WorldWideScience

Sample records for cellular brassinolide decreases

  1. Depletion of cellular brassinolide decreases embryo production and disrupts the architecture of the apical meristems in Brassica napus microspore-derived embryos.

    Science.gov (United States)

    Belmonte, Mark; Elhiti, Mohamed; Waldner, Blaine; Stasolla, Claudio

    2010-06-01

    Exogenous applications of brassinolide (BL) increased the number and quality of microspore-derived embryos (MDEs) whereas treatments with brassinazole (BrZ), a BL biosynthetic inhibitor, had the opposite effect. At the optimal concentration (4x10(-6) M) BrZ decreased both embryo yield and conversion to less than half the value of control embryos. Metabolic studies revealed that BL levels had profound effects on glutathione and ascorbate metabolism by altering the amounts of their reduced forms (ASC and GSH) and oxidized forms [dehydroascorbate (DHA), ascorbate free radicals (AFRs), and GSSG]. Applications of BL switched the glutathione and ascorbate pools towards the oxidized forms, thereby lowering the ASC/ASC+DHA+AFR and GSH/GSH+GSSG ratios. These changes were ascribed to the ability of BL to increase the activity of ascorbate peroxidase (APX) and decrease that of glutathione reductase (GR). This trend was reversed in a BL-depleted environment, effected by BrZ applications. These metabolic alterations were associated with changes in embryo structure and performance. BL-treated MDEs developed zygotic-like shoot apical meristems (SAMs) whereas embryos treated with BrZ developed abnormal meristems. In the presence of BrZ, embryos either lacked a visible SAM, or formed SAMs in which the meristematic cells showed signs of differentiation, such as vacuolation and storage product accumulation. These abnormalities were accompanied by the lack or misexpression of three meristem marker genes isolated from Brassica napus (denoted as BnSTM, BnCLV1, and BnZLL-1) homologous to the Arabidopsis SHOOTMERISTEMLESS (STM), CLAVATA 1 (CLV1), and ZWILLE (ZLL). The expression of BnSTM and BnCLV1 increased after a few days in cultures in embryos treated with BL whereas an opposite tendency was observed with applications of BrZ. Compared with control embryos where these two genes exhibited abnormal localization patterns, BnSTM and BnCLV1 always localized throughout the subapical domains

  2. Studies on the Model Synthesis of the Brassinolide and Dolicholide Side Chains

    Institute of Scientific and Technical Information of China (English)

    Li Zeng PENG; Feng Zhi ZHANG; Tian Sheng MEI; Yu Lin LI

    2003-01-01

    A stereoselective synthesis of brassinolide and dolicholide, which involves constructionof the side chain enantiomers by a highly stereoselective aldol reaction of aldehyde 5 with theanion of α-silyloxy ketone 6 is described.

  3. Synthesis and Mass Spectral Fragmentation Patterns of Brassinolide Early Biosynthetic Precursors Labeled at C-26

    Czech Academy of Sciences Publication Activity Database

    Khripach, V.A.; Tarkowská, Danuše; Zhabinskii, V.N.; Gulyakevich, O.V.; Ermolovich, Y.V.; Drašar, P.; Strnad, M.

    2013-01-01

    Roč. 8, č. 6 (2013), s. 771-774 ISSN 1934-578X R&D Projects: GA AV ČR IAA400550801 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : Brassinosteroids * Brassinolide * Biosynthesis Subject RIV: CC - Organic Chemistry Impact factor: 0.924, year: 2013 http://www.naturalproduct.us/JournalArchive.asp

  4. Plant Phosphatidylcholine-Hydrolyzing Phospholipases C NPC3 and NPC4 with Roles in Root Development and Brassinolide Signaling in Arabidopsis thaliana

    Czech Academy of Sciences Publication Activity Database

    Wimalasekera, R.; Pejchar, Přemysl; Holk, A.; Martinec, Jan; Scherer, G.F.E.

    2010-01-01

    Roč. 3, č. 3 (2010), s. 610-625 ISSN 1674-2052 R&D Projects: GA MŠk(CZ) LC06034; GA ČR GA522/07/1614 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin * brassinolide signaling * phosphate deficiency Subject RIV: ED - Physiology Impact factor: 4.296, year: 2010

  5. Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1997-07-01

    Each of the nontraditional plant hormones reviewed in this article, oligosaccharins, brassinolides, and JA, can exert major effects on plant growth and development. However, in many cases, the mechanisms by which these compounds are involved in the endogenous regulation of morphogenesis remain to be established. Nevertheless, the use of mutant or transgenic plants with altered levels or perception of these hormones is leading to phenomenal increases in our understanding of the roles they play in the life cycle of plants. It is likely that in the future, novel modulators of plant growth and development will be identified; some will perhaps be related to the peptide encoded by ENOD40 (Van de Sande et al., 1996), which modifies the action of auxin.

  6. Spraying Brassinolide improves Sigma Broad tolerance in foxtail millet (Setaria italica L.) through modulation of antioxidant activity and photosynthetic capacity.

    Science.gov (United States)

    Yuan, Xiang-Yang; Zhang, Li-Guang; Huang, Lei; Yang, Hui-Jie; Zhong, Yan-Ting; Ning, Na; Wen, Yin-Yuan; Dong, Shu-Qi; Song, Xi-E; Wang, Hong-Fu; Guo, Ping-Yi

    2017-09-11

    To explore the role of Brassinolide (BR) in improving the tolerance of Sigma Broad in foxtail millet (Setaria italica L.), effects of 0.1 mg/L of BR foliar application 24 h before 3.37 g/ha of Sigma Broad treatment at five-leaf stage of foxtail millet on growth parameters, antioxidant enzymes, malondialdehyde (MDA), chlorophyll, net photosynthetic rate (P N ), chlorophyll fluorescence and P 700 parameters were studied 7 and 15 d after herbicide treatment, respectively. Results showed that Sigma Broad significantly decreased plant height, activities of superoxide dismutase (SOD), chlorophyll content, P N , PS II effective quantum yield (Y (II)), PS II electron transport rate (ETR (II)), photochemical quantum yield of PSI(Y (I)) and PS I electron transport rate ETR (I), but significantly increased MDA. Compared to herbicide treatment, BR dramatically increased plant height, activities of SOD, Y (II), ETR (II), Y (I) and ETR (I). This study showed BR pretreatment could improve the tolerance of Sigma Broad in foxtail millet through improving the activity of antioxidant enzymes, keeping electron transport smooth, and enhancing actual photochemical efficiency of PS II and PSI.

  7. DNA damage and decrease of cellular oxidase activity in piglet ...

    African Journals Online (AJOL)

    DNA damage and decrease of cellular oxidase activity in piglet sertoli cells exposed to gossypol. Ming Zhang, Hui Yuan, Zuping He, Liyun Yuan, Jine Yi, Sijun Deng, Li Zhu, Chengzhi Guo, Yin Lu, Jing Wu, Lixin Wen, Qiang Wei, Liqun Xue ...

  8. Cellular and soluble components decrease the viable pathogen counts in milk from dairy cows with subclinical mastitis.

    Science.gov (United States)

    Koshiishi, Tomoko; Watanabe, Masako; Miyake, Hajime; Hisaeda, Keiichi; Isobe, Naoki

    2017-08-10

    The present study was undertaken to clarify the factors that reduce the viable pathogen count in milk collected from the udders of subclinical mastitic cows during preservation. Milk was centrifuged to divide somatic cells (cellular components, precipitates) and antimicrobial peptides (soluble components, supernatants without fat layer); each fraction was cultured with bacteria, and the number of viable bacteria was assessed prior to and after culture. In 28.8% of milk samples, we noted no viable bacteria immediately after collection; this value increased significantly after a 5-hr incubation of milk with cellular components but not with soluble components (48.1 and 28.8%, respectively). After culture with cellular components, the numbers of bacteria (excluding Staphylococcus aureus and Streptococcus uberis) and yeast decreased dramatically, although the differences were not statistically significant. After cultivation with soluble components, only yeasts showed a tendency toward decreased mean viability, whereas the mean bacterial counts of S. uberis and T. pyogenes tended to increase after 5-hr preservation with soluble components. These results suggest that most pathogens in high somatic cell count (SCC) milk decreased during preservation at 15 to 25°C, due to both the cellular components and antimicrobial components in the milk. Particularly, the cellular components more potently reduced bacterial counts during preservation.

  9. Brassinolide Increases Potato Root Growth In Vitro in a Dose-Dependent Way and Alleviates Salinity Stress

    Directory of Open Access Journals (Sweden)

    Yueqing Hu

    2016-01-01

    Full Text Available Brassinosteroids (BRs are steroidal phytohormones that regulate various physiological processes, such as root development and stress tolerance. In the present study, we showed that brassinolide (BL affects potato root in vitro growth in a dose-dependent manner. Low BL concentrations (0.1 and 0.01 μg/L promoted root elongation and lateral root development, whereas high BL concentrations (1–100 μg/L inhibited root elongation. There was a significant (P<0.05 positive correlation between root activity and BL concentrations within a range from 0.01 to 100 μg/L, with the peak activity of 8.238 mg TTC·g−1 FW·h−1 at a BL concentration of 100 μg/L. Furthermore, plants treated with 50 μg/L BL showed enhanced salt stress tolerance through in vitro growth. Under this scenario, BL treatment enhanced the proline content and antioxidant enzymes’ (superoxide dismutase, peroxidase, and catalase activity and reduced malondialdehyde content in potato shoots. Application of BL maintain K+ and Na+ homeostasis by improving tissue K+/Na+ ratio. Therefore, we suggested that the effects of BL on root development from stem fragments explants as well as on primary root development are dose-dependent and that BL application alleviates salt stress on potato by improving root activity, root/shoot ratio, and antioxidative capacity in shoots and maintaining K+/Na+ homeostasis in potato shoots and roots.

  10. Aged blood factors decrease cellular responses associated with delayed gingival wound repair.

    Directory of Open Access Journals (Sweden)

    María Paz Saldías

    Full Text Available Aging is a gradual biological process characterized by a decrease in cell and organism functions. Gingival wound healing is one of the impaired processes found in old rats. Here, we studied the in vivo wound healing process using a gingival repair rat model and an in vitro model using human gingival fibroblast for cellular responses associated to wound healing. To do that, we evaluated cell proliferation of both epithelial and connective tissue cells in gingival wounds and found decreased of Ki67 nuclear staining in old rats when compared to their young counterparts. We next evaluated cellular responses of primary gingival fibroblast obtained from young subjects in the presence human blood serum of individuals of different ages. Eighteen to sixty five years old masculine donors were classified into 3 groups: "young" from 18 to 22 years old, "middle-aged" from 30 to 48 years old and "aged" over 50 years old. Cell proliferation, measured through immunofluorescence for Ki67 and flow cytometry for DNA content, was decreased when middle-aged and aged serum was added to gingival fibroblast compared to young serum. Myofibroblastic differentiation, measured through alpha-smooth muscle actin (α-SMA, was stimulated with young but not middle-aged or aged serum both the protein levels and incorporation of α-SMA into actin stress fibers. High levels of PDGF, VEGF, IL-6R were detected in blood serum from young subjects when compared to middle-aged and aged donors. In addition, the pro-inflammatory cytokines MCP-1 and TNF were increased in the serum of aged donors. In old rat wound there is an increased of staining for TNF compared to young wound. Moreover, healthy gingiva (non injury shows less staining compared to a wound site, suggesting a role in wound healing. Moreover, serum from middle-aged and aged donors was able to stimulate cellular senescence in young cells as determined by the expression of senescence associated beta-galactosidase and histone H2

  11. Nickel decreases cellular iron level and converts cytosolic aconitase to iron-regulatory protein 1 in A549 cells

    International Nuclear Information System (INIS)

    Chen Haobin; Davidson, Todd; Singleton, Steven; Garrick, Michael D.; Costa, Max

    2005-01-01

    Nickel (Ni) compounds are well-established carcinogens and are known to initiate a hypoxic response in cells via the stabilization and transactivation of hypoxia-inducible factor-1 alpha (HIF-1α). This change may be the consequence of nickel's interference with the function of several Fe(II)-dependent enzymes. In this study, the effects of soluble nickel exposure on cellular iron homeostasis were investigated. Nickel treatment decreased both mitochondrial and cytosolic aconitase (c-aconitase) activity in A549 cells. Cytosolic aconitase was converted to iron-regulatory protein 1, a form critical for the regulation of cellular iron homeostasis. The increased activity of iron-regulatory protein 1 after nickel exposure stabilized and increased transferrin receptor (Tfr) mRNA and antagonized the iron-induced ferritin light chain protein synthesis. The decrease of aconitase activity after nickel treatment reflected neither direct interference with aconitase function nor obstruction of [4Fe-4S] cluster reconstitution by nickel. Exposure of A549 cells to soluble nickel decreased total cellular iron by about 40%, a decrease that likely caused the observed decrease in aconitase activity and the increase of iron-regulatory protein 1 activity. Iron treatment reversed the effect of nickel on cytosolic aconitase and iron-regulatory protein 1. To assess the mechanism for the observed effects, human embryonic kidney (HEK) cells over expressing divalent metal transporter-1 (DMT1) were compared to A549 cells expressing only endogenous transporters for inhibition of iron uptake by nickel. The inhibition data suggest that nickel can enter via DMT1 and compete with iron for entry into the cell. This disturbance of cellular iron homeostasis by nickel may have a great impact on the ability of the cell to regulate a variety of cell functions, as well as create a state of hypoxia in cells under normal oxygen tension. These effects may be very important in how nickel exerts phenotypic

  12. Increase in Dye:Dendrimer Ratio Decreases Cellular Uptake of Neutral Dendrimers in RAW Cells.

    Science.gov (United States)

    Vaidyanathan, Sriram; Kaushik, Milan; Dougherty, Casey; Rattan, Rahul; Goonewardena, Sascha N; Banaszak Holl, Mark M; Monano, Janet; DiMaggio, Stassi

    2016-09-12

    Neutral generation 3 poly(amidoamine) dendrimers were labeled with Oregon Green 488 (G3-OG n ) to obtain materials with controlled fluorophore:dendrimer ratios (n = 1-2), a mixture containing mostly 3 dyes per dendrimer, a mixture containing primarily 4 or more dyes per dendrimer ( n = 4+), and a stochastic mixture ( n = 4 avg ). The UV absorbance of the dye conjugates increased linearly as n increased and the fluorescence emission decreased linearly as n increased. Cellular uptake was studied in RAW cells and HEK 293A cells as a function of the fluorophore:dendrimer ratio (n). The cellular uptake of G3-OG n ( n = 3, 4+, 4 avg ) into RAW cells was significantly lower than G3-OG n ( n = 1, 2). The uptake of G3-OG n ( n = 3, 4+, 4 avg ) into HEK 293A cells was not significantly different from G3-OG 1 . Thus, the fluorophore:dendrimer ratio was observed to change the extent of uptake in the macrophage uptake mechanism but not in the HEK 293A cell. This difference in endocytosis indicates the presence of a pathway in the macrophage that is sensitive to hydrophobicity of the particle.

  13. High-Concentrate Diet-Induced Change of Cellular Metabolism Leads to Decreases of Immunity and Imbalance of Cellular Activities in Rumen Epithelium.

    Science.gov (United States)

    Lu, Zhongyan; Shen, Hong; Shen, Zanming

    2018-01-01

    In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive). In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. These results indicated that the alterations of cellular metabolism promote the alterations in cellular

  14. High-Concentrate Diet-Induced Change of Cellular Metabolism Leads to Decreases of Immunity and Imbalance of Cellular Activities in Rumen Epithelium

    Directory of Open Access Journals (Sweden)

    Zhongyan Lu

    2018-03-01

    Full Text Available Background/Aims: In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. Methods: RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive. In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. Results: The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. Conclusions: These results indicated that the

  15. Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana.

    Science.gov (United States)

    Wimalasekera, Rinukshi; Pejchar, Premysl; Holk, André; Martinec, Jan; Scherer, Günther F E

    2010-05-01

    Phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC) catalyzes the hydrolysis of phosphatidylcholine (PC) to generate phosphocholine and diacylglycerol (DAG). PC-PLC has a long tradition in animal signal transduction to generate DAG as a second messenger besides the classical phosphatidylinositol splitting phospholipase C (PI-PLC). Based on amino acid sequence similarity to bacterial PC-PLC, six putative PC-PLC genes (NPC1 to NPC6) were identified in the Arabidopsis genome. RT-PCR analysis revealed overlapping expression pattern of NPC genes in root, stem, leaf, flower, and silique. In auxin-treated P(NPC3):GUS and P(NPC4):GUS seedlings, strong increase of GUS activity was visible in roots, leaves, and shoots and, to a weaker extent, in brassinolide-treated (BL) seedlings. P(NPC4):GUS seedlings also responded to cytokinin with increased GUS activity in young leaves. Compared to wild-type, T-DNA insertional knockouts npc3 and npc4 showed shorter primary roots and lower lateral root density at low BL concentrations but increased lateral root densities in response to exogenous 0.05-1.0 μM BL. BL-induced expression of TCH4 and LRX2, which are involved in cell expansion, was impaired but not impaired in repression of CPD, a BL biosynthesis gene, in BL-treated npc3 and npc4. These observations suggest NPC3 and NPC4 are important in BL-mediated signaling in root growth. When treated with 0.1 μM BL, DAG accumulation was observed in tobacco BY-2 cell cultures labeled with fluorescent PC as early as 15 min after application. We hypothesize that at least one PC-PLC is a plant signaling enzyme in BL signal transduction and, as shown earlier, in elicitor signal transduction.

  16. Metavanadate causes cellular accumulation of copper and decreased lysyl oxidase activity

    International Nuclear Information System (INIS)

    Cui, Changtai T.; Uriu-Adams, Janet Y.; Tchaparian, Eskouhie H.; Keen, Carl L.; Rucker, Robert B.

    2004-01-01

    Selected indices of copper metabolism in weanling rats and fibroblast cultures were progressively altered in response to increased levels of sodium metavanadate. In diets, vanadium was added in amounts ranging from 0 to 80 μg V/g of diet, that is, 0-1.6 μmol V/g of diet. In fibroblast cultures, vanadium ranged from 0 to 400 nmol V/ml. The inhibition of P-ATPase-7A activity by metavanadate, important to copper egress from cells, was a primary focus. In skin, and tendon, the copper concentration was increased in response to increased dietary levels of metavanadate, whereas lysyl oxidase activity, a secreted cuproprotein, was reduced. The reduction in lysyl oxidase activity was also accompanied by reduced redox cycling potential of isolated fractions of lysyl oxidase, presumably due to reduced lysyltyrosyl quinone (LTQ) formation at the active site of lysyl oxidase. In contrast, liver copper concentrations and plasma ceruloplasmin activity were not affected by metavanadate exposure. However, semicarbazide-sensitive benzylamine oxidase (SCBO) activity, which was taken as an indirect measure of vascular adhesive protein-1 (VAP-1), was increased. In cultured fibroblasts, cellular copper was also increased and lysyl oxidase decreased in response to metavanadate. Moreover, the steady-state levels of atp7a and lysyl oxidase mRNAs were not affected by addition of metavanadate to culture medium up to 200 nmol/ml. Taken together, these data suggest that pathways involving copper egress and lysyl oxidase activation are particularly sensitive to metavanadate exposure through processes that are predominately posttranslational

  17. Increase in cellular concrete resistance to brittle fracture

    International Nuclear Information System (INIS)

    Chernyshov, E.M.; Krokhin, A.M.

    1979-01-01

    Considered are theoretical premises of decrease in cellular concrete resistance to brittle fracture at the expense of dispersed reinforcement. It is stated experimentally that the introduction of 3% asbestos fibers permits to increase the ultimate extensibility and strength during cellular concrete tension by 15-30% and to increase in unit rupture work 1.4-1.6 time more and therefore to decrease its brittleness

  18. Outer-totalistic cellular automata on graphs

    International Nuclear Information System (INIS)

    Marr, Carsten; Huett, Marc-Thorsten

    2009-01-01

    We present an intuitive formalism for implementing cellular automata on arbitrary topologies. By that means, we identify a symmetry operation in the class of elementary cellular automata. Moreover, we determine the subset of topologically sensitive elementary cellular automata and find that the overall number of complex patterns decreases under increasing neighborhood size in regular graphs. As exemplary applications, we apply the formalism to complex networks and compare the potential of scale-free graphs and metabolic networks to generate complex dynamics

  19. The cellular memory disc of reprogrammed cells.

    Science.gov (United States)

    Anjamrooz, Seyed Hadi

    2013-04-01

    The crucial facts underlying the low efficiency of cellular reprogramming are poorly understood. Cellular reprogramming occurs in nuclear transfer, induced pluripotent stem cell (iPSC) formation, cell fusion, and lineage-switching experiments. Despite these advances, there are three fundamental problems to be addressed: (1) the majority of cells cannot be reprogrammed, (2) the efficiency of reprogramming cells is usually low, and (3) the reprogrammed cells developed from a patient's own cells activate immune responses. These shortcomings present major obstacles for using reprogramming approaches in customised cell therapy. In this Perspective, the author synthesises past and present observations in the field of cellular reprogramming to propose a theoretical picture of the cellular memory disc. The current hypothesis is that all cells undergo an endogenous and exogenous holographic memorisation such that parts of the cellular memory dramatically decrease the efficiency of reprogramming cells, act like a barrier against reprogramming in the majority of cells, and activate immune responses. Accordingly, the focus of this review is mainly to describe the cellular memory disc (CMD). Based on the present theory, cellular memory includes three parts: a reprogramming-resistance memory (RRM), a switch-promoting memory (SPM) and a culture-induced memory (CIM). The cellular memory arises genetically, epigenetically and non-genetically and affects cellular behaviours. [corrected].

  20. Fish oil supplementation associated with decreased cellular degeneration and increased cellular proliferation 6 weeks after middle cerebral artery occlusion in the rat

    Directory of Open Access Journals (Sweden)

    Pascoe MC

    2015-01-01

    Full Text Available Michaela C Pascoe,1 David W Howells, 2David P Crewther,1 Leeanne M Carey,2,3 Sheila G Crewther4 1Brain Sciences Institute, Swinburne University, ²Florey Institute of Neuroscience and Mental Health, University of Melbourne, 3Department of Occupational Therapy, School of Allied Health La Trobe University, 4School of Psychological Science, La Trobe University, Melbourne, VIC, Australia Abstract: Anti-inflammatory long-chain omega-3 polyunsaturated fatty acids (n-3-LC-PUFAs are both neuroprotective and have antidepressive effects. However the influence of dietary supplemented n-3-LC-PUFAs on inflammation-related cell death and proliferation after middle cerebral artery occlusion (MCAo-induced stroke is unknown. We have previously demonstrated that anxiety-like and hyperactive locomotor behaviors are reduced in n-3-LC-PUFA-fed MCAo animals. Thus in the present study, male hooded Wistar rats were exposed to MCAo or sham surgeries and examined behaviorally 6 weeks later, prior to euthanasia and examination of lesion size, cell death and proliferation in the dentate gyrus, cornu ammonis region of the hippocampus of the ipsilesional hemispheres, and the thalamus of the ipsilesional and contralesional hemispheres. Markers of cell genesis and cell degeneration in the hippocampus or thalamus of the ipsilesional hemisphere did not differ between surgery and diet groups 6 weeks post MCAo. Dietary supplementation with n-3-LC-PUFA decreased cell degeneration and increased cell proliferation in the thalamic region of the contralesional hemisphere. MCAo–associated cell degeneration in the hippocampus and thalamus positively correlated with anxiety-like and hyperactive locomotor behaviors previously reported in these animals. These results suggest that anti-inflammatory n-3-LC-PUFA supplementation appears to have cellular protective effects after MCAo in the rat, which may affect behavioral outcomes. Keywords: apoptosis, polyunsaturated fatty acids

  1. Sub-cellular force microscopy in single normal and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Babahosseini, H. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Carmichael, B. [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Strobl, J.S. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Mahmoodi, S.N., E-mail: nmahmoodi@eng.ua.edu [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Agah, M., E-mail: agah@vt.edu [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States)

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.

  2. Sub-cellular force microscopy in single normal and cancer cells

    International Nuclear Information System (INIS)

    Babahosseini, H.; Carmichael, B.; Strobl, J.S.; Mahmoodi, S.N.; Agah, M.

    2015-01-01

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain

  3. Hepatitis A virus cellular receptor 2 (HAVCR2) is decreased with viral infection and regulates pro-labour mediators OA.

    Science.gov (United States)

    Liong, Stella; Lim, Ratana; Barker, Gillian; Lappas, Martha

    2017-07-01

    Intrauterine infection caused by viral infection has been implicated to contribute to preterm birth. Hepatitis A virus cellular receptor 2 (HAVCR2) regulates inflammation in non-gestational tissues in response to viral infection. The aims of this study were to determine the effect of: (i) viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) on HAVCR2 expression; and (ii) HAVCR2 silencing by siRNA (siHAVCR2) in primary amnion and myometrial cells on poly(I:C)-induced inflammation. In human foetal membranes and myometrium, HAVCR2 mRNA and protein expression was decreased when exposed to poly(I:C). Treatment of primary amnion and myometrial cells with poly(I:C) significantly increased the expression and release of pro-inflammatory cytokines TNF, IL1A, IL1B and IL6; the expression of chemokines CXCL8 and CCL2; the expression and secretion of adhesion molecules ICAM1 and VCAM1; and PTGS2 and PTGFR mRNA expression and the release of prostaglandin PGF 2α . This increase was significantly augmented in cells transfected with siHAVCR2. Furthermore, mRNA expression of anti-inflammatory cytokines IL4 and IL10 was significantly decreased. Collectively, our data suggest that HAVCR2 regulates cytokines, chemokines, prostaglandins and cell adhesion molecules in the presence of viral infection. This suggests a potential for HAVCR2 activators as therapeutics for the management of preterm birth associated with viral infections. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Brassinosteroids Denigrate the Seasonal Stress through Antioxidant Defense System in Seedlings of Brassica juncea L.

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2014-05-01

    Full Text Available The present work has been undertaken to study the effect of exogenously application of 24-epiBL and 28-homoBL on soluble protein, proline contents and antioxidant defense system of Brassica juncea L. RLM 619 under the influence of seasonal stress. It was observed that 24-epiBL and 28-homoBL treatment enhance the soluble protein, dry weight and shoot length of B. juncea seedlings under seasonal stress. If seeds treated with the different concentrations (10-6, 10-8 and 10-10 M of 24-epiBL and 28-homoBL revealed batter growth, protein and proline contents as compare to untreated seedlings. Similarly the activities of antioxidant enzymes SOD, CAT, APOX, DHAR, PPO and Auxinases were enhanced by the application of different concentration of both brassinosteroids, whereas MDA content was decrease with both brassinosteroids treatments. Then we have concluded that both brassinolides have the seasonal stress ameliorative properties in B. juncea seedlings grown under the influence of seasonal stress. This study culminates to the role of brassinolides as an anti-stress property for protection of plant from various types of stresses.

  5. Oxygen concentration modulates cellular senescence and autophagy in human trophoblast cells.

    Science.gov (United States)

    Seno, Kotomi; Tanikawa, Nao; Takahashi, Hironori; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Iwata, Hisataka; Kuwayama, Takehito; Shirasuna, Koumei

    2018-02-15

    We investigated the effect of oxygen concentrations on cellular senescence and autophagy and examined the role of autophagy in human trophoblast cells. Human first-trimester trophoblast cells (Sw.71) were incubated under 21%, 5%, or 1% O 2 concentrations for 24 hours. We examined the extent of senescence caused using senescence-associated β-galactosidase (SA-β-Gal) and senescence-associated secretory phenotype (SASP) as markers. Moreover, we examined the role of autophagy in causing cellular senescence using an autophagy inhibitor (3-methyladenine, 3MA). Physiological normoxia (5% O 2 ) decreased SA-β-Gal-positive cells and SASP including interleukin-6 (IL-6) and IL-8 compared with cultured cells in 21% O 2 . Pathophysiological hypoxia (1% O 2 ) caused cytotoxicity, including extracellular release of ATP and lactate dehydrogenase, and decreased senescence phenotypes. 3MA-treated trophoblast cells significantly suppressed senescence markers (SA-β-Gal-positive cells and SASP secretion) in O 2 -independent manner. We conclude that O 2 concentration modulates cellular senescence phenotypes regulating autophagy in the human trophoblast cells. Moreover, inhibiting autophagy suppresses cellular senescence, suggesting that autophagy contributes to oxygen stress-induced cellular senescence. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme

    KAUST Repository

    Shen, Yang

    2016-11-01

    The three-dimensional premixed H2-O2 detonation propagation in rectangular ducts is simulated using an in-house parallel detonation code based on the second-order space–time conservation element and solution element (CE/SE) scheme. The simulation reproduces three typical cellular structures by setting appropriate cross-sectional size and initial perturbation in square tubes. As the cross-sectional size decreases, critical cellular structures transforming the rectangular or diagonal mode into the spinning mode are obtained and discussed in the perspective of phase variation as well as decreasing of triple point lines. Furthermore, multiple cellular structures are observed through examples with typical aspect ratios. Utilizing the visualization of detailed three-dimensional structures, their formation mechanism is further analyzed.

  7. Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme

    KAUST Repository

    Shen, Yang; Shen, Hua; Liu, Kai Xin; Chen, Pu; Zhang, De Liang

    2016-01-01

    The three-dimensional premixed H2-O2 detonation propagation in rectangular ducts is simulated using an in-house parallel detonation code based on the second-order space–time conservation element and solution element (CE/SE) scheme. The simulation reproduces three typical cellular structures by setting appropriate cross-sectional size and initial perturbation in square tubes. As the cross-sectional size decreases, critical cellular structures transforming the rectangular or diagonal mode into the spinning mode are obtained and discussed in the perspective of phase variation as well as decreasing of triple point lines. Furthermore, multiple cellular structures are observed through examples with typical aspect ratios. Utilizing the visualization of detailed three-dimensional structures, their formation mechanism is further analyzed.

  8. Three-dimensional detonation cellular structures in rectangular ducts using an improved CESE scheme

    International Nuclear Information System (INIS)

    Shen Yang; Liu Kai-Xin; Chen Pu; Shen Hua; Zhang De-Liang

    2016-01-01

    The three-dimensional premixed H 2 -O 2 detonation propagation in rectangular ducts is simulated using an in-house parallel detonation code based on the second-order space–time conservation element and solution element (CE/SE) scheme. The simulation reproduces three typical cellular structures by setting appropriate cross-sectional size and initial perturbation in square tubes. As the cross-sectional size decreases, critical cellular structures transforming the rectangular or diagonal mode into the spinning mode are obtained and discussed in the perspective of phase variation as well as decreasing of triple point lines. Furthermore, multiple cellular structures are observed through examples with typical aspect ratios. Utilizing the visualization of detailed three-dimensional structures, their formation mechanism is further analyzed. (paper)

  9. Cellular toxicity of calf blood extract on human corneal epithelial cells in vitro.

    Science.gov (United States)

    Park, Young Min; Kim, Su Jin; Han, Young Sang; Lee, Jong Soo

    2015-01-01

    To investigate the biologic effects of the calf blood extract on corneal epithelial cells in vitro. The effects on corneal epithelial cells were evaluated after 1, 4, 12, and 24 h of exposure to various concentrations of calf blood extract (3, 5, 8 and 16%). The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was performed to measure levels of cellular metabolic activity. The lactate dehydrogenase (LDH) assay was performed to determine the extent of cellular damage. Cellular morphology was examined using phase-contrast microscopy. The scratch wound assay was performed to quantify the migration of corneal epithelial cells. At the 3 and 5% concentrations of calf blood extract, MTT values were similar to those observed in the control group. However, at a concentration of 8 and 16%, cellular metabolic activity was significantly decreased after 4 h of exposure to calf blood extract. After 12 h of exposure to 8 and 16% concentrations of calf blood extract, LDH activity and cellular morphological damage to the corneal epithelial cells were significantly increased. There was no evidence of cellular migration after 12 h exposure to 5% or higher concentration of calf blood extract because of cellular toxicity. Compared with normal corneal epithelial cells, the cellular activity was decreased, and toxicity was increased after over 12 h of exposure to more than 5% concentration of calf blood extract. Further clinical studies will be necessary to determine the optimal concentration and exposure time for the topical application of eye drops containing calf blood extract.

  10. The oxygen effect and cellular adaptation

    International Nuclear Information System (INIS)

    Meshcherikova, V.V.; Vajnson, A.A.; Yarmonenko, S.P.

    1979-01-01

    The radiomodifying effect of oxygen was shown to depend on the level of cellular oxygenation prior to irradiation. Acute hypoxia created at the time of irradiation protects previously normally oxygenated cells with DMF approximately 1.4 times larger than that of cells cultured for 24 hours under conditions of mild hypoxia. It is suggested that a decrease in the radioprotective effect of acute hypoxia on chronically hypoxic cells is correlated with an appreciable decrease in the rate of oxygen consumption by these cells, due to which the oxygen concentration near the intracellular targets in chronically hypoxic cells may be higher than in normal cells under conditions of poor oxygenation

  11. A study on the cellular stromal reaction and immunologic response of regional lymph nodes in gastric cancer

    International Nuclear Information System (INIS)

    Jyokoh, Hiroshi

    1986-01-01

    In an attempt to find a correlation between background factors and prognosis, cellular stromal reaction and PHA blastformation in the regional lymph nodes in gastric cancer were investigated in a total of 234 cases with advanced gastric cancer consisting of 104 patients who had undergone preoperative radiaiton therapy and 130 non-irradiated patients. The following results were obtained: 1) Interstitial matrix and fibrotic components around the gastric cancer cells proliferate. In addition, cellular components consisting mainly of lymphocytes appear in varied degrees. 2) In both non-irradiated and irradiated groups, there was no remarkable difference in the cellular stromal reaction among any major cancer sites. 3) In non-irradiated patients, no correlation existed between tumor diameters and cellular stromal reaction, while, in the irradiated cases, there were increases in the cellular stromal reaction where the tumor size is 5 cm or less. 4) In both non-irradiated and irradiated groups, cellular stromal reaction was more remarkable in highly differentiated carcinoma. 5) There were decreases in the cellular stromal reaction in ps(+) cases, of both non-irradiated and irradiated groups. 6) The cellular stromal reaction was remarkable in non-irradiated and irradiated patients who were found to be histologically negative in lymph node metastasis. 7) With the advance in staging, the cellular stromal reaction decreased in both irradiated and non-irradiated patients. 8) In both non-irradiated and irradiated groups, the cellular stromal reaction decreased in the patients who had shown vascular invasion. 9) PHA blastformation of the lymphocytes in lymph nodes of non-metastatic cases was more remarkable than that of metastatic cases, retaining high degrees of immunity. 10) In the non-metastatic patients in the lymph nodes outside the irradiated area, the lymphocytes in the lymph nodes demonstrated high degrees of PHA blastformation. (J.P.N.)

  12. DNA supercoiling: changes during cellular differentiation and activation of chromatin transcription

    International Nuclear Information System (INIS)

    Luchnik, A.N.; Bakayev, V.V.; Glaser, V.M.; Moscow State Univ., USSR)

    1983-01-01

    In this paper it is reported that elastic DNA torsional tension has been observed in a fraction of isolated SV40 minichromosomes, which are shown to be transcriptionally active, and that the number of DNA topological (titratable superhelical) turns in closed superhelical loops of nuclear DNA decreases during cellular differentiation, which, we propose, may be responsible for the coordinate switch in transcription of genes controlling cellular proliferation. 37 references, 6 figures, 2 tables

  13. Cellular content and biosynthesis of polyamines during rooster spermatogenesis.

    Science.gov (United States)

    Oliva, R; Vidal, S; Mezquita, C

    1982-01-01

    The natural polyamines spermine and spermidine, and the diamine putrescine, were extracted from rooster testis cells separated by sedimentation at unit gravity, and from vas-deferens spermatozoa. The ratios spermine/DNA and spermidine/DNA were kept relatively constant throughout spermatogenesis, whereas the ratio putrescine/DNA rose in elongated spermatids. The cellular content of spermine, spermidine and putrescine decreased markedly in mature spermatozoa. Two rate-limiting enzymes in the biosynthetic pathway of polyamines, ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase, showed their highest activities at the end of spermiogenesis and were not detectable in vas-deferens spermatozoa. A marked reduction in cell volume during spermiogenesis without a parallel decrease in the cellular content of polyamines suggests the possibility that the marked changes in chromatin composition and structure occurring in rooster late spermatids could take place in an ambience of high polyamine concentration. Images PLATE 1 PMID:7159401

  14. Pathogenesis of pulmonary emphysema – cellular and molecular events

    Directory of Open Access Journals (Sweden)

    Antonio Di Petta

    2010-06-01

    Full Text Available Pulmonary emphysema is a chronic obstructive disease, resulting fromimportant alterations in the whole distal structure of terminal bronchioles, either by enlargement of air spaces or by destruction of the alveolar wall, leading to loss of respiratory surface, decreased elastic recoil and lung hyperinflation. For many years, the hypothesis of protease-antiprotease unbalance prevailed as the central theme in the pathogenesis of pulmonary emphysema. According to this hypothesis, the release of active proteolytic enzymes, produced mainly by neutrophils and macrophages, degrades the extracellular matrix, affecting the integrity of its components, especially collagen and elastic fibers. However, new concepts involving cellular and molecular events were proposed, including oxidative stress, cell apoptosis, cellular senescence and failed lung tissue repair. The aim of this review paper was to evaluate the cellular and molecular mechanisms seen in the pathogenesis of pulmonary emphysema.

  15. Sub-cellular force microscopy in single normal and cancer cells.

    Science.gov (United States)

    Babahosseini, H; Carmichael, B; Strobl, J S; Mahmoodi, S N; Agah, M

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Restriction on an energy-dense diet improves markers of metabolic health and cellular aging in mice through decreasing hepatic mTOR activity.

    Science.gov (United States)

    Schloesser, Anke; Campbell, Graeme; Glüer, Claus-Christian; Rimbach, Gerald; Huebbe, Patricia

    2015-02-01

    Dietary restriction (DR) on a normal low-fat diet improves metabolic health and may prolong life span. However, it is still uncertain whether restriction of an energy-dense, high-fat diet would also be beneficial and mitigate age-related processes. In the present study, we determined biomarkers of metabolic health, energy metabolism, and cellular aging in obesity-prone mice subjected to 30% DR on a high-fat diet for 6 months. Dietary-restricted mice had significantly lower body weights, less adipose tissue, lower energy expenditure, and altered substrate oxidation compared to their ad libitum-fed counterparts. Hepatic major urinary proteins (Mup) expression, which is linked to glucose and energy metabolism, and biomarkers of metabolic health, including insulin, glucose, cholesterol, and leptin/adiponectin ratio, were likewise reduced in high-fat, dietary-restricted mice. Hallmarks of cellular senescence such as Lamp2a and Hsc70 that mediate chaperone-mediated autophagy were induced and mechanistic target of rapamycin (mTOR) signaling mitigated upon high-fat DR. In contrast to DR applied in low-fat diets, anti-oxidant gene expression, proteasome activity, as well as 5'-adenosine monophosphate-activated protein kinase (AMPK) activation were not changed, suggesting that high-fat DR may attenuate some processes associated with cellular aging without the induction of cellular stress response or energy deprivation.

  17. Multiple-channel detection of cellular activities by ion-sensitive transistors

    Science.gov (United States)

    Machida, Satoru; Shimada, Hideto; Motoyama, Yumi

    2018-04-01

    An ion-sensitive field-effect transistor to record cellular activities was demonstrated. This field-effect transistor (bio transistor) includes cultured cells on the gate insulator instead of gate electrode. The bio transistor converts a change in potential underneath the cells into variation of the drain current when ion channels open. The bio transistor has high detection sensitivity to even minute variations in potential utilizing a subthreshold swing region. To open ion channels, a reagent solution (acetylcholine) was added to a human-originating cell cultured on the bio transistor. The drain current was successfully decreased with the addition of acetylcholine. Moreover, we attempted to detect the opening of ion channels using a multiple-channel measurement circuit containing several bio transistors. As a consequence, the drain current distinctly decreased only after the addition of acetylcholine. We confirmed that this measurement system including bio transistors enables to observation of cellular activities sensitively and simultaneously.

  18. Meatal Swabs Contain Less Cellular Material and Are Associated with a Decrease in Gram Stain Smear Quality Compared to Urethral Swabs in Men.

    Science.gov (United States)

    Jordan, Stephen J; Schwebke, Jane R; Aaron, Kristal J; Van Der Pol, Barbara; Hook, Edward W

    2017-07-01

    Urethral swabs are the samples of choice for point-of-care Gram stain testing to diagnose Neisseria gonorrhoeae infection and nongonococcal urethritis (NGU) in men. As an alternative to urethral swabs, meatal swabs have been recommended for the collection of urethral discharge to diagnose N. gonorrhoeae and Chlamydia trachomatis infection in certain populations by nucleic acid amplification testing (NAAT), as they involve a less invasive collection method. However, as meatal swabs could be sampling a reduced surface area and result in fewer collected epithelial cells compared to urethral swabs, the adequacy of meatal swab specimens to collect sufficient cellular material for Gram stain testing remains unknown. We enrolled 66 men who underwent either urethral or meatal swabbing and compared the cellular content and Gram stain failure rate. We measured the difference in swab cellular content using the Cepheid Xpert CT/NG sample adequacy control crossing threshold (SAC CT ) and determined the failure rate of Gram stain smears (GSS) due to insufficient cellular material. In the absence of discharge, meatal smears were associated with a significant reduction in cellular content ( P = 0.0118), which corresponded with a GSS failure rate significantly higher than that for urethral swabs (45% versus 3%, respectively; P < 0.0001). When discharge was present, there was no difference among results from urethral and meatal swabs. Therefore, if GSS testing is being considered for point-of-care diagnosis of N. gonorrhoeae infection or NGU in men, meatal swabs should be avoided in the absence of a visible discharge. Copyright © 2017 American Society for Microbiology.

  19. 9-cis-retinoic Acid and troglitazone impacts cellular adhesion, proliferation, and integrin expression in K562 cells.

    Science.gov (United States)

    Hanson, Amanda M; Gambill, Jessica; Phomakay, Venusa; Staten, C Tyler; Kelley, Melissa D

    2014-01-01

    Retinoids are established pleiotropic regulators of both adaptive and innate immune responses. Recently, troglitazone, a PPAR gamma agonist, has been demonstrated to have anti-inflammatory effects. Separately, retinoids and troglitazone are implicated in immune related processes; however, their combinatory role in cellular adhesion and proliferation has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) and troglitazone on K562 cellular adhesion and proliferation was investigated. Troglitazone exposure decreased K562 cellular adhesion to RGD containing extracellular matrix proteins fibronectin, FN-120, and vitronectin in a concentration and time-dependent manner. In the presence of troglitazone, 9-cis-retinoic acid restores cellular adhesion to levels comparable to vehicle treatment alone on fibronectin, FN-120, and vitronectin substrates within 72 hours. Due to the prominent role of integrins in attachment to extracellular matrix proteins, we evaluated the level of integrin α5 subunit expression. Troglitazone treatment results in decrease in α5 subunit expression on the cell surface. In the presence of both agonists, cell surface α5 subunit expression was restored to levels comparable to vehicle treatment alone. Additionally, troglitazone and 9-cis-RA mediated cell adhesion was decreased in the presence of a function blocking integrin alpha 5 inhibitor. Further, through retinoid metabolic profiling and HPLC analysis, our study demonstrates that troglitazone augments retinoid availability in K562 cells. Finally, we demonstrate that troglitazone and 9-cis-retinoic acid synergistically dampen cellular proliferation in K562 cells. Our study is the first to report that the combination of troglitazone and 9-cis-retinoic acid restores cellular adhesion, alters retinoid availability, impacts integrin expression, and dampens cellular proliferation in K562 cells.

  20. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.

    Science.gov (United States)

    Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik

    2017-02-01

    Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.

  1. Uptake rate of cationic mitochondrial inhibitor MKT-077 determines cellular oxygen consumption change in carcinoma cells.

    Directory of Open Access Journals (Sweden)

    John L Chunta

    Full Text Available OBJECTIVE: Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mammary carcinoma cells would take up MKT-077, causing a decrease in oxygen metabolism related to drug uptake. METHODS: R3230Ac rat breast adenocarcinoma cells were exposed to MKT-077. Cellular MKT-077 concentration was quantified using spectroscopy, and oxygen consumption was measured using polarographic electrodes. MKT-077 uptake kinetics were modeled by accounting for uptake due to both the concentration and potential gradients across the plasma and mitochondrial membranes. These kinetic parameters were used to model the relationship between MKT-077 uptake and metabolic inhibition. MKT-077-induced changes in oxygen consumption were also characterized in MDA-MB231 human breast carcinoma cells. RESULTS: Cells took up MKT-077 with a time constant of ∼1 hr, and modeling showed that over 90% of intracellular MKT-077 was bound or sequestered, likely by the mitochondria. The uptake resulted in a rapid decrease in oxygen consumption, with a time constant of ∼30 minutes. Surprisingly the change in oxygen consumption was proportional to uptake rate, not cellular concentration. MKT-077 proved a potent metabolic inhibitor, with dose-dependent decreases of 45-73% (p = 0.003. CONCLUSIONS: MKT-077 caused an uptake rate-dependent decrease in cellular metabolism, suggesting potential efficacy for increasing tumor oxygen levels and radiosensitivity in vivo.

  2. Cellular gravity

    NARCIS (Netherlands)

    F.C. Gruau; J.T. Tromp (John)

    1999-01-01

    textabstractWe consider the problem of establishing gravity in cellular automata. In particular, when cellular automata states can be partitioned into empty, particle, and wall types, with the latter enclosing rectangular areas, we desire rules that will make the particles fall down and pile up on

  3. Influence of microgravity on cellular differentiation in root caps of Zea mays

    Science.gov (United States)

    Moore, R.; Fondren, W. M.; McClelen, C. E.; Wang, C. L.

    1987-01-01

    We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.

  4. [Incontinentia pigmenti with defect in cellular immunity].

    Science.gov (United States)

    Zamora-Chávez, Antonio; Escobar-Sánchez, Argelia; Sadowinski-Pine, Stanislaw; Saucedo-Ramírez, Omar Josué; Delgado-Barrera, Palmira; Enríquez-Quiñones, Claudia G

    Incontinentia pigmenti is a rare, X-linked genetic disease and affects all ectoderm-derived tissues such as skin, appendages, eyes, teeth and central nervous system as well as disorders of varying degree of cellular immunity characterized by decreasing melanin in the epidermis and increase in the dermis. When the condition occurs in males, it is lethal. We present the case of a 2-month-old infant with severe incontinentia pigmenti confirmed by histological examination of skin biopsy. The condition evolved with severe neurological disorders and seizures along with severe cellular immune deficiency, which affected the development of severe infections and caused the death of the patient. The importance of early clinical diagnosis is highlighted along with the importance of multidisciplinary management of neurological disorders and infectious complications. Copyright © 2015 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  5. Toxicity of cadmium in Japanese quail: Evaluation of body weight, hepatic and renal function, and cellular immune response

    International Nuclear Information System (INIS)

    Sant'Ana, M.G.; Moraes, R.; Bernardi, M.M.

    2005-01-01

    Cadmium (Cd) is an environmental pollutant that is able to alter the immune function. Previous studies have shown that, in mammals, chronic exposure to Cd decreases the release of macrophagic cytokines such as IL1 and TNα and decreases phagocytosis activity. On the other hand contradictory results showed an increase in the humoral response. The cellular response could be decreased by exposure to Cd. These alterations were observed in mammals. The present study aimed to investigate some of the toxic effects of Cd exposure in birds. In particular, the main objective of this work was to elucidate the effects of exposure to this pollutant on the cellular immune function of the Japanese quail as a model for the study of toxicity in animals exposed in nature. The animals were exposed to the metal (100 ppm, per os) during development, i.e., from 1 to 28 days old. Body weight, biochemical parameters, and cellular immune response were measured during and at the end of treatment. The results showed that the exposure to Cd for 28 days significantly reduced the body weight and induced hepatic toxicity. The kidney function and cellular immune response were not affected by the Cd exposure

  6. Cellular MR Imaging

    Directory of Open Access Journals (Sweden)

    Michel Modo

    2005-07-01

    Full Text Available Cellular MR imaging is a young field that aims to visualize targeted cells in living organisms. In order to provide a different signal intensity of the targeted cell, they are either labeled with MR contrast agents in vivo or prelabeled in vitro. Either (ultrasmall superparamagnetic iron oxide [(USPIO] particles or (polymeric paramagnetic chelates can be used for this purpose. For in vivo cellular labeling, Gd3+- and Mn2+- chelates have mainly been used for targeted hepatobiliary imaging, and (USPIO-based cellular imaging has been focused on imaging of macrophage activity. Several of these magneto-pharmaceuticals have been FDA-approved or are in late-phase clinical trials. As for prelabeling of cells in vitro, a challenge has been to induce a sufficient uptake of contrast agents into nonphagocytic cells, without affecting normal cellular function. It appears that this issue has now largely been resolved, leading to an active research on monitoring the cellular biodistribution in vivo following transplantation or transfusion of these cells, including cell migration and trafficking. New applications of cellular MR imaging will be directed, for instance, towards our understanding of hematopoietic (immune cell trafficking and of novel guided (stem cell-based therapies aimed to be translated to the clinic in the future.

