WorldWideScience

Sample records for cellular circuits orchestrating

  1. Transcription factors Mat2 and Znf2 operate cellular circuits orchestrating opposite- and same-sex mating in Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Xiaorong Lin

    2010-05-01

    Full Text Available Cryptococcus neoformans is a human fungal pathogen that undergoes a dimorphic transition from a unicellular yeast to multicellular hyphae during opposite sex (mating and unisexual reproduction (same-sex mating. Opposite- and same-sex mating are induced by similar environmental conditions and involve many shared components, including the conserved pheromone sensing Cpk1 MAPK signal transduction cascade that governs the dimorphic switch in C. neoformans. However, the homeodomain cell identity proteins Sxi1alpha/Sxi2a encoded by the mating type locus that are essential for completion of sexual reproduction following cell-cell fusion during opposite-sex mating are dispensable for same-sex mating. Therefore, identification of downstream targets of the Cpk1 MAPK pathway holds the key to understanding molecular mechanisms governing the two distinct developmental fates. Thus far, homology-based approaches failed to identify downstream transcription factors which may therefore be species-specific. Here, we applied insertional mutagenesis via Agrobacterium-mediated transformation and transcription analysis using whole genome microarrays to identify factors involved in C. neoformans differentiation. Two transcription factors, Mat2 and Znf2, were identified as key regulators of hyphal growth during same- and opposite-sex mating. Mat2 is an HMG domain factor, and Znf2 is a zinc finger protein; neither is encoded by the mating type locus. Genetic, phenotypic, and transcriptional analyses of Mat2 and Znf2 provide evidence that Mat2 is a downstream transcription factor of the Cpk1 MAPK pathway whereas Znf2 functions as a more terminal hyphal morphogenesis determinant. Although the components of the MAPK pathway including Mat2 are not required for virulence in animal models, Znf2, as a hyphal morphology determinant, is a negative regulator of virulence. Further characterization of these elements and their target circuits will reveal genes controlling biological

  2. Exploring Quantum Dot Cellular Automata Based Reversible Circuit

    Directory of Open Access Journals (Sweden)

    Saroj Kumar Chandra

    2012-03-01

    Full Text Available Quantum-dot Cellular Automata (QCA is a new technology for development of logic circuits based on nanotechnology, and it is an one of the alternative for designing high performance computing over existing CMOS technology. The basic logic in QCA does not use voltage level for logic representation rather it represent binary state by polarization of electrons on the Quantum Cell which is basic building block of QCA. Extensive work is going on QCA for circuit design due to low power consumption and regularity in the circuit.. Clocking is used in QCA circuit to synchronize and control the information flow and to provide the power to run the circuit. Reversible logic design is a well-known paradigm in digital computation, and if circuit developed is reversible then it consumes very low power . Here, in this paper we are presenting a Reversible Universal Gate (RUG based on Quantum-dot Cellular Automata (QCA. The RUG implemented by QCA Designer tool and also its behavior is simulated by it.

  3. Orchestrating innovation

    NARCIS (Netherlands)

    Berkers, F.T.H.M.; Klein Woolthuis, R.J.A.; Boer, J. de

    2015-01-01

    Orchestrating Innovation increases the probability of success, minimizing the probability of failure of technological innovations by creating sustained societal and economic value. Orchestrating innovation propagates to take into account and actively involve all relevant stakeholders of the (future)

  4. Chaotic phenomena in Josephson circuits coupled quantum cellular neural networks

    Institute of Scientific and Technical Information of China (English)

    Wang Sen; Cai Li; Li Qin; Wu Gang

    2007-01-01

    In this paper the nonlinear dynamical behaviour of a quantum cellular neural network (QCNN) by coupling Josephson circuits was investigated and it was shown that the QCNN using only two of them can cause the onset of chaotic oscillation. The theoretical analysis and simulation for the two Josephson-circuits-coupled QCNN have been done by using the amplitude and phase as state variables. The complex chaotic behaviours can be observed and then proved by calculating Lyapunov exponents. The study provides valuable information about QCNNs for future application in high-parallel signal processing and novel chaotic generators.

  5. GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits.

    Science.gov (United States)

    Tremblay, Robin; Lee, Soohyun; Rudy, Bernardo

    2016-07-20

    Cortical networks are composed of glutamatergic excitatory projection neurons and local GABAergic inhibitory interneurons that gate signal flow and sculpt network dynamics. Although they represent a minority of the total neocortical neuronal population, GABAergic interneurons are highly heterogeneous, forming functional classes based on their morphological, electrophysiological, and molecular features, as well as connectivity and in vivo patterns of activity. Here we review our current understanding of neocortical interneuron diversity and the properties that distinguish cell types. We then discuss how the involvement of multiple cell types, each with a specific set of cellular properties, plays a crucial role in diversifying and increasing the computational power of a relatively small number of simple circuit motifs forming cortical networks. We illustrate how recent advances in the field have shed light onto the mechanisms by which GABAergic inhibition contributes to network operations. PMID:27477017

  6. Design of arithmetic circuits in quantum dot cellular automata nanotechnology

    CERN Document Server

    Sridharan, K

    2015-01-01

    This research monograph focuses on the design of arithmetic circuits in Quantum Dot Cellular Automata (QCA). Using the fact that the 3-input majority gate is a primitive in QCA, the book sets out to discover hitherto unknown properties of majority logic in the context of arithmetic circuit designs. The pursuit for efficient adders in QCA takes two forms. One involves application of the new results in majority logic to existing adders. The second involves development of a custom adder for QCA technology. A QCA adder named as hybrid adder is proposed and it is shown that it outperforms existing multi-bit adders with respect to area and delay. The work is extended to the design of a low-complexity multiplier for signed numbers in QCA. Furthermore the book explores two aspects unique to QCA technology, namely thermal robustness and the role of interconnects. In addition, the book introduces the reader to QCA layout design and simulation using QCADesigner. Features & Benefits: This research-based book: ·  �...

  7. Orchestrating Docker

    CERN Document Server

    Holla, Shrikrishna

    2015-01-01

    If you are a competent developer or DevOps with a good understanding of Linux filesystems but want to manage and orchestrate Docker services, images, and products using a multitude of techniques, then this book is for you. No prior knowledge of Docker or container virtualization is required.

  8. Synthetic analog and digital circuits for cellular computation and memory

    OpenAIRE

    Purcell, Oliver; Lu, Timothy K.

    2014-01-01

    Biological computation is a major area of focus in synthetic biology because it has the potential to enable a wide range of applications. Synthetic biologists have applied engineering concepts to biological systems in order to construct progressively more complex gene circuits capable of processing information in living cells. Here, we review the current state of computational genetic circuits and describe artificial gene circuits that perform digital and analog computation. We then discuss r...

  9. Isocost Lines Describe the Cellular Economy of Genetic Circuits.

    Science.gov (United States)

    Gyorgy, Andras; Jiménez, José I; Yazbek, John; Huang, Hsin-Ho; Chung, Hattie; Weiss, Ron; Del Vecchio, Domitilla

    2015-08-01

    Genetic circuits in living cells share transcriptional and translational resources that are available in limited amounts. This leads to unexpected couplings among seemingly unconnected modules, which result in poorly predictable circuit behavior. In this study, we determine these interdependencies between products of different genes by characterizing the economy of how transcriptional and translational resources are allocated to the production of proteins in genetic circuits. We discover that, when expressed from the same plasmid, the combinations of attainable protein concentrations are constrained by a linear relationship, which can be interpreted as an isocost line, a concept used in microeconomics. We created a library of circuits with two reporter genes, one constitutive and the other inducible in the same plasmid, without a regulatory path between them. In agreement with the model predictions, experiments reveal that the isocost line rotates when changing the ribosome binding site strength of the inducible gene and shifts when modifying the plasmid copy number. These results demonstrate that isocost lines can be employed to predict how genetic circuits become coupled when sharing resources and provide design guidelines for minimizing the effects of such couplings. PMID:26244745

  10. Isocost Lines Describe the Cellular Economy of Genetic Circuits.

    Science.gov (United States)

    Gyorgy, Andras; Jiménez, José I; Yazbek, John; Huang, Hsin-Ho; Chung, Hattie; Weiss, Ron; Del Vecchio, Domitilla

    2015-08-01

    Genetic circuits in living cells share transcriptional and translational resources that are available in limited amounts. This leads to unexpected couplings among seemingly unconnected modules, which result in poorly predictable circuit behavior. In this study, we determine these interdependencies between products of different genes by characterizing the economy of how transcriptional and translational resources are allocated to the production of proteins in genetic circuits. We discover that, when expressed from the same plasmid, the combinations of attainable protein concentrations are constrained by a linear relationship, which can be interpreted as an isocost line, a concept used in microeconomics. We created a library of circuits with two reporter genes, one constitutive and the other inducible in the same plasmid, without a regulatory path between them. In agreement with the model predictions, experiments reveal that the isocost line rotates when changing the ribosome binding site strength of the inducible gene and shifts when modifying the plasmid copy number. These results demonstrate that isocost lines can be employed to predict how genetic circuits become coupled when sharing resources and provide design guidelines for minimizing the effects of such couplings.

  11. Pavlovian Conditioning of "Hermissenda": Current Cellular, Molecular, and Circuit Perspectives

    Science.gov (United States)

    Crow, Terry

    2004-01-01

    The less-complex central nervous system of many invertebrates make them attractive for not only the molecular analysis of the associative learning and memory, but also in determining how neural circuits are modified by learning to generate changes in behavior. The nudibranch mollusk "Hermissenda crassicornis" is a preparation that has contributed…

  12. Integrated Circuit-Based Biofabrication with Common Biomaterials for Probing Cellular Biomechanics.

    Science.gov (United States)

    Sung, Chun-Yen; Yang, Chung-Yao; Yeh, J Andrew; Cheng, Chao-Min

    2016-02-01

    Recent advances in bioengineering have enabled the development of biomedical tools with modifiable surface features (small-scale architecture) to mimic extracellular matrices and aid in the development of well-controlled platforms that allow for the application of mechanical stimulation for studying cellular biomechanics. An overview of recent developments in common biomaterials that can be manufactured using integrated circuit-based biofabrication is presented. Integrated circuit-based biofabrication possesses advantages including mass and diverse production capacities for fabricating in vitro biomedical devices. This review highlights the use of common biomaterials that have been most frequently used to study cellular biomechanics. In addition, the influence of various small-scale characteristics on common biomaterial surfaces for a range of different cell types is discussed.

  13. International organizations as orchestrators

    CERN Document Server

    Abbott, Kenneth W

    2015-01-01

    International Organizations as Orchestrators reveals how IOs leverage their limited authority and resources to increase their effectiveness, power, and autonomy from states. By 'orchestrating' intermediaries - including NGOs - IOs can shape and steer global governance without engaging in hard, direct regulation. This volume is organized around a theoretical model that emphasizes voluntary collaboration and support. An outstanding group of scholars investigate the significance of orchestration across key issue areas, including trade, finance, environment and labor, and in leading organizations, including the GEF, G20, WTO, EU, Kimberley Process, UNEP and ILO. The empirical studies find that orchestration is pervasive. They broadly confirm the theoretical hypotheses while providing important new insights, especially that states often welcome IO orchestration as achieving governance without creating strong institutions. This volume changes our understanding of the relationships among IOs, nonstate actors and sta...

  14. Image-processing algorithms realized by discrete-time cellular neural networks and their circuit implementations

    International Nuclear Information System (INIS)

    In this study, eight image tasks: connected component detection (CCD) with down, right, +45o and -45o directions, edge detection, shadow projection with left and right directions and point removal are analyzed. These tasks are solved using the binary input and binary output discrete-time cellular neural networks (DTCNNs) associated with suitable templates. Furthermore, the behavior of the DTCNNs can be realized using Boolean functions, and the corresponding equivalent logic circuits are derived. An 8 x 8 DTCNNs-based image-processing chip is implemented by the FPGA technology. A simulation of the chip developed for the CCD task is also presented

  15. Orchestrating with Contracts

    DEFF Research Database (Denmark)

    Kiniry, Joseph Roland; Martinez, Josu

    2012-01-01

    Our domain of interest is self-healing systems. We wish to reason about the behavior of statically and dynamically composed systems. The orchestration language Orc permits one to write programs that compose such systems. Unfortunately, Orc's semantics make no assumptions about the behavior...

  16. Orchestrator Telemetry Processing Pipeline

    Science.gov (United States)

    Powell, Mark; Mittman, David; Joswig, Joseph; Crockett, Thomas; Norris, Jeffrey

    2008-01-01

    Orchestrator is a software application infrastructure for telemetry monitoring, logging, processing, and distribution. The architecture has been applied to support operations of a variety of planetary rovers. Built in Java with the Eclipse Rich Client Platform, Orchestrator can run on most commonly used operating systems. The pipeline supports configurable parallel processing that can significantly reduce the time needed to process a large volume of data products. Processors in the pipeline implement a simple Java interface and declare their required input from upstream processors. Orchestrator is programmatically constructed by specifying a list of Java processor classes that are initiated at runtime to form the pipeline. Input dependencies are checked at runtime. Fault tolerance can be configured to attempt continuation of processing in the event of an error or failed input dependency if possible, or to abort further processing when an error is detected. This innovation also provides support for Java Message Service broadcasts of telemetry objects to clients and provides a file system and relational database logging of telemetry. Orchestrator supports remote monitoring and control of the pipeline using browser-based JMX controls and provides several integration paths for pre-compiled legacy data processors. At the time of this reporting, the Orchestrator architecture has been used by four NASA customers to build telemetry pipelines to support field operations. Example applications include high-volume stereo image capture and processing, simultaneous data monitoring and logging from multiple vehicles. Example telemetry processors used in field test operations support include vehicle position, attitude, articulation, GPS location, power, and stereo images.

  17. Orchestrating Lean Implementation

    DEFF Research Database (Denmark)

    Riis, Jens Ove; Mikkelsen, Hans; Andersen, Jesper Rank

    2008-01-01

    The notion of Lean Manufacturing is not merely confined to a set of well defined techniques, but represents a broad approach to managing a company. Working with lean entails many aspects, such as production planning and control, production engineering, product development, supply chain......, and organizational issues. To become effective, many functional areas and departments must be involved. At the same time companies are embedded in a dynamic environment. The aim of the paper is to propose a comprehensive approach to better implementation of lean initiatives, based on two empirical studies. The paper...... will discuss how a concerted effort can be staged taking into account the interdependencies among individual improvement initiatives. The notion of orchestration will be introduced, and several means for orchestration will be presented. Critical behavioral issues for lean implementation will be discussed....

  18. Visualization and orchestration of the dynamic molecular society in cells

    Institute of Scientific and Technical Information of China (English)

    Xuebiao Yao; Guowei Fang

    2009-01-01

    @@ Visualization of specific molecules and their interactions in real space and time is essential to delineate how cellular plasticity and dynamics are achieved and orchestrated as perturbation of cellular plasticity and dynamics is detrimental to health. Elucidation of cellular dynamics requires molecular imaging at nanometer scale at millisecond resolution. The 1st International Conference on Cellular Dynamics and Chemical Biology held in Hefei, China (from 12 September to 15 September,2008) launched the quest by bringing synergism among photonics, chemistry and biology.

  19. Cellular and circuit mechanisms maintain low spike co-variability and enhance population coding in somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Cheng eLy

    2012-03-01

    Full Text Available The responses of cortical neurons are highly variable across repeated presentations of a stimulus. Understanding this variability is critical for theories of both sensory and motor processing, since response variance affects the accuracy of neural codes. Despite this influence, the cellular and circuit mechanisms that shape the trial-to-trial variability of population responses remain poorly understood. We used a combination of experimental and computational techniques to uncover the mechanisms underlying response variability of populations of pyramidal (E cells in layer 2/3 of rat whisker barrel cortex. Spike trains recorded from pairs of E-cells during either spontaneous activity or whisker deflected responses show similarly low levels of spiking co-variability, despite large differences in network activation between the two states. We developed network models that show how spike threshold nonlinearities dilutes E-cell spiking co-variability during spontaneous activity and low velocity whisker deflections. In contrast, during high velocity whisker deflections, cancelation mechanisms mediated by feedforward inhibition maintain low E-cell pairwise co-variability. Thus, the combination of these two mechanisms ensure low E-cell population variability over a wide range of whisker deflection velocities. Finally, we show how this active decorrelation of population variability leads to a drastic increase in the population information about whisker velocity. The canonical cellular and circuit components of our study suggest that low network variability over a broad range of neural states may generalize across the nervous system.

  20. Adder design using a 5-input majority gate in a novel “multilayer gate design paradigm” for quantum dot cellular automata circuits

    International Nuclear Information System (INIS)

    This paper proposes a novel design paradigm for circuits designed in quantum dot cellular automata (QCA) technology. Previously reported QCA circuits in the literature have generally been designed in a single layer which is the main logical block in which the inverter and majority gate are on the base layer, except for the parts where multilayer wire crossing was used. In this paper the concept of multilayer wire crossing has been extended to design logic gates in multilayers. Using a 5-input majority gate in a multilayer, a 1-bit and 2-bit adder have been designed in the proposed multilayer gate design paradigm. A comparison has been made with some adders reported previously in the literature and it has been shown that circuits designed in the proposed design paradigm are much more efficient in terms of area, the requirement of QCA cells in the design and the input–output delay of the circuit. Over all, the availability of one additional spatial dimension makes the design process much more flexible and there is scope for the customizability of logic gate designs to make the circuit compact. (paper)

  1. Orchestrating Company Development in SMEs

    DEFF Research Database (Denmark)

    Riis, Jens Ove

    2003-01-01

    Over a period of several years many companies undergo a transformation with signifi­cant improvement in performance. We have studied such a process in seven SMEs to achieve a better understanding of how the change process was initiated and orches­trated. A rather complex picture has emerged...... suggesting a multitude of dimensions and aspects to be employed when interpreting the findings. The metaphor of orchestration seems well suited to describe company development as a process of bringing a broad spectrum of areas and aspects into play, in parallel and in series. It implies following a score...

  2. Decentralized Service Orchestration by Continuous Message Passing

    OpenAIRE

    R. Jayaprakash; M Shanmugam; Manikandan, P.; S. SHIVARAJ

    2010-01-01

    Decentralized service stands for distributing segments of workflow among various workflow engines, and workflow has set of activities responsible for invoking Web Services. Decentralized Orchestration holds an upper hand over Centralized Orchestration in producing optimal solutions in terms of scalability and network traffic by overcoming inefficient routing of messages. Although decentralized orchestration being more optimal in scalability it lacks in very significant part of web services an...

  3. Orchestral Performance and the Footprint of Mindfulness

    Science.gov (United States)

    Langer, Ellen; Russell, Timothy; Eisenkraft, Noah

    2009-01-01

    Two studies were designed to test the hypothesis that actively creating novel distinctions and sonically portraying them during the performance of orchestral music is preferable to attempting to re-create a past performance. The data suggest that orchestral musicians preferred creating music when they were encouraged to mindfully incorporate…

  4. Classroom orchestration : The third circle of usability

    OpenAIRE

    Dillenbourg, Pierre; Zufferey, Guillaume; Alavi, Hamed Seyed; Jermann, Patrick; Do, Lenh Hung Son; Bonnard, Quentin; Cuendet, Sébastien; Kaplan, Frédéric

    2011-01-01

    We analyze classroom orchestration as a question of usability in which the classroom is the user. Our experiments revealed design features that reduce the global orchestration load. According to our studies in vocational schools, paper-based interfaces have the potential of making educational workflows tangible, i.e. both visible and manipulable. Our studies in university classes converge on minimalism: they reveal the effectiveness o tools that make visible what is invisible but do not analy...

  5. Detection of regulatory circuits by integrating the cellular networks of protein–protein interactions and transcription regulation

    OpenAIRE

    Yeger-Lotem, Esti; Margalit, Hanah

    2003-01-01

    The post-genomic era is marked by huge amounts of data generated by large-scale functional genomic and proteomic experiments. A major challenge is to integrate the various types of genome-scale information in order to reveal the intra- and inter- relationships between genes and proteins that constitute a living cell. Here we present a novel application of classical graph algorithms to integrate the cellular networks of protein–protein interactions and transcription regulation. We demonstrate ...

  6. WOX5-1AA17 Feedback Circuit-Mediated CellularAuxin Response Is Crucial for the Patterning ofRoot Stem Cell Niches in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    In plants, the patterning of stem cell-enriched meristems requires a graded auxin response maximum thatemerges from the concerted action of polar auxin transport, auxin biosynthesis, auxin metabolism, and cellular auxinresponse machinery. However, mechanisms underlying this auxin response maximum-mediated root stem cell mainte-nance are not fully understood. Here, we present unexpected evidence that WUSCHEL-RELATED HOMEOBOX 5 (WOX5)transcription factor modulates expression of auxin biosynthetic genes in the quiescent center (QC) of the root and thusprovides a robust mechanism for the maintenance of auxin response maximum in the root tip. This WOX5 action is bal-anced through the activity of indole-3-acetic acid 17 (IAA17) auxin response repressor. Our combined genetic, cell biol-ogy, and computational modeling studies revealed a previously uncharacterized feedback loop linking WOX5-mediatedauxin production to IAA17-dependent repression of auxin responses. This WOX5-1AA17 feedback circuit further assuresthe maintenance of auxin response maximum in the root tip and thereby contributes to the maintenance of distal stemcell (DSC) populations. Our experimental studies and in silico computer simulations both demonstrate that the WOX5-iAA17 feedback circuit is essential for the maintenance of auxin gradient in the root tip and the auxin-mediated root DSCdifferentiation.

  7. The RichWPS Environment for Orchestration

    Directory of Open Access Journals (Sweden)

    Felix Bensmann

    2014-12-01

    Full Text Available Web service (WS orchestration can be considered as a fundamental concept in service-oriented architectures (SOA, as well as in spatial data infrastructures (SDI. In recent years in SOA, advanced solutions were developed, such as realizing orchestrated web services on the basis of already existing more fine-granular web services by using standardized notations and existing orchestration engines. Even if the concepts can be mapped to the field of SDI, on a conceptual level the implementations target different goals. As a specialized form of a common web service, an Open Geospatial Consortium (OGC web service (OWS is optimized for a specific purpose. On the technological level, web services depend on standards like the Web Service Description Language (WSDL or the Simple Object Access Protocol (SOAP. However OWS are different. Consequently, a new concept for OWS orchestration is needed that works on the interface provided by OWS. Such a concept is presented in this work. The major component is an orchestration engine integrated in a Web Processing Service (WPS server that uses a domain specific language (DSL for workflow description. The developed concept is the base for the realization of new functionality, such as workflow testing, and workflow optimization.

  8. Metric-Aware Secure Service Orchestration

    Directory of Open Access Journals (Sweden)

    Gabriele Costa

    2012-12-01

    Full Text Available Secure orchestration is an important concern in the internet of service. Next to providing the required functionality the composite services must also provide a reasonable level of security in order to protect sensitive data. Thus, the orchestrator has a need to check whether the complex service is able to satisfy certain properties. Some properties are expressed with metrics for precise definition of requirements. Thus, the problem is to analyse the values of metrics for a complex business process. In this paper we extend our previous work on analysis of secure orchestration with quantifiable properties. We show how to define, verify and enforce quantitative security requirements in one framework with other security properties. The proposed approach should help to select the most suitable service architecture and guarantee fulfilment of the declared security requirements.

  9. MNC Headquarters as Global Network Orchestrators

    DEFF Research Database (Denmark)

    Valentino, Alfredo; Nell, Phillip Christopher; Hotho, Jasper J.

    2014-01-01

    , whether these motivations vary by HQ type and how these relocation patterns vary over time. We explore these questions on the basis of a unique hand-collected database of 227 HQ relocations in Europe between 2000 and 2012. Our findings illustrate that different types of HQ units play their orchestrating......-grained understanding of the drivers of HQ relocations and open up various new avenues for future research on HQ relocation and the role of HQ units in the orchestration of MNCs’ internal networks....

  10. Dynamic System Adaptation by Constraint Orchestration

    CERN Document Server

    Groenewegen, L P J

    2008-01-01

    For Paradigm models, evolution is just-in-time specified coordination conducted by a special reusable component McPal. Evolution can be treated consistently and on-the-fly through Paradigm's constraint orchestration, also for originally unforeseen evolution. UML-like diagrams visually supplement such migration, as is illustrated for the case of a critical section solution evolving into a pipeline architecture.

  11. Transport Network Orchestration for end-to-end Multi-layer Provisioning Across heterogeneous SDN/OpenFlow and GMPLS/PCE Control Domains

    OpenAIRE

    Muñoz, Raul; Vilalta, Ricard; Casellas, Ramon; Martínez, Ricardo; Francois, Frederic; Channegowda, Mayur; Hammad, Ali; Peng, Shuping; Nejabati, Reza; Simeonidou, Dimitra; Yoshikane, Noboru; Tsuritani, Takehiro; López, Víctor; Autenrieth, Achim

    2015-01-01

    A multidomain optical transport network composed of heterogeneous optical transport technologies (e.g., flexi/fixed-grid optical circuit switching and optical packet switching) and control plane technologies (e.g., centralized OpenFlow or distributed GMPLS) does not naturally interoperate, and a network orchestration mechanism is required. A network orchestrator allows the composition of end-to-end network service provisioning across multidomain optical networks comprising different transport...

  12. Microsoft System Center 2012 Orchestrator cookbook

    CERN Document Server

    Erskine, Samuel

    2013-01-01

    This book is written in a practical, Cookbook style with numerous chapters and recipes focusing on creating runbooks to automate mission critical and everyday administration tasks.System Center 2012 Orchestrator is for administrators who wish to simplify the process of automating systems administration tasks. This book assumes that you have a basic knowledge of Windows Server 2008 Administration, Active Directory, Network Systems, and Microsoft System Center technologies.

  13. 量子元胞自动机器件和电路的研究进展%Research Progress of Quantum Dot Cellular Automata Devices and Circuits

    Institute of Scientific and Technical Information of China (English)

    杨晓阔; 蔡理; 李政操; 陈祥叶

    2011-01-01

    Quantum dot cellular automata (QCA) is a novel nanotechnology, the information of QCA is calculated and transferred not by the voltage or current, but by the field interaction. The computation principles, basic logic gates and clockings of two kinds of QCA (EQCA and MQCA) devices are introduced firstly. It shows that different wire structures comprised of QCA cells could realize planar crossover and transmit signals in a single layer independently. Furthermore, the experiment methods and materials to fabricate QCA devices and function arrays or circuits are summarized, and the conclusion is obtained that the development of MQCA and molecular EQCA devices would bring QCA up to the actual application level gradually. The research progresses and existent issues of QCA devices and circuits (particularly memory cell architecture) are discussed in detail. The open projects and directions in theory and application research of QCA are presented.%量子元胞自动机(QCA)是一种新颖的纳米技术,该技术不再通过电流或电压而是基于场相互作用进行信息的计算和传递.首先,综述了两种量子元胞自动机(EQCA和MQCA)器件的计算原理、基本逻辑门和时钟.指出了QCA元胞构成的不同线结构可在相同层交叉传递信号而不受影响.然后,进一步总结了制备QCA器件和功能阵列或电路的实验方法和材料,得出MQCA器件和分子EQCA器件的发展将使该器件逐步达到实际应用水平的结论.详细讨论了目前QCA器件和电路(尤其是存储单元结构)研究取得的重要进展以及面临的问题.提出了QCA器件未来理论和应用研究中的开放课题和方向.

  14. Transforming growth factor-β and endoglin signalling orchestrates wound healing

    Directory of Open Access Journals (Sweden)

    Manoj eValluru

    2011-11-01

    Full Text Available Various complex signalling networks, biomechanical forces and biochemical signalling pathways in both hypoxic and non-hypoxic conditions orchestrate wound healing. Endoglin is a functional marker, a type III coreceptor for transforming growth factor (TGF-β and an important regulator of tissue repair. Endoglin is expressed in stem cells and proliferating endothelial cells with elevated expression during hypoxia, regulating cellular functions such as proliferation and cell adhesion via Smad signalling. This review focuses on how the TGF- β family and more specifically Endoglin, regulate stem cell availability and modulate cellular behaviour within the wound microenvironment.

  15. Meteorological phenomena in Western classical orchestral music

    Science.gov (United States)

    Williams, P. D.; Aplin, K. L.

    2012-12-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London. Of course, an important part of what we see and hear is not only the people with whom we interact, but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant, because we are exposed to it directly and daily. The weather was a great source of inspiration for Monet, Constable, and Turner, who are known for their scientifically accurate paintings of the skies. But to what extent does weather inspire composers? The authors of this presentation, who are atmospheric scientists by day but amateur classical musicians by night, have been contemplating this question. We have built a systematic musical database, which has allowed us to catalogue and analyze the frequencies with which weather is depicted in a sample of classical orchestral music. The depictions vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. We have found that composers are generally influenced by their own environment in the type of weather they choose to represent. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Reference: Aplin KL and Williams PD (2011) Meteorological phenomena in Western classical orchestral music. Weather, 66(11), pp 300-306. doi:10.1002/wea.765

  16. Orchestration of Social Modes in e-Learning

    DEFF Research Database (Denmark)

    Weinberger, Armin; Papadopoulos, Pantelis M.

    2016-01-01

    of tools offering possibilities to the teachers, orchestration refers to the purposeful mixture of different aspects of the learning experience, serving a particular set of learning goals. In this paper, we present the current dialogue on e-learning orchestration, identifying the questions and open issues......The concept of orchestration has recently emerged as a useful metaphor in technology-enhanced learning research communities, because of its explanatory power and appeal in describing how different learning activities, tools, and arrangements could be combined to promote learning. More than a buffet...... in orchestrating different social modes and learning arrangements....

  17. Endocrine orchestration of cardiovascular, gastrointestinal and hypothalamic control.

    Science.gov (United States)

    Angelone, T; Quintieri, A M; Amodio, N; Cerra, M C

    2011-01-01

    The richly structured neuroendocrine control of the heart in health and disease requires, in addition to the autonomic nervous outflow, the essential contribute of various and often interacting humoral peptides (e.g. natriuretic peptides, Chromogranin-A-derived fragments, etc). In many cases, these molecules also influence the activity of other organ systems, including the gastrointestinal apparatus, in which they control mucosal function as well as motility and secretion. Interestingly, by acting centrally, some of these peptides also regulate satiety and appetite, thus forming an interesting link between cardiac and gastrointestinal function, and the feeding pattern. Prolonged inhibition and/or activation of these peptide pathways frequently results in severe and long-lasting dysfunctions, including cardiovascular diseases associated to alimentary disorders (e.g. obesity). Notably, their multifarious actions and mutual interactions make them excellent candidates for long-term resetting of both cardiac, gastrointestinal and nutrition homeostasis. Here we will provide only few examples taken from the quickly evolving scenario, with the purpose to provide indications concerning the complex circuits generated by multilevel signalling peptides, which contributes to orchestrate the association between cardiovascular, gastrointestinal and alimentary functions. This will highlight not only the complexity of the cardiovascular and GI regulatory networks, but also aspects of integration between feeding stimulating peptides and the other neuroendocrine systems affecting the heart and the GI tract.

  18. An Exploratory Comparison of Novice, Intermediate, and Expert Orchestral Conductors

    Science.gov (United States)

    Bergee, Martin J.

    2005-01-01

    This study compared novice, "intermediate" (graduate student), and expert orchestral conductors. Two novice conductors, one graduate student in orchestral conducting, and one expert conductor led a university symphony orchestra in part of the first movement of Brahms's Symphony No. 2. Wired for sound, conductors attempted to verbalize their…

  19. Service Orchestration on the Internet of Things

    Directory of Open Access Journals (Sweden)

    Jordán Pascual Espada

    2012-12-01

    Full Text Available On July 27, 2010, Jordán Pascual Espada defended his Master’s thesis at Oviedo University (Spain, titled: “Service Orchestration on the internet of things”. This Master’s thesis is the final part of the Web Engineering Official Research Master belonging to the European Higher Education Area. Jordán Pascual Espada defended his dissertation in a publicly open presentation held in the School of Computer Engineering at Oviedo University, and was able to comment on every question raised by his committee and the audience. The master’s thesis was supervised by his advisors, Juan Manuel Cueva Lovelle and Oscar Sanjuán Martínez. The thesis has been read and approved by his thesis committee, receiving the highest rating.

  20. Orchestrating Transnational Environmental Governance in Maritime Shipping

    DEFF Research Database (Denmark)

    Lister, Jane; Taudal Poulsen, René; Ponte, Stefano

    2015-01-01

    emerging private ‘green shipping’ initiatives to achieve better ecological outcomes? Contributing to transnational governance theory, we find that conditions stalling regulatory progress include low environmental issue visibility, poor interest alignment, a broadening scope of environmental issues......Maritime shipping is the transmission belt of the global economy. It is also a major contributor to global environmental change through its under-regulated air, water and land impacts. It is puzzling that shipping is a lagging sector as it has a well-established global regulatory body......, and growing regulatory fragmentation and uncertainty. The paper concludes with pragmatic recommendations for the International Maritime Organization to acknowledge the regulatory difficulties and seize the opportunity to orchestrate environmental progress....

  1. Synthetic Biology: Integrated Gene Circuits

    OpenAIRE

    Nandagopal, Nagarajan; Michael B Elowitz

    2011-01-01

    A major goal of synthetic biology is to develop a deeper understanding of biological design principles from the bottom up, by building circuits and studying their behavior in cells. Investigators initially sought to design circuits “from scratch” that functioned as independently as possible from the underlying cellular system. More recently, researchers have begun to develop a new generation of synthetic circuits that integrate more closely with endogenous cellular processes. These approaches...

  2. Orchestrating Distributed Resource Ensembles for Petascale Science

    Energy Technology Data Exchange (ETDEWEB)

    Baldin, Ilya; Mandal, Anirban; Ruth, Paul; Yufeng, Xin

    2014-04-24

    Distributed, data-intensive computational science applications of interest to DOE scientific com- munities move large amounts of data for experiment data management, distributed analysis steps, remote visualization, and accessing scientific instruments. These applications need to orchestrate ensembles of resources from multiple resource pools and interconnect them with high-capacity multi- layered networks across multiple domains. It is highly desirable that mechanisms are designed that provide this type of resource provisioning capability to a broad class of applications. It is also important to have coherent monitoring capabilities for such complex distributed environments. In this project, we addressed these problems by designing an abstract API, enabled by novel semantic resource descriptions, for provisioning complex and heterogeneous resources from multiple providers using their native provisioning mechanisms and control planes: computational, storage, and multi-layered high-speed network domains. We used an extensible resource representation based on semantic web technologies to afford maximum flexibility to applications in specifying their needs. We evaluated the effectiveness of provisioning using representative data-intensive ap- plications. We also developed mechanisms for providing feedback about resource performance to the application, to enable closed-loop feedback control and dynamic adjustments to resource allo- cations (elasticity). This was enabled through development of a novel persistent query framework that consumes disparate sources of monitoring data, including perfSONAR, and provides scalable distribution of asynchronous notifications.

  3. Tchaikovsky, P.: Orchestral Suite no. 3 op. 55 / Terry Williams

    Index Scriptorium Estoniae

    Williams, Terry

    1996-01-01

    Uuest heliplaadist "Tchaikovsky, P.: Orchestral Suite no. 3 op. 55. Francesca di Rimini op. 32. Detroit Symphony Orchestra, Neeme Järvi". Chandos CHAN 9 419, distribution Media 7 (CD: 160F). TT: 1h 09'20"

  4. Optimization of Orchestral Layouts Based on Instrument Directivity Patterns

    Science.gov (United States)

    Stroud, Nathan Paul

    The experience of hearing an exceptional symphony orchestra perform in an excel- lent concert hall can be profound and moving, causing a level of excitement not often reached for listeners. Romantic period style orchestral music, recognized for validating the use of intense emotion for aesthetic pleasure, was the last significant development in the history of the orchestra. In an age where orchestral popularity is waning, the possibil- ity of evolving the orchestral sound in our modern era exists through the combination of our current understanding of instrument directivity patterns and their interaction with architectural acoustics. With the aid of wave field synthesis (WFS), newly proposed variations on orchestral layouts are tested virtually using a 64-channel WFS array. Each layout is objectively and subjectively compared for determination of which layout could optimize the sound of the orchestra and revitalize the excitement of the performance.

  5. Orchestration of TEL proposal for the European Framework Programme

    NARCIS (Netherlands)

    Kalz, Marco; Joy, Aislinn

    2012-01-01

    Kalz, M., & Joy, A. (2012, 27 January). Orchestration of TEL proposals for the European Framework Program. Presentation given during Research Away Days of the University College Cork, Rosscarberry, Ireland: UCC.

  6. An Architecture for Decentralised Orchestration of Web Service Workflows

    OpenAIRE

    Jaradat, Ward; Dearle, Alan; Barker, Adam

    2013-01-01

    Service-oriented workflows are typically executed using a centralised orchestration approach that presents significant scalability challenges. These challenges include the consumption of network bandwidth, degradation of performance, and single-points of failure. We provide a decentralised orchestration architecture that attempts to address these challenges. Our architecture adopts a design model that permits the computation to be moved "closer" to services in a workflow. This is achieved by ...

  7. Duel of the fates: the role of transcriptional circuits and noise in CD4+ cells.

    Science.gov (United States)

    Hebenstreit, Daniel; Deonarine, Andrew; Babu, M Madan; Teichmann, Sarah A

    2012-06-01

    CD4+ T cells play key roles in orchestrating adaptive immune responses, and are a popular model for mammalian cell differentiation. While immune regulation would seem to require exactly adjusted mRNA and protein expression levels of key factors, there is little evidence that this is strictly the case. Stochastic gene expression and plasticity of cell types contrast the apparent need for precision. Recent work has provided insight into the magnitude of molecular noise, as well as the relationship between noise, transcriptional circuits and epigenetic modifications in a variety of cell types. These processes and their interplay will also govern gene expression patterns in the different CD4+ cell types, and the determination of their cellular fates. PMID:22498241

  8. Sound exposure of professional orchestral musicians during solitary practice.

    Science.gov (United States)

    O'Brien, Ian; Driscoll, Tim; Ackermann, Bronwen

    2013-10-01

    It is broadly acknowledged that professional orchestral musicians risk noise-induced hearing pathologies due to sound exposure in rehearsal and performance. While much has been published regarding orchestral sound levels, little is known of the sound exposure these musicians experience during solitary practice, despite the many hours they spend engaged in this activity. This study aimed to determine sound exposure during solitary practice of 35 professional orchestral musicians, representing players of most orchestral instruments. To allow cross-comparison, participants were assessed playing similar repertoire in a controlled environment, recording simultaneously at each ear to determine sound exposure levels. Sound levels were recorded between 60 and 107 dB L(Aeq), with peak levels between 101 and 130 dB L(C,peak). For average reported practice durations (2.1 h per day, five days a week) 53% would exceed accepted permissible daily noise exposure in solitary practice, in addition to sound exposure during orchestral rehearsals and performances. Significant inter-aural differences were noted in violin, viola, flute/piccolo, horn, trombone, and tuba. Only 40% used hearing protection at any time while practicing. These findings indicate orchestral musicians at risk of noise-induced hearing loss in ensemble face significant additional risks during solitary practice. Data presented will enable more effective and targeted management strategies for this population.

  9. Logistics orchestration scenarios in a potted plant supply chain network

    NARCIS (Netherlands)

    Keizer, de M.; Groot, J.J.; Bloemhof, J.M.; Vorst, van der J.G.A.J.

    2014-01-01

    The Dutch potted plant sector has a dominant international position, but new marketing channels and emerging markets on distance call for new logistics concepts. This paper explores the potential of an advanced logistics concept, i.e. logistics orchestration, that aims for improved collaboration bet

  10. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    Science.gov (United States)

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  11. Specifying Orchestrating Capability in Network Organization and Interfirm Innovation Networks

    DEFF Research Database (Denmark)

    Hu, Yimei; Sørensen, Olav Jull

    implements its blue ocean strategy through purposively build multi-level networks, i.e. an intra network organization and interfirm innovation networks. In order to get more innovation output from external and internal networks, orchestration capability is needed and should be applied both externally...

  12. Orchestration in Learning Technology Research: Evaluation of a Conceptual Framework

    Science.gov (United States)

    Prieto, Luis P.; Dimitriadis, Yannis; Asensio-Pérez, Juan I.; Looi, Chee-Kit

    2015-01-01

    The term "orchestrating learning" is being used increasingly often, referring to the coordination activities performed while applying learning technologies to authentic settings. However, there is little consensus about how this notion should be conceptualised, and what aspects it entails. In this paper, a conceptual framework for…

  13. Shostakovich: The Orchestral Songs Vol. 2 / Michael Tanner

    Index Scriptorium Estoniae

    Tanner, Michael

    1996-01-01

    Uuest heliplaadist "Shostakovich: The Orchestral Songs Vol. 2: Six Romances on texts by Japanese poets, Op. 21. Six Poems on Marina Tsvetayeva, Op. 143. Suite on Verses of Michelangelo, Op. 145. Gothenburg Symphony Orchestra, Neeme Järvi". DG 447 085-2GH (71 minutes:DDD)

  14. Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses.

