agrochemical sprayers and women using Cu-intrauterine devices.

  12. An Introduction to Copper Deposits in China

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    There are 11 genetic types of copper deposit in China, three of which (porphyry,contact metasomatic and VMS types) are the most important. The copper deposits distribute widely both temporally and spatially in China. The features of copper ores in China are mostly poor in copper tenor and complex in metal associated. The copper metallogeny in China predominantly occurs in three metallogenic megadomains, namely the circum-Pacific, the paleo-Asian and the Tethys-Himalayan.

  13. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation

    Science.gov (United States)

    Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-03-01

    Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight.

  14. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation.

    Science.gov (United States)

    Sankar, Renu; Manikandan, Perumal; Malarvizhi, Viswanathan; Fathima, Tajudeennasrin; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-01-01

    Copper oxide (CuO) nanoparticles were synthesized by treating 5 mM cupric sulphate with Carica papaya leaves extract. The kinetics of the reaction was studied using UV-visible spectrophotometry. An intense surface Plasmon resonance between 250-300 nm in the UV-vis spectrum clearly reveals the formation of copper oxide nanoparticles. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) exhibited that the green synthesized copper oxide nanoparticles are rod in shape and having a mean particle size of 140 nm, further negative zeta potential disclose its stability at -28.9 mV. The Fourier-transform infrared (FTIR) spectroscopy results examined the occurrence of bioactive functional groups required for the reduction of copper ions. X-ray diffraction (XRD) spectra confirmed the copper oxide nanoparticles crystalline nature. Furthermore, colloidal copper oxide nanoparticles effectively degrade the Coomassie brilliant blue R-250 dye beneath the sunlight.

  15. Free fall and cellular automata

    Directory of Open Access Journals (Sweden)

    Pablo Arrighi

    2016-03-01

    Full Text Available Three reasonable hypotheses lead to the thesis that physical phenomena can be described and simulated with cellular automata. In this work, we attempt to describe the motion of a particle upon which a constant force is applied, with a cellular automaton, in Newtonian physics, in Special Relativity, and in General Relativity. The results are very different for these three theories.

  16. About Strongly Universal Cellular Automata

    Directory of Open Access Journals (Sweden)

    Maurice Margenstern

    2013-09-01

    Full Text Available In this paper, we construct a strongly universal cellular automaton on the line with 11 states and the standard neighbourhood. We embed this construction into several tilings of the hyperbolic plane and of the hyperbolic 3D space giving rise to strongly universal cellular automata with 10 states.

  17. Reactive Programming of Cellular Automata

    OpenAIRE

    Boussinot, Frédéric

    2004-01-01

    Implementation of cellular automata using reactive programming gives a way to code cell behaviors in an abstract and modular way. Multiprocessing also becomes possible. The paper describes the implementation of cellular automata with the reactive programming language LOFT, a thread-based extension of C. Self replicating loops considered in artificial life are coded to show the interest of the approach.

  18. Cellular trafficking of nicotinic acetylcholine receptors

    Institute of Scientific and Technical Information of China (English)

    Paul A ST JOHN

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular location and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs.

  19. Cellular automata modelling of hantarvirus infection

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Karim, Mohamad Faisal [School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail: faisal@usm.my; Md Ismail, Ahmad Izani [School of Mathematical Sciences, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail: izani@cs.usm.my; Ching, Hoe Bee [School of Mathematical Sciences, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail: Bee_Ching_Janice_Hoe@dell.com

    2009-09-15

    Hantaviruses are a group of viruses which have been identified as being responsible for the outbreak of diseases such as the hantavirus pulmonary syndrome. In an effort to understand the characteristics and dynamics of hantavirus infection, mathematical models based on differential equations have been developed and widely studied. However, such models neglect the local characteristics of the spreading process and do not include variable susceptibility of individuals. In this paper, we develop an alternative approach based on cellular automata to analyze and study the spatiotemporal patterns of hantavirus infection.

  20. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.