  7. Prediction Based Energy Balancing Forwarding in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Yang Jian-Jun

    2017-01-01

    Full Text Available In the recent cellular network technologies, relay stations extend cell coverage and enhance signal strength for mobile users. However, busy traffic makes the relay stations in hot area run out of energy quickly. Energy is a very important factor in the forwarding of cellular network since mobile users(cell phones in hot cells often suffer from low throughput due to energy lack problems. In many situations, the energy lack problems take place because the energy loading is not balanced. In this paper, we present a prediction based forwarding algorithm to let a mobile node dynamically select the next relay station with highest potential energy capacity to resume communication. Key to this strategy is that a relay station only maintains three past status, and then it is able to predict the potential energy capacity. Then, the node selects the next hop with potential maximal energy. Moreover, a location based algorithm is developed to let the mobile node figure out the target region in order to avoid flooding. Simulations demonstrate that our approach significantly increase the aggregate throughput and decrease the delay in cellular network environment.

  8. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    Science.gov (United States)

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Programmable cellular arrays. Faults testing and correcting in cellular arrays

    International Nuclear Information System (INIS)

    Cercel, L.

    1978-03-01

    A review of some recent researches about programmable cellular arrays in computing and digital processing of information systems is presented, and includes both combinational and sequential arrays, with full arbitrary behaviour, or which can realize better implementations of specialized blocks as: arithmetic units, counters, comparators, control systems, memory blocks, etc. Also, the paper presents applications of cellular arrays in microprogramming, in implementing of a specialized computer for matrix operations, in modeling of universal computing systems. The last section deals with problems of fault testing and correcting in cellular arrays. (author)

  10. Cellular oncogene expression following exposure of mice to γ-rays

    International Nuclear Information System (INIS)

    Anderson, A.; Woloschak, G.E.

    1991-01-01

    We examined the effects of total body exposure of BCF1 mice to γ-rays (300 cGy) in modulating expression of cellular oncogenes in both gut and liver tissues. We selected specific cellular oncogenes (c-fos, c-myc, c-src, and c-H-ras), based on their normal expression in liver and gut tissues from untreated mice. As early as 5 min. following whole body exposure of BCF1 mice to γ-rays we detected induction of mRNA specific for c-src and c-H-ras in both liver and gut tissues. c-fos RNA was slightly decreased in accumulation in gut but was unaffected in liver tissue from irradiated mice relative to untreated controls. c-myc mRNA accumulation was unaffected in all tissues examined. These experiments document that modulation of cellular oncogene expression can occur as an early event in tissues following irradiation and suggest that this modulation may play a role in radiation-induced carcinogenesis

  11. The cell cycle regulator protein P16 and the cellular senescence of dental follicle cells.

    Science.gov (United States)

    Morsczeck, Christian; Hullmann, Markus; Reck, Anja; Reichert, Torsten E

    2018-02-01

    Cellular senescence is a restricting factor for regenerative therapies with somatic stem cells. We showed previously that the onset of cellular senescence inhibits the osteogenic differentiation in stem cells of the dental follicle (DFCs), although the mechanism remains elusive. Two different pathways are involved in the induction of the cellular senescence, which are driven either by the cell cycle protein P21 or by the cell cycle protein P16. In this study, we investigated the expression of cell cycle proteins in DFCs after the induction of cellular senescence. The induction of cellular senescence was proved by an increased expression of β-galactosidase and an increased population doubling time after a prolonged cell culture. Cellular senescence regulated the expression of cell cycle proteins. The expression of cell cycle protein P16 was up-regulated, which correlates with the induction of cellular senescence markers in DFCs. However, the expression of cyclin-dependent kinases (CDK)2 and 4 and the expression of the cell cycle protein P21 were successively decreased in DFCs. In conclusion, our data suggest that a P16-dependent pathway drives the induction of cellular senescence in DFCs.

  12. Histone gene expression remains coupled to DNA synthesis during in vitro cellular senescence

    International Nuclear Information System (INIS)

    Zambetti, G.; Stein, G.; Stein, J.; Dell'Orco, R.

    1987-01-01

    Despite a decrease in the extent to which confluent monolayers of late compared to early passage CF3 human diploid fibroblasts can be stimulated to proliferate, the time course of DNA synthesis onset is similar regardless of the in vitro age of the cells. A parallel and stoichiometric relationship is maintained between the rate of DNA synthesis and the cellular levels of histone mRNA independent of the age of the cell cultures. Furthermore, DNA synthesis and cellular histone mRNA levels decline in a coordinate manner after inhibition of DNA replication by hydroxyurea treatment. These results indicate that while the proliferative activity of human diploid fibroblasts decreases with passage in culture, those cells that retain the ability to proliferate continue to exhibit a tight coupling of DNA replication and histone gene expression

  13. Insulin-induced decrease in protein phosphorylation in rat adipocytes not explained by decreased A-kinase activity

    International Nuclear Information System (INIS)

    Egan, J.J.; Greenberg, A.S.; Chang, M.K.; Londos, C.

    1987-01-01

    In isolated rat adipocytes, insulin inhibits lipolysis to a greater extent than would be predicted by the decrease in (-/+)cAMP activity ratio of cAMP-dependent protein kinase [A-kinase], from which it was speculated that insulin promotes the dephosphorylation of hormone-sensitive lipase. They have examined the phosphorylation state of cellular proteins under conditions of varying A-kinase activities in the presence and absence of insulin. Protein phosphorylation was determined by SDS-PAGE electrophoresis of extracts from 32 P-loaded cells; glycerol and A-kinase activity ratios were measured in the cytosolic extracts from control, non-radioactive cells. Increased protein phosphorylation in general occurred over the same range of A-kinase activity ratios, 0.1-0.3, associated with increased glycerol release. The insulin-induced decrease in lipolysis was associated with a decrease in the 32 P content of several proteins, an effect not explained by the modest reduction in A-kinase activity by insulin. This effect of insulin on protein phosphorylation was lost as the A-kinase activity ratios exceeded 0.5. The results suggest that insulin promotes the dephosphorylation of those adipocyte proteins which are subject to phosphorylation by A-kinase

  14. 47 CFR 22.970 - Unacceptable interference to part 90 non-cellular 800 MHz licensees from cellular radiotelephone...

    Science.gov (United States)

    2010-10-01

    ...-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. 22.970 Section... MOBILE SERVICES Cellular Radiotelephone Service § 22.970 Unacceptable interference to part 90 non-cellular 800 MHz licensees from cellular radiotelephone or part 90-800 MHz cellular systems. (a) Definition...

  15. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  16. Protease-resistant prions selectively decrease Shadoo protein.

    Directory of Open Access Journals (Sweden)

    Joel C Watts

    2011-11-01

    Full Text Available The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C into PrP(Sc, a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho, a protein that resembles the flexibly disordered N-terminal domain of PrP(C, were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc. Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc. Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc during prion disease.

  17. Endogenous brassinosteroids in wheat treated with 24-epibrassinolide

    Czech Academy of Sciences Publication Activity Database

    Janeczko, A.; Swaczynová, Jana

    2010-01-01

    Roč. 54, č. 3 (2010), s. 477-482 ISSN 0006-3134 R&D Projects: GA ČR GA301/08/1649 Keywords : brassinolide * castasterone * growth response Subject RIV: EF - Botanics Impact factor: 1.582, year: 2010

  18. 47 CFR 22.909 - Cellular markets.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular markets. 22.909 Section 22.909... Cellular Radiotelephone Service § 22.909 Cellular markets. Cellular markets are standard geographic areas used by the FCC for administrative convenience in the licensing of cellular systems. Cellular markets...

  19. Influence of Macromolecular Biosynthesis on Cellular Autolysis in Streptococcus faecalis

    Science.gov (United States)

    Sayare, Mitchel; Daneo-Moore, Lolita; Shockman, Gerald D.

    1972-01-01

    The addition of several different antibiotics to growing cultures of Streptococcus faecalis, ATCC 9790, was found to inhibit autolysis of cells in sodium phosphate buffer. When added to exponential-phase cultures, mitomycin C (0.4 μg/ml) or phenethyl alcohol (3 mg/ml) inhibited deoxyribonucleic acid synthesis, but did not appreciably affect the rate of cellular autolysis. Addition of chloramphenicol (10 μg/ml), tetracycline (0.5 μg/ml), puromycin (25 μg/ml), or 5-azacytidine (5 μg/ml) to exponential-phase cultures inhibited protein synthesis and profoundly decreased the rate of cellular autolysis. Actinomycin D (0.075 μg/ml) and rifampin (0.01 μg/ml), both inhibitors of ribonucleic acid (RNA) synthesis, also reduced the rate of cellular autolysis. However, the inhibitory effect of actinomycin D and rifampin on cellular autolysis was more closely correlated with their concomitant secondary inhibition of protein synthesis than with the more severe inhibition of RNA synthesis. The dose-dependent inhibition of protein synthesis by 5-azacytidine was quickly diluted out of a growing culture. Reversal of inhibition was accompanied by a disproportionately rapid increase in the ability of cells to autolyze. Thus, inhibition of the ability of cells to autolyze can be most closely related to inhibition of protein synthesis. Furthermore, the rapidity of the response of cellular autolysis to inhibitors of protein synthesis suggests that regulation is exerted at the level of autolytic enzyme activity and not enzyme synthesis. PMID:4116754

  20. Cellular degradation activity is maintained during aging in long-living queen bees.

    Science.gov (United States)

    Hsu, Chin-Yuan; Qiu, Jiantai Timothy; Chan, Yu-Pei

    2016-11-01

    Queen honeybees (Apis mellifera) have a much longer lifespan than worker bees. Whether cellular degradation activity is involved in the longevity of queen bees is unknown. In the present study, cellular degradation activity was evaluated in the trophocytes and oenocytes of young and old queen bees. The results indicated that (i) 20S proteasome activity and the size of autophagic vacuoles decreased with aging, and (ii) there were no significant differences between young and old queen bees with regard to 20S proteasome expression or efficiency, polyubiquitin aggregate expression, microtubule-associated protein 1 light chain 3-II (LC3-II) expression, 70 kDa heat shock cognate protein (Hsc70) expression, the density of autophagic vacuoles, p62/SQSTM1 expression, the activity or density of lysosomes, or molecular target of rapamycin expression. These results indicate that cellular degradation activity maintains a youthful status in the trophocytes and oenocytes of queen bees during aging and that cellular degradation activity is involved in maintaining the longevity of queen bees.

  1. Biomechanics of cellular solids.

    Science.gov (United States)

    Gibson, Lorna J

    2005-03-01

    Materials with a cellular structure are widespread in nature and include wood, cork, plant parenchyma and trabecular bone. Natural cellular materials are often mechanically efficient: the honeycomb-like microstructure of wood, for instance, gives it an exceptionally high performance index for resisting bending and buckling. Here we review the mechanics of a wide range of natural cellular materials and examine their role in lightweight natural sandwich structures (e.g. iris leaves) and natural tubular structures (e.g. plant stems or animal quills). We also describe two examples of engineered biomaterials with a cellular structure, designed to replace or regenerate tissue in the body.

  2. Cellular Reflectarray Antenna

    Science.gov (United States)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  3. Resource allocation for phantom cellular networks: Energy efficiency vs spectral efficiency

    KAUST Repository

    Abdelhady, Amr Mohamed Abdelaziz; Amin, Osama; Alouini, Mohamed-Slim

    2016-01-01

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Mean-while, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that finds the SE and EE resource allocation strategies for phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and phantom cells share of the total number of available resource blocks. We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It was found that increasing phantom cells share of resource blocks decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. © 2016 IEEE.

  4. Resource allocation for phantom cellular networks: Energy efficiency vs spectral efficiency

    KAUST Repository

    Abdelhady, Amr M.

    2016-07-26

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Mean-while, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE, where we propose an algorithm that finds the SE and EE resource allocation strategies for phantom cellular networks. Then, we compare the performance of both design strategies versus the number of users, and phantom cells share of the total number of available resource blocks. We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It was found that increasing phantom cells share of resource blocks decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. © 2016 IEEE.

  5. Linearizable cellular automata

    International Nuclear Information System (INIS)

    Nobe, Atsushi; Yura, Fumitaka

    2007-01-01

    The initial value problem for a class of reversible elementary cellular automata with periodic boundaries is reduced to an initial-boundary value problem for a class of linear systems on a finite commutative ring Z 2 . Moreover, a family of such linearizable cellular automata is given

  6. The labeling of brassinosteroids by tritium

    Czech Academy of Sciences Publication Activity Database

    Marek, Aleš; Patil, Mahadeo Rajshekhar; Elbert, Tomáš

    2015-01-01

    Roč. 5, č. 80 (2015), s. 65214-65220 ISSN 2046-2069 R&D Projects: GA AV ČR IAA400550801 Institutional support: RVO:61388963 Keywords : brassinolide * hydrogen * isotopes Subject RIV: CC - Organic Chemistry Impact factor: 3.289, year: 2015

  7. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Car Deceleration Considering Its Own Velocity in Cellular Automata Model

    International Nuclear Information System (INIS)

    Li Keping

    2006-01-01

    In this paper, we propose a new cellular automaton model, which is based on NaSch traffic model. In our method, when a car has a larger velocity, if the gap between the car and its leading car is not enough large, it will decrease. The aim is that the following car has a buffer space to decrease its velocity at the next time, and then avoid to decelerate too high. The simulation results show that using our model, the car deceleration is realistic, and is closer to the field measure than that of NaSch model.

  9. Abnormalities in the cellular phase of blood fibrinolytic activity in systemic lupus erythematosus and in venous thromboembolism

    International Nuclear Information System (INIS)

    Moroz, L.A.; MacLean, L.D.; Langleben, D.

    1986-01-01

    Fibrinolytic activities of whole blood and plasma were determined by 125 I-fibrin radiometric assay in 16 normal subjects, and in 11 patients with systemic lupus erythematosus (SLE), 14 with progressive systemic sclerosis (PSS), 23 with venous thromboembolic disease, and 20 patients awaiting elective surgery. Mean whole blood and plasma activities for patients with PSS, and for those awaiting elective surgery, were similar to normal values, as was the mean plasma activity in patients with SLE. However, mean whole blood activity in SLE was significantly decreased compared with normals (p less than 0.05), with mean plasma activity accounting for 44% of mean whole blood activity (compared with 17% in normal subjects), representing a 67% decrease in mean calculated cellular phase activity in SLE, when compared with normals. Since the numbers of cells (neutrophils, monocytes) possibly involved in cellular activity were not decreased, the findings suggest a functional defect in fibrinolytic activity of one or more blood cell types in SLE. An additional finding was the participation of the cellular phase as well as the well-known plasma phase of blood in the fibrinolytic response to thromboembolism

  10. Frequency-dependent micromechanics of cellularized biopolymer networks

    Science.gov (United States)

    Jones, Chris; Kim, Jihan; McIntyre, David; Sun, Bo

    Mechanical interactions between cells and the extracellular matrix (ECM) influence many cellular behaviors such as growth, differentiation, and migration. These are dynamic processes in which the cells actively remodel the ECM. Reconstituted collagen gel is a common model ECM for studying cell-ECM interactions in vitro because collagen is the most abundant component of mammalian ECM and gives the ECM its material stiffness. We embed micron-sized particles in collagen and use holographic optical tweezers to apply forces to the particles in multiple directions and over a range of frequencies up to 10 Hz. We calculate the local compliance and show that it is dependent on both the direction and frequency of the applied force. Performing the same measurement on many particles allows us to characterize the spatial inhomogeneity of the mechanical properties and shows that the compliance decreases at higher frequencies. Performing these measurements on cell-populated collagen gels shows that cellular remodeling of the ECM changes the mechanical properties of the collagen and we investigate whether this change is dependent on the local strain and distance from nearby cells.

  11. Effects of different plant growth regulators on blueberry fruit quality

    Science.gov (United States)

    Zhang, X. C.; Zhu, Y. Q.; Wang, Y. N.; Luo, C.; Wang, X.

    2017-08-01

    In order to understand the effects of different plant growth regulators (PGRs) on blueberry fruit growth, various concentrations of Abscisic acid (ABA), Methyl jasmonate (MJ), Brassinolide (BR), Melatonin (MT) were sprayed on blueberry cv. ‘Brigita’ fruits. The results showed that all the PGRs put into effect on improving the quality of blueberry fruit. Comparing with the control plants no PGR spraying,300 mg/L of MT treatment promoted effectively accumulation of the soluble sugar. ABA 20mg/L treatment in-creased effectively accumulation of anthocyanin, and significantly decreased titratable acid content. The treatment of MJ 10mg/L improved significantly the soluble solid content. The effect of the four PGRs treatments on appearance did not show obvious difference.

  12. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    Science.gov (United States)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  13. In vitro studies of cellular response to DNA damage induced by boron neutron capture therapy

    International Nuclear Information System (INIS)

    Perona, M.; Pontiggia, O.; Carpano, M.; Thomasz, L.; Thorp, S.; Pozzi, E.; Simian, M.; Kahl, S.; Juvenal, G.; Pisarev, M.; Dagrosa, A.

    2011-01-01

    The aim of these studies was to evaluate the mechanisms of cellular response to DNA damage induced by BNCT. Thyroid carcinoma cells were incubated with 10 BPA or 10 BOPP and irradiated with thermal neutrons. The surviving fraction, the cell cycle distribution and the expression of p53 and Ku70 were analyzed. Different cellular responses were observed for each irradiated group. The decrease of Ku70 in the neutrons +BOPP group could play a role in the increase of sensitization to radiation.

  14. Effect of verapamil on cellular uptake of Tc-99m MIBI and tetrofosmin on several cancer cells

    International Nuclear Information System (INIS)

    Kim, Dae Hyun; Yoo, Jung Ah; Bae, Jin Ho; Jeong, Shin Young; Suh, Myung Rang; Ahn, Byeong Cheol; Lee, Kyu Bo; Lee, Jae Tae

    2004-01-01

    Cellular uptake of 99 mTc-sestamibi (MIBI) and 99 mTc-tetrofosmin (TF) is low in cancer cells expressing multidrug resistance(MDR) by p-glycoprotein(Pgp) or multidrug related protein(MRP). Verapamil is known to increase cellular uptake of MIBI in MDR cancer cells, but is recently reported to have different effects on tracer uptake in certain cancer cells. This study was prepared to evaluate effects of verapamil on cellular uptake of MIBI and TF in several cancer cells. Cellular uptakes of Tc-99m MIBI and TF were measured in erythroleukemia K562 cell, breast cancer MCF7 cell, and human ovarian cancer SK-OV-3 cells, and data were compared with those of doxorubicin-resistant K562(Ad) cells. RT-PCR and Western blot analysis were used for the detection of mdr1 mRNA and Pgp expression, and to observe changes in isotypes of PKC enzyme. Effects of verapamil on MIBI and TF uptake were evaluated at different concentrations upto 200 μM at 1*10 6 cells/ m l at 37.deg.C. Radioactivity in supernatant and pellet was measured with gamma counter to calculate cellular uptake ratio. Toxicity of verapamil was measured with MTT assay. Cellular uptakes of MIBI and TF were increased by time in four cancer cells studied. Co-incubation with verapamil resulted in an increase in uptake of MIBI and TF in K562(Adr) cell at a concentration of 100 μM and the maximal increase at 50 μM was 10-times to baseline. In contrast, uptakes of MIBI and TF in K562, MCF7m SK-OV3 cells were decreased with verapamil treatment at a concentration over 1 μM. With a concentration of 200 μM verapamil, respectively. Cellular uptakes of MIBI and TF in MCF7 and SK-OV-3 cells were not changed with 10μM, but were also decreased with verapamil higher than 10μM, resulting 40% and 5% of baseline at 50 μM. MTT assay of four cells revealed that K562, MCF7, SK-OV3 were not damaged with verapamil at 200 μM. Although verapamil increases uptake of MIBI and TF in MDR cancer cells, cellular uptakes were further decreased

  15. Dynamic behavior of cellular materials and cellular structures: Experiments and modeling

    Science.gov (United States)

    Gao, Ziyang

    Cellular solids, including cellular materials and cellular structures (CMS), have attracted people's great interests because of their low densities and novel physical, mechanical, thermal, electrical and acoustic properties. They offer potential for lightweight structures, energy absorption, thermal management, etc. Therefore, the studies of cellular solids have become one of the hottest research fields nowadays. From energy absorption point of view, any plastically deformed structures can be divided into two types (called type I and type II), and the basic cells of the CMS may take the configurations of these two types of structures. Accordingly, separated discussions are presented in this thesis. First, a modified 1-D model is proposed and numerically solved for a typical type II structure. Good agreement is achieved with the previous experimental data, hence is used to simulate the dynamic behavior of a type II chain. Resulted from different load speeds, interesting collapse modes are observed, and the parameters which govern the cell's post-collapse behavior are identified through a comprehensive non-dimensional analysis on general cellular chains. Secondly, the MHS specimens are chosen as an example of type I foam materials because of their good uniformity of the cell geometry. An extensive experimental study was carried out, where more attention was paid to their responses to dynamic loadings. Great enhancement of the stress-strain curve was observed in dynamic cases, and the energy absorption capacity is found to be several times higher than that of the commercial metal foams. Based on the experimental study, finite elemental simulations and theoretical modeling are also conducted, achieving good agreements and demonstrating the validities of those models. It is believed that the experimental, numerical and analytical results obtained in the present study will certainly deepen the understanding of the unsolved fundamental issues on the mechanical behavior of

  16. Statistical mechanics of cellular automata

    International Nuclear Information System (INIS)

    Wolfram, S.

    1983-01-01

    Cellular automata are used as simple mathematical models to investigate self-organization in statistical mechanics. A detailed analysis is given of ''elementary'' cellular automata consisting of a sequence of sites with values 0 or 1 on a line, with each site evolving deterministically in discrete time steps according to p definite rules involving the values of its nearest neighbors. With simple initial configurations, the cellular automata either tend to homogeneous states, or generate self-similar patterns with fractal dimensions approx. =1.59 or approx. =1.69. With ''random'' initial configurations, the irreversible character of the cellular automaton evolution leads to several self-organization phenomena. Statistical properties of the structures generated are found to lie in two universality classes, independent of the details of the initial state or the cellular automaton rules. More complicated cellular automata are briefly considered, and connections with dynamical systems theory and the formal theory of computation are discussed

  17. Chronic administration of thiamine pyrophosphate decreases age-related histological atrophic testicular changes and improves sexual behavior in male Wistar rats.

    Science.gov (United States)

    Hernández-Montiel, H L; Vásquez López, C M; González-Loyola, J G; Vega-Anaya, G C; Villagrán-Herrera, M E; Gallegos-Corona, M A; Saldaña, C; Ramos Gómez, M; García Horshman, P; García Solís, P; Solís-S, J C; Robles-Osorio, M L; Ávila Morales, J; Varela-Echavarría, A; Paredes Guerrero, R

    2014-06-01

    Aging is a multifactorial universal process and constitutes the most important risk factor for chronic-degenerative diseases. Although it is a natural process, pathological aging arises when these changes occur quickly and the body is not able to adapt. This is often associated with the generation of reactive oxygen species (ROS), inflammation, and a decrease in the endogenous antioxidant systems, constituting a physiopathological state commonly found in chronic-degenerative diseases. At the testicular level, aging is associated with tissue atrophy, decreased steroidogenesis and spermatogenesis, and sexual behavior disorders. This situation, in addition to the elevated generation of ROS in the testicular steroidogenesis, provides a critical cellular environment causing oxidative damage at diverse cellular levels. To assess the effects of a reduction in the levels of ROS, thiamine pyrophosphate (TPP) was chronically administered in senile Wistar rats. TPP causes an activation of intermediate metabolism routes, enhancing cellular respiration and decreasing the generation of ROS. Our results show an overall decrease of atrophic histological changes linked to aging, with higher levels of serum testosterone, sexual activity, and an increase in the levels of endogenous antioxidant enzymes in TPP-treated animals. These results suggest that TPP chronic administration decreases the progression of age-related atrophic changes by improving the intermediate metabolism, and by increasing the levels of antioxidant enzymes.

  18. Wireless Cellular Mobile Communications

    OpenAIRE

    Zalud, V.

    2002-01-01

    In this article is briefly reviewed the history of wireless cellular mobile communications, examined the progress in current second generation (2G) cellular standards and discussed their migration to the third generation (3G). The European 2G cellular standard GSM and its evolution phases GPRS and EDGE are described somewhat in detail. The third generation standard UMTS taking up on GSM/GPRS core network and equipped with a new advanced access network on the basis of code division multiple ac...

  19. MSAT and cellular hybrid networking

    Science.gov (United States)

    Baranowsky, Patrick W., II

    Westinghouse Electric Corporation is developing both the Communications Ground Segment and the Series 1000 Mobile Phone for American Mobile Satellite Corporation's (AMSC's) Mobile Satellite (MSAT) system. The success of the voice services portion of this system depends, to some extent, upon the interoperability of the cellular network and the satellite communication circuit switched communication channels. This paper will describe the set of user-selectable cellular interoperable modes (cellular first/satellite second, etc.) provided by the Mobile Phone and described how they are implemented with the ground segment. Topics including roaming registration and cellular-to-satellite 'seamless' call handoff will be discussed, along with the relevant Interim Standard IS-41 Revision B Cellular Radiotelecommunications Intersystem Operations and IOS-553 Mobile Station - Land Station Compatibility Specification.

  20. Cellular and molecular mechanisms of metformin: an overview

    Science.gov (United States)

    Viollet, Benoit; Guigas, Bruno; Sanz Garcia, Nieves; Leclerc, Jocelyne; Foretz, Marc; Andreelli, Fabrizio

    2012-01-01

    Considerable efforts have been made since the 1950s to better understand the cellular and molecular mechanisms of action of metformin, a potent antihyperglycemic agent now recommended as the first line oral therapy for type 2 diabetes (T2D). The main effect of this drug from the biguanide family is to acutely decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory-chain complex 1. In addition, the resulting decrease in hepatic energy status activates the AMP-activated protein kinase (AMPK), a cellular metabolic sensor, providing a generally accepted mechanism for metformin action on hepatic gluconeogenic program. The demonstration that the respiratory-chain complex 1, but not AMPK, is the primary target of metformin was recently strengthened by showing that the metabolic effect of the drug is preserved in liver-specific AMPK-deficient mice. Beyond its effect on glucose metabolism, metformin was reported to restore ovarian function in polycystic ovary syndrome, reduce fatty liver and to lower microvascular and macrovascular complications associated with T2D. Its use was also recently suggested as an adjuvant treatment for cancer or gestational diabetes, and for the prevention in pre-diabetic populations. These emerging new therapeutic areas for metformin will be reviewed together with recent data from pharmacogenetic studies linking genetic variations to drug response, a promising new step towards personalized medicine in the treatment of T2D. PMID:22117616

  1. Top-down cellular pyramids

    Energy Technology Data Exchange (ETDEWEB)

    Wu, A Y; Rosenfeld, A

    1983-10-01

    A cellular pyramid is an exponentially tapering stack of arrays of processors (cells), where each cell is connected to its neighbors (siblings) on its own level, to a parent on the level above, and to its children on the level below. It is shown that in some situations, if information flows top-down only, from fathers to sons, then a cellular pyramid may be no faster than a one-level cellular array; but it may be possible to use simpler cells in the pyramid case. 23 references.

  2. Cellular decomposition in vikalloys

    International Nuclear Information System (INIS)

    Belyatskaya, I.S.; Vintajkin, E.Z.; Georgieva, I.Ya.; Golikov, V.A.; Udovenko, V.A.

    1981-01-01

    Austenite decomposition in Fe-Co-V and Fe-Co-V-Ni alloys at 475-600 deg C is investigated. The cellular decomposition in ternary alloys results in the formation of bcc (ordered) and fcc structures, and in quaternary alloys - bcc (ordered) and 12R structures. The cellular 12R structure results from the emergence of stacking faults in the fcc lattice with irregular spacing in four layers. The cellular decomposition results in a high-dispersion structure and magnetic properties approaching the level of well-known vikalloys [ru

  3. Effects of motexafin gadolinium on tumor oxygenation and cellular oxygen consumption

    International Nuclear Information System (INIS)

    Donnelly, E.T.; Liu, Y.; Rockwell, S.; Magda, D.

    2003-01-01

    Full text: Recent work in our laboratory showed that motexafin gadolinium (MGd, Xcytrin), a drug currently in Phase III clinical trials as an adjuvant to radiation therapy, modulates the oxygen tensions in EMT6 tumors. The median pO 2 increased from the control value of 1.5±0.4 mmHg to 7.4 ± 3.8 mmHg six hours after treatment with 40 μmol/kg MGd and the percentage of severely hypoxic readings in the tumors ( 7 plateau phase EMT6 cells in 3 mL Dulbecco's Modified Eagle's Medium supplemented with 10% dialyzed fetal bovine serum, which contains no ascorbic acid. In the absence of ascorbic acid, 100 μM MGd did not alter the cellular oxygen consumption rate for EMT6 cells significantly. Marked inhibition of cellular oxygen consumption was observed when cells were incubated with 100 μM MGd in medium supplemented with equimolar ascorbic acid (a 31.5% decrease in consumption was observed after 6 hours of treatment). The 5% mannitol vehicle solution with equimolar ascorbic acid had no discernible effect on cellular oxygen consumption. Ascorbic acid may facilitate cellular uptake of MGd via the intermediate formation of a MGd-oxalate complex. These studies suggest that changes in cellular oxygen consumption could contribute to the changes in tumor oxygenation seen after administration of MGd. These experiments were supported by Pharmacyclics and training grant T32CA09085 from the NIH (E.T.D.). We thank Dr. Raymond Russell for allowing us to use his oxygen electrode apparatus

  4. Characterization of humoral and cellular immune responses in patients with human papilloma virus

    International Nuclear Information System (INIS)

    Clares Pochet, Maria del Carmen; Ferrer Cosme, Belkis Maria; Dominguez Cardosa, Magda

    2012-01-01

    A descriptive and cross-sectional study was carried out in 30 females infected with the human papilloma virus, attended in the office of Immunology of the Specialty Polyclinic belonging to 'Saturnino Lora' Provincial Clinical Surgical Teaching Hospital in Santiago de Cuba, from June 2009 to June 2010, in order to characterize them according to immune response. To evaluate the humoral and cellular immune response rosetting assay and quantification of immunoglobulins were used respectively. Women between 25-36 years of age (40 %) infected with this virus, especially those coming from urban areas, prevailed in the series, and a significant decrease of the cellular response as compared to the humoral response was evidenced

  5. Decreased immunoglobulin production by a human lymphoid cell line following melphalan treatment

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, G.D. (Oak Ridge National Lab., TN); Owen, B.A.; Atchley, C.E.; Novelli, G.D.; Solomon, A.

    1982-11-01

    The effect of melphalan on immunoglobulin G (IgG) production by a human lymphoblastoid cell line (BF) was studied. The amount of secreted IgG and the percentage of cells containing cytoplasmic IgG were measured by immunoassay and cytofluorometry, respectively. Dose-response studies indicated that melphalan concentrations of 2 x 10/sup -8/ M had no effect, while concentrations of 8 x 10/sup -7/ M were totally toxic, after 72-h exposures to the drug. Statistically significant, persistent, alterations in both synthesis and secretion of IgG by BF cells were observed following treatment for 72 h with 4 x 10/sup -7/ M melphalan, and there was an increase in population-doubling time from 24 to 72 h in these drug-treated cells. The percentage of IgG-containing cells in melphalan-treated cultures was significantly decreased as compared to control cultures. IgG secretion was also decreased in these cultures, and the variation in IgG secretion as a function of cellular growth was significantly altered following melphalan treatment. Decreased IgG production following melphalan treatment may be related to altered cell cycle kinetics. Based on immunological analysis, there was no evident alteration in the IgG secreted by melphalan-treated cells, nor did melphalan treatment produce a cellular population lacking IgG entirely.

  6. Cellular automata analysis and applications

    CERN Document Server

    Hadeler, Karl-Peter

    2017-01-01

    This book focuses on a coherent representation of the main approaches to analyze the dynamics of cellular automata. Cellular automata are an inevitable tool in mathematical modeling. In contrast to classical modeling approaches as partial differential equations, cellular automata are straightforward to simulate but hard to analyze. In this book we present a review of approaches and theories that allow the reader to understand the behavior of cellular automata beyond simulations. The first part consists of an introduction of cellular automata on Cayley graphs, and their characterization via the fundamental Cutis-Hedlund-Lyndon theorems in the context of different topological concepts (Cantor, Besicovitch and Weyl topology). The second part focuses on classification results: What classification follows from topological concepts (Hurley classification), Lyapunov stability (Gilman classification), and the theory of formal languages and grammars (Kůrka classification). These classifications suggest to cluster cel...

  7. Serum carcinoembryonic antigen tends to decrease in poorly-differentiated colorectal cancer

    Directory of Open Access Journals (Sweden)

    Ester Morina Silalahi

    2015-12-01

    This was a cross-sectional study conducted on 40 CRC subjects from July 2012 until May 2013. Determination of serum CEA and CA 19-9 levels and histopathological (cellular differentiation grades in CRC biopsies was done in all subjects. RESULTS The study involved forty CRC patients, consisting of 22 males and 18 females, with mean age of 51.93 ± 11.63 years, CEA levels of 51.93 ± 84.07 ng/ml and CA 19-9 levels of 33.81 ± 62.39 U/ml. Carcino-embryonic antigen levels tended to decrease with decreasing CRC histopathological grade, while CA 19-9 levels increased in well-differentiated CRC. However, both relationships were statistically not significant (with p=0.314 and p=0.787, respectively. CONCLUSIONS Carcinoembryonic antigen (CEA levels tend to decrease with decreasing histopathological grade of CRC, and CA 19-9 levels tend to increase in well-differentiated CRC.

  8. Cellular packing, mechanical stress and the evolution of multicellularity

    Science.gov (United States)

    Jacobeen, Shane; Pentz, Jennifer T.; Graba, Elyes C.; Brandys, Colin G.; Ratcliff, William C.; Yunker, Peter J.

    2018-03-01

    The evolution of multicellularity set the stage for sustained increases in organismal complexity1-5. However, a fundamental aspect of this transition remains largely unknown: how do simple clusters of cells evolve increased size when confronted by forces capable of breaking intracellular bonds? Here we show that multicellular snowflake yeast clusters6-8 fracture due to crowding-induced mechanical stress. Over seven weeks ( 291 generations) of daily selection for large size, snowflake clusters evolve to increase their radius 1.7-fold by reducing the accumulation of internal stress. During this period, cells within the clusters evolve to be more elongated, concomitant with a decrease in the cellular volume fraction of the clusters. The associated increase in free space reduces the internal stress caused by cellular growth, thus delaying fracture and increasing cluster size. This work demonstrates how readily natural selection finds simple, physical solutions to spatial constraints that limit the evolution of group size—a fundamental step in the evolution of multicellularity.

  9. Magnolol Affects Cellular Proliferation, Polyamine Biosynthesis and Catabolism-Linked Protein Expression and Associated Cellular Signaling Pathways in Human Prostate Cancer Cells in vitro

    Directory of Open Access Journals (Sweden)

    Brendan T. McKeown

    2015-01-01

    Full Text Available Background: Prostate cancer is the most commonly diagnosed form of cancer in men in Canada and the United States. Both genetic and environmental factors contribute to the development and progression of many cancers, including prostate cancer. Context and purpose of this study: This study investigated the effects of magnolol, a compound found in the roots and bark of the magnolia tree Magnolia officinalis, on cellular proliferation and proliferation-linked activities of PC3 human prostate cancer cells in vitro. Results: PC3 cells exposed to magnolol at a concentration of 80 μM for 6 hours exhibited decreased protein expression of ornithine decarboxylase, a key regulator in polyamine biosynthesis, as well as affecting the expression of other proteins involved in polyamine biosynthesis and catabolism. Furthermore, protein expression of the R2 subunit of ribonucleotide reductase, a key regulatory protein associated with DNA synthesis, was significantly decreased. Finally, the MAPK (mitogen-activated protein kinase, PI3K (phosphatidylinositol 3-kinase, NFκB (nuclear factor of kappa-light-chain-enhancer of activated B cells and AP-1 (activator protein 1 cellular signaling pathways were assayed to determine which, if any, of these pathways magnolol exposure would alter. Protein expressions of p-JNK-1 and c-jun were significantly increased while p-p38, JNK-1/2, PI3Kp85, p-PI3Kp85, p-Akt, NFκBp65, p-IκBα and IκBα protein expressions were significantly decreased. Conclusions: These alterations further support the anti-proliferative effects of magnolol on PC3 human prostate cancer cells in vitro and suggest that magnolol may have potential as a novel anti-prostate cancer agent.

  10. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  11. Effects of reactive oxygen species on cellular wall disassembly of banana fruit during ripening.

    Science.gov (United States)

    Cheng, Guiping; Duan, Xuewu; Shi, John; Lu, Wangjin; Luo, Yunbo; Jiang, Weibo; Jiang, Yueming

    2008-07-15

    Fruit softening is generally attributed to cell wall disassembly. Experiments were conducted to investigate effects of various reactive oxygen species (ROS) on in vitro cellular wall disassembly of harvested banana fruit. The alcohol-extracted insoluble residue (AEIR) was obtained from the pulp tissues of banana fruit at various ripening stages and then used to examine the disassembly of cellular wall polysaccharides in the presence of superoxide anion (O2(-)), hydrogen peroxide (H2O2) or hydroxyl radical (OH) and their scavengers. The presence of OH accelerated significantly disassembly of cellular wall polysaccharides in terms of the increase in contents of total sugars released and uronic acid, and the decrease in molecular mass of soluble polysaccharides, using gel permeation chromatography. However, the treatment with H2O2 or O2(-) showed no significant effect on the disassembly of cellular wall polysaccharides. Furthermore, the degradation of the de-esterified AEIR was more susceptible to OH attack than the esterified AEIR. In addition, the effect of OH could be inhibited in the presence of OH scavenger. This study suggests that disassembly of cellular wall polysaccharides could be initiated by OH as the solublisation of the polysaccharides increased, which, in turn, accelerated fruit softening. Copyright © 2008 Elsevier Ltd. All rights reserved.

  12. Cellular communications a comprehensive and practical guide

    CERN Document Server

    Tripathi, Nishith

    2014-01-01

    Even as newer cellular technologies and standards emerge, many of the fundamental principles and the components of the cellular network remain the same. Presenting a simple yet comprehensive view of cellular communications technologies, Cellular Communications provides an end-to-end perspective of cellular operations, ranging from physical layer details to call set-up and from the radio network to the core network. This self-contained source forpractitioners and students represents a comprehensive survey of the fundamentals of cellular communications and the landscape of commercially deployed

  13. Magnetohydrodynamics cellular automata

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu.

    1990-02-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)

  14. Magnetohydrodynamic cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Hatori, Tadatsugu [National Inst. for Fusion Science, Nagoya (Japan)

    1990-03-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author).

  15. Magnetohydrodynamic cellular automata

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu

    1990-01-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)

  16. Modeling cellular systems

    CERN Document Server

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  17. HUMORAL AND CELLULAR IMMUNITY PARAMETERS IN CHILDREN BEFORE AND AFTER ADENOTONSILLECTOMY

    Directory of Open Access Journals (Sweden)

    M. H. Baradaranfar

    2007-08-01

    Full Text Available Adenoids and tonsils are active lymphoid organs and play an important role ‎against invading antigens of upper aerodigestive tract in children. ‎The present study analyzes the changes in cellular and humoral immunity of children six ‎months after adenotonsillectomy. The study population consisted of 30 children whit chronic adenotonsillar hypertrophy and 30 age-matched healthy children. ‎In all children serum level of IgM and IgG, percentage of T lymphocytes (CD3, T ‎helper cells (CD4, T cytotoxic ‎cells (CD8 and B lymphocytes (CD20 were measured before surgery. These parameters were ‎remeasured in patients 6 months after adenotonsillectomy. ‎Before the operation, a reduction in percentage of T lymphocytes (CD3,TCD4,TC8 ‎and B CD20 was seen compared to control group. This reduction was only significant in T ‎lymphocytes (CD3.The serum IgM and IgG levels were not different in two groups. Six months after ‎operation, the percentage of lymphocytes T CD3, T CD8 and BCD20 was increased and ‎reached the control group. The IgM level was also significantly decreased in patients after ‎operation. ‎Our results indicate that cellular and humoral immunity decreases in children ‎with chronic adenotonsiller hypertrophy preoperatively and increases to healthy children ‎level, six months postoperatively. It means that chronic adenotosillar hypertrophy affect ‎some parameters of cellular and humoral immunity and adenotonsillectomy by removing ‎chronic stimulations and reverses these changes without any negative effect on immune ‎function of patients.

  18. Cellular Angiofibroma of the Nasopharynx.

    Science.gov (United States)

    Erdur, Zülküf Burak; Yener, Haydar Murat; Yilmaz, Mehmet; Karaaltin, Ayşegül Batioğlu; Inan, Hakki Caner; Alaskarov, Elvin; Gozen, Emine Deniz

    2017-11-01

    Angiofibroma is a common tumor of the nasopharynx region but cellular type is extremely rare in head and neck. A 13-year-old boy presented with frequent epistaxis and nasal obstruction persisting for 6 months. According to the clinical symptoms and imaging studies juvenile angiofibroma was suspected. Following angiographic embolization total excision of the lesion by midfacial degloving approach was performed. Histological examination revealed that the tumor consisted of staghorn blood vessels and irregular fibrous stroma. Stellate fibroblasts with small pyknotic to large vesicular nuclei were seen in a highly cellular stroma. These findings identified cellular angiofibroma mimicking juvenile angiofibroma. This article is about a very rare patient of cellular angiofibroma of nasopharynx.

  19. Extracellular cystatin SN and cathepsin B prevent cellular senescence by inhibiting abnormal glycogen accumulation.

    Science.gov (United States)

    Oh, Sang-Seok; Park, Soojong; Lee, Ki-Won; Madhi, Hamadi; Park, Sae Gwang; Lee, Hee Gu; Cho, Yong-Yeon; Yoo, Jiyun; Dong Kim, Kwang

    2017-04-06

    Cystatin SN (CST1), a known inhibitor of cathepsin B (CatB), has important roles in tumor development. Paradoxically, CatB is a member of the cysteine cathepsin family that acts in cellular processes, such as tumor development and invasion. However, the relationship between CST1 and CatB, and their roles in tumor development are poorly understood. In this study, we observed that the knockdown of CST1 induced the activity of senescence-associated β-galactosidase, a marker of cellular senescence, and expression of senescence-associated secretory phenotype genes, including interleukin-6 and chemokine (C-C motif) ligand 20, in MDA-MB-231 and SW480 cancer cells. Furthermore, CST1 knockdown decreased extracellular CatB activity, and direct CatB inhibition, using specific inhibitors or shCatB, induced cellular senescence. Reconstitution of CST1 restored CatB activity and inhibited cellular senescence in CST1 knockdown cells. CST1 knockdown or CatB inhibition increased glycogen synthase (GS) kinase 3β phosphorylation at serine 9, resulting in the activation of GS and the induction of glycogen accumulation associated with cellular senescence. Importantly, CST1 knockdown suppressed cancer cell proliferation, soft agar colony growth and tumor growth in a xenograft model. These results indicate that CST1-mediated extracellular CatB activity enhances tumor development by preventing cellular senescence. Our findings suggest that antagonists of CST1 or inhibitors of CatB are potential anticancer agents.

  20. 47 CFR 22.923 - Cellular system configuration.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular system configuration. 22.923 Section... MOBILE SERVICES Cellular Radiotelephone Service § 22.923 Cellular system configuration. Mobile stations... directly or through cellular repeaters. Auxiliary test stations may communicate with base or mobile...

  1. Inhibitory effects of OK-432 (Picibanil) on cellular proliferation and adhesive capacity of breast carcinoma cells.

    Science.gov (United States)

    Horii, Yoshio; Iino, Yuichi; Maemura, Michio; Horiguchi, Jun; Morishita, Yasuo

    2005-02-01

    We investigated the potent inhibitory effects of OK-432 (Picibanil) on both cellular adhesion and cell proliferation of estrogen-dependent (MCF-7) or estrogen-independent (MDA-MB-231) breast carcinoma cells. Cellular proliferation of both MCF-7 and MDA-MB-231 cells was markedly inhibited in a dose-dependent manner, when the carcinoma cells were exposed to OK-432. Cell attachment assay demonstrated that incubation with OK-432 for 24 h reduced integrin-mediated cellular adhesion of both cell types. However, fluorescence activated cell sorter (FACS) analysis revealed that incubation with OK-432 for 24 h did not decrease the cell surface expressions of any integrins. These results suggest that the binding avidity of integrins is reduced by OK-432 without alteration of the integrin expression. We conclude that OK-432 inhibits integrin-mediated cellular adhesion as well as cell proliferation of breast carcinoma cells regardless of estrogen-dependence, and that these actions of OK-432 contribute to prevention or inhibition of breast carcinoma invasion and metastasis.

  2. Recursive definition of global cellular-automata mappings

    International Nuclear Information System (INIS)

    Feldberg, R.; Knudsen, C.; Rasmussen, S.

    1994-01-01

    A method for a recursive definition of global cellular-automata mappings is presented. The method is based on a graphical representation of global cellular-automata mappings. For a given cellular-automaton rule the recursive algorithm defines the change of the global cellular-automaton mapping as the number of lattice sites is incremented. A proof of lattice size invariance of global cellular-automata mappings is derived from an approximation to the exact recursive definition. The recursive definitions are applied to calculate the fractal dimension of the set of reachable states and of the set of fixed points of cellular automata on an infinite lattice

  3. Effects of wearing bio-active material coated fabric against γ-irradiation-induced cellular damaged in Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Kang, Jung Ae; Kim, Hye Rim; Yoon, Sun Hye; Nam, Sang Hyun; Park, Sang Hyun; Jang, Beom Su; Go, Kyung Chan; Yang, Gwang Wung; Rho, Young Hwan; Park, Hyo Suk

    2016-01-01

    Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against γ-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of γ-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Exposure to γ-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. These results suggest that wearing BMCF offers effective radioprotection against γ-irradiation-induced cellular damage in SD rats

  4. Effects of wearing bio-active material coated fabric against γ-irradiation-induced cellular damaged in Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Ae; Kim, Hye Rim; Yoon, Sun Hye; Nam, Sang Hyun; Park, Sang Hyun; Jang, Beom Su [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Go, Kyung Chan; Yang, Gwang Wung; Rho, Young Hwan; Park, Hyo Suk [Research and Development Center, VENTEX Co. Ltd., Seoul (Korea, Republic of)

    2016-09-15

    Ionizing radiation causes cellular damage and death through the direct damage and/or indirectly the production of ROS, which induces oxidative stress. This study was designed to evaluate the in vivo radioprotective effects of a bio-active material coated fabric (BMCF) against γ-irradiation-induced cellular damage in Sprague-Dawley (SD) rats. Healthy male SD rats wore bio-active material coated (concentrations in 10% and 30%) fabric for 7 days after 3 Gy of γ-irradiation. Radioprotective effects were evaluated by performing various biochemical assays including spleen and thymus index, WBC count, hepatic damage marker enzymes [aspartate transaminase (AST) and alanine transaminase (ALT)] in plasma, liver antioxidant enzymes, and mitochondrial activity in muscle. Exposure to γ-irradiation resulted in hepatocellular and immune systemic damage. Gamma-irradiation induced decreases in antioxidant enzymes. However, wearing the BMCF-30% decreased significantly AST and ALT activities in plasma. Furthermore, wearing the BMCF-30% increased SOD (superoxide dismutase) and mitochondrial activity. These results suggest that wearing BMCF offers effective radioprotection against γ-irradiation-induced cellular damage in SD rats.