    Science.gov (United States)

    Soares, Helena; Lasserre, Rémi; Alcover, Andrés

    2013-11-01

    Immunological synapses are specialized cell-cell contacts formed between T lymphocytes and antigen-presenting cells. They are induced upon antigen recognition and are crucial for T-cell activation and effector functions. The generation and function of immunological synapses depend on an active T-cell polarization process, which results from a finely orchestrated crosstalk between the antigen receptor signal transduction machinery, the actin and microtubule cytoskeletons, and controlled vesicle traffic. Although we understand how some of these particular events are regulated, we still lack knowledge on how these multiple cellular elements are harmonized to ensure appropriate T-cell responses. We discuss here our view on how T-cell receptor signal transduction initially commands cytoskeletal and vesicle traffic polarization, which in turn sets the immunological synapse molecular design that regulates T-cell activation. We also discuss how the human immunodeficiency virus (HIV-1) hijacks some of these processes impairing immunological synapse generation and function.

  15. Nitric oxide: orchestrating hypoxia regulation through mitochondrial respiration and the endoplasmic reticulum stress response

    Institute of Scientific and Technical Information of China (English)

    Weiming XU; Ian G. CHARLES; Salvador MONCADA

    2005-01-01

    Mitochondria have long been considered to be the powerhouse of the living cell, generating energy in the form of the molecule ATP via the process of oxidative phosphorylation. In the past 20 years, it has been recognised that they also play an important role in the implementation of apoptosis, or programmed cell death. More recently it has become evident that mitochondria also participate in the orchestration of cellular defence responses. At physiological concentrations,the gaseous molecule nitric oxide (NO) inhibits the mitochondrial enzyme cytochrome c oxidase (complex IV) in competition with oxygen. This interaction underlies the mitochondrial actions of NO, which range from the physiological regulation of cell respiration, through mitochondrial signalling, to the development of "metabolic hypoxia" - a situation in which, although oxygen is available, the cell is unable to utilise it.

  16. Acute lung injury: How macrophages orchestrate resolution of inflammation and tissue repair

    Directory of Open Access Journals (Sweden)

    Susanne eHerold

    2011-11-01

    Full Text Available Lung macrophages are long living cells with broad differentiation potential, which reside in the lung interstitium and alveoli or are organ-recruited upon inflammatory stimuli. A role of resident and recruited macrophages in initiating and maintaining pulmonary inflammation in lung infection or injury has been convincingly demonstrated. More recent reports suggest that lung macrophages are main orchestrators of termination and resolution of inflammation and initiators of parenchymal repair processes that are essential for return to homeostasis with normal gas exchange. In this review we will discuss cellular cross-talk mechanisms and molecular pathways of macrophage plasticity which define their role in inflammation resolution and in initiation of lung barrier repair following lung injury.

  17. Clique of functional hubs orchestrates population bursts in developmentally regulated neural networks.

    Directory of Open Access Journals (Sweden)

    Stefano Luccioli

    2014-09-01

    Full Text Available It has recently been discovered that single neuron stimulation can impact network dynamics in immature and adult neuronal circuits. Here we report a novel mechanism which can explain in neuronal circuits, at an early stage of development, the peculiar role played by a few specific neurons in promoting/arresting the population activity. For this purpose, we consider a standard neuronal network model, with short-term synaptic plasticity, whose population activity is characterized by bursting behavior. The addition of developmentally inspired constraints and correlations in the distribution of the neuronal connectivities and excitabilities leads to the emergence of functional hub neurons, whose stimulation/deletion is critical for the network activity. Functional hubs form a clique, where a precise sequential activation of the neurons is essential to ignite collective events without any need for a specific topological architecture. Unsupervised time-lagged firings of supra-threshold cells, in connection with coordinated entrainments of near-threshold neurons, are the key ingredients to orchestrate population activity.

  18. Host shutoff is a conserved phenotype of gammaherpesvirus infection and is orchestrated exclusively from the cytoplasm.

    Science.gov (United States)

    Covarrubias, Sergio; Richner, Justin M; Clyde, Karen; Lee, Yeon J; Glaunsinger, Britt A

    2009-09-01

    Lytic infection with the two human gammaherpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), leads to significant depletion of the cellular transcriptome. This host shutoff phenotype is driven by the conserved herpesviral alkaline exonuclease, termed SOX in KSHV and BGLF5 in EBV, which in gammaherpesviruses has evolved the genetically separable ability to target cellular mRNA. We now show that host shutoff is also a prominent consequence of murine gammaherpesvirus 68 (MHV68) infection, which is widely used as a model system to study pathogenesis of these viruses in vivo. The effector of MHV68-induced host shutoff is its SOX homolog, here termed muSOX. There is remarkable functional conservation of muSOX host shutoff activities with those of KSHV SOX, including the recently described ability of SOX to induce mRNA hyperadenylation in the nucleus as well as cause nuclear relocalization of the poly(A) binding protein. SOX and muSOX localize to both the nucleus and cytoplasm of infected cells. Using spatially restricted variants of these proteins, we go on to demonstrate that all known host shutoff-related activities of SOX and muSOX are orchestrated exclusively from the cytoplasm. These results have important mechanistic implications for how SOX and muSOX target nascent cellular transcripts in the nucleus. Furthermore, our findings establish MHV68 as a new, genetically tractable model to study host shutoff.

  19. Returnee Entrepreneurs: Resource Orchestration, Context and Knowledge Spillovers

    OpenAIRE

    Wright, M; Liu, X.; Filatotchev, I.

    2012-01-01

    Purpose – Emerging work on returnee entrepreneurs has done little to examine how these individuals coordinate the resources they need to exploit their opportunities. Existing research has recognized the role of context but this has been quite limited. The chapter provides a novel analytical framework that integrates a resource orchestration perspective with recognition of the heterogeneity of context. Design/methodology – We build upon returnee entrepreneurship, strategic entrepreneurship the...

  20. Orchestration of the Marketing Strategy under Competitive Dynamics

    OpenAIRE

    Rajagopal

    2010-01-01

    Constructing suitable marketing strategy and implementing it effectively is an art and science both like orchestration of a symphony. The discussion in this paper blends this analogy with the science of marketing demonstrating the levels of strategy development in a competitive marketplace. The paper presents the marketing-mix in contemporary context and argues that performance of a marketing firm can be maximized, when a firm develops a creative marketing strategy and achieves marketing stra...

  1. Orchestrating sustainable urban development: Final report of the SASUI project

    OpenAIRE

    Mäntysalo, Raine; Leino, Helena; Wallin, Johan; Hulkkonen, Jussi; Laine, Markus; Santaoja, Minna; Schmidt-Thomé, Kaisa; Syrman, Simo

    2016-01-01

    Transition towards a low-carbon society needs the development of innovations, such as solutions of low-carbon everyday mobility or new techniques of collaborative urban densification. Partnerships as social innovations are pivotal in enabling these developments. Cities may take several roles in partnership arrangements. The roles can be anything from being project partners in experiments that are closely related to the jurisdiction of the local authorities to orchestrating whole innovation ec...

  2. Cartography of serotonergic circuits.

    Science.gov (United States)

    Sparta, Dennis R; Stuber, Garret D

    2014-08-01

    Serotonin is an essential neuromodulator, but the precise circuit connectivity that regulates serotonergic neurons has not been well defined. Using rabies virus tracing strategies Weissbourd et al. (2014) and Pollak Dorocic et al. (2014) in this issue of Neuron and Ogawa et al. (2014) in Cell Reports provide a comprehensive map of the inputs to serotonergic neurons, highlighting the complexity and diversity of potential upstream cellular regulators.

  3. Introduction to Devices Orchestration in Internet of Things Using SBPMN

    OpenAIRE

    Alejandro González García; Manuel Álvarez Álvarez; Jordán Pascual Espada; Oscar Sanjuán Martínez; Juan Manuel Cueva Lovelle; Cristina Pelayo G-Bustelo

    2011-01-01

    In this research we try to provide an architecture that allows the orchestration of objects that are part of the Internet of things creating business processes. Internet of Things is still in full development; this implies that there is a lack of standards for its proper implementation. Among these gaps is for example the technology used to allow objects to connect to the network, since there are several options but none seems to end imposed that is why this work try to provide architecture t...

  4. Orchestrating Inquiry-Based Learning Spaces: an Analysis of Teacher Needs

    OpenAIRE

    Rodríguez-Triana, Maria Jesús; Holzer, Adrian; Voznuik, Andrii; Gillet, Denis

    2015-01-01

    The European Go-Lab project offers Inquiry Learning Spaces (ILSs) as open educational resources to support Inquiry-based Learning (IBL). To successfully exploit ILSs and implement IBL, proper support for orchestration is needed. Researchers have highlighted the complexity of orchestrating Technology Enhanced Learning (TEL) scenarios and the need for supporting participants in this endeavour. In this paper, we address this issue by analyzing the teacher needs when orchestrating IBL and relying...

  5. TRIO: Burst Buffer Based I/O Orchestration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Teng [Auburn University; Oral, H Sarp [ORNL; Pritchard, Michael [Auburn University; Wang, Bin [Auburn University; Yu, Weikuan [Auburn University

    2015-01-01

    The growing computing power on leadership HPC systems is often accompanied by ever-escalating failure rates. Checkpointing is a common defensive mechanism used by scientific applications for failure recovery. However, directly writing the large and bursty checkpointing dataset to parallel filesystem can incur significant I/O contention on storage servers. Such contention in turn degrades the raw bandwidth utilization of storage servers and prolongs the average job I/O time of concurrent applications. Recently burst buffer has been proposed as an intermediate layer to absorb the bursty I/O traffic from compute nodes to storage backend. But an I/O orchestration mechanism is still desired to efficiently move checkpointing data from bursty buffers to storage backend. In this paper, we propose a burst buffer based I/O orchestration framework, named TRIO, to intercept and reshape the bursty writes for better sequential write traffic to storage severs. Meanwhile, TRIO coordinates the flushing orders among concurrent burst buffers to alleviate the contention on storage server bandwidth. Our experimental results reveal that TRIO can deliver 30.5% higher bandwidth and reduce the average job I/O time by 37% on average for data-intensive applications in various checkpointing scenarios.

  6. OPTIMUM COURSE ASSOCIATION METHOD WITH CLOUD SERVICE ORCHESTRATION

    Directory of Open Access Journals (Sweden)

    Suresh Shanmugasundaram

    2011-01-01

    Full Text Available Finest Trail Setup Technique in Cloud Ambience[1] proposes a fuzzy logic based SVM approach to secure a collision free path avoiding multiple dynamic obstacles. The navigator consists of an FSVM -Based Collision Avoidance. The decisions are taken at each step for the providers & consumers to negotiate without collision. Fuzzy-SVM rule bases are built, which requires simple evaluation data based on the active participants in the Cloud at a given point of time. The effectiveness of the proposed method is verified by a series of simulations and implemented with a BOINC Manager. The time optimization algorithm that plans and responds a user request on auction-based resource allocation systems can be used for further improvement of Cloud broker services. Issues pertaining to scalability have to be addressed in this scenario. This dispute in the Cloud System can be addressed with Incremental FSVM with Kernel which will give better result in group nodes/clusters. Further to augment the technique, cloud service orchestration is applied. This enhances the approach by creating an application-aligned infrastructure that can be deployed by defining the policies. This paper displays a middleware Cloud Process Orchestration (CPO for directing and observing computer-generated mechanisms into a Cloud computing environment.

  7. Effect of Majority Consensus on Preferences for Recorded Orchestral and Popular Music.

    Science.gov (United States)

    Furman, Charles E.; Duke, Robert A.

    1988-01-01

    Examines group influences regarding music preferences to determine the effect that conformity has on the decision-making process. The study tested participants selections of popular and orchestral excerpts which had altered pitch and/or tempo. Concludes that preferences of music majors regarding orchestral music are not significantly affected by…

  8. The Effects of Orchestration on Musicians' and Nonmusicians' Perception of Musical Tension

    Science.gov (United States)

    Silvey, Brian A.

    2011-01-01

    The purpose of this study was to examine the effects of orchestration on musicians' and nonmusicians' (N = 40) perception of musical tension. Participants were asked to register their perceptions of tension using the Continuous Response Digital Interface dial while listening to three orchestrations (full orchestra, brass quintet, and solo piano)…

  9. A Study of Master's Degrees in Orchestral Conducting in the United States

    Science.gov (United States)

    St. John, Brian Allen

    2010-01-01

    In order to learn to be an orchestra conductor in the United States of America, students often begins their formal education by seeking to earn a master's degree in orchestral conducting. This project compiled a listing of American universities which offer a master's degree in orchestral conducting and categorized the component parts of their…

  10. Orchestration of carbohydrate processing for crassulacean acid metabolism.

    Science.gov (United States)

    Borland, Anne M; Guo, Hao-Bo; Yang, Xiaohan; Cushman, John C

    2016-06-01

    The production of phosphoenolpyruvate as a substrate for nocturnal CO2 uptake represents a significant sink for carbohydrate in CAM plants which has to be balanced with the provisioning of carbohydrate for growth and maintenance. In starch-storing CAM species, diversification in chloroplast metabolite transporters, and the deployment of both phosphorolytic and hydrolytic routes of starch degradation accommodate a division of labour in directing C-skeletons towards nocturnal carboxylation or production of sucrose for growth. In soluble-sugar storing CAM plants, the vacuole plays a central role in managing carbon homeostasis. The molecular identities of various types of vacuolar sugar transporters have only been identified for C3 species within the last 10 years. The recent availability of CAM genomes enables the identification of putative orthologues of vacuolar sugar transporters which represent strategic targets for orchestrating the diel provisioning of substrate for nocturnal carboxylation and growth. PMID:27101569

  11. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    Science.gov (United States)

    Zhai, Junqing; Tan, Aik-Ling

    2015-12-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers can play the role of (1) dispenser of knowledge (giver), (2) mentor of learning (advisor), (3) monitor of students' activities (police), and (4) partner in inquiry (colearner). These roles are dynamic, and while teachers show a preference for one of the four roles, factors such as the nature of the task, the types of students, as well as the availability of time and resources affect the role that teachers adopt. The roles that teachers play in the classroom have implications for the practice of science as inquiry in the classroom as well as the identities that teachers and students form in the science learning process.

  12. A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis.

    Science.gov (United States)

    Tawk, Marcel; Araya, Claudio; Lyons, Dave A; Reugels, Alexander M; Girdler, Gemma C; Bayley, Philippa R; Hyde, David R; Tada, Masazumi; Clarke, Jonathan D W

    2007-04-12

    The development of cell polarity is an essential prerequisite for tissue morphogenesis during embryogenesis, particularly in the development of epithelia. In addition, oriented cell division can have a powerful influence on tissue morphogenesis. Here we identify a novel mode of polarized cell division that generates pairs of neural progenitors with mirror-symmetric polarity in the developing zebrafish neural tube and has dramatic consequences for the organization of embryonic tissue. We show that during neural rod formation the polarity protein Pard3 is localized to the cleavage furrow of dividing progenitors, and then mirror-symmetrically inherited by the two daughter cells. This allows the daughter cells to integrate into opposite sides of the developing neural tube. Furthermore, these mirror-symmetric divisions have powerful morphogenetic influence: when forced to occur in ectopic locations during neurulation, they orchestrate the development of mirror-image pattern formation and the consequent generation of ectopic neural tubes.

  13. Programming Cloud Resource Orchestration Framework: Operations and Research Challenges

    CERN Document Server

    Ranjan, Rajiv

    2012-01-01

    The emergence of cloud computing over the past five years is potentially one of the breakthrough advances in the history of computing. It delivers hardware and software resources as virtualization-enabled services and in which administrators are free from the burden of worrying about the low level implementation or system administration details. Although cloud computing offers considerable opportunities for the users (e.g. application developers, governments, new startups, administrators, consultants, scientists, business analyst, etc.) such as no up-front investment, lowering operating cost, and infinite scalability, it has many unique research challenges that need to be carefully addressed in the future. In this paper, we present a survey on key cloud computing concepts, resource abstractions, and programming operations for orchestrating resources and associated research challenges, wherever applicable.

  14. Orchestrating learning during implementation of a 3D virtual world

    Science.gov (United States)

    Karakus, Turkan; Baydas, Ozlem; Gunay, Fatma; Coban, Murat; Goktas, Yuksel

    2016-10-01

    There are many issues to be considered when designing virtual worlds for educational purposes. In this study, the term orchestration has acquired a new definition as the moderation of problems encountered during the activity of turning a virtual world into an educational setting for winter sports. A development case showed that community plays a key role in both the emergence of challenges and in the determination of their solutions. The implications of this study showed that activity theory was a useful tool for understanding contextual issues. Therefore, instructional designers first developed relevant tools and community-based solutions. This study attempts to use activity theory in a prescriptive way, though it is known as a descriptive theory. Finally, since virtual world projects have many aspects, the variety of challenges and practical solutions presented in this study will provide practitioners with suggestions on how to overcome problems in future.

  15. Circuit Training.

    Science.gov (United States)

    Nelson, Jane B.

    1998-01-01

    Describes a research-based activity for high school physics students in which they build an LC circuit and find its resonant frequency of oscillation using an oscilloscope. Includes a diagram of the apparatus and an explanation of the procedures. (DDR)

  16. Controllable circuit

    DEFF Research Database (Denmark)

    2010-01-01

    A switch-mode power circuit comprises a controllable element and a control unit. The controllable element is configured to control a current in response to a control signal supplied to the controllable element. The control unit is connected to the controllable element and provides the control...

  17. PARP1 orchestrates variant histone exchange in signal-mediated transcriptional activation.

    Science.gov (United States)

    O'Donnell, Amanda; Yang, Shen-Hsi; Sharrocks, Andrew D

    2013-12-01

    Transcriptional activation is accompanied by multiple molecular events that remodel the local chromatin environment in promoter regions. These molecular events are often orchestrated in response to the activation of signalling pathways, as exemplified by the response of immediate early genes such as FOS to ERK MAP kinase signalling. Here, we demonstrate that inducible NFI recruitment permits PARP1 binding to the FOS promoter by a mutually reinforcing loop. PARP1 and its poly(ADP-ribosyl)ation activity are required for maintaining FOS activation kinetics. We also show that the histone variant H2A.Z associates with the FOS promoter and acts in a transcription-suppressive manner. However, in response to ERK pathway signalling, H2A.Z is replaced by H2A; PARP1 activity is required to promote this exchange. Thus, our work has revealed an additional facet of PARP1 function in promoting dynamic remodelling of promoter-associated nucleosomes to allow transcriptional activation in response to cellular signalling.

  18. Reversing Cancer Multidrug Resistance in Xenograft Models via Orchestrating Multiple Actions of Functional Mesoporous Silica Nanoparticles.

    Science.gov (United States)

    Yang, Debin; Wang, Tingfang; Su, Zhigui; Xue, Lingjing; Mo, Ran; Zhang, Can

    2016-08-31

    A multistimuli responsive drug delivery system (DDS) based on sulfhydryl and amino-cofunctionalized mesoporous silica nanoparticles (SH/NH2-MSNs) has been developed, in which the multifunctional hyaluronic acid (HA) derivatives were grafted onto the SH/NH2-MSNs by disulfide bonds for targeting delivery, controlling drug release and reversing multidrug resistance (MDR). The doxorubicin (Dox) loaded multifunctional HA derivatives modified mesoporous silica nanoparticles (Dox/HHS-MSNs) were enzyme and redox sensitive, which could respond to the intracellular stimuli of hyaluronidase (HAase) and glutathione (GSH) successively and prevent drug leakage before reaching the tumor tissues. The cellular uptake experiments showed that Dox/HHS-MSNs were vulnerable to be endocytosed into the Dox-resistant human breast adenocarcinoma (MCF-7/ADR) cells, efficiently realized the endolysosomal escape and remained in the cytoplasm. Because of orchestrating multiple actions above including active targeting, endolysosomal escape and efficient multilevel drug release, Dox/HHS-MSNs could induce the strongest apoptosis and cytotoxicity of MCF-7/ADR cells. Furthermore, a series of in vivo studies on MCF-7/ADR tumor-bearing xenograft mouse models demonstrated that Dox/HHS-MSNs possessed the enhanced tumor-targeting capacity and the best therapeutic efficacy to reverse cancer MDR. PMID:27420116

  19. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  20. EDA circuit simulation

    International Nuclear Information System (INIS)

    EDA technique is used for circuit simulation. The circuit simulation and the analysis are made for a gate circuit one-shot multivibrator. The result shows: EDA circuit simulation is very useful technique

  1. Analog and VLSI circuits

    CERN Document Server

    Chen, Wai-Kai

    2009-01-01

    Featuring hundreds of illustrations and references, this book provides the information on analog and VLSI circuits. It focuses on analog integrated circuits, presenting the knowledge on monolithic device models, analog circuit cells, high performance analog circuits, RF communication circuits, and PLL circuits.

  2. Orchestrated structure evolution: modeling growth-regulated nanomanufacturing

    Science.gov (United States)

    Abbasi, Shaghayegh; Kitayaporn, Sathana; Schwartz, Daniel T.; Böhringer, Karl F.

    2011-04-01

    Orchestrated structure evolution (OSE) is a scalable manufacturing method that combines the advantages of top-down (tool-directed) and bottom-up (self-propagating) approaches. The method consists of a seed patterning step that defines where material nucleates, followed by a growth step that merges seeded islands into the final patterned thin film. We develop a model to predict the completed pattern based on a computationally efficient approximate Green's function solution of the diffusion equation plus a Voronoi diagram based approach that defines the final grain boundary structure. Experimental results rely on electron beam lithography to pattern the seeds, followed by the mass transfer limited growth of copper via electrodeposition. The seed growth model is compared with experimental results to quantify nearest neighbor seed-to-seed interactions as well as how seeds interact with the pattern boundary to impact the local growth rate. Seed-to-seed and seed-to-pattern interactions are shown to result in overgrowth of seeds on edges and corners of the shape, where seeds have fewer neighbors. We explore how local changes to the seed location can be used to improve the patterning quality without increasing the manufacturing cost. OSE is shown to enable a unique set of trade-offs between the cost, time, and quality of thin film patterning.

  3. Dynamin2 organizes lamellipodial actin networks to orchestrate lamellar actomyosin.

    Directory of Open Access Journals (Sweden)

    Manisha Menon

    Full Text Available Actin networks in migrating cells exist as several interdependent structures: sheet-like networks of branched actin filaments in lamellipodia; arrays of bundled actin filaments co-assembled with myosin II in lamellae; and actin filaments that engage focal adhesions. How these dynamic networks are integrated and coordinated to maintain a coherent actin cytoskeleton in migrating cells is not known. We show that the large GTPase dynamin2 is enriched in the distal lamellipod where it regulates lamellipodial actin networks as they form and flow in U2-OS cells. Within lamellipodia, dynamin2 regulated the spatiotemporal distributions of α-actinin and cortactin, two actin-binding proteins that specify actin network architecture. Dynamin2's action on lamellipodial F-actin influenced the formation and retrograde flow of lamellar actomyosin via direct and indirect interactions with actin filaments and a finely tuned GTP hydrolysis activity. Expression in dynamin2-depleted cells of a mutant dynamin2 protein that restores endocytic activity, but not activities that remodel actin filaments, demonstrated that actin filament remodeling by dynamin2 did not depend of its functions in endocytosis. Thus, dynamin2 acts within lamellipodia to organize actin filaments and regulate assembly and flow of lamellar actomyosin. We hypothesize that through its actions on lamellipodial F-actin, dynamin2 generates F-actin structures that give rise to lamellar actomyosin and for efficient coupling of F-actin at focal adhesions. In this way, dynamin2 orchestrates the global actin cytoskeleton.

  4. Perception of orchestral musicians about work environment and conditions

    Directory of Open Access Journals (Sweden)

    Clarissa Stefani Teixeira

    2014-04-01

    Full Text Available The objective of this study was to investigate the perception of 11 orchestral string (viola and violin musicians of both genders with respect to their work environment and conditions. We applied a questionnaire with demographic information and the scale Profile of Work Environment and Working Conditions by Nahas et al. (2009, which analyzes the following components: physical environment, social environment, development and professional achievement, salary and benefits, and social relevance. The social environment component presented the highest score - 8.00 (1.50 points, followed by professional achievement - 7.11 (1.96 points, and physical environment - 6.89 (0.93 points. The salary and benefits provided by the orchestra presented the lowest score - 6.78 (1.56 points. In general, the musicians showed positive perceptions of the components related to work environment and working conditions. However, remuneration and social relevance are work bases that could contribute to improve the working conditions of these professionals.

  5. Automation Hooks Architecture Trade Study for Flexible Test Orchestration

    Science.gov (United States)

    Lansdowne, Chatwin A.; Maclean, John R.; Graffagnino, Frank J.; McCartney, Patrick A.

    2010-01-01

    We describe the conclusions of a technology and communities survey supported by concurrent and follow-on proof-of-concept prototyping to evaluate feasibility of defining a durable, versatile, reliable, visible software interface to support strategic modularization of test software development. The objective is that test sets and support software with diverse origins, ages, and abilities can be reliably integrated into test configurations that assemble and tear down and reassemble with scalable complexity in order to conduct both parametric tests and monitored trial runs. The resulting approach is based on integration of three recognized technologies that are currently gaining acceptance within the test industry and when combined provide a simple, open and scalable test orchestration architecture that addresses the objectives of the Automation Hooks task. The technologies are automated discovery using multicast DNS Zero Configuration Networking (zeroconf), commanding and data retrieval using resource-oriented Restful Web Services, and XML data transfer formats based on Automatic Test Markup Language (ATML). This open-source standards-based approach provides direct integration with existing commercial off-the-shelf (COTS) analysis software tools.

  6. Short- circuit tests of circuit breakers

    OpenAIRE

    Chorovský, P.

    2015-01-01

    This paper deals with short-circuit tests of low voltage electrical devices. In the first part of this paper, there are described basic types of short- circuit tests and their principles. Direct and indirect (synthetic) tests with more details are described in the second part. Each test and principles are explained separately. Oscilogram is obtained from short-circuit tests of circuit breakers at laboratory. The aim of this research work is to propose a test circuit for performing indirect test.

  7. Collective of mechatronics circuit

    International Nuclear Information System (INIS)

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  8. Formal Model of Web Service Composition: An Actor-Based Approach to Unifying Orchestration and Choreography

    OpenAIRE

    Wang, Yong

    2013-01-01

    Web Service Composition creates new composite Web Services from the collection of existing ones to be composed further and embodies the added values and potential usages of Web Services. Web Service Composition includes two aspects: Web Service orchestration denoting a workflow-like composition pattern and Web Service choreography which represents an aggregate composition pattern. There were only a few works which give orchestration and choreography a relationship. In this paper, we introduce...

  9. Programming a Pavlovian-like conditioning circuit in Escherichia coli

    Science.gov (United States)

    Zhang, Haoqian; Lin, Min; Shi, Handuo; Ji, Weiyue; Huang, Longwen; Zhang, Xiaomeng; Shen, Shan; Gao, Rencheng; Wu, Shuke; Tian, Chengzhe; Yang, Zhenglin; Zhang, Guosheng; He, Siheng; Wang, Hao; Saw, Tiffany; Chen, Yiwei; Ouyang, Qi

    2014-01-01

    Synthetic genetic circuits are programmed in living cells to perform predetermined cellular functions. However, designing higher-order genetic circuits for sophisticated cellular activities remains a substantial challenge. Here we program a genetic circuit that executes Pavlovian-like conditioning, an archetypical sequential-logic function, in Escherichia coli. The circuit design is first specified by the subfunctions that are necessary for the single simultaneous conditioning, and is further genetically implemented using four function modules. During this process, quantitative analysis is applied to the optimization of the modules and fine-tuning of the interconnections. Analogous to classical Pavlovian conditioning, the resultant circuit enables the cells to respond to a certain stimulus only after a conditioning process. We show that, although the conditioning is digital in single cells, a dynamically progressive conditioning process emerges at the population level. This circuit, together with its rational design strategy, is a key step towards the implementation of more sophisticated cellular computing.

  10. Analog circuit design designing dynamic circuit response

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    This second volume, Designing Dynamic Circuit Response builds upon the first volume Designing Amplifier Circuits by extending coverage to include reactances and their time- and frequency-related behavioral consequences.

  11. Photomultiplier blanking circuit

    Science.gov (United States)

    Mcclenahan, J. O.

    1972-01-01

    Circuit for protecting photomultiplier equipment from current surges which occur when exposed to brilliant illumination is discussed. Components of circuit and details of operation are provided. Circuit diagram to show action of blanking pulse on zener diode is included.

  12. Injury and the orchestral environment: part II. Organisational culture, behavioural norms, and attitudes to injury.

    Science.gov (United States)

    Rickert, Dale Ll; Barrett, Margaret S; Ackermann, Bronwen J

    2014-06-01

    The organisational culture, behavioural norms, and attitudes of a workplace have a profound influence on levels of injury and illness amongst its workers. While this is well established in Work Health and Safety literature, very little research has attempted to understand the influence of organisational culture on injury risk in the orchestral profession. To address this, the current study aimed to investigate the influence of organisational culture on injury outcomes for orchestral musicians. Using a qualitative case study methodology, in-depth semi-structured interviews were undertaken with 10 professional orchestral cellists (2 freelance and 8 fulltime members) from a single Australian orchestra. After initial data analysis, further interviews were undertaken with a set of 5 orchestral management staff as a means of data triangulation. All data were analysed using a themes-based "analysis of narrative" approach. The findings indicate that an orchestral culture exists in which musicians see injury as a sign of weakness, failure, and poor musicianship. Such negative perceptions of injury influence musicians to play through considerable levels of pain and continue performing with injuries. Because of perceived judgment from the orchestral group, musicians were found to conceal injuries from colleagues and management staff. Freelance musicians felt that disclosing injuries may lead to decreased work opportunities, and both full-time and casual musicians felt that "opening up" about injury may subject them to group judgment about their technique or musicianship. The study suggests education measures which may be effective at influencing individual behaviours and attitudes as well as cultural change initiatives which could lead to long-term positive health outcomes in the orchestral workplace.

  13. Analog circuit design designing waveform processing circuits

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The fourth volume in the set Designing Waveform-Processing Circuits builds on the previous 3 volumes and presents a variety of analog non-amplifier circuits, including voltage references, current sources, filters, hysteresis switches and oscilloscope trigger and sweep circuitry, function generation, absolute-value circuits, and peak detectors.

  14. Cellular Telephone

    Institute of Scientific and Technical Information of China (English)

    杨周

    1996-01-01

    Cellular phones, used in automobiles, airliners, and passenger trains, are basically low-power radiotelephones. Calls go through radio transmitters that are located within small geographical units called cells. Because each cell’s signals are too weak to interfere with those of other cells operating on the same fre-

  15. Cellular and molecular basis of cerebellar development

    Science.gov (United States)

    Martinez, Salvador; Andreu, Abraham; Mecklenburg, Nora; Echevarria, Diego

    2013-01-01

    Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering, and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification, and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function. PMID:23805080

  16. Cellular and Molecular Basis of Cerebellar Development

    Directory of Open Access Journals (Sweden)

    Salvador eMartinez

    2013-06-01

    Full Text Available Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function.

  17. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states

    Directory of Open Access Journals (Sweden)

    Allison eGraebner

    2015-08-01

    Full Text Available A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools have greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections.

  18. Functional roles for noise in genetic circuits

    OpenAIRE

    Eldar, Avigdor; Michael B Elowitz

    2010-01-01

    The genetic circuits that regulate cellular functions are subject to stochastic fluctuations, or ‘noise’, in the levels of their components. Noise, far from just a nuisance, has begun to be appreciated for its essential role in key cellular activities. Noise functions in both microbial and eukaryotic cells, in multicellular development, and in evolution. It enables coordination of gene expression across large regulons, as well as probabilistic differentiation strategies that function across c...

  19. 基于注解的服务编排%Annotation-Based Service Orchestration

    Institute of Scientific and Technical Information of China (English)

    王斌; 黄鹤远; 徐景民; 朱俊

    2009-01-01

    Service orchestration plays a vital role in assembling services into business processes in a Service Oriented Arcmtecture.In current practices,the orchestrating logic is usually described by a process language,which is theretore separated from the services in the system implemented by certain programming language.It introduces two issues:1)It cost additional efforts for developers to be proficient with a new process language/script,and its running environment.2)It causes development performance degradation due to transtormation efforts for process language and programming language,such as transforms Java services into web services.To overcome these issues,this paper proposes a novel alternative system which takes advantage of the annotation construct of Java programming language to represent business processes.Through the expenments,we found that developers can efficiently develop business processes based on their current proficient programming language skill using the proposed system to achieve the service orchestration.

  20. Solid-state circuits

    CERN Document Server

    Pridham, G J

    2013-01-01

    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  1. Circuit analysis for dummies

    CERN Document Server

    Santiago, John

    2013-01-01

    Circuits overloaded from electric circuit analysis? Many universities require that students pursuing a degree in electrical or computer engineering take an Electric Circuit Analysis course to determine who will ""make the cut"" and continue in the degree program. Circuit Analysis For Dummies will help these students to better understand electric circuit analysis by presenting the information in an effective and straightforward manner. Circuit Analysis For Dummies gives you clear-cut information about the topics covered in an electric circuit analysis courses to help

  2. Building Robust Functionality in Synthetic Circuits Using Engineered Feedback Regulation

    OpenAIRE

    Chen, Susan; Harrigan, Patrick; Heineike, Benjamin; Stewart-Ornstein, Jacob; El-Samad, Hana

    2013-01-01

    The ability to engineer novel functionality within cells, to quantitatively control cellular circuits, and to manipulate the behaviors of populations, has many important applications in biotechnology and biomedicine. These applications are only beginning to be explored. In this review, we advocate the use of feedback control as an essential strategy for the engineering of robust homeostatic control of biological circuits and cellular populations. We also describe recent works where feedback c...

  3. Research on Control of Uric Acid Homeostasis at Cellular Level by a Synthetic Gene Circuit%利用合成的基因回路实现细胞水平上尿酸稳态控制的实验研究

    Institute of Scientific and Technical Information of China (English)

    曲国龙; 邵妤; 谭俊杰; 陈章; 金晶; 凌焱; 李玉霞; 刘刚; 陈惠鹏

    2014-01-01

    Objective: To study the regulation of uric acid homeostasis at cellular level introduced by uric acid-mediated gene circuit that was constructed with synthetic biology approach. Methods: Based on the transcriptional inhibitor hucR and its binding site hucO in the genome of Deinococcus radiodurans R1, synthesize optimized tran-scriptional inhibitor gene mUTs and its binding site 8-series structure(hucO8) chemically to construct the circuit;transfect HeLa cells, verifying the mechanisms of the circuit and its reaction to uric acid by assaying the expres-sion of secreted alkaline phosphatase(SEAP); based on these, use optimized Aspergillus flavus urate oxidase gene smUox to replace SEAP gene, transfect HeLa cells, and verify the ability of circuit to regulate the uric acid by as-saying the uric acid concentration change in the culture medium before and after the transfection. Results: The transcriptional inhibitor expression vector pcDNA3.1/V5-mUTs, reporter gene expression vector pSEAP-hucO8, smUox expression vector phucO8-smUox, pBudCE4.1-smUox, the co-direction co-expression vector pBudCE4.1-SEAP-mUTs, pBudCE4.1-mUTs-smUox were constructed; the single transfection with pBudCE4.1-SEAP-mUTs or the co-transfection with pSEAP-hucO8 and pcDNA3.1/V5-mUTs, by assaying SEAP expression level in the culture medium, verifies the impact of the double and single vector circuit to uric acid; replacing SAEP gene with smUox,the ability of double and single vector circuits to mediate uric acid is demonstrated by assaying the concentration change of uric acid concentration in the medium within 48 hours. Conclusion: At the cellular level, the construct-ed double vector circuit(phucO8-smUox、pcDNA3.1/V5-mUTs) and the single vector circuit(pBudCE4.1-mUTs-smUox) could both sense and regulate the urid acid. By increasing the mole ration between mUTs and hucO8 in a certain extent, the level and the extent in which the circuit regulates the uric acid could be changed.%目的:利用合

  4. Oscillations by Minimal Bacterial Suicide Circuits Reveal Hidden Facets of Host-Circuit Physiology

    OpenAIRE

    Philippe Marguet; Yu Tanouchi; Eric Spitz; Cameron Smith; Lingchong You

    2010-01-01

    Synthetic biology seeks to enable programmed control of cellular behavior though engineered biological systems. These systems typically consist of synthetic circuits that function inside, and interact with, complex host cells possessing pre-existing metabolic and regulatory networks. Nevertheless, while designing systems, a simple well-defined interface between the synthetic gene circuit and the host is frequently assumed. We describe the generation of robust but unexpected oscillations in th...

  5. Insulin-like growth factor 1 (IGF1) and its active peptide (1-3)IGF1 enhance the expression of synaptic markers in neuronal circuits through different cellular mechanisms.

    LENUS (Irish Health Repository)

    Corvin, Aiden P

    2012-06-27

    Insulin-like growth factor-1 (IGF1) and its active peptide (1-3)IGF1 modulate brain growth and plasticity and are candidate molecules for treatment of brain disorders. IGF1 N-terminal portion is naturally cleaved to generate the tri-peptide (1-3)IGF1 (glycine-praline-glutamate). IGF1 and (1-3)IGF have been proposed as treatment for neuropathologies, yet their effect on nerve cells has not been directly compared. In this study we examine the effects of IGF1 and (1-3)IGF1 in primary cortical cultures and measure the expression levels of markers for intracellular pathways and synaptic function. We find that both treatments activate the IGF1 receptor and enhance the expression of synaptic markers, however, they activate different intracellular pathways. Furthermore, (1-3)IGF1 administration increases the expression of endogenous IGF1, suggesting a direct interaction between the two molecules. The results show that the two molecules increase the expression of synaptic proteins through activating different cellular mechanisms.

  6. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1972-01-01

    Electronic Devices and Circuits, Volume 3 provides a comprehensive account on electronic devices and circuits and includes introductory network theory and physics. The physics of semiconductor devices is described, along with field effect transistors, small-signal equivalent circuits of bipolar transistors, and integrated circuits. Linear and non-linear circuits as well as logic circuits are also considered. This volume is comprised of 12 chapters and begins with an analysis of the use of Laplace transforms for analysis of filter networks, followed by a discussion on the physical properties of

  7. The circuit designer's companion

    CERN Document Server

    Williams, Tim

    2013-01-01

    The Circuit Designer's Companion covers the theoretical aspects and practices in analogue and digital circuit design. Electronic circuit design involves designing a circuit that will fulfill its specified function and designing the same circuit so that every production model of it will fulfill its specified function, and no other undesired and unspecified function.This book is composed of nine chapters and starts with a review of the concept of grounding, wiring, and printed circuits. The subsequent chapters deal with the passive and active components of circuitry design. These topics are foll

  8. Intuitive analog circuit design

    CERN Document Server

    Thompson, Marc

    2013-01-01

    Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi

  9. A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae

    DEFF Research Database (Denmark)

    Val, Marie-Eve; Marbouty, Martial; Martins, Francisco de Lemos;

    2016-01-01

    important differences between plasmids and chromosomes is that the latter replicate during a defined period of the cell cycle, ensuring a single round of replication per cell. Vibrio cholerae carries two circular chromosomes, Chr1 and Chr2, which are replicated in a well-orchestrated manner with the cell...

  10. Webbing and orchestration : Two interrelated views on digital tools in mathematics education

    NARCIS (Netherlands)

    Trouche, L.; Drijvers, Paul

    2014-01-01

    The integration of digital tools in mathematics education is considered both promising and problematic. To deal with this issue, notions of webbing and instrumental orchestration are developed. However, the two seemed to be disconnected, and having different cultural and theoretical roots. In this a

  11. A checkpoint control orchestrates the replication of the two chromosomes of Vibrio cholerae

    DEFF Research Database (Denmark)

    Val, Marie-Eve; Marbouty, Martial; Martins, Francisco de Lemos;

    2016-01-01

    of the important differences between plasmids and chromosomes is that the latter replicate during a defined period of the cell cycle, ensuring a single round of replication per cell. Vibrio cholerae carries two circular chromosomes, Chr1 and Chr2, which are replicated in a well-orchestrated manner with the cell...

  12. Musicians' Preferences for Tempo and Pitch Levels in Recorded Orchestral Music

    Science.gov (United States)

    Geringer, John M.

    2010-01-01

    This study was designed to ascertain musicians' tempo and pitch level preferences when listening to orchestral music. Ninety graduate and undergraduate music major students were assigned randomly to one of three groups. Participants listened individually to recorded symphonic excerpts, 5 with relatively fast and 5 with relatively slow tempos.…

  13. Webbing and Orchestration. Two Interrelated Views on Digital Tools in Mathematics Education

    Science.gov (United States)

    Trouche, Luc; Drijvers, Paul

    2014-01-01

    The integration of digital tools in mathematics education is considered both promising and problematic. To deal with this issue, notions of "webbing" and "instrumental orchestration" are developed. However, the two seemed to be disconnected, and having different cultural and theoretical roots. In this article, we investigate…

  14. The Epistemological Beliefs, Learning Approaches and Study Orchestrations of University Students

    Science.gov (United States)

    Rodriguez, Lourdes; Cano, Francisco

    2006-01-01

    This study examined the learning experience (learning approaches, study orchestrations and epistemological beliefs) of 388 university students. Data analysis revealed two main results. First, the different aspects of students' learning experience were related: learning approaches and epistemological beliefs (two pairs of canonical variates…

  15. WPS orchestration using the Taverna workbench: The eScience approach

    Science.gov (United States)

    de Jesus, J.; Walker, P.; Grant, M.; Groom, S.