  5. Cellular senescence and organismal aging.

    Science.gov (United States)

    Jeyapalan, Jessie C; Sedivy, John M

    2008-01-01

    Cellular senescence, first observed and defined using in vitro cell culture studies, is an irreversible cell cycle arrest which can be triggered by a variety of factors. Emerging evidence suggests that cellular senescence acts as an in vivo tumor suppression mechanism by limiting aberrant proliferation. It has also been postulated that cellular senescence can occur independently of cancer and contribute to the physiological processes of normal organismal aging. Recent data have demonstrated the in vivo accumulation of senescent cells with advancing age. Some characteristics of senescent cells, such as the ability to modify their extracellular environment, could play a role in aging and age-related pathology. In this review, we examine current evidence that links cellular senescence and organismal aging.

  6. Zeno's paradox in quantum cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Groessing, G [Atominst. der Oesterreichischen Universitaeten, Vienna (Austria); Zeilinger, A [Inst. fuer Experimentalphysik, Univ. Innsbruck (Austria)

    1991-07-01

    The effect of Zeno's paradox in quantum theory is demonstrated with the aid of quantum mechanical cellular automata. It is shown that the degree of non-unitarity of the cellular automaton evolution and the frequency of consecutive measurements of cellular automaton states are operationally indistinguishable. (orig.).

  7. Zeno's paradox in quantum cellular automata

    International Nuclear Information System (INIS)

    Groessing, G.; Zeilinger, A.

    1991-01-01

    The effect of Zeno's paradox in quantum theory is demonstrated with the aid of quantum mechanical cellular automata. It is shown that the degree of non-unitarity of the cellular automaton evolution and the frequency of consecutive measurements of cellular automaton states are operationally indistinguishable. (orig.)

  8. Validation of self-reported cellular phone use

    DEFF Research Database (Denmark)

    Samkange-Zeeb, Florence; Berg, Gabriele; Blettner, Maria

    2004-01-01

    BACKGROUND: In recent years, concern has been raised over possible adverse health effects of cellular telephone use. In epidemiological studies of cancer risk associated with the use of cellular telephones, the validity of self-reported cellular phone use has been problematic. Up to now there is ......BACKGROUND: In recent years, concern has been raised over possible adverse health effects of cellular telephone use. In epidemiological studies of cancer risk associated with the use of cellular telephones, the validity of self-reported cellular phone use has been problematic. Up to now...... there is very little information published on this subject. METHODS: We conducted a study to validate the questionnaire used in an ongoing international case-control study on cellular phone use, the "Interphone study". Self-reported cellular phone use from 68 of 104 participants who took part in our study...... was compared with information derived from the network providers over a period of 3 months (taken as the gold standard). RESULTS: Using Spearman's rank correlation, the correlation between self-reported phone use and information from the network providers for cellular phone use in terms of the number of calls...

  9. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Catriona, E-mail: catriona.kelly@qub.ac.uk [SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine (United Kingdom); Flatt, Peter R.; McClenaghan, Neville H. [SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine (United Kingdom)

    2010-08-20

    Research highlights: {yields} TGP52 cells display enhanced functionality in pseudoislet form. {yields} Somatostatin content was reduced, but secretion increased in high glucose conditions. {yields} Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.

  10. Cell-to-cell communication and cellular environment alter the somatostatin status of delta cells

    International Nuclear Information System (INIS)

    Kelly, Catriona; Flatt, Peter R.; McClenaghan, Neville H.

    2010-01-01

    Research highlights: → TGP52 cells display enhanced functionality in pseudoislet form. → Somatostatin content was reduced, but secretion increased in high glucose conditions. → Cellular interactions and environment alter the somatostatin status of TGP52 cells. -- Abstract: Introduction: Somatostatin, released from pancreatic delta cells, is a potent paracrine inhibitor of insulin and glucagon secretion. Islet cellular interactions and glucose homeostasis are essential to maintain normal patterns of insulin secretion. However, the importance of cell-to-cell communication and cellular environment in the regulation of somatostatin release remains unclear. Methods: This study employed the somatostatin-secreting TGP52 cell line maintained in DMEM:F12 (17.5 mM glucose) or DMEM (25 mM glucose) culture media. The effect of pseudoislet formation and culture medium on somatostatin content and release in response to a variety of stimuli was measured by somatostatin EIA. In addition, the effect of pseudoislet formation on cellular viability (MTT and LDH assays) and proliferation (BrdU ELISA) was determined. Results: TGP52 cells readily formed pseudoislets and showed enhanced functionality in three-dimensional form with increased E-cadherin expression irrespective of the culture environment used. However, culture in DMEM decreased cellular somatostatin content (P < 0.01) and increased somatostatin secretion in response to a variety of stimuli including arginine, calcium and PMA (P < 0.001) when compared with cells grown in DMEM:F12. Configuration of TGP52 cells as pseudoislets reduced the proliferative rate and increased cellular cytotoxicity irrespective of culture medium used. Conclusions: Somatostatin secretion is greatly facilitated by cell-to-cell interactions and E-cadherin expression. Cellular environment and extracellular glucose also significantly influence the function of delta cells.

  11. 47 CFR 90.672 - Unacceptable interference to non-cellular 800 MHz licensees from 800 MHz cellular systems or part...

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Unacceptable interference to non-cellular 800 MHz licensees from 800 MHz cellular systems or part 22 Cellular Radiotelephone systems, and within the... Procedures and Process-Unacceptable Interference § 90.672 Unacceptable interference to non-cellular 800 MHz...

  12. The Influence of nonuniform activity distribution on cellular dosimetry

    International Nuclear Information System (INIS)

    Naling, Song; Yuan, Tian; Liangan, Zhang; Guangfu, Dai

    2008-01-01

    S value is an important parameter in determination of absorbed dose in nuclear medicine and radiobiology. The distribution of radioactivity shows significant influence on the S value especially in microdosimetry. In present work, a semi Monte Carlo Model is developed to calculate the microdosimetric cellular S value for different micro-distributions of radioactivity, i.e. uniform, linear increase, linear decrease, exponential increase, exponential decrease and centroid distribution. Emission of alpha particles is simulated by Monte Carlo model and the energy imparted to the target volume is calculated by the analytical Continuous Slowing Down Approximation (CSDA) model and the spline interpolation of range-energy relationship. We calculate tables of S values for 213 Po and 210 Po with various dimensions and most important with various possible micro-distributions of radioactivity, such as linear increase, linear decrease, exponential increase and exponential decrease. Then we compare the S values from cell to cell of uniform distribution with the Hamacher's results to test the feasibility of our model. S values of some nonuniform micro-distributions are compared to the corresponding data of the uniform distribution. The possible sources of these differences are theoretical analyzed. (author)

  13. An agent-based model of cellular dynamics and circadian variability in human endotoxemia.

    Directory of Open Access Journals (Sweden)

    Tung T Nguyen

    Full Text Available As cellular variability and circadian rhythmicity play critical roles in immune and inflammatory responses, we present in this study an agent-based model of human endotoxemia to examine the interplay between circadian controls, cellular variability and stochastic dynamics of inflammatory cytokines. The model is qualitatively validated by its ability to reproduce circadian dynamics of inflammatory mediators and critical inflammatory responses after endotoxin administration in vivo. Novel computational concepts are proposed to characterize the cellular variability and synchronization of inflammatory cytokines in a population of heterogeneous leukocytes. Our results suggest that there is a decrease in cell-to-cell variability of inflammatory cytokines while their synchronization is increased after endotoxin challenge. Model parameters that are responsible for IκB production stimulated by NFκB activation and for the production of anti-inflammatory cytokines have large impacts on system behaviors. Additionally, examining time-dependent systemic responses revealed that the system is least vulnerable to endotoxin in the early morning and most vulnerable around midnight. Although much remains to be explored, proposed computational concepts and the model we have pioneered will provide important insights for future investigations and extensions, especially for single-cell studies to discover how cellular variability contributes to clinical implications.

  14. Origami interleaved tube cellular materials

    International Nuclear Information System (INIS)

    Cheung, Kenneth C; Tachi, Tomohiro; Calisch, Sam; Miura, Koryo

    2014-01-01

    A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis. (paper)

  15. Origami interleaved tube cellular materials

    Science.gov (United States)

    Cheung, Kenneth C.; Tachi, Tomohiro; Calisch, Sam; Miura, Koryo

    2014-09-01

    A novel origami cellular material based on a deployable cellular origami structure is described. The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well known in cellular materials with extruded two dimensional geometry, the interleaved tube geometry presented here consists of two orthogonal axes of interleaved tubes with high interfacial surface area and relative volume that changes with fold-state. In addition, the foldability still allows for fabrication by a flat lamination process, similar to methods used for conventional expanded two dimensional cellular materials. This article presents the geometric characteristics of the structure together with corresponding kinematic and mechanical modeling, explaining the orthotropic elastic behavior of the structure with classical dimensional scaling analysis.

  16. Estimating cellular network performance during hurricanes

    International Nuclear Information System (INIS)

    Booker, Graham; Torres, Jacob; Guikema, Seth; Sprintson, Alex; Brumbelow, Kelly

    2010-01-01

    Cellular networks serve a critical role during and immediately after a hurricane, allowing citizens to contact emergency services when land-line communication is lost and serving as a backup communication channel for emergency responders. However, due to their ubiquitous deployment and limited design for extreme loading events, basic network elements, such as cellular towers and antennas are prone to failures during adverse weather conditions such as hurricanes. Accordingly, a systematic and computationally feasible approach is required for assessing and improving the reliability of cellular networks during hurricanes. In this paper we develop a new multi-disciplinary approach to efficiently and accurately assess cellular network reliability during hurricanes. We show how the performance of a cellular network during and immediately after future hurricanes can be estimated based on a combination of hurricane wind field models, structural reliability analysis, Monte Carlo simulation, and cellular network models and simulation tools. We then demonstrate the use of this approach for assessing the improvement in system reliability that can be achieved with discrete topological changes in the system. Our results suggest that adding redundancy, particularly through a mesh topology or through the addition of an optical fiber ring around the perimeter of the system can be an effective way to significantly increase the reliability of some cellular systems during hurricanes.

  17. Cosserat modeling of cellular solids

    NARCIS (Netherlands)

    Onck, P.R.

    Cellular solids inherit their macroscopic mechanical properties directly from the cellular microstructure. However, the characteristic material length scale is often not small compared to macroscopic dimensions, which limits the applicability of classical continuum-type constitutive models. Cosserat

  18. Recursive definition of global cellular-automata mappings

    DEFF Research Database (Denmark)

    Feldberg, Rasmus; Knudsen, Carsten; Rasmussen, Steen

    1994-01-01

    A method for a recursive definition of global cellular-automata mappings is presented. The method is based on a graphical representation of global cellular-automata mappings. For a given cellular-automaton rule the recursive algorithm defines the change of the global cellular-automaton mapping...... as the number of lattice sites is incremented. A proof of lattice size invariance of global cellular-automata mappings is derived from an approximation to the exact recursive definition. The recursive definitions are applied to calculate the fractal dimension of the set of reachable states and of the set...

  19. Role of NADP+-dependent isocitrate dehydrogenase (NADP+-ICDH) on cellular defence against oxidative injury by gamma-rays.

    Science.gov (United States)

    Lee, S H; Jo, S H; Lee, S M; Koh, H J; Song, H; Park, J W; Lee, W H; Huh, T L

    2004-09-01

    To investigate the regulation of NADPH-producing isocitrate dehydrogenase (ICDH) in cytosol (IDPc) and mitochondria (IDPm) upon gamma-ray irradiation, and the roles of IDPc and IDPm in the protection against cellular damage induced by gamma-ray irradiation. Changes of IDPc and IDPm proteins upon gamma-ray irradiation to NIH3T3 cells were analysed by immunoblotting. To increase or decrease the expression of IDPc or IDPm, NIH3T3 cells were stably transfected with mouse IDPc or IDPm cDNA in either the sense or the antisense direction. The transfected cells with either increased or decreased IDPc or IDPm were exposed to gamma-rays, and the levels of reactive oxygen species generation, protein oxidation and lipid peroxidation were measured. Both IDPc and IDPm activities were induced by gamma-ray in NIH3T3 cells. Cells with decreased expression of IDPc or IDPm had elevated reactive oxygen species generation, lipid peroxidation and protein oxidation. Conversely, overproduction of IDPc or IDPm protein partially protected the cells from oxidative damage induced by gamma-ray irradiation. The protective role of IDPc and IDPm against gamma-ray-induced cellular damage can be attributed to elevated NADPH, reducing equivalents needed for recycling reduced glutathione in the cytosol and mitochondria. Thus, a primary biological function of the ICDHs may be production of NADPH, which is a prerequisite for some cellular defence systems against oxidative damage.

  20. Decreased Fc receptor expression on innate immune cells is associated with impaired antibody-mediated cellular phagocytic activity in chronically HIV-1 infected individuals.

    Science.gov (United States)

    Dugast, Anne-Sophie; Tonelli, Andrew; Berger, Christoph T; Ackerman, Margaret E; Sciaranghella, Gaia; Liu, Qingquan; Sips, Magdalena; Toth, Ildiko; Piechocka-Trocha, Alicja; Ghebremichael, Musie; Alter, Galit

    2011-07-05

    In addition to neutralization, antibodies mediate other antiviral activities including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cellular cytotoxicity (ADCC), as well as complement deposition. While it is established that progressive HIV infection is associated with reduced ADCC and ADCP, the underlying mechanism for this loss of function is unknown. Here we report considerable changes in FcR expression over the course of HIV infection on both mDCs and monocytes, including elevated FcγRI expression in acute HIV infection and reduced expression of FcγRII and FcγRIIIa in chronic HIV infection. Furthermore, selective blockade of FcγRII alone was associated with a loss in ADCP activity, suggesting that FcγRII plays a central role in modulating ADCP. Overall, HIV infection is associated with a number of changes in FcR expression on phagocytic cells that are associated with changes in their ability to respond to antibody-opsonized targets, potentially contributing to a failure in viral clearance in progressive HIV-1 infection. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Decreased Fc-Receptor expression on innate immune cells is associated with impaired antibody mediated cellular phagocytic activity in chronically HIV-1 infected individuals

    Science.gov (United States)

    Dugast, Anne-Sophie; Tonelli, Andrew; Berger, Christoph T.; Ackerman, Margaret E.; Sciaranghella, Gaia; Liu, Qingquan; Sips, Magdalena; Toth, Ildiko; Piechocka-Trocha, Alicja; Ghebremichael, Musie; Alter, Galit

    2011-01-01

    In addition to neutralization, antibodies mediate other antiviral activities including antibody-dependent cellular-phagocytosis (ADCP), antibody dependent cellular-cytotoxicity (ADCC), as well as complement deposition. While it is established that progressive HIV infection is associated with reduced ADCC and ADCP, the underlying mechanism for this loss of function is unknown. Here we report considerable changes in FcR expression over the course of HIV infection on both mDCs and monocytes, including elevated FcγRI expression in acute HIV infection and reduced expression of FcγRII and FcγRIIIa in chronic HIV infection. Furthermore, selective blockade of FcγRII alone was associated with a loss in ADCP activity, suggesting that FcγRII plays a central role in modulating ADCP. Overall, HIV infection is associated with a number of changes in FcR expression on phagocytic cells that are associated with changes in their ability to respond to antibody-opsonized targets, potentially contributing to a failure in viral clearance in progressive HIV-1 infection. PMID:21565376

  2. Evaluation of Structural Cellular Glass

    Science.gov (United States)

    Adams, M. A.; Zwissler, J. G.

    1984-01-01

    Preliminary design information presented. First report discusses state of structural-cellular-glass programs as of June 1979. Second report gives further details of program to develop improved cellular glasses and to characterize properties of glasses and commercially available materials.

  3. Epigenetics and Cellular Metabolism

    OpenAIRE

    Wenyi Xu; Fengzhong Wang; Zhongsheng Yu; Fengjiao Xin

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the proce...

  4. Role of nitric oxide in cellular iron metabolism.

    Science.gov (United States)

    Kim, Sangwon; Ponka, Prem

    2003-03-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) which are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO*, a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO+ (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO+-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  5. Molecular and cellular mechanisms of tight junction dysfunction in the irritable bowel syndrome.

    Science.gov (United States)

    Cheng, Peng; Yao, Jianning; Wang, Chunfeng; Zhang, Lianfeng; Kong, Wuming

    2015-09-01

    The pathophysiological mechanisms of the irritable bowel syndrome (IBS), one of the most prevalent gastrointestinal disorders, are complex and have not been fully elucidated. The present study aimed to investigate the molecular and cellular mechanisms of tight junction (TJ) dysfunction in IBS. Intestinal tissues of IBS and non‑IBS patients were examined to observe cellular changes by cell chemical tracer electron microscopy and transmission electron microscopy, and intestinal claudin‑1 protein was detected by immunohistochemistry, western blot analysis and fluorescence quantitative polymerase chain reaction. Compared with the control group, TJ broadening and the tracer extravasation phenomenon were observed in the diarrhea‑predominant IBS group, and a greater number of neuroendocrine cells and mast cells filled with high‑density particles in the endocrine package pulp as well as a certain extent of vacuolization were present. The expression of claudin‑1 in diarrhea‑predominant IBS patients was decreased, while it was increased in constipation‑predominant IBS patients. In conclusion, the results of the present study indicated that changes in cellular structure and claudin‑1 levels were associated with Tjs in IBS.

  6. Cancer physics: diagnostics based on damped cellular elastoelectrical vibrations in microtubules.

    Science.gov (United States)

    Pokorný, Jiří; Vedruccio, Clarbruno; Cifra, Michal; Kučera, Ondřej

    2011-06-01

    This paper describes a proposed biophysical mechanism of a novel diagnostic method for cancer detection developed recently by Vedruccio. The diagnostic method is based on frequency selective absorption of electromagnetic waves by malignant tumors. Cancer is connected with mitochondrial malfunction (the Warburg effect) suggesting disrupted physical mechanisms. In addition to decreased energy conversion and nonutilized energy efflux, mitochondrial malfunction is accompanied by other negative effects in the cell. Diminished proton space charge layer and the static electric field around the outer membrane result in a lowered ordering level of cellular water and increased damping of microtubule-based cellular elastoelectrical vibration states. These changes manifest themselves in a dip in the amplitude of the signal with the fundamental frequency of the nonlinear microwave oscillator-the core of the diagnostic device-when coupled to the investigated cancerous tissue via the near-field. The dip is not present in the case of healthy tissue.

  7. Health and Cellular Impacts of Air Pollutants: From Cytoprotection to Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Karine Andreau

    2012-01-01

    Full Text Available Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively.

  8. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties.

    Science.gov (United States)

    Katira, Parag; Bonnecaze, Roger T; Zaman, Muhammad H

    2013-01-01

    Malignant transformation, though primarily driven by genetic mutations in cells, is also accompanied by specific changes in cellular and extra-cellular mechanical properties such as stiffness and adhesivity. As the transformed cells grow into tumors, they interact with their surroundings via physical contacts and the application of forces. These forces can lead to changes in the mechanical regulation of cell fate based on the mechanical properties of the cells and their surrounding environment. A comprehensive understanding of cancer progression requires the study of how specific changes in mechanical properties influences collective cell behavior during tumor growth and metastasis. Here we review some key results from computational models describing the effect of changes in cellular and extra-cellular mechanical properties and identify mechanistic pathways for cancer progression that can be targeted for the prediction, treatment, and prevention of cancer.

  9. Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.

    Science.gov (United States)

    Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko

    2017-07-17

    Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.

  10. HJURP regulates cellular senescence in human fibroblasts and endothelial cells via a p53-dependent pathway.

    Science.gov (United States)

    Heo, Jong-Ik; Cho, Jung Hee; Kim, Jae-Ryong

    2013-08-01

    Holliday junction recognition protein (HJURP), a centromere protein-A (CENP-A) histone chaperone, mediates centromere-specific assembly of CENP-A nucleosome, contributing to high-fidelity chromosome segregation during cell division. However, the role of HJURP in cellular senescence of human primary cells remains unclear. We found that the expression levels of HJURP decreased in human dermal fibroblasts and umbilical vein endothelial cells in replicative or premature senescence. Ectopic expression of HJURP in senescent cells partially overcame cell senescence. Conversely, downregulation of HJURP in young cells led to premature senescence. p53 knockdown, but not p16 knockdown, abolished senescence phenotypes caused by HJURP reduction. These data suggest that HJURP plays an important role in the regulation of cellular senescence through a p53-dependent pathway and might contribute to tissue or organismal aging and protection of cellular transformation.

  11. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    Science.gov (United States)

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  12. Valproic acid exposure decreases Cbp/p300 protein expression and histone acetyltransferase activity in P19 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Christina L. [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Winn, Louise M., E-mail: winnl@queensu.ca [Department of Biomedical and Molecular Sciences, Graduate Program in Pharmacology and Toxicology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); School of Environmental Studies, Queen' s University, Kingston, Ontario K7L 3N6 (Canada)

    2016-09-01

    The teratogenicity of the antiepileptic drug valproic acid (VPA) is well established and its inhibition of histone deacetylases (HDAC) is proposed as an initiating factor. Recently, VPA-mediated HDAC inhibition was demonstrated to involve transcriptional downregulation of histone acetyltransferases (HATs), which was proposed to compensate for the increased acetylation resulting from HDAC inhibition. Cbp and p300 are HATs required for embryonic development and deficiencies in either are associated with congenital malformations and embryolethality. The objective of the present study was to characterize Cbp/p300 following VPA exposure in P19 cells. Consistent with previous studies, exposure to 5 mM VPA over 24 h induced a moderate decrease in Cbp/p300 mRNA, which preceded a strong decrease in total cellular protein mediated by ubiquitin-proteasome degradation. Nuclear Cbp/p300 protein was also decreased following VPA exposure, although to a lesser extent. Total cellular and nuclear p300 HAT activity was reduced proportionately to p300 protein levels, however while total cellular HAT activity also decreased, nuclear HAT activity was unaffected. Using the Cbp/p300 HAT inhibitor C646, we demonstrated that HAT inhibition similarly affected many of the same endpoints as VPA, including increased reactive oxygen species and caspase-3 cleavage, the latter of which could be attenuated by pre-treatment with the antioxidant catalase. C646 exposure also decreased NF-κB/p65 protein, which was not due to reduced mRNA and was not attenuated with catalase pre-treatment. This study provides support for an adaptive HAT response following VPA exposure and suggests that reduced Cbp/p300 HAT activity could contribute to VPA-mediated alterations. - Highlights: • VPA exposure in vitro downregulates Cbp/p300 mRNA and induces protein degradation. • Cbp/p300 histone acetyltransferase activity is similarly reduced with VPA exposure. • Inhibition of Cbp/p300 acetyltransferase activity

  13. Cellular Immunity State of Protein-deficient Rats with the Toxic Liver Injury

    Directory of Open Access Journals (Sweden)

    O.N. Voloshchuk

    2017-05-01

    Full Text Available Studies on the role of immunity mechanisms in the emergence and maintenance of inflammatory and destructive processes in the liver under toxic hepatitis and nutrient deficiency are topical. The aim of research – to study the quantitative content and functional activity of leukocytes under the conditions of acetaminophen-induced hepatitis on the background of nutritional protein deficiency. The most pronounced changes in cell-mediated immunity are observed in protein-deficient animals with toxic hepatitis. The pronounced defects of both specific and non-specific cellular immunity were manifested by the leukocytosis, increase number of segmented neutrophils in blood serum against decrease their phagocytic index and phagocytic number, reduction of total lymphocyte number, and simultaneously lowering of T- and B-lymphocytes was established under the conditions of acetaminophen-induced hepatotoxicity on the background of protein deficiency. Installed changes indicate the defective formation of functional immunity state which can manifest by decrease the body’s ability to carry out the reaction of cellular and humoral immunity. Research results may be used for the rationale of therapeutic approaches to the elimination and correction of the consequences of immunological status disturbances under the conditions of acetaminophen-induced hepatitis, aggravated by the alimentary protein deprivation.

  14. Epigenetics and Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wenyi Xu

    2016-01-01

    Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  15. Cellular-based preemption system

    Science.gov (United States)

    Bachelder, Aaron D. (Inventor)

    2011-01-01

    A cellular-based preemption system that uses existing cellular infrastructure to transmit preemption related data to allow safe passage of emergency vehicles through one or more intersections. A cellular unit in an emergency vehicle is used to generate position reports that are transmitted to the one or more intersections during an emergency response. Based on this position data, the one or more intersections calculate an estimated time of arrival (ETA) of the emergency vehicle, and transmit preemption commands to traffic signals at the intersections based on the calculated ETA. Additional techniques may be used for refining the position reports, ETA calculations, and the like. Such techniques include, without limitation, statistical preemption, map-matching, dead-reckoning, augmented navigation, and/or preemption optimization techniques, all of which are described in further detail in the above-referenced patent applications.

  16. Electrolyte effects on the surface chemistry and cellular response of anodized titanium

    International Nuclear Information System (INIS)

    Ohtsu, Naofumi; Kozuka, Taro; Hirano, Mitsuhiro; Arai, Hirofumi

    2015-01-01

    Highlights: • Ti samples were anodized using various electrolytes. • Anodization decreased carbon adsorption, improving hydrophilicity. • Improved hydrophilicity led to improved cellular attachment. • Only one electrolyte showed any heteroatom incorporation into the TiO 2 layer. • Choice of electrolyte played no role on the effects of anodization. - Abstract: Anodic oxidation of titanium (Ti) material is used to enhance biocompatibility, yet the effects of various electrolytes on surface characteristics and cellular behavior have not been completely elucidated. To investigate this topic, oxide layers were produced on Ti substrates by anodizing them in aqueous electrolytes of (NH 4 ) 2 O·5B 2 O 3 , (NH 4 ) 2 SO 4 , or (NH 4 ) 3 PO 4 , after which their surface characteristics and cellular responses were examined. Overall, no surface differences between the electrolytes were visually observed. X-ray photoelectron spectroscopy (XPS) revealed that the anodized surfaces are composed of titanium dioxide (TiO 2 ), while incorporation from electrolyte was only observed for (NH 4 ) 3 PO 4 . Surface adsorption of carbon contaminants during sterilization was suppressed by anodization, leading to lower water contact angles. The attachment of MC3T3-E1 osteoblast-like cells was also improved by anodization, as evidenced by visibly enlarged pseudopods. This improved attachment performance is likely due to TiO 2 formation. Overall, electrolyte selection showed no effect on either surface chemistry or cellular response of Ti materials

  17. Mechanism of cellular uptake and impact of ferucarbotran on macrophage physiology.

    Directory of Open Access Journals (Sweden)

    Chung-Yi Yang

    Full Text Available Superparamagnetic iron oxide (SPIO nanoparticles are contrast agents used for magnetic resonance imaging. Ferucarbotran is a clinically approved SPIO-coated carboxydextran with a diameter of about 45-60 nm. We investigated the mechanism of cellular uptake of Ferucarbotran with a cell model using the murine macrophage cell line Raw 264.7. We observed a dose-dependent uptake of these SPIO particles by spectrophotometer analysis and also a dose-dependent increase in the granularity of the macrophages as determined by flow cytometry. There was a linear correlation between the side scattering mean value and iron content (P<0.001, R(2 = 0. 8048. For evaluation of the endocytotic pathway of these ingested SPIO particles, different inhibitors of the endocytotic pathways were employed. There was a significant decrease of side scattering counts in the cells and a less significant change in signal intensity based on magnetic resonance in the phenylarsine oxide-treated macrophages. After labeling with SPIO particles, the macrophages showed an increase in the production of reactive oxygen species at 2, 24, and 48 h; a decrease in mitochondrial membrane potential at 24 h; and an increase in cell proliferation at 24 h. We concluded that Ferucarbotran was internalized into macrophages via the clathrin-mediated pathway and can change the cellular behavior of these cells after labeling.

  18. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway.

    Science.gov (United States)

    Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying

    2016-04-15

    Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. © 2015 UICC.

  19. Probabilistic cellular automata.

    Science.gov (United States)

    Agapie, Alexandru; Andreica, Anca; Giuclea, Marius

    2014-09-01

    Cellular automata are binary lattices used for modeling complex dynamical systems. The automaton evolves iteratively from one configuration to another, using some local transition rule based on the number of ones in the neighborhood of each cell. With respect to the number of cells allowed to change per iteration, we speak of either synchronous or asynchronous automata. If randomness is involved to some degree in the transition rule, we speak of probabilistic automata, otherwise they are called deterministic. With either type of cellular automaton we are dealing with, the main theoretical challenge stays the same: starting from an arbitrary initial configuration, predict (with highest accuracy) the end configuration. If the automaton is deterministic, the outcome simplifies to one of two configurations, all zeros or all ones. If the automaton is probabilistic, the whole process is modeled by a finite homogeneous Markov chain, and the outcome is the corresponding stationary distribution. Based on our previous results for the asynchronous case-connecting the probability of a configuration in the stationary distribution to its number of zero-one borders-the article offers both numerical and theoretical insight into the long-term behavior of synchronous cellular automata.

  20. 47 CFR 32.5003 - Cellular mobile revenue.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular mobile revenue. 32.5003 Section 32... SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions For Revenue Accounts § 32.5003 Cellular mobile revenue. This account shall include message revenue derived from cellular mobile...

  1. Labelling of brassinosteroids by isotopes of hydrogen and carbon

    Czech Academy of Sciences Publication Activity Database

    Patil, M. R.; Elbert, Tomáš; Keri, R. S.

    2015-01-01

    Roč. 5, č. 50 (2015), s. 39726-39745 ISSN 2046-2069 R&D Projects: GA AV ČR IAA400550801 Institutional support: RVO:61388963 Keywords : biosynthesis * brassinolide * steroids Subject RIV: CC - Organic Chemistry Impact factor: 3.289, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/ra/c5ra04081g

  2. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells

    DEFF Research Database (Denmark)

    Dokkedahl, Karin Stenderup; Justesen, Jeannette; Clausen, Christian

    2003-01-01

    Age-related decrease in bone formation is well described. However, the cellular causes are not known. Thus, we have established cultures of bone marrow stromal cells (MSC) from young (aged 18-29 years, n = 6) and old (aged 68-81 years, n = 5) donors. MSC were serially passaged until reaching maxi...

  3. 47 CFR 22.905 - Channels for cellular service.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Channels for cellular service. 22.905 Section... MOBILE SERVICES Cellular Radiotelephone Service § 22.905 Channels for cellular service. The following frequency bands are allocated for assignment to service providers in the Cellular Radiotelephone Service. (a...

  4. Effect of crumb cellular structure characterized by image analysis on cake softness.

    Science.gov (United States)

    Dewaest, Marine; Villemejane, Cindy; Berland, Sophie; Neron, Stéphane; Clement, Jérôme; Verel, Aliette; Michon, Camille

    2017-10-04

    Sponge cake is a cereal product characterized by an aerated crumb and appreciated for its softness. When formulating such product, it is interesting to be able to characterize the crumb structure using image analysis and to bring knowledge about the effects of the crumb cellular structure on its mechanical properties which contribute to softness. An image analysis method based on mathematical morphology was adapted from the one developed for bread crumb. In order to evaluate its ability to discriminate cellular structures, series of cakes were prepared using two rather similar emulsifiers but also using flours with different aging times before use. The mechanical properties of the crumbs of these different cakes were also characterized. It allowed a cell structure classification taking into account cell size and homogeneity, but also cell wall thickness and the number of holes in the walls. Interestingly, the cellular structure differences had a larger impact on the aerated crumb Young modulus than the wall firmness. Increasing the aging time of flour before use leads to the production of firmer crumbs due to coarser and inhomogeneous cellular structures. Changing the composition of the emulsifier may change the cellular structure and, depending on the type of the structural changes, have an impact on the firmness of the crumb. Cellular structure rather than cell wall firmness was found to impact cake crumb firmness. The new fast and automated tool for cake crumb structure analysis allows detecting quickly any change in cell size or homogeneity but also cell wall thickness and number of holes in the walls (openness degree). To obtain a softer crumb, it seems that options are to decrease the cell size and the cell wall thickness and/or to increase the openness degree. It is then possible to easily evaluate the effects of ingredients (flour composition, emulsifier …) or change in the process on the crumb structure and thus its softness. Moreover, this image

  5. Impaired activity of CCA-adding enzyme TRNT1 impacts OXPHOS complexes and cellular respiration in SIFD patient-derived fibroblasts.

    Science.gov (United States)

    Liwak-Muir, Urszula; Mamady, Hapsatou; Naas, Turaya; Wylie, Quinlan; McBride, Skye; Lines, Matthew; Michaud, Jean; Baird, Stephen D; Chakraborty, Pranesh K; Holcik, Martin

    2016-06-18

    SIFD (Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay) is a novel form of congenital sideroblastic anemia associated with B-cell immunodeficiency, periodic fevers, and developmental delay caused by mutations in the CCA-adding enzyme TRNT1, but the precise molecular pathophysiology is not known. We show that the disease causing mutations in patient-derived fibroblasts do not affect subcellular localization of TRNT1 and show no gross morphological differences when compared to control cells. Analysis of cellular respiration and oxidative phosphorylation (OXPHOS) complexes demonstrates that both basal and maximal respiration rates are decreased in patient cells, which may be attributed to an observed decrease in the abundance of select proteins of the OXPHOS complexes. Our data provides further insight into cellular pathophysiology of SIFD.

  6. Hypoxia decreases creatine uptake in cardiomyocytes, while creatine supplementation enhances HIF activation.

    Science.gov (United States)

    Santacruz, Lucia; Arciniegas, Antonio Jose Luis; Darrabie, Marcus; Mantilla, Jose G; Baron, Rebecca M; Bowles, Dawn E; Mishra, Rajashree; Jacobs, Danny O

    2017-08-01

    Creatine (Cr), phosphocreatine (PCr), and creatine kinases (CK) comprise an energy shuttle linking ATP production in mitochondria with cellular consumption sites. Myocytes cannot synthesize Cr: these cells depend on uptake across the cell membrane by a specialized creatine transporter (CrT) to maintain intracellular Cr levels. Hypoxia interferes with energy metabolism, including the activity of the creatine energy shuttle, and therefore affects intracellular ATP and PCr levels. Here, we report that exposing cultured cardiomyocytes to low oxygen levels rapidly diminishes Cr transport by decreasing V max and K m Pharmacological activation of AMP-activated kinase (AMPK) abrogated the reduction in Cr transport caused by hypoxia. Cr supplementation increases ATP and PCr content in cardiomyocytes subjected to hypoxia, while also significantly augmenting the cellular adaptive response to hypoxia mediated by HIF-1 activation. Our results indicate that: (1) hypoxia reduces Cr transport in cardiomyocytes in culture, (2) the cytoprotective effects of Cr supplementation are related to enhanced adaptive physiological responses to hypoxia mediated by HIF-1, and (3) Cr supplementation increases the cellular ATP and PCr content in RNCMs exposed to hypoxia. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  7. Decreased cisplatin uptake by resistant L1210 leukemia cells

    International Nuclear Information System (INIS)

    Hromas, R.A.; North, J.A.; Burns, C.P.

    1987-01-01

    Cisplatin resistance remains poorly understood compared to other forms of anti-neoplastic drug resistance. In this report radiolabelled cisplatin and rapid separation techniques were used to compare drug uptake by L1210 leukemia cells that are sensitive (K25) or resistant (SCR9) to cisplatin. Uptake of cisplatin by both cell lines was linear without saturation kinetics up to 100 μM. The resistant ZCR9 cells had 36-60% reduced drug uptake as compared to its sensitive parent line, K25. In contrast, there was no difference in the rate of efflux. We conclude that a decreased rate of uptake is one possible mechanism of cellular cisplatin resistance. (Author)

  8. Influence of Some Pesticides on Humoral and Cellular Immunity of Exposed Workers in Pesticides Industries

    International Nuclear Information System (INIS)

    Osely, E.Sh.M.

    2010-01-01

    Pesticide poisoning is a major public health problem in developing countries. In most of these countries organophosphate pesticides constitute the most widely used pesticides. The main toxicity of OPs is neurotoxicity, which is caused by the inhibition of acetylcholinesterase. OPs also affect the immune response, including effects on cellular and humoral immunity. Our study examined the effect of organophosphorus compounds on humoral and cellular immunity of exposed workers in pesticides industries. The study was conducted into 40 subjects. They were 2 groups; 20 exposed workers from Gharbeia and Kafr Elsheikh at 2008 and 2009 and 20 unexposed individuals as a control group at the same period of time. We examined some immune parameters; pseudocholinesterase, WBCs count, CD4%, CD8%, CD4/CD8, CD56%, Interleukin 2, IgG and IgM. Also we take history and clinical examination for them. We reported a highly significant decrease in pseudo cholinesterase level among the exposed group in comparison to the control group, highly significant increase in percentage of CD8 in the exposed group in comparison to control group, highly significant decrease in CD4 / CD8 ratio in the exposed group in comparison to control group, highly significant decrease in percentage of CD56 in the exposed group in comparison to control group and a highly significant increase in IgG level in the exposed group in comparison to control group. On the other hand, we reported no significant change in white blood cells count between the exposed and control groups, no significant change in percentage of CD4 among the exposed and control group, no significant change in Interleukin 2 level among the exposed and control group and no significant change in IgM level among the exposed and control group. We concluded that pesticides extensively affect the humoral and cellular immune system of occupationally exposed workers.

  9. Effect of liniment levamisole on cellular immune functions of patients with chronic hepatitis B.

    Science.gov (United States)

    Wang, Ke-Xia; Zhang, Li-Hua; Peng, Jiang-Long; Liang, Yong; Wang, Xue-Feng; Zhi, Hui; Wang, Xiang-Xia; Geng, Huan-Xiong

    2005-12-07

    To explore the effects of liniment levamisole on cellular immune functions of patients with chronic hepatitis B. The levels of T lymphocyte subsets and mIL-2R in peripheral blood mononuclear cells (PBMCs) were measured by biotin-streptavidin (BSA) technique in patients with chronic hepatitis B before and after the treatment with liniment levamisole. After one course of treatment with liniment levamisole, the levels of CD3(+), CD4(+), and the ratio of CD4(+)/CD8(+) increased as compared to those before the treatment but the level of CD8(+) decreased. The total expression level of mIL-2R in PBMCs increased before and after the treatment with liniment levamisole. Liniment levamisole may reinforce cellular immune functions of patients with chronic hepatitis B.

  10. ZnO nanofluids for the improved cytotoxicity and cellular uptake of doxorubicin

    Directory of Open Access Journals (Sweden)

    Safoura Soleymani

    2018-01-01

    Full Text Available Objective(s: Combination anticancer therapy holds promise for improving the therapeutic efficacy of chemotherapy drugs such as doxorubicin (DOX as well as decreasing their dose-limiting side effects. Overcoming the side effects of doxorubicin (DOX is a major challenge to the effective treatment of cancer. Zinc oxide nanoparticles (ZnO NPs are emerging as potent tools for a wide variety of biomedical applications. The aim of this study was to develop a combinatorial approach for enhancing the anticancer efficacy and cellular uptake of DOX. Materials and Methods: ZnO NPs were synthesized by the solvothermal method and were characterized by X-ray diffraction (XRD, dynamic light scattering (DLS and transmission electron microscopy (TEM. ZnO NPs were dispersed in 10% bovine serum albumin (BSA and the cytotoxic effect of the resulting ZnO nanofluids was evaluated alone and in combination with DOX on DU145 cells. The influence of ZnO nanofluids on the cellular uptake of DOX and DOX-induced catalase mRNA expression were investigated by fluorescence microscopy and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR, respectively. Results: The MTT results revealed that ZnO nanofluids decreased the cell viability of DU145 cells in a timeand dose-dependent manner. Simultaneous combination treatment of DOX and ZnO nanofluid showed a significant increase in anticancer activity and the cellular uptake of DOX compared to DOX alone. Also, a time-dependent reduction of catalase mRNA expression was observed in the cells treated with ZnO nanofluids and DOX, alone and in combination with each other. Conclusion: These results indicate the role of ZnO nanofluid as a growth-inhibitory agent and a drug delivery system for DOX in DU145 cells. Thus, ZnO nanofluid could be a candidate for combination chemotherapy.

  11. 47 CFR 22.901 - Cellular service requirements and limitations.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular service requirements and limitations... SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.901 Cellular service requirements and limitations. The licensee of each cellular system is responsible for ensuring that its cellular system...

  12. Health aspects of cellular mobile telephones

    International Nuclear Information System (INIS)

    Garn, H.

    1996-01-01

    Cellular mobile telephones are one of the main topics among health aspects of electromagnetic fields. In many countries, the number of people opposing communication towers is on the rise. Lawsuits against telecommunication and power line companies have been filed. All this makes people doubt the safety of electromagnetic fields. With respect to cellular phones, there are two scenarios: * Exposure of the operators of hand-held terminals (HHT). * Exposure of the general public from base stations (BS). In the first case, the transmit antenna of the HHT is very close to the human body. For normal operation, the distance will roughly be 2 - 3 cm. The transmitter power of the HHT is comparatively low, but there is a considerable fraction of the radiated electromagnetic energy penetrating the tissue. Considering the second case, BS transmitter powers are by a factor of 100-1000 higher, but the distance between antenna and the human body is by a factor of 1000-100,000 greater, as far as areas of unrestricted public access are concerned. As the power density of an electromagnetic wave decreases inversely proportional to the square of the distance, exposure of the public is always significantly (by many orders of magnitude) lower than exposure of operators of HHTs. Some well-known interaction mechanisms of microwave radiation with the human body have been very well-established today. In some other areas, there is still a need for further research. This paper summarizes present knowledge on human safety with mobile telephone systems. (author)

  13. Cellular phone use while driving at night.

    Science.gov (United States)

    Vivoda, Jonathon M; Eby, David W; St Louis, Renée M; Kostyniuk, Lidia P

    2008-03-01

    Use of a cellular phone has been shown to negatively affect one's attention to the driving task, leading to an increase in crash risk. At any given daylight hour, about 6% of US drivers are actively talking on a hand-held cell phone. However, previous surveys have focused only on cell phone use during the day. Driving at night has been shown to be a riskier activity than driving during the day. The purpose of the current study was to assess the rate of hand-held cellular phone use while driving at night, using specialized night vision equipment. In 2006, two statewide direct observation survey waves of nighttime cellular phone use were conducted in Indiana utilizing specialized night vision equipment. Combined results of driver hand-held cellular phone use from both waves are presented in this manuscript. The rates of nighttime cell phone use were similar to results found in previous daytime studies. The overall rate of nighttime hand-held cellular phone use was 5.8 +/- 0.6%. Cellular phone use was highest for females and for younger drivers. In fact, the highest rate observed during the study (of 11.9%) was for 16-to 29-year-old females. The high level of cellular phone use found within the young age group, coupled with the increased crash risk associated with cellular phone use, nighttime driving, and for young drivers in general, suggests that this issue may become an important transportation-related concern.

  14. Effect of ceruloplasmin on some cellular and humoral immunity indices in irradiated animals

    International Nuclear Information System (INIS)

    Berdyins'kikh, N.K.; Savtsova, Z.D.; Yindik, V.M.

    1993-01-01

    The ceruloplasmin (CD) in animals being permanently under combined external and internal low-intensity ionizing irradiation is shown to increase the level of cellular immunity reactions, including antiviral ones, and of natural resistance reactions, to decrease probability of derangement of biosynthetic processes during the development of immune response, and to increase resistance of animals to influenza infection. The influence of C P on humoral antiviral immunity was not observed

  15. Correlation Between Minimum Apparent Diffusion Coefficient (ADCmin) and Tumor Cellularity: A Meta-analysis.

    Science.gov (United States)

    Surov, Alexey; Meyer, Hans Jonas; Wienke, Andreas

    2017-07-01

    Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique based on measure of water diffusion that can provide information about tissue microstructure, especially about cell count. Increase of cell density induces restriction of water diffusion and decreases apparent diffusion coefficient (ADC). ADC can be divided into three sub-parameters: ADC minimum or ADC min , mean ADC or ADC mean and ADC maximum or ADC max Some studies have suggested that ADC min shows stronger correlations with cell count in comparison to other ADC fractions and may be used as a parameter for estimation of tumor cellularity. The aim of the present meta-analysis was to summarize correlation coefficients between ADC min and cellularity in different tumors based on large patient data. For this analysis, MEDLINE database was screened for associations between ADC and cell count in different tumors up to September 2016. For this work, only data regarding ADC min were included. Overall, 12 publications with 317 patients were identified. Spearman's correlation coefficient was used to analyze associations between ADC min and cellularity. The reported Pearson correlation coefficients in some publications were converted into Spearman correlation coefficients. The pooled correlation coefficient for all included studies was ρ=-0.59 (95% confidence interval (CI)=-0.72 to -0.45), heterogeneity Tau 2 =0.04 (pcorrelated moderately with tumor cellularity. The calculated correlation coefficient is not stronger in comparison to the reported coefficient for ADC mean and, therefore, ADC min does not represent a better means to reflect cellularity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Radiation, nitric oxide and cellular death

    International Nuclear Information System (INIS)

    Dubner, D.; Perez, M.R. Del; Michelin, S.C.; Gisone, P.A.

    1997-01-01

    The mechanisms of radiation induced cellular death constitute an objective of research ever since the first biological effects of radiation were first observed. The explosion of information produced in the last 20 years calls for a careful analysis due to the apparent contradictory data related to the cellular system studied and the range of doses used. This review focuses on the role of the active oxygen species, in particular the nitric oxides, in its relevance as potential mediator of radiation induced cellular death

  17. Predictability in cellular automata.

    Science.gov (United States)

    Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius

    2014-01-01

    Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case.

  18. Phosphorus limitation and heat stress decrease calcification in Emiliania huxleyi

    Science.gov (United States)

    Gerecht, Andrea C.; Šupraha, Luka; Langer, Gerald; Henderiks, Jorijntje

    2018-02-01

    Calcifying haptophytes (coccolithophores) sequester carbon in the form of organic and inorganic cellular components (coccoliths). We examined the effect of phosphorus (P) limitation and heat stress on particulate organic and inorganic carbon (calcite) production in the coccolithophore Emiliania huxleyi. Both environmental stressors are related to rising CO2 levels and affect carbon production in marine microalgae, which in turn impacts biogeochemical cycling. Using semi-continuous cultures, we show that P limitation and heat stress decrease the calcification rate in E. huxleyi. However, using batch cultures, we show that different culturing approaches (batch versus semi-continuous) induce different physiologies. This affects the ratio of particulate inorganic (PIC) to organic carbon (POC) and complicates general predictions on the effect of P limitation on the PIC  /  POC ratio. We found heat stress to increase P requirements in E. huxleyi, possibly leading to lower standing stocks in a warmer ocean, especially if this is linked to lower nutrient input. In summary, the predicted rise in global temperature and resulting decrease in nutrient availability may decrease CO2 sequestration by E. huxleyi through lower overall carbon production. Additionally, the export of carbon may be diminished by a decrease in calcification and a weaker coccolith ballasting effect.

  19. Phosphorus limitation and heat stress decrease calcification in Emiliania huxleyi

    Directory of Open Access Journals (Sweden)

    A. C. Gerecht

    2018-02-01

    Full Text Available Calcifying haptophytes (coccolithophores sequester carbon in the form of organic and inorganic cellular components (coccoliths. We examined the effect of phosphorus (P limitation and heat stress on particulate organic and inorganic carbon (calcite production in the coccolithophore Emiliania huxleyi. Both environmental stressors are related to rising CO2 levels and affect carbon production in marine microalgae, which in turn impacts biogeochemical cycling. Using semi-continuous cultures, we show that P limitation and heat stress decrease the calcification rate in E. huxleyi. However, using batch cultures, we show that different culturing approaches (batch versus semi-continuous induce different physiologies. This affects the ratio of particulate inorganic (PIC to organic carbon (POC and complicates general predictions on the effect of P limitation on the PIC  ∕  POC ratio. We found heat stress to increase P requirements in E. huxleyi, possibly leading to lower standing stocks in a warmer ocean, especially if this is linked to lower nutrient input. In summary, the predicted rise in global temperature and resulting decrease in nutrient availability may decrease CO2 sequestration by E. huxleyi through lower overall carbon production. Additionally, the export of carbon may be diminished by a decrease in calcification and a weaker coccolith ballasting effect.

  20. Cellular metabolic rate is influenced by life-history traits in tropical and temperate birds.

    Science.gov (United States)

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B

    2014-01-01

    In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal's life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species.

  1. Cellular metabolic rate is influenced by life-history traits in tropical and temperate birds.

    Directory of Open Access Journals (Sweden)

    Ana Gabriela Jimenez

    Full Text Available In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR, proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR], using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal's life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species.

  2. Optimization of the diabetic nephropathy treatment with attention to the special features of cellular inflammation mechanisms

    Directory of Open Access Journals (Sweden)

    Тетяна Дмитрівна Щербань

    2016-02-01

    Full Text Available Aim. Optimization of the diabetic nephropathy (DN treatment in association with hypertonic disease (HD based on the study of neutrophil chain of pathogenic cellular mechanisms of these diseases development and the special features of its clinical course.Materials and methods. There were complexly examined 86 patients with HD associated with DN and 30 patients with isolated HD. The control group was formed by 30 practically healthy persons. The activity of NO-synthases in neutrophils was detected by Green colorimetric methods using Griess reagent. The expression of ІСАМ-1 (CD54, CD11b-integrin and inducible NO-synthase on neutrophils was detected by the indirect immunocytochemical method. Oxygen-depending activity of neutrophils was assessed in NBT-test.Results. Expression of adhesive molecules of CD54and CD11b-integrin on neutrophils of peripheral blood essentially increases (р <0,001 in patients with DN in association with HD comparing with isolated HD and the control group.At associated pathology on the background of high oxygen-depending activity of neutrophils its functional reserve decreases that results in intensification of inflammatory processes in kidneys (р<0,001.In comorbid patients chronization of pathological process results in imbalance of NO-synthases system in neutrophils: on the background of decrease of activity of constituent NO-synthases the expression and activity of inducible NO-synthase increase (р<0,001 .The use of L-arginine hydrochloride in the complex therapy of patients with DN associated with HD intensifies organoprotective effect of basal therapy, results in facilitation of the clinical course, decreases albuminuria, corrects the functional indices of neutrophils and diminishes imbalance in NO-synthases system.Conclusions. In patients with DN in association with HD the neutrophil chain of cellular inflammation mechanisms are activated: expression of adhesive molecules grows, oxygen-depending metabolism is

  3. Imaging in cellular and tissue engineering

    CERN Document Server

    Yu, Hanry

    2013-01-01

    Details on specific imaging modalities for different cellular and tissue engineering applications are scattered throughout articles and chapters in the literature. Gathering this information into a single reference, Imaging in Cellular and Tissue Engineering presents both the fundamentals and state of the art in imaging methods, approaches, and applications in regenerative medicine. The book underscores the broadening scope of imaging applications in cellular and tissue engineering. It covers a wide range of optical and biological applications, including the repair or replacement of whole tiss

  4. Cellular Changes during Renal Failure-Induced Inflammatory Aortic Valve Disease.

    Directory of Open Access Journals (Sweden)

    Mony Shuvy

    Full Text Available Aortic valve calcification (AVC secondary to renal failure (RF is an inflammation-regulated process, but its pathogenesis remains unknown. We sought to assess the cellular processes that are involved in the early phases of aortic valve disease using a unique animal model of RF-associated AVC.Aortic valves were obtained from rats that were fed a uremia-inducing diet exclusively for 2, 3, 4, 5, and 6 weeks as well as from controls. Pathological examination of the valves included histological characterization, von Kossa staining, and antigen expression analyses.After 2 weeks, we noted a significant increase in urea and creatinine levels, reflecting RF. RF parameters exacerbated until the Week 5 and plateaued. Whereas no histological changes or calcification was observed in the valves of any study group, macrophage accumulation became apparent as early as 2 weeks after the diet was started and rose after 3 weeks. By western blot, osteoblast markers were expressed after 2 weeks on the diet and decreased after 6 weeks. Collagen 3 was up-regulated after 3 weeks, plateauing at 4 weeks, whereas collagen 1 levels peaked at 2 and 4 weeks. Fibronectin levels increased gradually until Week 5 and decreased at 6 weeks. We observed early activation of the ERK pathway, whereas other pathways remained unchanged.We concluded that RF induces dramatic changes at the cellular level, including macrophage accumulation, activation of cell signaling pathway and extracellular matrix modification. These changes precede valve calcification and may increase propensity for calcification, and have to be investigated further.

  5. Characterizing heterogeneous cellular responses to perturbations.

    Science.gov (United States)

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-09

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  6. Movies of cellular and sub-cellular motion by digital holographic microscopy

    Directory of Open Access Journals (Sweden)

    Yu Lingfeng

    2006-03-01

    Full Text Available Abstract Background Many biological specimens, such as living cells and their intracellular components, often exhibit very little amplitude contrast, making it difficult for conventional bright field microscopes to distinguish them from their surroundings. To overcome this problem phase contrast techniques such as Zernike, Normarsky and dark-field microscopies have been developed to improve specimen visibility without chemically or physically altering them by the process of staining. These techniques have proven to be invaluable tools for studying living cells and furthering scientific understanding of fundamental cellular processes such as mitosis. However a drawback of these techniques is that direct quantitative phase imaging is not possible. Quantitative phase imaging is important because it enables determination of either the refractive index or optical thickness variations from the measured optical path length with sub-wavelength accuracy. Digital holography is an emergent phase contrast technique that offers an excellent approach in obtaining both qualitative and quantitative phase information from the hologram. A CCD camera is used to record a hologram onto a computer and numerical methods are subsequently applied to reconstruct the hologram to enable direct access to both phase and amplitude information. Another attractive feature of digital holography is the ability to focus on multiple focal planes from a single hologram, emulating the focusing control of a conventional microscope. Methods A modified Mach-Zender off-axis setup in transmission is used to record and reconstruct a number of holographic amplitude and phase images of cellular and sub-cellular features. Results Both cellular and sub-cellular features are imaged with sub-micron, diffraction-limited resolution. Movies of holographic amplitude and phase images of living microbes and cells are created from a series of holograms and reconstructed with numerically adjustable

  7. Probing Cellular Dynamics with Mesoscopic Simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2010-01-01

    Cellular processes span a huge range of length and time scales from the molecular to the near-macroscopic. Understanding how effects on one scale influence, and are themselves influenced by, those on lower and higher scales is a critical issue for the construction of models in Systems Biology....... Advances in computing hardware and software now allow explicit simulation of some aspects of cellular dynamics close to the molecular scale. Vesicle fusion is one example of such a process. Experiments, however, typically probe cellular behavior from the molecular scale up to microns. Standard particle...... soon be coupled to Mass Action models allowing the parameters in such models to be continuously tuned according to the finer resolution simulation. This will help realize the goal of a computational cellular simulation that is able to capture the dynamics of membrane-associated processes...

  8. Wireless Cellular Mobile Communications

    Directory of Open Access Journals (Sweden)

    V. Zalud

    2002-12-01

    Full Text Available In this article is briefly reviewed the history of wireless cellularmobile communications, examined the progress in current secondgeneration (2G cellular standards and discussed their migration to thethird generation (3G. The European 2G cellular standard GSM and itsevolution phases GPRS and EDGE are described somewhat in detail. Thethird generation standard UMTS taking up on GSM/GPRS core network andequipped with a new advanced access network on the basis of codedivision multiple access (CDMA is investigated too. A sketch of theperspective of mobile communication beyond 3G concludes this article.

  9. Lycopene: An antioxidant and radioprotector against γ-radiation-induced cellular damages in cultured human lymphocytes

    International Nuclear Information System (INIS)

    Srinivasan, M.; Devipriya, N.; Kalpana, K.B.; Menon, Venugopal P.

    2009-01-01

    The present study aimed to evaluate the radioprotective effect of lycopene, a naturally occurring dietary carotenoid on γ-radiation-induced toxicity. The cellular changes were estimated by using lipid peroxidative indices like thiobarbituric acid reactive substances (TBARS), hydroperoxides (HP), the antioxidants superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH). The DNA damage was analyzed by cytokinesis blocked micronucleus assay (CBMN), dicentric aberration (DC) and translocation frequency. The γ-radiation at different doses (1, 2 and 4 Gy) resulted in a significant increase in the number of micronuclei (MN), DC, translocation frequency, TBARS and HP level, whereas the levels of GSH and antioxidant enzymes were significantly decreased when compared with normal control. The maximum damage to lymphocytes was observed at 4 Gy irradiation. Lycopene pretreatment (1, 5 and 10 μg/ml) significantly decreased the frequency of MN, DC and translocation when compared with γ-radiation control. The levels of TBARS, HP were also decreased and activities of SOD, CAT and GPx were significantly increased along with GSH levels when compared with γ-radiation control. The dose of 5 μg/ml of lycopene was found to be more effective than the other two doses. Thus, our result shows that pretreatment with lycopene offers protection to normal lymphocytes against γ-radiation-induced cellular damage.

  10. Integrated Transceivers for Millimeter Wave and Cellular Communication

    OpenAIRE

    TIRED, TOBIAS

    2016-01-01

    Abstract:This doctoral thesis is addresses two topics in integrated circuit design: multiband direct conversion cellular receivers for cellular frequencies and beam steering transmitters for millimeter wave communication for the cellular backhaul. The trend towards cellular terminals supporting ever more different frequency bands has resulted in complex radio frontends with a large number of RF inputs. Common receivers have, for performance reasons, in the past used differential RF inputs. Ho...

  11. Acrolein-exposed normal human lung fibroblasts in vitro: cellular senescence, enhanced telomere erosion, and degradation of Werner's syndrome protein.

    Science.gov (United States)

    Jang, Jun-Ho; Bruse, Shannon; Huneidi, Salam; Schrader, Ronald M; Monick, Martha M; Lin, Yong; Carter, A Brent; Klingelhutz, Aloysius J; Nyunoya, Toru

    2014-09-01

    Acrolein is a ubiquitous environmental hazard to human health. Acrolein has been reported to activate the DNA damage response and induce apoptosis. However, little is known about the effects of acrolein on cellular senescence. We examined whether acrolein induces cellular senescence in cultured normal human lung fibroblasts (NHLF). We cultured NHLF in the presence or absence of acrolein and determined the effects of acrolein on cell proliferative capacity, senescence-associated β-galactosidase activity, the known senescence-inducing pathways (e.g., p53, p21), and telomere length. We found that acrolein induced cellular senescence by increasing both p53 and p21. The knockdown of p53 mediated by small interfering RNA (siRNA) attenuated acrolein-induced cellular senescence. Acrolein decreased Werner's syndrome protein (WRN), a member of the RecQ helicase family involved in DNA repair and telomere maintenance. Acrolein-induced down-regulation of WRN protein was rescued by p53 knockdown or proteasome inhibition. Finally, we found that acrolein accelerated p53-mediated telomere shortening. These results suggest that acrolein induces p53-mediated cellular senescence accompanied by enhanced telomere attrition and WRN protein down-regulation.

  12. Predictive modeling of multicellular structure formation by using Cellular Particle Dynamics simulations

    Science.gov (United States)

    McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan

    2014-03-01

    Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  13. Toxicity of pyrolysis gases from some cellular polymers

    Science.gov (United States)

    Hilado, C. J.; Machado, A. M.

    1978-01-01

    Various samples of cellular polymers were evaluated for toxicity of pyrolysis gases, using the screening test method developed at the University of San Francisco. The cellular polymer samples included polyimide, polymethacrylimide, polybismaleimide, polyurethane, polyisocyanurate, polyethylene, polychloroprene, polyvinyl chloride, polystyrene, polysiloxane, and polyphosphazene. The cellular polymers exhibited varying levels of toxicity under these test conditions. Among the rigid cellular polymers, times to death were shortest with the imide type foams and longest with polyvinyl chloride and polystyrene. Among the flexible cellular polymers, times to death were shortest with polyimide and polyester, and longest with polychloroprene and polysiloxane. Increased char yield was not necessarily associated with reduced toxicity.

  14. Cellular telephone use and cancer risk

    DEFF Research Database (Denmark)

    Schüz, Joachim; Jacobsen, Rune; Olsen, Jørgen H.

    2006-01-01

    BACKGROUND: The widespread use of cellular telephones has heightened concerns about possible adverse health effects. The objective of this study was to investigate cancer risk among Danish cellular telephone users who were followed for up to 21 years. METHODS: This study is an extended follow......-up of a large nationwide cohort of 420,095 persons whose first cellular telephone subscription was between 1982 and 1995 and who were followed through 2002 for cancer incidence. Standardized incidence ratios (SIRs) were calculated by dividing the number of observed cancer cases in the cohort by the number...... expected in the Danish population. RESULTS: A total of 14,249 cancers were observed (SIR = 0.95; 95% confidence interval [CI] = 0.93 to 0.97) for men and women combined. Cellular telephone use was not associated with increased risk for brain tumors (SIR = 0.97), acoustic neuromas (SIR = 0.73), salivary...

  15. Wavefront cellular learning automata.

    Science.gov (United States)

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2018-02-01

    This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.

  16. Wavefront cellular learning automata

    Science.gov (United States)

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2018-02-01

    This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.

  17. Novel Materials for Cellular Nanosensors

    DEFF Research Database (Denmark)

    Sasso, Luigi

    The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...... and that offer advantages of functionalization, and conducting polymers were used as electrochemical sensor surface modifications for increasing the sensitivity towards relevant analytes, with focus on the detection of dopamine released from cells via exocytosis. Vertical peptide nanowires were synthesized from...

  18. Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Barwal Indu

    2011-12-01

    Full Text Available Abstract Background Elucidation of molecular mechanism of silver nanoparticles (SNPs biosynthesis is important to control its size, shape and monodispersity. The evaluation of molecular mechanism of biosynthesis of SNPs is of prime importance for the commercialization and methodology development for controlling the shape and size (uniform distribution of SNPs. The unicellular algae Chlamydomonas reinhardtii was exploited as a model system to elucidate the role of cellular proteins in SNPs biosynthesis. Results The C. reinhardtii cell free extract (in vitro and in vivo cells mediated synthesis of silver nanoparticles reveals SNPs of size range 5 ± 1 to 15 ± 2 nm and 5 ± 1 to 35 ± 5 nm respectively. In vivo biosynthesized SNPs were localized in the peripheral cytoplasm and at one side of flagella root, the site of pathway of ATP transport and its synthesis related enzymes. This provides an evidence for the involvement of oxidoreductive proteins in biosynthesis and stabilization of SNPs. Alteration in size distribution and decrease of synthesis rate of SNPs in protein-depleted fractions confirmed the involvement of cellular proteins in SNPs biosynthesis. Spectroscopic and SDS-PAGE analysis indicate the association of various proteins on C. reinhardtii mediated in vivo and in vitro biosynthesized SNPs. We have identified various cellular proteins associated with biosynthesized (in vivo and in vitro SNPs by using MALDI-MS-MS, like ATP synthase, superoxide dismutase, carbonic anhydrase, ferredoxin-NADP+ reductase, histone etc. However, these proteins were not associated on the incubation of pre-synthesized silver nanoparticles in vitro. Conclusion Present study provides the indication of involvement of molecular machinery and various cellular proteins in the biosynthesis of silver nanoparticles. In this report, the study is mainly focused towards understanding the role of diverse cellular protein in the synthesis and capping of silver

  19. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

    Directory of Open Access Journals (Sweden)

    Giovanni Dalmasso

    Full Text Available Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis and the removal of damaged mitochondria by selective autophagy (mitophagy. While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1 mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2 restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3 maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4 our model suggests sources of, and stress conditions

  20. Cellularity of certain quantum endomorphism algebras

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Lehrer, G. I.; Zhang, R.

    Let $\\tA=\\Z[q^{\\pm \\frac{1}{2}}][([d]!)\\inv]$ and let $\\Delta_{\\tA}(d)$ be an integral form of the Weyl module of highest weight $d \\in \\N$ of the quantised enveloping algebra $\\U_{\\tA}$ of $\\fsl_2$. We exhibit for all positive integers $r$ an explicit cellular structure for $\\End...... of endomorphism algebras, and another which relates the multiplicities of indecomposable summands to the dimensions of simple modules for an endomorphism algebra. Our cellularity result then allows us to prove that knowledge of the dimensions of the simple modules of the specialised cellular algebra above...

  1. Influence of extra-cellular and intra-cellular acting thiol oxidants on the 45calcium uptake by the islets of Langerhans of the rat

    International Nuclear Information System (INIS)

    Haegele, R.G.

    1981-01-01

    The glucose-stimulated calcium uptake by the islets of Langerhans is dependent on the intra-cellular GSH/GSSG ratios. The inhibition of calcium uptake is not the consequence of a direct oxidation of membrane-fixed thiol groups. In contrast, direct oxidation of extra cellular thiols leads to an increase in calcium uptake when intra-cellular oxidation is simultaneously prevented. Since this effect only occurs at high intra-cellular GSH/GSSG ratios it can be assumed that the redox state of extra-cellular thiols is dependent on the redox state of the intra-cellular GSH/GSSG ratios. These findings support the theory that the oxidation of extra-cellular thiols by thiol oxidants leads to an increase in calcium uptake and that the extent of uptake is higher, the more the redox state of the extra-cellular thiols tends towards the reduced state prior to oxidation. (orig./MG) [de

  2. miR-103 Promotes Neurite Outgrowth and Suppresses Cells Apoptosis by Targeting Prostaglandin-Endoperoxide Synthase 2 in Cellular Models of Alzheimer's Disease.

    Science.gov (United States)

    Yang, Hui; Wang, Hongcai; Shu, Yongwei; Li, Xuling

    2018-01-01

    miR-103 has been reported to be decreased in brain of transgenic mouse model of Alzheimer's disease (AD) and in cerebrospinal fluid (CSF) of AD patients, while the detailed mechanism of its effect on AD is obscure, thus this study aimed to investigate the effect of miR-103 expression on neurite outgrowth and cells apoptosis as well as its targets in cellular models of AD. Blank mimic (NC1-mimic), miR-103 mimic, blank inhibitor (NC2-mimic) and miR-103 inhibitor plasmids were transferred into PC12 cellular AD model and Cellular AD model of cerebral cortex neurons which were established by Aβ1-42 insult. Rescue experiment was subsequently performed by transferring Prostaglandin-endoperoxide synthase 2 (PTGS2) and miR-103 mimic plasmid. mRNA and protein expressions were detected by qPCR and Western Blot assays. Total neurite outgrowth was detected by microscope, cells apoptosis was determined by Hoechst/PI assay, and apoptotic markers Caspase 3 and p38 expressions were determined by Western Blot assay. In both PC12 and cerebral cortex neurons cellular AD models, miR-103 mimic increases the total neurite outgrowth compared with NC1-mimic, while miR-103 inhibitor decreases the total neurite outgrowth than NC2-inhibitor. The apoptosis rate was decreased in miR-103 mimic group than NC1-mimic group while increased in miR-103 inhibitor group than NC2-inhibitor group. PTGS2, Adisintegrin and metalloproteinase 10 (ADAM10) and neprilysin (NEP) were selected as target genes of miR-103 by bioinformatics analysis. And PTGS2 was found to be conversely regulated by miR-103 expression while ADAM10 and NEP were not affected. After transfection by PTGS2 and miR-103 mimic plasmid in PC12 cellular AD model, the total neurite growth was shortened compared with miR-103 mimic group, and cells apoptosis was enhanced which indicated PTGS2 mimic attenuated the influence of miR-103 mimic on progression of AD. In conclusion, miR-103 promotes total neurite outgrowth and inhibits cells apoptosis

  3. Modems for emerging digital cellular-mobile radio system

    Science.gov (United States)

    Feher, Kamilo

    1991-01-01

    Digital modem techniques for emerging digital cellular telecommunications-mobile radio system applications are described and analyzed. In particular, theoretical performance, experimental results, principles of operation, and various architectures of pi/4-QPSK (pi/4-shifted coherent or differential QPSK) modems for second-generation US digital cellular radio system applications are presented. The spectral/power efficiency and performance of the pi/4-QPSK modems (American and Japanese digital cellular emerging standards) are studied and briefly compared to GMSK (Gaussian minimum-shift keying) modems (proposed for European DECT and GSM cellular standards). Improved filtering strategies and digital pilot-aided (digital channel sounding) techniques are also considered for pi/4-QPSK and other digital modems. These techniques could significantly improve the performance of digital cellular and other digital land mobile and satellite mobile radio systems. More spectrally efficient modem trends for future cellular/mobile (land mobile) and satellite communication systems applications are also highlighted.

  4. Gestational food restriction decreases placental interleukin-10 expression and markers of autophagy and endoplasmic reticulum stress in murine intrauterine growth restriction.

    Science.gov (United States)

    Chu, Alison; Thamotharan, Shanthie; Ganguly, Amit; Wadehra, Madhuri; Pellegrini, Matteo; Devaskar, Sherin U

    2016-10-01

    Intrauterine growth restriction (IUGR) affects up to 10% of pregnancies and often results in short- and long-term sequelae for offspring. The mechanisms underlying IUGR are poorly understood, but it is known that healthy placentation is essential for nutrient provision to fuel fetal growth, and is regulated by immunologic inputs. We hypothesized that in pregnancy, maternal food restriction (FR) resulting in IUGR would decrease the overall immunotolerant milieu in the placenta, leading to increased cellular stress and death. Our specific objectives were to evaluate (1) key cytokines (eg, IL-10) that regulate maternal-fetal tolerance, (2) cellular processes (autophagy and endoplasmic reticulum [ER] stress) that are immunologically mediated and important for cellular survival and functioning, and (3) the resulting IUGR phenotype and placental histopathology in this animal model. After subjecting pregnant mice to mild and moderate FR from gestational day 10 to 19, we collected placentas and embryos at gestational day 19. We examined RNA sequencing data to identify immunologic pathways affected in IUGR-associated placentas and validated messenger RNA expression changes of genes important in cellular integrity. We also evaluated histopathologic changes in vascular and trophoblastic structures as well as protein expression changes in autophagy, ER stress, and apoptosis in the mouse placentas. Several differentially expressed genes were identified in FR compared with control mice, including a considerable subset that regulates immune tolerance, inflammation, and cellular integrity. In summary, maternal FR decreases the anti-inflammatory effect of IL-10 and suppresses placental autophagic and ER stress responses, despite evidence of dysregulated vascular and trophoblast structures leading to IUGR. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cellular-automata supercomputers for fluid-dynamics modeling

    International Nuclear Information System (INIS)

    Margolus, N.; Toffoli, T.; Vichniac, G.

    1986-01-01

    We report recent developments in the modeling of fluid dynamics, and give experimental results (including dynamical exponents) obtained using cellular automata machines. Because of their locality and uniformity, cellular automata lend themselves to an extremely efficient physical realization; with a suitable architecture, an amount of hardware resources comparable to that of a home computer can achieve (in the simulation of cellular automata) the performance of a conventional supercomputer

  6. Iron Oxide Nanoparticles Stimulates Extra-Cellular Matrix Production in Cellular Spheroids

    Directory of Open Access Journals (Sweden)

    Megan Casco

    2017-01-01

    Full Text Available Nanotechnologies have been integrated into drug delivery, and non-invasive imaging applications, into nanostructured scaffolds for the manipulation of cells. The objective of this work was to determine how the physico-chemical properties of magnetic nanoparticles (MNPs and their spatial distribution into cellular spheroids stimulated cells to produce an extracellular matrix (ECM. The MNP concentration (0.03 mg/mL, 0.1 mg/mL and 0.3 mg/mL, type (magnetoferritin, shape (nanorod—85 nm × 425 nm and incorporation method were studied to determine each of their effects on the specific stimulation of four ECM proteins (collagen I, collagen IV, elastin and fibronectin in primary rat aortic smooth muscle cell. Results demonstrated that as MNP concentration increased there was up to a 6.32-fold increase in collagen production over no MNP samples. Semi-quantitative Immunohistochemistry (IHC results demonstrated that MNP type had the greatest influence on elastin production with a 56.28% positive area stain compared to controls and MNP shape favored elastin stimulation with a 50.19% positive area stain. Finally, there are no adverse effects of MNPs on cellular contractile ability. This study provides insight on the stimulation of ECM production in cells and tissues, which is important because it plays a critical role in regulating cellular functions.

  7. Resveratrol Inhibition of Cellular Respiration: New Paradigm for an Old Mechanism

    Directory of Open Access Journals (Sweden)

    Luis Alberto Madrigal-Perez

    2016-03-01

    Full Text Available Resveratrol (3,4′,5-trihydroxy-trans-stilbene, RSV has emerged as an important molecule in the biomedical area. This is due to its antioxidant and health benefits exerted in mammals. Nonetheless, early studies have also demonstrated its toxic properties toward plant-pathogenic fungi of this phytochemical. Both effects appear to be opposed and caused by different molecular mechanisms. However, the inhibition of cellular respiration is a hypothesis that might explain both toxic and beneficial properties of resveratrol, since this phytochemical: (1 decreases the production of energy of plant-pathogenic organisms, which prevents their proliferation; (2 increases adenosine monophosphate/adenosine diphosphate (AMP/ADP ratio that can lead to AMP protein kinase (AMPK activation, which is related to its health effects, and (3 increases the reactive oxygen species generation by the inhibition of electron transport. This pro-oxidant effect induces expression of antioxidant enzymes as a mechanism to counteract oxidative stress. In this review, evidence is discussed that supports the hypothesis that cellular respiration is the main target of resveratrol.

  8. Cellular Metabolic Rate Is Influenced by Life-History Traits in Tropical and Temperate Birds

    Science.gov (United States)

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B.

    2014-01-01

    In general, tropical birds have a “slow pace of life,” lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal’s life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species. PMID:24498080

  9. Analysis of Human Mobility Based on Cellular Data

    Science.gov (United States)

    Arifiansyah, F.; Saptawati, G. A. P.

    2017-01-01

    Nowadays not only adult but even teenager and children have then own mobile phones. This phenomena indicates that the mobile phone becomes an important part of everyday’s life. Based on these indication, the amount of cellular data also increased rapidly. Cellular data defined as the data that records communication among mobile phone users. Cellular data is easy to obtain because the telecommunications company had made a record of the data for the billing system of the company. Billing data keeps a log of the users cellular data usage each time. We can obtained information from the data about communication between users. Through data visualization process, an interesting pattern can be seen in the raw cellular data, so that users can obtain prior knowledge to perform data analysis. Cellular data processing can be done using data mining to find out human mobility patterns and on the existing data. In this paper, we use frequent pattern mining and finding association rules to observe the relation between attributes in cellular data and then visualize them. We used weka tools for finding the rules in stage of data mining. Generally, the utilization of cellular data can provide supporting information for the decision making process and become a data support to provide solutions and information needed by the decision makers.

  10. Dependence of anaphylactic histamine release from rat mast cells on cellular energy metabolism

    DEFF Research Database (Denmark)

    Johansen, Torben

    1981-01-01

    The relation between anaphylactic histamine release and the adenosine triphosphate (ATP) content of the mast cells was studied. The cells were incubated with glycolytic (2-deoxyglucose) and respiratory inhibitors (antimycin A and oligomycin) in order to decrease the ATP content of the cells prior...... to initiation of the release process by the antigen-antibody reaction. The secretory capacity of mast cells was less related to the cellular level of ATP at the time of activation of the release process by the antigen-antibody reaction than to the rate of cellular energy supply. Furthermore, mast cells were...... pretreated with 2-deoxyglucose. The release of histamine from these cells was reduced when respiratory inhibitors were added to the cell suspension 5 to 20 sec after exposure of the cells to antigen. This may indicate that the secretory process requires energy, and it seems necessary that energy should...

  11. Terminal addition in a cellular world.

    Science.gov (United States)

    Torday, J S; Miller, William B

    2018-07-01

    Recent advances in our understanding of evolutionary development permit a reframed appraisal of Terminal Addition as a continuous historical process of cellular-environmental complementarity. Within this frame of reference, evolutionary terminal additions can be identified as environmental induction of episodic adjustments to cell-cell signaling patterns that yield the cellular-molecular pathways that lead to differing developmental forms. Phenotypes derive, thereby, through cellular mutualistic/competitive niche constructions in reciprocating responsiveness to environmental stresses and epigenetic impacts. In such terms, Terminal Addition flows according to a logic of cellular needs confronting environmental challenges over space-time. A reconciliation of evolutionary development and Terminal Addition can be achieved through a combined focus on cell-cell signaling, molecular phylogenies and a broader understanding of epigenetic phenomena among eukaryotic organisms. When understood in this manner, Terminal Addition has an important role in evolutionary development, and chronic disease might be considered as a form of 'reverse evolution' of the self-same processes. Copyright © 2017. Published by Elsevier Ltd.

  12. Cellular modeling of fault-tolerant multicomputers

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G

    1987-01-01

    Work described was concerned with a novel method for investigation of fault tolerance in large regular networks of computers. Motivation was to provide a technique useful in rapid evaluation of highly reliable systems that exploit the low cost and ease of volume production of simple microcomputer components. First, a system model and simulator based upon cellular automata are developed. This model is characterized by its simplicity and ease of modification when adapting to new types of network. Second, in order to test and verify the predictive capabilities of the cellular system, a more-detailed simulation is performed based upon an existing computational model, that of the Transputer. An example application is used to exercise various systems designed using the cellular model. Using this simulator, experimental results are obtained both for existing well-understood configurations and for more novel types also developed here. In all cases it was found that the cellular model and simulator successfully predicted the ranking in reliability improvement of the systems studied.

  13. Study of apoptotic mechanisms induced by all-trans retinoic acid and its 13-cis isomer on cellular lines of human hepato carcinoma Hep3B and HepG2

    International Nuclear Information System (INIS)

    Arce Vargas, Frederick

    2006-01-01

    Two cellular lines of liver cancer (Hep3B and HepG2) were incubated during different periods of time with some concentrations of two retinoic acid isomers (ATRA and 13-cis AR) and with 5-fu chemotherapeutic agents, cisplatin and paclitaxel. It was determined if these substances leaded cytotoxicity, apoptosis and if they modified the expression of different genes related to cellular death by apoptosis, in order to explain the hepatocellular carcinoma resistance to these drugs. HepG2 cells showed more resistance than Hep3B cells to 72 hours of treatment, as much ATRA as the 13-cis AR were toxic and produced apoptosis in two cellular lines. This type of cellular death seems to be mediated by a decrease in Bcl-xL concentration in Hep3B cells treated with both retinoids an increase in bax concentration in HepG2 cells treated with 13-cis AR. It were observed 3 and 8 proteolysis of procaspase in Hep3B cells, suggesting extrinsic via activation of the apoptosis, while cellular death in HepG2 cells seems to be independent of caspases. Cisplatin and paclitaxel leaded cytotoxicity to 48 hours of treatment, with significant differences between two cellular lines only in case of paclitaxel. Hep3B cells treated with cisplatin and HepG2 cells treated with paclytaxel suffered apoptosis. 5-FU produced toxicity only when it was used to high concentrations and the mechanism of cellular death induced by this agent seems to be primarily necrosis in Hep3B cells and apoptosis in HepG2. There was decrease in the Bcl-xL concentration in two cellular lines when it was treated with cisplatin and in HepG2 cells treated with 5-FU. Bax concentration there no was modified with no treatment. Activation of the 3 caspases seems to happen only in HepG2 cells with 5-FU and paclytaxel. These two agents, also, decreased the survivin concentration of HepG2 cells. Treatments of the three drugs produced an increase in the expression of this gen in Hep3B cells, which might explain partially the resistance

  14. SIRT3 mediates decrease of oxidative damage and prevention of ageing in porcine fetal fibroblasts.

    Science.gov (United States)

    Xie, Xiaoxian; Wang, Liangliang; Zhao, Binggong; Chen, Yangyang; Li, Jiaqi

    2017-05-15

    Sirtuin 3 (SIRT3) is a mitochondria-specific protein required for the deacetylation of metabolic enzymes and the action of oxidative phosphorylation by acting as a nicotinamide adenine dinucleotide (NAD + )-dependent deacetylase. SIRT3 increases oxidative stress resistance and prevents mitochondrial decay associated with ageing in response to caloric restriction. However, the effects of SIRT3 on oxidative damage and ageing are not well understood. We investigated the physiological functions of porcine SIRT3 on the damage and ageing in porcine fetal fibroblasts (PFFs). Overexpression and knockdown of SIRT3 were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis, respectively. All cells were treated with three different stress reagents 12-o-tetradecanoylphorbol-13-acetate (TPA), methanesulfonic acid methylester (MMS), and tert-butylhydroperoxide (t-BHP), respectively, and then examined by flow cytometry following JC-1 (5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazol-carbocyanine iodide) staining. SIRT3 overexpression enhanced the ability of superoxide dismutase 2 (SOD2) to reduce cellular reactive oxygen species (ROS), which further decreased the damage to the membranes and the organelles of the cells, especially to mitochondria. It inhibited the initial decrease of mitochondrial membrane potential, and prevented the decrease of adenosine triphosphate (ATP) production and activity of Nampt. In contrast, SIRT3 knockdown reduced the ability of SOD2 to increase cellular ROS which was directly correlated with stress-induced oxidative damage and ageing in PFFs. Our findings identify one function of SIRT3 in PFFs was to dampen cytotoxicity, and, therefore, to decrease oxidative damage and attenuate ageing possibly by enhancing the activity of SOD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A radiation measurement study on cellular phone

    International Nuclear Information System (INIS)

    Mohd Yusof Mohd Ali; Rozaimah Abd Rahim; Roha Tukimin; Khairol Nizam Mohamed; Mohd Amirul Nizam Mohamad Thari; Ahmad Fadzli Ahmad Sanusi

    2007-01-01

    This paper will explain the radiation level produced by various selected cellular phone from various models and brands available in the market. The result obtained from this study will also recommend whether a cellular phone is safe for public usage or it might cause any effect on public health. Finally, a database of radiation measurement level produced by selected various cellular phone will also be developed and exhibited in this paper. (Author)

  16. 1,4-Naphthoquinones: From Oxidative Damage to Cellular and Inter-Cellular Signaling

    Directory of Open Access Journals (Sweden)

    Lars-Oliver Klotz

    2014-09-01

    Full Text Available Naphthoquinones may cause oxidative stress in exposed cells and, therefore, affect redox signaling. Here, contributions of redox cycling and alkylating properties of quinones (both natural and synthetic, such as plumbagin, juglone, lawsone, menadione, methoxy-naphthoquinones, and others to cellular and inter-cellular signaling processes are discussed: (i naphthoquinone-induced Nrf2-dependent modulation of gene expression and its potentially beneficial outcome; (ii the modulation of receptor tyrosine kinases, such as the epidermal growth factor receptor by naphthoquinones, resulting in altered gap junctional intercellular communication. Generation of reactive oxygen species and modulation of redox signaling are properties of naphthoquinones that render them interesting leads for the development of novel compounds of potential use in various therapeutic settings.

  17. Changes in the cellular energy state affect the activity of the bacterial phosphotransferase system

    DEFF Research Database (Denmark)

    Rohwer, J.M.; Jensen, Peter Ruhdal; Shinohara, Y.

    1996-01-01

    The effect of different cellular free-energy states on the uptake of methyl alfa-D-glucopyranoside, an analoque of glucose, by Escherichia coli phosphoenolpyruvate:carbohydrate phosphotransferase system was investigated. The intracellular ATP/ADP ratio was varied by changing the expression...... of the atp operon, which codes for the H+-ATPase, or by adding an uncoupler of oxidative phosphorylation or an inhibitor of respiration. Corresponding initial phosphotransferase uptake rates were determined using an improved uptake assay that works with growing cells in steady state. The results show...... that the initial uptake rate was decreased under conditions of lowered intracellular ATP/ADP ratios, irrespective of which method was used to change the cellular energy state.. When either the expression of the atp operon was changed or 2,4-dinitrophenol was added to wild-type cells, the relationship between...

  18. Ion channel signaling influences cellular proliferation and phagocyte activity during axolotl tail regeneration.

    Science.gov (United States)

    Franklin, Brandon M; Voss, S Randal; Osborn, Jeffrey L

    2017-08-01

    Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, K V 2.1, K V 2.2, L-type Ca V channels and H/K ATPases) or completely (GlyR, GABA A R, K V 1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK signaling pathway genes, including decreased expression of erk1/erk2. We also found that complete inhibition via voltage gated K + channel blockade was associated with diminished phagocyte recruitment to the amputation site. The identification of H + pumps as required for axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, the conservation of ion channels as regulators of tissue regeneration. This study provides a preliminary framework for an in-depth investigation of the mechanistic role of ion channels and their potential involvement in regulating cellular proliferation and other processes essential to wound healing, appendage regeneration, and tissue repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Cellular-automata method for phase unwrapping

    International Nuclear Information System (INIS)

    Ghiglia, D.C.; Mastin, G.A.; Romero, L.A.

    1987-01-01

    Research into two-dimensional phase unwrapping has uncovered interesting and troublesome inconsistencies that cause path-dependent results. Cellular automata, which are simple, discrete mathematical systems, offered promise of computation in nondirectional, parallel manner. A cellular automaton was discovered that can unwrap consistent phase data in n dimensions in a path-independent manner and can automatically accommodate noise-induced (pointlike) inconsistencies and arbitrary boundary conditions (region partitioning). For data with regional (nonpointlike) inconsistencies, no phase-unwrapping algorithm will converge, including the cellular-automata approach. However, the automata method permits more simple visualization of the regional inconsistencies. Examples of its behavior on one- and two-dimensional data are presented

  20. Evaluation of the stiffness characteristics of square pore CoCrMo cellular structures manufactured using laser melting technology for potential orthopaedic applications

    International Nuclear Information System (INIS)

    Hazlehurst, Kevin; Wang, Chang Jiang; Stanford, Mark

    2013-01-01

    Highlights: • The compressive properties of CoCrMo cellular structures were investigated. • CoCrMo cellular structures with bone like properties have been presented. • An expression has been proposed to predict the effective elastic modulus. • Structural variation and heterogeneities were modelled within a cellular structure. - Abstract: In order to improve the stress shielding characteristics of orthopaedic devices implants that mimic the mechanical behaviour of bone need to be considered. Additive layer manufacturing processes provide a capability to produce orthopaedic implants with tailored mechanical properties. In this work cobalt chrome molybdenum cellular structures have been designed and manufactured using selective laser melting, with volume based porosity ranging between 25% and 95%. The effective mechanical properties have been determined through uniaxial compression testing and compared to numerical and analytical predictions where differences were observed. Cellular structures have been presented that exhibit similar stiffness and strength characteristics when compared to cortical and cancellous bone in the human femur. An expression has been proposed to predict the effective elastic modulus of cobalt chrome molybdenum cellular structures with volumetric porosity of 65% and above. A finite element modelling technique has been used to demonstrate that structural variation and heterogeneities that are associated with the manufacture of cellular structures can significantly decrease the effective stiffness

  1. The Effects of Imatinib Mesylate on Cellular Viability, Platelet Derived Growth Factor and Stem Cell Factor in Mouse Testicular Normal Leydig Cells.

    Science.gov (United States)

    Kheradmand, Fatemeh; Hashemnia, Seyyed Mohammad Reza; Valizadeh, Nasim; Roshan-Milani, Shiva

    2016-01-01

    Growth factors play an essential role in the development of tumor and normal cells like testicular leydig cells. Treatment of cancer with anti-cancer agents like imatinib mesylate may interfere with normal leydig cell activity, growth and fertility through failure in growth factors' production or their signaling pathways. The purpose of the study was to determine cellular viability and the levels of, platelet derived growth factor (PDGF) and stem cell factor (SCF) in normal mouse leydig cells exposed to imatinib, and addressing the effect of imatinib on fertility potential. The mouse TM3 leydig cells were treated with 0 (control), 2.5, 5, 10 and 20 μM imatinib for 2, 4 and 6 days. Each experiment was repeated three times (15 experiments in each day).The cellular viability and growth factors levels were assessed by MTT and ELISA methods, respectively. For statistical analysis, one-way ANOVA with Tukey's post hoc and Kruskal-Wallis test were performed. A p-value less than 0.05 was considered statistically significant. With increasing drug concentration, cellular viability decreased significantly (pcellular viability, PDGF and SCF levels. Imatinib may reduce fertility potential especially at higher concentrations in patients treated with this drug by decreasing cellular viability. The effect of imatinib on leydig cells is associated with PDGF stimulation. Of course future studies can be helpful in exploring the long term effects of this drug.

  2. The roles of cellular and dendritic microstructural morphologies on the corrosion resistance of Pb-Sb alloys for lead acid battery grids

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Wislei R.; Rosa, Daniel M.; Garcia, Amauri [Department of Materials Engineering, State University of Campinas-UNICAMP, PO Box 6122, 13083-970 Campinas, SP (Brazil)

    2008-01-03

    During the past 20 years, lead acid batteries manufacturers have modified grid manufacturing processes and the chemical composition of the used alloys in order to decrease battery grid weight as well as to reduce the production costs, and to increase the battery life-time cycle and the corrosion resistance. The aim of this study was to evaluate the effects of cellular and dendritic microstructures of two different Pb-Sb alloys on the resultant corrosion behavior. A water-cooled unidirectional solidification system was used to obtain cellular and dendritic structures. Macrostructural and microstructural aspects along the casting have been characterized by optical microscopy and SEM techniques. Electrochemical impedance spectroscopy and potentiodynamic polarization curves were used to analyze the corrosion resistance of samples in a 0.5 M H{sub 2}SO{sub 4} solution at 25 C. For cellular microstructures the corrosion rate decreases with increasing cell spacing. In contrast, finer dendritic spacings exhibit better corrosion resistance than coarser ones. The microstructural pre-programming may be used as an alternative way to produce Pb alloy components in conventional casting, rolled-expanded, and continuous drum casting with better corrosion resistance. (author)

  3. A cryptosystem based on elementary cellular automata

    Science.gov (United States)

    Abdo, A. A.; Lian, Shiguo; Ismail, I. A.; Amin, M.; Diab, H.

    2013-01-01

    Based on elementary cellular automata, a new image encryption algorithm is proposed in this paper. In this algorithm, a special kind of periodic boundary cellular automata with unity attractors is used. From the viewpoint of security, the number of cellular automata attractor states are changed with respect to the encrypted image, and different key streams are used to encrypt different plain images. The cellular neural network with chaotic properties is used as the generator of a pseudo-random key stream. Theoretical analysis and experimental results have both confirmed that the proposed algorithm possesses high security level and good performances against differential and statistical attacks. The comparison with other existing schemes is given, which shows the superiority of the proposal scheme.

  4. Nested cellular automata

    International Nuclear Information System (INIS)

    Quasthoff, U.

    1985-07-01

    Cellular automata by definition consist of a finite or infinite number of cells, say of unit length, with each cell having the same transition function. These cells are usually considered as the smallest elements and so the space filled with these cells becomes discrete. Nevertheless, large pictures created by such cellular automata look very fractal. So we try to replace each cell by a couple of smaller cells, which have the same transition functions as the large ones. There are automata where this replacement does not destroy the macroscopic structure. In these cases this nesting process can be iterated. The paper contains large classes of automata with the above properties. In the case of one dimensional automata with two states and next neighbour interaction and a nesting function of the same type a complete classification is given. (author)

  5. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  6. Theoretical aspects of cellular decision-making and information-processing.

    Science.gov (United States)

    Kobayashi, Tetsuya J; Kamimura, Atsushi

    2012-01-01

    Microscopic biological processes have extraordinary complexity and variety at the sub-cellular, intra-cellular, and multi-cellular levels. In dealing with such complex phenomena, conceptual and theoretical frameworks are crucial, which enable us to understand seemingly different intra- and inter-cellular phenomena from unified viewpoints. Decision-making is one such concept that has attracted much attention recently. Since a number of cellular behavior can be regarded as processes to make specific actions in response to external stimuli, decision-making can cover and has been used to explain a broad range of different cellular phenomena [Balázsi et al. (Cell 144(6):910, 2011), Zeng et al. (Cell 141(4):682, 2010)]. Decision-making is also closely related to cellular information-processing because appropriate decisions cannot be made without exploiting the information that the external stimuli contain. Efficiency of information transduction and processing by intra-cellular networks determines the amount of information obtained, which in turn limits the efficiency of subsequent decision-making. Furthermore, information-processing itself can serve as another concept that is crucial for understanding of other biological processes than decision-making. In this work, we review recent theoretical developments on cellular decision-making and information-processing by focusing on the relation between these two concepts.

  7. The cellular approach to band structure calculations

    International Nuclear Information System (INIS)

    Verwoerd, W.S.

    1982-01-01

    A short introduction to the cellular approach in band structure calculations is given. The linear cellular approach and its potantial applicability in surface structure calculations is given some consideration in particular

  8. Some Properties of topological pressure on cellular automata

    Directory of Open Access Journals (Sweden)

    Chih-Hung Chang

    2014-09-01

    Full Text Available This paper investigates the ergodicity and the power rule of the topological pressure of a cellular automaton. If a cellular automaton is either leftmost or rightmost premutive (due to the terminology given by Hedlund [Math.~Syst.~Theor.~3, 320-375, 1969], then it is ergodic with respect to the uniform Bernoulli measure. More than that, the relation of topological pressure between the original cellular automaton and its power rule is expressed in a closed form. As an application, the topological pressure of a linear cellular automaton can be computed explicitly.

  9. TNF-α inhibits trophoblast integration into endothelial cellular networks.

    Science.gov (United States)

    Xu, B; Nakhla, S; Makris, A; Hennessy, A

    2011-03-01

    Preeclampsia has been linked to shallow trophoblast invasion and failure of uterine spiral artery transformation. Interaction between trophoblast cells and maternal uterine endothelium is critically important for this remodelling. The aim of our study was to investigate the effect of TNF-α on the interactions of trophoblast-derived JEG-3 cells into capillary-like cellular networks. We have employed an in vitro trophoblast-endothelial cell co-culture model to quantify trophoblast integration into endothelial cellular networks and to investigate the effects of TNF-α. Controlled co-cultures were also treated with anti-TNF-α antibody (5 μg/ml) to specifically block the effect of TNF-α. The invasion was evaluated by performing quantitative PCR (Q-PCR) to analyse gene expression of matrix metalloproteinases-2 (MMP-2), MMP-9, tissue inhibitor of matrix metalloproteinase (TIMP)-1, integrins (α(1)β(1) and α(6)β(4)), plasminogen activator inhibitor (PAI)-1, E-cadherin and VE-cadherin. JEG-3 cell integration into endothelial networks was significantly inhibited by exogenous TNF-α. The inhibition was observed in the range of 0.2-5 ng/ml, to a maximum 56% inhibition at the highest concentration. This inhibition was reversed by anti-TNF-α antibody. Q-PCR analysis showed that mRNA expression of integrins α(1)β(1) and MMP-2 was significantly decreased. VE-cadherin mRNA expression was significantly up-regulated (32-80%, p integration into maternal endothelial cellular networks, and this process involves the inhibition of MMP-2 and a failure of integrins switch from α(6)β(4) to α(1)β(1.) These molecular correlations reflect the changes identified in human preeclampsia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Alexander V., E-mail: a.zhdanov@ucc.ie [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland); Waters, Alicia H.C. [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland); Golubeva, Anna V. [Alimentary Pharmabiotic Centre, University College Cork, Bioscience Institute, Western Road, Cork (Ireland); Papkovsky, Dmitri B. [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland)

    2015-01-01

    Changes in availability and utilisation of O{sub 2} and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O{sub 2}. Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP, produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O{sub 2} and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O{sub 2} and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O{sub 2} and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells.

  11. Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling

    International Nuclear Information System (INIS)

    Zhdanov, Alexander V.; Waters, Alicia H.C.; Golubeva, Anna V.; Papkovsky, Dmitri B.

    2015-01-01

    Changes in availability and utilisation of O 2 and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O 2 . Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP, produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O 2 and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O 2 and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O 2 and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells

  12. Reduced expression levels of PTEN are associated with decreased sensitivity of HCC827 cells to icotinib.

    Science.gov (United States)

    Zhai, Yang; Zhang, Yanjun; Nan, Kejun; Liang, Xuan

    2017-05-01

    The clinical resistance of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been linked to EGFR T790M resistance mutations or MET amplifications. Additional mechanisms underlying EGFR-TKI drug resistance remain unclear. The present study demonstrated that icotinib significantly inhibited the proliferation and increased the apoptosis rate of HCC827 cells; the cellular mRNA and protein expression levels of phosphatase and tensin homolog (PTEN) were also significantly downregulated. To investigate the effect of PTEN expression levels on the sensitivity of HCC827 cells to icotinib, PTEN expression was silenced using a PTEN-specific small interfering RNA. The current study identified that the downregulation of PTEN expression levels may promote cellular proliferation in addition to decreasing the apoptosis of HCC827 cells, and may reduce the sensitivity of HCC827 cells to icotinib. These results suggested that reduced PTEN expression levels were associated with the decreased sensitivity of HCC827 cells to icotinib. Furthermore, PTEN expression levels may be a useful marker for predicting icotinib resistance and elucidating the resistance mechanisms underlying EGFR-mutated NSCLC.