    2012-10-01

    eScience is an umbrella concept which covers internet technologies, such as web service orchestration that involves manipulation and processing of high volumes of data, using simple and efficient methodologies. This concept is normally associated with bioinformatics, but nothing prevents the use of an identical approach for geoinfomatics and OGC (Open Geospatial Consortium) web services like WPS (Web Processing Service). In this paper we present an extended WPS implementation based on the PyWPS framework using an automatically generated WSDL (Web Service Description Language) XML document that replicates the WPS input/output document structure used during an Execute request to a server. Services are accessed using a modified SOAP (Simple Object Access Protocol) interface provided by PyWPS, that uses service and input/outputs identifiers as element names. The WSDL XML document is dynamically generated by applying XSLT (Extensible Stylesheet Language Transformation) to the getCapabilities XML document that is generated by PyWPS. The availability of the SOAP interface and WSDL description allows WPS instances to be accessible to workflow development software like Taverna, enabling users to build complex workflows using web services represented by interconnecting graphics. Taverna will transform the visual representation of the workflow into a SCUFL (Simple Conceptual Unified Flow Language) based XML document that can be run internally or sent to a Taverna orchestration server. SCUFL uses a dataflow-centric orchestration model as opposed to the more commonly used orchestration language BPEL (Business Process Execution Language) which is process-centric.

  16. Kindergarten Teachers' Orchestration of Mathematical Activities Afforded by Technology: Agency and Mediation

    Science.gov (United States)

    Carlsen, Martin; Erfjord, Ingvald; Hundeland, Per Sigurd; Monaghan, John

    2016-01-01

    This paper focuses on kindergarten teachers' interactions with young children during mathematical learning activities involving the use of digital tools. We aim to characterise the teachers' roles and actions in these activities and extend considerations of teachers' orchestrations current in the research literature with regard to agency and…

  17. Resource orchestration in family firms : Investigating how entrepreneurial orientation, generational involvement, and participative strategy affect performance

    OpenAIRE

    Chirico, Francesco; Sirmon, David G.; Sciascia, Salvatore; Mazzola, Pietro

    2011-01-01

    Drawing on the process of resource orchestration, we argue a co-alignment of multiple factors is needed for family firms to increase performance through entrepreneurship. Specifically, we posit that entrepreneurial orientation provides the mobilizing vision to use the heterogeneous yet complementary knowledge and experiences offered by increased generational involvement toward entrepreneurship. However, without a coordinating mechanism, generational involvement leads to conflict and negative ...

  18. Recurrent Routines: Analyzing and Supporting Orchestration in Technology-Enhanced Primary Classrooms

    Science.gov (United States)

    Prieto, Luis P.; Villagra-Sobrino, Sara; Jorrin-Abellan, Ivan M.; Martinez-Mones, Alejandra; Dimitriadis, Yannis

    2011-01-01

    The increasing presence of multiple Information and Communication Technologies (ICT) in the classroom does not guarantee an improvement of the learning experiences of students, unless it is also accompanied by pedagogically effective orchestration of those technologies. In order to help teachers in this endeavour, it can be useful to understand…

  19. Electrical Circuits and Water Analogies

    Science.gov (United States)

    Smith, Frederick A.; Wilson, Jerry D.

    1974-01-01

    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  20. Circuits on Cylinders

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro; Vinay, V

    2006-01-01

    We consider the computational power of constant width polynomial size cylindrical circuits and nondeterministic branching programs. We show that every function computed by a Pi2 o MOD o AC0 circuit can also be computed by a constant width polynomial size cylindrical nondeterministic branching...... program (or cylindrical circuit) and that every function computed by a constant width polynomial size cylindrical circuit belongs to ACC0....

  1. Electric circuits essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Electric Circuits I includes units, notation, resistive circuits, experimental laws, transient circuits, network theorems, techniques of circuit analysis, sinusoidal analysis, polyph

  2. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, Simon Minze; Vertregt, Maarten

    2010-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  3. Signal sampling circuit

    NARCIS (Netherlands)

    Louwsma, Simon Minze; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  4. Piezoelectric drive circuit

    Science.gov (United States)

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  5. Short-circuit logic

    NARCIS (Netherlands)

    J.A. Bergstra; A. Ponse

    2010-01-01

    Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is only evaluated if the first argument does not suffice to determine the value of the expression. In programming, short-circuit evaluation is widely used. A short-circuit logic is a variant of p

  6. Calcium signaling orchestrates glioblastoma development: Facts and conjunctures.

    Science.gov (United States)

    Leclerc, Catherine; Haeich, Jacques; Aulestia, Francisco J; Kilhoffer, Marie-Claude; Miller, Andrew L; Néant, Isabelle; Webb, Sarah E; Schaeffer, Etienne; Junier, Marie-Pierre; Chneiweiss, Hervé; Moreau, Marc

    2016-06-01

    While it is a relatively rare disease, glioblastoma multiform (GBM) is one of the more deadly adult cancers. Following current interventions, the tumor is never eliminated whatever the treatment performed; whether it is radiotherapy, chemotherapy, or surgery. One hypothesis to explain this poor outcome is the "cancer stem cell" hypothesis. This concept proposes that a minority of cells within the tumor mass share many of the properties of adult neural stem cells and it is these that are responsible for the growth of the tumor and its resistance to existing therapies. Accumulating evidence suggests that Ca(2+) might also be an important positive regulator of tumorigenesis in GBM, in processes involving quiescence, maintenance, proliferation, or migration. Glioblastoma tumors are generally thought to develop by co-opting pathways that are involved in the formation of an organ. We propose that the cells initiating the tumor, and subsequently the cells of the tumor mass, must hijack the different checkpoints that evolution has selected in order to prevent the pathological development of an organ. In this article, two main points are discussed. (i) The first is the establishment of a so-called "cellular society," which is required to create a favorable microenvironment. (ii) The second is that GBM can be considered to be an organism, which fights to survive and develop. Since GBM evolves in a limited space, its only chance of development is to overcome the evolutionary checkpoints. For example, the deregulation of the normal Ca(2+) signaling elements contributes to the progression of the disease. Thus, by manipulating the Ca(2+) signaling, the GBM cells might not be killed, but might be reprogrammed toward a new fate that is either easy to cure or that has no aberrant functioning. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.

  7. Calcium signaling orchestrates glioblastoma development: Facts and conjunctures.

    Science.gov (United States)

    Leclerc, Catherine; Haeich, Jacques; Aulestia, Francisco J; Kilhoffer, Marie-Claude; Miller, Andrew L; Néant, Isabelle; Webb, Sarah E; Schaeffer, Etienne; Junier, Marie-Pierre; Chneiweiss, Hervé; Moreau, Marc

    2016-06-01

    While it is a relatively rare disease, glioblastoma multiform (GBM) is one of the more deadly adult cancers. Following current interventions, the tumor is never eliminated whatever the treatment performed; whether it is radiotherapy, chemotherapy, or surgery. One hypothesis to explain this poor outcome is the "cancer stem cell" hypothesis. This concept proposes that a minority of cells within the tumor mass share many of the properties of adult neural stem cells and it is these that are responsible for the growth of the tumor and its resistance to existing therapies. Accumulating evidence suggests that Ca(2+) might also be an important positive regulator of tumorigenesis in GBM, in processes involving quiescence, maintenance, proliferation, or migration. Glioblastoma tumors are generally thought to develop by co-opting pathways that are involved in the formation of an organ. We propose that the cells initiating the tumor, and subsequently the cells of the tumor mass, must hijack the different checkpoints that evolution has selected in order to prevent the pathological development of an organ. In this article, two main points are discussed. (i) The first is the establishment of a so-called "cellular society," which is required to create a favorable microenvironment. (ii) The second is that GBM can be considered to be an organism, which fights to survive and develop. Since GBM evolves in a limited space, its only chance of development is to overcome the evolutionary checkpoints. For example, the deregulation of the normal Ca(2+) signaling elements contributes to the progression of the disease. Thus, by manipulating the Ca(2+) signaling, the GBM cells might not be killed, but might be reprogrammed toward a new fate that is either easy to cure or that has no aberrant functioning. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen. PMID:26826650

  8. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis*

    OpenAIRE

    Schmitt, Estelle; Paquet, Claudie; Beauchemin, Myriam; Bertrand, Richard

    2007-01-01

    Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycl...

  9. Practical microwave circuits

    CERN Document Server

    Maas, Stephen A

    2014-01-01

    This book differentiates itself by presenting microwave and RF technology from a circuit design viewpoint, rather than a set of electromagnetic problems. The emphasis is on gaining a practical understanding of often overlooked but vital physical processes.This resource provides microwave circuit engineers with analytical techniques for understanding and designing high-frequency circuits almost entirely from a circuit point of view. Electromagnetic concepts are not avoided, but they are employed only as necessary to support circuit-theoretical ones or to describe phenomena such as radiation and

  10. Exact Threshold Circuits

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Podolskii, Vladimir V.

    2010-01-01

    We initiate a systematic study of constant depth Boolean circuits built using exact threshold gates. We consider both unweighted and weighted exact threshold gates and introduce corresponding circuit classes. We next show that this gives a hierarchy of classes that seamlessly interleave with the ......We initiate a systematic study of constant depth Boolean circuits built using exact threshold gates. We consider both unweighted and weighted exact threshold gates and introduce corresponding circuit classes. We next show that this gives a hierarchy of classes that seamlessly interleave...... with the well-studied corresponding hierarchies defined using ordinary threshold gates. A major open problem in Boolean circuit complexity is to provide an explicit super-polynomial lower bound for depth two threshold circuits. We identify the class of depth two exact threshold circuits as a natural subclass...

  11. Feedback in analog circuits

    CERN Document Server

    Ochoa, Agustin

    2016-01-01

    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  12. Balance - brillance - nostalgie: des inventions d'instruments d'orchestre vers 1880

    OpenAIRE

    Schröder, Gesine; Sasso-Fruth, Elisabeth; Wollny, Lu

    2010-01-01

    Etat de l’art en théorie musicale Ce n’est que rarement que les recherches organographiques ont pris en considération l’ambiance et le travail dans les orchestres ou la pratique d’exécution virtuose du soliste (Aringer 2008). Ce que signifiait la naissance de l’Historisme pour une ère qui s’enthousiasmait pour la technologie a été démontré partiellement dans des études de Brown (1999) : l’attraction exercée par des effets sonores massifs et l’institution du chef d’orchestre qui était char...

  13. DECENTRALIZED ORCHESTRATION OF COMPOSITE OGC WEB PROCESSING SERVICES IN THE CLOUD

    Directory of Open Access Journals (Sweden)

    F. Xiao

    2016-09-01

    Full Text Available Current web-based GIS or RS applications generally rely on centralized structure, which has inherent drawbacks such as single points of failure, network congestion, and data inconsistency, etc. The inherent disadvantages of traditional GISs need to be solved for new applications on Internet or Web. Decentralized orchestration offers performance improvements in terms of increased throughput and scalability and lower response time. This paper investigates build time and runtime issues related to decentralized orchestration of composite geospatial processing services based on OGC WPS standard specification. A case study of dust storm detection was demonstrated to evaluate the proposed method and the experimental results indicate that the method proposed in this study is effective for its ability to produce the high quality solution at a low cost of communications for geospatial processing service composition problem.

  14. Decentralized Orchestration of Composite Ogc Web Processing Services in the Cloud

    Science.gov (United States)

    Xiao, F.; Shea, G. Y. K.; Cao, J.

    2016-09-01

    Current web-based GIS or RS applications generally rely on centralized structure, which has inherent drawbacks such as single points of failure, network congestion, and data inconsistency, etc. The inherent disadvantages of traditional GISs need to be solved for new applications on Internet or Web. Decentralized orchestration offers performance improvements in terms of increased throughput and scalability and lower response time. This paper investigates build time and runtime issues related to decentralized orchestration of composite geospatial processing services based on OGC WPS standard specification. A case study of dust storm detection was demonstrated to evaluate the proposed method and the experimental results indicate that the method proposed in this study is effective for its ability to produce the high quality solution at a low cost of communications for geospatial processing service composition problem.

  15. Context-Based Orchestration for Control of Resource-Efficient Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Michael Schwarz

    2012-08-01

    Full Text Available The increasing competition between manufacturers, the shortening of innovation cycles and the growing importance of resource-efficient manufacturing demand a higher versatility of factory automation. Service-oriented approaches depict a promising possibility to realize new control architectures by encapsulating the functionality of mechatronic devices into services. An efficient discovery, context-based selection and dynamic orchestration of these services are the key features for the creation of highly adaptable manufacturing processes. We describe a semantic service discovery and ad-hoc orchestration system, which is able to react to new process variants and changed contextual information (e.g., failure of field devices, requirements on the consumption of resources. Because a standardized vocabulary, especially for the description of mechatronic functionalities, is still missing in the manufacturing domain, the semantic description of services, processes and manufacturing plants as well as the semantic interpretation of contextual information play an important part.

  16. A Domain Specific Language for Orchestrating User Tasks Whilst Navigation Web Sites

    OpenAIRE

    Firmenich, Sergio; Rossi, Gustavo; Winckler, Marco Antonio

    2013-01-01

    In this paper we claim that there are a lot of processes over Web applications that require a high level of coordination between individuals and tasks featuring procedures. We propose hereafter a Domain Specific Language (DSL) for describing the asynchronous orchestration users’ tasks including manual users’ tasks (i.e. simple instructions that tell users what to do during the navigation) and automated tasks (i.e. tasks that can be partially or completely automated by client-side scripts). Th...

  17. IP Models to Orchestrate Innovation Ecosystems: IMEC, A PUBLIC RESEARCH INSTITUTE IN NANO-ELECTRONICS

    OpenAIRE

    Leten, Bart; Vanhaverbeke, Wim; Roijakkers, Nadine; Clerix, André; Van Helleputte, Johan

    2013-01-01

    Companies increasingly organize innovation activities within innovation ecosystems. This study illustrates the central role of the IP-model that an orchestrator develops for the innovation ecosystem partners. The governance of IP is instrumental for the success of innovation ecosystems as it determines the value appropriation potential for the ecosystem partners and positively influences the success of innovation ecosystems. The insights are based on a case study of IMEC, a public research in...

  18. An Orchestrating Evaluation of Complex Educational Technologies: a Case Study of a CSCL System

    Directory of Open Access Journals (Sweden)

    Luis P. Prieto

    2014-06-01

    Full Text Available As digital technologies permeate every aspect of our lives, the complexity of the educational settings, and of the technological support we use within them, unceasingly rises. This increased complexity, along with the need for educational practitioners to apply such technologies within multi-constraint authentic settings, has given rise to the notion of technology-enhanced learning practice as “orchestration of learning”. However, at the same time, the complexity involved in evaluating the benefits of such educational technologies has also increased, prompting questions about the way evaluators can cope with the different places, technologies, informants and issues involved in their evaluation activity. By proposing the notion of “orchestrating evaluation”, this paper tries to reconcile the often disparate “front office accounts” of research publications and the “shop floor practice” of evaluation of educational technology, through the case study of evaluating a system to help teachers in coordinating computer-supported collaborative learning (CSCL scenarios. We reuse an internationally-evaluated conceptual framework of “orchestration aspects” (design, management, adaptation, pragmatism, etc. to structure the case‟s narrative, showing how the original evaluation questions and methods were modulated in the face of the multiple (authentic evaluation setting constraints.

  19. Software Defined Resource Orchestration System for Multitask Application in Heterogeneous Mobile Cloud Computing

    Directory of Open Access Journals (Sweden)

    Qi Qi

    2016-01-01

    Full Text Available The mobile cloud computing (MCC that combines mobile computing and cloud concept takes wireless access network as the transmission medium and uses mobile devices as the client. When offloading the complicated multitask application to the MCC environment, each task executes individually in terms of its own computation, storage, and bandwidth requirement. Due to user’s mobility, the provided resources contain different performance metrics that may affect the destination choice. Nevertheless, these heterogeneous MCC resources lack integrated management and can hardly cooperate with each other. Thus, how to choose the appropriate offload destination and orchestrate the resources for multitask is a challenge problem. This paper realizes a programming resource provision for heterogeneous energy-constrained computing environments, where a software defined controller is responsible for resource orchestration, offload, and migration. The resource orchestration is formulated as multiobjective optimal problem that contains the metrics of energy consumption, cost, and availability. Finally, a particle swarm algorithm is used to obtain the approximate optimal solutions. Simulation results show that the solutions for all of our studied cases almost can hit Pareto optimum and surpass the comparative algorithm in approximation, coverage, and execution time.

  20. Cellular and molecular mechanisms of repair in acute and chronic wound healing

    OpenAIRE

    Martin, P.; Nunan, R

    2015-01-01

    Summary A considerable understanding of the fundamental cellular and molecular mechanisms underpinning healthy acute wound healing has been gleaned from studying various animal models, and we are now unravelling the mechanisms that lead to chronic wounds and pathological healing including fibrosis. A small cut will normally heal in days through tight orchestration of cell migration and appropriate levels of inflammation, innervation and angiogenesis. Major surgeries may take several weeks to ...

  1. Analog circuits cookbook

    CERN Document Server

    Hickman, Ian

    2013-01-01

    Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.

  2. Stochastic Switching Circuit Synthesis

    OpenAIRE

    Wilhelm, Daniel; Bruck, Jehoshua

    2009-01-01

    Shannon in his 1938 Masterpsilas Thesis demonstrated that any Boolean function can be realized by a switching relay circuit, leading to the development of deterministic digital logic. Here, we replace each classical switch with a probabilistic switch (pswitch). We present algorithms for synthesizing circuits closed with a desired probability, including an algorithm that generates optimal size circuits for any binary fraction. We also introduce a new duality property for series-parallel stocha...

  3. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  4. Analog circuit design

    CERN Document Server

    Dobkin, Bob

    2012-01-01

    Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are being challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions aids engineers with elegant and practical design techniques that focus on common analog challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. <

  5. Signal sampling circuit

    OpenAIRE

    Louwsma, Simon Minze; Vertregt, Maarten

    2011-01-01

    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converter via a respective output switch. The output switch of each channel opens for a tracking time period when the track-and-hold circuit is in a tracking mode for sampling the signal, and closes for a ...

  6. Electronic devices and circuits

    CERN Document Server

    Pridham, Gordon John

    1968-01-01

    Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th

  7. Security electronics circuits manual

    CERN Document Server

    MARSTON, R M

    1998-01-01

    Security Electronics Circuits Manual is an invaluable guide for engineers and technicians in the security industry. It will also prove to be a useful guide for students and experimenters, as well as providing experienced amateurs and DIY enthusiasts with numerous ideas to protect their homes, businesses and properties.As with all Ray Marston's Circuits Manuals, the style is easy-to-read and non-mathematical, with the emphasis firmly on practical applications, circuits and design ideas. The ICs and other devices used in the practical circuits are modestly priced and readily available ty

  8. CMOS circuits manual

    CERN Document Server

    Marston, R M

    1995-01-01

    CMOS Circuits Manual is a user's guide for CMOS. The book emphasizes the practical aspects of CMOS and provides circuits, tables, and graphs to further relate the fundamentals with the applications. The text first discusses the basic principles and characteristics of the CMOS devices. The succeeding chapters detail the types of CMOS IC, including simple inverter, gate and logic ICs and circuits, and complex counters and decoders. The last chapter presents a miscellaneous collection of two dozen useful CMOS circuits. The book will be useful to researchers and professionals who employ CMOS circu

  9. Timergenerator circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Timer/Generator Circuits Manual is an 11-chapter text that deals mainly with waveform generator techniques and circuits. Each chapter starts with an explanation of the basic principles of its subject followed by a wide range of practical circuit designs. This work presents a total of over 300 practical circuits, diagrams, and tables.Chapter 1 outlines the basic principles and the different types of generator. Chapters 2 to 9 deal with a specific type of waveform generator, including sine, square, triangular, sawtooth, and special waveform generators pulse. These chapters also include pulse gen

  10. Circuits and filters handbook

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  11. MOS integrated circuit design

    CERN Document Server

    Wolfendale, E

    2013-01-01

    MOS Integral Circuit Design aims to help in the design of integrated circuits, especially large-scale ones, using MOS Technology through teaching of techniques, practical applications, and examples. The book covers topics such as design equation and process parameters; MOS static and dynamic circuits; logic design techniques, system partitioning, and layout techniques. Also featured are computer aids such as logic simulation and mask layout, as well as examples on simple MOS design. The text is recommended for electrical engineers who would like to know how to use MOS for integral circuit desi

  12. Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration–proliferation dichotomy

    Science.gov (United States)

    Bhandari, Deepali; Lopez-Sanchez, Inmaculada; To, Andrew; Lo, I-Chung; Aznar, Nicolas; Leyme, Anthony; Gupta, Vijay; Niesman, Ingrid; Maddox, Adam L.; Garcia-Marcos, Mikel; Farquhar, Marilyn G.; Ghosh, Pradipta

    2015-01-01

    Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously—a phenomenon called “migration–proliferation dichotomy.” We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration–proliferation dichotomy during cancer invasion, wound healing, and development. PMID:26286990

  13. Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration-proliferation dichotomy.

    Science.gov (United States)

    Bhandari, Deepali; Lopez-Sanchez, Inmaculada; To, Andrew; Lo, I-Chung; Aznar, Nicolas; Leyme, Anthony; Gupta, Vijay; Niesman, Ingrid; Maddox, Adam L; Garcia-Marcos, Mikel; Farquhar, Marilyn G; Ghosh, Pradipta

    2015-09-01

    Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously--a phenomenon called "migration-proliferation dichotomy." We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration-proliferation dichotomy during cancer invasion, wound healing, and development. PMID:26286990

  14. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    Energy Technology Data Exchange (ETDEWEB)

    Aravindan, Natarajan, E-mail: naravind@ouhsc.edu [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Aravindan, Sheeja; Pandian, Vijayabaskar; Khan, Faizan H.; Ramraj, Satish Kumar; Natt, Praveen [Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Natarajan, Mohan [Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas (United States)

    2014-03-01

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells.

  15. Acquired Tumor Cell Radiation Resistance at the Treatment Site Is Mediated Through Radiation-Orchestrated Intercellular Communication

    International Nuclear Information System (INIS)

    Purpose: Radiation resistance induced in cancer cells that survive after radiation therapy (RT) could be associated with increased radiation protection, limiting the therapeutic benefit of radiation. Herein we investigated the sequential mechanistic molecular orchestration involved in radiation-induced radiation protection in tumor cells. Results: Radiation, both in the low-dose irradiation (LDIR) range (10, 50, or 100 cGy) or at a higher, challenge dose IR (CDIR), 4 Gy, induced dose-dependent and sustained NFκB-DNA binding activity. However, a robust and consistent increase was seen in CDIR-induced NFκB activity, decreased DNA fragmentation, apoptosis, and cytotoxicity and attenuation of CDIR-inhibited clonal expansion when the cells were primed with LDIR prior to challenge dose. Furthermore, NFκB manipulation studies with small interfering RNA (siRNA) silencing or p50/p65 overexpression unveiled the influence of LDIR-activated NFκB in regulating CDIR-induced DNA fragmentation and apoptosis. LDIR significantly increased the transactivation/translation of the radiation-responsive factors tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), cMYC, and SOD2. Coculture experiments exhibit LDIR-influenced radiation protection and increases in cellular expression, secretion, and activation of radiation-responsive molecules in bystander cells. Individual gene-silencing approach with siRNAs coupled with coculture studies showed the influence of LDIR-modulated TNF-α, IL-1α, cMYC, and SOD2 in induced radiation protection in bystander cells. NFκB inhibition/overexpression studies coupled with coculture experiments demonstrated that TNF-α, IL-1α, cMYC, and SOD2 are selectively regulated by LDIR-induced NFκB. Conclusions: Together, these data strongly suggest that scattered LDIR-induced NFκB-dependent TNF-α, IL-1α, cMYC, and SOD2 mediate radiation protection to the subsequent challenge dose in tumor cells

  16. A Virtual Circuits Lab

    Science.gov (United States)

    Vick, Matthew E.

    2010-01-01

    The University of Colorado's Physics Education Technology (PhET) website offers free, high-quality simulations of many physics experiments that can be used in the classroom. The Circuit Construction Kit, for example, allows students to safely and constructively play with circuit components while learning the mathematics behind many circuit…

  17. Synchronizing Hyperchaotic Circuits

    DEFF Research Database (Denmark)

    Tamasevicius, Arunas; Cenys, Antanas; Namajunas, Audrius;

    1997-01-01

    Regarding possible applications to secure communications the technique of synchronizing hyperchaotic circuits with a single dynamical variable is discussed. Several specific examples including the fourth-order circuits with two positive Lyapunov exponents as well as the oscillator with a delay line...

  18. Approximate circuits for increased reliability

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-12-22

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  19. Approximate circuits for increased reliability

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Jason R.; Mayo, Jackson R.

    2015-08-18

    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  20. Cellular: Toward personal communications

    Science.gov (United States)

    Heffernan, Stuart

    1991-09-01

    The cellular industry is one of the fastest growing segment of the telecommunications industry. With an estimated penetration rate of 20 percent in the near future, cellular is becoming an ubiquitous telecommunications service in the U.S. In this paper we will examine the major advancements in the cellular industry: customer equipment, cellular networks, engineering tools, customer support, and nationwide seamless service.

  1. Concurrent Timbres in Orchestration: a Perceptual Study of Factors Determining "blend"

    Science.gov (United States)

    Sandell, Gregory John

    Orchestration often involves selecting instruments for concurrent presentation, as in melodic doubling or chords. One evaluation of the aural outcome of such choices is along the continuum of "blend": whether the instruments fuse into a single composite timbre, segregate into distinct timbral entities, or fall somewhere in between the two extremes. This study investigates, through perceptual experimentation, the acoustical correlates of blend for 15 natural-sounding orchestral instruments presented in concurrently-sounding pairs (e.g. flute-cello, trumpet -oboe, etc.). Ratings of blend showed primary effects for centroid (the location of the midpoint of the spectral energy distribution) and duration of the onset for the tones. Lower average values of both centroid and onset duration for a pair of tones led to increased blends, as did closeness in value for the two factors. Blend decreased (instruments segregated) with higher average values or increased difference in value for the two factors. The musical interval of presentation slightly affected the relative importance of these two mechanisms, with unison intervals determined more by lower average centroid, and minor thirds determined more by closeness in centroid. The contribution of onset in general was slightly more pronounced in the unison conditions than in the minor third condition. Additional factors contributing to blend were correlation of amplitude and centroid envelopes (blend increased as temporal patterns rose and fell in synchrony) and similarity in the overall amount of fundamental frequency perturbation (decreased blend with increasing jitter from both tones). To confirm the importance of centroid as an independent factor determining blend, pairs of tones including instruments with artificially changed centroids were rated for blend. Judgments for several versions of the same instrument pair showed that blend decreased as the altered instrument increased in centroid, corroborating the earlier

  2. Automation Hooks Architecture for Flexible Test Orchestration - Concept Development and Validation

    Science.gov (United States)

    Lansdowne, C. A.; Maclean, John R.; Winton, Chris; McCartney, Pat

    2011-01-01

    The Automation Hooks Architecture Trade Study for Flexible Test Orchestration sought a standardized data-driven alternative to conventional automated test programming interfaces. The study recommended composing the interface using multicast DNS (mDNS/SD) service discovery, Representational State Transfer (Restful) Web Services, and Automatic Test Markup Language (ATML). We describe additional efforts to rapidly mature the Automation Hooks Architecture candidate interface definition by validating it in a broad spectrum of applications. These activities have allowed us to further refine our concepts and provide observations directed toward objectives of economy, scalability, versatility, performance, severability, maintainability, scriptability and others.

  3. Optoelectronics circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Optoelectronics Circuits Manual covers the basic principles and characteristics of the best known types of optoelectronic devices, as well as the practical applications of many of these optoelectronic devices. The book describes LED display circuits and LED dot- and bar-graph circuits and discusses the applications of seven-segment displays, light-sensitive devices, optocouplers, and a variety of brightness control techniques. The text also tackles infrared light-beam alarms and multichannel remote control systems. The book provides practical user information and circuitry and illustrations.

  4. Circuit analysis with Multisim

    CERN Document Server

    Baez-Lopez, David

    2011-01-01

    This book is concerned with circuit simulation using National Instruments Multisim. It focuses on the use and comprehension of the working techniques for electrical and electronic circuit simulation. The first chapters are devoted to basic circuit analysis.It starts by describing in detail how to perform a DC analysis using only resistors and independent and controlled sources. Then, it introduces capacitors and inductors to make a transient analysis. In the case of transient analysis, it is possible to have an initial condition either in the capacitor voltage or in the inductor current, or bo

  5. Troubleshooting analog circuits

    CERN Document Server

    Pease, Robert A

    1991-01-01

    Troubleshooting Analog Circuits is a guidebook for solving product or process related problems in analog circuits. The book also provides advice in selecting equipment, preventing problems, and general tips. The coverage of the book includes the philosophy of troubleshooting; the modes of failure of various components; and preventive measures. The text also deals with the active components of analog circuits, including diodes and rectifiers, optically coupled devices, solar cells, and batteries. The book will be of great use to both students and practitioners of electronics engineering. Other

  6. Load testing circuit

    DEFF Research Database (Denmark)

    2009-01-01

    A load testing circuit a circuit tests the load impedance of a load connected to an amplifier. The load impedance includes a first terminal and a second terminal, the load testing circuit comprising a signal generator providing a test signal of a defined bandwidth to the first terminal of the load...... impedance, an energy-storing element being connected to the second terminal of the load impedance and providing an output signal, and a measuring unit that measures the output signal or compares the output signal with a reference....

  7. Modern TTL circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Modern TTL Circuits Manual provides an introduction to the basic principles of Transistor-Transistor Logic (TTL). This book outlines the major features of the 74 series of integrated circuits (ICs) and introduces the various sub-groups of the TTL family.Organized into seven chapters, this book begins with an overview of the basics of digital ICs. This text then examines the symbology and mathematics of digital logic. Other chapters consider a variety of topics, including waveform generator circuitry, clocked flip-flop and counter circuits, special counter/dividers, registers, data latches, com

  8. Plasmonic Nanoguides and Circuits

    CERN Document Server

    Bozhevolnyi, Sergey

    2008-01-01

    Modern communication systems dealing with huge amounts of data at ever increasing speed try to utilize the best aspects of electronic and optical circuits. Electronic circuits are tiny but their operation speed is limited, whereas optical circuits are extremely fast but their sizes are limited by diffraction. Waveguide components utilizing surface plasmon (SP) modes were found to combine the huge optical bandwidth and compactness of electronics, and plasmonics thereby began to be considered as the next chip-scale technology. In this book, the authors concentrate on the SP waveguide configurati

  9. Pragmatic circuits frequency domain

    CERN Document Server

    Eccles, William

    2006-01-01

    Pragmatic Circuits: Frequency Domain goes through the Laplace transform to get from the time domain to topics that include the s-plane, Bode diagrams, and the sinusoidal steady state. This second of three volumes ends with a-c power, which, although it is just a special case of the sinusoidal steady state, is an important topic with unique techniques and terminology. Pragmatic Circuits: Frequency Domain is focused on the frequency domain. In other words, time will no longer be the independent variable in our analysis. The two other volumes in the Pragmatic Circuits series include titles on DC

  10. Monolithic microwave integrated circuits

    Science.gov (United States)

    Pucel, R. A.

    Monolithic microwave integrated circuits (MMICs), a new microwave technology which is expected to exert a profound influence on microwave circuit designs for future military systems as well as for the commercial and consumer markets, is discussed. The book contains an historical discussion followed by a comprehensive review presenting the current status in the field. The general topics of the volume are: design considerations, materials and processing considerations, monolithic circuit applications, and CAD, measurement, and packaging techniques. All phases of MMIC technology are covered, from design to testing.

  11. Counting rate logarithmic circuits

    International Nuclear Information System (INIS)

    This paper describes the basic circuit and the design method for a multidecade logarithmic counting ratemeter. The method is based on the charging and discharging of several RC time constants. An F.E.T. switch is used and the drain current is converted into a proportional voltage by a current to voltage converter. The logarithmic linearity was estimated for 4 decades starting from 50 cps. This circuit can be used in several nuclear instruments like survey meters and counting systems. This circuits has been developed as part of campbell channel instrumentation. (author)

  12. Innovative devices for integrated circuits - A design perspective

    Science.gov (United States)

    Schmitt-Landsiedel, D.; Werner, C.

    2009-04-01

    MOS devices go 3D, new quantum effect devices appear in the research labs. This paper discusses the impact of various innovative device architectures on circuit design. Examples of circuits with FinFETs or Multi-Gate-FETs are shown and their performance is compared with classically scaled CMOS circuits both for digital and analog applications. As an example for novel quantum effect devices beyond CMOS we discuss circuits with Tunneling Field Effect Transistors and their combination with classical MOSFETs and MuGFETs. Finally the potential of more substantial paradigm changes in circuit design will be exploited for the example of magnetic quantum cellular automata using a novel integrated magnetic field clocking scheme.

  13. Printed circuit for ATLAS

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    A printed circuit board made by scientists in the ATLAS collaboration for the transition radiaton tracker (TRT). This will read data produced when a high energy particle crosses the boundary between two materials with different electrical properties.

  14. Synthetic in vitro circuits

    OpenAIRE

    Hockenberry, Adam J.; Jewett, Michael C.

    2012-01-01

    Inspired by advances in the ability to construct programmable circuits in living organisms, in vitro circuits are emerging as a viable platform for designing, understanding, and exploiting dynamic biochemical circuitry. In vitro systems allow researchers to directly access and manipulate biomolecular parts without the unwieldy complexity and intertwined dependencies that often exist in vivo. Experimental and computational foundations in DNA, DNA/RNA, and DNA/RNA/protein based circuitry have g...

  15. Designer gene circuits for basic science, engineering, and medicine /

    OpenAIRE

    Prindle, Arthur

    2014-01-01

    Gene regulatory networks lay at the foundation of biological function and are responsible for driving the diverse cellular decision making processes required to sustain life. Developing a comprehensive understanding of cellular function will require a quantitative description of the dynamics of these underlying interactions. The ability to design synthetic gene circuits offers the exciting prospect of prototyping new genetic subsystems inspired by the inherently complex networks of natural or...

  16. Wisdom. A metaheuristic (pragmatic) to orchestrate mind and virtue toward excellence.

    Science.gov (United States)

    Baltes, P B; Staudinger, U M

    2000-01-01

    The primary focus of this article is on the presentation of wisdom research conducted under the heading of the Berlin wisdom paradigm. Informed by a cultural-historical analysis, wisdom in this paradigm is defined as an expert knowledge system concerning the fundamental pragmatics of life. These include knowledge and judgment about the meaning and conduct of life and the orchestration of human development toward excellence while attending conjointly to personal and collective well-being. Measurement includes think-aloud protocols concerning various problems of life associated with life planning, life management, and life review. Responses are evaluated with reference to a family of 5 criteria: rich factual and procedural knowledge, lifespan contextualism, relativism of values and life priorities, and recognition and management of uncertainty. A series of studies is reported that aim to describe, explain, and optimize wisdom. The authors conclude with a new theoretical perspective that characterizes wisdom as a cognitive and motivational metaheuristic (pragmatic) that organizes and orchestrates knowledge toward human excellence in mind and virtue, both individually and collectively. PMID:11392856

  17. Peak reading detector circuit

    International Nuclear Information System (INIS)

    The peak reading detector circuit serves for picking up the instants during which peaks of a given polarity occur in sequences of signals in which the extreme values, their time intervals, and the curve shape of the signals vary. The signal sequences appear in measuring the foetal heart beat frequence from amplitude-modulated ultrasonic, electrocardiagram, and blood pressure signals. In order to prevent undesired emission of output signals from, e. g., disturbing intermediate extreme values, the circuit consists of the series connections of a circuit to simulate an ideal diode, a strong unit, a discriminator for the direction of charging current, a time-delay circuit, and an electronic switch lying in the decharging circuit of the storage unit. The time-delay circuit thereby causes storing of a preliminary maximum value being used only after a certain time delay for the emission of the output signal. If a larger extreme value occurs during the delay time the preliminary maximum value is cleared and the delay time starts running anew. (DG/PB)

  18. A semiconductor laser excitation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Kaadzunari, O.; Masaty, K.

    1984-03-27

    A semiconductor laser excitation circuit is patented that is designed for operation in a pulsed mode with a high pulse repetition frequency. This circuit includes, in addition to a semiconductor laser, a high speed photodetector, a reference voltage source, a comparator, and a pulse oscillator and modulator. If the circuit is built using standard silicon integrated circuits, its speed amounts to several hundred megahertz, if it is constructed using gallium arsenide integrated circuits, its speed is several gigahertz.

  19. The Mind Grows Circuits

    CERN Document Server

    Panigrahy, Rina

    2012-01-01

    There is a vast supply of prior art that study models for mental processes. Some studies in psychology and philosophy approach it from an inner perspective in terms of experiences and percepts. Others such as neurobiology or connectionist-machines approach it externally by viewing the mind as complex circuit of neurons where each neuron is a primitive binary circuit. In this paper, we also model the mind as a place where a circuit grows, starting as a collection of primitive components at birth and then builds up incrementally in a bottom up fashion. A new node is formed by a simple composition of prior nodes when we undergo a repeated experience that can be described by that composition. Unlike neural networks, however, these circuits take "concepts" or "percepts" as inputs and outputs. Thus the growing circuits can be likened to a growing collection of lambda expressions that are built on top of one another in an attempt to compress the sensory input as a heuristic to bound its Kolmogorov Complexity.

  20. Brain Reward Circuits in Morphine Addiction

    Science.gov (United States)

    Kim, Juhwan; Ham, Suji; Hong, Heeok; Moon, Changjong; Im, Heh-In

    2016-01-01

    Morphine is the most potent analgesic for chronic pain, but its clinical use has been limited by the opiate’s innate tendency to produce tolerance, severe withdrawal symptoms and rewarding properties with a high risk of relapse. To understand the addictive properties of morphine, past studies have focused on relevant molecular and cellular changes in the brain, highlighting the functional roles of reward-related brain regions. Given the accumulated findings, a recent, emerging trend in morphine research is that of examining the dynamics of neuronal interactions in brain reward circuits under the influence of morphine action. In this review, we highlight recent findings on the roles of several reward circuits involved in morphine addiction based on pharmacological, molecular and physiological evidences. PMID:27506251

  1. Genetic Redundancies Enhance Information Transfer in Noisy Regulatory Circuits

    Science.gov (United States)

    Rodrigo, Guillermo; Poyatos, Juan F.

    2016-01-01

    Cellular decision making is based on regulatory circuits that associate signal thresholds to specific physiological actions. This transmission of information is subjected to molecular noise what can decrease its fidelity. Here, we show instead how such intrinsic noise enhances information transfer in the presence of multiple circuit copies. The result is due to the contribution of noise to the generation of autonomous responses by each copy, which are altogether associated with a common decision. Moreover, factors that correlate the responses of the redundant units (extrinsic noise or regulatory cross-talk) contribute to reduce fidelity, while those that further uncouple them (heterogeneity within the copies) can lead to stronger information gain. Overall, our study emphasizes how the interplay of signal thresholding, redundancy, and noise influences the accuracy of cellular decision making. Understanding this interplay provides a basis to explain collective cell signaling mechanisms, and to engineer robust decisions with noisy genetic circuits. PMID:27741249

  2. Chaotic memristive circuit: equivalent circuit realization and dynamical analysis

    Institute of Scientific and Technical Information of China (English)

    Bao Bo-Cheng; Xu Jian-Ping; Zhou Guo-Hua; Ma Zheng-Hua; Zou Ling

    2011-01-01

    In this paper,a practical equivalent circuit of an active flux-controlled memristor characterized by smooth piecewise-quadratic nonlinearity is designed and an experimental chaotic memristive circuit is implemented.The chaotic memristive circuit has an equilibrium set and its stability is dependent on the initial state of the memristor.The initial state-dependent and the circuit parameter-dependent dynamics of the chaotic memristive circuit are investigated via phase portraits,bifurcation diagrams and Lyapunov exponents.Both experimental and simulation results validate the proposed equivalent circuit realization of the active flux-controlled memristor.

  3. Circuit Quantum Electrodynamics

    CERN Document Server

    Bishop, Lev S

    2010-01-01

    Circuit Quantum Electrodynamics (cQED), the study of the interaction between superconducting circuits behaving as artificial atoms and 1-dimensional transmission-line resonators, has shown much promise for quantum information processing tasks. For the purposes of quantum computing it is usual to approximate the artificial atoms as 2-level qubits, and much effort has been expended on attempts to isolate these qubits from the environment and to invent ever more sophisticated control and measurement schemes. Rather than focussing on these technological aspects of the field, this thesis investigates the opportunities for using these carefully engineered systems for answering questions of fundamental physics.