  13. Long-Term Sensitization Training in "Aplysia" Decreases the Excitability of a Decision-Making Neuron through a Sodium-Dependent Mechanism

    Science.gov (United States)

    Hernandez, John S.; Wainwright, Marcy L.; Mozzachiodi, Riccardo

    2017-01-01

    In "Aplysia," long-term sensitization (LTS) occurs concurrently with a suppression of feeding. At the cellular level, the suppression of feeding is accompanied by decreased excitability of decision-making neuron B51. We examined the contribution of voltage-gated Na[superscript +] and K[superscript +] channels to B51 decreased…

  14. Advanced 3D Printers for Cellular Solids

    Science.gov (United States)

    2016-06-30

    06-2016 1-Aug-2014 31-Dec-2015 Final Report: Advanced 3D printers for Cellular Solids The views, opinions and/or findings contained in this report are...2211 3d printing, cellular solids REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8...Papers published in non peer-reviewed journals: Final Report: Advanced 3D printers for Cellular Solids Report Title Final Report for DURIP grant W911NF

  15. On Elementary and Algebraic Cellular Automata

    Science.gov (United States)

    Gulak, Yuriy

    In this paper we study elementary cellular automata from an algebraic viewpoint. The goal is to relate the emergent complex behavior observed in such systems with the properties of corresponding algebraic structures. We introduce algebraic cellular automata as a natural generalization of elementary ones and discuss their applications as generic models of complex systems.

  16. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    International Nuclear Information System (INIS)

    Imura, Yoshiyuki; Molho, Melissa; Chuang, Chingkai; Nagy, Peter D.

    2015-01-01

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement both defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase

  17. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    Energy Technology Data Exchange (ETDEWEB)

    Imura, Yoshiyuki, E-mail: imura@brs.nihon-u.ac.jp; Molho, Melissa; Chuang, Chingkai; Nagy, Peter D., E-mail: pdnagy2@uky.edu

    2015-10-15

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement both defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase.

  18. Passive Noise Filtering by Cellular Compartmentalization.

    Science.gov (United States)

    Stoeger, Thomas; Battich, Nico; Pelkmans, Lucas

    2016-03-10

    Chemical reactions contain an inherent element of randomness, which presents itself as noise that interferes with cellular processes and communication. Here we discuss the ability of the spatial partitioning of molecular systems to filter and, thus, remove noise, while preserving regulated and predictable differences between single living cells. In contrast to active noise filtering by network motifs, cellular compartmentalization is highly effective and easily scales to numerous systems without requiring a substantial usage of cellular energy. We will use passive noise filtering by the eukaryotic cell nucleus as an example of how this increases predictability of transcriptional output, with possible implications for the evolution of complex multicellularity. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Studies on the cellular immune response in patients with upper urinary tract carcinoma compawed with those in patients with bladder carcinoma and it's postoperative change

    International Nuclear Information System (INIS)

    Sakai, Shunsuke

    1980-01-01

    Non-specific cellular immunity of patients with upper urinary tract carcinoma was studied by PPD reaction (in vivo or in vitro), lymphocytes subpopulation and macrophage migration inhibition test and the results were compared with those of patients with bladder carcinoma or benign urological diseases. 1) The preoperative cellular immunity of the malignant tumor group gave low values as compared to that in the benign disease group. Although the cellular immunity of patients with renal cell carcinoma showed no difference in the points of their grade and stage, significant differences were noted in patients with bladder carcinoma. The patients with renal pelvic and ureter carcinoma appeared to be similar to the patients with bladder carcinoma in the aspects of immune reactions. 2) In the majority of patients with upper urinary tract and bladder carcinoma, the cellular immunity after complete removal of the carcinoma gave an increased value of each marker as compared to the preoperative value. 3) The cellular immunity after irradiation decreased in the majority of the cases in terms of PPD reaction and T-cell ratio in lymphocyte subpopulation. Irradiation of 4000 - 6000 Rad. showed greater influence on T-cell than on B-cell, but influence of irradiation on cellular immunity was not different by irradiation dose. 4) The cellular immunity indicated decreased values for one to two months after discontinuation of irradiation, but then it showed a tendency to increase in terms of PPD and lymphocytes subpopulation in the patients with satisfactory postoperative courses. 5) Through the pre and postoperative courses, the immunity of the carcinomatous stage seems to be reflected better by the T-cell ratio than by the absolute number of T-cell. It is likely that macrophage migration inhibition test shows much sharper reaction than PPD reaction. (author)

  20. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging

    DEFF Research Database (Denmark)

    Kragstrup, T W; Kjaer, M; Mackey, A L

    2011-01-01

    The extracellular matrix (ECM) of skeletal muscle is critical for force transmission and for the passive elastic response of skeletal muscle. Structural, biochemical, cellular, and functional changes in skeletal muscle ECM contribute to the deterioration in muscle mechanical properties with aging....... Structural changes include an increase in the collagen concentration, a change in the elastic fiber system, and an increase in fat infiltration of skeletal muscle. Biochemical changes include a decreased turnover of collagen with potential accumulation of enzymatically mediated collagen cross...

  1. Cellularized Cellular Solids via Freeze-Casting.

    Science.gov (United States)

    Christoph, Sarah; Kwiatoszynski, Julien; Coradin, Thibaud; Fernandes, Francisco M

    2016-02-01

    The elaboration of metabolically active cell-containing materials is a decisive step toward the successful application of cell based technologies. The present work unveils a new process allowing to simultaneously encapsulate living cells and shaping cell-containing materials into solid-state macroporous foams with precisely controlled morphology. Our strategy is based on freeze casting, an ice templating materials processing technique that has recently emerged for the structuration of colloids into macroporous materials. Our results indicate that it is possible to combine the precise structuration of the materials with cellular metabolic activity for the model organism Saccharomyces cerevisiae. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Bioimpedance monitoring of cellular hydration during hemodialysis therapy.

    Science.gov (United States)

    Montgomery, Leslie D; Montgomery, Richard W; Gerth, Wayne A; Lew, Susie Q; Klein, Michael D; Stewart, Julian M; Medow, Marvin S; Velasquez, Manuel T

    2017-10-01

    Introduction The aim of this paper is to describe and demonstrate how a new bioimpedance analytical procedure can be used to monitor cellular hydration of End Stage Renal Disease (ESRD) patients during hemodialysis (HD). Methods A tetra-polar bioimpedance spectroscope (BIS), (UFI Inc., Morro Bay, CA), was used to measure the tissue resistance and reactance of the calf of 17 ESRD patients at 40 discrete frequencies once a minute during dialysis treatment. These measurements were then used to derive intracellular, interstitial, and intravascular compartment volume changes during dialysis. Findings The mean (± SD) extracellular resistance increased during dialysis from 92.4 ± 3.5 to 117.7 ± 5.8 Ohms. While the mean intracellular resistance decreased from 413.5 ± 11.7 to 348.5 ± 8.2 Ohms. It was calculated from these data that the mean intravascular volume fell 9.5%; interstitial volume fell 33.4%; and intracellular volume gained 20.3%. Discussion These results suggest that an extensive fluid shift into the cells may take place during HD. The present research may contribute to a better understanding of how factors that influence fluid redistribution may affect an ESRD patient during dialysis. In light of this finding, it is concluded that the rate of vascular refill is jointly determined with the rate of "cellular refill" and the transfer of fluid from the intertitial compartment into the intravascular space. © 2016 International Society for Hemodialysis.

  3. Two Phase Flow Simulation Using Cellular Automata

    International Nuclear Information System (INIS)

    Marcel, C.P.

    2002-01-01

    The classical mathematical treatment of two-phase flows is based on the average of the conservation equations for each phase.In this work, a complementary approach to the modeling of these systems based on statistical population balances of aut omata sets is presented.Automata are entities defined by mathematical states that change following iterative rules representing interactions with the neighborhood.A model of automata for two-phase flow simulation is presented.This model consists of fie lds of virtual spheres that change their volumes and move around a certain environment.The model is more general than the classical cellular automata in two respects: the grid of cellular automata is dismissed in favor of a trajectory generator, and the rules of interaction involve parameters representing the actual physical interactions between phases.Automata simulation was used to study unsolved two-phase flow problems involving high heat flux rates. One system described in this work consists of a vertical channel with saturated water at normal pressure heated from the lower surface.The heater causes water to boil and starts the bubble production.We used cellular automata to describe two-phase flows and the interaction with the heater.General rule s for such cellular automata representing bubbles moving in stagnant liquid were used, with special attention to correct modeling of different mechanisms of heat transfer.The results of the model were compared to previous experiments and correlations finding good agreement.One of the most important findings is the confirmation of Kutateladze's idea about a close relation between the start of critical heat flux and a change in the flow's topology.This was analyzed using a control volume located in the upper surface of the heater.A strong decrease in the interfacial surface just before the CHF start was encountered.The automata describe quite well some characteristic parameters such as the shape of the local void fraction in the

  4. Quantifying the global cellular thiol-disulfide status

    DEFF Research Database (Denmark)

    Hansen, Rosa E; Roth, Doris; Winther, Jakob R

    2009-01-01

    It is widely accepted that the redox status of protein thiols is of central importance to protein structure and folding and that glutathione is an important low-molecular-mass redox regulator. However, the total cellular pools of thiols and disulfides and their relative abundance have never been...... determined. In this study, we have assembled a global picture of the cellular thiol-disulfide status in cultured mammalian cells. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated protein (PSSG) in all cellular protein, including membrane proteins. These data...... cell types. However, when cells are exposed to a sublethal dose of the thiol-specific oxidant diamide, PSSG levels increase to >15% of all protein cysteine. Glutathione is typically characterized as the "cellular redox buffer"; nevertheless, our data show that protein thiols represent a larger active...

  5. Cellular basis of morphological variation and temperature-related plasticity in Drosophila melanogaster strains with divergent wing shapes.

    Science.gov (United States)

    Torquato, Libéria Souza; Mattos, Daniel; Matta, Bruna Palma; Bitner-Mathé, Blanche Christine

    2014-12-01

    Organ shape evolves through cross-generational changes in developmental patterns at cellular and/or tissue levels that ultimately alter tissue dimensions and final adult proportions. Here, we investigated the cellular basis of an artificially selected divergence in the outline shape of Drosophila melanogaster wings, by comparing flies with elongated or rounded wing shapes but with remarkably similar wing sizes. We also tested whether cellular plasticity in response to developmental temperature was altered by such selection. Results show that variation in cellular traits is associated with wing shape differences, and that cell number may play an important role in wing shape response to selection. Regarding the effects of developmental temperature, a size-related plastic response was observed, in that flies reared at 16 °C developed larger wings with larger and more numerous cells across all intervein regions relative to flies reared at 25 °C. Nevertheless, no conclusive indication of altered phenotypic plasticity was found between selection strains for any wing or cellular trait. We also described how cell area is distributed across different intervein regions. It follows that cell area tends to decrease along the anterior wing compartment and increase along the posterior one. Remarkably, such pattern was observed not only in the selected strains but also in the natural baseline population, suggesting that it might be canalized during development and was not altered by the intense program of artificial selection for divergent wing shapes.

  6. Cellular energy allocation in zebra mussels exposed along a pollution gradient: linking cellular effects to higher levels of biological organization

    International Nuclear Information System (INIS)

    Smolders, R.; Bervoets, L.; Coen, W. de; Blust, R.

    2004-01-01

    Organisms exposed to suboptimal environments incur a cost of dealing with stress in terms of metabolic resources. The total amount of energy available for maintenance, growth and reproduction, based on the biochemical analysis of the energy budget, may provide a sensitive measure of stress in an organism. While the concept is clear, linking cellular or biochemical responses to the individual and population or community level remains difficult. The aim of this study was to validate, under field conditions, using cellular energy budgets [i.e. changes in glycogen-, lipid- and protein-content and mitochondrial electron transport system (ETS)] as an ecologically relevant measurement of stress by comparing these responses to physiological and organismal endpoints. Therefore, a 28-day in situ bioassay with zebra mussels (Dreissena polymorpha) was performed in an effluent-dominated stream. Five locations were selected along the pollution gradient and compared with a nearby (reference) site. Cellular Energy Allocation (CEA) served as a biomarker of cellular energetics, while Scope for Growth (SFG) indicated effects on a physiological level and Tissue Condition Index and wet tissue weight/dry tissue weight ratio were used as endpoints of organismal effects. Results indicated that energy budgets at a cellular level of biological organization provided the fastest and most sensitive response and energy budgets are a relevant currency to extrapolate cellular effects to higher levels of biological organization within the exposed mussels. - Exposure of zebra mussels along a pollution gradient has adverse effects on the cellular energy allocation, and results can be linked with higher levels of biological organization

  7. Cellular energy allocation in zebra mussels exposed along a pollution gradient: linking cellular effects to higher levels of biological organization

    Energy Technology Data Exchange (ETDEWEB)

    Smolders, R.; Bervoets, L.; Coen, W. de; Blust, R

    2004-05-01

    Organisms exposed to suboptimal environments incur a cost of dealing with stress in terms of metabolic resources. The total amount of energy available for maintenance, growth and reproduction, based on the biochemical analysis of the energy budget, may provide a sensitive measure of stress in an organism. While the concept is clear, linking cellular or biochemical responses to the individual and population or community level remains difficult. The aim of this study was to validate, under field conditions, using cellular energy budgets [i.e. changes in glycogen-, lipid- and protein-content and mitochondrial electron transport system (ETS)] as an ecologically relevant measurement of stress by comparing these responses to physiological and organismal endpoints. Therefore, a 28-day in situ bioassay with zebra mussels (Dreissena polymorpha) was performed in an effluent-dominated stream. Five locations were selected along the pollution gradient and compared with a nearby (reference) site. Cellular Energy Allocation (CEA) served as a biomarker of cellular energetics, while Scope for Growth (SFG) indicated effects on a physiological level and Tissue Condition Index and wet tissue weight/dry tissue weight ratio were used as endpoints of organismal effects. Results indicated that energy budgets at a cellular level of biological organization provided the fastest and most sensitive response and energy budgets are a relevant currency to extrapolate cellular effects to higher levels of biological organization within the exposed mussels. - Exposure of zebra mussels along a pollution gradient has adverse effects on the cellular energy allocation, and results can be linked with higher levels of biological organization.

  8. Exercise decreases lipogenic gene expression in adipose tissue and alters adipocyte cellularity during weight regain after weight loss.

    Directory of Open Access Journals (Sweden)

    Erin Danielle Giles

    2016-02-01

    Full Text Available Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX. Rats were weight maintained for 6 weeks, followed by relapse on: a ad libitum low fat diet (LFD, b ad libitum LFD plus EX, or c a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24h retention of dietary- and de novo-derived fat were assessed directly using 14C palmitate/oleate and 3H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP and subcutaneous (SC adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 & LPL, de novo lipogenesis (FAS, ACC1, and triacylglycerol synthesis (MGAT & DGAT in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising

  9. Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning.

    Science.gov (United States)

    Sohn, Insoo; Liu, Huaping; Ansari, Nirwan

    2015-01-01

    An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction.

  10. Effects of diluents on cellular instabilities in outwardly propagating spherical syngas-air premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Tran Manh; Park, Jeong; Kwon, Oh Boong; Bae, Dae Seok [School of Mechanical Engineering, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Busan 608-739 (Korea); Yun, Jin Han; Keel, Sang In [Environment and Energy Research Division, Korea Institute of Machinery and Materials, 171 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea)

    2010-04-15

    Experiments were conducted in a constant pressure combustion chamber using schlieren system to investigate the effects of carbon dioxide-nitrogen-helium diluents on cellular instabilities of syngas-air premixed flames at room temperature and elevated pressures. The cellular instabilities for the diluted syngas-air flames were interpreted and evaluated in the viewpoint of the hydrodynamic and diffusional-thermal instabilities. Laminar burning velocities and Markstein lengths were calculated by analyzing high-speed schlieren images at various diluent concentrations and equivalence ratios. The measured unstretched laminar burning velocities were compared with the predicted results computed using the PREMIX code with the kinetic mechanism developed by Sun et al. Also, experimentally measured Peclet numbers were compared with the predicted results for fuel-lean flames. Experimental results showed substantial reduction of the laminar burning velocities and of the Markstein lengths with the diluent additions in the fuel blends. Effective Lewis numbers of helium-diluted syngas-air flames increased but those of carbon dioxide- and nitrogen-diluted syngas-air flames decreased in increase of diluents in the reactant mixtures. With helium diluent, the propensity for cells formation was significantly diminished, whereas the cellular instabilities for carbon dioxide- and nitrogen-diluted syngas-air flames were not suppressed. (author)

  11. Release Properties and Cellular Uptake in Caco-2 Cells of Size-Controlled Chitosan Nanoparticles.

    Science.gov (United States)

    Je, Hyun Jeong; Kim, Eun Suh; Lee, Ji-Soo; Lee, Hyeon Gyu

    2017-12-20

    The influences of particle size on the physicochemical, release, and cellular uptake properties of chitosan nanoparticles (CSNPs) were investigated. Ionotropic CSNPs of different sizes (200-1000 nm) loaded with two model core materials (resveratrol or coumarin-6) were prepared using tripolyphosphate and carrageenan as cross-linkers. With an increase of particle size, zeta potential (34.6 ± 0.5 to 51.1 ± 0.9) and entrapment efficiency (14.9 ± 1.4 to 40.9 ± 1.9) of the CSNPs were significantly (p cellular uptake of CSNPs were significantly increased from 3.70 ± 0.03 to 5.24 ± 0.20 with an increase of particle size from 200 to 600 nm, whereas those significantly decreased from 5.24 ± 0.20 to 4.55 ± 0.2 for particles larger than 600 nm in transwell assay. Moreover, much the same uptake patterns were also observed in confocal microscopy and flow cytometry. Investigation of cellular uptake of CSNPs revealed positive correlations between ZP and EE and indicated the effects of complex factors of nanoparticles other than size. These results provide a better understanding of CSNPs absorption and raises the possibility of controlling alternative nanoparticle properties to enhance bioavailability.

  12. Effects of Initial Symmetry on the Global Symmetry of One-Dimensional Legal Cellular Automata

    Directory of Open Access Journals (Sweden)

    Ikuko Tanaka

    2015-09-01

    Full Text Available To examine the development of pattern formation from the viewpoint of symmetry, we applied a two-dimensional discrete Walsh analysis to a one-dimensional cellular automata model under two types of regular initial conditions. The amount of symmetropy of cellular automata (CA models under regular and random initial conditions corresponds to three Wolfram’s classes of CAs, identified as Classes II, III, and IV. Regular initial conditions occur in two groups. One group that makes a broken, regular pattern formation has four types of symmetry, whereas the other group that makes a higher hierarchy pattern formation has only two types. Additionally, both final pattern formations show an increased amount of symmetropy as time passes. Moreover, the final pattern formations are affected by iterations of base rules of CA models of chaos dynamical systems. The growth design formations limit possibilities: the ratio of developing final pattern formations under a regular initial condition decreases in the order of Classes III, II, and IV. This might be related to the difference in degree in reference to surrounding conditions. These findings suggest that calculations of symmetries of the structures of one-dimensional cellular automata models are useful for revealing rules of pattern generation for animal bodies.

  13. Gravitational Effects on Cellular Flame Structure

    Science.gov (United States)

    Dunsky, C. M.; Fernandez-Pello, A. C.

    1991-01-01

    An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.

  14. Anterior gradient protein-2 is a regulator of cellular adhesion in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Diptiman Chanda

    Full Text Available Anterior Gradient Protein (AGR-2 is reported to be over-expressed in many epithelial cancers and promotes metastasis. A clear-cut mechanism for its observed function(s has not been previously identified. We found significant upregulation of AGR-2 expression in a bone metastatic prostate cancer cell line, PC3, following culturing in bone marrow-conditioned medium. Substantial AGR-2 expression was also confirmed in prostate cancer tissue specimens in patients with bone lesions. By developing stable clones of PC3 cells with varying levels of AGR-2 expression, we identified that abrogation of AGR-2 significantly reduced cellular attachment to fibronectin, collagen I, collagen IV, laminin I and fibrinogen. Loss of cellular adhesion was associated with sharp decrease in the expression of α4, α5, αV, β3 and β4 integrins. Failure to undergo apoptosis following detachment is a hallmark of epithelial cancer metastasis. The AGR-2-silenced PC3 cells showed higher resistance to Tumor necrosis factor-related apoptosis- inducing ligand (TRAIL induced apoptosis in vitro. This observation was also supported by significantly reduced Caspase-3 expression in AGR-2-silenced PC3 cells, which is a key effector of both extrinsic and intrinsic death signaling pathways. These data suggest that AGR-2 influence prostate cancer metastasis by regulation of cellular adhesion and apoptosis.

  15. Depolarization-stimulated 42K+ efflux in rat aorta is calcium- and cellular volume-dependent

    International Nuclear Information System (INIS)

    Magliola, L.; Jones, A.W.

    1987-01-01

    The purpose of this study was to investigate the factors controlling membrane permeability to potassium of smooth muscle cells from rat aorta stimulated by depolarization. The increase 42 K+ efflux (change in the rate constant) induced by depolarization (application of high concentrations of potassium chloride) was inhibited significantly by the calcium antagonists diltiazem and nisoldipine. Parallel inhibitory effects on contraction were observed. Diltiazem also inhibited potassium-stimulated 36 Cl- efflux. The addition of 25-150 mM KCl to normal physiologic solution stimulated 42 K+ efflux in a concentration-dependent manner. Diltiazem suppressed potassium-stimulated 42 K+ efflux approximately 90% at 25 mM KCl and approximately 40% at 150 mM KCl. The ability of nisoldipine to inhibit 42 K+ efflux also diminished as the potassium chloride concentration was elevated. The component of efflux that was resistant to calcium antagonists probably resulted from a decrease in the electrochemical gradient for potassium. Cellular water did not change during potassium addition. Substitution of 80 and 150 mM KCl for sodium chloride produced cellular swelling and enhanced potassium-stimulated 42 K+ efflux compared with potassium chloride addition. The addition of sucrose to prevent cellular swelling reduced efflux response to potassium substitution toward that of potassium addition. A hypoosmolar physiologic solution produced an increase in the 42 K+ efflux and a contracture that were both prevented by the addition of sucrose. We concluded that the depolarization-mediated 42 K+ efflux has three components: one is calcium dependent; a second is dependent on cellular volume; and a third is resistant to inhibition by calcium antagonists

  16. THE EFFECT OF CELLULAR PHONE USE ON DRIVING PERFORMANCE

    OpenAIRE

    Toshiro ISHIDA

    2001-01-01

    Many experiments using driving simulators or real roads have shown that using a cellular phone while driving may cause an accident because it delays visual information processing by the driver. In this research, we examined the influence on driving performance of cellular phone use on a course that simulated streets. Driving conditions were driving only, listening to the car radio, hands-free cellular phone use and using a cellular phone with the left hand. Driving performance measurements in...

  17. Noradrenaline decreases spike voltage threshold and induces electrographic sharp waves in turtle medial cortex in vitro.

    Science.gov (United States)

    Lorenzo, Daniel; Velluti, Julio C

    2004-01-01

    The noradrenergic modulation of neuronal properties has been described at different levels of the mammalian brain. Although the anatomical characteristics of the noradrenergic system are well known in reptiles, functional data are scarce. In our study the noradrenergic modulation of cortical electrogenesis in the turtle medial cortex was studied in vitro using a combination of field and intracellular recordings. Turtle EEG consists of a low voltage background interspersed by spontaneous large sharp waves (LSWs). Noradrenaline (NA, 5-40 microM) induced (or enhanced) the generation of LSWs in a dose-dependent manner. Pharmacological experiments suggest the participation of alpha and beta receptors in this effect. In medial cortex neurons NA induced a hyperpolarization of the resting potential and a decrease of input resistance. Both effects were observed also after TTX treatment. Noradrenaline increased the response of the cells to depolarizing pulses, resulting in an upward shift of the frequency/current relation. In most cells the excitability change was mediated by a decrease of the spike voltage threshold resulting in the reduction of the amount of depolarization needed to fire the cell (voltage threshold minus resting potential). As opposed to the mechanisms reported in mammalian neurons, no changes in the frequency adaptation or the post-train afterhyperpolarization were observed. The NA effects at the cellular level were not reproduced by noradrenergic agonists. Age- and species-dependent properties in the pharmacology of adrenergic receptors could be involved in this result. Cellular effects of NA in turtle cortex are similar to those described in mammals, although the increase in cellular excitability seems to be mediated by a different mechanism. Copyright 2004 S. Karger AG, Basel

  18. Ecklonia cava Extract and Dieckol Attenuate Cellular Lipid Peroxidation in Keratinocytes Exposed to PM10.

    Science.gov (United States)

    Lee, Jeong-Won; Seok, Jin Kyung; Boo, Yong Chool

    2018-01-01

    Airborne particulate matter can cause oxidative stress, inflammation, and premature skin aging. Marine plants such as Ecklonia cava Kjellman contain high amounts of polyphenolic antioxidants. The purpose of this study was to examine the antioxidative effects of E. cava extract in cultured keratinocytes exposed to airborne particulate matter with a diameter of <10  μ m (PM10). After the exposure of cultured HaCaT keratinocytes to PM10 in the absence and presence of E. cava extract and its constituents, cell viability and cellular lipid peroxidation were assessed. The effects of eckol and dieckol on cellular lipid peroxidation and cytokine expression were examined in human epidermal keratinocytes exposed to PM10. The total phenolic content of E. cava extract was the highest among the 50 marine plant extracts examined. The exposure of HaCaT cells to PM10 decreased cell viability and increased lipid peroxidation. The PM10-induced cellular lipid peroxidation was attenuated by E. cava extract and its ethyl acetate fraction. Dieckol more effectively attenuated cellular lipid peroxidation than eckol in both HaCaT cells and human epidermal keratinocytes. Dieckol and eckol attenuated the expression of inflammatory cytokines such as tumor necrosis factor- (TNF-) α , interleukin- (IL-) 1 β , IL-6, and IL-8 in human epidermal keratinocytes stimulated with PM10. This study suggested that the polyphenolic constituents of E. cava , such as dieckol, attenuated the oxidative and inflammatory reactions in skin cells exposed to airborne particulate matter.

  19. Global properties of cellular automata

    International Nuclear Information System (INIS)

    Jen, E.

    1986-01-01

    Cellular automata are discrete mathematical systems that generate diverse, often complicated, behavior using simple deterministic rules. Analysis of the local structure of these rules makes possible a description of the global properties of the associated automata. A class of cellular automata that generate infinitely many aperoidic temporal sequences is defined,a s is the set of rules for which inverses exist. Necessary and sufficient conditions are derived characterizing the classes of ''nearest-neighbor'' rules for which arbitrary finite initial conditions (i) evolve to a homogeneous state; (ii) generate at least one constant temporal sequence

  20. Mitofusin 2 decreases intracellular lipids in macrophages by regulating peroxisome proliferator-activated receptor-γ

    International Nuclear Information System (INIS)

    Liu, Chun; Ge, Beihai; He, Chao; Zhang, Yi; Liu, Xiaowen; Liu, Kejian; Qian, Cuiping; Zhang, Yu; Peng, Wenzhong; Guo, Xiaomei

    2014-01-01

    Highlights: • Mfn2 decreases cellular lipid accumulation by activating cholesterol transporters. • PPARγ is involved in the Mfn2-mediated increase of cholesterol transporter expressions. • Inactivation of ERK1/2 and p38 is involved in Mfn2-induced PPARγ expression. - Abstract: Mitofusin 2 (Mfn2) inhibits atherosclerotic plaque formation, but the underlying mechanism remains elusive. This study aims to reveal how Mfn2 functions in the atherosclerosis. Mfn2 expression was found to be significantly reduced in arterial atherosclerotic lesions of both mice and human compared with healthy counterparts. Here, we observed that Mfn2 increased cellular cholesterol transporter expression in macrophages by upregulating peroxisome proliferator-activated receptor-γ, an effect achieved at least partially by inhibiting extracellular signal-regulated kinase1/2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) pathway. These findings provide insights into potential mechanisms of Mfn2-mediated alterations in cholesterol transporter expression, which may have significant implications for the treatment of atherosclerotic heart disease

  1. Mitofusin 2 decreases intracellular lipids in macrophages by regulating peroxisome proliferator-activated receptor-γ

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chun; Ge, Beihai [Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030 (China); He, Chao [Department of Cardiology, China Three Gorges University, Yichang 433000 (China); Zhang, Yi; Liu, Xiaowen [Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030 (China); Liu, Kejian [Department of Cardiology, The First Affiliated Hospital of Medical College, Shihezi University (China); Qian, Cuiping; Zhang, Yu; Peng, Wenzhong [Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030 (China); Guo, Xiaomei, E-mail: xmguo@tjh.tjmu.edu.cn [Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030 (China)

    2014-07-18

    Highlights: • Mfn2 decreases cellular lipid accumulation by activating cholesterol transporters. • PPARγ is involved in the Mfn2-mediated increase of cholesterol transporter expressions. • Inactivation of ERK1/2 and p38 is involved in Mfn2-induced PPARγ expression. - Abstract: Mitofusin 2 (Mfn2) inhibits atherosclerotic plaque formation, but the underlying mechanism remains elusive. This study aims to reveal how Mfn2 functions in the atherosclerosis. Mfn2 expression was found to be significantly reduced in arterial atherosclerotic lesions of both mice and human compared with healthy counterparts. Here, we observed that Mfn2 increased cellular cholesterol transporter expression in macrophages by upregulating peroxisome proliferator-activated receptor-γ, an effect achieved at least partially by inhibiting extracellular signal-regulated kinase1/2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) pathway. These findings provide insights into potential mechanisms of Mfn2-mediated alterations in cholesterol transporter expression, which may have significant implications for the treatment of atherosclerotic heart disease.

  2. Decentralized Cooperation Strategies in Two-Dimensional Traffic of Cellular Automata

    International Nuclear Information System (INIS)

    Fang Jun; Qin Zheng; Xu Zhaohui; Chen Xiqun; Leng Biao; Jiang Zineng

    2012-01-01

    We study the two-dimensional traffic of cellular automata using computer simulation. We propose two type of decentralized cooperation strategies, which are called stepping aside (CS-SA) and choosing alternative routes (CS-CAR) respectively. We introduce them into an existing two-dimensional cellular automata (CA) model. CS-SA is designed to prohibit a kind of ping-pong jump when two objects standing together try to move in opposite directions. CS-CAR is designed to change the solution of conflict in parallel update. CS-CAR encourages the objects involved in parallel conflicts choose their alternative routes instead of waiting. We also combine the two cooperation strategies (CS-SA-CAR) to test their combined effects. It is found that the system keeps on a partial jam phase with nonzero velocity and flow until the density reaches one. The ratios of the ping-pong jump and the waiting objects involved in conflict are decreased obviously, especially at the free phase. And the average flow is improved by the three cooperation strategies. Although the average travel time is lengthened a bit by CS-CAR, it is shorten by CS-SA and CS-SA-CAR. In addition, we discuss the advantage and applicability of decentralized cooperation modeling.

  3. Induction of cellular transformation by irradiation from artificial light sources

    International Nuclear Information System (INIS)

    Withrow, T.J.

    1981-01-01

    Cellular transformation in vitro has been used to test for the carcinogenic potential of chemical and physical insults including light. This report discusses the measurement of transformation, and reviews studies done on the effects of exposure to artificial light on cellular transformation or on cellular transformation by a virus. To date, cool-white lamps have been found to cause cellular transformation, while germicidal lamps and sunlamps have been found to cause cellular transformation and to enhance virally produced transformation

  4. Observations of cellular transformation products in nickel-base superalloys

    International Nuclear Information System (INIS)

    Barlow, C.Y.; Ralph, B.

    1979-01-01

    Transmission electron microscopy has been used to identify the products in cellularly transformed regions of alloys based on the Nimonic 80 A composition. The commercial alloy is shown to undergo a small degree of cellular transformation even after conventional heat treatments, while recrystallization is found to increase the incidence of this reaction type. Low carbon versions of this alloy demonstrate cellular precipitation over a wider range of heat treatments. It is shown that the cellular reaction may take place in these alloys under a variety of different conditions and with a range of driving forces. Reasons for this unexpected behaviour are offeredm as is a suggestion as to why the cellular reaction occurs on a local scale. (author)

  5. Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest.

    Science.gov (United States)

    Sapieha, Przemyslaw; Mallette, Frédérick A

    2018-04-25

    In mitotic cells, cellular senescence is a permanent state of G1 arrest, that may have evolved in parallel to apoptosis, to limit proliferation of damaged cells and oncogenesis. Recent studies have suggested that postmitotic cells are also capable of entering a state of senescence, although the repercussions of postmitotic cellular senescence (PoMiCS) on tissue health and function are currently ill-defined. In tissues made largely of post-mitotic cells, it is evolutionary advantageous to preserve cellular integrity and cellular senescence of post-mitotic cells may prevent stressor-induced tissue degeneration and promote tissue repair. Paradoxically, PoMiCS may also contribute to disease progression through the generation of inflammatory mediators, termed the senescence-associated secretory phenotype. Here, we discuss the potential roles of PoMiCS and propose to enlarge the current definition of cellular senescence to postmitotic terminally differentiated cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Production, properties, and applications of hydrocolloid cellular solids.

    Science.gov (United States)

    Nussinovitch, Amos

    2005-02-01

    Many common synthetic and edible materials are, in fact, cellular solids. When classifying the structure of cellular solids, a few variables, such as open vs. closed cells, flexible vs. brittle cell walls, cell-size distribution, cell-wall thickness, cell shape, the uniformity of the structure of the cellular solid and the different scales of length are taken into account. Compressive stress-strain relationships of most cellular solids can be easily identified according to their characteristic sigmoid shape, reflecting three deformation mechanisms: (i) elastic distortion under small strains, (ii) collapse and/or fracture of the cell walls, and (iii) densification. Various techniques are used to produce hydrocolloid (gum) cellular solids. The products of these include (i) sponges, obtained when the drying gel contains the occasionally produced gas bubbles; (ii) sponges produced by the immobilization of microorganisms; (iii) solid foams produced by drying foamed solutions or gels containing oils, and (iv) hydrocolloid sponges produced by enzymatic reactions. The porosity of the manufactured cellular solid is subject to change and depends on its composition and the processing technique. The porosity is controlled by a range of methods and the resulting surface structures can be investigated by microscopy and analyzed using fractal methods. Models used to describe stress-strain behaviors of hydrocolloid cellular solids as well as multilayered products and composites are discussed in detail in this manuscript. Hydrocolloid cellular solids have numerous purposes, simple and complex, ranging from dried texturized fruits to carriers of vitamins and other essential micronutrients. They can also be used to control the acoustic response of specific dry food products, and have a great potential for future use in countless different fields, from novel foods and packaging to medicine and medical care, daily commodities, farming and agriculture, and the environmental, chemical

  7. Effects of in vitro Brevetoxin Exposure on Apoptosis and Cellular Metabolism in a Leukemic T Cell Line (Jurkat

    Directory of Open Access Journals (Sweden)

    John W. Sleasman

    2008-06-01

    Full Text Available Harmful algal blooms (HABs of the toxic dinoflagellate, Karenia brevis, produce red tide toxins, or brevetoxins. Significant health effects associated with red tide toxin exposure have been reported in sea life and in humans, with brevetoxins documented within immune cells from many species. The objective of this research was to investigate potential immunotoxic effects of brevetoxins using a leukemic T cell line (Jurkat as an in vitro model system. Viability, cell proliferation, and apoptosis assays were conducted using brevetoxin congeners PbTx-2, PbTx-3, and PbTx-6. The effects of in vitro brevetoxin exposure on cell viability and cellular metabolism or proliferation were determined using trypan blue and MTT (1-(4,5-dimethylthiazol-2-yl-3,5- diphenylformazan, respectively. Using MTT, cellular metabolic activity was decreased in Jurkat cells exposed to 5 - 10 μg/ml PbTx-2 or PbTx-6. After 3 h, no significant effects on cell viability were observed with any toxin congener in concentrations up to 10 μg/ml. Viability decreased dramatically after 24 h in cells treated with PbTx-2 or -6. Apoptosis, as measured by caspase-3 activity, was significantly increased in cells exposed to PbTx-2 or PbTx-6. In summary, brevetoxin congeners varied in effects on Jurkat cells, with PbTx-2 and PbTx-6 eliciting greater cellular effects compared to PbTx-3.

  8. WOOD CELLULAR DENDROCLIMATOLOGY: TESTING NEW PROXIES IN GREAT BASIN BRISTLECONE PINE

    Directory of Open Access Journals (Sweden)

    Emanuele Ziaco

    2016-10-01

    Full Text Available Dendroclimatic proxies can be generated from the analysis of wood cellular structures, allowing for a more complete understanding of the physiological mechanisms that control the climatic response of tree species. Century-long (1870-2013 time series of anatomical parameters were developed for Great Basin bristlecone pine (Pinus longaeva D.K. Bailey by capturing strongly contrasted microscopic images through a Confocal Laser Scanning Microscope. Environmental information embedded in wood anatomical series was analyzed in comparison with ring-width series using measures of empirical signal strength. Response functions were calculated against monthly climatic variables to evaluate climate sensitivity of cellular features (e.g. lumen area; lumen diameter for the period 1950-2013. Calibration-verification tests were used to determine the potential to generate long climate reconstructions from these anatomical proxies. A total of eight tree-ring parameters (two ring-width and six chronologies of xylem anatomical parameters were analyzed. Synchronous variability among samples varied among tree-ring parameters, usually decreasing from ring width to anatomical features. Cellular parameters linked to plant hydraulic performance (e.g. tracheid lumen area and radial lumen diameter showed empirical signal strength similar to ring-width series, while noise was predominant in chronologies of lumen tangential width and cell-wall thickness. Climatic signals were different between anatomical and ring-width chronologies, revealing a positive and temporally stable correlation of tracheid size (i.e. lumen and cell diameter with monthly (i.e. March and seasonal precipitation. In particular, tracheid lumen diameter emerged as a reliable moisture indicator and was then used to reconstruct total March-August precipitation from 1870 to 2013. Wood anatomy holds great potential to refine and expand dendroclimatic records by allowing estimates of plant physiological

  9. Cellular chain formation in Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2009-01-01

    ; type I fimbriae expression significantly reduced cellular chain formation, presumably by steric hindrance. Cellular chain formation did not appear to be specific to E coli K-12. Although many urinary tract infection (UTI) isolates were found to form rather homogeneous, flat biofilms, three isolates...

  10. Cellular dosimetry

    International Nuclear Information System (INIS)

    Humm, J.L.; Chin, L.M.

    1989-01-01

    Radiation dose is a useful predictive parameter for describing radiation toxicity in conventional radiotherapy. Traditionally, in vitro radiation biology dose-effect relations are expressed in the form of cell survival curves, a semilog plot of cell survival versus dose. However, the characteristic linear or linear quadratic survival curve shape, for high- and low-LET radiations respectively, is only strictly valid when the radiation dose is uniform across the entire target population. With an external beam of 60 Co gamma rays or x-rays, a uniform field may be readily achievable. When radionuclides are incorporated into a cell milieu, several new problems emerge which can result in a departure from uniformity in energy deposition throughout a cell population. This nonuniformity can have very important consequences for the shape of the survival curve. Cases in which perturbations of source uniformity may arise include: 1. Elemental sources may equilibrate in the cell medium with partition coefficients between the extracellular, cytosol, and nuclear compartments. The effect of preferential cell internalization or binding to cell membrane of some radionuclides can increase or decrease the slope of the survival curve. 2. Radionuclides bound to antibodies, hormones, metabolite precursors, etc., may result in a source localization pattern characteristic of the carrier agent, i.e., the sources may bind to cell surface receptors or antigens, be internalized, bind to secreted antigen concentrated around a fraction of the cell population, or become directly incorporated into the cell DNA. We propose to relate the distribution of energy deposition in cell nuclei to biological correlates of cellular inactivation. The probability of each cell's survival is weighted by its individual radiation burden, and the summation of these probabilities for the cell population can be used to predict the number or fraction of cell survivors

  11. [Simulation of urban ecological security pattern based on cellular automata: a case of Dongguan City, Guangdong Province of South China].

    Science.gov (United States)

    Yang, Qing-Sheng; Qiao, Ji-Gang; Ai, Bin

    2013-09-01

    Taking the Dongguan City with rapid urbanization as a case, and selecting landscape ecological security level as evaluation criterion, the urbanization cellular number of 1 km x 1 km ecological security cells was obtained, and imbedded into the transition rules of cellular automata (CA) as the restraint term to control urban development, establish ecological security urban CA, and simulate ecological security urban development pattern. The results showed the integrated landscape ecological security index of the City decreased from 0.497 in 1998 to 0.395 in 2005, indicating that the ecological security at landscape scale was decreased. The CA-simulated integrated ecological security index of the City in 2005 was increased from the measured 0.395 to 0.479, showing that the simulated urban landscape ecological pressure from human became lesser, ecological security became better, and integrated landscape ecological security became higher. CA could be used as an effective tool in researching urban ecological security.

  12. Reduced labor and condensed schedules with cellular concrete solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lavis, D. [CEMATRIX Inc., Calgary, AB (Canada)

    2008-07-01

    This paper discussed the use of cellular concrete materials in oil sands tank base foundation systems, shallow buried utility insulation systems, roadways, slabs, and buried modules. The concrete is formed from Portland cement, water, specialized pre-formed foaming agents, and air mixed in controlled proportions. Fly ash and polypropylene or glass fibers can also be used as additions. Cellular concrete can often be used to speed up construction and minimize labour requirements. Cellular concrete can be cast-in-place, and has soil-stabilizing and self-compacting features. The concrete can be produced and placed on-site at rates exceeding 120 cubic meters per hour. Cellular concrete can be pumped into place over long distances through flexible hoses. A case study comparing the cellular concrete to traditional plastic foam insulation was used to demonstrate the equivalency and adequacy of insulation, structural properties and installation costs. The study showed that although the cellular concrete had a high installation cost, greater compressive strength was gained. The concrete was self-levelling and did not require compaction or vibration. The use of the cellular concrete resulted in an accelerated construction schedule. 6 refs., 2 tabs., 6 figs.

  13. Cellular energy allocation in zebra mussels exposed along a pollution gradient: linking cellular effects to higher levels of biological organization.

    Science.gov (United States)

    Smolders, R; Bervoets, L; De Coen, W; Blust, R

    2004-05-01

    Organisms exposed to suboptimal environments incur a cost of dealing with stress in terms of metabolic resources. The total amount of energy available for maintenance, growth and reproduction, based on the biochemical analysis of the energy budget, may provide a sensitive measure of stress in an organism. While the concept is clear, linking cellular or biochemical responses to the individual and population or community level remains difficult. The aim of this study was to validate, under field conditions, using cellular energy budgets [i.e. changes in glycogen-, lipid- and protein-content and mitochondrial electron transport system (ETS)] as an ecologically relevant measurement of stress by comparing these responses to physiological and organismal endpoints. Therefore, a 28-day in situ bioassay with zebra mussels (Dreissena polymorpha) was performed in an effluent-dominated stream. Five locations were selected along the pollution gradient and compared with a nearby (reference) site. Cellular Energy Allocation (CEA) served as a biomarker of cellular energetics, while Scope for Growth (SFG) indicated effects on a physiological level and Tissue Condition Index and wet tissue weight/dry tissue weight ratio were used as endpoints of organismal effects. Results indicated that energy budgets at a cellular level of biological organization provided the fastest and most sensitive response and energy budgets are a relevant currency to extrapolate cellular effects to higher levels of biological organization within the exposed mussels.

  14. CCN2/CTGF is required for matrix organization and to protect growth plate chondrocytes from cellular stress.

    Science.gov (United States)

    Hall-Glenn, Faith; Aivazi, Armen; Akopyan, Lusi; Ong, Jessica R; Baxter, Ruth R; Benya, Paul D; Goldschmeding, Roel; van Nieuwenhoven, Frans A; Hunziker, Ernst B; Lyons, Karen M

    2013-08-01

    CCN2 (connective tissue growth factor (CTGF/CCN2)) is a matricellular protein that utilizes integrins to regulate cell proliferation, migration and survival. The loss of CCN2 leads to perinatal lethality resulting from a severe chondrodysplasia. Upon closer inspection of Ccn2 mutant mice, we observed defects in extracellular matrix (ECM) organization and hypothesized that the severe chondrodysplasia caused by loss of CCN2 might be associated with defective chondrocyte survival. Ccn2 mutant growth plate chondrocytes exhibited enlarged endoplasmic reticula (ER), suggesting cellular stress. Immunofluorescence analysis confirmed elevated stress in Ccn2 mutants, with reduced stress observed in Ccn2 overexpressing transgenic mice. In vitro studies revealed that Ccn2 is a stress responsive gene in chondrocytes. The elevated stress observed in Ccn2-/- chondrocytes is direct and mediated in part through integrin α5. The expression of the survival marker NFκB and components of the autophagy pathway were decreased in Ccn2 mutant growth plates, suggesting that CCN2 may be involved in mediating chondrocyte survival. These data demonstrate that absence of a matricellular protein can result in increased cellular stress and highlight a novel protective role for CCN2 in chondrocyte survival. The severe chondrodysplasia caused by the loss of CCN2 may be due to increased chondrocyte stress and defective activation of autophagy pathways, leading to decreased cellular survival. These effects may be mediated through nuclear factor κB (NFκB) as part of a CCN2/integrin/NFκB signaling cascade.

  15. Cellular Therapies Clinical Research Roadmap: lessons learned on how to move a cellular therapy into a clinical trial.

    Science.gov (United States)

    Ouseph, Stacy; Tappitake, Darah; Armant, Myriam; Wesselschmidt, Robin; Derecho, Ivy; Draxler, Rebecca; Wood, Deborah; Centanni, John M

    2015-04-01

    A clinical research roadmap has been developed as a resource for researchers to identify critical areas and potential pitfalls when transitioning a cellular therapy product from the research laboratory, by means of an Investigational New Drug (IND) application, into early-phase clinical trials. The roadmap describes four key areas: basic and preclinical research, resource development, translational research and Good Manufacturing Practice (GMP) and IND assembly and submission. Basic and preclinical research identifies a new therapeutic concept and demonstrates its potential value with the use of a model of the relevant disease. During resource development, the appropriate specialists and the required expertise to bring this product into the clinic are identified (eg, researchers, regulatory specialists, GMP manufacturing staff, clinicians and clinical trials staff, etc). Additionally, the funds required to achieve this goal (or a plan to procure them) are identified. In the next phase, the plan to translate the research product into a clinical-grade therapeutic is developed. Finally regulatory approval to start the trial must be obtained. In the United States, this is done by filing an IND application with the Food and Drug Administration. The National Heart, Lung and Blood Institute-funded Production Assistance for Cellular Therapies program has facilitated the transition of a variety of cellular therapy products from the laboratory into Phase1/2 trials. The five Production Assistance for Cellular Therapies facilities have assisted investigators by performing translational studies and GMP manufacturing to ensure that cellular products met release specifications and were manufactured safely, reproducibly and at the appropriate scale. The roadmap resulting from this experience is the focus of this article. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Cellular Restriction Factors of Feline Immunodeficiency Virus

    Science.gov (United States)

    Zielonka, Jörg; Münk, Carsten

    2011-01-01

    Lentiviruses are known for their narrow cell- and species-tropisms, which are determined by cellular proteins whose absence or presence either support viral replication (dependency factors, cofactors) or inhibit viral replication (restriction factors). Similar to Human immunodeficiency virus type 1 (HIV-1), the cat lentivirus Feline immunodeficiency virus (FIV) is sensitive to recently discovered cellular restriction factors from non-host species that are able to stop viruses from replicating. Of particular importance are the cellular proteins APOBEC3, TRIM5α and tetherin/BST-2. In general, lentiviruses counteract or escape their species’ own variant of the restriction factor, but are targeted by the orthologous proteins of distantly related species. Most of the knowledge regarding lentiviral restriction factors has been obtained in the HIV-1 system; however, much less is known about their effects on other lentiviruses. We describe here the molecular mechanisms that explain how FIV maintains its replication in feline cells, but is largely prevented from cross-species infections by cellular restriction factors. PMID:22069525

  17. Cellular structures in a system of interacting particles

    International Nuclear Information System (INIS)

    Lev, B.I.

    2009-01-01

    The general description of the formation of a cellular structure in the system of interacting particles is proposed. The analytical results for possible cellular structures in the usual colloidal systems, systems of particles immersed in a liquid crystal, and gravitational systems have been presented. It is shown that the formation of a cellular structure in all systems of interacting particles at different temperatures and concentrations of particles has the same physical nature

  18. Application of Digital Cellular Radio for Mobile Location Estimation

    Directory of Open Access Journals (Sweden)

    Farhat Anwar

    2012-08-01

    Full Text Available The capability to locate the position of mobiles is a prerequisite to implement a wide range of evolving ITS services. Radiolocation has the potential to serve a wide geographical area. This paper reports an investigation regarding the feasibility of utilizing cellular radio for the purpose of mobile location estimation. Basic strategies to be utilized for location estimation are elaborated. Two possible approaches for cellular based location estimation are investigated with the help of computer simulation. Their effectiveness and relative merits and demerits are identified. An algorithm specifically adapted for cellular environment is reported with specific features where mobiles, irrespective of their numbers, can locate their position without adversely loading the cellular system.Key Words: ITS, GSM, Cellular Radio, DRGS, GPS.

  19. On the Meta Distribution of Coverage Probability in Uplink Cellular Networks

    KAUST Repository

    Elsawy, Hesham

    2017-04-07

    This letter studies the meta distribution of coverage probability (CP), within a stochastic geometry framework, for cellular uplink transmission with fractional path-loss inversion power control. Using the widely accepted Poisson point process (PPP) for modeling the spatial locations of base stations (BSs), we obtain the percentiles of users that achieve a target uplink CP over an arbitrary, but fixed, realization of the PPP. To this end, the effect of the users activity factor (p) and the path-loss compensation factor () on the uplink performance are analyzed. The results show that decreasing p and/or increasing reduce the CP variation around the spatially averaged value.

  20. Alterations in cellular energy metabolism associated with the antiproliferative effects of the ATM inhibitor KU-55933 and with metformin.

    Directory of Open Access Journals (Sweden)

    Mahvash Zakikhani

    Full Text Available KU-55933 is a specific inhibitor of the kinase activity of the protein encoded by Ataxia telangiectasia mutated (ATM, an important tumor suppressor gene with key roles in DNA repair. Unexpectedly for an inhibitor of a tumor suppressor gene, KU-55933 reduces proliferation. In view of prior preliminary evidence suggesting defective mitochondrial function in cells of patients with Ataxia Telangiectasia (AT, we examined energy metabolism of cells treated with KU-55933. The compound increased AMPK activation, glucose uptake and lactate production while reducing mitochondrial membrane potential and coupled respiration. The stimulation of glycolysis by KU-55933 did not fully compensate for the reduction in mitochondrial functions, leading to decreased cellular ATP levels and energy stress. These actions are similar to those previously described for the biguanide metformin, a partial inhibitor of respiratory complex I. Both compounds decreased mitochondrial coupled respiration and reduced cellular concentrations of fumarate, malate, citrate, and alpha-ketogluterate. Succinate levels were increased by KU-55933 levels and decreased by metformin, indicating that the effects of ATM inhibition and metformin are not identical. These observations suggest a role for ATM in mitochondrial function and show that both KU-55933 and metformin perturb the TCA cycle as well as oxidative phosphorylation.

  1. Profiling cellular and inflammatory changes in the airway wall of mild to moderate COPD.

    Science.gov (United States)

    Eapen, Mathew S; McAlinden, Kielan; Tan, Daniel; Weston, Steven; Ward, Chris; Muller, Hans K; Walters, Eugene H; Sohal, Sukhwinder S

    2017-08-01

    The objective of this study was to enumerate total cells and the number of inflammatory cell differentials in large airways (LAs) versus small airways (SAs) of mild-moderate COPD, and against appropriate controls. For LA, we used endobronchial biopsies and for SA resected lung tissues. Immunostaining was enumerated (cells per mm 2 ) for macrophages, neutrophils, CD4 and CD8 T cells in the lamina propria (LP) up to 150 µM deep for LA and full wall thickness for SA. We confirmed hypocellularity in the LA and in the SA wall in smokers and COPD (P cellularity was least in current smokers with COPD (COPD-CS) (P cellularity was similar across smoker/COPD groups. LA neutrophils were decreased in COPD-CS (P wall inflammation in COPD is oversimplified, and contrast with innate inflammatory activation in the lumen, at least in mild-moderate disease. Any abnormalities in airway wall cell differentials are small, although exaggerated in percentage terms. © 2017 Asian Pacific Society of Respirology.

  2. Coulomb coupling and the role of symmetries in quantum-dot arrays for cellular automata

    International Nuclear Information System (INIS)

    Ramirez, F.; Cota, E.; Ulloa, S. E.

    2000-01-01

    Using a group-theoretical analysis of the symmetries of a quantum dot array, we investigate the role of defects on the energetics of the system and the resulting charge configurations (or polarization of the cell). We find that for the typical four- or five-element geometries proposed, even small asymmetries introduced by defects in the system, or variations in the local electrostatic environment, can give rise to large effects on the polarization of the ground state and the corresponding low-energy excitations. These shifts are likely to produce important effects in the operation of the cellular automata proposed using these quantum dots. In particular, we find that the sensitivity to polarization changes induced by a driver cell decreases dramatically, and the polarization values are no longer fully defined. These effects would both force the use of stronger driving fields, and may also complicate the dynamical behavior of the cellular automata. (c) 2000 The American Physical Society

  3. Calicivirus 3C-like proteinase inhibits cellular translation by cleavage of poly(A)-binding protein.

    Science.gov (United States)

    Kuyumcu-Martinez, Muge; Belliot, Gaël; Sosnovtsev, Stanislav V; Chang, Kyeong-Ok; Green, Kim Y; Lloyd, Richard E

    2004-08-01

    Caliciviruses are single-stranded RNA viruses that cause a wide range of diseases in both humans and animals, but little is known about the regulation of cellular translation during infection. We used two distinct calicivirus strains, MD145-12 (genus Norovirus) and feline calicivirus (FCV) (genus Vesivirus), to investigate potential strategies used by the caliciviruses to inhibit cellular translation. Recombinant 3C-like proteinases (r3CL(pro)) from norovirus and FCV were found to cleave poly(A)-binding protein (PABP) in the absence of other viral proteins. The norovirus r3CL(pro) PABP cleavage products were indistinguishable from those generated by poliovirus (PV) 3C(pro) cleavage, while the FCV r3CL(pro) products differed due to cleavage at an alternate cleavage site 24 amino acids downstream of one of the PV 3C(pro) cleavage sites. All cleavages by calicivirus or PV proteases separated the C-terminal domain of PABP that binds translation factors eIF4B and eRF3 from the N-terminal RNA-binding domain of PABP. The effect of PABP cleavage by the norovirus r3CL(pro) was analyzed in HeLa cell translation extracts, and the presence of r3CL(pro) inhibited translation of both endogenous and exogenous mRNAs. Translation inhibition was poly(A) dependent, and replenishment of the extracts with PABP restored translation. Analysis of FCV-infected feline kidney cells showed that the levels of de novo cellular protein synthesis decreased over time as virus-specific proteins accumulated, and cleavage of PABP occurred in virus-infected cells. Our data indicate that the calicivirus 3CL(pro), like PV 3C(pro), mediates the cleavage of PABP as part of its strategy to inhibit cellular translation. PABP cleavage may be a common mechanism among certain virus families to manipulate cellular translation.

  4. Gold nanoparticles cellular toxicity and recovery: adipose Derived Stromal cells.

    Science.gov (United States)

    Mironava, Tatsiana; Hadjiargyrou, Michael; Simon, Marcia; Rafailovich, Miriam H

    2014-03-01

    Gold nanoparticles (AuNPs) are currently used in numerous medical applications. Herein, we describe their in vitro impact on human adipose-derived stromal cells (ADSCs) using 13 nm and 45 nm citrate-coated AuNPs. In their non-differentiated state, ADSCs were penetrated by the AuNPs and stored in vacuoles. The presence of the AuNPs in ADSCs resulted in increased population doubling times, decreased cell motility and cell-mediated collagen contraction. The degree to which the cells were impacted was a function of particle concentration, where the smaller particles required a sevenfold higher concentration to have the same effect as the larger ones. Furthermore, AuNPs reduced adipogenesis as measured by lipid droplet accumulation and adiponectin secretion. These effects correlated with transient increases in DLK1 and with relative reductions in fibronectin. Upon removal of exogenous AuNPs, cellular NP levels decreased and normal ADSC functions were restored. As adiponectin helps regulate energy metabolism, local fluctuations triggered by AuNPs can lead to systemic changes. Hence, careful choice of size, concentration and clinical application duration of AuNPs is warranted.

  5. Building mathematics cellular phone learning communities

    Directory of Open Access Journals (Sweden)

    Wajeeh M. Daher

    2011-04-01

    Full Text Available Researchers emphasize the importance of maintaining learning communities and environments. This article describes the building and nourishment of a learning community, one comprised of middle school students who learned mathematics out-of-class using the cellular phone. The building of the learning community was led by three third year pre-service teachers majoring in mathematics and computers. The pre-service teachers selected thirty 8th grade students to learn mathematics with the cellular phone and be part of a learning community experimenting with this learning. To analyze the building and development stages of the cellular phone learning community, two models of community building stages were used; first the team development model developed by Tuckman (1965, second the life cycle model of a virtual learning community developed by Garber (2004. The research findings indicate that a learning community which is centered on a new technology has five 'life' phases of development: Pre-birth, birth, formation, performing, and maturity. Further, the research finding indicate that the norms that were encouraged by the preservice teachers who initiated the cellular phone learning community resulted in a community which developed, nourished and matured to be similar to a community of experienced applied mathematicians who use mathematical formulae to study everyday phenomena.

  6. Influence of corona charging in cellular polyethylene film

    International Nuclear Information System (INIS)

    Ortega Brana, Gustavo; Magraner, Francisco; Quijano, Alfredo; Llovera Segovia, Pedro

    2011-01-01

    Cellular polymers have recently attracted attention for their property of exhibiting a piezoelectric constant when they are electrically charged. The electrostatic charge generated in the voids by the internal discharges creates and internal macrodipole which is responsible for the piezoelectric effect. Charging by corona discharge is the most used method for cellular polymers. Many works has been published on polypropylene and polyethylene films mainly focused on the required expansion process or on the results obtained for raw cellular materials electrically activated. Our work is based on commercial polyethylene cellular films which have been physically characterized and electrically activated. The effect of thermal treatment, physical uniaxial or biaxial stretching and corona charging was investigated. The new method of corona charging improved the piezoelectric constant under other activation conditions.

  7. Influence of corona charging in cellular polyethylene film

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Brana, Gustavo; Magraner, Francisco; Quijano, Alfredo [Instituto Tecnologico de la Energia (ITE), Av. Juan de la Cierva 24, Parque Tecnologico de Valencia, 46980 Paterna-Valencia (Spain); Llovera Segovia, Pedro, E-mail: gustavo.ortega@ite.es [Instituto de TecnologIa Electrica - Universitat Politecnica de Valencia, Camino de Vera s/n 46022-Valencia (Spain)

    2011-06-23

    Cellular polymers have recently attracted attention for their property of exhibiting a piezoelectric constant when they are electrically charged. The electrostatic charge generated in the voids by the internal discharges creates and internal macrodipole which is responsible for the piezoelectric effect. Charging by corona discharge is the most used method for cellular polymers. Many works has been published on polypropylene and polyethylene films mainly focused on the required expansion process or on the results obtained for raw cellular materials electrically activated. Our work is based on commercial polyethylene cellular films which have been physically characterized and electrically activated. The effect of thermal treatment, physical uniaxial or biaxial stretching and corona charging was investigated. The new method of corona charging improved the piezoelectric constant under other activation conditions.

  8. Cellular structures with interconnected microchannels

    Science.gov (United States)

    Shaefer, Robert Shahram; Ghoniem, Nasr M.; Williams, Brian

    2018-01-30

    A method for fabricating a cellular tritium breeder component includes obtaining a reticulated carbon foam skeleton comprising a network of interconnected ligaments. The foam skeleton is then melt-infiltrated with a tritium breeder material, for example, lithium zirconate or lithium titanate. The foam skeleton is then removed to define a cellular breeder component having a network of interconnected tritium purge channels. In an embodiment the ligaments of the foam skeleton are enlarged by adding carbon using chemical vapor infiltration (CVI) prior to melt-infiltration. In an embodiment the foam skeleton is coated with a refractory material, for example, tungsten, prior to melt infiltration.

  9. Multidimensional traveling waves in the Allen–Cahn cellular automaton

    International Nuclear Information System (INIS)

    Murata, Mikio

    2015-01-01

    Ultradiscretization is a limiting procedure transforming a given difference equation into a cellular automaton. The cellular automaton constructed by this procedure preserves the essential properties of the original equation, such as the structure of exact solutions for integrable equations. In this article, a cellular automaton analog of the multidimensional Allen–Cahn equation which is not an integrable system is constructed by the ultradiscretization. Moreover, the traveling wave solutions for the resulting cellular automaton are given. The shape, behavior and stability of the solutions in ultradiscrete systems are similar to those in continuous systems. (paper)

  10. Design, synthesis and cellular metabolism study of 4'-selenonucleosides.

    Science.gov (United States)

    Yu, Jinha; Sahu, Pramod K; Kim, Gyudong; Qu, Shuhao; Choi, Yoojin; Song, Jayoung; Lee, Sang Kook; Noh, Minsoo; Park, Sunghyouk; Jeong, Lak Shin

    2015-01-01

    4'-seleno-homonucleosides were synthesized as next-generation nucleosides, and their cellular phosphorylation was studied to confirm the hypothesis that bulky selenium atom can sterically hinder the approach of cellular nucleoside kinase to the 5'-OH for phosphorylation. 4'-seleno-homonucleosides (n = 2), with one-carbon homologation, were synthesized through a tandem seleno-Michael addition-SN2 ring cyclization. LC-MS analysis demonstrated that they were phosphorylated by cellular nucleoside kinases, resulting in anticancer activity. The bulky selenium atom played a key role in deciding the phosphorylation by cellular nucleoside kinases. [Formula: see text].

  11. Cellular metabolism

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Walters, R.A.

    1977-01-01

    Progress is reported on the following research projects: chromatin structure; the use of circular synthetic polydeoxynucleotides as substrates for the study of DNA repair enzymes; human cellular kinetic response following exposure to DNA-interactive compounds; histone phosphorylation and chromatin structure in cell proliferation; photoaddition products induced in chromatin by uv light; pollutants and genetic information transfer; altered RNA metabolism as a function of cadmium accumulation and intracellular distribution in cultured cells; and thymidylate chromophore destruction by water free radicals

  12. Various cellular stress components change as the rat ages: An insight into the putative overall age-related cellular stress network.

    Science.gov (United States)

    Cueno, Marni E; Imai, Kenichi

    2018-02-01

    Cellular stress is mainly comprised of oxidative, nitrosative, and endoplasmic reticulum stresses and has long been correlated to the ageing process. Surprisingly, the age-related difference among the various components in each independent stress pathway and the possible significance of these components in relation to the overall cellular stress network remain to be clearly elucidated. In this study, we obtained blood from ageing rats upon reaching 20-, 40-, and 72-wk.-old. Subsequently, we measured representative cellular stress-linked biomolecules (H 2 O 2 , glutathione reductase, heme, NADPH, NADP, nitric oxide, GADD153) and cell signals [substance P (SP), free fatty acid, calcium, NF-κB] in either or both blood serum and cytosol. Subsequently, network analysis of the overall cellular stress network was performed. Our results show that there are changes affecting stress-linked biomolecules and cell signals as the rat ages. Additionally, based on our network analysis data, we postulate that NADPH, H 2 O 2 , GADD153, and SP are the key components and the interactions between these components are central to the overall age-related cellular stress network in the rat blood. Thus, we propose that the main pathway affecting the overall age-related cellular stress network in the rat blood would entail NADPH-related oxidative stress (involving H 2 O 2 ) triggering GADD153 activation leading to SP induction which in-turn affects other cell signals. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation.

    Science.gov (United States)

    Ekaney, Michael Liembo; Otto, Gordon Philipp; Sossdorf, Maik; Sponholz, Christoph; Boehringer, Michael; Loesche, Wolfgang; Rittirsch, Daniel; Wilharm, Arne; Kurzai, Oliver; Bauer, Michael; Claus, Ralf Alexander

    2014-09-24

    Circulating histones have been identified as mediators of damage in animal models of sepsis and in patients with trauma-associated lung injury. Despite existing controversies on actual histone concentrations, clinical implications and mechanism of action in various disease conditions, histone levels in human sepsis, association with disease progression and mediated effects on endothelial and immune cells remain unreported. This study aimed to determine histone levels and its clinical implication in septic patients and to elucidate histone-mediated effects ex-vivo. Histone levels, endogenous activated protein C (APC) levels and clinical data from two independent cohorts of septic patients were obtained. Histone levels were compared with various control groups including healthy individuals, intensive care unit (ICU) patients without sepsis, ICU patients with multiple organ failure and patients with minor or multiple trauma, all without infection. Endothelial and monocytic cells were stimulated with histones. Cellular integrity and sepsis prototypical cytokines were evaluated. The mechanism of action of histones via Toll-like receptor 4 (TLR4) was evaluated using a function blocking antibody. Histone degradation in plasma was studied by immunoblotting. Histone H4 levels were significantly elevated in patients with sepsis (cohort I; n = 15 and cohort II; n = 19) versus ICU controls (n = 12), patients with multiple organ failure (n = 12) or minor trauma (n = 7), associated with need for renal replacement therapy and decrease in platelet count during disease progression, and remarkably were significantly associated with increased mortality rates in septic patients (ICU-, 28 day- and 90 day mortality rates). There was an inverse correlation between plasma histones and endogenous APC levels. Histone stimulation induced the release of sepsis prototypic cytokines and decreased cell integrity indicated by a significant increase of lactate dehydrogenase (LDH) and propidium

  14. Role of cellular adhesions in tissue dynamics spectroscopy

    Science.gov (United States)

    Merrill, Daniel A.; An, Ran; Turek, John; Nolte, David

    2014-02-01

    Cellular adhesions play a critical role in cell behavior, and modified expression of cellular adhesion compounds has been linked to various cancers. We tested the role of cellular adhesions in drug response by studying three cellular culture models: three-dimensional tumor spheroids with well-developed cellular adhesions and extracellular matrix (ECM), dense three-dimensional cell pellets with moderate numbers of adhesions, and dilute three-dimensional cell suspensions in agarose having few adhesions. Our technique for measuring the drug response for the spheroids and cell pellets was biodynamic imaging (BDI), and for the suspensions was quasi-elastic light scattering (QELS). We tested several cytoskeletal chemotherapeutic drugs (nocodazole, cytochalasin-D, paclitaxel, and colchicine) on three cancer cell lines chosen from human colorectal adenocarcinoma (HT-29), human pancreatic carcinoma (MIA PaCa-2), and rat osteosarcoma (UMR-106) to exhibit differences in adhesion strength. Comparing tumor spheroid behavior to that of cell suspensions showed shifts in the spectral motion of the cancer tissues that match predictions based on different degrees of cell-cell contacts. The HT-29 cell line, which has the strongest adhesions in the spheroid model, exhibits anomalous behavior in some cases. These results highlight the importance of using three-dimensional tissue models in drug screening with cellular adhesions being a contributory factor in phenotypic differences between the drug responses of tissue and cells.

  15. Cellular Factors Shape 3D Genome Landscape

    Science.gov (United States)

    Researchers, using novel large-scale imaging technology, have mapped the spatial location of individual genes in the nucleus of human cells and identified 50 cellular factors required for the proper 3D positioning of genes. These spatial locations play important roles in gene expression, DNA repair, genome stability, and other cellular activities.

  16. Sustained glucagon-like peptide-2 infusion is required for intestinal adaptation, and cessation reverses increased cellularity in rats with intestinal failure

    DEFF Research Database (Denmark)

    Koopmann, Matthew C; Chen, Xueyan; Holst, Jens Juul

    2010-01-01

    in duodenum and jejunum mucosal dry mass, protein, DNA, and sucrase activity compared with TPN control. The increased jejunum cellularity reflected significantly decreased apoptosis and increased crypt mitosis and crypt fission due to GLP-2. When GLP-2 infusion stopped at 7 days, these effects were reversed...

  17. Performance Evaluation Of Mobile Cellular Networks In Nigeria

    OpenAIRE

    Shoewu, O.O

    2018-01-01

    The aim of this paper is to evaluate the performance of mobile networks such as MTN, GLO, and ETISALAT in Nigeria and suggest ways the performance of digital cellular networks can improve to minimize some of its present short comings or limitations. This paper discusses the performance improvement of digital cellular networks. A non- CDMA cellular network is use in an overall wireless environment for the purpose of this paper. This paper also discusses the performance assessment of three mobi...

  18. Path searching in switching networks using cellular algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Koczy, L T; Langer, J; Legendi, T

    1981-01-01

    After a survey of the important statements in the paper A Mathematical Model of Path Searching in General Type Switching Networks (see IBID., vol.25, no.1, p.31-43, 1981) the authors consider the possible implementation for cellular automata of the algorithm introduced there. The cellular field used consists of 5 neighbour 8 state cells. Running times required by a traditional serial processor and by the cellular field, respectively, are compared. By parallel processing this running time can be reduced. 5 references.

  19. Cellular response of Campylobacter jejuni to trisodium phosphate

    DEFF Research Database (Denmark)

    Riedel, Charlotte Tandrup; Cohn, M. T.; Stabler, R. A.

    2012-01-01

    The highly alkaline compound trisodium phosphate (TSP) is used as an intervention to reduce the load of Campylobacter on poultry meat in U.S. poultry slaughter plants. The aim of the present study was to investigate the cellular responses of Campylobacter jejuni NCTC11168 when exposed to sublethal...... exposure; however, the response was mainly associated with ion transport processes. C. jejuni NCTC11168 nhaA1 (Cj1655c) and nhaA2 (Cj1654c), which encode orthologues to the Escherichia coli NhaA cation/proton antiporter, were able to partially restore TSP, alkaline, and sodium resistance phenotypes to an E....... coli cation/proton antiporter mutant. In addition, inhibition of resistance-nodulation-cell division (RND) multidrug efflux pumps by the inhibitor PaβN (Phe-Arg β-naphthylamide dihydrochloride) decreased tolerance to sublethal TSP. Therefore, we propose that NhaA1/NhaA2 cation/proton antiporters...

  20. Gold Nanocluster-Mediated Cellular Death under Electromagnetic Radiation.

    Science.gov (United States)

    Cifuentes-Rius, Anna; Ivask, Angela; Das, Shreya; Penya-Auladell, Nuria; Fabregas, Laura; Fletcher, Nicholas L; Houston, Zachary H; Thurecht, Kristofer J; Voelcker, Nicolas H

    2017-11-29

    Gold nanoclusters (Au NCs) have become a promising nanomaterial for cancer therapy because of their biocompatibility and fluorescent properties. In this study, the effect of ultrasmall protein-stabilized 2 nm Au NCs on six types of mammalian cells (fibroblasts, B-lymphocytes, glioblastoma, neuroblastoma, and two types of prostate cancer cells) under electromagnetic radiation is investigated. Cellular association of Au NCs in vitro is concentration-dependent, and Au NCs have low intrinsic toxicity. However, when Au NC-incubated cells are exposed to a 1 GHz electromagnetic field (microwave radiation), cell viability significantly decreases, thus demonstrating that Au NCs exhibit specific microwave-dependent cytotoxicity, likely resulting from localized heating. Upon i.v. injection in mice, Au NCs are still present at 24 h post administration. Considering the specific microwave-dependent cytotoxicity and low intrinsic toxicity, our work suggests the potential of Au NCs as effective and safe nanomedicines for cancer therapy.

  1. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    International Nuclear Information System (INIS)

    Palmeira, Carlos M.; Rolo, Anabela P.; Berthiaume, Jessica; Bjork, James A.; Wallace, Kendall B.

    2007-01-01

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes

  2. Cyclic cellular automata in 3D

    International Nuclear Information System (INIS)

    Reiter, Clifford A.

    2011-01-01

    Highlights: → We explore the self-organization of cyclic cellular automata in 3D. → Von Neumann, Moore and two types of intermediate neighborhoods are investigated. → Random neighborhoods self organize through phases into complex nested structures. → Demons are seen to have many alternatives in 3D. - Abstract: Cyclic cellular automata in two dimensions have long been intriguing because they self organize into spirals and that behavior can be analyzed. The form for the patterns that develop is highly dependent upon the form of the neighborhood. We extend this work to three dimensional cyclic cellular automata and observe self organization dependent upon the neighborhood type. This includes neighborhood types intermediate between Von Neumann and Moore neighborhoods. We also observe that the patterns include nested shells with the appropriate forms but that the nesting is far more complex than the spirals that occur in two dimensions.

  3. Cellular Restriction Factors of Feline Immunodeficiency Virus

    Directory of Open Access Journals (Sweden)

    Carsten Münk

    2011-10-01

    Full Text Available Lentiviruses are known for their narrow cell- and species-tropisms, which are determined by cellular proteins whose absence or presence either support viral replication (dependency factors, cofactors or inhibit viral replication (restriction factors. Similar to Human immunodeficiency virus type 1 (HIV-1, the cat lentivirus Feline immunodeficiency virus (FIV is sensitive to recently discovered cellular restriction factors from non-host species that are able to stop viruses from replicating. Of particular importance are the cellular proteins APOBEC3, TRIM5α and tetherin/BST-2. In general, lentiviruses counteract or escape their species’ own variant of the restriction factor, but are targeted by the orthologous proteins of distantly related species. Most of the knowledge regarding lentiviral restriction factors has been obtained in the HIV-1 system; however, much less is known about their effects on other lentiviruses. We describe here the molecular mechanisms that explain how FIV maintains its replication in feline cells, but is largely prevented from cross-species infections by cellular restriction factors.

  4. Differential effects of histone deacetylase inhibitors on cellular drug transporters and their implications for using epigenetic modifiers in combination chemotherapy.

    Science.gov (United States)

    Valdez, Benigno C; Li, Yang; Murray, David; Brammer, Jonathan E; Liu, Yan; Hosing, Chitra; Nieto, Yago; Champlin, Richard E; Andersson, Borje S

    2016-09-27

    HDAC inhibitors, DNA alkylators and nucleoside analogs are effective components of combination chemotherapy. To determine a possible mechanism of their synergism, we analyzed the effects of HDAC inhibitors on the expression of drug transporters which export DNA alkylators. Exposure of PEER lymphoma T-cells to 15 nM romidepsin (Rom) resulted in 40%-50% reduction in mRNA for the drug transporter MRP1 and up to ~500-fold increase in the MDR1 mRNA within 32-48 hrs. MRP1 protein levels concomitantly decreased while MDR1 increased. Other HDAC inhibitors - panobinostat, belinostat and suberoylanilide hydroxamic acid (SAHA) - had similar effects on these transporters. The protein level of MRP1 correlated with cellular resistance to busulfan and chlorambucil, and Rom exposure sensitized cells to these DNA alkylators. The decrease in MRP1 correlated with decreased cellular drug export activity, and increased level of MDR1 correlated with increased export of daunorubicin. A similar decrease in the level of MRP1 protein, and increase in MDR1, were observed when mononuclear cells derived from patients with T-cell malignancies were exposed to Rom. Decreased MRP1 and increased MDR1 expressions were also observed in blood mononuclear cells from lymphoma patients who received SAHA-containing chemotherapy in a clinical trial. This inhibitory effect of HDAC inhibitors on the expression of MRP1 suggests that their synergism with DNA alkylating agents is partly due to decreased efflux of these alkylators. Our results further imply the possibility of antagonistic effects when HDAC inhibitors are combined with anthracyclines and other MDR1 drug ligands in chemotherapy.

  5. 47 CFR 22.925 - Prohibition on airborne operation of cellular telephones.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Prohibition on airborne operation of cellular... CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.925 Prohibition on airborne operation of cellular telephones. Cellular telephones installed in or carried aboard airplanes, balloons or...

  6. Predominant Expression of Hybrid N-Glycans Has Distinct Cellular Roles Relative to Complex and Oligomannose N-Glycans

    Directory of Open Access Journals (Sweden)

    M. Kristen Hall

    2016-06-01

    Full Text Available Glycosylation modulates growth, maintenance, and stress signaling processes. Consequently, altered N-glycosylation is associated with reduced fitness and disease. Therefore, expanding our understanding of N-glycans in altering biological processes is of utmost interest. Herein, clustered regularly interspaced short palindromic repeats/caspase9 (CRISPR/Cas9 technology was employed to engineer a glycosylation mutant Chinese Hamster Ovary (CHO cell line, K16, which expresses predominantly hybrid type N-glycans. This newly engineered cell line enabled us to compare N-glycan effects on cellular properties of hybrid type N-glycans, to the well-established Pro−5 and Lec1 cell lines, which express complex and oligomannose types of N-glycans, respectively. Lectin binding studies revealed the predominant N-glycan expressed in K16 is hybrid type. Cell dissociation and migration assays demonstrated the greatest strength of cell–cell adhesion and fastest migratory rates for oligomannose N-glycans, and these properties decreased as oligomannose type were converted to hybrid type, and further decreased upon conversion to complex type. Next, we examined the roles of three general types of N-glycans on ectopic expression of E-cadherin, a cell–cell adhesion protein. Microscopy revealed more functional E-cadherin at the cell–cell border when N-glycans were oligomannose and these levels decreased as the oligomannose N-glycans were processed to hybrid and then to complex. Thus, we provide evidence that all three general types of N-glycans impact plasma membrane architecture and cellular properties.

  7. Energy Efficient Resource Allocation for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr

    2016-04-01

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE. First, we consider sparsely deployed cells experiencing negligible interference and assume perfect channel state information (CSI). For this setting, we propose an algorithm that finds the SE and EE resource allocation strategies. Then, we compare the performance of both design strategies versus number of users, and phantom cells share of the total available resource units (RUs). We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It is found that increasing phantom cells share of RUs decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. Second, we consider the densely deployed phantom cellular networks and model the EE optimization problem having into consideration the inevitable interference and imperfect channel estimation. To this end, we propose three resource allocation strategies aiming at optimizing the EE performance metric of this network. Furthermore, we investigate the effect of changing some of the system parameters on the performance of the proposed strategies, such as phantom cells share of RUs, number of deployed phantom cells within a macro cell coverage, number of pilots and the maximum power available for transmission by the phantom cells BSs. It is found that increasing the number of pilots deteriorates the EE performance of the whole setup, while increasing maximum power available for phantom cells transmissions reduces the EE of the whole setup in a

  8. Cyclosporin A associated helicase-like protein facilitates the association of hepatitis C virus RNA polymerase with its cellular cyclophilin B.

    Directory of Open Access Journals (Sweden)

    Kengo Morohashi

    Full Text Available BACKGROUND: Cyclosporin A (CsA is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. PRINCIPAL FINDINGS: Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL, possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB, known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. CONCLUSIONS: We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology.

  9. Cyclosporin A associated helicase-like protein facilitates the association of hepatitis C virus RNA polymerase with its cellular cyclophilin B.

    Science.gov (United States)

    Morohashi, Kengo; Sahara, Hiroeki; Watashi, Koichi; Iwabata, Kazuki; Sunoki, Takashi; Kuramochi, Kouji; Takakusagi, Kaori; Miyashita, Hiroki; Sato, Noriyuki; Tanabe, Atsushi; Shimotohno, Kunitada; Kobayashi, Susumu; Sakaguchi, Kengo; Sugawara, Fumio

    2011-04-29

    Cyclosporin A (CsA) is well known as an immunosuppressive drug useful for allogeneic transplantation. It has been reported that CsA inhibits hepatitis C virus (HCV) genome replication, which indicates that cellular targets of CsA regulate the viral replication. However, the regulation mechanisms of HCV replication governed by CsA target proteins have not been fully understood. Here we show a chemical biology approach that elucidates a novel mechanism of HCV replication. We developed a phage display screening to investigate compound-peptide interaction and identified a novel cellular target molecule of CsA. This protein, named CsA associated helicase-like protein (CAHL), possessed RNA-dependent ATPase activity that was negated by treatment with CsA. The downregulation of CAHL in the cells resulted in a decrease of HCV genome replication. CAHL formed a complex with HCV-derived RNA polymerase NS5B and host-derived cyclophilin B (CyPB), known as a cellular cofactor for HCV replication, to regulate NS5B-CyPB interaction. We found a cellular factor, CAHL, as CsA associated helicase-like protein, which would form trimer complex with CyPB and NS5B of HCV. The strategy using a chemical compound and identifying its target molecule by our phage display analysis is useful to reveal a novel mechanism underlying cellular and viral physiology.

  10. Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties

    Science.gov (United States)

    Stampfl, J.; Pettermann, H. E.; Liska, R.

    Biological materials (e.g., wood, trabecular bone, marine skeletons) rely heavily on the use of cellular architecture, which provides several advantages. (1) The resulting structures can bear the variety of "real life" load spectra using a minimum of a given bulk material, featuring engineering lightweight design principles. (2) The inside of the structures is accessible to body fluids which deliver the required nutrients. (3) Furthermore, cellular architectures can grow organically by adding or removing individual struts or by changing the shape of the constituting elements. All these facts make the use of cellular architectures a reasonable choice for nature. Using additive manufacturing technologies (AMT), it is now possible to fabricate such structures for applications in engineering and biomedicine. In this chapter, we present methods that allow the 3D computational analysis of the mechanical properties of cellular structures with open porosity. Various different cellular architectures including disorder are studied. In order to quantify the influence of architecture, the apparent density is always kept constant. Furthermore, it is shown that how new advanced photopolymers can be used to tailor the mechanical and functional properties of the fabricated structures.

  11. Cellular potts models multiscale extensions and biological applications

    CERN Document Server

    Scianna, Marco

    2013-01-01

    A flexible, cell-level, and lattice-based technique, the cellular Potts model accurately describes the phenomenological mechanisms involved in many biological processes. Cellular Potts Models: Multiscale Extensions and Biological Applications gives an interdisciplinary, accessible treatment of these models, from the original methodologies to the latest developments. The book first explains the biophysical bases, main merits, and limitations of the cellular Potts model. It then proposes several innovative extensions, focusing on ways to integrate and interface the basic cellular Potts model at the mesoscopic scale with approaches that accurately model microscopic dynamics. These extensions are designed to create a nested and hybrid environment, where the evolution of a biological system is realistically driven by the constant interplay and flux of information between the different levels of description. Through several biological examples, the authors demonstrate a qualitative and quantitative agreement with t...

  12. Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis.

    Science.gov (United States)

    Olson, D K; Fröhlich, F; Farese, R V; Walther, T C

    2016-08-01

    Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2015. Published by Elsevier B.V.

  13. Design Optimization of Irregular Cellular Structure for Additive Manufacturing

    Science.gov (United States)

    Song, Guo-Hua; Jing, Shi-Kai; Zhao, Fang-Lei; Wang, Ye-Dong; Xing, Hao; Zhou, Jing-Tao

    2017-09-01

    Irregularcellular structurehas great potential to be considered in light-weight design field. However, the research on optimizing irregular cellular structures has not yet been reporteddue to the difficulties in their modeling technology. Based on the variable density topology optimization theory, an efficient method for optimizing the topology of irregular cellular structures fabricated through additive manufacturing processes is proposed. The proposed method utilizes tangent circles to automatically generate the main outline of irregular cellular structure. The topological layoutof each cellstructure is optimized using the relative density informationobtained from the proposed modified SIMP method. A mapping relationship between cell structure and relative densityelement is builtto determine the diameter of each cell structure. The results show that the irregular cellular structure can be optimized with the proposed method. The results of simulation and experimental test are similar for irregular cellular structure, which indicate that the maximum deformation value obtained using the modified Solid Isotropic Microstructures with Penalization (SIMP) approach is lower 5.4×10-5 mm than that using the SIMP approach under the same under the same external load. The proposed research provides the instruction to design the other irregular cellular structure.

  14. Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler

    Science.gov (United States)

    Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing

    2016-05-01

    Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated.

  15. Cooperative effects of fibronectin matrix assembly and initial cell-substrate adhesion strength in cellular self-assembly.

    Science.gov (United States)

    Brennan, James R; Hocking, Denise C

    2016-03-01

    The cell-dependent polymerization of intercellular fibronectin fibrils can stimulate cells to self-assemble into multicellular structures. The local physical cues that support fibronectin-mediated cellular self-assembly are largely unknown. Here, fibronectin matrix analogs were used as synthetic adhesive substrates to model cell-matrix fibronectin fibrils having different integrin-binding specificity, affinity, and/or density. We utilized this model to quantitatively assess the relationship between adhesive forces derived from cell-substrate interactions and the ability of fibronectin fibril assembly to induce cellular self-assembly. Results indicate that the strength of initial, rather than mature, cell-substrate attachments correlates with the ability of substrates to support fibronectin-mediated cellular self-assembly. The cellular response to soluble fibronectin was bimodal and independent of the integrin-binding specificity of the substrate; increasing soluble fibronectin levels above a critical threshold increased aggregate cohesion on permissive substrates. Once aggregates formed, continuous fibronectin polymerization was necessary to maintain cohesion. During self-assembly, soluble fibronectin decreased cell-substrate adhesion strength and induced aggregate cohesion via a Rho-dependent mechanism, suggesting that the balance of contractile forces derived from fibronectin fibrils within cell-cell versus cell-substrate adhesions controls self-assembly and aggregate cohesion. Thus, initial cell-substrate attachment strength may provide a quantitative basis with which to build predictive models of fibronectin-mediated microtissue fabrication on a variety of substrates. Cellular self-assembly is a process by which cells and extracellular matrix (ECM) proteins spontaneously organize into three-dimensional (3D) tissues in the absence of external forces. Cellular self-assembly can be initiated in vitro, and represents a potential tool for tissue engineers to

  16. 33 CFR 183.516 - Cellular plastic used to encase fuel tanks.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Cellular plastic used to encase....516 Cellular plastic used to encase fuel tanks. (a) Cellular plastic used to encase metallic fuel...-polyurethane cellular plastic used to encase metallic fuel tanks must have a compressive strength of at least...

  17. 1024-Pixel CMOS Multimodality Joint Cellular Sensor/Stimulator Array for Real-Time Holistic Cellular Characterization and Cell-Based Drug Screening.

    Science.gov (United States)

    Park, Jong Seok; Aziz, Moez Karim; Li, Sensen; Chi, Taiyun; Grijalva, Sandra Ivonne; Sung, Jung Hoon; Cho, Hee Cheol; Wang, Hua

    2018-02-01

    This paper presents a fully integrated CMOS multimodality joint sensor/stimulator array with 1024 pixels for real-time holistic cellular characterization and drug screening. The proposed system consists of four pixel groups and four parallel signal-conditioning blocks. Every pixel group contains 16 × 16 pixels, and each pixel includes one gold-plated electrode, four photodiodes, and in-pixel circuits, within a pixel footprint. Each pixel supports real-time extracellular potential recording, optical detection, charge-balanced biphasic current stimulation, and cellular impedance measurement for the same cellular sample. The proposed system is fabricated in a standard 130-nm CMOS process. Rat cardiomyocytes are successfully cultured on-chip. Measured high-resolution optical opacity images, extracellular potential recordings, biphasic current stimulations, and cellular impedance images demonstrate the unique advantages of the system for holistic cell characterization and drug screening. Furthermore, this paper demonstrates the use of optical detection on the on-chip cultured cardiomyocytes to real-time track their cyclic beating pattern and beating rate.

  18. Cellular Signaling in Health and Disease

    CERN Document Server

    Beckerman, Martin

    2009-01-01

    In today’s world, three great classes of non-infectious diseases – the metabolic syndromes (such as type 2 diabetes and atherosclerosis), the cancers, and the neurodegenerative disorders – have risen to the fore. These diseases, all associated with increasing age of an individual, have proven to be remarkably complex and difficult to treat. This is because, in large measure, when the cellular signaling pathways responsible for maintaining homeostasis and health of the body become dysregulated, they generate equally stable disease states. As a result the body may respond positively to a drug, but only for a while and then revert back to the disease state. Cellular Signaling in Health and Disease summarizes our current understanding of these regulatory networks in the healthy and diseased states, showing which molecular components might be prime targets for drug interventions. This is accomplished by presenting models that explain in mechanistic, molecular detail how a particular part of the cellular sign...

  19. Driver hand-held cellular phone use: a four-year analysis.

    Science.gov (United States)

    Eby, David W; Vivoda, Jonathon M; St Louis, Renée M

    2006-01-01

    The use of hand-held cellular (mobile) phones while driving has stirred more debate, passion, and research than perhaps any other traffic safety issue in the past several years. There is ample research showing that the use of either hand-held or hands-free cellular phones can lead to unsafe driving patterns. Whether or not these performance deficits increase the risk of crash is difficult to establish, but recent studies are beginning to suggest that cellular phone use elevates crash risk. The purpose of this study was to assess changes in the rate of hand-held cellular phone use by motor-vehicle drivers on a statewide level in Michigan. This study presents the results of 13 statewide surveys of cellular phone use over a 4-year period. Hand-held cellular phone use data were collected through direct observation while vehicles were stopped at intersections and freeway exit ramps. Data were weighted to be representative of all drivers traveling during daylight hours in Michigan. The study found that driver hand-held cellular phone use has more than doubled between 2001 and 2005, from 2.7% to 5.8%. This change represents an average increase of 0.78 percentage points per year. The 5.8% use rate observed in 2005 means that at any given daylight hour, around 36,550 drivers were conversing on cellular phones while driving on Michigan roadways. The trend line fitted to these data predicts that by the year 2010, driver hand-held cellular phone use will be around 8.6%, or 55,000 drivers at any given daylight hour. These results make it clear that cellular phone use while driving will continue to be an important traffic safety issue, and highlight the importance of continued attempts to generate new ways of alleviating this potential hazard.

  20. Mechanisms and circumvention of cellular resistance to cisplatin.

    NARCIS (Netherlands)

    Hospers, Geesiena Alberdina Petronella

    1989-01-01

    Cisplatin (CDDP) is an active cytostatic agent. A limitation to its effectiveness initially or appearing during cystatic treatment is the occurrence of resistance. This thesis describes mechanisms wich are responsible for acquired cellular CDDP resistance. To investigate cellular CDDP resistance, a

  1. Acrolein-Exposed Normal Human Lung Fibroblasts in Vitro: Cellular Senescence, Enhanced Telomere Erosion, and Degradation of Werner’s Syndrome Protein

    Science.gov (United States)

    Jang, Jun-Ho; Bruse, Shannon; Huneidi, Salam; Schrader, Ronald M.; Monick, Martha M.; Lin, Yong; Carter, A. Brent; Klingelhutz, Aloysius J.

    2014-01-01

    Background: Acrolein is a ubiquitous environmental hazard to human health. Acrolein has been reported to activate the DNA damage response and induce apoptosis. However, little is known about the effects of acrolein on cellular senescence. Objectives: We examined whether acrolein induces cellular senescence in cultured normal human lung fibroblasts (NHLF). Methods: We cultured NHLF in the presence or absence of acrolein and determined the effects of acrolein on cell proliferative capacity, senescence-associated β-galactosidase activity, the known senescence-inducing pathways (e.g., p53, p21), and telomere length. Results: We found that acrolein induced cellular senescence by increasing both p53 and p21. The knockdown of p53 mediated by small interfering RNA (siRNA) attenuated acrolein-induced cellular senescence. Acrolein decreased Werner’s syndrome protein (WRN), a member of the RecQ helicase family involved in DNA repair and telomere maintenance. Acrolein-induced down-regulation of WRN protein was rescued by p53 knockdown or proteasome inhibition. Finally, we found that acrolein accelerated p53-mediated telomere shortening. Conclusions: These results suggest that acrolein induces p53-mediated cellular senescence accompanied by enhanced telomere attrition and WRN protein down-regulation. Citation: Jang JH, Bruse S, Huneidi S, Schrader RM, Monick MM, Lin Y, Carter AB, Klingelhutz AJ, Nyunoya T. 2014. Acrolein-exposed normal human lung fibroblasts in vitro: cellular senescence, enhanced telomere erosion, and degradation of Werner’s syndrome protein. Environ Health Perspect 122:955–962; http://dx.doi.org/10.1289/ehp.1306911 PMID:24747221

  2. HPV integration hijacks and multimerizes a cellular enhancer to generate a viral-cellular super-enhancer that drives high viral oncogene expression

    Science.gov (United States)

    Redmond, Catherine J.; Dooley, Katharine E.; Fu, Haiqing; Gillison, Maura L.; Akagi, Keiko; Symer, David E.; Aladjem, Mirit I.

    2018-01-01

    Integration of human papillomavirus (HPV) genomes into cellular chromatin is common in HPV-associated cancers. Integration is random, and each site is unique depending on how and where the virus integrates. We recently showed that tandemly integrated HPV16 could result in the formation of a super-enhancer-like element that drives transcription of the viral oncogenes. Here, we characterize the chromatin landscape and genomic architecture of this integration locus to elucidate the mechanisms that promoted de novo super-enhancer formation. Using next-generation sequencing and molecular combing/fiber-FISH, we show that ~26 copies of HPV16 are integrated into an intergenic region of chromosome 2p23.2, interspersed with 25 kb of amplified, flanking cellular DNA. This interspersed, co-amplified viral-host pattern is frequent in HPV-associated cancers and here we designate it as Type III integration. An abundant viral-cellular fusion transcript encoding the viral E6/E7 oncogenes is expressed from the integration locus and the chromatin encompassing both the viral enhancer and a region in the adjacent amplified cellular sequences is strongly enriched in the super-enhancer markers H3K27ac and Brd4. Notably, the peak in the amplified cellular sequence corresponds to an epithelial-cell-type specific enhancer. Thus, HPV16 integration generated a super-enhancer-like element composed of tandem interspersed copies of the viral upstream regulatory region and a cellular enhancer, to drive high levels of oncogene expression. PMID:29364907

  3. Synthesis of Five Known Brassinosteroid Analogs from Hyodeoxycholic Acid and Their Activities as Plant-Growth Regulators

    Directory of Open Access Journals (Sweden)

    María Isabel Duran

    2017-03-01

    Full Text Available Brassinosteroids (BRs are plant hormones that promote growth in different plant organs and tissues. The structural requirements that these compounds should possess to exhibit this biological activity have been studied. In this work, a series of known BR analogs 5–15, were synthesized starting from hyodeoxycholic acid 4, and maintaining the alkyl side chain as cholic acid or its methyl ester. The growth-promoting effects of brassinolide (1 and synthesized analogs were evaluated by using the rice lamina inclination assay at concentrations ranging from 1 × 10−8–1 × 10−6 M. Our results indicate that in this concentration range the induced bending angle of rice seedlings increases with increasing concentration of BRs. Analysis of the activities, determined at the lowest tested concentration, in terms of BR structures shows that the 2α,3α-dihydroxy-7-oxa-6-ketone moiety existing in brassinolide is required for the plant growing activity of these compounds, as it has been proposed by some structure-activity relationship studies. The effect of compound 8 on cell elongation was assessed by microscopy analysis, and the results indicate that the growth-promoting effect of analog 8 is mainly due to cell elongation of the adaxial sides, instead of an increase on cell number.