  4. Electronic circuits fundamentals & applications

    CERN Document Server

    Tooley, Mike

    2015-01-01

    Electronics explained in one volume, using both theoretical and practical applications.New chapter on Raspberry PiCompanion website contains free electronic tools to aid learning for students and a question bank for lecturersPractical investigations and questions within each chapter help reinforce learning Mike Tooley provides all the information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies and oscillators. The

  5. Primer printed circuit boards

    CERN Document Server

    Argyle, Andrew

    2009-01-01

    Step-by-step instructions for making your own PCBs at home. Making your own printed circuit board (PCB) might seem a daunting task, but once you master the steps, it's easy to attain professional-looking results. Printed circuit boards, which connect chips and other components, are what make almost all modern electronic devices possible. PCBs are made from sheets of fiberglass clad with copper, usually in multiplelayers. Cut a computer motherboard in two, for instance, and you'll often see five or more differently patterned layers. Making boards at home is relatively easy

  6. Electronic circuit analysis

    CERN Document Server

    Kishore, K Lal

    2008-01-01

    Second Edition of the book Electronic Circuit Analysis is brought out with certain new Topics and reorganization of text matter into eight units. With addition of new topics, syllabi of many universities in this subject can be covered. Besides this, the book can also meet the requirements of M.Sc (Electronics), AMIETE, AMIE (Electronics) courses. Text matter is improved thoroughly. New topics like frequency effects in multistage amplifiers, amplifier circuit analysis, design of high frequency amplifiers, switching regulators, voltage multipliers, Uninterrupted Power Supplies (UPS), and Switchi

  7. Inrush Current Control Circuit

    Science.gov (United States)

    Cole, Steven W. (Inventor)

    2002-01-01

    An inrush current control circuit having an input terminal connected to a DC power supply and an output terminal connected to a load capacitor limits the inrush current that charges up the load capacitor during power up of a system. When the DC power supply applies a DC voltage to the input terminal, the inrush current control circuit produces a voltage ramp at the load capacitor instead of an abrupt DC voltage. The voltage ramp results in a constant low level current to charge up the load capacitor, greatly reducing the current drain on the DC power supply.

  8. Circuit design for reliability

    CERN Document Server

    Cao, Yu; Wirth, Gilson

    2015-01-01

    This book presents physical understanding, modeling and simulation, on-chip characterization, layout solutions, and design techniques that are effective to enhance the reliability of various circuit units.  The authors provide readers with techniques for state of the art and future technologies, ranging from technology modeling, fault detection and analysis, circuit hardening, and reliability management. Provides comprehensive review on various reliability mechanisms at sub-45nm nodes; Describes practical modeling and characterization techniques for reliability; Includes thorough presentation of robust design techniques for major VLSI design units; Promotes physical understanding with first-principle simulations.

  9. Stage fright in orchestral musicians: a study of cognitive and behavioural strategies in performance anxiety.

    Science.gov (United States)

    Steptoe, A; Fidler, H

    1987-05-01

    A questionnaire study was carried out with three groups of musicians: experienced professional orchestral players (n=65), music students (n=41), and members of an amateur orchestra (n=40). Musical performance anxiety was assessed together with neuroticism, everyday fears, self-statements and behavioural coping strategies. Performance anxiety was lowest in the professional group and highest among students. In all three groups, performance anxiety was related to neuroticism and everyday fears, notably fear of crowds and social situations. A negative association between age, performing experience and stage fright was observed in professional musicians but not other groups. Six clusters of self-statements were identified. Catastrophizing was positively linked with performance anxiety in all groups, while realistic appraisal of the performance situation was used most commonly by those with moderate levels of stage fright. Implications for the conceptualization and management of stage fright are discussed. PMID:3594093

  10. Search and Orchestration of Data and Processes in a Federated Environment

    Science.gov (United States)

    Siao Him Fa, J.; Reed, T. W.; Tan, C.; West, G.; McMeekin, D. A.; Moncrieff, S.; Cox, S.

    2015-06-01

    This paper describes on-going research on streamlining the access and use of spatial data and processes in Australia. Spatial data in Australia is available on-line at many levels of government from local authorities, state and territories (jurisdictions), and nationally from the Commonwealth and other sources. Much of this data is available via Open Geospatial Consortium and World Wide Web Consortium standard web services. This abstract discusses three related research topics that have been identified by a wide range of stakeholders through a comprehensive consultation process. These are search and discovery, federation and orchestration of data and processes. The commonality across the three research topics is that they all require Semantic Web and Artificial Intelligence methods and embrace the various standards, and if needed, propose modifications to such standards.

  11. Management of natural crises with choreography and orchestration of federated warning-systems

    Science.gov (United States)

    Haener, Rainer; Waechter, Joachim; Hammitzsch, Martin

    2013-04-01

    The project Collaborative, Complex and Critical Decision-Support in Evolving Crises (TRIDEC), co-funded by the European Commission in its Seventh Framework Programme focuses on real-time intelligent information management in earth management. The addressed challenges include the design and implementation of a robust and scalable service infrastructure supporting the integration of existing resources, components and systems. Key challenge for TRIDEC is establishing a network of independent systems, cooperatively interacting as a collective in a system-of-systems (SoS). For this purpose TRIDEC adopts enhancements of service-oriented architecture (SOA) principles in terms of an event-driven architecture (EDA) design (SOA 2.0). In this way TRIDEC establishes large-scale concurrent and intelligent information management of a manifold of crisis types by focusing on the integration of autonomous, task-oriented and geographically distributed systems. To this end TRIDEC adapts both ways SOA 2.0 offers: orchestration and choreography. In orchestration, a central knowledge-based processing framework takes control over the involved services and coordinates their execution. Choreography on the other hand avoids central coordination. Rather, each system involved in the SoS follows a global scenario without a single point of control but specifically defined (enacted, agreed upon) trigger conditions. More than orchestration choreography allows collaborative business processes of various heterogeneous sub-systems (e.g. cooperative decision making) by concurrent Complex Event Processing (CEP) and asynchronous communication. These types of interaction adapt the concept of decoupled relationships between information producers (e.g. sensors and sensor systems) and information consumers (e.g. warning systems and warning dissemination systems). Asynchronous communication is useful if a participant wants to trigger specific actions by delegating the responsibility (separation of concerns

  12. FAST: A fully asynchronous and status-tracking pattern for geoprocessing services orchestration

    Science.gov (United States)

    Wu, Huayi; You, Lan; Gui, Zhipeng; Gao, Shuang; Li, Zhenqiang; Yu, Jingmin

    2014-09-01

    Geoprocessing service orchestration (GSO) provides a unified and flexible way to implement cross-application, long-lived, and multi-step geoprocessing service workflows by coordinating geoprocessing services collaboratively. Usually, geoprocessing services and geoprocessing service workflows are data and/or computing intensive. The intensity feature may make the execution process of a workflow time-consuming. Since it initials an execution request without blocking other interactions on the client side, an asynchronous mechanism is especially appropriate for GSO workflows. Many critical problems remain to be solved in existing asynchronous patterns for GSO including difficulties in improving performance, status tracking, and clarifying the workflow structure. These problems are a challenge when orchestrating performance efficiency, making statuses instantly available, and constructing clearly structured GSO workflows. A Fully Asynchronous and Status-Tracking (FAST) pattern that adopts asynchronous interactions throughout the whole communication tier of a workflow is proposed for GSO. The proposed FAST pattern includes a mechanism that actively pushes the latest status to clients instantly and economically. An independent proxy was designed to isolate the status tracking logic from the geoprocessing business logic, which assists the formation of a clear GSO workflow structure. A workflow was implemented in the FAST pattern to simulate the flooding process in the Poyang Lake region. Experimental results show that the proposed FAST pattern can efficiently tackle data/computing intensive geoprocessing tasks. The performance of all collaborative partners was improved due to the asynchronous mechanism throughout communication tier. A status-tracking mechanism helps users retrieve the latest running status of a GSO workflow in an efficient and instant way. The clear structure of the GSO workflow lowers the barriers for geospatial domain experts and model designers to

  13. Siim Nestor soovitab : Bell Orchestre. DJ Deep ja TRL. Akrobatik ja MC Mr.Lif. Black Dice / Siim Nestor

    Index Scriptorium Estoniae

    Nestor, Siim, 1974-

    2008-01-01

    Muusikaüritustest: Kanada post-rock ansambel Bell Orchestre12. sept. Tallinnas klubis Juuksur, DJ Deep 12. sept. Tallinna Linnahalli ruumides Plektrumi klubiööl (vt. www.plektrumfestival.ee), Akrobatik ja Mr.Lif 12. sept. Tartus klubis Illusion, New Yorgi kollektiiv Black Dice 17. sept. Tallinnas Von Krahlis

  14. ESD analog circuits and design

    CERN Document Server

    Voldman, Steven H

    2014-01-01

    A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design.  It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect pres

  15. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.;

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ...... in the circuit. The performance of the circuit is investigated by means of numerical integration of appropriate differential equations, PSPICE simulations, and hardware experiment.......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  16. Quantum secure circuit evaluation

    Institute of Scientific and Technical Information of China (English)

    CHEN Huanhuan; LI Bin; ZHUANG Zhenquan

    2004-01-01

    In order to solve the problem of classical secure circuit evaluation, this paper proposes a quantum approach. In this approach, the method of inserting redundant entangled particles and quantum signature has been employed to strengthen the security of the system. Theoretical analysis shows that our solution is secure against classical and quantum attacks.

  17. Superconducting Quantum Circuits

    NARCIS (Netherlands)

    Majer, J.B.

    2002-01-01

    This thesis describes a number of experiments with superconducting cir- cuits containing small Josephson junctions. The circuits are made out of aluminum islands which are interconnected with a very thin insulating alu- minum oxide layer. The connections form a Josephson junction. The current trough

  18. Bioluminescent bioreporter integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Michael L. (Knoxville, TN); Sayler, Gary S. (Blaine, TN); Paulus, Michael J. (Knoxville, TN)

    2000-01-01

    Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for environmental pollutant detection, oil exploration, drug discovery, industrial process control, and hazardous chemical monitoring.

  19. Virtual Circuits in PhEDEx, an update from the ANSE project

    Science.gov (United States)

    Lápádátescu, V.; Wildish, T.

    2015-12-01

    The ANSE project has been working with the CMS and ATLAS experiments to bring network awareness into their middleware stacks. For CMS, this means enabling control of virtual network circuits in PhEDEx, the CMS data-transfer management system. PhEDEx orchestrates the transfer of data around the CMS experiment to the tune of 1 PB per week spread over about 70 sites. The goal of ANSE is to improve the overall working efficiency of the experiments, by enabling more deterministic time to completion for a designated set of data transfers, through the use of end-to-end dynamic virtual circuits with guaranteed bandwidth. ANSE has enhanced PhEDEx, allowing it to create, use and destroy circuits according to it's own needs. PhEDEx can now decide if a circuit is worth creating based on its current workload and past transfer history, which allows circuits to be created only when they will be useful. This paper reports on the progress made by ANSE in PhEDEx. We show how PhEDEx is now capable of using virtual circuits as a production-quality service, and describe how the mechanism it uses can be refactored for use in other software domains. We present first results of transfers between CMS sites using this mechanism, and report on the stability and performance of PhEDEx when using virtual circuits. The ability to use dynamic virtual circuits for prioritised large-scale data transfers over shared global network infrastructures represents an important new capability and opens many possibilities. The experience we have gained with ANSE is being incorporated in an evolving picture of future LHC Computing Models, in which the network is considered as an explicit component. Finally, we describe the remaining work to be done by ANSE in PhEDEx, and discuss future directions for continued development.

  20. Resistor Combinations for Parallel Circuits.

    Science.gov (United States)

    McTernan, James P.

    1978-01-01

    To help simplify both teaching and learning of parallel circuits, a high school electricity/electronics teacher presents and illustrates the use of tables of values for parallel resistive circuits in which total resistances are whole numbers. (MF)

  1. The LMT circuit and SPICE

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamacevicius, Arunas

    2006-01-01

    The state equations of the LMT circuit are modeled as a dedicated analogue computer circuit and solved by means of PSpice. The nonlinear part of the system is studied. Problems with the PSpice program are presented....

  2. Electronic circuits and systems: A compilation. [including integrated circuits, logic circuits, varactor diode circuits, low pass filters, and optical equipment circuits

    Science.gov (United States)

    1975-01-01

    Technological information is presented electronic circuits and systems which have potential utility outside the aerospace community. Topics discussed include circuit components such as filters, converters, and integrators, circuits designed for use with specific equipment or systems, and circuits designed primarily for use with optical equipment or displays.

  3. Diode, transistor & fet circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  4. Positive fractional linear electrical circuits

    Science.gov (United States)

    Kaczorek, Tadeusz

    2013-10-01

    The positive fractional linear systems and electrical circuits are addressed. New classes of fractional asymptotically stable and unstable electrical circuits are introduced. The Caputo and Riemann-Liouville definitions of fractional derivatives are used to analysis of the positive electrical circuits composed of resistors, capacitors, coils and voltage (current) sources. The positive fractional electrical and specially unstable different types electrical circuits are analyzed. Some open problems are formulated.

  5. Static Switching Dynamic Buffer Circuit

    OpenAIRE

    Pandey, A. K.; R. A. Mishra; R. K. Nagaria

    2013-01-01

    We proposed footless domino logic buffer circuit. It minimizes redundant switching at the dynamic and the output nodes. The proposed circuit avoids propagation of precharge pulse to the output node and allows the dynamic node which saves power consumption. Simulation is done using 0.18 µm CMOS technology. We have calculated the power consumption, delay, and power delay product of the proposed circuit and compared the results with the existing circuits for different logic function, loading co...

  6. Value Constraint and Monotone circuit

    OpenAIRE

    Kobayashi, Koji

    2012-01-01

    This paper talks about that monotone circuit is P-Complete. Decision problem that include P-Complete is mapping that classify input with a similar property. Therefore equivalence relation of input value is important for computation. But monotone circuit cannot compute the equivalence relation of the value because monotone circuit can compute only monotone function. Therefore, I make the value constraint explicitly in the input and monotone circuit can compute equivalence relation. As a result...

  7. LC-Circuit Calorimetry

    CERN Document Server

    Bossen, Olaf

    2011-01-01

    We present a new type of calorimeter in which we couple an unknown heat capacity with the aid of Peltier elements to an electrical circuit. The use of an electrical inductance and an amplifier in the circuit allows us to achieve autonomous oscillations, and the measurement of the corresponding resonance frequency makes it possible to accurately measure the heat capacity with an intrinsic statistical error that decreases as ~t^{-3/2} with measuring time t, as opposed to a corresponding error ~t^{-1/2} in the conventional alternating current (a.c.) method to measure heat capacities. We have built a demonstration experiment to show the feasibility of the new technique, and we have tested it on a gadolinium sample at its transition to the ferromagnetic state.

  8. Engineering prokaryotic gene circuits

    OpenAIRE

    Michalodimitrakis, Konstantinos; Isalan, Mark

    2009-01-01

    Engineering of synthetic gene circuits is a rapidly growing discipline, currently dominated by prokaryotic transcription networks, which can be easily rearranged or rewired to give different output behaviours. In this review, we examine both a rational and a combinatorial design of such networks and discuss progress on using in vitro evolution techniques to obtain functional systems. Moving beyond pure transcription networks, more and more networks are being implemented at the level of RNA, t...

  9. Refractory Neuron Circuits

    OpenAIRE

    Sarpeshkar, Rahul; Watts, Lloyd; Mead, Carver

    1992-01-01

    Neural networks typically use an abstraction of the behaviour of a biological neuron, in which the continuously varying mean firing rate of the neuron is presumed to carry information about the neuron's time-varying state of excitation. However, the detailed timing of action potentials is known to be important in many biological systems. To build electronic models of such systems, one must have well-characterized neuron circuits that capture the essential behaviour of real neur...

  10. Electronic devices and circuits

    CERN Document Server

    Kishore, K Lal

    2008-01-01

    This book is written in a simple lucid Language along with derivation of equations and supported by numerous solved problems to help the student to understand the concepts clearly.Advances in Miniaturization of Electronic Systems by ever increasing packaging densities on Integrated Circuits has made it very essential for thorough Knowledge of the concepts, phenomenon, characteristics and behaviour of semiconductor Devices for students and professionals.

  11. PARTICLE BEAM TRACKING CIRCUIT

    Science.gov (United States)

    Anderson, O.A.

    1959-05-01

    >A particle-beam tracking and correcting circuit is described. Beam induction electrodes are placed on either side of the beam, and potentials induced by the beam are compared in a voltage comparator or discriminator. This comparison produces an error signal which modifies the fm curve at the voltage applied to the drift tube, thereby returning the orbit to the preferred position. The arrangement serves also to synchronize accelerating frequency and magnetic field growth. (T.R.H.)

  12. Fundamental Atomtronic Circuit Elements

    Science.gov (United States)

    Lee, Jeffrey; McIlvain, Brian; Lobb, Christopher; Hill, Wendell T., III

    2012-06-01

    Recent experiments with neutral superfluid gases have shown that it is possible to create atomtronic circuits analogous to existing superconducting circuits. The goals of these experiments are to create complex systems such as Josephson junctions. In addition, there are theoretical models for active atomtronic components analogous to diodes, transistors and oscillators. In order for any of these devices to function, an understanding of the more fundamental atomtronic elements is needed. Here we describe the first experimental realization of these more fundamental elements. We have created an atomtronic capacitor that is discharged through a resistance and inductance. We will discuss a theoretical description of the system that allows us to determine values for the capacitance, resistance and inductance. The resistance is shown to be analogous to the Sharvin resistance, and the inductance analogous to kinetic inductance in electronics. This atomtronic circuit is implemented with a thermal sample of laser cooled rubidium atoms. The atoms are confined using what we call free-space atom chips, a novel optical dipole trap produced using a generalized phase-contrast imaging technique. We will also discuss progress toward implementing this atomtronic system in a degenerate Bose gas.

  13. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  14. Modelling cellular behaviour

    Science.gov (United States)

    Endy, Drew; Brent, Roger

    2001-01-01

    Representations of cellular processes that can be used to compute their future behaviour would be of general scientific and practical value. But past attempts to construct such representations have been disappointing. This is now changing. Increases in biological understanding combined with advances in computational methods and in computer power make it possible to foresee construction of useful and predictive simulations of cellular processes.

  15. Oscillations by minimal bacterial suicide circuits reveal hidden facets of host-circuit physiology.

    Directory of Open Access Journals (Sweden)

    Philippe Marguet

    Full Text Available Synthetic biology seeks to enable programmed control of cellular behavior though engineered biological systems. These systems typically consist of synthetic circuits that function inside, and interact with, complex host cells possessing pre-existing metabolic and regulatory networks. Nevertheless, while designing systems, a simple well-defined interface between the synthetic gene circuit and the host is frequently assumed. We describe the generation of robust but unexpected oscillations in the densities of bacterium Escherichia coli populations by simple synthetic suicide circuits containing quorum components and a lysis gene. Contrary to design expectations, oscillations required neither the quorum sensing genes (luxR and luxI nor known regulatory elements in the P(luxI promoter. Instead, oscillations were likely due to density-dependent plasmid amplification that established a population-level negative feedback. A mathematical model based on this mechanism captures the key characteristics of oscillations, and model predictions regarding perturbations to plasmid amplification were experimentally validated. Our results underscore the importance of plasmid copy number and potential impact of "hidden interactions" on the behavior of engineered gene circuits - a major challenge for standardizing biological parts. As synthetic biology grows as a discipline, increasing value may be derived from tools that enable the assessment of parts in their final context.

  16. Changes to the shuttle circuits

    CERN Multimedia

    GS Department

    2011-01-01

    To fit with passengers expectation, there will be some changes to the shuttle circuits as from Monday 10 October. See details on http://cern.ch/ShuttleService (on line on 7 October). Circuit No. 5 is cancelled as circuit No. 1 also stops at Bldg. 33. In order to guarantee shorter travel times, circuit No. 1 will circulate on Meyrin site only and circuit No. 2, with departures from Bldg. 33 and 500, on Prévessin site only. Site Services Section

  17. Experimental determination of circuit equations

    CERN Document Server

    Shulman, Jason; Widjaja, Matthew; Gunaratne, Gemunu H

    2013-01-01

    Kirchhoff's laws offer a general, straightforward approach to circuit analysis. Unfortunately, use of the laws becomes impractical for all but the simplest of circuits. This work presents a novel method of analyzing direct current resistor circuits. It is based on an approach developed to model complex networks, making it appropriate for use on large, complicated circuits. It is unique in that it is not an analytic method. It is based on experiment, yet the approach produces the same circuit equations obtained by more traditional means.

  18. Reversible quantum cellular automata

    CERN Document Server

    Schumacher, B

    2004-01-01

    We define quantum cellular automata as infinite quantum lattice systems with discrete time dynamics, such that the time step commutes with lattice translations and has strictly finite propagation speed. In contrast to earlier definitions this allows us to give an explicit characterization of all local rules generating such automata. The same local rules also generate the global time step for automata with periodic boundary conditions. Our main structure theorem asserts that any quantum cellular automaton is structurally reversible, i.e., that it can be obtained by applying two blockwise unitary operations in a generalized Margolus partitioning scheme. This implies that, in contrast to the classical case, the inverse of a nearest neighbor quantum cellular automaton is again a nearest neighbor automaton. We present several construction methods for quantum cellular automata, based on unitaries commuting with their translates, on the quantization of (arbitrary) reversible classical cellular automata, on quantum c...

  19. Power system with an integrated lubrication circuit

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Brian D. (East Peoria, IL); Akasam, Sivaprasad (Peoria, IL); Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Lane, William H. (Chillicothe, IL)

    2009-11-10

    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  20. Microwave components for cellular portable radiotelephone

    Science.gov (United States)

    Muraguchi, Masahiro; Aikawa, Masayoshi

    1995-09-01

    Mobile and personal communication systems are expected to represent a huge market for microwave components in the coming years. A number of components in silicon bipolar, silicon Bi-CMOS, GaAs MESFET, HBT and HEMT are now becoming available for system application. There are tradeoffs among the competing technologies with regard to performance, cost, reliability and time-to-market. This paper describes process selection and requirements of cost and r.f. performances to microwave semiconductor components for digital cellular and cordless telephones. Furthermore, new circuit techniques which were developed by NTT are presented.

  1. Evolution and regulation of cellular periodic processes: a role for paralogues

    DEFF Research Database (Denmark)

    Trachana, Kalliopi; Jensen, Lars Juhl; Bork, Peer

    2010-01-01

    paralogues. Thus, diverged temporal expression of paralogues seems to facilitate cellular orchestration under different periodic stimuli. Lineage-specific functional repertoires of periodic-associated paralogues imply that this mode of regulation might have evolved independently in several organisms....... performed the first systematic comparison in three organisms (Homo sapiens, Arabidopsis thaliana and Saccharomyces cerevisiae) by using public microarray data. We observed that although diurnal-regulated and ultradian-regulated genes are not generally cell-cycle-regulated, they tend to have cell-cycle-regulated...

  2. Integrated coherent matter wave circuits

    International Nuclear Information System (INIS)

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. Moreover, the source of coherent matter waves is a Bose-Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry

  3. Memristor based startup circuit for self biased circuits

    Science.gov (United States)

    Das, Mangal; Singh, Amit Kumar; Rathi, Amit; Singhal, Sonal

    2016-04-01

    This paper presents the design of a Memristor based startup circuit for self biased circuits. Memristor has many advantages over conventional CMOS devices such as low leakage current at nanometer scale, easy to manufacture. In this work the switching characteristics of memristor is utilized. First the theoretical equations describing the switching behavior of memristor are investigated. To prove the switching capability of Memristor, a startup circuit based on memristor is proposed which uses series combination of Memristor and capacitor. Proposed circuit is compared with the previously reported MOSFET based startup circuits. Comparison of different circuits was done to validate the results. Simulation results show that memristor based circuit can attain on (I = 12.94 µA) to off state (I = 1 .2 µA) in 25 ns while the MOSFET based startup circuits take on (I = 14.19 µA) to off state (I = 1.4 µA) in more than 90 ns. The benefit comes in terms of area because the number of components used in the circuit are lesser than the conventional startup circuits.

  4. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation.

    Science.gov (United States)

    Yamano, Koji; Matsuda, Noriyuki; Tanaka, Keiji

    2016-03-01

    The quality of mitochondria, essential organelles that produce ATP and regulate numerous metabolic pathways, must be strictly monitored to maintain cell homeostasis. The loss of mitochondrial quality control systems is acknowledged as a determinant for many types of neurodegenerative diseases including Parkinson's disease (PD). The two gene products mutated in the autosomal recessive forms of familial early-onset PD, Parkin and PINK1, have been identified as essential proteins in the clearance of damaged mitochondria via an autophagic pathway termed mitophagy. Recently, significant progress has been made in understanding how the mitochondrial serine/threonine kinase PINK1 and the E3 ligase Parkin work together through a novel stepwise cascade to identify and eliminate damaged mitochondria, a process that relies on the orchestrated crosstalk between ubiquitin/phosphorylation signaling and autophagy. In this review, we highlight our current understanding of the detailed molecular mechanisms governing Parkin-/PINK1-mediated mitophagy and the evidences connecting Parkin/PINK1 function and mitochondrial clearance in neurons. PMID:26882551

  5. Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible.

    Science.gov (United States)

    McKemmish, Laura K; Reimers, Jeffrey R; McKenzie, Ross H; Mark, Alan E; Hush, Noel S

    2009-08-01

    Penrose and Hameroff have argued that the conventional models of a brain function based on neural networks alone cannot account for human consciousness, claiming that quantum-computation elements are also required. Specifically, in their Orchestrated Objective Reduction (Orch OR) model [R. Penrose and S. R. Hameroff, J. Conscious. Stud. 2, 99 (1995)], it is postulated that microtubules act as quantum processing units, with individual tubulin dimers forming the computational elements. This model requires that the tubulin is able to switch between alternative conformational states in a coherent manner, and that this process be rapid on the physiological time scale. Here, the biological feasibility of the Orch OR proposal is examined in light of recent experimental studies on microtubule assembly and dynamics. It is shown that the tubulins do not possess essential properties required for the Orch OR proposal, as originally proposed, to hold. Further, we consider also recent progress in the understanding of the long-lived coherent motions in biological systems, a feature critical to Orch OR, and show that no reformation of the proposal based on known physical paradigms could lead to quantum computing within microtubules. Hence, the Orch OR model is not a feasible explanation of the origin of consciousness.

  6. Orchestration of an uncommon maturation cascade of the house dust mite protease allergen quartet

    Directory of Open Access Journals (Sweden)

    Marie-Eve eDumez

    2014-03-01

    Full Text Available In more than 20% of the world population, sensitization to house dust mite (HDM allergens triggers typical allergic diseases such as allergic rhinitis and asthma. Amongst the 23 mite allergen groups hitherto identified, groups 1 are cysteine proteases belonging to the papain-like family whereas groups 3, 6 and 9 are serine proteases displaying trypsin, chymotrypsin and collagenolytic activities, respectively. While these proteases are more likely to be involved in the mite digestive system, they also play critical roles in the initiation and in the chronicity of the allergic response notably through the activation of innate immune pathways. All these allergenic proteases are expressed in mite as inactive precursor form. Until recently, the exact mechanisms of their maturation into active proteases remained to be fully elucidated. Recent breakthroughs in the understanding of the activation mechanisms of mite allergenic protease precursors have highlighted an uncommon and unique maturation pathway orchestrated by group 1 proteases that tightly regulates the proteolytic activities of groups 1, 3, 6 and 9 through complex intra- or intermolecular mechanisms. This review presents and discusses the currently available knowledge of the activation mechanisms of group 1, 3, 6 and 9 allergens of Dermatophagoides pteronyssinus laying special emphasis on their localization, regulation and interconnection.

  7. SRC-2 orchestrates polygenic inputs for fine-tuning glucose homeostasis.

    Science.gov (United States)

    Fleet, Tiffany; Zhang, Bin; Lin, Fumin; Zhu, Bokai; Dasgupta, Subhamoy; Stashi, Erin; Tackett, Bryan; Thevananther, Sundararajah; Rajapakshe, Kimal I; Gonzales, Naomi; Dean, Adam; Mao, Jianqiang; Timchenko, Nikolai; Malovannaya, Anna; Qin, Jun; Coarfa, Cristian; DeMayo, Francesco; Dacso, Clifford C; Foulds, Charles E; O'Malley, Bert W; York, Brian

    2015-11-01

    Despite extensive efforts to understand the monogenic contributions to perturbed glucose homeostasis, the complexity of genetic events that fractionally contribute to the spectrum of this pathology remain poorly understood. Proper maintenance of glucose homeostasis is the central feature of a constellation of comorbidities that define the metabolic syndrome. The ability of the liver to balance carbohydrate uptake and release during the feeding-to-fasting transition is essential to the regulation of peripheral glucose availability. The liver coordinates the expression of gene programs that control glucose absorption, storage, and secretion. Herein, we demonstrate that Steroid Receptor Coactivator 2 (SRC-2) orchestrates a hierarchy of nutritionally responsive transcriptional complexes to precisely modulate plasma glucose availability. Using DNA pull-down technology coupled with mass spectrometry, we have identified SRC-2 as an indispensable integrator of transcriptional complexes that control the rate-limiting steps of hepatic glucose release and accretion. Collectively, these findings position SRC-2 as a major regulator of polygenic inputs to metabolic gene regulation and perhaps identify a previously unappreciated model that helps to explain the clinical spectrum of glucose dysregulation. PMID:26487680

  8. Decentralized operating procedures for orchestrating data and behavior across distributed military systems and assets

    Science.gov (United States)

    Peach, Nicholas

    2011-06-01

    In this paper, we present a method for a highly decentralized yet structured and flexible approach to achieve systems interoperability by orchestrating data and behavior across distributed military systems and assets with security considerations addressed from the beginning. We describe an architecture of a tool-based design of business processes called Decentralized Operating Procedures (DOP) and the deployment of DOPs onto run time nodes, supporting the parallel execution of each DOP at multiple implementation nodes (fixed locations, vehicles, sensors and soldiers) throughout a battlefield to achieve flexible and reliable interoperability. The described method allows the architecture to; a) provide fine grain control of the collection and delivery of data between systems; b) allow the definition of a DOP at a strategic (or doctrine) level by defining required system behavior through process syntax at an abstract level, agnostic of implementation details; c) deploy a DOP into heterogeneous environments by the nomination of actual system interfaces and roles at a tactical level; d) rapidly deploy new DOPs in support of new tactics and systems; e) support multiple instances of a DOP in support of multiple missions; f) dynamically add or remove run-time nodes from a specific DOP instance as missions requirements change; g) model the passage of, and business reasons for the transmission of each data message to a specific DOP instance to support accreditation; h) run on low powered computers with lightweight tactical messaging. This approach is designed to extend the capabilities of existing standards, such as the Generic Vehicle Architecture (GVA).

  9. ISOMP: An Instant Service-Orchestration Mobile M2M Platform

    Directory of Open Access Journals (Sweden)

    Cholhong Im

    2016-01-01

    Full Text Available Smartphones have greater computing power than ever before, providing convenient applications to improve our lives. In general, people find it difficult to locate suitable applications and implementing new applications often requires professional skills. In this paper, we propose a new service platform that facilitates the implementation of new applications by composing prebuilt components that provide the context information of mobile devices such as location and contacts. Our platform introduces an innovative concept named context collaboration, in which smartphones exchange context information with each other, which in turn is used to deduct useful inferences. The concept is realized by instant orchestration, which assembles some components and implements a composite component. The interactive communication interface helps a mobile device to communicate with other devices using open APIs, such as SOAP and HTTP (REST. The platform also works in heterogeneous environments, for example, between Android and iOS operating systems. Throughout the platform, mobile devices can act as smart M2M machines with context awareness, enabling intelligent tasks on behalf of users. Our platform will open up a new and innovative pathway for both enhanced mobile context awareness and M2M, which is expected to be a fundamental feature of the next generation of mobile devices.

  10. Function and evolution of the long noncoding RNA circuitry orchestrating X-chromosome inactivation in mammals.

    Science.gov (United States)

    Furlan, Giulia; Rougeulle, Claire

    2016-09-01

    X-chromosome inactivation (XCI) is a chromosome-wide regulatory process that ensures dosage compensation for X-linked genes in Theria. XCI is established during early embryogenesis and is developmentally regulated. Different XCI strategies exist in mammalian infraclasses and the regulation of this process varies also among closely related species. In Eutheria, initiation of XCI is orchestrated by a cis-acting locus, the X-inactivation center (Xic), which is particularly enriched in genes producing long noncoding RNAs (lncRNAs). Among these, Xist generates a master transcript that coats and propagates along the future inactive X-chromosome in cis, establishing X-chromosome wide transcriptional repression through interaction with several protein partners. Other lncRNAs also participate to the regulation of X-inactivation but the extent to which their function has been maintained in evolution is still poorly understood. In Metatheria, Xist is not conserved, but another, evolutionary independent lncRNA with similar properties, Rsx, has been identified, suggesting that lncRNA-mediated XCI represents an evolutionary advantage. Here, we review current knowledge on the interplay of X chromosome-encoded lncRNAs in ensuring proper establishment and maintenance of chromosome-wide silencing, and discuss the evolutionary implications of the emergence of species-specific lncRNAs in the control of XCI within Theria. WIREs RNA 2016, 7:702-722. doi: 10.1002/wrna.1359 For further resources related to this article, please visit the WIREs website. PMID:27173581

  11. MROrchestrator: A Fine-Grained Resource Orchestration Framework for MapReduce Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bikash [Pennsylvania State University, University Park, PA; Prabhakar, Ramya [Pennsylvania State University, University Park, PA; Kandemir, Mahmut [Pennsylvania State University; Das, Chita [Pennsylvania State University, University Park, PA; Lim, Seung-Hwan [ORNL

    2012-01-01

    Efficient resource management in data centers and clouds running large distributed data processing frameworks like MapReduce is crucial for enhancing the performance of hosted applications and boosting resource utilization. However, existing resource scheduling schemes in Hadoop MapReduce allocate resources at the granularity of fixed-size, static portions of nodes, called slots. In this work, we show that MapReduce jobs have widely varying demands for multiple resources, making the static and fixed-size slot-level resource allocation a poor choice both from the performance and resource utilization standpoints. Furthermore, lack of co-ordination in the management of mul- tiple resources across nodes prevents dynamic slot reconfigura- tion, and leads to resource contention. Motivated by this, we propose MROrchestrator, a MapReduce resource Orchestrator framework, which can dynamically identify resource bottlenecks, and resolve them through fine-grained, co-ordinated, and on- demand resource allocations. We have implemented MROrches- trator on two 24-node native and virtualized Hadoop clusters. Experimental results with a suite of representative MapReduce benchmarks demonstrate up to 38% reduction in job completion times, and up to 25% increase in resource utilization. We further show how popular resource managers like NGM and Mesos when augmented with MROrchestrator can hike up their performance.

  12. Memory CD8+ T Cells: Orchestrators and Key Players of Innate Immunity?

    Science.gov (United States)

    Lauvau, Grégoire; Goriely, Stanislas

    2016-09-01

    Over the past decades, the dichotomy between innate and adaptive immune responses has largely dominated our understanding of immunology. Upon primary encounter with microbial pathogens, differentiation of adaptive immune cells into functional effectors usually takes several days or even longer, making them contribute to host protection only late during primary infection. However, once generated, antigen-experienced T lymphocytes can persist in the organism and constitute a pool of memory cells that mediate fast and effective protection to a recall infection with the same microbial pathogen. Herein, we challenge this classical paradigm by highlighting the "innate nature" of memory CD8+ T cells. First, within the thymus or in the periphery, naïve CD8+ T cells may acquire phenotypic and functional characteristics of memory CD8+ T cells independently of challenge with foreign antigens. Second, both the "unconventional" and the "conventional" memory cells can rapidly express protective effector functions in response to sets of inflammatory cytokines and chemokines signals, independent of cognate antigen triggering. Third, memory CD8+ T cells can act by orchestrating the recruitment, activation, and licensing of innate cells, leading to broad antimicrobial states. Thus, collectively, memory CD8+ T cells may represent important actors of innate immune defenses.

  13. Industrial Robot Programming and UPnP Services Orchestration for the Automation of Factories

    Directory of Open Access Journals (Sweden)

    A. Valera

    2012-10-01

    Full Text Available The integration of equipment and other devices built into industrial robot cells with modern Ethernet interface technologies and low‐cost mass produced devices (such as vision systems, laser scanners, force torque‐sensors, PLCs and PDAs etc. enables integrators to offer more powerful and smarter solutions. Nevertheless, the programming of all these devices efficiently requires very specific knowledge about them, such as their hardware architectures and specific programming languages as well as details about the system’s low level communication protocols. To address these issues, this paper describes and analyses the Plug‐and‐Play architecture. This is one of the most interesting service‐oriented architectures (SOAs available, which exhibits characteristics that are well adapted to industrial robotics cells. To validate their programming features and applicability, a test bed was specially designed. This provides a new graphical service orchestration which was implemented using Workflow Foundation 4 of .NET. The obtained results allowed us to verify that the use of integration schemes based on SOAs reduces the system integration time and is better adapted to industrial robotic cell system integrators.

  14. Cellular and molecular introduction to brain development.

    Science.gov (United States)

    Jiang, Xiangning; Nardelli, Jeannette

    2016-08-01

    Advances in the study of brain development over the last decades, especially recent findings regarding the evolutionary expansion of the human neocortex, and large-scale analyses of the proteome/transcriptome in the human brain, have offered novel insights into the molecular mechanisms guiding neural maturation, and the pathophysiology of multiple forms of neurological disorders. As a preamble to reviews of this issue, we provide an overview of the cellular, molecular and genetic bases of brain development with an emphasis on the major mechanisms associated with landmarks of normal neural development in the embryonic stage and early postnatal life, including neural stem/progenitor cell proliferation, cortical neuronal migration, evolution and folding of the cerebral cortex, synaptogenesis and neural circuit development, gliogenesis and myelination. We will only briefly depict developmental disorders that result from perturbations of these cellular or molecular mechanisms, and the most common perinatal brain injuries that could disturb normal brain development. PMID:26184894

  15. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks

    DEFF Research Database (Denmark)

    Meerang, Mayura; Ritz, Danilo; Paliwal, Shreya;

    2011-01-01

    Unrepaired DNA double-strand breaks (DSBs) cause genetic instability that leads to malignant transformation or cell death. Cells respond to DSBs with the ordered recruitment of signalling and repair proteins to the site of lesion. Protein modification with ubiquitin is crucial for the signalling...... cascade, but how ubiquitylation coordinates the dynamic assembly of these complexes is poorly understood. Here, we show that the human ubiquitin-selective protein segregase p97 (also known as VCP; valosin-containing protein) cooperates with the ubiquitin ligase RNF8 to orchestrate assembly of signalling...... complexes and efficient DSB repair after exposure to ionizing radiation. p97 is recruited to DNA lesions by its ubiquitin adaptor UFD1-NPL4 and Lys-48-linked ubiquitin (K48-Ub) chains, whose formation is regulated by RNF8. p97 subsequently removes K48-Ub conjugates from sites of DNA damage to orchestrate...

  16. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  17. Photonic Integrated Circuits

    Science.gov (United States)

    Merritt, Scott; Krainak, Michael

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  18. Optoelectronics circuits manual

    CERN Document Server

    Marston, R M

    1999-01-01

    This manual is a useful single-volume guide specifically aimed at the practical design engineer, technician, and experimenter, as well as the electronics student and amateur. It deals with the subject in an easy to read, down to earth, and non-mathematical yet comprehensive manner, explaining the basic principles and characteristics of the best known devices, and presenting the reader with many practical applications and over 200 circuits. Most of the ICs and other devices used are inexpensive and readily available types, with universally recognised type numbers.The second edition

  19. Electronics circuits and systems

    CERN Document Server

    Bishop, Owen

    2007-01-01

    The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Each chapter ends with a set

  20. Electric circuits problem solver

    CERN Document Server

    REA, Editors of

    2012-01-01

    Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies.Here in this highly useful reference is the finest overview of electric circuits currently av

  1. Electronic logic circuits

    CERN Document Server

    Gibson, J

    2013-01-01

    Most branches of organizing utilize digital electronic systems. This book introduces the design of such systems using basic logic elements as the components. The material is presented in a straightforward manner suitable for students of electronic engineering and computer science. The book is also of use to engineers in related disciplines who require a clear introduction to logic circuits. This third edition has been revised to encompass the most recent advances in technology as well as the latest trends in components and notation. It includes a wide coverage of application specific integrate

  2. Electronics circuits and systems

    CERN Document Server

    Bishop, Owen

    2011-01-01

    The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Ea

  3. Linear integrated circuits

    CERN Document Server

    Carr, Joseph

    1996-01-01

    The linear IC market is large and growing, as is the demand for well trained technicians and engineers who understand how these devices work and how to apply them. Linear Integrated Circuits provides in-depth coverage of the devices and their operation, but not at the expense of practical applications in which linear devices figure prominently. This book is written for a wide readership from FE and first degree students, to hobbyists and professionals.Chapter 1 offers a general introduction that will provide students with the foundations of linear IC technology. From chapter 2 onwa

  4. Nano integrated circuit process

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yung Sup

    2004-02-15

    This book contains nine chapters, which are introduction of manufacture of semiconductor chip, oxidation such as Dry-oxidation, wet oxidation, oxidation model and oxide film, diffusion like diffusion process, diffusion equation, diffusion coefficient and diffusion system, ion implantation, including ion distribution, channeling, multiimplantation and masking and its system, sputtering such as CVD and PVD, lithography, wet etch and dry etch, interconnection and flattening like metal-silicon connection, silicide, multiple layer metal process and flattening, an integrated circuit process, including MOSFET and CMOS.