  4. A study of the biological effects of rare earth elements at cellular level using nuclear techniques

    International Nuclear Information System (INIS)

    Feng Zhihui; Wang Xi; Zhang Sunxi; An Lizhi; Zhang Jingxia; Yao Huiying

    2001-01-01

    Objective: To investigate the biological effects and the effecting mechanisms of rare earth elements La, Gd and Ce on cultured rat cells. Methods: The biological effects of La 3+ on cultured rat cells and the subcellular distribution of La and Gd and Ce, and the inflow of 45 Ca 2+ into the cells and total cellular calcium were measured by isotopic tracing, Proton Induced X Ray Emission Analysis (PIXE) and the techniques of biochemistry and cellular biology. Results: La 3+ at the concentration of 10- 10( or 10 -9 ) - 10 -6 mol/L significantly increased quantity of incorporation of 3 H-TdR into DNA, total cellular protein and the activity of succinic dehydrogenase of mitochondria. The cell cycle analysis showed that the proportions of cells in S phase were accordingly increased acted by La 3+ at above range of concentration. But these values were significantly decreased when concentration of La 3+ raised to 10 -4 - 10 -3 mol/L. It was further discovered that La, Gd and Ce distributed mostly in the nuclei, and then in membranes. Gd and Ce also promoted the inflow of 45 Ca 2+ into the cells and increased the total calcium content in cells. Conclusions: 1) La 3+ at a wide concentration range of 10 -10 ( or 10 -9 ) - 10 -6 mol/L promotes proliferation of cultured rat cells, but at even higher concentration (10 -4 - 10 -3 mol/L) shows cellular toxicity, and there is a striking dose-effect relationship. 2) La, Gd and Ce can enter the cells and mainly distribute in the nuclei. 3) Gd and Ce can promote the inflow of extracellular Ca 2+ into the cells and increase total cellular calcium

  5. Alleviate Cellular Congestion Through Opportunistic Trough Filling

    Directory of Open Access Journals (Sweden)

    Yichuan Wang

    2014-04-01

    Full Text Available The demand for cellular data service has been skyrocketing since the debut of data-intensive smart phones and touchpads. However, not all data are created equal. Many popular applications on mobile devices, such as email synchronization and social network updates, are delay tolerant. In addition, cellular load varies significantly in both large and small time scales. To alleviate network congestion and improve network performance, we present a set of opportunistic trough filling schemes that leverage the time-variation of network congestion and delay-tolerance of certain traffic in this paper. We consider average delay, deadline, and clearance time as the performance metrics. Simulation results show promising performance improvement over the standard schemes. The work shed lights on addressing the pressing issue of cellular overload.

  6. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seon Young; Jang, Soo Hwa [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of); Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su [Soongsil University, Department of Chemistry (Korea, Republic of); Lee, Kangtaek [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of); Yang, Sung Ik [Kyung Hee University, College of Environment and Applied Chemistry (Korea, Republic of); Joo, Sang-Woo, E-mail: sjoo@ssu.ac.kr [Soongsil University, Department of Chemistry (Korea, Republic of); Ryu, Pan Dong; Lee, So Yeong, E-mail: leeso@snu.ac.kr [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of)

    2012-12-15

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  7. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Choi, Seon Young; Jang, Soo Hwa; Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su; Lee, Kangtaek; Yang, Sung Ik; Joo, Sang-Woo; Ryu, Pan Dong; Lee, So Yeong

    2012-01-01

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  8. Dynamic expression of viral and cellular microRNAs in infectious mononucleosis caused by primary Epstein-Barr virus infection in children.

    Science.gov (United States)

    Gao, Liwei; Ai, Junhong; Xie, Zhengde; Zhou, Chen; Liu, Chunyan; Zhang, Hui; Shen, Kunling

    2015-12-03

    Epstein-Barr virus (EBV) was the first virus identified to encode microRNAs (miRNAs). Both of viral and human cellular miRNAs are important in EBV infection. However, the dynamic expression profile of miRNAs during primary EBV infection was unknown. This study aimed to investigate the dynamic expression profile of viral and cellular miRNAs in infectious mononucleosis (IM) caused by primary EBV infection. The levels of viral and cellular miRNAs were measured in fifteen pediatric IM patients at three different time-points. Fifteen healthy children who were seropositive for EBV were enrolled in the control group. Relative expression levels of miRNAs were detected by quantitative real-time PCR (qPCR) assay. EBV-miR-BHRF1-1, 1-2-3P, miR-BART13-1, 19-3p, 11-3P, 12-1, and 16-1 in IM patients of early phase were significantly higher than in healthy children. Most cellular miRNAs of B cells, such as hsa-miR-155-5p, -34a-5p, -18b-5p, -181a-5p, and -142-5p were up-regulated; while most of cellular miRNAs of CD8 + T cells, such as hsa-miR-223, -29c-3p, -181a, -200a-3p, miR-155-5p, -146a, and -142-5p were down-regulated in IM patients. With disease progression, nearly all of EBV-miRNAs decreased, especially miR-BHRF1, but at a slower rate than EBV DNA loads. Most of the cellular miRNAs of B cells, including hsa-miR-134-5p, -18b-5p, -34a-5p, and -196a-5p increased with time. However, most of the cellular miRNAs of CD8 + T cells, including hsa-let-7a-5p, -142-3p, -142-5p, and -155-5p decreased with time. Additionally, hsa-miR-155-5p of B cells and hsa-miR-18b-5p of CD8+ T cells exhibited a positive correlation with miR-BHRF1-2-5P and miR-BART2-5P (0.96 ≤ r ≤ 0.99, P < 0.05). Finally, hsa-miR-181a-5p of B cells had positive correlation with miR-BART4-3p, 4-5P, 16-1, and 22 (0.97 ≤ r ≤ 0.99, P < 0.05). Our study is the first to describe the expression profile of viral and cellular miRNAs in IM caused by primary EBV infection. These results might be the basis of

  9. Cellular phones were found to pose no health risks

    International Nuclear Information System (INIS)

    Puranen, L.

    1997-01-01

    A cellular phone emits radiation very close to a person's head. Any harmful effects that might arise from the use of cellular phones are being studied carefully, but so far no health risks have been determined. However, the phones may interfere with the operation of electrical devices located close-by, such as a cardiac pacemaker. The biological effects of the microwaves emitted by cellular phones might be based on the resultant higher temperatures in the tissues of the head. Since, even in the worst cases, a cellular phone cannot raise the temperature of tissues by more than some tenths of a degree, no health risks based on thermal effects can be attributed to the use of a cellular phone. No reliable theory has been presented for the non-thermal effects of microwaves. Such effects may exist, however. The studies conducted so far have been unable to show that these effects might be harmful to human health. (orig.)

  10. Cellular telephone use among primary school children in Germany

    International Nuclear Information System (INIS)

    Boehler, Eva; Schuez, Joachim

    2004-01-01

    Background: There is some concern about potential health risks of cellular telephone use to children. We assessed data on how many children own a cellular telephone and on how often they use it in a population-based sample. Methods: We carried out a cross-sectional study among children in their fourth elementary school year, with a median-age of 10 years. The study was carried out in Mainz (Germany), a city with about 200,000 inhabitants. The study base comprised all 37 primary schools in Mainz and near surroundings. Altogether, 1933 children from 34 primary schools took part in the survey (participation rate of 87.8%). Results: Roughly a third of all children (n = 671, 34.7%) reported to own a cellular telephone. Overall, 119 (6.2%) children used a cellular telephone for making calls at least once a day, 123 (6.4%) used it several times a week and 876 (45.3%) children used it only once in a while. The remaining 805 (41.6%) children had never used a cellular telephone. The probability of owning a cellular telephone among children was associated with older age, being male, having no siblings, giving full particulars to height and weight, more time spent watching TV and playing computer games, being picked up by their parents from school by car (instead of walking or cycling) and going to bed late. The proportion of cellular telephone owners was somewhat higher in classes with more children from socially disadvantaged families. Conclusions: Our study shows that both ownership of a cellular telephone as well as the regular use of it are already quite frequent among children in the fourth grade of primary school. With regard to potential long-term effects, we recommend follow-up studies with children

  11. Decreased VEGF-A and sustained PEDF expression in a human retinal pigment epithelium cell line cultured under hypothermia

    Directory of Open Access Journals (Sweden)

    Masayuki Takeyama

    2015-01-01

    Full Text Available BACKGROUND: Previous reports have described a decrease in retinal temperature and clinical improvement of wet age-related macular degeneration (AMD after vitrectomy. We hypothesized that the retinal temperature decrease after vitrectomy plays a part in the suppression of wet AMD development. To test this hypothesis, we evaluated the temperature dependence of the expression of vascular endothelial growth factor-A (VEGF-A and in vitro angiogen-esis in retinal pigment epithelium (RPE. RESULTS: We cultured ARPE-19 cells at 37, 35, 33 and 31°C and measured the expression of VEGF-A, VEGF-A splicing variants, and pigment epithelium-derived factor (PEDF. We performed an in vitro tube formation assay. The dehydrogenase activity was also evaluated at each temperature. Expression of VEGF-A significantly decreased with decreased temperature while PEDF expression did not. VEGF165 expression and in vitro angiogenesis also were temperature dependent. The dehydrogenase activity significantly decreased as the culture temperature decreased. CONCLUSIONS: RPE cultured under hypothermia that decreased cellular metabolism also had decreased VEGF-A and sustained PEDF expression, creating an anti-angiogenic environment. This mechanism may be associated with a beneficial effect after vitrectomy in patients with wet AMD.

  12. The Relationship between Cellular Phone Use, Performance, and Reaction Time among College Students: Implications for Cellular Phone Use while Driving

    Science.gov (United States)

    Szyfman, Adam; Wanner, Gregory; Spencer, Leslie

    2003-01-01

    Two studies were performed to determine the relationship between cellular phone use and either reaction time or performance among college students. In the first study 60 undergraduates completed a computerized reaction time test. Mean reaction times were significantly higher when participants were talking on a cellular phone, either handheld or on…

  13. Cellular therapies: Day by day, all the way.

    Science.gov (United States)

    Atilla, Erden; Kilic, Pelin; Gurman, Gunhan

    2018-04-18

    Tremendous effort and knowledge have elucidated a new era of 'cellular therapy,' also called "live" or "living" drugs. There are currently thousands of active clinical trials that are ongoing, seeking hope for incurable conditions thanks to the increased accessibility and reliability of gene editing and cellular reprogramming. Accomplishments in various adoptive T cell immunotherapies and chimeric antigen receptor (CART) T cell therapies oriented researchers to the field. Cellular therapies are believed to be the next generation of curative therapeutics in many ways, the classification and nomenclature for these applications have not yet reached a consensus. Trends in recent years are moving towards making tissues and cell processes only in centers with production permits. It is quite promising that competent authorities have increased licensing activities of tissue and cell establishments in their countries, under good practice (GxP) rules, and preclinical and clinical trials involving cell-based therapies have led to significant investments. Despite the initiatives undertaken and the large budgets that have been allocated, only limited success has been achieved in cellular therapy compared to conventional drug development. Cost, and cost effectiveness, are important issues for these novel therapies to meet unmet clinical needs, and there are still many scientific, translational, commercializational, and ethical questions that do not have answers. The main objectives of this review is to underline the current position of cellular therapies in research, highlight the timely topic of immunotherapy and chimeric antigen receptor (CAR) T-cell treatment, and compile information related to regulations and marketing of cellular therapeutic approaches worldwide. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments

    DEFF Research Database (Denmark)

    Ravenschlag, K.; Sahm, K.; Knoblauch, C.

    2000-01-01

    The community structure of sulfate-reducing bacteria (SRB) of a marine Arctic sediment (Smeerenburg-fjorden, Svalbard) a-as characterized by both fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization by using group- and genus-specific 16S rRNA-targeted oligonucleotide probes...... that FISH and rRNA slot blot hybridization gave comparable results. Furthermore, a combination of the two methods allowed us to calculate specific cellular rRNA contents with respect to localization in the sediment profile. The rRNA contents of Desulfosarcina-Desulfococcus cells were highest in the first 5...... mm of the sediment (0.9 and 1.4 fg, respectively) and decreased steeply with depth, indicating that maximal metabolic activity occurred close to the surface, Based on SRB cell numbers, cellular sulfate reduction rates were calculated. The rates were highest in the surface layer (0.14 fmol cell(-1...

  15. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration.

    Science.gov (United States)

    Tononi, Giulio; Cirelli, Chiara

    2014-01-08

    Sleep is universal, tightly regulated, and its loss impairs cognition. But why does the brain need to disconnect from the environment for hours every day? The synaptic homeostasis hypothesis (SHY) proposes that sleep is the price the brain pays for plasticity. During a waking episode, learning statistical regularities about the current environment requires strengthening connections throughout the brain. This increases cellular needs for energy and supplies, decreases signal-to-noise ratios, and saturates learning. During sleep, spontaneous activity renormalizes net synaptic strength and restores cellular homeostasis. Activity-dependent down-selection of synapses can also explain the benefits of sleep on memory acquisition, consolidation, and integration. This happens through the offline, comprehensive sampling of statistical regularities incorporated in neuronal circuits over a lifetime. This Perspective considers the rationale and evidence for SHY and points to open issues related to sleep and plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Algorithm for cellular reprogramming.

    Science.gov (United States)

    Ronquist, Scott; Patterson, Geoff; Muir, Lindsey A; Lindsly, Stephen; Chen, Haiming; Brown, Markus; Wicha, Max S; Bloch, Anthony; Brockett, Roger; Rajapakse, Indika

    2017-11-07

    The day we understand the time evolution of subcellular events at a level of detail comparable to physical systems governed by Newton's laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology. With data-guided frameworks we can develop better predictions about, and methods for, control over specific biological processes and system-wide cell behavior. Here we describe an approach for optimizing the use of transcription factors (TFs) in cellular reprogramming, based on a device commonly used in optimal control. We construct an approximate model for the natural evolution of a cell-cycle-synchronized population of human fibroblasts, based on data obtained by sampling the expression of 22,083 genes at several time points during the cell cycle. To arrive at a model of moderate complexity, we cluster gene expression based on division of the genome into topologically associating domains (TADs) and then model the dynamics of TAD expression levels. Based on this dynamical model and additional data, such as known TF binding sites and activity, we develop a methodology for identifying the top TF candidates for a specific cellular reprogramming task. Our data-guided methodology identifies a number of TFs previously validated for reprogramming and/or natural differentiation and predicts some potentially useful combinations of TFs. Our findings highlight the immense potential of dynamical models, mathematics, and data-guided methodologies for improving strategies for control over biological processes. Copyright © 2017 the Author(s). Published by PNAS.

  17. Is Glutathione the Major Cellular Target of Cisplatin?

    DEFF Research Database (Denmark)

    Kasherman, Yonit; Stürup, Stefan; gibson, dan

    2009-01-01

    Cisplatin is an anticancer drug whose efficacy is limited because tumors develop resistance to the drug. Resistant cells often have elevated levels of cellular glutathione (GSH), believed to be the major cellular target of cisplatin that inactivates the drug by binding to it irreversibly, forming...

  18. A Channel Allocation Mechanism for Cellular Networks

    Directory of Open Access Journals (Sweden)

    Chi-Hua Chen

    2017-04-01

    Full Text Available In cellular networks, call blocking causes lower customer satisfaction and economic loss. Therefore, the channel allocation for call block avoidance is an important issue. This study proposes a mechanism that considers the real-time traffic information (e.g., traffic flow and vehicle speed and the user behavior (e.g., call inter-arrival time and call holding time to analyze the adaptable number of communication calls in the specific cell for channel allocation. In experiments about call block probabilities (CBP, this study simulated two cases that are the situations of the whole day and traffic accident. The simulation results show that all CBPs in the scenario of whole day are less than 21.5% by using the proposed mechanism, which is better than using the static channel allocation (SCA mechanism. Moreover, all CBPs in the scenario of traffic accidents are less than 16.5% by using the proposed mechanism, which is better than using the SCA mechanism. Therefore, the proposed mechanism can decrease the number of CBPs effectively.

  19. Shape Memory Alloy-Based Periodic Cellular Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  20. Cellular ATP synthesis mediated by type III sodium-dependent phosphate transporter Pit-1 is critical to chondrogenesis.

    Science.gov (United States)

    Sugita, Atsushi; Kawai, Shinji; Hayashibara, Tetsuyuki; Amano, Atsuo; Ooshima, Takashi; Michigami, Toshimi; Yoshikawa, Hideki; Yoneda, Toshiyuki

    2011-01-28

    Disturbed endochondral ossification in X-linked hypophosphatemia indicates an involvement of P(i) in chondrogenesis. We studied the role of the sodium-dependent P(i) cotransporters (NPT), which are a widely recognized regulator of cellular P(i) homeostasis, and the downstream events in chondrogenesis using Hyp mice, the murine homolog of human X-linked hypophosphatemia. Hyp mice showed reduced apoptosis and mineralization in hypertrophic cartilage. Hyp chondrocytes in culture displayed decreased apoptosis and mineralization compared with WT chondrocytes, whereas glycosaminoglycan synthesis, an early event in chondrogenesis, was not altered. Expression of the type III NPT Pit-1 and P(i) uptake were diminished, and intracellular ATP levels were also reduced in parallel with decreased caspase-9 and caspase-3 activity in Hyp chondrocytes. The competitive NPT inhibitor phosphonoformic acid and ATP synthesis inhibitor 3-bromopyruvate disturbed endochondral ossification with reduced apoptosis in vivo and suppressed apoptosis and mineralization in conjunction with reduced P(i) uptake and ATP synthesis in WT chondrocytes. Overexpression of Pit-1 in Hyp chondrocytes reversed P(i) uptake and ATP synthesis and restored apoptosis and mineralization. Our results suggest that cellular ATP synthesis consequent to P(i) uptake via Pit-1 plays an important role in chondrocyte apoptosis and mineralization, and that chondrogenesis is ATP-dependent.

  1. Linear Association Between Cellular DNA and Epstein-Barr Virus DNA in a Human Lymphoblastoid Cell Line

    Science.gov (United States)

    Adams, Alice; Lindahl, Tomas; Klein, George

    1973-01-01

    High-molecular-weight DNA from cell line Raji (derived from Burkitt's lymphoma), which contains 50-60 copies of Epstein-Barr virus DNA per cell, was fractionated in neutral solution by several cycles of CsCl gradient centrifugation in fixed-angle rotors. Under the fractionation conditions used, intact Epstein-Barr virus DNA from virus particles can be separated from the less-dense cellular DNA. In contrast, a large proportion of the intrinsic Epstein-Barr virus DNA component of Raji cells remains associated with cellular DNA, as determined by nucleic acid hybridization. This interaction, which is resistant to Pronase and phenol treatment, is not the result of aggregation. When the molecular weight of Raji DNA is reduced by hydrodynamic shear, the amount of virus DNA associated with cell DNA decreases. However, some virus DNA still remains bound to fragments of cellular DNA after shearing. The association is completely destroyed in alkaline solution. Molecular weight analysis of Raji DNA after denaturation showed that the alkali-induced release of Epstein-Barr virus DNA was specific and not the result of random single-strand breaks. These data indicate that Epstein-Barr virus DNA is linearly integrated into Raji cell DNA by alkali-labile bonds. PMID:4355371

  2. Influence of income on tertiary students acquisition of cellular products

    Directory of Open Access Journals (Sweden)

    G. A.P Drotsky

    2007-12-01

    Full Text Available Purpose: The purpose of the article is to determine whether there are any differences between high and low-income group students in their selection of a cellular phone brand or network operator. Design/Methodology/Approach: Four hypotheses are set to determine if there are any significant differences between the two income groups in current decision-making. It is established that there exist no significant difference between high and low-income students in their selection of cellular phones and network operators. The levels of agreement or disagreement on various statements do, however, give an indication of the importance that students place on aspects that they view as important when acquiring a cellular phone or network operator. Findings: In the article, it is established that no significant differences exist between the two income groups. The levels of agreement or disagreement indicate the importance that subscription method, social value, service quality and branding has on student decision-making. Implications: The article provides a better understanding of the influence that income plays in student's decision-making in acquiring cellular products and services. Possible future research in student cellular usage can be guided through the information obtained in this article. Originality/Value: The article provides information to cellular network operators, service providers and cellular phone manufactures regarding the influence of income on students' acquisition of cellular products and services. Information from the article can assist in the establishment of marketing plans for the student market by these role players.

  3. Cellular Uptake of the Clostridium perfringens Binary Iota-Toxin

    Science.gov (United States)

    Blöcker, Dagmar; Behlke, Joachim; Aktories, Klaus; Barth, Holger

    2001-01-01

    The binary iota-toxin is produced by Clostridium perfringens type E strains and consists of two separate proteins, the binding component iota b (98 kDa) and an actin-ADP-ribosylating enzyme component iota a (47 kDa). Iota b binds to the cell surface receptor and mediates the translocation of iota a into the cytosol. Here we studied the cellular uptake of iota-toxin into Vero cells. Bafilomycin A1, but not brefeldin A or nocodazole, inhibited the cytotoxic effects of iota-toxin, indicating that toxin is translocated from an endosomal compartment into the cytoplasm. Acidification (pH ≤ 5.0) of the extracellular medium enabled iota a to directly enter the cytosol in the presence of iota b. Activation by chymotrypsin induced oligomerization of iota b in solution. An average mass of 530 ± 28 kDa for oligomers was determined by analytical ultracentrifugation, indicating heptamer formation. The entry of iota-toxin into polarized CaCo-2 cells was studied by measuring the decrease in transepithelial resistance after toxin treatment. Iota-toxin led to a significant decrease in resistance when it was applied to the basolateral surface of the cells but not following application to the apical surface, indicating a polarized localization of the iota-toxin receptor. PMID:11292715

  4. Shape Memory Alloy-Based Periodic Cellular Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  5. Knockdown of the fat mass and obesity gene disrupts cellular energy balance in a cell-type specific manner.

    Directory of Open Access Journals (Sweden)

    Ryan T Pitman

    Full Text Available Recent studies suggest that FTO variants strongly correlate with obesity and mainly influence energy intake with little effect on the basal metabolic rate. We suggest that FTO influences eating behavior by modulating intracellular energy levels and downstream signaling mechanisms which control energy intake and metabolism. Since FTO plays a particularly important role in adipocytes and in hypothalamic neurons, SH-SY5Y neuronal cells and 3T3-L1 adipocytes were used to understand how siRNA mediated knockdown of FTO expression alters cellular energy homeostasis. Cellular energy status was evaluated by measuring ATP levels using a luminescence assay and uptake of fluorescent glucose. FTO siRNA in SH-SY5Y cells mediated mRNA knockdown (-82%, increased ATP concentrations by up to 46% (P = 0.013 compared to controls, and decreased phosphorylation of AMPk and Akt in SH-SY5Y by -52% and -46% respectively as seen by immunoblotting. In contrast, FTO siRNA in 3T3-L1 cells decreased ATP concentration by -93% (p<0.0005, and increased AMPk and Akt phosphorylation by 204% and 70%, respectively suggesting that FTO mediates control of energy levels in a cell-type specific manner. Furthermore, glucose uptake was decreased in both SH-SY5Y (-51% p = 0.015 and 3T3-L1 cells (-30%, p = 0.0002. We also show that FTO knockdown decreases NPY mRNA expression in SH-SY5Y cells (-21% through upregulation of pSTAT3 (118%. These results provide important evidence that FTO-variant linked obesity may be associated with altered metabolic functions through activation of downstream metabolic mediators including AMPk.

  6. The New Cellular Immunology

    Science.gov (United States)

    Claman, Henry N.

    1973-01-01

    Discusses the nature of the immune response and traces many of the discoveries that have led to the present state of knowledge in immunology. The new cellular immunology is directing its efforts toward improving health by proper manipulation of the immune mechanisms of the body. (JR)

  7. Genetic Dominance & Cellular Processes

    Science.gov (United States)

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  8. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  9. Cellular and biochemical responses of the oyster Crassostrea gigas to controlled exposures to metals and Alexandrium minutum

    Energy Technology Data Exchange (ETDEWEB)

    Haberkorn, Hansy; Lambert, Christophe; Le Goïc, Nelly [Laboratoire des Sciences de l‘Environnement Marin, UMR 6539, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Place Copernic, Technopôle Brest-Iroise, 29280 Plouzané (France); Quéré, Claudie [IFREMER Centre de Brest, Laboratoire de Physiologie des Invertébrés, Unité Physiologie Fonctionnelle des Organismes Marins, BP 70, 29280 Plouzané (France); Bruneau, Audrey; Riso, Ricardo; Auffret, Michel [Laboratoire des Sciences de l‘Environnement Marin, UMR 6539, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Place Copernic, Technopôle Brest-Iroise, 29280 Plouzané (France); Soudant, Philippe, E-mail: Philippe.Soudant@univ-brest.fr [Laboratoire des Sciences de l‘Environnement Marin, UMR 6539, Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, Place Copernic, Technopôle Brest-Iroise, 29280 Plouzané (France)

    2014-02-15

    Highlights: •Oysters, C. gigas, were exposed to both metals and PST-producer A. minutum. •Oysters exposed to metals accumulated about thirty-six times less PSTs. •Exposure to both metals and A. minutum induced antagonistic or synergetic effects. -- Abstract: Effects of simultaneous exposure of Pacific oyster, Crassostrea gigas, to both a harmful dinoflagellate that produces Paralytic Shellfish Toxins (PST), Alexandrium minutum, and cadmium (Cd) and copper (Cu), were assessed. Oysters were exposed to a mix of Cd–Cu with two different diets (i.e. A. minutum or Tisochrysis lutea) and compared to control oysters fed A. minutum or T. lutea, respectively, without metal addition. Metals and PST accumulations, digestive gland lipid composition, and cellular and biochemical hemolymph variables were measured after 4 days of exposure. Oysters exposed to Cd–Cu accumulated about thirty-six times less PSTs than oysters exposed to A. minutum alone. Exposure to Cd–Cu induced significant changes in neutral lipids (increase in diacylglycerol – DAG – and decrease in sterols) and phospholipids (decreases in phosphatidylcholine, phosphatidylethanolamine, cardiolipin and ceramide aminoethylphosphonate) of digestive gland suggesting that lipid metabolism disruptions and/or lipid peroxidation have occurred. Simultaneously, concentrations, percentages of dead cells and phenoloxidase activity of hemocytes increased in oysters exposed to metals while reactive oxygen species production of hemocytes decreased. Feeding on the harmful dinoflagellate A. minutum resulted in significant decreases in monoacylglycerol (MAG) and DAG and ether glycerides (EG), as well as significant increases in hemocyte concentration and phagocytic activity as compared to oysters fed T. lutea. Finally, the present study revealed that short-term, simultaneous exposure to Cd–Cu and A. minutum may induce antagonistic (i.e. hemocyte concentration and phagocytosis) or synergic (i.e. DAG content in

  10. Additive Cellular Automata and Volume Growth

    Directory of Open Access Journals (Sweden)

    Thomas B. Ward

    2000-08-01

    Full Text Available Abstract: A class of dynamical systems associated to rings of S-integers in rational function fields is described. General results about these systems give a rather complete description of the well-known dynamics in one-dimensional additive cellular automata with prime alphabet, including simple formulæ for the topological entropy and the number of periodic configurations. For these systems the periodic points are uniformly distributed along some subsequence with respect to the maximal measure, and in particular are dense. Periodic points may be constructed arbitrarily close to a given configuration, and rationality of the dynamical zeta function is characterized. Throughout the emphasis is to place this particular family of cellular automata into the wider context of S-integer dynamical systems, and to show how the arithmetic of rational function fields determines their behaviour. Using a covering space the dynamics of additive cellular automata are related to a form of hyperbolicity in completions of rational function fields. This expresses the topological entropy of the automata directly in terms of volume growth in the covering space.

  11. Inter-cellular transport of ran GTPase.

    Directory of Open Access Journals (Sweden)

    Deepak Khuperkar

    Full Text Available Ran, a member of the Ras-GTPase superfamily, has a well-established role in regulating the transport of macromolecules across the nuclear envelope (NE. Ran has also been implicated in mitosis, cell cycle progression, and NE formation. Over-expression of Ran is associated with various cancers, although the molecular mechanism underlying this phenomenon is unclear. Serendipitously, we found that Ran possesses the ability to move from cell-to-cell when transiently expressed in mammalian cells. Moreover, we show that the inter-cellular transport of Ran is GTP-dependent. Importantly, Ran displays a similar distribution pattern in the recipient cells as that in the donor cell and co-localizes with the Ran binding protein Nup358 (also called RanBP2. Interestingly, leptomycin B, an inhibitor of CRM1-mediated export, or siRNA mediated depletion of CRM1, significantly impaired the inter-cellular transport of Ran, suggesting a function for CRM1 in this process. These novel findings indicate a possible role for Ran beyond nucleo-cytoplasmic transport, with potential implications in inter-cellular communication and cancers.

  12. Cellularity of certain quantum endomorphism algebras

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Lehrer, Gus; Zhang, Ruibin

    2015-01-01

    For any ring A˜ such that Z[q±1∕2]⊆A˜⊆Q(q1∕2), let ΔA˜(d) be an A˜-form of the Weyl module of highest weight d∈N of the quantised enveloping algebra UA˜ of sl2. For suitable A˜, we exhibit for all positive integers r an explicit cellular structure for EndUA˜(ΔA˜(d)⊗r). This algebra and its cellular...... structure are described in terms of certain Temperley–Lieb-like diagrams. We also prove general results that relate endomorphism algebras of specialisations to specialisations of the endomorphism algebras. When ζ is a root of unity of order bigger than d we consider the Uζ-module structure...... of the specialisation Δζ(d)⊗r at q↦ζ of ΔA˜(d)⊗r. As an application of these results, we prove that knowledge of the dimensions of the simple modules of the specialised cellular algebra above is equivalent to knowledge of the weight multiplicities of the tilting modules for Uζ(sl2). As an example, in the final section...

  13. Salmonella adhesion, invasion and cellular immune responses are differentially affected by iron concentrations in a combined in vitro gut fermentation-cell model.

    Science.gov (United States)

    Dostal, Alexandra; Gagnon, Mélanie; Chassard, Christophe; Zimmermann, Michael Bruce; O'Mahony, Liam; Lacroix, Christophe

    2014-01-01

    In regions with a high infectious disease burden, concerns have been raised about the safety of iron supplementation because higher iron concentrations in the gut lumen may increase risk of enteropathogen infection. The aim of this study was to investigate interactions of the enteropathogen Salmonella enterica ssp. enterica Typhimurium with intestinal cells under different iron concentrations encountered in the gut lumen during iron deficiency and supplementation using an in vitro colonic fermentation system inoculated with immobilized child gut microbiota combined with Caco-2/HT29-MTX co-culture monolayers. Colonic fermentation effluents obtained during normal, low (chelation by 2,2'-dipyridyl) and high iron (26.5 mg iron/L) fermentation conditions containing Salmonella or pure Salmonella cultures with similar iron conditions were applied to cellular monolayers. Salmonella adhesion and invasion capacity, cellular integrity and immune response were assessed. Under high iron conditions in pure culture, Salmonella adhesion was 8-fold increased compared to normal iron conditions while invasion was not affected leading to decreased invasion efficiency (-86%). Moreover, cellular cytokines IL-1β, IL-6, IL-8 and TNF-α secretion as well as NF-κB activation in THP-1 cells were attenuated under high iron conditions. Low iron conditions in pure culture increased Salmonella invasion correlating with an increase in IL-8 release. In fermentation effluents, Salmonella adhesion was 12-fold and invasion was 428-fold reduced compared to pure culture. Salmonella in high iron fermentation effluents had decreased invasion efficiency (-77.1%) and cellular TNF-α release compared to normal iron effluent. The presence of commensal microbiota and bacterial metabolites in fermentation effluents reduced adhesion and invasion of Salmonella compared to pure culture highlighting the importance of the gut microbiota as a barrier during pathogen invasion. High iron concentrations as

  14. Cellular phone interference with the operation of mechanical ventilators.

    Science.gov (United States)

    Shaw, Cheryl I; Kacmarek, Robert M; Hampton, Rickey L; Riggi, Vincent; El Masry, Ashraf; Cooper, Jeffrey B; Hurford, William E

    2004-04-01

    To determine whether a cellular phone would interfere with the operation of mechanical ventilators. Laboratory study. University medical center. Fourteen mechanical ventilators. We evaluated change in operation and malfunction of the mechanical ventilators. The cellular phone (Nokia 6120i) was computer controlled, operating at 828.750 MHz analog modulation. It was operated at 16, 40, 100, 250, and 600 mW, 30 cm from the floor and 30, 15, and ventilator. Six of the 14 ventilators tested malfunctioned when a cellular phone at maximum power output was placed ventilating when the cellular phone at maximum power output was placed ventilator. One ventilator doubled the ventilatory rate and another increased the displayed tidal volume from 350 to 1033 mL. In one of the infant ventilators, displayed tidal volume increased from 21 to 100 mL. In another ventilator, the high respiratory rate alarm sounded but the rate had not changed. In a controlled laboratory setting, cellular phones placed in close proximity to some commercially available intensive care ventilators can cause malfunctions, including irrecoverable cessation of ventilation. This is most likely to occur if the cellular phone is or =3 feet from all medical devices. The current electromagnetic compatibility standards for mechanical ventilators are inadequate to prevent malfunction. Manufacturers should ensure that their products are not affected by wireless technology even when placed immediately next to the device.

  15. Predicting cellular growth from gene expression signatures.

    Directory of Open Access Journals (Sweden)

    Edoardo M Airoldi

    2009-01-01

    Full Text Available Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.

  16. Multi-cellular logistics of collective cell migration.

    Directory of Open Access Journals (Sweden)

    Masataka Yamao

    Full Text Available During development, the formation of biological networks (such as organs and neuronal networks is controlled by multicellular transportation phenomena based on cell migration. In multi-cellular systems, cellular locomotion is restricted by physical interactions with other cells in a crowded space, similar to passengers pushing others out of their way on a packed train. The motion of individual cells is intrinsically stochastic and may be viewed as a type of random walk. However, this walk takes place in a noisy environment because the cell interacts with its randomly moving neighbors. Despite this randomness and complexity, development is highly orchestrated and precisely regulated, following genetic (and even epigenetic blueprints. Although individual cell migration has long been studied, the manner in which stochasticity affects multi-cellular transportation within the precisely controlled process of development remains largely unknown. To explore the general principles underlying multicellular migration, we focus on the migration of neural crest cells, which migrate collectively and form streams. We introduce a mechanical model of multi-cellular migration. Simulations based on the model show that the migration mode depends on the relative strengths of the noise from migratory and non-migratory cells. Strong noise from migratory cells and weak noise from surrounding cells causes "collective migration," whereas strong noise from non-migratory cells causes "dispersive migration." Moreover, our theoretical analyses reveal that migratory cells attract each other over long distances, even without direct mechanical contacts. This effective interaction depends on the stochasticity of the migratory and non-migratory cells. On the basis of these findings, we propose that stochastic behavior at the single-cell level works effectively and precisely to achieve collective migration in multi-cellular systems.

  17. Surface Dynamic Process Simulation with the Use of Cellular Automata

    International Nuclear Information System (INIS)

    Adamska-Szatko, M.; Bala, J.

    2010-01-01

    Cellular automata are known for many applications, especially for physical and biological simulations. Universal cellular automata can be used for modelling complex natural phenomena. The paper presents simulation of surface dynamic process. Simulation uses 2-dimensional cellular automata algorithm. Modelling and visualisation were created by in-house developed software with standard OpenGL graphic library. (authors)

  18. Biochemical Factors Modulating Cellular Neurotoxicity of Methylmercury

    Directory of Open Access Journals (Sweden)

    Parvinder Kaur

    2011-01-01

    Full Text Available Methylmercury (MeHg, an environmental toxicant primarily found in fish and seafood, poses a dilemma to both consumers and regulatory authorities, given the nutritional benefits of fish consumption versus the possible adverse neurological damage. Several studies have shown that MeHg toxicity is influenced by a number of biochemical factors, such as glutathione (GSH, fatty acids, vitamins, and essential elements, but the cellular mechanisms underlying these complex interactions have not yet been fully elucidated. The objective of this paper is to outline the cellular response to dietary nutrients, as well as to describe the neurotoxic exposures to MeHg. In order to determine the cellular mechanism(s of toxicity, the effect of pretreatment with biochemical factors (e.g., N-acetyl cysteine, (NAC; diethyl maleate, (DEM; docosahexaenoic acid, (DHA; selenomethionine, SeM; Trolox and MeHg treatment on intercellular antioxidant status, MeHg content, and other endpoints was evaluated. This paper emphasizes that the protection against oxidative stress offered by these biochemical factors is among one of the major mechanisms responsible for conferring neuroprotection. It is therefore critical to ascertain the cellular mechanisms associated with various dietary nutrients as well as to determine the potential effects of neurotoxic exposures for accurately assessing the risks and benefits associated with fish consumption.

  19. Apolipoprotein J/Clusterin is a novel structural component of human erythrocytes and a biomarker of cellular stress and senescence.

    Directory of Open Access Journals (Sweden)

    Marianna H Antonelou

    Full Text Available BACKGROUND: Secretory Apolipoprotein J/Clusterin (sCLU is a ubiquitously expressed chaperone that has been functionally implicated in several pathological conditions of increased oxidative injury, including aging. Nevertheless, the biological role of sCLU in red blood cells (RBCs remained largely unknown. In the current study we identified sCLU as a component of human RBCs and we undertook a detailed analysis of its cellular topology. Moreover, we studied the erythrocytic membrane sCLU content during organismal aging, in conditions of increased organismal stress and accelerated RBCs senescence, as well as during physiological in vivo cellular senescence. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of molecular, biochemical and high resolution microscopical methods we found that sCLU is a novel structural component of RBCs extra- and intracellular plasma membrane and cytosol. We observed that the RBCs membrane-associated sCLU decreases during organismal aging or exposure to acute stress (e.g. smoking, in patients with congenital hemolytic anemia, as well as during RBCs in vivo senescence. In all cases, sCLU reduction paralleled the expression of typical cellular senescence, redox imbalance and erythrophagocytosis markers which are also indicative of the senescence- and oxidative stress-mediated RBCs membrane vesiculation. CONCLUSIONS/SIGNIFICANCE: We propose that sCLU at the mature RBCs is not a silent remnant of the erythroid precursors, but an active component being functionally implicated in the signalling mechanisms of cellular senescence and oxidative stress-responses in both healthy and diseased organism. The reduced sCLU protein levels in the RBCs membrane following cell exposure to various endogenous or exogenous stressors closely correlates to the levels of cellular senescence and redox imbalance markers, suggesting the usefulness of sCLU as a sensitive biomarker of senescence and cellular stress.

  20. Cellular automaton-based position sensitive detector equalization

    Energy Technology Data Exchange (ETDEWEB)

    Ferrando, Nestor [Grupo de Diseno de Sistemas Digitales, Instituto de Aplicaciones de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)], E-mail: nesferjo@upvnet.upv.es; Herrero, V.; Cerda, J.; Lerche, C.W.; Colom, R.J.; Gadea, R.; Martinez, J.D.; Monzo, J.M.; Mateo, F.; Sebastia, A.; Benlloch, J.M. [Grupo de Diseno de Sistemas Digitales, Instituto de Aplicaciones de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2009-06-01

    Indirect position detectors based on scintillator crystals lack of spacial uniformity in their response. This happens due to crystal inhomogeneities and gain differences among the photomultiplier anodes. In order to solve this, PESIC, an integrated front-end for multianode photomultiplier based nuclear imaging devices was created. One of its main features is the digitally programmable gain adjustment for every photomultiplier output. On another front, cellular automata have been proved to be a useful method for dynamic system modeling. In this paper, a cellular automaton which emulates the behavior of the scintillator crystal, the photomultiplier and the front-end is introduced. Thanks to this model, an automatic energy-based calibration of the detector can be done by configuring the cellular automaton with experimental data and making it evolve up to an stable state. This can be useful as a precalibration method of the detector.

  1. Cellular automatons applied to gas dynamic problems

    Science.gov (United States)

    Long, Lyle N.; Coopersmith, Robert M.; Mclachlan, B. G.

    1987-01-01

    This paper compares the results of a relatively new computational fluid dynamics method, cellular automatons, with experimental data and analytical results. This technique has been shown to qualitatively predict fluidlike behavior; however, there have been few published comparisons with experiment or other theories. Comparisons are made for a one-dimensional supersonic piston problem, Stokes first problem, and the flow past a normal flat plate. These comparisons are used to assess the ability of the method to accurately model fluid dynamic behavior and to point out its limitations. Reasonable results were obtained for all three test cases, but the fundamental limitations of cellular automatons are numerous. It may be misleading, at this time, to say that cellular automatons are a computationally efficient technique. Other methods, based on continuum or kinetic theory, would also be very efficient if as little of the physics were included.

  2. Cellular structures using U_q-tilting modules

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina; Tubbenhauer, Daniel

    We use the theory of Uq-tilting modules to construct cellular bases for centralizer algebras. Our methods are quite general and work for any quantum group Uq attached to a Cartan matrix and include the non semi-simple cases for q being a root of unity and ground fields of positive characteristic........ Our approach also generalize to certain categories containing infinite dimensional modules. As an application, we recover several known cellular structures (which can all be fit into our general set-up) as we illustrate in a list of examples.......We use the theory of Uq-tilting modules to construct cellular bases for centralizer algebras. Our methods are quite general and work for any quantum group Uq attached to a Cartan matrix and include the non semi-simple cases for q being a root of unity and ground fields of positive characteristic...

  3. Cellular automaton-based position sensitive detector equalization

    International Nuclear Information System (INIS)

    Ferrando, Nestor; Herrero, V.; Cerda, J.; Lerche, C.W.; Colom, R.J.; Gadea, R.; Martinez, J.D.; Monzo, J.M.; Mateo, F.; Sebastia, A.; Benlloch, J.M.

    2009-01-01

    Indirect position detectors based on scintillator crystals lack of spacial uniformity in their response. This happens due to crystal inhomogeneities and gain differences among the photomultiplier anodes. In order to solve this, PESIC, an integrated front-end for multianode photomultiplier based nuclear imaging devices was created. One of its main features is the digitally programmable gain adjustment for every photomultiplier output. On another front, cellular automata have been proved to be a useful method for dynamic system modeling. In this paper, a cellular automaton which emulates the behavior of the scintillator crystal, the photomultiplier and the front-end is introduced. Thanks to this model, an automatic energy-based calibration of the detector can be done by configuring the cellular automaton with experimental data and making it evolve up to an stable state. This can be useful as a precalibration method of the detector.

  4. Multidrug and toxin extrusion proteins mediate cellular transport of cadmium

    International Nuclear Information System (INIS)

    Yang, Hong; Guo, Dong; Obianom, Obinna N.; Su, Tong; Polli, James E.; Shu, Yan

    2017-01-01

    Cadmium (Cd) is an environmentally prevalent toxicant posing increasing risk to human health worldwide. As compared to the extensive research in Cd tissue accumulation, little was known about the elimination of Cd, particularly its toxic form, Cd ion (Cd 2+ ). In this study, we aimed to examine whether Cd 2+ is a substrate of multidrug and toxin extrusion proteins (MATEs) that are important in renal xenobiotic elimination. HEK-293 cells overexpressing the human MATE1 (HEK-hMATE1), human MATE2-K (HEK-hMATE2-K) and mouse Mate1 (HEK-mMate1) were used to study the cellular transport and toxicity of Cd 2+ . The cells overexpressing MATEs showed a 2–4 fold increase of Cd 2+ uptake that could be blocked by the MATE inhibitor cimetidine. A saturable transport profile was observed with the Michaelis-Menten constant (K m ) of 130 ± 15.8 μM for HEK-hMATE1; 139 ± 21.3 μM for HEK-hMATE2-K; and 88.7 ± 13.5 μM for HEK-mMate1, respectively. Cd 2+ could inhibit the uptake of metformin, a substrate of MATE transporters, with the half maximal inhibitory concentration (IC 50 ) of 97.5 ± 6.0 μM, 20.2 ± 2.6 μM, and 49.9 ± 6.9 μM in HEK-hMATE1, HEK-hMATE2-K, and HEK-mMate1 cells, respectively. In addition, hMATE1 could transport preloaded Cd 2+ out of the HEK-hMATE1 cells, thus resulting in a significant decrease of Cd 2+ -induced cytotoxicity. The present study has provided the first evidence supporting that MATEs transport Cd 2+ and may function as cellular elimination machinery in Cd intoxication. - Highlights: • Cadmium is an environmentally prevalent toxicant. • Little was known regarding the elimination and detoxification of cadmium. • Cadmium ion is here demonstrated as a substrate of MATE transporters. • MATEs may function as cellular elimination machinery in cadmium detoxification.

  5. Cellular communication through light.

    Directory of Open Access Journals (Sweden)

    Daniel Fels

    Full Text Available Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  6. Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles

    International Nuclear Information System (INIS)

    Pradhan, Pallab; Giri, Jyotsnendu; Banerjee, Rinti; Bellare, Jayesh; Bahadur, Dhirendra

    2007-01-01

    In vitro cytocompatibility and cellular interactions of lauric acid and dextran-coated magnetite nanoparticles were evaluated with two different cell lines (mouse fibroblast and human cervical carcinoma). Lauric acid-coated magnetite nanoparticles were less cytocompatible than dextran-coated magnetite nanoparticles and cellular uptake of lauric acid-coated magnetic nanoparticles was more than that of dextran-coated magnetite nanoparticles. Lesser cytocompatibility and higher uptake of lauric acid-coated magnetite nanoparticles as compared to dextran-coated magnetic nanoparticles may be due to different cellular interactions by coating material. Thus, coating plays an important role in modulation of biocompatibility and cellular interaction of magnetic nanoparticles

  7. Cellular Phone Users- Willingness to Shop Online

    OpenAIRE

    Norazah Mohd Suki; Norbayah Mohd Suki

    2009-01-01

    This study aims to identify cellular phone users- shopping motivating factors towards online shopping. 100 university students located in Klang Valley, Malaysia were involved as the respondents. They were required to complete a set of questionnaire and had to own a cellular phone in order to be selected as sample in this study. Three from five proposed hypotheses were supported: purchasing information, shopping utilities and service quality. As a result, marketers and retailers should concent...

  8. Cellular immobilization within microfluidic microenvironments: dielectrophoresis with polyelectrolyte multilayers.

    Science.gov (United States)

    Forry, Samuel P; Reyes, Darwin R; Gaitan, Michael; Locascio, Laurie E

    2006-10-25

    The development of biomimetic microenvironments will improve cell culture techniques by enabling in vitro cell cultures that mimic in vivo behavior; however, experimental control over attachment, cellular position, or intercellular distances within such microenvironments remains challenging. We report here the rapid and controllable immobilization of suspended mammalian cells within microfabricated environments using a combination of electronic (dielectrophoresis, DEP) and chemical (polyelectrolyte multilayers, PEMS) forces. While cellular position within the microsystem is rapidly patterned via intermittent DEP trapping, persistent adhesion after removal of electronic forces is enabled by surface treatment with PEMS that are amenable to cellular attachment. In contrast to DEP trapping alone, persistent adhesion enables the soluble microenvironment to be systematically varied, facilitating the use of soluble probes of cell state and enabling cellular characterization in response to various soluble stimuli.

  9. Histomorphometric analysis of nuclear and cellular volumetric alterations in oral lichen planus, lichenoid lesions and normal oral mucosa using image analysis software.

    Science.gov (United States)

    Venkatesiah, Sowmya S; Kale, Alka D; Hallikeremath, Seema R; Kotrashetti, Vijayalakshmi S

    2013-01-01

    Lichen planus is a chronic inflammatory mucocutaneous disease that clinically and histologically resembles lichenoid lesions, although the latter has a different etiology. Though criteria have been suggested for differentiating oral lichen planus from lichenoid lesions, confusion still prevails. To study the cellular and nuclear volumetric features in the epithelium of normal mucosa, lichen planus, and lichenoid lesions to determine variations if any. A retrospective study was done on 25 histologically diagnosed cases each of oral lichen planus, oral lichenoid lesions, and normal oral mucosa. Cellular and nuclear morphometric measurements were assessed on hematoxylin and eosin sections using image analysis software. Analysis of variance test (ANOVA) and Tukey's post-hoc test. The basal cells of oral lichen planus showed a significant increase in the mean nuclear and cellular areas, and in nuclear volume; there was a significant decrease in the nuclear-cytoplasmic ratio as compared to normal mucosa. The suprabasal cells showed a significant increase in nuclear and cellular areas, nuclear diameter, and nuclear and cellular volumes as compared to normal mucosa. The basal cells of oral lichenoid lesions showed significant difference in the mean cellular area and the mean nuclear-cytoplasmic ratio as compared to normal mucosa, whereas the suprabasal cells differed significantly from normal mucosa in the mean nuclear area and the nuclear and cellular volumes. Morphometry can differentiate lesions of oral lichen planus and oral lichenoid lesions from normal oral mucosa. Thus, morphometry may serve to discriminate between normal and premalignant lichen planus and lichenoid lesions. These lesions might have a high risk for malignant transformation and may behave in a similar manner with respect to malignant transformation.

  10. Cellular Phone Text Communication in English Language Among ...

    African Journals Online (AJOL)

    Considering the place of English in Nigeria, pupils and students are enjoined to use it constantly in their activities including phone calls. In view of the significant roles that cellular phones play in the lives of youths, and sustainable development of the economy, this paper looks into Nigerian youths' cellular phone text ...