  5. Optically controllable molecular logic circuits

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Takahiro, E-mail: t-nishimura@ist.osaka-u.ac.jp; Fujii, Ryo; Ogura, Yusuke; Tanida, Jun [Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-07-06

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  6. Optically controllable molecular logic circuits

    International Nuclear Information System (INIS)

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals

  7. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Lawrence T. (Phoenix, AZ); McIver, III, John K. (Albuquerque, NM)

    2009-11-24

    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  8. Novel Design of a Nano-metric Fast 4*4 Reversible unsigned Wallace Multiplier Circuit

    Directory of Open Access Journals (Sweden)

    Ehsan PourAliAkbar

    2015-12-01

    Full Text Available One of the most promising technologies in designing low-power circuits is reversible computing. It is used in nanotechnology, quantum computing, quantum dot cellular automata (QCA, DNA computing, optical computing and in CMOS low-power designs. Since reversible logic is subject to certain restrictions (e.g. fan-out and feedback are not allowed, traditional synthesis methods are not applicable and specific methods have been developed. In this paper, we offer a Wallace 4*4 reversible multiplier circuits which have faster speed and lower complexity in comparison with the other multiplier circuits. This circuit performs better, regarding to the number of gates, garbage outputs and constant inputs work better than the same circuits. In this paper, Peres gate is used as HA and HNG gate is used as FA. We offer the best method to multiply two 4 bit numbers. These Nano-metric circuits can be used in very complex systems.

  9. Nanostructured cellular networks.

    Science.gov (United States)

    Moriarty, P; Taylor, M D R; Brust, M

    2002-12-01

    Au nanocrystals spin-coated onto silicon from toluene form cellular networks. A quantitative statistical crystallography analysis shows that intercellular correlations drive the networks far from statistical equilibrium. Spin-coating from hexane does not produce cellular structure, yet a strong correlation is retained in the positions of nanocrystal aggregates. Mechanisms based on Marangoni convection alone cannot account for the variety of patterns observed, and we argue that spinodal decomposition plays an important role in foam formation.

  10. Cellular Cardiomyoplasty: Clinical Application

    OpenAIRE

    Chachques, J. (J.); Acar, C; J. Herreros; Trainini, J. (Jorge); Prosper, F.; D’Attellis, N. (N.); Fabiani, J. N.; Carpentier, A

    2004-01-01

    Myocardial regeneration can be induced with the implantation of a variety of myogenic and angiogenic cell types. More than 150 patients have been treated with cellular cardiomyoplasty worldwide, 18 patients have been treated by our group. Cellular cardiomyoplasty seems to reduce the size and fibrosis of infarct scars, limit postischemic remodelling, and restore regional myocardial contractility. Techniques for skeletal myoblasts culture and ex vivo expansion using auto...

  11. Quasi-Linear Circuit

    Science.gov (United States)

    Bradley, William; Bird, Ross; Eldred, Dennis; Zook, Jon; Knowles, Gareth

    2013-01-01

    This work involved developing spacequalifiable switch mode DC/DC power supplies that improve performance with fewer components, and result in elimination of digital components and reduction in magnetics. This design is for missions where systems may be operating under extreme conditions, especially at elevated temperature levels from 200 to 300 degC. Prior art for radiation-tolerant DC/DC converters has been accomplished utilizing classical magnetic-based switch mode converter topologies; however, this requires specific shielding and component de-rating to meet the high-reliability specifications. It requires complex measurement and feedback components, and will not enable automatic re-optimization for larger changes in voltage supply or electrical loading condition. The innovation is a switch mode DC/DC power supply that eliminates the need for processors and most magnetics. It can provide a well-regulated voltage supply with a gain of 1:100 step-up to 8:1 step down, tolerating an up to 30% fluctuation of the voltage supply parameters. The circuit incorporates a ceramic core transformer in a manner that enables it to provide a well-regulated voltage output without use of any processor components or magnetic transformers. The circuit adjusts its internal parameters to re-optimize its performance for changes in supply voltage, environmental conditions, or electrical loading at the output

  12. Simple Cell Balance Circuit

    Science.gov (United States)

    Johnson, Steven D.; Byers, Jerry W.; Martin, James A.

    2012-01-01

    A method has been developed for continuous cell voltage balancing for rechargeable batteries (e.g. lithium ion batteries). A resistor divider chain is provided that generates a set of voltages representing the ideal cell voltage (the voltage of each cell should be as if the cells were perfectly balanced). An operational amplifier circuit with an added current buffer stage generates the ideal voltage with a very high degree of accuracy, using the concept of negative feedback. The ideal voltages are each connected to the corresponding cell through a current- limiting resistance. Over time, having the cell connected to the ideal voltage provides a balancing current that moves the cell voltage very close to that ideal level. In effect, it adjusts the current of each cell during charging, discharging, and standby periods to force the cell voltages to be equal to the ideal voltages generated by the resistor divider. The device also includes solid-state switches that disconnect the circuit from the battery so that it will not discharge the battery during storage. This solution requires relatively few parts and is, therefore, of lower cost and of increased reliability due to the fewer failure modes. Additionally, this design uses very little power. A preliminary model predicts a power usage of 0.18 W for an 8-cell battery. This approach is applicable to a wide range of battery capacities and voltages.

  13. Multi-cellular logistics of collective cell migration.

    Directory of Open Access Journals (Sweden)

    Masataka Yamao

    Full Text Available During development, the formation of biological networks (such as organs and neuronal networks is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes "collective migration," whereas strong noise from non-migratory cells causes "dispersive migration." Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems.

  14. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.

    Science.gov (United States)

    2010-10-01

    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit...

  15. Quantum Circuits with Mixed States

    OpenAIRE

    Aharonov, Dorit; Kitaev, Alexei; Nisan, Noam

    1998-01-01

    We define the model of quantum circuits with density matrices, where non-unitary gates are allowed. Measurements in the middle of the computation, noise and decoherence are implemented in a natural way in this model, which is shown to be equivalent in computational power to standard quantum circuits. The main result in this paper is a solution for the subroutine problem: The general function that a quantum circuit outputs is a probabilistic function, but using pure state language, such a func...

  16. Pharmacokinetics and RC Circuit Concepts

    Science.gov (United States)

    Cock, Mieke De; Janssen, Paul

    2013-11-01

    Most introductory physics courses include a chapter on RC circuits in which the differential equations for the charging and discharging of a capacitor are derived. A number of papers in this journal describe lab experiments dealing with the measurement of different parameters in such RC circuits. In this contribution, we report on a lab experiment we developed for students majoring in pharmacy, using RC circuits to simulate a pharmacokinetic process.

  17. Designing Parity Preserving Reversible Circuits

    OpenAIRE

    Paul, Goutam; Chattopadhyay, Anupam; Chandak, Chander

    2013-01-01

    Making a reversible circuit fault-tolerant is much more difficult than classical circuit and there have been only a few works in the area of parity-preserving reversible logic design. Moreover, all of these designs are ad hoc, based on some pre-defined parity preserving reversible gates as building blocks. In this paper, we for the first time propose a novel and systematic approach towards parity preserving reversible circuits design. We provide some related theoretical results and give two a...

  18. Sound Practice-improving occupational health and safety for professional orchestral musicians in Australia.

    Science.gov (United States)

    Ackermann, Bronwen J; Kenny, Dianna T; O'Brien, Ian; Driscoll, Tim R

    2014-01-01

    The Sound Practice Project is a 5-year study involving baseline evaluation, development, and implementation of musician-specific work health and safety initiatives. A cross-sectional population physical and psychological survey and physical assessment were conducted at the same time, with an auditory health assessment conducted later. The results were used to guide the development of a series of targeted interventions, encompassing physical, psychological, and auditory health components. This paper provides an overview of the project but focuses on the health findings arising from the cross-sectional survey. Three hundred and seventy-seven musicians from the eight professional symphony orchestras in Australia took part in the cross-sectional study (about 70% of eligible musicians). Eighty-four percent (84%) of musicians reported past performance-related musculoskeletal disorder (PRMD) episodes; 50% were suffering a current PRMD. Of the 63% who returned hearing surveys, 43% believed they had hearing loss, and 64% used earplugs at least intermittently. Noise exposure was found to be high in private practice, although awareness of risk and earplug use in this environment was lower than in orchestral settings. Improved strategic approaches, acoustic screens and recently developed active earplugs were found to provide effective new options for hearing protection. With respect to psychosocial screening, female musicians reported significantly more trait anxiety, music performance anxiety, social anxiety, and other forms of anxiety and depression than male musicians. The youngest musicians were significantly more anxious compared with the oldest musicians. Thirty-three percent (33%) of musicians may meet criteria for a diagnosis of social phobia; 32% returned a positive depression screen and 22% for post-traumatic stress disorder (PTSD). PRMDs and trigger point discomfort levels were strongly associated with increasing severity of psychological issues such as depression

  19. Sound Practice– Improving occupational health and safety for professional orchestral musicians in Australia

    Directory of Open Access Journals (Sweden)

    Bronwen Jane Ackermann

    2014-09-01

    Full Text Available The Sound Practice Project is a five-year study involving baseline evaluation, development and implementation of musician-specific work health and safety initiatives. A cross-sectional population physical and psychological survey and physical assessment were conducted at the same time, with an auditory health assessment conducted later. The results were used to guide the development of a series of targeted interventions, encompassing physical, psychological and auditory health components. This paper provides an overview of the project but focuses on the health findings arising from the cross-sectional survey.377 musicians from the eight professional symphony orchestras in Australia took part in the cross-sectional study (about 70% of eligible musicians. Eighty-four percent (84% of musicians reported past performance-related musculoskeletal disorder (PRMD episodes; 50% were suffering a current PRMD. Of the 63% who returned hearing surveys, 43% believed they had hearing loss, and 64% used earplugs at least intermittently. Noise exposure was found to be high in private practice, although awareness of risk and earplug use in this environment was lower than in orchestral settings. Improved strategic approaches, acoustic screens and recently developed active earplugs were found to provide effective new options for hearing protection. With respect to psychosocial screening, female musicians reported significantly more trait anxiety, music performance anxiety, social anxiety, and other forms of anxiety and depression than male musicians. The youngest musicians were significantly more anxious compared with the oldest musicians. Thirty-three percent (33% of musicians may meet criteria for a diagnosis of social phobia; 32% returned a positive depression screen and 22% for post-traumatic stress disorder. PRMDs and trigger point discomfort levels were strongly associated with increasing severity of psychological issues such as depression and music

  20. Molecular signatures reveal circadian clocks may orchestrate the homeorhetic response to lactation.

    Directory of Open Access Journals (Sweden)

    Theresa Casey

    Full Text Available Genes associated with lactation evolved more slowly than other genes in the mammalian genome. Higher conservation of milk and mammary genes suggest that species variation in milk composition is due in part to the environment and that we must look deeper into the genome for regulation of lactation. At the onset of lactation, metabolic changes are coordinated among multiple tissues through the endocrine system to accommodate the increased demand for nutrients and energy while allowing the animal to remain in homeostasis. This process is known as homeorhesis. Homeorhetic adaptation to lactation has been extensively described; however how these adaptations are orchestrated among multiple tissues remains elusive. To develop a clearer picture of how gene expression is coordinated across multiple tissues during the pregnancy to lactation transition, total RNA was isolated from mammary, liver and adipose tissues collected from rat dams (n = 5 on day 20 of pregnancy and day 1 of lactation, and gene expression was measured using Affymetrix GeneChips. Two types of gene expression analysis were performed. Genes that were differentially expressed between days within a tissue were identified with linear regression, and univariate regression was used to identify genes commonly up-regulated and down-regulated across all tissues. Gene set enrichment analysis showed genes commonly up regulated among the three tissues enriched gene ontologies primary metabolic processes, macromolecular complex assembly and negative regulation of apoptosis ontologies. Genes enriched in transcription regulator activity showed the common up regulation of 2 core molecular clock genes, ARNTL and CLOCK. Commonly down regulated genes enriched Rhythmic process and included: NR1D1, DBP, BHLHB2, OPN4, and HTR7, which regulate intracellular circadian rhythms. Changes in mammary, liver and adipose transcriptomes at the onset of lactation illustrate the complexity of homeorhetic adaptations

  1. Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1.

    Science.gov (United States)

    Wang, J; Wang, C D; Zhang, N; Tong, W X; Zhang, Y F; Shan, S Z; Zhang, X L; Li, Q F

    2016-01-01

    Mechanical stimulation and histone deacetylases (HDACs) have essential roles in regulating the osteogenic differentiation of bone marrow stromal cells (BMSCs) and bone formation. However, little is known regarding what regulates HDAC expression and therefore the osteogenic differentiation of BMSCs during osteogenesis. In this study, we investigated whether mechanical loading regulates HDAC expression directly and examined the role of HDACs in mechanical loading-triggered osteogenic differentiation and bone formation. We first studied the microarrays of samples from patients with osteoporosis and found that the NOTCH pathway and skeletal development gene sets were downregulated in the BMSCs of patients with osteoporosis. Then we demonstrated that mechanical stimuli can regulate osteogenesis and bone formation both in vivo and in vitro. NOTCH signaling was upregulated during cyclic mechanical stretch (CMS)-induced osteogenic differentiation, whereas HDAC1 protein expression was downregulated. The perturbation of HDAC1 expression also had a significant effect on matrix mineralization and JAG1-mediated Notch signaling, suggesting that HDAC1 acts as an endogenous attenuator of Notch signaling in the mechanotransduction of BMSCs. Chromatin immunoprecipitation (ChIP) assay results suggest that HDAC1 modulates the CMS-induced histone H3 acetylation level at the JAG1 promoter. More importantly, we found an inhibitory role of Hdac1 in regulating bone formation in response to hindlimb unloading in mice, and pretreatment with an HDAC1 inhibitor partly rescued the osteoporosis caused by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation orchestrates genes expression involved in the osteogenic differentiation of BMSCs via the direct regulation of HDAC1, and the therapeutic inhibition of HDAC1 may be an efficient strategy for enhancing bone formation under mechanical stimulation.

  2. Linking topography to tonotopy in the mouse auditory thalamocortical circuit

    DEFF Research Database (Denmark)

    Hackett, Troy A; Rinaldi Barkat, Tania; O'Brien, Barbara M J;

    2011-01-01

    order of subthreshold VSD maps was reduced in layer IV and even further degraded in layer II/III. Therefore, the precision of AI topography varies according to the source and layer of the mapping signal. Our findings further bridge the gap between in vivo and in vitro approaches for the detailed...... cellular study of auditory thalamocortical circuit organization and plasticity in the genetically tractable mouse model....

  3. Implications of TGFβ on transcriptome and cellular biofunctions of palatal mesenchyme

    Directory of Open Access Journals (Sweden)

    Xiujuan eZhu

    2012-04-01

    Full Text Available Development of the palate comprises sequential stages of growth, elevation and fusion of the palatal shelves. The mesenchymal component of palates plays a major role in early phases of palatogenesis, such as growth and elevation. Failure in these steps may result in cleft palate, the second most common birth defect in the world. These early stages of palatogenesis require precise and chronological orchestration of key physiological processes, such as growth, proliferation, differentiation, migration, and apoptosis. There is compelling evidence for the vital role of TGFβ-mediated regulation of palate development. We hypothesized that the isoforms of TGFβ regulate different cellular biofunctions of the palatal mesenchyme to various extents. Human embryonic palatal mesenchyme (HEPM cells were treated with TGFβ1, β2, and β3 for microarray-based gene expression studies in order to identify the roles of TGFβ in the transcriptome of the palatal mesenchyme. Following normalization and modeling of 28,869 human genes, 566 transcripts were detected as differentially expressed in TGFβ-treated HEPM cells. Out of these altered transcripts, 234 of them were clustered in cellular biofunctions, including growth and proliferation, development, morphology, movement, cell cycle, and apoptosis. Biological interpretation and network analysis of the genes active in cellular biofunctions were performed using IPA. Among the differentially expressed genes, 11 of them were previously identified as being crucial for palatogenesis (EDN1, INHBA, LHX8, PDGFC, PIGA, RUNX1, SNAI1, SMAD3, TGFβ1, TGFβ2, and TGFβR1. These genes were used for a merged interaction network with cellular behaviors. Overall, we have determined that more than 2% of human transcripts were differentially expressed in response to TGFβ treatment in HEPM cells. Our results suggest that both TGFβ1 and TGFβ2 orchestrate major cellular biofunctions within the palatal mesenchyme in vitro by

  4. A Circuit to Demonstrate Phase Relationships in "RLC" Circuits

    Science.gov (United States)

    Sokol, P. E.; Warren, G.; Zheng, B.; Smith, P.

    2013-01-01

    We have developed a circuit to demonstrate the phase relationships between resistive and reactive elements in series "RLC" circuits. We utilize a differential amplifier to allow the phases of the three elements and the current to be simultaneously displayed on an inexpensive four channel oscilloscope. We have included a novel circuit…

  5. Memristor Circuits and Systems

    KAUST Repository

    Zidan, Mohammed A.

    2015-05-01

    Current CMOS-based technologies are facing design challenges related to the continuous scaling down of the minimum feature size, according to Moore’s law. Moreover, conventional computing architecture is no longer an effective way of fulfilling modern applications demands, such as big data analysis, pattern recognition, and vector processing. Therefore, there is an exigent need to shift to new technologies, at both the architecture and the device levels. Recently, memristor devices and structures attracted attention for being promising candidates for this job. Memristor device adds a new dimension for designing novel circuits and systems. In addition, high-density memristor-based crossbar is widely considered to be the essential element for future memory and bio-inspired computing systems. However, numerous challenges need to be addressed before the memristor genuinely replaces current memory and computing technologies, which is the motivation behind this research effort. In order to address the technology challenges, we begin by fabricating and modeling the memristor device. The devices fabricated at our local clean room enriched our understanding of the memristive phenomenon and enabled the experimental testing for our memristor-based circuits. Moreover, our proposed mathematical modeling for memristor behavior is an essential element for the theoretical circuit design stage. Designing and addressing the challenges of memristor systems with practical complexity, however, requires an extra step, which takes the form of a reliable and modular simulation platform. We, therefore, built a new simulation platform for the resistive crossbar, which can simulate realistic size arrays filled with real memory data. In addition, this simulation platform includes various crossbar nonidealities in order to obtain accurate simulation results. Consequently, we were able to address the significant challenges facing the high density memristor crossbar, as the building block for

  6. A dishwasher for circuits

    CERN Multimedia

    Rosaria Marraffino

    2014-01-01

    You have always been told that electronic devices fear water. However, at the Surface Mount Devices (SMD) Workshop here at CERN all the electronic assemblies are cleaned with a machine that looks like a… dishwasher.   The circuit dishwasher. Credit: Clara Nellist.  If you think the image above shows a dishwasher, you wouldn’t be completely wrong. Apart from the fact that the whole pumping system and the case itself are made entirely from stainless steel and chemical resistant materials, and the fact that it washes electrical boards instead of dishes… it works exactly like a dishwasher. It’s a professional machine (mainly used in the pharmaceutical industry) designed to clean everything that can be washed with a water-based chemical soap. This type of treatment increases the lifetime of the electronic boards and therefore the LHC's reliability by preventing corrosion problems in the severe radiation and ozone environment of the LHC tunn...

  7. Basic electronic circuits

    CERN Document Server

    Buckley, P M

    1980-01-01

    In the past, the teaching of electricity and electronics has more often than not been carried out from a theoretical and often highly academic standpoint. Fundamentals and basic concepts have often been presented with no indication of their practical appli­ cations, and all too frequently they have been illustrated by artificially contrived laboratory experiments bearing little relationship to the outside world. The course comes in the form of fourteen fairly open-ended constructional experiments or projects. Each experiment has associated with it a construction exercise and an explanation. The basic idea behind this dual presentation is that the student can embark on each circuit following only the briefest possible instructions and that an open-ended approach is thereby not prejudiced by an initial lengthy encounter with the theory behind the project; this being a sure way to dampen enthusiasm at the outset. As the investigation progresses, questions inevitably arise. Descriptions of the phenomena encounte...

  8. Modeling cortical circuits.

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon

    2010-09-01

    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  9. Closed Circuit Videoinstallationen

    DEFF Research Database (Denmark)

    Kacunko, Slavko

    be seen with only insignificant qualification as a specific characteristic of the medium. The closed-circuit video installations based on it represent the attest field of experiment for the assumptions on art and the theory and history of the medium that it might lead one make. In recent years......, theoretical debate on the medium has diagnosed with some precision where the electronic video image stands between analogue and digital codes, or again, between media representation and presentation; but that position has hardly ever been subjected to examination against the pertinent examples. An art...... of video as well as the latest digital art forms, can then be examined with the aid of such results and elucidated in historical terms. The prospect at least, of a gradual introduction of the electronic arts into the art history syllabus will be brought a deal closer thanks to such individual...

  10. Diamond Integrated Optomechanical Circuits

    CERN Document Server

    Rath, Patrik; Nebel, Christoph; Wild, Christoph; Pernice, Wolfram H P

    2013-01-01

    Diamond offers unique material advantages for the realization of micro- and nanomechanical resonators due to its high Young's modulus, compatibility with harsh environments and superior thermal properties. At the same time, the wide electronic bandgap of 5.45eV makes diamond a suitable material for integrated optics because of broadband transparency and the absence of free-carrier absorption commonly encountered in silicon photonics. Here we take advantage of both to engineer full-scale optomechanical circuits in diamond thin films. We show that polycrystalline diamond films fabricated by chemical vapour deposition provide a convenient waferscale substrate for the realization of high quality nanophotonic devices. Using free-standing nanomechanical resonators embedded in on-chip Mach-Zehnder interferometers, we demonstrate efficient optomechanical transduction via gradient optical forces. Fabricated diamond resonators reproducibly show high mechanical quality factors up to 11,200. Our low cost, wideband, carri...

  11. VLSI circuits implementing computational models of neocortical circuits.

    Science.gov (United States)

    Wijekoon, Jayawan H B; Dudek, Piotr

    2012-09-15

    This paper overviews the design and implementation of three neuromorphic integrated circuits developed for the COLAMN ("Novel Computing Architecture for Cognitive Systems based on the Laminar Microcircuitry of the Neocortex") project. The circuits are implemented in a standard 0.35 μm CMOS technology and include spiking and bursting neuron models, and synapses with short-term (facilitating/depressing) and long-term (STDP and dopamine-modulated STDP) dynamics. They enable execution of complex nonlinear models in accelerated-time, as compared with biology, and with low power consumption. The neural dynamics are implemented using analogue circuit techniques, with digital asynchronous event-based input and output. The circuits provide configurable hardware blocks that can be used to simulate a variety of neural networks. The paper presents experimental results obtained from the fabricated devices, and discusses the advantages and disadvantages of the analogue circuit approach to computational neural modelling. PMID:22342970

  12. Epigenetics and Cellular Metabolism

    Science.gov (United States)

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well. PMID:27695375

  13. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  14. Epigenetics and Cellular Metabolism

    Science.gov (United States)

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  15. Pharmacokinetics and "RC" Circuit Concepts

    Science.gov (United States)

    De Cock, Mieke; Janssen, Paul

    2013-01-01

    Most introductory physics courses include a chapter on "RC" circuits in which the differential equations for the charging and discharging of a capacitor are derived. A number of papers in this journal describe lab experiments dealing with the measurement of different parameters in such "RC" circuits. In this contribution, we…

  16. Enhancement of Linear Circuit Program

    DEFF Research Database (Denmark)

    Gaunholt, Hans; Dabu, Mihaela; Beldiman, Octavian

    1996-01-01

    In this report a preliminary user friendly interface has been added to the LCP2 program making it possible to describe an electronic circuit by actually drawing the circuit on the screen. Component values and other options and parameters can easily be set by the aid of the interface. The interface...

  17. Demonstrations with an "LCR" Circuit

    Science.gov (United States)

    Kraftmakher, Yaakov

    2011-01-01

    The "LCR" circuit is an important topic in the course of electricity and magnetism. Papers in this field consider mainly the forced oscillations and resonance. Our aim is to show how to demonstrate the free and self-excited oscillations in an "LCR" circuit. (Contains 4 figures.)

  18. Logic Circuit Design Selected Methods

    CERN Document Server

    Vingron, Shimon P

    2012-01-01

        In three main divisions the  book covers combinational circuits, latches, and asynchronous sequential circuits. Combinational circuits have  no memorising ability, while sequential circuits have such an ability to various degrees. Latches are the simplest sequential circuits, ones with the shortest memory. The presentation is decidedly non-standard.         The design of combinational circuits is discussed in an orthodox manner using normal forms and in an unorthodox manner using set-theoretical evaluation formulas relying heavily on Karnaugh maps. The latter approach allows for a new design technique called composition.          Latches are covered very extensively. Their memory functions are expressed mathematically in a time-independent manner allowing the use of (normal, non-temporal) Boolean logic in their calculation. The theory of latches is then used as the basis for calculating asynchronous circuits.         Asynchronous circuits are specified in a tree-representation, eac...

  19. Material and mechanical factors:new strategy in cellular neurogenesis

    Institute of Scientific and Technical Information of China (English)

    Hillary Stoll; Il Keun Kwon; Jung Yul Lim

    2014-01-01

    Since damaged neural circuits are not generally self-recovered, developing methods to stimulate neurogenesis is critically required. Most studies have examined the effects of soluble pharma-cological factors on the cellular neurogenesis. On the other hand, it is now recognized that the other extracellular factors, including material and mechanical cues, also have a strong potential to induce cellular neurogenesis. This article will review recent data on the material (chemical patterning, micro/nano-topography, carbon nanotube, graphene) and mechanical (static cue from substrate stiffness, dynamic cue from stretch and lfow shear) stimulations of cellular neuro-genesis. These approaches may provide new neural regenerative medicine protocols. Scaffolding material templates capable of triggering cellular neurogenesis can be explored in the presence of neurogenesis-stimulatory mechanical environments, and also with conventional soluble factors, to enhance axonal growth and neural network formation in neural tissue engineering.

  20. 49 CFR 236.728 - Circuit, trap.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, trap. 236.728 Section 236.728... Circuit, trap. A term applied to a circuit used where it is desirable to provide a track circuit but where it is impracticable to maintain a track circuit....

  1. Variational integrators for electric circuits

    CERN Document Server

    Ober-Blöbaum, Sina; Cheng, Mulin; Owhadi, Houman; Marsden, Jerrold E

    2011-01-01

    In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering the dynamics of an electrical circuit, one is faced with three special situations: 1. The system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared to standard integration tools for circuits; in particular, a comparison to BDF methods ...

  2. Electronic design with integrated circuits

    Science.gov (United States)

    Comer, D. J.

    The book is concerned with the application of integrated circuits and presents the material actually needed by the system designer to do an effective job. The operational amplifier (op amp) is discussed, taking into account the electronic amplifier, the basic op amp, the practical op amp, analog applications, and digital applications. Digital components are considered along with combinational logic, digital subsystems, the microprocessor, special circuits, communications, and integrated circuit building blocks. Attention is given to logic gates, logic families, multivibrators, the digital computer, digital methods, communicating with a computer, computer organization, register and timing circuits for data transfer, arithmetic circuits, memories, the microprocessor chip, the control unit, communicating with the microprocessor, examples of microprocessor architecture, programming a microprocessor, the voltage-controlled oscillator, the phase-locked loop, analog-to-digital conversion, amplitude modulation, frequency modulation, pulse and digital transmission, the semiconductor diode, the bipolar transistor, and the field-effect transistor.

  3. Demultiplexer circuit for neural stimulation

    Science.gov (United States)

    Wessendorf, Kurt O; Okandan, Murat; Pearson, Sean

    2012-10-09

    A demultiplexer circuit is disclosed which can be used with a conventional neural stimulator to extend the number of electrodes which can be activated. The demultiplexer circuit, which is formed on a semiconductor substrate containing a power supply that provides all the dc electrical power for operation of the circuit, includes digital latches that receive and store addressing information from the neural stimulator one bit at a time. This addressing information is used to program one or more 1:2.sup.N demultiplexers in the demultiplexer circuit which then route neural stimulation signals from the neural stimulator to an electrode array which is connected to the outputs of the 1:2.sup.N demultiplexer. The demultiplexer circuit allows the number of individual electrodes in the electrode array to be increased by a factor of 2.sup.N with N generally being in a range of 2-4.

  4. Elucidating the cellular actions of demineralised dentine matrix extract on a clonal dental pulp stem cell population in orchestrating dental tissue repair

    OpenAIRE

    Lee, Chi P; Colombo, John S; Ayre, Wayne Nishio; Sloan, Alastair J; Waddington, Rachel J

    2015-01-01

    Bioactive growth factors identified within the extracellular matrix of dentine have been proposed roles in regulating the naturally inherent regenerative dentine formation seen in teeth in response to trauma and infection, which may also be harnessed for novel clinical treatments in augmenting mineralised tissue repair. This study examined the specific biological action of demineralised dentine matrix extract on a clonal population of dental pulp stem cells in stimulating the prerequisite sta...

  5. The effect of time-variant acoustical properties on orchestral instrument timbres

    Science.gov (United States)

    Hajda, John Michael

    1999-06-01

    The goal of this study was to investigate the timbre of orchestral instrument tones. Kendall (1986) showed that time-variant features are important to instrument categorization. But the relative salience of specific time-variant features to each other and to other acoustical parameters is not known. As part of a convergence strategy, a battery of experiments was conducted to assess the importance of global amplitude envelope, spectral frequencies, and spectral amplitudes. An omnibus identification experiment investigated the salience of global envelope partitions (attack, steady state, and decay). Valid partitioning models should identify important boundary conditions in the evolution of a signal; therefore, these models should be based on signal characteristics. With the use of such a model for sustained continuant tones, the steady-state segment was more salient than the attack. These findings contradicted previous research, which used questionable operational definitions for signal partitioning. For the next set of experiments, instrument tones were analyzed by phase vocoder, and stimuli were created by additive synthesis. Edits and combinations of edits controlled global amplitude envelope, spectral frequencies, and relative spectral amplitudes. Perceptual measurements were made with distance estimation, Verbal Attribute Magnitude Estimation, and similarity scaling. Results indicated that the primary acoustical attribute was the long-time-average spectral centroid. Spectral centroid is a measure of the center of energy distribution for spectral frequency components. Instruments with high values of spectral centroid (bowed strings) sound nasal while instruments with low spectral centroid (flute, clarinet) sound not nasal. The secondary acoustical attribute was spectral amplitude time variance. Predictably, time variance correlated highly with subject ratings of vibrato. The control of relative spectral amplitudes was more salient than the control of global

  6. Layering genetic circuits to build a single cell, bacterial half adder

    OpenAIRE

    Wong, Adison; Wang, Huijuan; Poh, Chueh Loo; Kitney, Richard I.

    2015-01-01

    Background Gene regulation in biological systems is impacted by the cellular and genetic context-dependent effects of the biological parts which comprise the circuit. Here, we have sought to elucidate the limitations of engineering biology from an architectural point of view, with the aim of compiling a set of engineering solutions for overcoming failure modes during the development of complex, synthetic genetic circuits. Results Using a synthetic biology approach that is supported by computa...

  7. Stress and Rodent Models of Drug Addiction: Role of VTA-Accumbens-PFC-Amygdala Circuit

    OpenAIRE

    Yap, Jasmine. J.; Miczek, Klaus A.

    2008-01-01

    Stress can trigger, intensify, and prolong drug consumption, as well as reinstate previously extinguished drug-taking behavior by directly impacting a neural circuit often referred to as a reward pathways. Animal models of drug abuse have been used to understand these neural circuits mediating stress-induced drug intake and relapse through examination of cellular and subcellular molecular mechanisms. Several types of intermittent stressors have been shown to induce cross-sensitization to psyc...

  8. Cellular Response to Irradiation

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; YAN Shi-Wei

    2011-01-01

    To explore the nonlinear activities of the cellular signaling system composed of one transcriptional arm and one protein-interaction arm, we use an irradiation-response module to study the dynamics of stochastic interactions.It is shown that the oscillatory behavior could be described in a unified way when the radiation-derived signal and noise are incorporated.

  9. The New Cellular Immunology

    Science.gov (United States)

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  10. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane.

    Science.gov (United States)

    Vitriol, Eric A; Zheng, James Q

    2012-03-22

    Growth cones, found at the tip of axonal projections, are the sensory and motile organelles of developing neurons that enable axon pathfinding and target recognition for precise wiring of the neural circuitry. To date, many families of conserved guidance molecules and their corresponding receptors have been identified that work in space and time to ensure billions of axons to reach their targets. Research in the past two decades has also gained significant insight into the ways in which growth cones translate extracellular signals into directional migration. This review aims to examine new progress toward understanding the cellular mechanisms underlying directional motility of the growth cone and to discuss questions that remain to be addressed. Specifically, we will focus on the cellular ensemble of cytoskeleton, adhesion, and membrane and examine how the intricate interplay between these processes orchestrates the directed movement of growth cones.

  11. Performance analysis of electrical circuits /PANE/

    Science.gov (United States)

    Johnson, K. L.; Steinberg, L. L.

    1968-01-01

    Automated statistical and worst case computer program has been designed to perform dc and ac steady circuit analyses. The program determines the worst case circuit performance by solving circuit equations.

  12. 30 CFR 75.800 - High-voltage circuits; circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground area of any coal mine shall be protected by suitable circuit breakers of adequate interrupting...

  13. Global optimization of digital circuits

    Science.gov (United States)

    Flandera, Richard

    1991-12-01

    This thesis was divided into two tasks. The first task involved developing a parser which could translate a behavioral specification in Very High-Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) into the format used by an existing digital circuit optimization tool, Boolean Reasoning In Scheme (BORIS). Since this tool is written in Scheme, a dialect of Lisp, the parser was also written in Scheme. The parser was implemented is Artez's modification of Earley's Algorithm. Additionally, a VHDL tokenizer was implemented in Scheme and a portion of the VHDL grammar was converted into the format which the parser uses. The second task was the incorporation of intermediate functions into BORIS. The existing BORIS contains a recursive optimization system that optimizes digital circuits by using circuit outputs as inputs into other circuits. Intermediate functions provide a greater selection of functions to be used as circuits inputs. Using both intermediate functions and output functions, the costs of the circuits in the test set were reduced by 43 percent. This is a 10 percent reduction when compared to the existing recursive optimization system. Incorporating intermediate functions into BORIS required the development of an intermediate-function generator and a set of control methods to keep the computation time from increasing exponentially.

  14. Spectral Purity Enhancement via Polyphase Multipath Circuits

    OpenAIRE

    Mensink, Eisse; Klumperink, Eric; Nauta, Bram

    2004-01-01

    The central question of this paper is: can we enhance the spectral purity of nonlinear circuits by using polyphase multipath circuits? The basic idea behind polyphase multipath circuits is to split the nonlinear circuits into two or more paths and exploit phase differences between these paths to cancel undesired distortion products. It turns out that it is very well possible to use polyphase multipath circuits to cancel distortion products produced by a nonlinear circuit. Unfortunately, there...

  15. Finite Field Arithmetic Architecture Based on Cellular Array

    Directory of Open Access Journals (Sweden)

    Kee-Won Kim

    2015-05-01

    Full Text Available Recently, various finite field arithmetic structures are introduced for VLSI circuit implementation on cryptosystems and error correcting codes. In this study, we present an efficient finite field arithmetic architecture based on cellular semi-systolic array for Montgomery multiplication by choosing a proper Montgomery factor which is highly suitable for the design on parallel structures. Therefore, our architecture has reduced a time complexity by 50% compared to typical architecture.

  16. Determining Covers in Combinational Circuits

    Directory of Open Access Journals (Sweden)

    Ljubomir Cvetkovic

    2011-05-01

    Full Text Available In this paper we propose a procedure for determining 0- or 1-cover of an arbitrary line in a combinational circuit. When determining a cover we do not need Boolean expression for the line; only the circuit structure is used. Within the proposed procedure we use the tools of the cube theory, in particular, some operations defined on cubes. The procedure can be applied for determining 0- and 1- covers of output lines in programmable logic devices. Basically, this procedure is a method for the analysis of a combinational circuit.

  17. The Maplin electronic circuits handbook

    CERN Document Server

    Tooley, Michael

    2015-01-01

    The Maplin Electronic Circuits Handbook provides pertinent data, formula, explanation, practical guidance, theory and practical guidance in the design, testing, and construction of electronic circuits. This book discusses the developments in electronics technology techniques.Organized into 11 chapters, this book begins with an overview of the common types of passive component. This text then provides the reader with sufficient information to make a correct selection of passive components for use in the circuits. Other chapters consider the various types of the most commonly used semiconductor

  18. Secure integrated circuits and systems

    CERN Document Server

    Verbauwhede, Ingrid MR

    2010-01-01

    On any advanced integrated circuit or 'system-on-chip' there is a need for security. In many applications the actual implementation has become the weakest link in security rather than the algorithms or protocols. The purpose of the book is to give the integrated circuits and systems designer an insight into the basics of security and cryptography from the implementation point of view. As a designer of integrated circuits and systems it is important to know both the state-of-the-art attacks as well as the countermeasures. Optimizing for security is different from optimizations for speed, area,

  19. A Novel Design of Half Subtractor using Reversible Feynman Gate in Quantum Dot cellular Automata

    Directory of Open Access Journals (Sweden)

    Rubina Akter

    2014-12-01

    Full Text Available Quantum Dot cellular Automata (QCA is an emerging, promising alternative to CMOS technology that performs its task by encoding binary information on electronic charge configuration of a cell. All circuit based on QCA has an advantages of high speed, high parallel processing, high integrityand low power consumption. Reversible logic gates are the leading part in Quantum Dot cellular Automata. Reversible logic gates have an extensive feature that does not lose information. In this paper, we present a novel architecture of half subtractor gate design by reversible Feynman gate. This circuit is designedbased on QCA logic gates such as QCA majority voter gate, majority AND gate, majority OR gate and inverter gate. This circuit will provide an effective working efficiency on computational units of the digital circuit system.

  20. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  1. Transcriptional control of fungal cell cycle and cellular events by Fkh2, a forkhead transcription factor in an insect pathogen

    OpenAIRE

    Wang, Juan-juan; Qiu, Lei; Cai, Qing; Ying, Sheng-Hua; Feng, Ming-Guang

    2015-01-01

    Transcriptional control of the cell cycle by forkhead (Fkh) transcription factors is likely associated with fungal adaptation to host and environment. Here we show that Fkh2, an ortholog of yeast Fkh1/2, orchestrates cell cycle and many cellular events of Beauveria bassiana, a filamentous fungal insect pathogen. Deletion of Fkh2 in B. bassiana resulted in dramatic down-regulation of the cyclin-B gene cluster and hence altered cell cycle (longer G2/M and S, but shorter G0/G1, phases) in unicel...

  2. Magnetic Cellular Switches

    OpenAIRE

    Overby, Darryl R.; Alenghat, Francis J.; Montoya-Zavala, Martín; Bei, HuCheng; Oh, Philmo; Karavitis, John; Ingber, Donald E.

    2004-01-01

    This paper focuses on the development of magnetic cellular switches to enable magnetic control of intracellular functions in living mammalian cells, including receptor signal transduction and gene transcription. Our approach takes advantage of the mechanosensitivity of adenosine 3′,5′-monophosphate (cAMP) induction and downstream transcription controlled by the cAMP regulatory element (CRE) to engineer gene constructs that optically report gene expression in living cells. We activate transcri...

  3. CADAT integrated circuit mask analysis

    Science.gov (United States)

    1981-01-01

    CADAT System Mask Analysis Program (MAPS2) is automated software tool for analyzing integrated-circuit mask design. Included in MAPS2 functions are artwork verification, device identification, nodal analysis, capacitance calculation, and logic equation generation.

  4. Discharge quenching circuit for counters

    International Nuclear Information System (INIS)

    A circuit for quenching discharges in gas-discharge detectors with working voltage of 3-5 kV based on transistors operating in the avalanche mode is described. The quenching circuit consists of a coordinating emitter follower, amplifier-shaper for avalanche key cascade control which changes potential on the counter electrodes and a shaper of discharge quenching duration. The emitter follower is assembled according to a widely used flowsheet with two transistors. The circuit permits to obtain a rectangular quenching pulse with front of 100 ns and an amplitude of up to 3.2 kV at duration of 500 μm-8 ms. Application of the quenching circuit described permits to obtain countering characteristics with the slope less than or equal to 0.02%/V and plateau extent greater than or equal to 300 V

  5. Wireless communications circuits and systems

    CERN Document Server

    Sun, Yichuang

    2004-01-01

    This new book examines integrated circuits, systems and transceivers for wireless and mobile communications. It covers the most recent developments in key RF, IF, analogue, mixed-signal components and single-chip transceivers in CMOS technology.

  6. Extensional Uniformity for Boolean Circuits

    CERN Document Server

    McKenzie, Pierre; Vollmer, Heribert

    2008-01-01

    Imposing an extensional uniformity condition on a non-uniform circuit complexity class C means simply intersecting C with a uniform class L. By contrast, the usual intensional uniformity conditions require that a resource-bounded machine be able to exhibit the circuits in the circuit family defining C. We say that (C,L) has the "Uniformity Duality Property" if the extensionally uniform class C \\cap L can be captured intensionally by means of adding so-called "L-numerical predicates" to the first-order descriptive complexity apparatus describing the connection language of the circuit family defining C. This paper exhibits positive instances and negative instances of the Uniformity Duality Property.

  7. Circuit design on plastic foils

    CERN Document Server

    Raiteri, Daniele; Roermund, Arthur H M

    2015-01-01

    This book illustrates a variety of circuit designs on plastic foils and provides all the information needed to undertake successful designs in large-area electronics.  The authors demonstrate architectural, circuit, layout, and device solutions and explain the reasons and the creative process behind each. Readers will learn how to keep under control large-area technologies and achieve robust, reliable circuit designs that can face the challenges imposed by low-cost low-temperature high-throughput manufacturing.   • Discusses implications of problems associated with large-area electronics and compares them to standard silicon; • Provides the basis for understanding physics and modeling of disordered material; • Includes guidelines to quickly setup the basic CAD tools enabling efficient and reliable designs; • Illustrates practical solutions to cope with hard/soft faults, variability, mismatch, aging and bias stress at architecture, circuit, layout, and device levels.

  8. Supporting Discourse and Classroom Orchestration in a Knowledge Community and Inquiry Approach

    Science.gov (United States)

    Fong, Cresencia G. W.

    activity sequence. In each successive iteration, exciting technology features of CK were refined in response to critical evaluations of the previous enactment. New features were also added, including new tagging and data mining, which served to extend new forms of activity sequences. Initial iterations included simple applications as a supplemental brainstorming environment, where the final iteration employed CK to coordinate a structured progression from brainstorming through inquiry proposals and then open inquiry investigations. Findings include the identification of a basic Reflect-Refocus-Release orchestration pattern, in which the teacher helps students to apprehend the progress or gaps in their inquiry, using content or patterns within the CK notes, engaging them in productive discussions, then releasing them to respond to the discussion appropriately. Additionally, four discourse orientations were observed within the Reflection phase of the pattern: (1) teacher reflection, (2) community (whole-class) reflection, (3) individual (student) reflections, (4) community (whole class) instruction. Within these orientations, teachers employed various discourse functions that served purposes of revoicing student ideas, norming the positions across the community, and casting students in various inquiry roles. The two teachers varied in how they employed these orientations, and also changed their patterns from one iteration to the next, reflecting the shifting task demands for discourse from one iteration to the next.

  9. Cellular therapy in Tuberculosis

    Directory of Open Access Journals (Sweden)

    Shreemanta K. Parida

    2015-03-01

    Full Text Available Cellular therapy now offer promise of potential adjunct therapeutic options for treatment of drug-resistant tuberculosis (TB. We review here the role of Mesenchymal stromal cells, (MSCs, as well as other immune effector cells in the therapy of infectious diseases with a focus on TB. MSCs represent a population of tissue-resident non-hematopoietic adult progenitor cells which home into injured tissues increase the proliferative potential of broncho-alveolar stem cells and restore lung epithelium. MSCs have been shown to be immune-modulatory and anti-inflammatory mediated via cell-cell contacts as well as soluble factors. We discuss the functional profile of MSCs and their potential use for adjunct cellular therapy of multi-drug resistant TB, with the aim of limiting tissue damage, and to convert unproductive inflammatory responses into effective anti-pathogen directed immune responses. Adjunct cellular therapy could potentially offer salvage therapy options for patients with drug-resistant TB, increase clinically relevant anti-M.tuberculosis directed immune responses and possibly shorten the duration of anti-TB therapy.

  10. Practical circuits with Physarum Wires

    OpenAIRE

    Whiting, James G. H.; Mayne, Richard; Moody, Nadine; Costello, Ben de Lacy; Adamatzky, Andrew

    2015-01-01

    Purpose: Protoplasmic tubes of Physarum polycephalum, also know as Physarum Wires (PW), have been previously suggested as novel bio- electronic components. Until recently, practical examples of electronic circuits using PWs have been limited. These PWs have been shown to be self repairing, offering significant advantage over traditional electronic components. This article documents work performed to produce practical circuits using PWs. Method: We have demonstrated through manufacture and tes...

  11. Efficient Design of Reversible Code Converters Using Quantum Dot Cellular Automata

    OpenAIRE

    Javeed Iqbal Reshi; M. Tariq Banday

    2016-01-01

    Quantum dot Cellular Automata (QCA) is an attractive field of nano-technology which offers the various advantages over existing CMOS technology for the development of logic circuits. Contradictory to other technologies which use the voltage levels for logic representation, QCA utilizes the polarization of electrons for representing the binary states in the QCA Cell. Conventional logic circuits are not energy efficient as they are not reversible in nature and hence lead to energy dissipation. ...

  12. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  13. Receiver Gain Modulation Circuit

    Science.gov (United States)

    Jones, Hollis; Racette, Paul; Walker, David; Gu, Dazhen

    2011-01-01

    A receiver gain modulation circuit (RGMC) was developed that modulates the power gain of the output of a radiometer receiver with a test signal. As the radiometer receiver switches between calibration noise references, the test signal is mixed with the calibrated noise and thus produces an ensemble set of measurements from which ensemble statistical analysis can be used to extract statistical information about the test signal. The RGMC is an enabling technology of the ensemble detector. As a key component for achieving ensemble detection and analysis, the RGMC has broad aeronautical and space applications. The RGMC can be used to test and develop new calibration algorithms, for example, to detect gain anomalies, and/or correct for slow drifts that affect climate-quality measurements over an accelerated time scale. A generalized approach to analyzing radiometer system designs yields a mathematical treatment of noise reference measurements in calibration algorithms. By treating the measurements from the different noise references as ensemble samples of the receiver state, i.e. receiver gain, a quantitative description of the non-stationary properties of the underlying receiver fluctuations can be derived. Excellent agreement has been obtained between model calculations and radiometric measurements. The mathematical formulation is equivalent to modulating the gain of a stable receiver with an externally generated signal and is the basis for ensemble detection and analysis (EDA). The concept of generating ensemble data sets using an ensemble detector is similar to the ensemble data sets generated as part of ensemble empirical mode decomposition (EEMD) with exception of a key distinguishing factor. EEMD adds noise to the signal under study whereas EDA mixes the signal with calibrated noise. It is mixing with calibrated noise that permits the measurement of temporal-functional variability of uncertainty in the underlying process. The RGMC permits the evaluation of EDA by

  14. Cellular reprogramming through mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    Justin eLee

    2015-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  15. Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Sayantan, E-mail: sayantan_bose@hms.harvard.edu [Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500 (United States); Jardetzky, Theodore S. [Department of Structural Biology and Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305 (United States); Lamb, Robert A., E-mail: ralamb@northwestern.edu [Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500 (United States); Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208-3500 (United States)

    2015-05-15

    The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insights into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. - Highlights: • New structural and functional insights into paramyxovirus entry mechanisms. • Current data on paramyxovirus glycoproteins suggest a core conserved entry mechanism. • Diverse mechanisms preventing premature fusion activation exist in these viruses. • Precise spacio-temporal interplay between paramyxovirus glycoproteins initiate entry.

  16. Difference-Equation/Flow-Graph Circuit Analysis

    Science.gov (United States)

    Mcvey, I. M.

    1988-01-01

    Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.

  17. Multi-Layer E-Textile Circuits

    Science.gov (United States)

    Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory

    2012-01-01

    Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.

  18. Tunable circuit for tunable capacitor devices

    Science.gov (United States)

    Rivkina, Tatiana; Ginley, David S.

    2006-09-19

    A tunable circuit (10) for a capacitively tunable capacitor device (12) is provided. The tunable circuit (10) comprises a tunable circuit element (14) and a non-tunable dielectric element (16) coupled to the tunable circuit element (16). A tunable capacitor device (12) and a method for increasing the figure of merit in a tunable capacitor device (12) are also provided.

  19. Implementation and simulation of arithmetic logic unit, shifter and Multiplier in Quantum cellular automata technology

    Directory of Open Access Journals (Sweden)

    Dr.E.N.Ganesh

    2010-08-01

    Full Text Available Quantum cellular automata (QCA is a new technology in the nanometer scale and has been considered as one of the alternative to CMOS technology. QCA have a large potential in the development of circuits with high space density and low heat dissipation and allow the development of faster computers with lower power consumption. This paper discusses the design and construction of simple two bit arithmetic logic unit , four bit shifter and carry save in multiplier circuits. The advantage of this type of ALU is to construct functional unit all around the input lines and thereby reducing circuit complexity. Four bit shifter are constructed using serial AND and OR QCA circuits. QCA multiplier designed and constructed here has advantage of carry save in by delaying one clock cycle and no of bits can also be increased by adding the full adder stages. These circuits are the building block of nanoprocessors and provide us to understand the nanodevices of the future.

  20. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation.......Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...

  1. Comparison between four piezoelectric energy harvesting circuits

    Institute of Scientific and Technical Information of China (English)

    Jinhao QIU; Hao JIANG; Hongli JI; Kongjun ZHU

    2009-01-01

    This paper investigates and compares the efficiencies of four different interfaces for vibration-based energy harvesting systems. Among those four circuits, two circuits adopt the synchronous switching technique, in which the circuit is switched synchronously with the vibration. In this study, a simple source-less trigger circuit used to control the synchronized switch is proposed and two interface circuits of energy harvesting systems are designed based on the trigger circuit. To validate the effectiveness of the proposed circuits, an experimental system was established and the power harvested by those circuits from a vibration beam was measured. Experimental results show that the two new circuits can increase the harvested power by factors 2.6 and 7, respectively, without consuming extra power in the circuits.

  2. Progress in understanding mood disorders: optogenetic dissection of neural circuits.

    Science.gov (United States)

    Lammel, S; Tye, K M; Warden, M R

    2014-01-01

    Major depression is characterized by a cluster of symptoms that includes hopelessness, low mood, feelings of worthlessness and inability to experience pleasure. The lifetime prevalence of major depression approaches 20%, yet current treatments are often inadequate both because of associated side effects and because they are ineffective for many people. In basic research, animal models are often used to study depression. Typically, experimental animals are exposed to acute or chronic stress to generate a variety of depression-like symptoms. Despite its clinical importance, very little is known about the cellular and neural circuits that mediate these symptoms. Recent advances in circuit-targeted approaches have provided new opportunities to study the neuropathology of mood disorders such as depression and anxiety. We review recent progress and highlight some studies that have begun tracing a functional neuronal circuit diagram that may prove essential in establishing novel treatment strategies in mood disorders. First, we shed light on the complexity of mesocorticolimbic dopamine (DA) responses to stress by discussing two recent studies reporting that optogenetic activation of midbrain DA neurons can induce or reverse depression-related behaviors. Second, we describe the role of the lateral habenula circuitry in the pathophysiology of depression. Finally, we discuss how the prefrontal cortex controls limbic and neuromodulatory circuits in mood disorders.

  3. Distortion Cancellation via Polyphase Multipath Circuits

    OpenAIRE

    Mensink, Eisse; Klumperink, Eric A.M.; Nauta, Bram

    2004-01-01

    The central question of this paper is: can we enhance the spectral purity of nonlinear circuits with the help of polyphase multipath circuits. Polyphase multipath circuits are circuits with two or more paths that exploit phase differences between the paths to cancel unwanted signals. It turns out that it is very well possible to cancel distortion products produced by a nonlinear circuit. Unfortunately, there are also some spectral components that cannot be cancelled with the polyphase multipa...

  4. Instrumentation and test gear circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Instrumentation and Test Gear Circuits Manual provides diagrams, graphs, tables, and discussions of several types of practical circuits. The practical circuits covered in this book include attenuators, bridges, scope trace doublers, timebases, and digital frequency meters. Chapter 1 discusses the basic instrumentation and test gear principles. Chapter 2 deals with the design of passive attenuators, and Chapter 3 with passive and active filter circuits. The subsequent chapters tackle 'bridge' circuits, analogue and digital metering techniques and circuitry, signal and waveform generation, and p

  5. A New Method for Constructing Circuit Codes

    OpenAIRE

    Byrnes, Kevin M.

    2016-01-01

    Circuit codes are constructed from induced cycles in the graph of the $n$ dimensional hypercube. They are both theoretically and practically important, as circuit codes can be used as error correcting codes. When constructing circuit codes, the length of the cycle determines its accuracy and a parameter called the spread determines how many errors it can detect. We present a new method for constructing a circuit code of spread $k+1$ from a circuit code of spread $k$. This method leads to reco...

  6. Introduction to lethal circuit transformations

    Science.gov (United States)

    Fišer, Petr; Schmidt, Jan

    2015-12-01

    Logic optimization is a process that takes a logic circuit description (Boolean network) as an input and tries to refine it, to reduce its size and/or depth. An ideal optimization process should be able to devise an optimum implementation of a network in a reasonable time, given any circuit structure at the input. However, there are cases where it completely fails to produce even near-optimum solutions. Such cases are typically induced by non-standard circuit structure modifications. Surprisingly enough, such deviated structures are frequently present in standard benchmark sets too. We may only wonder whether it is an intention of the benchmarks creators, or just an unlucky coincidence. Even though synthesis tools should be primarily well suited for practical circuits, there is no guarantee that, e.g., a higher-level synthesis process will not generate such unlucky structures. Here we present examples of circuit transformations that lead to failure of most of state-of-the-art logic synthesis and optimization processes, both academic and commercial, and suggest actions to mitigate the disturbing effects.

  7. Improved Simulation of Stabilizer Circuits

    CERN Document Server

    Aaronson, S; Aaronson, Scott; Gottesman, Daniel

    2004-01-01

    The Gottesman-Knill theorem says that a stabilizer circuit -- that is, a quantum circuit consisting solely of CNOT, Hadamard, and phase gates -- can be simulated efficiently on a classical computer. This paper improves that theorem in several directions. * By removing the need for Gaussian elimination, we make the simulation algorithm much faster at the cost of a factor-2 increase in the number of bits needed to represent a state. We have implemented the improved algorithm in a freely-available program called CHP (CNOT-Hadamard-Phase), which can handle thousands of qubits easily. * We show that the problem of simulating stabilizer circuits is complete for the classical complexity class ParityL, which means that stabilizer circuits are probably not even universal for classical computation. * We give efficient algorithms for computing the inner product between two stabilizer states, putting any n-qubit stabilizer circuit into a "canonical form" that requires at most O(n^2/log n) gates, and other useful tasks. *...

  8. 30 CFR 75.518 - Electric equipment and circuits; overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... Equipment-General § 75.518 Electric equipment and circuits; overload and short circuit protection. Automatic... electric equipment and circuits against short circuit and overloads. Three-phase motors on all electric... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload...

  9. 30 CFR 77.800 - High-voltage circuits; circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High-voltage circuits supplying power to portable or mobile equipment shall be protected by suitable...

  10. 49 CFR 236.5 - Design of control circuits on closed circuit principle.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train...

  11. Circuit model of Rimfire switch

    International Nuclear Information System (INIS)

    A cascade gaps circuit model for Rimfire switch has been developed. The circuit model includes all stray capacitances and spark channel on-state conduction characteristics. It can not only describe the behavior of Rimfire switch, but also allow analysis of the time varying voltage and current at each part of the switch, describing the internal characters of the switch. PSpice was used to implement the cascade gaps circuit model and simulate a 700 kV Rimfire switch. The simulation shows that, the voltage of the whole switch will be higher than 700 kV when the laser triggered section has broken down but all cascade gaps keep dielectric, and the voltage of all gaps attenuates with high frequency oscillation. (authors)

  12. Additive Manufacturing of Hybrid Circuits

    Science.gov (United States)

    Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David; Hirschfeld, Deidre; Hall, Aaron C.; Bell, Nelson S.

    2016-07-01

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. Finally, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  13. Vertically Integrated Circuits at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  14. Nuclear sensor signal processing circuit

    Science.gov (United States)

    Kallenbach, Gene A.; Noda, Frank T.; Mitchell, Dean J.; Etzkin, Joshua L.

    2007-02-20

    An apparatus and method are disclosed for a compact and temperature-insensitive nuclear sensor that can be calibrated with a non-hazardous radioactive sample. The nuclear sensor includes a gamma ray sensor that generates tail pulses from radioactive samples. An analog conditioning circuit conditions the tail-pulse signals from the gamma ray sensor, and a tail-pulse simulator circuit generates a plurality of simulated tail-pulse signals. A computer system processes the tail pulses from the gamma ray sensor and the simulated tail pulses from the tail-pulse simulator circuit. The nuclear sensor is calibrated under the control of the computer. The offset is adjusted using the simulated tail pulses. Since the offset is set to zero or near zero, the sensor gain can be adjusted with a non-hazardous radioactive source such as, for example, naturally occurring radiation and potassium chloride.

  15. Fault Testing for Reversible Circuits

    CERN Document Server

    Patel, K N; Markov, I L; Patel, Ketan N.; Hayes, John P.; Markov, Igor L.

    2004-01-01

    Applications of reversible circuits can be found in the fields of low-power computation, cryptography, communications, digital signal processing, and the emerging field of quantum computation. Furthermore, prototype circuits for low-power applications are already being fabricated in CMOS. Regardless of the eventual technology adopted, testing is sure to be an important component in any robust implementation. We consider the test set generation problem. Reversibility affects the testing problem in fundamental ways, making it significantly simpler than for the irreversible case. For example, we show that any test set that detects all single stuck-at faults in a reversible circuit also detects all multiple stuck-at faults. We present efficient test set constructions for the standard stuck-at fault model as well as the usually intractable cell-fault model. We also give a practical test set generation algorithm, based on an integer linear programming formulation, that yields test sets approximately half the size o...

  16. Design automation for integrated circuits

    Science.gov (United States)

    Newell, S. B.; de Geus, A. J.; Rohrer, R. A.

    1983-04-01

    Consideration is given to the development status of the use of computers in automated integrated circuit design methods, which promise the minimization of both design time and design error incidence. Integrated circuit design encompasses two major tasks: error specification, in which the goal is a logic diagram that accurately represents the desired electronic function, and physical specification, in which the goal is an exact description of the physical locations of all circuit elements and their interconnections on the chip. Design automation not only saves money by reducing design and fabrication time, but also helps the community of systems and logic designers to work more innovatively. Attention is given to established design automation methodologies, programmable logic arrays, and design shortcuts.

  17. Insulation of a synthetic hydrogen metabolism circuit in bacteria

    Directory of Open Access Journals (Sweden)

    Wintermute Edwin H

    2010-02-01

    Full Text Available Abstract Background The engineering of metabolism holds tremendous promise for the production of desirable metabolites, particularly alternative fuels and other highly reduced molecules. Engineering approaches must redirect the transfer of chemical reducing equivalents, preventing these electrons from being lost to general cellular metabolism. This is especially the case for high energy electrons stored in iron-sulfur clusters within proteins, which are readily transferred when two such clusters are brought in close proximity. Iron sulfur proteins therefore require mechanisms to ensure interaction between proper partners, analogous to many signal transduction proteins. While there has been progress in the isolation of engineered metabolic pathways in recent years, the design of insulated electron metabolism circuits in vivo has not been pursued. Results Here we show that a synthetic hydrogen-producing electron transfer circuit in Escherichia coli can be insulated from existing cellular metabolism via multiple approaches, in many cases improving the function of the pathway. Our circuit is composed of heterologously expressed [Fe-Fe]-hydrogenase, ferredoxin, and pyruvate-ferredoxin oxidoreductase (PFOR, allowing the production of hydrogen gas to be coupled to the breakdown of glucose. We show that this synthetic pathway can be insulated through the deletion of competing reactions, rational engineering of protein interaction surfaces, direct protein fusion of interacting partners, and co-localization of pathway components on heterologous protein scaffolds. Conclusions Through the construction and characterization of a synthetic metabolic circuit in vivo, we demonstrate a novel system that allows for predictable engineering of an insulated electron transfer pathway. The development of this system demonstrates working principles for the optimization of engineered pathways for alternative energy production, as well as for understanding how electron

  18. Integrated cellular systems

    Science.gov (United States)

    Harper, Jason C.

    The generation of new three-dimensional (3D) matrices that enable integration of biomolecular components and whole cells into device architectures, without adversely altering their morphology or activity, continues to be an expanding and challenging field of research. This research is driven by the promise that encapsulated biomolecules and cells can significantly impact areas as diverse as biocatalysis, controlled delivery of therapeutics, environmental and industrial process monitoring, early warning of warfare agents, bioelectronics, photonics, smart prosthetics, advanced physiological sensors, portable medical diagnostic devices, and tissue/organ replacement. This work focuses on the development of a fundamental understanding of the biochemical and nanomaterial mechanisms that govern the cell directed assembly and integration process. It was shown that this integration process relies on the ability of cells to actively develop a pH gradient in response to evaporation induced osmotic stress, which catalyzes silica condensation within a thin 3D volume surrounding the cells, creating a functional bio/nano interface. The mechanism responsible for introducing functional foreign membrane-bound proteins via proteoliposome addition to the silica-lipid-cell matrix was also determined. Utilizing this new understanding, 3D cellular immobilization capabilities were extended using sol-gel matrices endowed with glycerol, trehalose, and media components. The effects of these additives, and the metabolic phase of encapsulated S. cerivisiase cells, on long-term viability and the rate of inducible gene expression was studied. This enabled the entrapment of cells within a novel microfluidic platform capable of simultaneous colorimetric, fluorescent, and electrochemical detection of a single analyte, significantly improving confidence in the biosensor output. As a complementary approach, multiphoton protein lithography was utilized to engineer 3D protein matrices in which to

  19. Embedded systems circuits and programming

    CERN Document Server

    Sanchez, Julio

    2012-01-01

    During the development of an engineered product, developers often need to create an embedded system--a prototype--that demonstrates the operation/function of the device and proves its viability. Offering practical tools for the development and prototyping phases, Embedded Systems Circuits and Programming provides a tutorial on microcontroller programming and the basics of embedded design. The book focuses on several development tools and resources: Standard and off-the-shelf components, such as input/output devices, integrated circuits, motors, and programmable microcontrollers The implementat

  20. Circuit modeling for electromagnetic compatibility

    CERN Document Server

    Darney, Ian B

    2013-01-01

    Very simply, electromagnetic interference (EMI) costs money, reduces profits, and generally wreaks havoc for circuit designers in all industries. This book shows how the analytic tools of circuit theory can be used to simulate the coupling of interference into, and out of, any signal link in the system being reviewed. The technique is simple, systematic and accurate. It enables the design of any equipment to be tailored to meet EMC requirements. Every electronic system consists of a number of functional modules interconnected by signal links and power supply lines. Electromagnetic interference

  1. Simplified design of filter circuits

    CERN Document Server

    Lenk, John

    1999-01-01

    Simplified Design of Filter Circuits, the eighth book in this popular series, is a step-by-step guide to designing filters using off-the-shelf ICs. The book starts with the basic operating principles of filters and common applications, then moves on to describe how to design circuits by using and modifying chips available on the market today. Lenk's emphasis is on practical, simplified approaches to solving design problems.Contains practical designs using off-the-shelf ICsStraightforward, no-nonsense approachHighly illustrated with manufacturer's data sheets

  2. Fermionic models with superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Las Heras, Urtzi; Garcia-Alvarez, Laura; Mezzacapo, Antonio; Lamata, Lucas [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Solano, Enrique [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)

    2015-12-01

    We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups. (orig.)

  3. Short-circuit impedance measurement

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad

    2003-01-01

    Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...... kinds of problems at different locations in the grid. This means that the best measurement methodology changes depending on the location in the grid. Three typical examples with different measurement problems at 400 kV, 132 kV and 400 V voltage level are discussed....

  4. Circuit, Thermal and Cost Characteristics of Impulse Magnetizing Circuits

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper describes the development of circuit, thermal and cost model for a capacitor discharge impulse megnetizer and compares simulations to measurements from an actual system. We used a cost structure consisting of five major subsystems for cost modeling. Especially, we estimated the potential for cost reductions impulse magnetizer as a function of time using the learning curve.

  5. Multiuser Cellular Network

    CERN Document Server

    Bao, Yi; Chen, Ming

    2011-01-01

    Modern radio communication is faced with a problem about how to distribute restricted frequency to users in a certain space. Since our task is to minimize the number of repeaters, a natural idea is enlarging coverage area. However, coverage has restrictions. First, service area has to be divided economically as repeater's coverage is limited. In this paper, our fundamental method is to adopt seamless cellular network division. Second, underlying physics content in frequency distribution problem is interference between two close frequencies. Consequently, we choose a proper frequency width of 0.1MHz and a relevantly reliable setting to apply one frequency several times. We make a few general assumptions to simplify real situation. For instance, immobile users yield to homogenous distribution; repeaters can receive and transmit information in any given frequency in duplex operation; coverage is mainly decided by antenna height. Two models are built up to solve 1000 users and 10000 users situations respectively....

  6. Relaxation Based Electrical Simulation for VLSI Circuits

    Directory of Open Access Journals (Sweden)

    S. Rajkumar

    2012-06-01

    Full Text Available Electrical circuit simulation was one of the first CAD tools developed for IC design. The conventional circuit simulators like SPICE and ASTAP were designed initially for the cost effective analysis of circuits containing a few hundred transistors or less. A number of approaches have been used to improve the performances of congenital circuit simulators for the analysis of large circuits. Thereafter relaxation methods was proposed to provide more accurate waveforms than standard circuit simulators with up to two orders of magnitude speed improvement for large circuits. In this paper we have tried to highlights recently used waveform and point relaxation techniques for simulation of VLSI circuits. We also propose a simple parallelization technique and experimentally demonstrate that we can solve digital circuits with tens of million transistors in a few hours.

  7. An Approach to Simplify Reversible Logic Circuits

    Directory of Open Access Journals (Sweden)

    Pabitra Roy

    2012-09-01

    Full Text Available Energy loss is one of the major problems in traditional irreversible circuits. For every bit of information loss kTln2 joules of heat is lost. In order to reduce the energy loss the concept of reversible logic circuits are introduced. Here we have described an algorithm for simplifying the reversible logic circuit and hence reduction of circuit cost and energy. The algorithm considers sub_circuit with respect to their number of lines and contiguous gates. The resulting sub_circuits are re-synthesized with smaller equivalent implementation. The process continues until circuit cost reaches good enough for Application or until a given computation budget has been exhausted. The circuit is constructed by NOT, CNOT and Toffoli gates only. By applying the algorithm and using the equivalent implementation we will get significant reduction of circuit cost and hence energy.

  8. Design and implementation of an efficient single layer five input majority voter gate in quantum-dot cellular automata.

    Science.gov (United States)

    Bahar, Ali Newaz; Waheed, Sajjad

    2016-01-01

    The fundamental logical element of a quantum-dot cellular automata (QCA) circuit is majority voter gate (MV). The efficiency of a QCA circuit is depends on the efficiency of the MV. This paper presents an efficient single layer five-input majority voter gate (MV5). The structure of proposed MV5 is very simple and easy to implement in any logical circuit. This proposed MV5 reduce number of cells and use conventional QCA cells. However, using MV5 a multilayer 1-bit full-adder (FA) is designed. The functional accuracy of the proposed MV5 and FA are confirmed by QCADesigner a well-known QCA layout design and verification tools. Furthermore, the power dissipation of proposed circuits are estimated, which shows that those circuits dissipate extremely small amount of energy and suitable for reversible computing. The simulation outcomes demonstrate the superiority of the proposed circuit. PMID:27330902

  9. Clocking Scheme for Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1998-01-01

    A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....

  10. Digital circuit boards mach 1 GHz

    CERN Document Server

    Morrison, Ralph

    2012-01-01

    A unique, practical approach to the design of high-speed digital circuit boards The demand for ever-faster digital circuit designs is beginning to render the circuit theory used by engineers ineffective. Digital Circuit Boards presents an alternative to the circuit theory approach, emphasizing energy flow rather than just signal interconnection to explain logic circuit behavior. The book shows how treating design in terms of transmission lines will ensure that the logic will function, addressing both storage and movement of electrical energy on these lines. It cove

  11. Separating OR, SUM, and XOR Circuits

    OpenAIRE

    Find, Magnus; Göös, Mika; Järvisalo, Matti; Kaski, Petteri; Koivisto, Mikko; Korhonen, Janne H.

    2013-01-01

    Given a boolean n by n matrix A we consider arithmetic circuits for computing the transformation x->Ax over different semirings. Namely, we study three circuit models: monotone OR-circuits, monotone SUM-circuits (addition of non-negative integers), and non-monotone XOR-circuits (addition modulo 2). Our focus is on \\emph{separating} these models in terms of their circuit complexities. We give three results towards this goal: (1) We prove a direct sum type theorem on the monotone complexity of ...

  12. Advanced circuit simulation using Multisim workbench

    CERN Document Server

    Báez-López, David; Cervantes-Villagómez, Ofelia Delfina

    2012-01-01

    Multisim is now the de facto standard for circuit simulation. It is a SPICE-based circuit simulator which combines analog, discrete-time, and mixed-mode circuits. In addition, it is the only simulator which incorporates microcontroller simulation in the same environment. It also includes a tool for printed circuit board design.Advanced Circuit Simulation Using Multisim Workbench is a companion book to Circuit Analysis Using Multisim, published by Morgan & Claypool in 2011. This new book covers advanced analyses and the creation of models and subcircuits. It also includes coverage of transmissi

  13. NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Kate E. Hawkins

    2016-03-01

    Full Text Available The potential of induced pluripotent stem cells (iPSCs in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation.

  14. Biology of bone and how it orchestrates the form and function of the skeleton

    Science.gov (United States)

    Sommerfeldt, D. W.; Rubin, C. T.

    2001-01-01

    The principal role of the skeleton is to provide structural support for the body. While the skeleton also serves as the body's mineral reservoir, the mineralized structure is the very basis of posture, opposes muscular contraction resulting in motion, withstands functional load bearing, and protects internal organs. Although the mass and morphology of the skeleton is defined, to some extent, by genetic determinants, it is the tissue's ability to remodel--the local resorption and formation of bone--which is responsible for achieving this intricate balance between competing responsibilities. The aim of this review is to address bone's form-function relationship, beginning with extensive research in the musculoskeletal disciplines, and focusing on several recent cellular and molecular discoveries which help understand the complex interdependence of bone cells, growth factors, physical stimuli, metabolic demands, and structural responsibilities. With a clinical and spine-oriented audience in mind, the principles of bone cell and molecular biology and physiology are presented, and an attempt has been made to incorporate epidemiologic data and therapeutic implications. Bone research remains interdisciplinary by nature, and a deeper understanding of bone biology will ultimately lead to advances in the treatment of diseases and injuries to bone itself.

  15. Estrogen receptor coregulators and pioneer factors: The orchestrators of mammary gland cell fate and development

    Directory of Open Access Journals (Sweden)

    Bramanandam eManavathi

    2014-08-01

    Full Text Available The 17-beta estradiol (E2, a steroid hormone, which play critical role in various cellular processes such as cell proliferation, differentiation, migration and apoptosis, is essential for reproduction and mammary gland development. E2 actions are mediated by two classical nuclear hormone receptors, estrogen receptor alpha and beta (ERs. The activity of ERs depends on the coordinate activity of ligand binding, posttranslational modification, and importantly their interaction with their partner proteins called ‘coregulators’. Because majority of breast cancers are ERalpha positive and coregulators are proved to be crucial for ER transcriptional activity, an increased interest in the field has led to the identification of a large number of coregulators. In the last decade, gene knockout studies using mouse models provided impetus to our further understanding of the role of these coregulators in mammary gland development. Several coregulators appear to be critical for terminal end bud formation, ductal branching and alveologenesis during mammary gland development. The emerging studies support that, in addition to these coregulators, the other ER partner proteins ‘pioneering factors’ also seems to contribute significantly to E2 signaling and mammary cell fate. This review discusses emerging themes in coregulator- and pioneering factor-mediated action on ER functions, particularly their role in mammary gland cell fate and development.

  16. A circuit mechanism for neurodegeneration.

    Science.gov (United States)

    Roselli, Francesco; Caroni, Pico

    2012-10-12

    How deficiency in SMN1 selectively affects motoneurons in spinal muscular atrophy is poorly understood. Here, Imlach et al. and Lotti et al. show that aberrant splicing of Stasimon in cholinergic sensory neurons and interneurons leads to motoneuron degeneration, suggesting that altered circuit function may underlie the disorder.

  17. Circuit design for RF transceivers

    CERN Document Server

    Leenaerts, Domine; Vaucher, Cicero S

    2007-01-01

    Second edition of this successful 2001 RF Circuit Design book, has been updated, latest technology reviews have been added as well as several actual case studies. Due to the authors being active in industry as well as academia, this should prove to be an essential guide on RF Transceiver Design for students and engineers.

  18. Integrated Circuit Stellar Magnitude Simulator

    Science.gov (United States)

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  19. Unbalanced Neuronal Circuits in Addiction

    OpenAIRE

    Volkow, Nora D; Wang, Gen-Jack; Tomasi, Dardo; Baler, Ruben D.

    2013-01-01

    Through sequential waves of drug-induced neurochemical stimulation, addiction co-opts the brain's neuronal circuits that mediate reward, motivation, , to behavioral inflexibility and a severe disruption of self-control and compulsive drug intake. Brain imaging technologies have allowed neuroscientists to map out the neural landscape of addiction in the human brain and to understand how drugs modify it.

  20. Activity-dependent modulation of neural circuit synaptic connectivity

    Directory of Open Access Journals (Sweden)

    Charles R Tessier

    2009-07-01

    Full Text Available In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; 1 early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and 2 subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.

  1. Never-ageing cellular senescence

    OpenAIRE

    Ogrunc, Müge; d’Adda di Fagagna, Fabrizio

    2011-01-01

    Cellular senescence was historically discovered as a form of cellular ageing of in vitro cultured cells. It has been under the spotlight following the evidence of oncogene-induced senescence in vivo and its role as a potent tumour suppressor mechanism. Presently, a PubMed search using keywords ‘cellular senescence and cancer’ reveals 8398 number of references (by April 2011) showing that while our knowledge of senescence keeps expanding, the complexity of the phenomenon keeps us – researchers...

  2. The State of Cellular Probes

    OpenAIRE

    Yim, Youngbin

    2003-01-01

    Cellular probe technology is one of several potentially promising technologies for obtaining accurate travel time information. In 1996, the Federal Communications Commission (FCC) mandated E911 requirements that cellular location be provided when 911 emergency calls come in to emergency management authorities. The E911 requirements allow 50 -300 meters from the emergency call location, depending on the type of cellular phone technology used and whether handset-based or network-based solutions...

  3. Asynchronous Rate Chaos in Spiking Neuronal Circuits

    Science.gov (United States)

    Harish, Omri; Hansel, David

    2015-01-01

    The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI) spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results. PMID:26230679

  4. The Gain Stability and Output Signal-to-noise Ratio Analysis of the Negative Feedback Control in Genetic Circuits

    OpenAIRE

    Liu, S; Chen, C.

    2012-01-01

    Negative feedback genetic circuits (NFGC) are key regulatory motif of cellular robustness with the capability of reducing noise in genetic interaction network. NFGC have the same control theory frame as negative feedback amplifier circuits (NFAC). NFAC can enhance gain stability and output signal-to-noise ratio (OSNR) of output signal (voltage). Whether NFGC possess these two advantages or not is still unclear. We have investigated the advantages of NFGC through using feedback depth analysis ...

  5. Cellular bioluminescence imaging.

    Science.gov (United States)

    Welsh, David K; Noguchi, Takako

    2012-08-01

    Bioluminescence imaging of live cells has recently been recognized as an important alternative to fluorescence imaging. Fluorescent probes are much brighter than bioluminescent probes (luciferase enzymes) and, therefore, provide much better spatial and temporal resolution and much better contrast for delineating cell structure. However, with bioluminescence imaging there is virtually no background or toxicity. As a result, bioluminescence can be superior to fluorescence for detecting and quantifying molecules and their interactions in living cells, particularly in long-term studies. Structurally diverse luciferases from beetle and marine species have been used for a wide variety of applications, including tracking cells in vivo, detecting protein-protein interactions, measuring levels of calcium and other signaling molecules, detecting protease activity, and reporting circadian clock gene expression. Such applications can be optimized by the use of brighter and variously colored luciferases, brighter microscope optics, and ultrasensitive, low-noise cameras. This article presents a review of how bioluminescence differs from fluorescence, its applications to cellular imaging, and available probes, optics, and detectors. It also gives practical suggestions for optimal bioluminescence imaging of single cells.

  6. The voltage-current relationship and equivalent circuit implementation of parallel flux-controlled memristive circuits

    Institute of Scientific and Technical Information of China (English)

    Bao Bo-Cheng; Feng Fei; Dong Wei; Pan Sai-Hu

    2013-01-01

    A flux-controlled memristor characterized by smooth cubic nonlinearity is taken as an example,upon which the voltage-current relationships (VCRs) between two parallel memristive circuits-a parallel memristor and capacitor circuit (the parallel MC circuit),and a parallel memristor and inductor circuit (the parallel ML circuit)-are investigated.The results indicate that the VCR between these two parallel memristive circuits is closely related to the circuit parameters,and the frequency and amplitude of the sinusoidal voltage stimulus.An equivalent circuit model of the memristor is built,upon which the circuit simulations and experimental measurements of both the parallel MC circuit and the parallel ML circuit are performed,and the results verify the theoretical analysis results.

  7. Orchestrating change: The thyroid hormones and GI-tract development in flatfish metamorphosis.

    Science.gov (United States)

    Gomes, A S; Alves, R N; Rønnestad, I; Power, D M

    2015-09-01

    Metamorphosis in flatfish (Pleuronectiformes) is a late post-embryonic developmental event that prepares the organism for the larval-to-juvenile transition. Thyroid hormones (THs) play a central role in flatfish metamorphosis and the basic elements that constitute the thyroid axis in vertebrates are all present at this stage. The advantage of using flatfish to study the larval-to-juvenile transition is the profound change in external morphology that accompanies metamorphosis making it easy to track progression to climax. This important lifecycle transition is underpinned by molecular, cellular, structural and functional modifications of organs and tissues that prepare larvae for a successful transition to the adult habitat and lifestyle. Understanding the role of THs in the maturation of organs and tissues with diverse functions during metamorphosis is a major challenge. The change in diet that accompanies the transition from a pelagic larvae to a benthic juvenile in flatfish is associated with structural and functional modifications in the gastrointestinal tract (GI-tract). The present review will focus on the maturation of the GI-tract during metamorphosis giving particular attention to organogenesis of the stomach a TH triggered event. Gene transcripts and biological processes that are associated with GI-tract maturation during Atlantic halibut metamorphosis are identified. Gene ontology analysis reveals core biological functions and putative TH-responsive genes that underpin TH-driven metamorphosis of the GI-tract in Atlantic halibut. Deciphering the specific role remains a challenge. Recent advances in characterizing the molecular, structural and functional modifications that accompany the appearance of a functional stomach in Atlantic halibut are considered and future research challenges identified. PMID:24975541

  8. Design and Analysis of Adders using Nanotechnology Based Quantum dot Cellular Automata

    Directory of Open Access Journals (Sweden)

    S. K. Lakshmi

    2011-01-01

    Full Text Available Problem statement: The area and complexity are the major issues in circuit design. Here, we propose different types of adder designs based on Quantum dot Cellular Automata (QCA that reduces number of QCA cells and area compare to previous designs. The quantum dot cellular automata is a novel computing paradigm in nanotechnology that can implement digital circuits with faster speed, smaller size and low power consumption. By taking the advantages of QCA we are able to design interesting computational architectures. The QCA cell is a basic building block of nanotechnology that can be used to make gates, wires and memories. The basic logic circuits used in this technology are the inverter and the Majority Gate (MG, using this other logical circuits can be designed. Approach: In this paper, the adders such as half, full and serial bit were designed and analyzed. These structures were designed with minimum number of cells by using cell minimization techniques. The techniques are (1 using two cells inverter and (2 suitable arrangement of cells without overlapping of neighboring cells. The proposed method can be used to minimize area and complexity. Results: These circuits were designed by majority gate and implemented by QCA cells. Then, they simulated using QCA Designer. The simulated results were verified according to the truth table. Conclusion: The performance analyses of those circuits are compared according to complexity, area and number of clock cycles and are also compared with previous designs.

  9. Efficient Radio Resource Allocation in a GSM and GPRS Cellular Network

    Directory of Open Access Journals (Sweden)

    David Vannucci

    2004-10-01

    Full Text Available This paper investigates the effect of various radio resource allocation strategies in a GSM/GPRS cellular network. The most efficient resource allocation is analysed as a function of the proportion of circuit switched voice and packet switched data load. The Grade of Service and average packet delay is investigated as a function of the load, packet size and call duration. Additionally, the feasibility of using voice over Internet Protocol as opposed to circuit switched voice is investigated as a means to increase subscriber capacity per base station. The work is motivated firstly by the complexity of having both circuit switched and packet switched connectivity on GSM/GPRS mobile cellular system and secondly that an exclusively packet based access on GSM/GPRS has the potential to increase the efficiency of resource utilisation by suitably varying the channel allocation to exploit the characteristics of voice and data traffic.

  10. INVITED ARTICLE: Partial differential equations for self-organization in cellular and developmental biology

    Science.gov (United States)

    Baker, R. E.; Gaffney, E. A.; Maini, P. K.

    2008-11-01

    Understanding the mechanisms governing and regulating the emergence of structure and heterogeneity within cellular systems, such as the developing embryo, represents a multiscale challenge typifying current integrative biology research, namely, explaining the macroscale behaviour of a system from microscale dynamics. This review will focus upon modelling how cell-based dynamics orchestrate the emergence of higher level structure. After surveying representative biological examples and the models used to describe them, we will assess how developments at the scale of molecular biology have impacted on current theoretical frameworks, and the new modelling opportunities that are emerging as a result. We shall restrict our survey of mathematical approaches to partial differential equations and the tools required for their analysis. We will discuss the gap between the modelling abstraction and biological reality, the challenges this presents and highlight some open problems in the field.

  11. Analog Nonvolatile Computer Memory Circuits

    Science.gov (United States)

    MacLeod, Todd

    2007-01-01

    In nonvolatile random-access memory (RAM) circuits of a proposed type, digital data would be stored in analog form in ferroelectric field-effect transistors (FFETs). This type of memory circuit would offer advantages over prior volatile and nonvolatile types: In a conventional complementary metal oxide/semiconductor static RAM, six transistors must be used to store one bit, and storage is volatile in that data are lost when power is turned off. In a conventional dynamic RAM, three transistors must be used to store one bit, and the stored bit must be refreshed every few milliseconds. In contrast, in a RAM according to the proposal, data would be retained when power was turned off, each memory cell would contain only two FFETs, and the cell could store multiple bits (the exact number of bits depending on the specific design). Conventional flash memory circuits afford nonvolatile storage, but they operate at reading and writing times of the order of thousands of conventional computer memory reading and writing times and, hence, are suitable for use only as off-line storage devices. In addition, flash memories cease to function after limited numbers of writing cycles. The proposed memory circuits would not be subject to either of these limitations. Prior developmental nonvolatile ferroelectric memories are limited to one bit per cell, whereas, as stated above, the proposed memories would not be so limited. The design of a memory circuit according to the proposal must reflect the fact that FFET storage is only partly nonvolatile, in that the signal stored in an FFET decays gradually over time. (Retention times of some advanced FFETs exceed ten years.) Instead of storing a single bit of data as either a positively or negatively saturated state in a ferroelectric device, each memory cell according to the proposal would store two values. The two FFETs in each cell would be denoted the storage FFET and the control FFET. The storage FFET would store an analog signal value

  12. Driver circuit for solid state light sources

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  13. Plug-in integrated/hybrid circuit

    Science.gov (United States)

    Stringer, E. J.

    1974-01-01

    Hybrid circuitry can be installed into standard round bayonet connectors, to eliminate wiring from connector to circuit. Circuits can be connected directly into either section of connector pair, eliminating need for hard wiring to that section.

  14. Brain-machine interface circuits and systems

    CERN Document Server

    Zjajo, Amir

    2016-01-01

    This book provides a complete overview of significant design challenges in respect to circuit miniaturization and power reduction of the neural recording system, along with circuit topologies, architecture trends, and (post-silicon) circuit optimization algorithms. The introduced novel circuits for signal conditioning, quantization, and classification, as well as system configurations focus on optimized power-per-area performance, from the spatial resolution (i.e. number of channels), feasible wireless data bandwidth and information quality to the delivered power of implantable system.

  15. Black hole qubit correspondence from quantum circuits

    CERN Document Server

    Prudencio, Thiago; Silva, Edilberto O; Belich, Humberto

    2014-01-01

    We propose a black hole qubit correspondence (BHQC) from quantum circuits, taking into account the BHQC formulations of wrapped brane qubits. With base on BHQC, we implement the corresponding gate operations to realize any given quantum circuit. In particular, we implement cases of the generation of Bell states, quantum teleportation and GHZ states circuits. Finally, we give an interpretation of the BHQC from quantum circuits with base on the BHQC classification of entanglement classes.

  16. 49 CFR 236.721 - Circuit, control.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, control. 236.721 Section 236.721..., MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.721 Circuit, control. An electrical circuit between a source of electric energy and a device which it operates....

  17. Equivalence Checking of Hierarchical Combinational Circuits

    DEFF Research Database (Denmark)

    Williams, Poul Frederick; Hulgaard, Henrik; Andersen, Henrik Reif

    1999-01-01

    This paper presents a method for verifying that two hierarchical combinational circuits implement the same Boolean functions. The key new feature of the method is its ability to exploit the modularity of circuits to reuse results obtained from one part of the circuits in other parts. We demonstrate...

  18. An eigenvalue study of the MLC circuit

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.

    1998-01-01

    The MLC (Murali-Lakshmanan-Chua) circuit is the simplest non-autonomous chaotic circuit. Insight in the behaviour of the circuit is obtained by means of a study of the eigenvalues of the linearized Jacobian of the nonlinear differential equations. The trajectories of the eigenvalues as functions...

  19. An Equivalent Circuit for Landau Damping

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1976-01-01

    An equivalent circuit simulating the effect of Landau damping in a stable plasma‐loaded parallel‐plate capacitor is presented. The circuit contains a double infinity of LC components. The transition from stable to unstable plasmas is simulated by the introduction of active elements into the circuit....

  20. 49 CFR 236.731 - Controller, circuit.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Controller, circuit. 236.731 Section 236.731 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Controller, circuit. A device for opening and closing electric circuits....

  1. A Current-mode Logarithmic Function Circuit

    OpenAIRE

    Osama Oglah Faris; Muhammad Taher Abuelma'atti

    2004-01-01

    A new current-mode analog circuit configuration that implements the function ln (x/y) is proposed. The circuit uses bipolar transistors and resistors and is suitable for integration. In the proposed circuit the ratio (x/y) can be larger or smaller than unity. Simulation results are included.

  2. 47 CFR 32.2232 - Circuit equipment.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Circuit equipment. 32.2232 Section 32.2232... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2232 Circuit equipment... which is used for the amplification, modulation, regeneration, circuit patching, balancing or control...

  3. 49 CFR 236.726 - Circuit, track.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, track. 236.726 Section 236.726 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Circuit, track. An electrical circuit of which the rails of the track form a part....

  4. 30 CFR 56.6407 - Circuit testing.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Circuit testing. 56.6407 Section 56.6407... Blasting § 56.6407 Circuit testing. A blasting galvanometer or other instrument designed for testing blasting circuits shall be used to test each of the following: (a) Continuity of each electric detonator...

  5. 30 CFR 57.6407 - Circuit testing.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Circuit testing. 57.6407 Section 57.6407... Blasting-Surface and Underground § 57.6407 Circuit testing. A blasting galvanometer or other instrument designed for testing blasting circuits shall be used to test the following: (a) In surface operations—...

  6. 30 CFR 75.1323 - Blasting circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting circuits. 75.1323 Section 75.1323... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1323 Blasting circuits. (a) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made...

  7. New Logic Circuit with DC Parametric Excitation

    Science.gov (United States)

    Sugahara, Masanori; Kaneda, Hisayoshi

    1982-12-01

    It is shown that dc parametric excitation is possible in a circuit named JUDO, which is composed of two resistively-connected Josephson junctions. Simulation study proves that the circuit has large gain and properties suitable for the construction of small, high-speed logic circuits.

  8. About Strongly Universal Cellular Automata

    Directory of Open Access Journals (Sweden)

    Maurice Margenstern

    2013-09-01

    Full Text Available In this paper, we construct a strongly universal cellular automaton on the line with 11 states and the standard neighbourhood. We embed this construction into several tilings of the hyperbolic plane and of the hyperbolic 3D space giving rise to strongly universal cellular automata with 10 states.

  9. Integrated circuits for multimedia applications

    DEFF Research Database (Denmark)

    Vandi, Luca

    2007-01-01

    , and it is applied to a broad-band dual-loop receiver architecture in order to boost the linearity performances of the stage. A simplified noise- and linearity analysis of the circuit is derived, and a comparison is provided with a more traditional dual-loop topology (a broad-band stage based on shunt......This work presents several key aspects in the design of RF integrated circuits for portable multimedia devices. One chapter is dedicated to the application of negative-feedback topologies to receiver frontends. A novel feedback technique suitable for common multiplier-based mixers is described......-series feedback), showing a difference in compression point in the order of 10dBm for the same power consumption. The same principle is also applied to a more conventional narrow-band stage in which a single loop is employed in order to enhance noise performances. Noise analysis shows sensible improvements...

  10. Handbook of microwave integrated circuits

    Science.gov (United States)

    Hoffmann, Reinmut K.

    The design and operation of ICs for use in the 0.5-20-GHz range are described in an introductory and reference work for industrial engineers. Chapters are devoted to an overview of microwave IC (MIC) technology, general stripline characteristics, microwave transmission line (MTL) parameters for microstrips with isotropic dielectric substrates, higher-order modes on a microstrip, the effects of metallic enclosure on MTL transmission parameters, losses in microstrips, the measurement of MTL parameters, and MTLs on anisotropic dielectric substrates. Consideration is given to coupled microstrips on dielectric substrates, microstrip discontinuities, radiation from microstrip circuits, MTL variations, coplanar MTLs, slotlines, and spurious modes in MTL circuits. Diagrams, drawings, graphs, and a glossary of symbols are provided.

  11. Ionization tube simmer current circuit

    Science.gov (United States)

    Steinkraus, Jr., Robert F.

    1994-01-01

    A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current.

  12. Delay locked loop integrated circuit.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2007-10-01

    This report gives a description of the development of a Delay Locked Loop (DLL) integrated circuit (IC). The DLL was developed and tested as a stand-alone IC test chip to be integrated into a larger application specific integrated circuit (ASIC), the Quadrature Digital Waveform Synthesizer (QDWS). The purpose of the DLL is to provide a digitally programmable delay to enable synchronization between an internal system clock and external peripherals with unknown clock skew. The DLL was designed and fabricated in the IBM 8RF process, a 0.13 {micro}m CMOS process. It was designed to operate with a 300MHz clock and has been tested up to 500MHz.

  13. 30 CFR 75.601-1 - Short circuit protection; ratings and settings of circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection; ratings and settings of circuit breakers. 75.601-1 Section 75.601-1 Mineral Resources MINE SAFETY AND HEALTH... Trailing Cables § 75.601-1 Short circuit protection; ratings and settings of circuit breakers....

  14. Two-photon holographic optogenetics of neural circuits (Conference Presentation)

    Science.gov (United States)

    Yang, Weijian; Carrillo-Reid, Luis; Peterka, Darcy S.; Yuste, Rafael

    2016-03-01

    Optical manipulation of in vivo neural circuits with cellular resolution could be important for understanding cortical function. Despite recent progress, simultaneous optogenetic activation with cellular precision has either been limited to 2D planes, or a very small numbers of neurons over a limited volume. Here we demonstrate a novel paradigm for simultaneous 3D activation using a low repetition rate pulse-amplified fiber laser system and a spatial light modulator (SLM) to project 3D holographic excitation patterns on the cortex of mice in vivo for targeted volumetric 3D photoactivation. This method is compatible with two-photon imaging, and enables the simultaneous activation of multiple cells in 3D, using red-shifted opsins, such as C1V1 or ReaChR, while simultaneously imaging GFP-based sensors such as GCaMP6. This all-optical imaging and 3D manipulation approach achieves simultaneous reading and writing of cortical activity, and should be a powerful tool for the study of neuronal circuits.

  15. Synthetic circuits, devices and modules

    OpenAIRE

    Zhang, Hong; Jiang, Taijiao

    2010-01-01

    The aim of synthetic biology is to design artificial biological systems for novel applications. From an engineering perspective, construction of biological systems of defined functionality in a hierarchical way is fundamental to this emerging field. Here, we highlight some current advances on design of several basic building blocks in synthetic biology including the artificial gene control elements, synthetic circuits and their assemblies into devices and modules. Such engineered basic buildi...

  16. ?Immunetworks?, intersecting circuits and dynamics

    OpenAIRE

    Demongeot, Jacques; Elena, Adrien; Noual, Mathilde; Sené, Sylvain; Thuderoz, Florence

    2011-01-01

    Abstract This paper proposes a study of biological regulatory networks based on a multi-level strategy. Given a network, the first structural level of this strategy consists in analysing the architecture of the network interactions in order to describe it. The second dynamical level consists in relating the patterns found in the architecture to the possible dynamical behaviours of the network. It is known that circuits are the patterns that play the most important part in the dynam...

  17. Microcontroller based Integrated Circuit Tester

    OpenAIRE

    Yousif Taha Yousif Elamin; Abdelrasoul Jabar Alzubaidi

    2015-01-01

    The digital integrated circuit (IC) tester is implemented by using the ATmega32 microcontroller . The microcontroller processes the inputs and outputs and displays the results on a Liquid Crystal Display (LCD). The basic function of the digital IC tester is to test a digital IC for correct logical functioning as described in the truth table and/or function table. The designed model can test digital ICs having 14 pins. Since it is programmable, any number of ICs can be tested . Thi...

  18. Monolithic readout circuits for RHIC

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, P.; Harder, J. [Brookhaven National Laboratory, Upton, NY (United States)

    1991-12-31

    Several CMOS ASICs have been developed for a proposed RHIC experiment. This paper discusses why ASIC implementation was chosen for certain functions, circuit specifications and the design techniques used to meet them, and results of simulations and early prototypes. By working closely together from an early stage in the planning process, in-house ASIC designers and detector and data acquisition experimenters can achieve optimal use of this important technology.

  19. CIRCUIT SWITCHING VERSUS PACKET SWITCHING

    OpenAIRE

    Sneps-Sneppe, Manfred

    2015-01-01

    Communication specialists around the world are facing the same problem: shifting from circuit switching (CS) to packet switching (CS). Communication service providers are favoring “All-over-IP” technologies hoping to boost their profits by providing multimedia services. The main stakeholder in this field of the paradigm shift is the industry itself: packet switching hardware manufacturers are going to earn billions of dollars and thus pay engineers and journalists many millions for the promot...

  20. An Interpreter for Quantum Circuits

    OpenAIRE

    Lucas Helms; Ruben Gamboa

    2013-01-01

    This paper describes an ACL2 interpreter for "netlists" describing quantum circuits. Several quantum gates are implemented, including the Hadamard gate H, which rotates vectors by 45 degrees, necessitating the use of irrational numbers, at least at the logical level. Quantum measurement presents an especially difficult challenge, because it requires precise comparisons of irrational numbers and the use of random numbers. This paper does not address computation with irrational numbers or the g...

  1. Circuit analysis of quantum measurement

    OpenAIRE

    Kurotani, Yuji; Ueda, Masahito

    2006-01-01

    We develop a circuit theory that enables us to analyze quantum measurements on a two-level system and on a continuous-variable system on an equal footing. As a measurement scheme applicable to both systems, we discuss a swapping state measurement which exchanges quantum states between the system and the measuring apparatus before the apparatus meter is read out. This swapping state measurement has an advantage in gravitational-wave detection over contractive state measurement in that the post...

  2. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  3. Quantum Circuits with Mixed States

    CERN Document Server

    Aharonov, D; Nisan, N; Aharonov, Dorit; Kitaev, Alexei; Nisan, Noam

    1998-01-01

    We define the model of quantum circuits with density matrices, where non-unitary gates are allowed. Measurements in the middle of the computation, noise and decoherence are implemented in a natural way in this model, which is shown to be equivalent in computational power to standard quantum circuits. The main result in this paper is a solution for the subroutine problem: The general function that a quantum circuit outputs is a probabilistic function, but using pure state language, such a function can not be used as a black box in other computations. We give a natural definition of using general subroutines, and analyze their computational power. We suggest convenient metrics for quantum computing with mixed states. For density matrices we analyze the so called ``trace metric'', and using this metric, we define and discuss the ``diamond metric'' on superoperators. These metrics enable a formal discussion of errors in the computation. Using a ``causality'' lemma for density matrices, we also prove a simple lowe...

  4. Ultra-low power integrated circuit design circuits, systems, and applications

    CERN Document Server

    Li, Dongmei; Wang, Zhihua

    2014-01-01

    This book describes the design of CMOS circuits for ultra-low power consumption including analog, radio frequency (RF), and digital signal processing circuits (DSP). The book addresses issues from circuit and system design to production design, and applies the ultra-low power circuits described to systems for digital hearing aids and capsule endoscope devices. Provides a valuable introduction to ultra-low power circuit design, aimed at practicing design engineers; Describes all key building blocks of ultra-low power circuits, from a systems perspective; Applies circuits and systems described to real product examples such as hearing aids and capsule endoscopes.

  5. Dynamic Topology Re-Configuration in Multihop Cellular Networks Using Sequential Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    B.Shantha Kumari

    2014-10-01

    Full Text Available Cellular communications has experienced explosive growth in the past two decades. Today millions of people around the world use cellular phones. Cellular phones allow a person to make or receive a call from almost anywhere. Likewise, a person is allowed to continue the phone conversation while on the move. Cellular communications is supported by an infrastructure called a cellular network, which integrates cellular phones into the public switched telephone network. The cellular network has gone through three generations.The first generation of cellular networks is analog in nature. To accommodate more cellular phone subscribers, digital TDMA (time division multiple access and CDMA (code division multiple access technologies are used in the second generation (2G to increase the network capacity. With digital technologies, digitized voice can be coded and encrypted. Therefore, the 2G cellular network is also more secure. The third generation (3G integrates cellular phones into the Internet world by providing highspeed packet-switching data transmission in addition to circuit-switching voice transmission. The 3G cellular networks have been deployed in some parts of Asia, Europe, and the United States since 2002 and will be widely deployed in the coming years. The high increase in traffic and data rate for future generations of mobile communication systems, with simultaneous requirement for reduced power consumption, makes Multihop Cellular Networks (MCNs an attractive technology. To exploit the potentials of MCNs a new network paradigm is proposed in this paper. In addition, a novel sequential genetic algorithm (SGA is proposed as a heuristic approximation to reconfigure the optimum relaying topology as the network traffic changes. Network coding is used to combine the uplink and downlink transmissions, and incorporate it into the optimum bidirectional relaying with ICI awareness. Numerical results have shown that the algorithms suggested in this

  6. CMOS circuit design, layout and simulation

    CERN Document Server

    Baker, R Jacob

    2010-01-01

    The Third Edition of CMOS Circuit Design, Layout, and Simulation continues to cover the practical design of both analog and digital integrated circuits, offering a vital, contemporary view of a wide range of analog/digital circuit blocks including: phase-locked-loops, delta-sigma sensing circuits, voltage/current references, op-amps, the design of data converters, and much more. Regardless of one's integrated circuit (IC) design skill level, this book allows readers to experience both the theory behind, and the hands-on implementation of, complementary metal oxide semiconductor (CMOS) IC design via detailed derivations, discussions, and hundreds of design, layout, and simulation examples.

  7. Design of analog circuits through symbolic analysis

    CERN Document Server

    Fakhfakh, Mourad; V Fernández, Francisco

    2012-01-01

    Symbolic analyzers have the potential to offer knowledge to sophomores as well as practitioners of analog circuit design. Actually, they are an essential complement to numerical simulators, since they provide insight into circuit behavior which numerical analyzers do not provide. Symbolic analysis of electronic circuits addresses the generation of symbolic expressions for the parameters that describe the performance of linear and nonlinear circuits in three domains: DC, AC and time; some or all the circuit parameters can be kept as symbols. Due to the fact that these expressions remain va

  8. Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus nigerstrains

    OpenAIRE

    Jorge Enrique Madrigal-Arias; Rosalba Argumedo-Delira; Alejandro Alarcón; Ma. Remedios Mendoza-López; Oscar García-Barradas; Jesús Samuel Cruz-Sánchez; Ronald Ferrera-Cerrato; Maribel Jiménez-Fernández

    2015-01-01

    In an effort to develop alternate techniques to recover metals from waste electrical and electronic equipment (WEEE), this research evaluated the bioleaching efficiency of gold (Au), copper (Cu) and nickel (Ni) by two strains of Aspergillus niger in the presence of gold-plated finger integrated circuits found in computer motherboards (GFICMs) and cellular phone printed circuit boards (PCBs). These three metals were analyzed for their commercial value and their diverse applications in the indu...

  9. Method and Circuit for Injecting a Precise Amount of Charge onto a Circuit Node

    Science.gov (United States)

    Hancock, Bruce R. (Inventor)

    2016-01-01

    A method and circuit for injecting charge into a circuit node, comprising (a) resetting a capacitor's voltage through a first transistor; (b) after the resetting, pre-charging the capacitor through the first transistor; and (c) after the pre-charging, further charging the capacitor through a second transistor, wherein the second transistor is connected between the capacitor and a circuit node, and the further charging draws charge through the second transistor from the circuit node, thereby injecting charge into the circuit node.

  10. The orchestration of processes in relation to the product, and the role of psychological variables in written composition

    Directory of Open Access Journals (Sweden)

    María-Lourdes Álvarez-Fernández

    2015-01-01

    Full Text Available We studied the timing of writing processes using a direct retrospective online technique, and differences in the textual product from the earliest school years where such a study is feasible to the final years of compulsory education. We also analysed a range of psychological variables to determine their modulating effect on writing. Participants comprised a highly purified sample of 348 students aged between 9 and 16 years old who presented standard development and average levels of curricular and writing competence. Our results reveal complex patterns in the development of the writing process and its orchestration, compared with the textual product, and no direct relationship was observed between development of the writing process and its timing, and improvement in the textual product. Among the youngest students, all this was mediated by psychological variables related to the existence of inaccurate perceptions of self-efficacy as regards the deployment and use of writing processes and causal attributions to external factors. The implications, limitations and future perspectives are discussed.

  11. Feeling present in arousing virtual reality worlds: prefrontal brain regions differentially orchestrate presence experience in adults and children

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Virtual reality (VR is a powerful tool for simulating aspects of the real world. The success of VR is thought to depend on its ability to evoke a sense of "being there", that is, the feeling of "Presence". In view of the rapid progress in the development of increasingly more sophisticated virtual environments (VE, the importance of understanding the neural underpinnings of presence is growing. To date however, the neural correlates of this phenomenon have received very scant attention. An fMRI-based study with 52 adults and 25 children was therefore conducted using a highly immersive VE. The experience of presence in adult subjects was found to be modulated by two major strategies involving two homologous prefrontal brain structures. Whereas the right DLPFC controlled the sense of presence by down-regulating the activation in the egocentric dorsal visual processing stream, the left DLPFC up-regulated widespread areas of the medial prefrontal cortex known to be involved in self-reflective and stimulus-independent thoughts. In contrast, there was no evidence of these two strategies in children. In fact, anatomical analyses showed that these two prefrontal areas have not yet reached full maturity in children. Taken together, this study presents the first findings that show activation of a highly specific neural network orchestrating the experience of presence in adult subjects, and that the absence of activity in this neural network might contribute to the generally increased susceptibility of children for the experience of presence in VEs.

  12. Design of superconductor frame compression circuits

    Science.gov (United States)

    Sakurai, T.; Miyaho, N.; Miyahara, K.

    2007-10-01

    We proposed previously a novel interface circuit which was used between semiconductor data-input circuits and superconductor high-speed routers. The frame length of data packets is compressed in the interface circuit. Our proposed interface circuit has rather narrow timing margin. The problem was that our control circuit of the interface circuit could allow only very small timing delay. In this paper we propose a modified control circuit. We have improved the timing margin of the control circuit using RS-flip flop (RS-FF), where two shift registers and one control circuit are driven by clock pulses provided from a master clock-pulse generator. In this circuit, we have assumed fixed frame length packets. Our final target of master clock frequency is 100 GHz which will be realized with the device-parameter set of future advanced process. As the first step of realizing this target value, we aimed at 40 GHz clock operation with the conventional device-parameter set of NECs standard I process. The behavior of the whole frame compression circuit was simulated by a computer, and it was confirmed that it operated properly up to the master clock frequency of 23 GHz.

  13. Fractional linear systems and electrical circuits

    CERN Document Server

    Kaczorek, Tadeusz

    2015-01-01

    This monograph covers some selected problems of positive and fractional electrical circuits composed of resistors, coils, capacitors and voltage (current) sources. The book consists of 8 chapters, 4 appendices and a list of references. Chapter 1 is devoted to fractional standard and positive continuous-time and discrete-time linear systems without and with delays. In chapter 2 the standard and positive fractional electrical circuits are considered and the fractional electrical circuits in transient states are analyzed.  Descriptor linear electrical circuits and their properties are investigated in chapter 3,  while chapter 4 is devoted to the stability of fractional standard and positive linear electrical circuits. The reachability, observability and reconstructability of fractional positive electrical circuits and their decoupling zeros are analyzed in chapter 5. The fractional linear electrical circuits with feedbacks are considered in chapter 6. In chapter 7 solutions of minimum energy control for standa...

  14. Model Order Reduction for Electronic Circuits:

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Shontz, Suzanne

    Electronic circuits are ubiquitous; they are used in numerous industries including: the semiconductor, communication, robotics, auto, and music industries (among many others). As products become more and more complicated, their electronic circuits also grow in size and complexity. This increased...... the need for circuit simulators to evaluate potential designs before fabrication, as integrated circuit prototypes are expensive to build, and troubleshooting is difficult. In this report, we focus on the simulation of printed circuit boards (PCB’s) and interconnects both of which are of great importance...... in the semiconductor industry. Circuit simulation proceeds by using Maxwell’s equations to create a mathematical model of the circuit. The boundary element method is then used to discretize the equations, and the variational form of the equations are then solved on the graph network....

  15. Auto-programmable impulse neural circuits

    Science.gov (United States)

    Watula, D.; Meador, J.

    1990-01-01

    Impulse neural networks use pulse trains to communicate neuron activation levels. Impulse neural circuits emulate natural neurons at a more detailed level than that typically employed by contemporary neural network implementation methods. An impulse neural circuit which realizes short term memory dynamics is presented. The operation of that circuit is then characterized in terms of pulse frequency modulated signals. Both fixed and programmable synapse circuits for realizing long term memory are also described. The implementation of a simple and useful unsupervised learning law is then presented. The implementation of a differential Hebbian learning rule for a specific mean-frequency signal interpretation is shown to have a straightforward implementation using digital combinational logic with a variation of a previously developed programmable synapse circuit. This circuit is expected to be exploited for simple and straightforward implementation of future auto-adaptive neural circuits.

  16. Graphene radio frequency receiver integrated circuit.

    Science.gov (United States)

    Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A; Haensch, Wilfried

    2014-01-01

    Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm(2) area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.

  17. Noncoding RNAs and HIV: viral manipulation of host dark matter to shape the cellular environment

    Directory of Open Access Journals (Sweden)

    Samantha eBarichievy

    2015-03-01

    Full Text Available On October 28th 1943 Winston Churchill said we shape our buildings, and afterwards our buildings shape us (Humes, 1994. Churchill was pondering how and when to rebuild the British House of Commons, which had been destroyed by enemy bombs on May 10th 1941. The old House had been small and insufficient to hold all its members, but was restored to its original form in 1950 in order to recapture the convenience and dignity that the building had shaped into its parliamentary members. The circular loop whereby buildings or dwellings are shaped and go on to shape those that reside in them is also true of pathogens and their hosts. As obligate parasites, pathogens need to alter their cellular host environments to ensure survival. Typically pathogens modify cellular transcription profiles and in doing so, the pathogen in turn is affected, thereby closing the loop. As key orchestrators of gene expression, noncoding RNAs provide a vast and extremely precise set of tools for pathogens to target in order to shape the cellular environment. This review will focus on host noncoding RNAs that are manipulated by the infamous intracellular pathogen, the Human Immunodeficiency Virus (HIV. We will briefly describe both short and long host noncoding RNAs and discuss how HIV gains control of these factors to ensure widespread dissemination throughout the host as well as the establishment of lifelong, chronic infection.

  18. Cellular systems biology profiling applied to cellular models of disease.

    Science.gov (United States)

    Giuliano, Kenneth A; Premkumar, Daniel R; Strock, Christopher J; Johnston, Patricia; Taylor, Lansing

    2009-11-01

    Building cellular models of disease based on the approach of Cellular Systems Biology (CSB) has the potential to improve the process of creating drugs as part of the continuum from early drug discovery through drug development and clinical trials and diagnostics. This paper focuses on the application of CSB to early drug discovery. We discuss the integration of protein-protein interaction biosensors with other multiplexed, functional biomarkers as an example in using CSB to optimize the identification of quality lead series compounds.

  19. COML (Classroom Orchestration Modelling Language) and Scenarios Designer: Toolsets to Facilitate Collaborative Learning in a One-to-One Technology Classroom

    OpenAIRE

    Niramitranon, Jitti; Sharples, Mike; Greenhalgh, Chris

    2006-01-01

    In a one-to-one collaborative learning classroom supported by ubiquitous computing, teachers require tools that allow them to design of learning scenarios, and to manage and monitor the activities happening in the classroom. Our project proposes an architecture for a classroom management system and a scenarios designer tool, both based on a Classroom Orchestration Modelling Language (COML), to support these requirements. We are developing and testing this with the GroupScribbles software usin...

  20. Study and Simulation of Traffic Behavior in Cellular Network

    Science.gov (United States)

    Madhup, D. K.; Shrestha, C. L.; Sharma, R. K.

    2007-07-01

    Cellular radio systems accommodate a large number of users with a limited radio spectrum. The concept of trunking allows a large number of users to share the relatively small number of channels in a cell by providing access to each user, on demand, from a pool of available channels. Traffic engineering deals with provisioning of communication circuits in a given area for a number of subscribers with a required grade of service. Traffic in any cell depends upon the number of users, the average request rate and average call duration. Certain number of channels is required for the required GOS. To design an optimum capacity cellular system, traffic behavior on that system is important. The number of channel required can be estimated by using Erlang formula and Erlang table. Erlang table is not always useful to calculate the probability of blocking in various complex scenarios such as channel borrowing strategies. When the total number of channel available in a given cell are divided to serve partly for newly generated calls and partly for handover calls, and if they use dynamic channel assignment strategies like channel borrowing, then the probability of blocking can't be calculated from Erlang table. Simulation model of the behavior help us to determine the blocking and the channel utilization while using various channel assignment strategies. The title "Study and Simulation of Traffic Behavior in Cellular Network" entail the study of the blocking probability of traffic in cellular network for static channel assignment strategies and dynamic channel borrowing strategies through MATLAB programming language and graphic user interface (GUI). The result shows that the dynamic scheme can perform better than static maximizing the overall utilization of the circuits and minimizing the overall blocking.

  1. Actual problems of cellular cardiomyoplasty

    Directory of Open Access Journals (Sweden)

    Bulat Kaupov

    2010-04-01

    Full Text Available The paper provides review of cellular technologies used incardiology, describes types of cellular preparations depending onsources of cells and types of compounding cells. The generalmechanisms of therapies with stem cells applications are described.Use of cellular preparations for treatment of cardiovascular diseasesand is improvement of the forecast at patients with heartinsufficiency of various genesis is considered as alternative topractice with organ transplantations. Efforts of biotechnologicallaboratories are directed on search of optimum population of cellsfor application in cardiology and studying of mechanisms andfactors regulating function of cardiac stem cells.

  2. Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication

    Institute of Scientific and Technical Information of China (English)

    Jadav Chandra DAS; Debashis DE

    2016-01-01

    Quantum-dot cellular automata (QCA) is an emerging area of research in reversible computing. It can be used to design nanoscale circuits. In nanocommunication, the detection and correction of errors in a received message is a major factor. Besides, device density and power dissipation are the key issues in the nanocommunication architecture. For the first time, QCA-based designs of the reversible low-power odd parity generator and odd parity checker using the Feynman gate have been achieved in this study. Using the proposed parity generator and parity checker circuit, a nanocommunication architecture is pro-posed. The detection of errors in the received message during transmission is also explored. The proposed QCA Feynman gate outshines the existing ones in terms of area, cell count, and delay. The quantum costs of the proposed conventional reversible circuits and their QCA layouts are calculated and compared, which establishes that the proposed QCA circuits have very low quantum cost compared to conventional designs. The energy dissipation by the layouts is estimated, which ensures the possibility of QCA nano-device serving as an alternative platform for the implementation of reversible circuits. The stability of the proposed circuits under thermal randomness is analyzed, showing the operational efficiency of the circuits. The simulation results of the proposed design are tested with theoretical values, showing the accuracy of the circuits. The proposed circuits can be used to design more complex low-power nanoscale lossless nanocommunication architecture such as nano-transmitters and nano-receivers.

  3. Development, integration and testing of automated triggering circuit for hybrid DC circuit breaker

    International Nuclear Information System (INIS)

    A novel concept of Hybrid DC circuit breaker having combination of mechanical switch and static switch provides arc-less current commutation into the dump resistor during quench in superconducting magnet operation. The triggering of mechanical and static switches in Hybrid DC breaker can be automatized which can effectively reduce the overall current commutation time of hybrid DC circuit breaker and make the operation independent of opening time of mechanical switch. With this view, a dedicated control circuit (auto-triggering circuit) has been developed which can decide the timing and pulse duration for mechanical switch as well as static switch from the operating parameters. This circuit has been tested with dummy parameters and thereafter integrated with the actual test set up of hybrid DC circuit breaker. This paper deals with the conceptual design of the auto-triggering circuit, its control logic and operation. The test results of Hybrid DC circuit breaker using this circuit have also been discussed. (author)

  4. Pragmatic circuits signals and filters

    CERN Document Server

    Eccles, William

    2006-01-01

    Pragmatic Circuits: Signals and Filters is built around the processing of signals. Topics include spectra, a short introduction to the Fourier series, design of filters, and the properties of the Fourier transform. The focus is on signals rather than power. But the treatment is still pragmatic. For example, the author accepts the work of Butterworth and uses his results to design filters in a fairly methodical fashion. This third of three volumes finishes with a look at spectra by showing how to get a spectrum even if a signal is not periodic. The Fourier transform provides a way of dealing wi

  5. Circuit considerations for repetitive railguns

    Energy Technology Data Exchange (ETDEWEB)

    Honih, E.M.

    1986-01-01

    Railgun electromagnetic launchers have significant military and scientific potential. They provide direct conversion of electrical energy to projectile kinetic energy, and they offer the hope of achieving projectile velocities greatly exceeding the limits of conventional guns. With over 10 km/sec already demonstrated, railguns are attracting attention for tactical and strategic weapons systems and for scientific equation-of-state research. The full utilization of railguns will require significant improvements in every aspect of system design - projectile, barrel, and power source - to achieve operation on a large scale. This paper will review fundamental aspects of railguns, with emphasis on circuit considerations and repetitive operation.

  6. Advanced Microwave Circuits and Systems

    DEFF Research Database (Denmark)

    is usually optimized to have high output power, high efficiency, optimum heat dissipation and high gain. The third part of this book presents power amplifier designs through a series of design examples. Designs undertaken include a switching mode power amplifier, Doherty power amplifier, and flexible power...... such as voltage-controlled oscillators and electron devices for millimeter wave and submillimeter wave applications. This part also covers studies of integrated buffer circuits. Passive components are indispensable elements of any electronic system. The increasing demands to miniaturization and cost effectiveness...

  7. HF radio systems and circuits

    CERN Document Server

    Sabin, William

    1998-01-01

    A comprehensive reference for the design of high frequency communications systems and equipment. This revised edition is loaded with practical data, much of which cannot be found in other reference books. Its approach to the subject follows the needs of an engineer from system definition and performance requirements down to the individual circuit elements that make up radio transmitters and receivers. The accompanying disk contains updated software on filters, matching networks and receiver analysis. SciTech Publishing also provides many other products related to Communication Systems Design.

  8. Radio frequency integrated circuit design

    CERN Document Server

    Rogers, John W M

    2010-01-01

    This newly revised and expanded edition of the 2003 Artech House classic, Radio Frequency Integrated Circuit Design, serves as an up-to-date, practical reference for complete RFIC know-how. The second edition includes numerous updates, including greater coverage of CMOS PA design, RFIC design with on-chip components, and more worked examples with simulation results. By emphasizing working designs, this book practically transports you into the authors' own RFIC lab so you can fully understand the function of each design detailed in this book. Among the RFIC designs examined are RF integrated LC

  9. Circuit for Driving Piezoelectric Transducers

    Science.gov (United States)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  10. Model reduction for circuit simulation

    CERN Document Server

    Hinze, Michael; Maten, E Jan W Ter

    2011-01-01

    Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the devi

  11. DNA-damage response network at the crossroads of cell-cycle checkpoints,cellular senescence and apoptosis

    Institute of Scientific and Technical Information of China (English)

    SCHMITT Estelle; PAQUET Claudie; BEAUCHEMIN Myriam; BERTRAND Richard

    2007-01-01

    Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation,cellular senescence and cell death.Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities.Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms.Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death.The intimate link between the cell cycle,cellular senescence,apoptosis regulation,cancer development and tumor responses to cancer treatment has become eminently apparent.Extensive research on tumor suppressor genes,oncogenes,the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways,referred to as the DNA-damage response network,are tied to cell proliferation,cell-cycle arrest,cellular senescence and apoptosis.DNA-damage responses are complex,involving "sensor" proteins that sense the damage,and transmit signals to "transducer" proteins,which,in turn,convey the signals to numerous "effector" proteins implicated in specific cellular pathways,including DNA repair mechanisms,cell-cycle checkpoints,cellular senescence and apoptosis.The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation.In addition,several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle,DNA repair/recombination and cellular senescence,effects that are generally distinct from their function in apoptosis.In this review,we report progress in understanding the molecular networks that regulate cell-cycle checkpoints,cellular senescence and apoptosis after DNA damage,and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.

  12. Cellular mechanisms during vascular development

    OpenAIRE

    Blum, Yannick

    2012-01-01

    The vascular system is an essential organ in vertebrate animals and provides the organism with enough oxygen and nutrients. It is composed of an interconnected network of blood vessels, which form using a number of different morphogenetic mechanisms. Angiogenesis describes the formation of new blood vessels from preexisting vessels. A number of molecular pathways have been shown to be essential during angiogenesis. However, cellular architecture of blood vessels as well as cellular mechanisms...

  13. Cellular automaton for chimera states

    OpenAIRE

    García-Morales, Vladimir

    2016-01-01

    A minimalistic model for chimera states is presented. The model is a cellular automaton (CA) which depends on only one adjustable parameter, the range of the nonlocal coupling, and is built from elementary cellular automata and the majority (voting) rule. This suggests the universality of chimera-like behavior from a new point of view: Already simple CA rules based on the majority rule exhibit this behavior. After a short transient, we find chimera states for arbitrary initial conditions, the...

  14. Mathematical Modeling of Cellular Metabolism.

    Science.gov (United States)

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    2016-01-01

    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.

  15. Is the audiologic status of professional musicians a reflection of the noise exposure in classical orchestral music?

    Science.gov (United States)

    Emmerich, Edeltraut; Rudel, Lars; Richter, Frank

    2008-07-01

    The sound in classical orchestral music is louder than noise emissions allowed by national rules in industry. We wanted to assess the audiologic status of professional musicians at different ages of their careers and to look for a coherence of declined hearing ability and the sound emissions in order to substantiate advices for hearing protection and occupational medicine in musicians. Data from questionnaires (anamnestic data on sound exposure in profession and leisure times, use of hearing protection, self-evaluation of hearing function and hearing deficits), audiometric data and amplitudes of OAE were evaluated from 109 professional musicians aged 30-69 years from three major German orchestras and from 110 students of an academy of music (aged 11-19 years). Sound emissions of the whole orchestra and of single instruments/instrument groups were measured at the orchestra stages and pits during rehearsals and performances. None of the musicians was engaged in noisy hobbies and only a few used hearing protectors regularly. More than 50% of the musicians had a hearing loss of 15 dB(A) and more. Highest losses were found among the strings and the brass players. DPOAE amplitudes coincidently declined with the duration of performing music in the orchestras. Professional musicians aged older than 60 years had a significantly greater hearing loss at 4 and 6 kHz than those aged 30-39 years. Among the strings in one orchestra a dominant hearing deficit in the left ears was observed. Musicians need the same health care for their hearing as workers in noisy industry. A better education on the hearing hazards (use of hearing protectors) as well as sound protection in the rehearsal rooms is necessary. Hearing loss in professional musicians should be accepted as an occupational disease. PMID:18034257

  16. A Singularity in the Kirchhoff's Circuit Equations

    CERN Document Server

    Harsha, N R Sree

    2016-01-01

    Students often have difficulty in understanding qualitatively the behaviour of simple electric circuits. In particular, as different studies have shown, they find multiple batteries connected in multiple loops difficult to analyse. In a recent paper [Phys. Educ. 50 568 (2015)], we showed such an electric circuit, which consists of ideal batteries connected in parallel, that couldn't be solved by the existing circuit analysis methods. In this paper, we shall introduce a new mathematical method of solving simple electric circuits from the solutions of more general circuits and show that the currents, in this particular circuit, take the indeterminate 0/0 form. We shall also present some of the implications of teaching the method. We believe that the description presented in this paper should help the instructors in teaching the behaviour of multiple batteries connected in parallel.

  17. Physical synthesis of quantum circuits using templates

    Science.gov (United States)

    Mirkhani, Zahra; Mohammadzadeh, Naser

    2016-06-01

    Similar to traditional CMOS circuits, quantum circuit design flow is divided into two main processes: logic synthesis and physical design. Addressing the limitations imposed on optimization of the quantum circuit metrics because of no information sharing between logic synthesis and physical design processes, the concept of "physical synthesis" was introduced for quantum circuit flow, and a few techniques were proposed for it. Following that concept, in this paper a new approach for physical synthesis inspired by template matching idea in quantum logic synthesis is proposed to improve the latency of quantum circuits. Experiments show that by using template matching as a physical synthesis approach, the latency of quantum circuits can be improved by more than 23.55 % on average.

  18. Physical synthesis of quantum circuits using templates

    Science.gov (United States)

    Mirkhani, Zahra; Mohammadzadeh, Naser

    2016-10-01

    Similar to traditional CMOS circuits, quantum circuit design flow is divided into two main processes: logic synthesis and physical design. Addressing the limitations imposed on optimization of the quantum circuit metrics because of no information sharing between logic synthesis and physical design processes, the concept of " physical synthesis" was introduced for quantum circuit flow, and a few techniques were proposed for it. Following that concept, in this paper a new approach for physical synthesis inspired by template matching idea in quantum logic synthesis is proposed to improve the latency of quantum circuits. Experiments show that by using template matching as a physical synthesis approach, the latency of quantum circuits can be improved by more than 23.55 % on average.

  19. Consideration of using 3G cellular network to monitor ABB’s remote circuit breakers

    OpenAIRE

    Afolabi, Ibrahim

    2013-01-01

    Increase in the energy demand for domestic purposes as well as in the manufactur-ing industries has led to a rapid and proportional increase in the electrical energy production today. In meeting this huge electric consumption and demand, proper network and supply of electric power has to be in place from the electric energy generation stations to the final user i.e. the consumers at home, in offices and heavy manufacturing industries. Achieving this goal without mincing safety and securit...

  20. Simulating Cortical Feedback Modulation as Changes in Excitation and Inhibition in a Cortical Circuit Model.

    Science.gov (United States)

    Zagha, Edward; Murray, John D; McCormick, David A

    2016-01-01

    Cortical feedback pathways are hypothesized to distribute context-dependent signals during flexible behavior. Recent experimental work has attempted to understand the mechanisms by which cortical feedback inputs modulate their target regions. Within the mouse whisker sensorimotor system, cortical feedback stimulation modulates spontaneous activity and sensory responsiveness, leading to enhanced sensory representations. However, the cellular mechanisms underlying these effects are currently unknown. In this study we use a simplified neural circuit model, which includes two recurrent excitatory populations and global inhibition, to simulate cortical modulation. First, we demonstrate how changes in the strengths of excitation and inhibition alter the input-output processing responses of our model. Second, we compare these responses with experimental findings from cortical feedback stimulation. Our analyses predict that enhanced inhibition underlies the changes in spontaneous and sensory evoked activity observed experimentally. More generally, these analyses provide a framework for relating cellular and synaptic properties to emergent circuit function and dynamic modulation. PMID:27595137

  1. Simulating Cortical Feedback Modulation as Changes in Excitation and Inhibition in a Cortical Circuit Model

    Science.gov (United States)

    Murray, John D.; McCormick, David A.

    2016-01-01

    Abstract Cortical feedback pathways are hypothesized to distribute context-dependent signals during flexible behavior. Recent experimental work has attempted to understand the mechanisms by which cortical feedback inputs modulate their target regions. Within the mouse whisker sensorimotor system, cortical feedback stimulation modulates spontaneous activity and sensory responsiveness, leading to enhanced sensory representations. However, the cellular mechanisms underlying these effects are currently unknown. In this study we use a simplified neural circuit model, which includes two recurrent excitatory populations and global inhibition, to simulate cortical modulation. First, we demonstrate how changes in the strengths of excitation and inhibition alter the input–output processing responses of our model. Second, we compare these responses with experimental findings from cortical feedback stimulation. Our analyses predict that enhanced inhibition underlies the changes in spontaneous and sensory evoked activity observed experimentally. More generally, these analyses provide a framework for relating cellular and synaptic properties to emergent circuit function and dynamic modulation. PMID:27595137

  2. Worst Asymmetrical Short-Circuit Current

    DEFF Research Database (Denmark)

    Arana Aristi, Iván; Holmstrøm, O; Grastrup, L;

    2010-01-01

    In a typical power plant, the production scenario and the short-circuit time were found for the worst asymmetrical short-circuit current. Then, a sensitivity analysis on the missing generator values was realized in order to minimize the uncertainty of the results. Afterward the worst asymmetrical...... short-circuit current was analyzed in order to compare the results with the allowable DC current component based in the IEC. Finally the normal operating condition for the power plant was modeled....

  3. A Survey of Memristive Threshold Logic Circuits

    OpenAIRE

    Maan, Akshay Kumar; Jayadevi, Deepthi Anirudhan; James, Alex Pappachen

    2016-01-01

    In this paper, we review the different memristive threshold logic (MTL) circuits that are inspired from the synaptic action of flow of neurotransmitters in the biological brain. Brain like generalisation ability and area minimisation of these threshold logic circuits aim towards crossing the Moores law boundaries at device, circuits and systems levels.Fast switching memory, signal processing, control systems, programmable logic, image processing, reconfigurable computing, and pattern recognit...

  4. Monitoring transients in low inductance circuits

    Science.gov (United States)

    Guilford, R.P.; Rosborough, J.R.

    1985-10-21

    The instant invention relates to methods of and apparatus for monitoring transients in low inductance circuits and to a probe utilized to practice said method and apparatus. More particularly, the instant invention relates to methods of and apparatus for monitoring low inductance circuits, wherein the low inductance circuits include a pair of flat cable transmission lines. The instant invention is further directed to a probe for use in monitoring pairs of flat cable transmission lines.

  5. Theory of circuit block switch-off

    OpenAIRE

    S. Henzler; J. Berthold; G. Georgakos; Schmitt-Landsiedel, D.

    2005-01-01

    Switching-off unused circuit blocks is a promising approach to supress static leakage currents in ultra deep sub-micron CMOS digital systems. Basic performance parameters of Circuit Block Switch-Off (CBSO) schemes are defined and their dependence on basic circuit parameters is estimated. Therefore the design trade-off between strong leakage suppression in idle mode and adequate dynamic performance in active mode can be supported by simple analytic investigations. Additionally, a guideline for...

  6. Nonsmooth Modeling and Simulation for Switched Circuits

    CERN Document Server

    Acary, Vincent; Brogliato, Bernard

    2011-01-01

    "Nonsmooth Modeling and Simulation for Switched Circuits" concerns the modeling and the numerical simulation of switched circuits with the nonsmooth dynamical systems (NSDS) approach, using piecewise-linear and multivalued models of electronic devices like diodes, transistors, switches. Numerous examples (ranging from introductory academic circuits to various types of power converters) are analyzed and many simulation results obtained with the INRIA open-source SICONOS software package are presented. Comparisons with SPICE and hybrid methods demonstrate the power of the NSDS approach

  7. The analysis and design of linear circuits

    CERN Document Server

    Thomas, Roland E; Toussaint, Gregory J

    2009-01-01

    The Analysis and Design of Linear Circuits, 6e gives the reader the opportunity to not only analyze, but also design and evaluate linear circuits as early as possible. The text's abundance of problems, applications, pedagogical tools, and realistic examples helps engineers develop the skills needed to solve problems, design practical alternatives, and choose the best design from several competing solutions. Engineers searching for an accessible introduction to resistance circuits will benefit from this book that emphasizes the early development of engineering judgment.

  8. Hierarchical Cellular Structures in High-Capacity Cellular Communication Systems

    CERN Document Server

    Jain, R K; Agrawal, N K

    2011-01-01

    In the prevailing cellular environment, it is important to provide the resources for the fluctuating traffic demand exactly in the place and at the time where and when they are needed. In this paper, we explored the ability of hierarchical cellular structures with inter layer reuse to increase the capacity of mobile communication network by applying total frequency hopping (T-FH) and adaptive frequency allocation (AFA) as a strategy to reuse the macro and micro cell resources without frequency planning in indoor pico cells [11]. The practical aspects for designing macro- micro cellular overlays in the existing big urban areas are also explained [4]. Femto cells are inducted in macro / micro / pico cells hierarchical structure to achieve the required QoS cost effectively.

  9. Analog circuit design art, science, and personalities

    CERN Document Server

    Williams, Jim

    1991-01-01

    Analog Circuit Design: Art, Science, and Personalities discusses the many approaches and styles in the practice of analog circuit design. The book is written in an informal yet informative manner, making it easily understandable to those new in the field. The selection covers the definition, history, current practice, and future direction of analog design; the practice proper; and the styles in analog circuit design. The book also includes the problems usually encountered in analog circuit design; approach to feedback loop design; and other different techniques and applications. The text is

  10. Electric circuit theory applied electricity and electronics

    CERN Document Server

    Yorke, R

    1981-01-01

    Electric Circuit Theory provides a concise coverage of the framework of electrical engineering. Comprised of six chapters, this book emphasizes the physical process of electrical engineering rather than abstract mathematics. Chapter 1 deals with files, circuits, and parameters, while Chapter 2 covers the natural and forced response of simple circuit. Chapter 3 talks about the sinusoidal steady state, and Chapter 4 discusses the circuit analysis. The fifth chapter tackles frequency response of networks, and the last chapter covers polyphase systems. This book will be of great help to electrical

  11. Wafer-scale graphene integrated circuit.

    Science.gov (United States)

    Lin, Yu-Ming; Valdes-Garcia, Alberto; Han, Shu-Jen; Farmer, Damon B; Meric, Inanc; Sun, Yanning; Wu, Yanqing; Dimitrakopoulos, Christos; Grill, Alfred; Avouris, Phaedon; Jenkins, Keith A

    2011-06-10

    A wafer-scale graphene circuit was demonstrated in which all circuit components, including graphene field-effect transistor and inductors, were monolithically integrated on a single silicon carbide wafer. The integrated circuit operates as a broadband radio-frequency mixer at frequencies up to 10 gigahertz. These graphene circuits exhibit outstanding thermal stability with little reduction in performance (less than 1 decibel) between 300 and 400 kelvin. These results open up possibilities of achieving practical graphene technology with more complex functionality and performance.

  12. Hyperchaotic circuit with damped harmonic oscillators

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    2001-01-01

    A simple fourth-order hyperchaotic circuit with damped harmonic oscillators is described. ANP3 and PSpice simulations including an eigenvalue study of the linearized Jacobian are presented together with a hardware implementation. The circuit contains two inductors with series resistance, two ideal...... capacitors and one nonlinear active conductor. The Lyapunov exponents are presented to confirm the hyperchaotic nature of the oscillations of the circuit. The nonlinear conductor is realized with a diode. A negative impedance converter and a linear resistor. The performance of the circuit is investigated...... by means of numerical integration of the appropriate differential equations....

  13. Synapse rearrangements upon learning: from divergent-sparse connectivity to dedicated sub-circuits.

    Science.gov (United States)

    Caroni, Pico; Chowdhury, Ananya; Lahr, Maria

    2014-10-01

    Learning can involve formation of new synapses and loss of synapses, providing memory traces of learned skills. Recent findings suggest that these synapse rearrangements reflect assembly of task-related sub-circuits from initially broadly distributed and sparse connectivity in the brain. These local circuit remodeling processes involve rapid emergence of synapses upon learning, followed by protracted validation involving strengthening of some new synapses, and selective elimination of others. The timing of these consolidation processes can vary. Here, we review these findings, focusing on how molecular/cellular mechanisms of synapse assembly, strengthening, and elimination might interface with circuit/system mechanisms of learning and memory consolidation. An integrated understanding of these learning-related processes should provide a better basis to elucidate how experience, genetic background, and disease influence brain function.

  14. An introduction to the memristor - a valuable circuit element in bioelectricity and bioimpedance

    OpenAIRE

    Gorm Krogh Johnsen

    2012-01-01

    The memristor (short for memory resistor) is a yet quite unknown circuit element, though equally fundamental as resistors, capacitors, and coils. It was predicted from theory arguments nearly 40 years ago, but not realized as a physical component until recently. The memristor shows many interesting features when describing electrical phenomena, especially at small (molecular or cellular) scales and can in particular be useful for bioimpedance and bioelectricity modeling. It can also give us a...

  15. Continuum representations of cellular solids

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, M.K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  16. Prognosis of Different Cellular Generations

    Directory of Open Access Journals (Sweden)

    Preetish Ranjan

    2013-04-01

    Full Text Available Technological advancement in mobile telephony from 1G to 3G, 4G and 5G has a very axiomatic fact that made an entire world a global village. The cellular system employs a different design approach and technology that most commercial radio and television system use. In the cellular system, the service area is divided into cells and a transmitter is designed to serve an individual cell. The system seeks to make efficient use of available channels by using low-power transmitters to allow frequency reuse at a smaller distance. Maximizing the number of times each channel can be reused in a given geographical area is the key to an efficient cellular system design. During the past three decades, the world has seen significant changes in telecommunications industry. There have been some remarkable aspects to the rapid growth in wireless communications, as seen by the large expansion in mobile systems. This paper focuses on “Past, Present & Future of Cellular Telephony” and some light has been thrown upon the technologies of the cellular systems, namely 1G, 2G, 2.5G, 3G and future generations like 4G and 5G systems as well.

  17. A Survey of Fast Analog Circuit Analysis Algorithm using SPICE

    OpenAIRE

    T.Murugajothi

    2014-01-01

    is paper presents a fast analog circuit analysis algorithm, fundamental circuit-based circuit analysis, for circuits being repeatedly modified and verified in product development. The algorithm reuses previous circuit simulation result on successive changed circuit analysis to achieve simulation operation reduction. The algorithm is implemented with SPICE simulator on linear and nonlinear circuit applications with the proposed device delta models. The experiments show that t...

  18. Effects of Genetic Variation on the E. coli Host-Circuit Interface

    Directory of Open Access Journals (Sweden)

    Stefano Cardinale

    2013-07-01

    Full Text Available Predictable operation of engineered biological circuitry requires the knowledge of host factors that compete or interfere with designed function. Here, we perform a detailed analysis of the interaction between constitutive expression from a test circuit and cell-growth properties in a subset of genetic variants of the bacterium Escherichia coli. Differences in generic cellular parameters such as ribosome availability and growth rate are the main determinants (89% of strain-specific differences of circuit performance in laboratory-adapted strains but are responsible for only 35% of expression variation across 88 mutants of E. coli BW25113. In the latter strains, we identify specific cell functions, such as nitrogen metabolism, that directly modulate circuit behavior. Finally, we expose aspects of carbon metabolism that act in a strain- and sequence-specific manner. This method of dissecting interactions between host factors and heterologous circuits enables the discovery of mechanisms of interference necessary for the development of design principles for predictable cellular engineering.

  19. Short-Circuit Withstand Current Rating for Low Voltage Switchgear : Short-Circuit Current Rating (SCCR)

    OpenAIRE

    Schütt, Matthias

    2016-01-01

    The subject of this thesis was to observe the short-circuit currents at electrical distribution boards. The purpose was to investigate different methods of protecting switchgears from dam-ages caused by short-circuit currents. Manufactures of switchgears need to indicate the rated short-circuit withstand current of their assembly. This thesis is presenting methods of defining the right value of the short-circuit withstand current. This thesis presents theoretical information about the cau...

  20. Towards programmable plant genetic circuits.

    Science.gov (United States)

    Medford, June I; Prasad, Ashok

    2016-07-01

    Synthetic biology enables the construction of genetic circuits with predictable gene functions in plants. Detailed quantitative descriptions of the transfer function or input-output function for genetic parts (promoters, 5' and 3' untranslated regions, etc.) are collected. These data are then used in computational simulations to determine their robustness and desired properties, thereby enabling the best components to be selected for experimental testing in plants. In addition, the process forms an iterative workflow which allows vast improvement to validated elements with sub-optimal function. These processes enable computational functions such as digital logic in living plants and follow the pathway of technological advances which took us from vacuum tubes to cell phones. PMID:27297052

  1. Beta-gamma discriminator circuit

    International Nuclear Information System (INIS)

    The major difficulty encountered in the determination of beta-ray dose in field conditions is generally the presence of a relatively high gamma-ray component. Conventional dosimetry instruments use a shield on the detector to estimate the gamma-ray component in comparison with the beta-ray component. More accurate dosimetry information can be obtained from the measured beta spectrum itself. At Los Alamos, a detector and discriminator circuit suitable for use in a portable spectrometer have been developed. This instrument will discriminate between gammas and betas in a mixed field. The portable package includes a 256-channel MCA which can be programmed to give a variety of outputs, including a spectral display, and may be programmed to read dose directly

  2. Electrical circuit theory and technology

    CERN Document Server

    Bird, John

    2014-01-01

    This much-loved textbook explains the principles of electrical circuit theory and technology so that students of electrical and mechanical engineering can master the subject. Real-world situations and engineering examples put the theory into context. The inclusion of worked problems with solutions help you to learn and further problems then allow you to test and confirm you have fully understood each subject. In total the book contains 800 worked problems, 1000 further problems and 14 revision tests with answers online. This an ideal text for foundation and undergraduate degree students and those on upper level vocational engineering courses, in particular electrical and mechanical. It provides a sound understanding of the knowledge required by technicians in fields such as electrical engineering, electronics and telecommunications. This edition has been updated with developments in key areas such as semiconductors, transistors, and fuel cells, along with brand new material on ABCD parameters and Fourier's An...

  3. Aging, cellular senescence, and cancer.

    Science.gov (United States)

    Campisi, Judith

    2013-01-01

    For most species, aging promotes a host of degenerative pathologies that are characterized by debilitating losses of tissue or cellular function. However, especially among vertebrates, aging also promotes hyperplastic pathologies, the most deadly of which is cancer. In contrast to the loss of function that characterizes degenerating cells and tissues, malignant (cancerous) cells must acquire new (albeit aberrant) functions that allow them to develop into a lethal tumor. This review discusses the idea that, despite seemingly opposite characteristics, the degenerative and hyperplastic pathologies of aging are at least partly linked by a common biological phenomenon: a cellular stress response known as cellular senescence. The senescence response is widely recognized as a potent tumor suppressive mechanism. However, recent evidence strengthens the idea that it also drives both degenerative and hyperplastic pathologies, most likely by promoting chronic inflammation. Thus, the senescence response may be the result of antagonistically pleiotropic gene action. PMID:23140366

  4. Integrated Circuit Electromagnetic Immunity Handbook

    Science.gov (United States)

    Sketoe, J. G.

    2000-08-01

    This handbook presents the results of the Boeing Company effort for NASA under contract NAS8-98217. Immunity level data for certain integrated circuit parts are discussed herein, along with analytical techniques for applying the data to electronics systems. This handbook is built heavily on the one produced in the seventies by McDonnell Douglas Astronautics Company (MDAC, MDC Report E1929 of 1 August 1978, entitled Integrated Circuit Electromagnetic Susceptibility Handbook, known commonly as the ICES Handbook, which has served countless systems designers for over 20 years). Sections 2 and 3 supplement the device susceptibility data presented in section 4 by presenting information on related material required to use the IC susceptibility information. Section 2 concerns itself with electromagnetic susceptibility analysis and serves as a guide in using the information contained in the rest of the handbook. A suggested system hardening requirements is presented in this chapter. Section 3 briefly discusses coupling and shielding considerations. For conservatism and simplicity, a worst case approach is advocated to determine the maximum amount of RF power picked up from a given field. This handbook expands the scope of the immunity data in this Handbook is to of 10 MHz to 10 GHz. However, the analytical techniques provided are applicable to much higher frequencies as well. It is expected however, that the upper frequency limit of concern is near 10 GHz. This is due to two factors; the pickup of microwave energy on system cables and wiring falls off as the square of the wavelength, and component response falls off at a rapid rate due to the effects of parasitic shunt paths for the RF energy. It should be noted also that the pickup on wires and cables does not approach infinity as the frequency decreases (as would be expected by extrapolating the square law dependence of the high frequency roll-off to lower frequencies) but levels off due to mismatch effects.

  5. Adaptive stochastic cellular automata: Applications

    Science.gov (United States)

    Qian, S.; Lee, Y. C.; Jones, R. D.; Barnes, C. W.; Flake, G. W.; O'Rourke, M. K.; Lee, K.; Chen, H. H.; Sun, G. Z.; Zhang, Y. Q.; Chen, D.; Giles, C. L.

    1990-09-01

    The stochastic learning cellular automata model has been applied to the problem of controlling unstable systems. Two example unstable systems studied are controlled by an adaptive stochastic cellular automata algorithm with an adaptive critic. The reinforcement learning algorithm and the architecture of the stochastic CA controller are presented. Learning to balance a single pole is discussed in detail. Balancing an inverted double pendulum highlights the power of the stochastic CA approach. The stochastic CA model is compared to conventional adaptive control and artificial neural network approaches.

  6. Cellular automaton for chimera states

    Science.gov (United States)

    García-Morales, Vladimir

    2016-04-01

    A minimalistic model for chimera states is presented. The model is a cellular automaton (CA) which depends on only one adjustable parameter, the range of the nonlocal coupling, and is built from elementary cellular automata and the majority (voting) rule. This suggests the universality of chimera-like behavior from a new point of view: Already simple CA rules based on the majority rule exhibit this behavior. After a short transient, we find chimera states for arbitrary initial conditions, the system spontaneously splitting into stable domains separated by static boundaries, some synchronously oscillating and the others incoherent. When the coupling range is local, nontrivial coherent structures with different periodicities are formed.

  7. Cellular senescence in aging primates.

    Science.gov (United States)

    Herbig, Utz; Ferreira, Mark; Condel, Laura; Carey, Dee; Sedivy, John M

    2006-03-01

    The aging of organisms is characterized by a gradual functional decline of all organ systems. Mammalian somatic cells in culture display a limited proliferative life span, at the end of which they undergo an irreversible cell cycle arrest known as replicative senescence. Whether cellular senescence contributes to organismal aging has been controversial. We investigated telomere dysfunction, a recently discovered biomarker of cellular senescence, and found that the number of senescent fibroblasts increases exponentially in the skin of aging baboons, reaching >15% of all cells in very old individuals. In addition, the same cells contain activated ataxia-telangiectasia mutated kinase and heterochromatinized nuclei, confirming their senescent status. PMID:16456035

  8. Orchestrating Multiple Intelligences

    Science.gov (United States)

    Moran, Seana; Kornhaber, Mindy; Gardner, Howard

    2006-01-01

    Education policymakers often go astray when they attempt to integrate multiple intelligences theory into schools, according to the originator of the theory, Howard Gardner, and his colleagues. The greatest potential of a multiple intelligences approach to education grows from the concept of a profile of intelligences. Each learner's intelligence…

  9. Orchestrating an Exceptional Death

    DEFF Research Database (Denmark)

    Jensen, Anja Marie Bornø

    , reinterpret and translate death and organ donation into something culturally acceptable and sense making. With chapters focusing analytically on the performance of trust, the transformative practices of hope, the aesthetization of ambiguous bodies, the sociality of exchangeable organs and the organ donation......This Ph.D. thesis explores the experiences of Danish donor families and the context of organ donation in Denmark. Based on comprehensive ethnographic studies at Danish hospitals and interviews with health care professionals and donor families, readers are invited on a journey into the complex...... processes of facing brain death and deciding about organ donation. This study suggests that organ donation should be understood as a ‘strange figure’ challenging traditions and attitudes regarding the boundaries between life and death and the practices surrounding dead human bodies. Simultaneously, organ...

  10. Orchestrating Inquiry Learning

    Science.gov (United States)

    Littleton, Karen, Ed.; Scanlon, Eileen, Ed.; Sharples, Mike, Ed.

    2011-01-01

    There is currently a rapidly growing interest in inquiry learning and an emerging consensus among researchers that, particularly when supported by technology, it can be a significant vehicle for developing higher order thinking skills. Inquiry learning methods also offer learners meaningful and productive approaches to the development of their…

  11. Orchestrating intensities and rhythms

    DEFF Research Database (Denmark)

    Staunæs, Dorthe; Juelskjær, Malou

    2016-01-01

    The aim of this article is to trace how contemporary (post)psychologies, when used as psy-leadership tools in order to reach new standards, may create new work around the standards and may also create new subjectivities. It is well known that education is a field in which standardization and the ......The aim of this article is to trace how contemporary (post)psychologies, when used as psy-leadership tools in order to reach new standards, may create new work around the standards and may also create new subjectivities. It is well known that education is a field in which standardization...

  12. System and Circuit Design Aspects for CMOS Wireless Handset Receivers

    DEFF Research Database (Denmark)

    Mikkelsen, Jan H.

    developments in CMOS technology are considered and the short-comings from an analog design perspective are evaluated. The lack of high quality passive devices, inductors in particular, is found to be one of the major obstacles in achieving a fully integrated RF design based on CMOS. Following this, an overview......The presented work deals with system and circuit design aspects for Complementary Metal Oxide Semiconductor (CMOS) implementations of wireless handset receivers. First, an overview, from a historic perspective, on the use of CMOS in cellular applications is provided. Based on this the tremendous...... Division Duplex) direct-conversion receiver (DCR). The wideband nature of the UMTS signal opens up for simple DC-offset cancellation schemes. In line of this the use of highpass filtering as a means to reduce the DC-offset is pursued using link simulations. To simplify receiver planning it is common...

  13. Hierarchical Stochastic Simulation Algorithm for SBML Models of Genetic Circuits

    Directory of Open Access Journals (Sweden)

    Leandro eWatanabe

    2014-11-01

    Full Text Available This paper describes a hierarchical stochastic simulation algorithm which has been implemented within iBioSim, a tool used to model, analyze, and visualize genetic circuits. Many biological analysis tools flatten out hierarchy before simulation, but there are many disadvantages associated with this approach. First, the memory required to represent the model can quickly expand in the process. Second, the flattening process is computationally expensive. Finally, when modeling a dynamic cellular population within iBioSim, inlining the hierarchy of the model is inefficient since models must grow dynamically over time. This paper discusses a new approach to handle hierarchy on the fly to make the tool faster and more memory-efficient. This approach yields significant performance improvements as compared to the former flat analysis method.

  14. Design of Reversible Sequential Circuit Using Reversible Logic Synthesis

    Directory of Open Access Journals (Sweden)

    Md. Mosharof Hossin

    2012-01-01

    Full Text Available Reversible logic is one of the most vital issue at present time and it has different areas for its application, those are low power CMOS, quantum computing, nanotechnology, cryptography, optical computing, DNA computing, digital signal processing (DSP, quantum dot cellular automata, communication, computer graphics. It is not possible to realize quantum computing without implementation of reversible logic. The main purposes of designing reversible logic are to decrease quantum cost, depth of the circuits and the number of garbage outputs. In this paper, we have proposed a new reversible gate. And we have designedRS flip flop and D flip flop by using our proposed gate and Peres gate. The proposed designs are better than the existing proposed ones in terms of number of reversible gates and garbage outputs. So, this realization is more efficient and less costly than other realizations.

  15. Design of Reversible Sequential Circuit Using Reversible Logic Synthesis

    Directory of Open Access Journals (Sweden)

    Md. Belayet Ali

    2011-12-01

    Full Text Available Reversible logic is one of the most vital issue at present time and it has different areas for its application,those are low power CMOS, quantum computing, nanotechnology, cryptography, optical computing, DNA computing, digital signal processing (DSP, quantum dot cellular auto meta, communication, computer graphics. It is not possible to realize quantum computing without implementation of reversible logic. The main purposes of designing reversible logic are to decrease quantum cost, depth of the circuits and the number of garbage outputs. In this paper, we have proposed a new reversible gate. And we have designed RS flip flop and D flip flop by using our proposed gate and Peres gate. The proposed designs are better than the existing proposed ones in terms of number of reversible gates and garbage outputs. So, this realization is more efficient and less costly than other realizations.

  16. Astrocyte regulation of sleep circuits: experimental and modeling perspectives

    Directory of Open Access Journals (Sweden)

    Tommaso eFellin

    2012-08-01

    Full Text Available Integrated within neural circuits, astrocytes have recently been shown to modulate brain rhythms thought to mediate sleep function. Experimental evidence suggests that local impact of astrocytes on single synapses translates into global modulation of neuronal networks and behavior. We discuss these findings in the context of current conceptual models of sleep generation and function, each of which have historically focused on neural mechanisms. We highlight the implications and the challenges introduced by these results from a conceptual and computational perspective. We further provide modeling directions on how these data might extend our knowledge of astrocytic properties and sleep function. Given our evolving understanding of how local cellular activities during sleep lead to functional outcomes for the brain, further mechanistic and theoretical understanding of astrocytic contribution to these dynamics will undoubtedly be of great basic and translational benefit.

  17. Analysis of circuits including magnetic cores (MTRAC)

    Science.gov (United States)

    Hanzen, G. R.; Nitzan, D.; Herndon, J. R.

    1972-01-01

    Development of automated circuit analysis computer program to provide transient analysis of circuits with magnetic cores is discussed. Allowance is made for complications caused by nonlinearity of switching core model and magnetic coupling among loop currents. Computer program is conducted on Univac 1108 computer using FORTRAN IV.

  18. Circuits in the Sun: Solar Panel Physics

    Science.gov (United States)

    Gfroerer, Tim

    2013-01-01

    Typical commercial solar panels consist of approximately 60 individual photovoltaic cells connected in series. Since the usual Kirchhoff rules apply, the current is uniform throughout the circuit, while the electric potential of the individual devices is cumulative. Hence, a solar panel is a good analog of a simple resistive series circuit, except…

  19. Sustainability issues in circuit board recycling

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech; Alting, Leo; Baldo, Gian Luca

    1995-01-01

    The resource recovery and environmental impact issues of printed circuit board recycling by secondary copper smelters are discussed. Guidelines concerning material selection for circuit board manufacture and concerning the recycling processes are given to enhance recovery efficiency and to lower...... the impacts on the external environment from recycling...

  20. CMOS circuits for analog signal processing

    NARCIS (Netherlands)

    Wallinga, Hans

    1988-01-01

    Design choices in CMOS analog signal processing circuits are presented. Special attention is focussed on continuous-time filter technologies. The basics of MOSFET-C continuous-time filters and CMOS Square Law Circuits are explained at the hand of a graphical MOST characteristics representation.

  1. Water quality control program in experimental circuits

    International Nuclear Information System (INIS)

    The Water Quality Control Program of the Experimental Circuits visualizes studying the water chemistry of the cooling in the primary and secondary circuits, monitoring the corrosion of the systems and studying the mechanism of the corrosion products transport in the systems. (author)

  2. POWER MOS FET MODELS FOR "SWITCHING" CIRCUITS

    OpenAIRE

    Rossel, P; Maimouni, R.; Belabadia, M.; Tranduc, Henri; Cordonnier, C.; Bairanzade, M.

    1988-01-01

    A compact model of the Power VDMOS Transistor compatible with the circuit simulator "SPICE2" is described in this article. This model is applied to the simulation of switching circuit with resistive and inductive loads ; comparisons with experimental results are presented.

  3. Memristive circuits simulate memcapacitors and meminductors

    CERN Document Server

    Pershin, Yuriy V

    2009-01-01

    We suggest electronic circuits with memristors (resistors with memory) that operate as memcapacitors (capacitors with memory) and meminductors (inductors with memory). Using a memristor emulator, the suggested circuits have been built and their operation has been demonstrated, showing a useful and interesting connection between the three memory elements.

  4. Automatic Test Pattern Generation for Digital Circuits

    Directory of Open Access Journals (Sweden)

    S. Hemalatha

    2014-04-01

    Full Text Available Digital circuits complexity and density are increasing and at the same time it should have more quality and reliability. It leads with high test costs and makes the validation more complex. The main aim is to develop a complete behavioral fault simulation and automatic test pattern generation (ATPG system for digital circuits modeled in verilog and VHDL. An integrated Automatic Test Generation (ATG and Automatic Test Executing/Equipment (ATE system for complex boards is developed here. An approach to use memristors (resistors with memory in programmable analog circuits. The Main idea consists in a circuit design in which low voltages are applied to memristors during their operation as analog circuit elements and high voltages are used to program the memristor’s states. This way, as it was demonstrated in recent experiments, the state of memristors does not essentially change during analog mode operation. As an example of our approach, we have built several programmable analog circuits demonstrating memristor -based programming of threshold, gain and frequency. In these circuits the role of memristor is played by a memristor emulator developed by us. A multiplexer is developed to generate a class of minimum transition sequences. The entire hardware is realized as digital logical circuits and the test results are simulated in Model sim software. The results of this research show that behavioral fault simulation will remain as a highly attractive alternative for the future generation of VLSI and system-on-chips (SoC.

  5. Verifying Relay Circuits using State Machines

    NARCIS (Netherlands)

    Eijk, P.H.J. van

    2008-01-01

    In this paper we present, illustrate and discuss a number of techniques that can be used in the modelling and verification of electro-mechanical relay circuits. These techniques are based on state machine descriptions of circuits and their functions, and on applying validation tools for properties o

  6. Automatic design of digital synthetic gene circuits.

    Directory of Open Access Journals (Sweden)

    Mario A Marchisio

    2011-02-01

    Full Text Available De novo computational design of synthetic gene circuits that achieve well-defined target functions is a hard task. Existing, brute-force approaches run optimization algorithms on the structure and on the kinetic parameter values of the network. However, more direct rational methods for automatic circuit design are lacking. Focusing on digital synthetic gene circuits, we developed a methodology and a corresponding tool for in silico automatic design. For a given truth table that specifies a circuit's input-output relations, our algorithm generates and ranks several possible circuit schemes without the need for any optimization. Logic behavior is reproduced by the action of regulatory factors and chemicals on the promoters and on the ribosome binding sites of biological Boolean gates. Simulations of circuits with up to four inputs show a faithful and unequivocal truth table representation, even under parametric perturbations and stochastic noise. A comparison with already implemented circuits, in addition, reveals the potential for simpler designs with the same function. Therefore, we expect the method to help both in devising new circuits and in simplifying existing solutions.

  7. IMPORTANT NOTICE: Cancellation of shuttle Circuit 3

    CERN Multimedia

    2013-01-01

    Circuit 3 of the CERN Shuttle Service (Point 5), which has served CMS since the start of LS1, will be cancelled with effect from Tuesday 16 April. This decision has been taken in consultation with CMS, as the circuit was seldom used.   In response to increasing demand for Circuit 1 - Meyrin and feedback from passengers, the two Circuit 3 journeys will be switched to Circuit 1 – Meyrin (see new timetable below): Mornings: Four journeys instead of three. Circuit 1 now starts at 8:10 (instead of 8:19 a.m.) and runs until 9:27 a.m. (instead of 9:16 a.m.). Lunchtimes: Five journeys in place between 12:10 p.m. and 1:47 p.m. Evenings: Circuit starts at 5:23 p.m. (instead of 5:03 p.m.) and ends at 6:20 p.m. at Building 33. Please note that the circuit will depart from Building 13 instead of Building 33.  

  8. 46 CFR 169.670 - Circuit breakers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Circuit breakers. 169.670 Section 169.670 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and... for— (a) Inverse time delay; (b) Instantaneous short circuit protection; and (c) Repeated opening...

  9. Active components for integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Krasavin, A.V.; Bolger, P.M.; Zayats, A.V.;

    2009-01-01

    We present a comprehensive study of highly efficient and compact passive and active components for integrated plasmonic circuit based on dielectric-loaded surface plasmon polariton waveguides.......We present a comprehensive study of highly efficient and compact passive and active components for integrated plasmonic circuit based on dielectric-loaded surface plasmon polariton waveguides....

  10. F-Paris: integrated electronic circuits [Tender

    CERN Multimedia

    2003-01-01

    "Fourniture, montage et tests des circuits imprimes et modules multi composants pour le trajectographe central de CMS. Maximum de 12 000 circuits imprimes et modules multi-composants necessaires au trajectographe central de l'experience CMS aupres du Large Hadron Collider" (1 page).

  11. Post irradiation effects (PIE) in integrated circuits

    International Nuclear Information System (INIS)

    Post Irradiation Effects (PIE) ranging from normal recovery catastrophic failure have been observed in integrated circuits during the PIE period. These variations indicate that a rebound or PIE recipe used for radiation hardness assurance must be chosen with care. In this paper, the authors provide examples of PIE in a variety of integrated circuits of importance to spacecraft electronics

  12. Textbook Error: Short Circuiting on Electrochemical Cell

    Science.gov (United States)

    Bonicamp, Judith M.; Clark, Roy W.

    2007-01-01

    Short circuiting an electrochemical cell is an unreported but persistent error in the electrochemistry textbooks. It is suggested that diagrams depicting a cell delivering usable current to a load be postponed, the theory of open-circuit galvanic cells is explained, the voltages from the tables of standard reduction potentials is calculated and…

  13. Understanding the Behaviour of Infinite Ladder Circuits

    Science.gov (United States)

    Ucak, C.; Yegin, K.

    2008-01-01

    Infinite ladder circuits are often encountered in undergraduate electrical engineering and physics curricula when dealing with series and parallel combination of impedances, as a part of filter design or wave propagation on transmission lines. The input impedance of such infinite ladder circuits is derived by assuming that the input impedance does…

  14. Two New Families of Floating FDNR Circuits

    Directory of Open Access Journals (Sweden)

    Ahmed M. Soliman

    2010-01-01

    Full Text Available Two new configurations for realizing ideal floating frequency-dependent negative resistor elements (FDNR are introduced. The proposed circuits are symmetrical and are realizable by four CCII or ICCII or a combination of both. Each configuration is realizable by eight different circuits. Simulation results are included to support the theory.

  15. Designer's Casebook: current-mode minimax circuit

    NARCIS (Netherlands)

    Wassenaar, Roelof F.

    1992-01-01

    The minimum-maximum (minimax) circuit selects the minimum and maximum of two input currents. Four transistors in matched pairs are operated in the saturation region. Because the behavior of the circuit is based on matched devices and is independent of the relationship between the drain current and t

  16. Delay Reduction in Optimized Reversible Multiplier Circuit

    Directory of Open Access Journals (Sweden)

    Mohammad Assarian

    2012-01-01

    Full Text Available In this study a novel reversible multiplier is presented. Reversible logic can play a significant role in computer domain. This logic can be applied in quantum computing, optical computing processing, DNA computing, and nanotechnology. One condition for reversibility of a computable model is that the number of input equate with the output. Reversible multiplier circuits are the circuits used frequently in computer system. For this reason, optimization in one reversible multiplier circuit can reduce its volume of hardware on one hand and increases the speed in a reversible system on the other hand. One of the important parameters that optimize a reversible circuit is reduction of delays in performance of the circuit. This paper investigates the performance characteristics of the gates, the circuits and methods of optimizing the performance of reversible multiplier circuits. Results showed that reduction of the reversible circuit layers has lead to improved performance due to the reduction of the propagation delay between input and output period. All the designs are in the nanometric scales.

  17. Circuit model for cavity with a port

    International Nuclear Information System (INIS)

    These notes present, by way of an example, the calculation of lumped circuit elements to model a cavity that is connected to a transmission line through a coupling loop. This example is featured in a well-known text. It is adopted here to illustrate the concept and the procedures involved in the calculation of equivalent circuit elements. Its generalization is indicated. (author)

  18. 30 CFR 77.904 - Identification of circuit breakers.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Identification of circuit breakers. 77.904... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.904 Identification of circuit breakers. Circuit breakers shall be labeled to show which circuits they control unless identification...

  19. Remote tuning of NMR probe circuits.

    Science.gov (United States)

    Kodibagkar, V D; Conradi, M S

    2000-05-01

    There are many circumstances in which the probe tuning adjustments cannot be located near the rf NMR coil. These may occur in high-temperature NMR, low-temperature NMR, and in the use of magnets with small diameter access bores. We address here circuitry for connecting a fixed-tuned probe circuit by a transmission line to a remotely located tuning network. In particular, the bandwidth over which the probe may be remotely tuned while keeping the losses in the transmission line acceptably low is considered. The results show that for all resonant circuit geometries (series, parallel, series-parallel), overcoupling of the line to the tuned circuit is key to obtaining a large tuning bandwidth. At equivalent extents of overcoupling, all resonant circuit geometries have nearly equal remote tuning bandwidths. Particularly for the case of low-loss transmission line, the tuning bandwidth can be many times the tuned circuit's bandwidth, f(o)/Q. PMID:10783273

  20. Trigger circuits for the PHENIX electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Monolithic and discrete circuits have been developed to provide trigger signals for the PHENIX electromagnetic calorimeter detector. These trigger circuits are deadtimeless and create overlapping 4 by 4 energy sums, a cosmic muon trigger, and a 144 channel energy sum. The front end electronics of the PHENIX system sample the energy and timing channels at each bunch crossing (BC) but it is not known immediately if this data is of interest. The information from the trigger circuits is used to determine if the data collected is of interest and should be digitized and stored or discarded. This paper presents details of the design, issues affecting circuit performance, characterization of prototypes fabricated in 1.2 microm Orbit CMOS, and integration of the circuits into the EMCal electronics system