  11. Cellular Automata Simulation for Wealth Distribution

    Science.gov (United States)

    Lo, Shih-Ching

    2009-08-01

    Wealth distribution of a country is a complicate system. A model, which is based on the Epstein & Axtell's "Sugars cape" model, is presented in Netlogo. The model considers the income, age, working opportunity and salary as control variables. There are still other variables should be considered while an artificial society is established. In this study, a more complicate cellular automata model for wealth distribution model is proposed. The effects of social welfare, tax, economical investment and inheritance are considered and simulated. According to the cellular automata simulation for wealth distribution, we will have a deep insight of financial policy of the government.

  12. External insulation with cellular plastic materials

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2014-01-01

    External thermal insulation composite systems (ETICS) can be used as extra insulation of existing buildings. The system can be made of cellular plastic materials or mineral wool. There is a European Technical guideline, ETAG 004, that describe the tests that shall be conducted on such systems....... This paper gives a comparison of systems with mineral wool and cellular plastic, based on experience from practice and literature. It is important to look at the details in the system and at long time stability of the properties such as thermal insulation, moisture and fire. Investigation of fire properties...

  13. A Time-Varied Probabilistic ON/OFF Switching Algorithm for Cellular Networks

    KAUST Repository

    Rached, Nadhir B.; Ghazzai, Hakim; Kadri, Abdullah; Alouini, Mohamed-Slim

    2018-01-01

    In this letter, we develop a time-varied probabilistic on/off switching planning method for cellular networks to reduce their energy consumption. It consists in a risk-aware optimization approach that takes into consideration the randomness of the user profile associated with each base station (BS). The proposed approach jointly determines (i) the instants of time at which the current active BS configuration must be updated due to an increase or decrease of the network traffic load, and (ii) the set of minimum BSs to be activated to serve the networks’ subscribers. Probabilistic metrics modeling the traffic profile variation are developed to trigger this dynamic on/off switching operation. Selected simulation results are then performed to validate the proposed algorithm for different system parameters.

  14. A Time-Varied Probabilistic ON/OFF Switching Algorithm for Cellular Networks

    KAUST Repository

    Rached, Nadhir B.

    2018-01-11

    In this letter, we develop a time-varied probabilistic on/off switching planning method for cellular networks to reduce their energy consumption. It consists in a risk-aware optimization approach that takes into consideration the randomness of the user profile associated with each base station (BS). The proposed approach jointly determines (i) the instants of time at which the current active BS configuration must be updated due to an increase or decrease of the network traffic load, and (ii) the set of minimum BSs to be activated to serve the networks’ subscribers. Probabilistic metrics modeling the traffic profile variation are developed to trigger this dynamic on/off switching operation. Selected simulation results are then performed to validate the proposed algorithm for different system parameters.

  15. Cellular mechanics and motility

    Science.gov (United States)

    Hénon, Sylvie; Sykes, Cécile

    2015-10-01

    The term motility defines the movement of a living organism. One widely known example is the motility of sperm cells, or the one of flagellar bacteria. The propulsive element of such organisms is a cilium(or flagellum) that beats. Although cells in our tissues do not have a flagellum in general, they are still able to move, as we will discover in this chapter. In fact, in both cases of movement, with or without a flagellum, cell motility is due to a dynamic re-arrangement of polymers inside the cell. Let us first have a closer look at the propulsion mechanism in the case of a flagellum or a cilium, which is the best known, but also the simplest, and which will help us to define the hydrodynamic general conditions of cell movement. A flagellum is sustained by cellular polymers arranged in semi-flexible bundles and flagellar beating generates cell displacement. These polymers or filaments are part of the cellular skeleton, or "cytoskeleton", which is, in this case, external to the cellular main body of the organism. In fact, bacteria move in a hydrodynamic regime in which viscosity dominates over inertia. The system is thus in a hydrodynamic regime of low Reynolds number (Box 5.1), which is nearly exclusively the case in all cell movements. Bacteria and their propulsion mode by flagella beating are our unicellular ancestors 3.5 billion years ago. Since then, we have evolved to form pluricellular organisms. However, to keep the ability of displacement, to heal our wounds for example, our cells lost their flagellum, since it was not optimal in a dense cell environment: cells are too close to each other to leave enough space for the flagella to accomplish propulsion. The cytoskeleton thus developed inside the cell body to ensure cell shape changes and movement, and also mechanical strength within a tissue. The cytoskeleton of our cells, like the polymers or filaments that sustain the flagellum, is also composed of semi-flexible filaments arranged in bundles, and also in

  16. Simulasi Tumbukan Partikel Gas Ideal Dengan Model Cellular Automata Dua Dimensi

    OpenAIRE

    Abdul Basid, Annisa Mujriati

    2010-01-01

    Telah dilakukan simulasi tumbukan partikel gas ideal dengan menggunakan  model cellular automata dua dimensi untuk memvisualisasikan tumbukan partikel gas ideal. Tumbukan partikel  disimulasikan  dengan  menggunakan  model  cellular  automata  dua  dimensi.  Di  dalam cellular automata, pergerakan partikel diatur dengan suatu aturan  yaitu aturan delapan tetangga yang merupakan aturan acak. Hasil program simulasi tumbukan partikel gas ideal dengan model cellular automata dua dimensi  mengguna...

  17. New approach to modulate retinal cellular toxic effects of high glucose using marine epa and dha

    Directory of Open Access Journals (Sweden)

    Fagon Roxane

    2011-06-01

    Full Text Available Abstract Background Protective effects of omega-3 fatty acids against cellular damages of high glucose were studied on retinal pigmented epithelial (RPE cells. Methods Retinal epithelial cells were incubated with omega-3 marine oils rich in EPA and DHA and then with high glucose (25 mM for 48 hours. Cellular responses were compared to normal glucose (5 mM: intracellular redox status, reactive oxygen species (ROS, mitochondrial succinate deshydrogenase activity, inflammatory cytokines release and caveolin-1 expression were evaluated using microplate cytometry, ELISA and flow cytometry techniques. Fatty acids incorporation in retinal cell membranes was analysed using chromatography. Results Preincubation of the cells with fish oil decreased ROS overproduction, mitochondrial alterations and TNFα release. These protective effects could be attributed to an increase in caveolin-1 expression induced by marine oil. Conclusion Marine formulations rich in omega-3 fatty acids represent a promising therapeutic approach for diabetic retinopathy.

  18. Cellular and Matrix Response of the Mandibular Condylar Cartilage to Botulinum Toxin.

    Directory of Open Access Journals (Sweden)

    Eliane H Dutra

    Full Text Available To evaluate the cellular and matrix effects of botulinum toxin type A (Botox on mandibular condylar cartilage (MCC and subchondral bone.Botox (0.3 unit was injected into the right masseter of 5-week-old transgenic mice (Col10a1-RFPcherry at day 1. Left side masseter was used as intra-animal control. The following bone labels were intraperitoneally injected: calcein at day 7, alizarin red at day 14 and calcein at day 21. In addition, EdU was injected 48 and 24 hours before sacrifice. Mice were sacrificed 30 days after Botox injection. Experimental and control side mandibles were dissected and examined by x-ray imaging and micro-CT. Subsequently, MCC along with the subchondral bone was sectioned and stained with tartrate resistant acid phosphatase (TRAP, EdU, TUNEL, alkaline phosphatase, toluidine blue and safranin O. In addition, we performed immunohistochemistry for pSMAD and VEGF.Bone volume fraction, tissue density and trabecular thickness were significantly decreased on the right side of the subchondral bone and mineralized cartilage (Botox was injected when compared to the left side. There was no significant difference in the mandibular length and condylar head length; however, the condylar width was significantly decreased after Botox injection. Our histology showed decreased numbers of Col10a1 expressing cells, decreased cell proliferation and increased cell apoptosis in the subchondral bone and mandibular condylar cartilage, decreased TRAP activity and mineralization of Botox injected side cartilage and subchondral bone. Furthermore, we observed reduced proteoglycan and glycosaminoglycan distribution and decreased expression of pSMAD 1/5/8 and VEGF in the MCC of the Botox injected side in comparison to control side.Injection of Botox in masseter muscle leads to decreased mineralization and matrix deposition, reduced chondrocyte proliferation and differentiation and increased cell apoptosis in the MCC and subchondral bone.

  19. Radiolabelled cellular blood elements

    International Nuclear Information System (INIS)

    Sinzinger, H.

    1990-01-01

    This book reports on radiolabelled cellular blood elements, covering new advances made during the past several years, in particular the use of Tc-99 as a tracer for blood elements. Coverage extends to several radiolabelled monoclonal antibodies that are specific for blood components and may label blood elements in vivo

  20. Cellular and molecular screening of connective tissue dysplasia in adolescent athletes (pilot study

    Directory of Open Access Journals (Sweden)

    M. V. Dvornichenko

    2017-01-01

    Full Text Available The purpose of the study is to evaluate the cellular and molecular parameters of bone remodeling in the blood as potential markers of undifferentiated forms of connective tissue dysplasiaMaterials and methods. The structural and functional status of cellular elements of in vitro culturing of mononuclear leukocytes of peripheral blood in adolescent athletes connected with phenotypic manifestations of undifferentiated connective tissue dysplasia (UCTD were investigated. 25 pupils of sport schools from 10–14 years old (main disciplines: figure skating, gymnastics, athletics were examined with the help of express analysis. The average age of the examined adolescents was (12,0 ± 1,7 years. Clinical examination of adolescents allowed ranking the UCTD signs on a scale of 4–11,5 points.Results. A comparison of questionnaire survey results and an evaluation of bone remodeling distant markers allowed the revelation of 2 groups in the distribution of adolescent athletes: those with minimal signs of UCTD (scores lesser than 7 points – 10 pupils, and those with expressed UCTD phenotype (scores are equal or more than 7 points –15 pupils. Significant statistical decrease in the content of collagen type I degradation products (CrossLaps (by 80% and ionized calcium (by 5% has been determined in the peripheral blood of adolescent athletes with expressed UCTD phenotype. In conditions of short-term 72-h cultivation of mononuclear leukocytes in the presence of a 3D matrix imitating the properties of the mineral substance of the regenerating bone tissue, morphofunctional features of cellular reaction in adolescent athletes with clinical manifestations of UCTD, as well the heterogeneity of the cell population associated with the appearance of cells with an osteoblast-like phenotype in the blood have been revealed. The results of investigation propose the use of distant cellular and molecular parameters of bone remodeling to screen the mechanisms and dynamics

  1. Simulation of emotional contagion using modified SIR model: A cellular automaton approach

    Science.gov (United States)

    Fu, Libi; Song, Weiguo; Lv, Wei; Lo, Siuming

    2014-07-01

    Emotion plays an important role in the decision-making of individuals in some emergency situations. The contagion of emotion may induce either normal or abnormal consolidated crowd behavior. This paper aims to simulate the dynamics of emotional contagion among crowds by modifying the epidemiological SIR model to a cellular automaton approach. This new cellular automaton model, entitled the “CA-SIRS model”, captures the dynamic process ‘susceptible-infected-recovered-susceptible', which is based on SIRS contagion in epidemiological theory. Moreover, in this new model, the process is integrated with individual movement. The simulation results of this model show that multiple waves and dynamical stability around a mean value will appear during emotion spreading. It was found that the proportion of initial infected individuals had little influence on the final stable proportion of infected population in a given system, and that infection frequency increased with an increase in the average crowd density. Our results further suggest that individual movement accelerates the spread speed of emotion and increases the stable proportion of infected population. Furthermore, decreasing the duration of an infection and the probability of reinfection can markedly reduce the number of infected individuals. It is hoped that this study will be helpful in crowd management and evacuation organization.

  2. Computational Complexity of Some Problems on Generalized Cellular Automations

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2012-03-01

    Full Text Available We prove that the preimage problem of a generalized cellular automation is NP-hard. The results of this work are important for supporting the security of the ciphers based on the cellular automations.

  3. Sub-cellular distribution and translocation of TRP channels.

    Science.gov (United States)

    Toro, Carlos A; Arias, Luis A; Brauchi, Sebastian

    2011-01-01

    Cellular electrical activity is the result of a highly complex processes that involve the activation of ion channel proteins. Ion channels make pores on cell membranes that rapidly transit between conductive and non-conductive states, allowing different ions to flow down their electrochemical gradients across cell membranes. In the case of neuronal cells, ion channel activity orchestrates action potentials traveling through axons, enabling electrical communication between cells in distant parts of the body. Somatic sensation -our ability to feel touch, temperature and noxious stimuli- require ion channels able to sense and respond to our peripheral environment. Sensory integration involves the summing of various environmental cues and their conversion into electrical signals. Members of the Transient Receptor Potential (TRP) family of ion channels have emerged as important mediators of both cellular sensing and sensory integration. The regulation of the spatial and temporal distribution of membrane receptors is recognized as an important mechanism for controlling the magnitude of the cellular response and the time scale on which cellular signaling occurs. Several studies have shown that this mechanism is also used by TRP channels to modulate cellular response and ultimately fulfill their physiological function as sensors. However, the inner-working of this mode of control for TRP channels remains poorly understood. The question of whether TRPs intrinsically regulate their own vesicular trafficking or weather the dynamic regulation of TRP channel residence on the cell surface is caused by extrinsic changes in the rates of vesicle insertion or retrieval remain open. This review will examine the evidence that sub-cellular redistribution of TRP channels plays an important role in regulating their activity and explore the mechanisms that control the trafficking of vesicles containing TRP channels.

  4. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration.

    Science.gov (United States)

    Nicholas, Mathew N; Jeschke, Marc G; Amini-Nik, Saeid

    2016-05-01

    Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may

  5. Glider-based computing in reaction-diffusion hexagonal cellular automata

    International Nuclear Information System (INIS)

    Adamatzky, Andrew; Wuensche, Andrew; De Lacy Costello, Benjamin

    2006-01-01

    A three-state hexagonal cellular automaton, discovered in [Wuensche A. Glider dynamics in 3-value hexagonal cellular automata: the beehive rule. Int J Unconvention Comput, in press], presents a conceptual discrete model of a reaction-diffusion system with inhibitor and activator reagents. The automaton model of reaction-diffusion exhibits mobile localized patterns (gliders) in its space-time dynamics. We show how to implement the basic computational operations with these mobile localizations, and thus demonstrate collision-based logical universality of the hexagonal reaction-diffusion cellular automaton

  6. Extended Cellular Automata Models of Particles and Space-Time

    Science.gov (United States)

    Beedle, Michael

    2005-04-01

    Models of particles and space-time are explored through simulations and theoretical models that use Extended Cellular Automata models. The expanded Cellular Automata Models consist go beyond simple scalar binary cell-fields, into discrete multi-level group representations like S0(2), SU(2), SU(3), SPIN(3,1). The propagation and evolution of these expanded cellular automatas are then compared to quantum field theories based on the "harmonic paradigm" i.e. built by an infinite number of harmonic oscillators, and with gravitational models.

  7. 47 CFR 22.911 - Cellular geographic service area.

    Science.gov (United States)

    2010-10-01

    ... Cellular Geographic Service Area (CGSA) of a cellular system is the geographic area considered by the FCC... application for modification of the CGSA using FCC Form 601, a depiction of what the carrier believes the CGSA... location and the locus of points where the predicted or measured median field strength finally drops to 32...

  8. Serratia marcescens Suppresses Host Cellular Immunity via the Production of an Adhesion-inhibitory Factor against Immunosurveillance Cells*

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-01-01

    Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis. PMID:24398686

  9. Serratia marcescens suppresses host cellular immunity via the production of an adhesion-inhibitory factor against immunosurveillance cells.

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-02-28

    Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis.

  10. Dynamic spectrum management in green cognitive radio cellular networks

    KAUST Repository

    Sboui, Lokman; Ghazzai, Hakim; Rezki, Zouheir; Alouini, Mohamed-Slim

    2018-01-01

    In this paper, we propose a new cellular network operation scheme fulfilling the 5G requirements related to spectrum management and green communications. We focus on cognitive radio cellular networks in which both the primary network (PN

  11. A generalized cellular automata approach to modeling first order ...

    Indian Academy of Sciences (India)

    system, consisting of space, time and state, structured with simple local rules without ... Sensitivity analysis of a stochastic cellular automata model. 413 ..... Baetens J M and De Baets B 2011 Design and parameterization of a stochastic cellular.

  12. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Zoica Dinu, Cerasela

    2016-02-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  13. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. PMID:26820775

  14. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate

    International Nuclear Information System (INIS)

    Eldawud, Reem; Dinu, Cerasela Zoica; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha

    2016-01-01

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications. (paper)

  15. Combinatorial approaches to evaluate nanodiamond uptake and induced cellular fate.

    Science.gov (United States)

    Eldawud, Reem; Reitzig, Manuela; Opitz, Jörg; Rojansakul, Yon; Jiang, Wenjuan; Nangia, Shikha; Dinu, Cerasela Zoica

    2016-02-26

    Nanodiamonds (NDs) are an emerging class of engineered nanomaterials that hold great promise for the next generation of bionanotechnological products to be used for drug and gene delivery, or for bio-imaging and biosensing. Previous studies have shown that upon their cellular uptake, NDs exhibit high biocompatibility in various in vitro and in vivo set-ups. Herein we hypothesized that the increased NDs biocompatibility is a result of minimum membrane perturbations and their reduced ability to induce disruption or damage during cellular translocation. Using multi-scale combinatorial approaches that simulate ND-membrane interactions, we correlated NDs real-time cellular uptake and kinetics with the ND-induced membrane fluctuations to derive energy requirements for the uptake to occur. Our discrete and real-time analyses showed that the majority of NDs internalization occurs within 2 h of cellular exposure, however, with no effects on cellular viability, proliferation or cellular behavior. Furthermore, our simulation analyses using coarse-grained models identified key changes in the energy profile, membrane deformation and recovery time, all functions of the average ND or ND-based agglomerate size. Understanding the mechanisms responsible for ND-cell membrane interactions could possibly advance their implementation in various biomedical applications.

  16. Simulating physics with cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Vichniac, G Y

    1984-01-01

    Cellular automata are dynamical systems where space, time, and variables are discrete. They are shown on two-dimensional examples to be capable of non-numerical simulations of physics. They are useful for faithful parallel processing of lattice models. At another level, they exhibit behaviours and illustrate concepts that are unmistakably physical, such as non-ergodicity and order parameters, frustration, relaxation to chaos through period doublings, a conspicuous arrow of time in reversible microscopic dynamics, causality and light-cone, and non-separability. In general, they constitute exactly computable models for complex phenomena and large-scale correlations that result from very simple short-range interactions. The author studies their space, time, and intrinsic symmetries and the corresponding conservation laws, with an emphasis on the conservation of information obeyed by reversible cellular automata. 60 references.

  17. 47 CFR 22.969 - Cellular RSA licenses subject to competitive bidding.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular RSA licenses subject to competitive bidding. 22.969 Section 22.969 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.969 Cellular RSA licenses...

  18. Behaviour of cellular structures with fluid fillers under impact loading

    Directory of Open Access Journals (Sweden)

    Matej Vesenjak

    2007-03-01

    Full Text Available The paper investigates the behaviour of closed- and open-cell cellular structures under uniaxial impact loading by means of computational simulations using the explicit nonlinear finite element code LS-DYNA. Simulations also consider the influence of pore fillers and the base material strain rate sensitivity. The behaviour of closed-cell cellular structure has been evaluated with use of the representative volume element, where the influence of residual gas inside the closed pores has been studied. Open- cell cellular structure was modelled as a whole to properly account for considered fluid flow through the cells, which significantly influences macroscopic behaviour of the cellular structure. The fluid has been modelled by applying a meshless Smoothed Particle Hydrodynamics (SPH method. Parametric computational simulations provide grounds for optimization of cellular structures to satisfy different requirements, which makes them very attractive for use in general engineering applications.

  19. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections

    International Nuclear Information System (INIS)

    Gang, Wang; Kai-Xin, Liu; De-Liang, Zhang

    2010-01-01

    The critical wedge angle (CWA) for the transition from regular reflection (RR) to Mach reflection (MR) of a cellular detonation wave is studied numerically by an improved space-time conservation element and solution element method together with a two-step chemical reaction model. The accuracy of that numerical way is verified by simulating cellular detonation reflections at a 19.3° wedge. The planar and cellular detonation reflections over 45°–55° wedges are also simulated. When the cellular detonation wave is over a 50° wedge, numerical results show a new phenomenon that RR and MR occur alternately. The transition process between RR and MR is investigated with the local pressure contours. Numerical analysis shows that the cellular structure is the essential reason for the new phenomenon and the CWA of detonation reflection is not a certain angle but an angle range. (fundamental areas of phenomenology(including applications))

  20. Nitric oxide-mediated modulation of iron regulatory proteins: implication for cellular iron homeostasis.

    Science.gov (United States)

    Kim, Sangwon; Ponka, Prem

    2002-01-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) that are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO(.), a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels and a decrease in ferritin synthesis. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO(+) (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels and a dramatic increase in ferritin synthesis. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels and an increase in ferritin synthesis in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO(+)-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  1. In vitro cellular uptake of evodiamine and rutaecarpine using a microemulsion.

    Science.gov (United States)

    Zhang, Yong-Tai; Huang, Zhe-Bin; Zhang, Su-Juan; Zhao, Ji-Hui; Wang, Zhi; Liu, Ying; Feng, Nian-Ping

    2012-01-01

    To investigate the cellular uptake of evodiamine and rutaecarpine in a microemulsion in comparison with aqueous suspensions and tinctures. A microemulsion was prepared using the dropwise addition method. Mouse skin fibroblasts were cultured in vitro to investigate the optimal conditions for evodiamine and rutaecarpine uptake with different drug concentrations and administration times. Under optimal conditions, the cellular uptake of microemulsified drugs was assayed and compared to tinctures and aqueous suspensions. Rhodamine B labeling and laser scanning confocal microscopy (LSCM) were used to explore the distribution of fluorochrome transferred with the microemulsion in fibroblasts. Cellular morphology was also investigated, using optical microscopy to evaluate microemulsion-induced cellular toxicity. The maximum cellular drug uptake amounts were obtained with a 20% concentration (v/v) of microemulsion and an 8 hour administration time. Drug uptake by mouse skin fibroblasts was lowest when the drugs were loaded in microemulsion. After incubation with rhodamine B-labeled microemulsion for 8 hours, the highest fluorescence intensity was achieved, and the fluorochrome was primarily distributed in the cytochylema. No obvious cellular morphologic changes were observed with the administration of either the microemulsion or the aqueous suspension; for the tincture group, however, massive cellular necrocytosis was observed. The lower cellular uptake with microemulsion may be due to the fact that most of the drug loaded in the microemulsion vehicle was transported via the intercellular space, while a small quantity of free drug (released from the vehicle) was ingested through transmembrane transport. Mouse skin fibroblasts rarely endocytosed evodiamine and rutaecarpine with a microemulsion as the vehicle. The microemulsion had no obvious effect on cellular morphology, suggesting there is little or no cellular toxicity associated with the administration of microemulsion on

  2. Thermo-fluid behaviour of periodic cellular metals

    CERN Document Server

    Lu, Tian Jian; Wen, Ting

    2013-01-01

    Thermo-Fluid Behaviour of Periodic Cellular Metals introduces the study of coupled thermo-fluid behaviour of cellular metals with periodic structure in response to thermal loads, which is an interdisciplinary research area that requires a concurrent-engineering approach.  The book, for the first time, systematically adopts experimental, numerical, and analytical approaches, presents the fluid flow and heat transfer in periodic cellular metals under forced convection conditions, aiming to establish structure-property relationships for tailoring material structures to achieve properties and performance levels that are customized for defined multifunctional applications. The book, as a textbook and reference book, is intended for both academic and industrial people, including graduate students, researchers and engineers. Dr. Tian Jian Lu is a professor at the School of Aerospace, Xi’an Jiaotong University, Xi’an, China. Dr. Feng Xu is a professor at the Key Laboratory of Biomedical Information Engineering o...

  3. Cellular solutions for the Poisson equation in extended systems

    International Nuclear Information System (INIS)

    Zhang, X.; Butler, W.H.; MacLaren, J.M.; van Ek, J.

    1994-01-01

    The Poisson equation for the electrostatic potential in a solid is solved using three different cellular techniques. The relative merits of these different approaches are discussed for two test charge densities for which an analytic solution to the Poisson equation is known. The first approach uses full-cell multiple-scattering theory and results in the famililar structure constant and multipole moment expansion. This solution is shown to be valid everywhere inside the cell, although for points outside the muffin-tin sphere but inside the cell the sums must be performed in the correct order to yield meaningful results. A modification of the multiple-scattering-theory approach yields a second method, a Green-function cellular method, which only requires the solution of a nearest-neighbor linear system of equations. A third approach, a related variational cellular method, is also derived. The variational cellular approach is shown to be the most accurate and reliable, and to have the best convergence in angular momentum of the three methods. Coulomb energies accurate to within 10 -6 hartree are easily achieved with the variational cellular approach, demonstrating the practicality of the approach in electronic structure calculations

  4. Cellular dosimetry in nuclear medicine imaging: training

    International Nuclear Information System (INIS)

    Gardin, I.; Faraggi, M.; Stievenart, J.L.; Le Guludec, D.; Bok, B.

    1998-01-01

    The radionuclides used in nuclear medicine imaging emit not only diagnostically useful photons, but also energy electron emissions, responsible for dose heterogeneity at the cellular level. The mean dose delivered to the cell nucleus by electron emissions of 99m Tc, 123 I, 111 In, 67 Ga, and 201 Tl, has been calculated, for the cell nucleus, a cytoplasmic and a cell membrane distribution of radioactivity. This model takes into account both the self-dose which results from the radionuclide located in the target cell, and the cross-dose, which comes from the surrounding cells. The results obtained by cellular dosimetry (D cel ) have been compared with those obtained with conventional dosimetry (D conv ), by assuming the same amount of radioactivity per cell. Cellular dosimetry shows, for a cytoplasmic and a cell membrane distributions of radioactivity, that the main contribution to the dose to the cell nucleus, comes from the surrounding cells. On the other hand, for a cell nucleus distribution of radioactivity, the self-dose is not negligible and may be the main contribution. The comparison between cellular and conventional dosimetry shows that D cel /D conv ratio ranges from 0.61 and O.89, in case of a cytoplasmic and a cell membrane distributions of radioactivity, depending on the radionuclide and cell dimensions. Thus, conventional dosimetry slightly overestimates the mean dose to the cell nucleus. On the other hand, D cel /D conv ranges from 1.1 to 75, in case of a cell nucleus distribution of radioactivity. Conventional dosimetry may strongly underestimates the absorbed dose to the nucleus, when radioactivity is located in the nucleus. The study indicates that in nuclear medicine imaging, cellular dosimetry may lead to a better understanding of biological effects of radiopharmaceuticals. (authors)

  5. Cellular glutathione prevents cytolethality of monomethylarsonic acid

    International Nuclear Information System (INIS)

    Sakurai, Teruaki; Kojima, Chikara; Ochiai, Masayuki; Ohta, Takami; Sakurai, Masumi H.; Waalkes, Michael P.; Fujiwara, Kitao

    2004-01-01

    Inorganic arsenicals are clearly toxicants and carcinogens in humans. In mammals, including humans, inorganic arsenic often undergoes methylation, forming compounds such as monomethylarsonic acid (MMAs V ) and dimethylarsinic acid (DMAs V ). However, much less information is available on the in vitro toxic potential or mechanisms of these methylated arsenicals, especially MMAs V . We studied the molecular mechanisms of in vitro cytolethality of MMAs V using a rat liver epithelial cell line (TRL 1215). MMAs V was not cytotoxic in TRL 1215 cells even at concentrations exceeding 10 mM, but it became weakly cytotoxic and induced both necrotic and apoptotic cell death when cellular reduced glutathione (GSH) was depleted with the glutathione synthase inhibitor, L-buthionine-[S,R]-sulfoximine (BSO), or the glutathione reductase inhibitor, carmustine. Similar results were observed in the other mammalian cells, such as human skin TIG-112 cells, chimpanzee skin CRT-1609 cells, and mouse metallothionein (MT) positive and MT negative embryonic cells. Ethacrynic acid (EA), an inhibitor of glutathione S-transferase (GST) that catalyses GSH-substrate conjugation, also enhanced the cytolethality of MMAs V , but aminooxyacetic acid (AOAA), an inhibitor of β-lyase that catalyses the final breakdown of GSH-substrate conjugates, had no effect. Both the cellular GSH levels and the cellular GST activity were increased by the exposure to MMAs V in TRL 1215 cells. On the other hand, the addition of exogenous extracellular GSH enhanced the cytolethality of MMAs V , although cellular GSH levels actually prevented the cytolethality of combined MMAs V and exogenous GSH. These findings indicate that human arsenic metabolite MMAs V is not a highly toxic compound in mammalian cells, and the level of cellular GSH is critical to its eventual toxic effects

  6. Serdemetan antagonizes the Mdm2-HIF1α axis leading to decreased levels of glycolytic enzymes.

    Directory of Open Access Journals (Sweden)

    Jason A Lehman

    Full Text Available Serdemetan (JNJ-26854165, an antagonist to Mdm2, was anticipated to promote the activation of p53. While regulation of p53 by Mdm2 is important, Mdm2 also regulates numerous proteins involved in diverse cellular functions. We investigated if Serdemetan would alter the Mdm2-HIF1α axis and affect cell survival in human glioblastoma cells independently of p53. Treatment of cells with Serdemetan under hypoxia resulted in a decrease in HIF1α levels. HIF1α downstream targets, VEGF and the glycolytic enzymes (enolase, phosphoglycerate kinase1/2, and glucose transporter 1, were all decreased in response to Serdemetan. The involvement of Mdm2 in regulating gene expression of glycolytic enzymes raises the possibility of side effects associated with therapeutically targeting Mdm2.

  7. Decreased stability of DNA in cells treated with alkylating agents

    Energy Technology Data Exchange (ETDEWEB)

    Frankfurt, O.S. (Cedars Medical Center, Miami, FL (United States))

    1990-12-01

    A modified highly sensitive procedure for the evaluation of DNA damage in individual cells treated with alkylating agents is reported. The new methodology is based on the amplification of single-strandedness in alkylated DNA by heating in the presence of Mg{sup 2+}. Human ovarian carcinoma cells A2780 were treated with nitrogen mustard (HN2), fixed in methanol, and stained with monoclonal antibody (MOAB) F7-26 generated against HN2-treated DNA. Binding of MOAB was measured by flow cytometry with indirect immunofluorescence. Intensive binding of MOAB to control and drug-treated cells was observed after heating in Tris buffer supplemented with MgCl{sub 2}. Thus, the presence of phosphates and MgCl{sub 2} during heating was necessary for the detection of HN2-induced changes in DNA stability. Fluorescence of HN2-treated cells decreased to background levels after treatment with single-strand-specific S{sub 1} nuclease. MOAB F7-26 interacted with single-stranded regions in DNA and did not bind to dsDNA or other cellular antigens. It is suggested that alkylation of guanines decreased the stability of the DNA molecule and increased the access of MOAB F7-26 to deoxycytidines on the opposite DNA strand.

  8. Novel approach to the diagnosis of fractures in an austere environment using a stethoscope and a cellular phone.

    Science.gov (United States)

    Matzek, Brett A; Fivecoat, Phillip T; Ritz, Reis B

    2014-03-01

    Fracture diagnosis in the austere environment where radiographic tests are not available can be a challenge. In the past, a diagnostic technique has been described using a tuning fork and stethoscope to assess decreased sound conduction in the fractured extremity. In this study, we evaluate the use of a cellular phone's vibrate function and a stethoscope to limit equipment carried by expeditionary practitioners. The purpose of this study was to evaluate the accuracy of fracture diagnosis using a cellular phone and stethoscope. This is a pilot study to assess the usefulness of the above technique before clinical implementation. In 3 cadavers, we created fractures of the humerus and femur. Twenty-seven emergency medicine residents and an attending physician performed the diagnostic technique. Overall, the use of the cellular phone and stethoscope resulted in a sensitivity of 73% (95% confidence interval [CI]: 0.64 to 0.81) and a specificity of 83% (95% CI: 0.77 to 0.88), with a positive predicted value of 68% (95% CI: 0.59 to 0.77) and a negative predicted value of 86% (95% CI: 0.81 to 0.90). Positive likelihood ratio was 4.3, and negative likelihood ratio was 0.32. The use of a cellular phone and stethoscope may be a useful tool for the diagnosis of fractures in the austere environment. However, further study is needed to validate these findings in the clinical environment. Published by Wilderness Medical Society on behalf of Wilderness Medical Society.

  9. Human cellular restriction factors that target HIV-1 replication

    Directory of Open Access Journals (Sweden)

    Jeang Kuan-Teh

    2009-09-01

    Full Text Available Abstract Recent findings have highlighted roles played by innate cellular factors in restricting intracellular viral replication. In this review, we discuss in brief the activities of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G, bone marrow stromal cell antigen 2 (BST-2, cyclophilin A, tripartite motif protein 5 alpha (Trim5α, and cellular microRNAs as examples of host restriction factors that target HIV-1. We point to countermeasures encoded by HIV-1 for moderating the potency of these cellular restriction functions.

  10. Basic Ideas to Approach Metastability in Probabilistic Cellular Automata

    NARCIS (Netherlands)

    Cirillo, Emilio N. M.; Nardi, Francesca R.; Spitoni, Cristian

    2016-01-01

    Cellular Automata are discrete--time dynamical systems on a spatially extended discrete space which provide paradigmatic examples of nonlinear phenomena. Their stochastic generalizations, i.e., Probabilistic Cellular Automata, are discrete time Markov chains on lattice with finite single--cell

  11. Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption

    Science.gov (United States)

    Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.

    2016-06-01

    Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.

  12. p16(INK4a suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    2011-02-01

    Full Text Available Although caloric restriction (CR has been shown to increase lifespan in various animal models, the mechanisms underlying this phenomenon have not yet been revealed. We developed an in vitro system to mimic CR by reducing glucose concentration in cell growth medium which excludes metabolic factors and allows assessment of the effects of CR at the cellular and molecular level. We monitored cellular proliferation of normal WI-38, IMR-90 and MRC-5 human lung fibroblasts and found that glucose restriction (GR can inhibit cellular senescence and significantly extend cellular lifespan compared with cells receiving normal glucose (NG in the culture medium. Moreover, GR decreased expression of p16(INK4a (p16, a well-known senescence-related gene, in all of the tested cell lines. Over-expressed p16 resulted in early replicative senescence in glucose-restricted cells suggesting a crucial role of p16 regulation in GR-induced cellular lifespan extension. The decreased expression of p16 was partly due to GR-induced chromatin remodeling through effects on histone acetylation and methylation of the p16 promoter. GR resulted in an increased expression of SIRT1, a NAD-dependent histone deacetylase, which has positive correlation with CR-induced longevity. The elevated SIRT1 was accompanied by enhanced activation of the Akt/p70S6K1 signaling pathway in response to GR. Furthermore, knockdown of SIRT1 abolished GR-induced p16 repression as well as Akt/p70S6K1 activation implying that SIRT1 may affect p16 repression through direct deacetylation effects and indirect regulation of Akt/p70S6K1 signaling. Collectively, these results provide new insights into interactions between epigenetic and genetic mechanisms on CR-induced longevity that may contribute to anti-aging approaches and also provide a general molecular model for studying CR in vitro in mammalian systems.

  13. Persistence of Coxsackievirus B4 in pancreatic ductal-like cells results in cellular and viral changes.

    Science.gov (United States)

    Alidjinou, E K; Engelmann, I; Bossu, J; Villenet, C; Figeac, M; Romond, M-B; Sané, F; Hober, D

    2017-10-03

    Although known as cytolytic viruses, group B coxackieviruses (CVB) are able to establish a persistent infection in vitro and in vivo. Viral persistence has been reported as a key mechanism in the pathogenesis of CVB-associated chronic diseases such as type 1 diabetes (T1D). The impact of CVB4 persistence on human pancreas ductal-like cells was investigated. A persistent CVB4 infection was established in ductal-like cells. PDX-1 expression, resistance to CVB4-induced lysis and CAR expression were evaluated. The profile of cellular microRNAs (miRNAs) was investigated through miRNA-sequencing. Viral phenotypic changes were examined, and genomic modifications were assessed by sequencing of the viral genome. The CVB4 persistence in ductal-like cells was productive, with continuous release of infectious particles. Persistently infected cells displayed a resistance to CVB4-induced lysis upon superinfection and expression of PDX-1 and CAR was decreased. These changes were maintained even after virus clearance. The patterns of cellular miRNA expression in mock-infected and in CVB4-persistently infected ductal-like cells were clearly different. The persistent infection-derived virus (PIDV) was still able to induce cytopathic effect but its plaques were smaller than the parental virus. Several mutations appeared in various PIDV genome regions, but amino acid substitutions did not affect the predicted site of interaction with CAR. Cellular and viral changes occur during persistent infection of human pancreas ductal-like cells with CVB4. The persistence of cellular changes even after virus clearance supports the hypothesis of a long-lasting impact of persistent CVB infection on the cells.

  14. Building synthetic cellular organization

    OpenAIRE

    Polka, Jessica K.; Silver, Pamela A.

    2013-01-01

    The elaborate spatial organization of cells enhances, restricts, and regulates protein–protein interactions. However, the biological significance of this organization has been difficult to study without ways of directly perturbing it. We highlight synthetic biology tools for engineering novel cellular organization, describing how they have been, and can be, used to advance cell biology.

  15. The functional state of cellular antioxidant defence system of shoots of Arabidopsis thaliana exposed to the chronic ionizing radiation in the Chornobyl exclusion zone

    International Nuclear Information System (INIS)

    Morozova, V.S.; Kashparov, V.A.; Levchuk, S.Ye.; Umanska, A.O.; Bishchuk, Ye.V.; Otreshko, L.M

    2016-01-01

    The functional state of the cellular antioxidant defence system of shoots of Arabidopsis thaliana plants that grow in natural conditions in the areas of the Chornobyl Exclusion Zone with the values of the external dose rate of 0.45, 0.61, 1.05, 4.81 and 6.80 .Gy/h was evaluated. The decrease of the content of thiobarbituric acid reactive compounds in the shoots of Arabidopsis thaliana was revealed under the external dose rate of 4.81 and 6.80 .Gy/h by 38 and 48 %, respectively, compared to this parameter value under the external dose rate of 0.45 .Gy/h. In the investigated samples the capacity of guaiacol peroxidase increases, catalase and ascorbate peroxidase decreases significantly with the increase of the external dose rate from 0.45 to 6.80 .Gy/h. Probably, revealed changes in the functional state of the cellular antioxidant defence system of the shoots of Arabidopsis thaliana in the conditions of radioactive contamination are adaptive in nature.

  16. Algorithmic crystal chemistry: A cellular automata approach

    International Nuclear Information System (INIS)

    Krivovichev, S. V.

    2012-01-01

    Atomic-molecular mechanisms of crystal growth can be modeled based on crystallochemical information using cellular automata (a particular case of finite deterministic automata). In particular, the formation of heteropolyhedral layered complexes in uranyl selenates can be modeled applying a one-dimensional three-colored cellular automaton. The use of the theory of calculations (in particular, the theory of automata) in crystallography allows one to interpret crystal growth as a computational process (the realization of an algorithm or program with a finite number of steps).

  17. Within-host spatiotemporal dynamics of plant virus infection at the cellular level.

    Directory of Open Access Journals (Sweden)

    Nicolas Tromas

    2014-02-01

    Full Text Available A multicellular organism is not a monolayer of cells in a flask; it is a complex, spatially structured environment, offering both challenges and opportunities for viruses to thrive. Whereas virus infection dynamics at the host and within-cell levels have been documented, the intermediate between-cell level remains poorly understood. Here, we used flow cytometry to measure the infection status of thousands of individual cells in virus-infected plants. This approach allowed us to determine accurately the number of cells infected by two virus variants in the same host, over space and time as the virus colonizes the host. We found a low overall frequency of cellular infection (<0.3, and few cells were coinfected by both virus variants (<0.1. We then estimated the cellular contagion rate (R, the number of secondary infections per infected cell per day. R ranged from 2.43 to values not significantly different from zero, and generally decreased over time. Estimates of the cellular multiplicity of infection (MOI, the number of virions infecting a cell, were low (<1.5. Variance of virus-genotype frequencies increased strongly from leaf to cell levels, in agreement with a low MOI. Finally, there were leaf-dependent differences in the ease with which a leaf could be colonized, and the number of virions effectively colonizing a leaf. The modeling of infection patterns suggests that the aggregation of virus-infected cells plays a key role in limiting spread; matching the observation that cell-to-cell movement of plant viruses can result in patches of infection. Our results show that virus expansion at the between-cell level is restricted, probably due to the host environment and virus infection itself.

  18. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses

    Science.gov (United States)

    Ibrahim, Ahmed M. A.; Kim, Yonggyun

    2008-01-01

    Several immunosuppressive factors are associated with parasitism of an endoparasitoid wasp, Cotesia plutellae, on the diamondback moth, Plutella xylostella. C. plutellae bracovirus (CpBV) encodes a large number of putative protein tyrosine phosphatases (PTPs), which may play a role in inhibiting host cellular immunity. To address this inhibitory hypothesis of CpBV-PTPs, we performed transient expression of individual CpBV-PTPs in hemocytes of the beet armyworm, Spodoptera exigua, and analyzed their cellular immune responses. Two different forms of CpBV-PTPs were chosen and cloned into a eukaryotic expression vector under the control of the p10 promoter of baculovirus: one with the normal cysteine active site (CpBV-PTP1) and the other with a mutated active site (CpBV-PTP5). The hemocytes transfected with CpBV-PTP1 significantly increased in PTP activity compared to control hemocytes, but those with CpBV-PTP5 exhibited a significant decrease in the PTP activity. All transfected hemocytes exhibited a significant reduction in both cell spreading and encapsulation activities compared to control hemocytes. Co-transfection of CpBV-PTP1 together with its double-stranded RNA reduced the messenger RNA (mRNA) level of CpBV-PTP1 and resulted in recovery of both hemocyte behaviors. This is the first report demonstrating that the polydnaviral PTPs can manipulate PTP activity of the hemocytes to interrupt cellular immune responses.

  19. The Algorithm of Continuous Optimization Based on the Modified Cellular Automaton

    Directory of Open Access Journals (Sweden)

    Oleg Evsutin

    2016-08-01

    Full Text Available This article is devoted to the application of the cellular automata mathematical apparatus to the problem of continuous optimization. The cellular automaton with an objective function is introduced as a new modification of the classic cellular automaton. The algorithm of continuous optimization, which is based on dynamics of the cellular automaton having the property of geometric symmetry, is obtained. The results of the simulation experiments with the obtained algorithm on standard test functions are provided, and a comparison between the analogs is shown.

  20. Pathway towards Programmable Wave Anisotropy in Cellular Metamaterials

    Science.gov (United States)

    Celli, Paolo; Zhang, Weiting; Gonella, Stefano

    2018-01-01

    In this work, we provide a proof-of-concept experimental demonstration of the wave-control capabilities of cellular metamaterials endowed with populations of tunable electromechanical resonators. Each independently tunable resonator comprises a piezoelectric patch and a resistor-inductor shunt, and its resonant frequency can be seamlessly reprogrammed without interfering with the cellular structure's default properties. We show that, by strategically placing the resonators in the lattice domain and by deliberately activating only selected subsets of them, chosen to conform to the directional features of the beamed wave response, it is possible to override the inherent wave anisotropy of the cellular medium. The outcome is the establishment of tunable spatial patterns of energy distillation resulting in a nonsymmetric correction of the wave fields.

  1. Immunohistochemical evaluation of fibrovascular and cellular pre-iridal membranes in dogs.

    Science.gov (United States)

    Bauer, Bianca S; Sandmeyer, Lynne S; Hall, Riley B; Grahn, Bruce H

    2012-03-01

    Histologically, two morphologically distinct types of pre-iridal membranes appear to occur in diseased canine globes: fibrovascular and cellular. Cellular pre-iridal membranes of corneal endothelial origin exist in iridocorneal endothelial (ICE) syndrome in humans and arise through metaplastic transformation of corneal endothelial cells into epithelial-like cells.(1) The purpose of this study was to (i) evaluate immunohistochemical staining of these two types of membranes in diseased canine globes, (ii) determine whether endothelial cell metaplasia or iridal vascular budding plays a role in cellular membrane formation and (iii) compare the primary histopathologic diagnosis between the two groups. Hematoxylin and eosin (H&E)-stained slides of 28 enucleated canine specimens with pre-iridal membranes were randomly selected and examined with light microscopy. The globes were divided into two groups based on the appearance of the membrane: fibrovascular or cellular, and the histopathologic diagnoses were recorded. Immunohistochemical staining for vimentin, cytokeratin AE1/AE3, and Von Willebrand's factor (Factor VIII) was completed on the slides of each globe. The histopathologic diagnoses were compared between the two groups. The fibrovascular and cellular membranes stained positive for vimentin and negative for cytokeratin AE1/AE3. All fibrovascular membranes stained positive for Factor VIII compared with the cellular membranes which stained negative. In the cellular membrane group, primary glaucoma was a common histologic diagnosis. Immunohistochemical evaluation in this study does not support the hypothesis of metaplastic transformation of endothelial cells into epithelial-like cells in the canine globes with cellular membranes. The cellular membranes in this study do not represent a canine version of ICE syndrome and are not of vascular endothelial origin. © 2012 American College of Veterinary Ophthalmologists.

  2. Cellular blebs: pressure-driven, axisymmetric, membrane protrusions

    KAUST Repository

    Woolley, Thomas E.

    2013-07-16

    Blebs are cellular protrusions that are used by cells for multiple purposes including locomotion. A mechanical model for the problem of pressure-driven blebs based on force and moment balances of an axisymmetric shell model is proposed. The formation of a bleb is initiated by weakening the shell over a small region, and the deformation of the cellular membrane from the cortex is obtained during inflation. However, simply weakening the shell leads to an area increase of more than 4 %, which is physically unrealistic. Thus, the model is extended to include a reconfiguration process that allows large blebs to form with small increases in area. It is observed that both geometric and biomechanical constraints are important in this process. In particular, it is shown that although blebs are driven by a pressure difference across the cellular membrane, it is not the limiting factor in determining bleb size. © 2013 Springer-Verlag Berlin Heidelberg.

  3. VUV spectroscopy of water under cellular conditions

    International Nuclear Information System (INIS)

    Mota, R.; Parafita, R.; Maneira, M. J. P.; Mason, N. J.; Garcia, G.; Ribeiro, P. A.; Raposo, M.; Limao-Vieira, P.

    2006-01-01

    The understanding of radiation damage within cells, and thence mutagenesis, depends upon a detailed knowledge of the spectroscopy and dissociation dynamics of water. Results of a new study of the electronic state spectroscopy of water, using synchrotron radiation are reported. In order to gain some insight into how the spectroscopy and dissociation dynamics of water is influenced by its environment we also report photo-absorption spectra of water within thin films of poly(o-methoxyaniline) which have been suggested as a good mimic for biological membranes in the cellular environment. Comparison of these spectra with those of gaseous water and condensed amorphous water ice suggest that water in such films is similar to gaseous water and does not show the blue shift suggested in some cellular models. The lowest energy of OH production from dissociation of water in the cellular environment may therefore be around 6.7 eV (185 nm). (authors)

  4. Systematic identification of cellular signals reactivating Kaposi sarcoma-associated herpesvirus.

    Directory of Open Access Journals (Sweden)

    Fuqu Yu

    2007-03-01

    Full Text Available The herpesvirus life cycle has two distinct phases: latency and lytic replication. The balance between these two phases is critical for viral pathogenesis. It is believed that cellular signals regulate the switch from latency to lytic replication. To systematically evaluate the cellular signals regulating this reactivation process in Kaposi sarcoma-associated herpesvirus, the effects of 26,000 full-length cDNA expression constructs on viral reactivation were individually assessed in primary effusion lymphoma-derived cells that harbor the latent virus. A group of diverse cellular signaling proteins were identified and validated in their effect of inducing viral lytic gene expression from the latent viral genome. The results suggest that multiple cellular signaling pathways can reactivate the virus in a genetically homogeneous cell population. Further analysis revealed that the Raf/MEK/ERK/Ets-1 pathway mediates Ras-induced reactivation. The same pathway also mediates spontaneous reactivation, which sets the first example to our knowledge of a specific cellular pathway being studied in the spontaneous reactivation process. Our study provides a functional genomic approach to systematically identify the cellular signals regulating the herpesvirus life cycle, thus facilitating better understanding of a fundamental issue in virology and identifying novel therapeutic targets.

  5. Hybrid disassembly system for cellular telephone end-of-life treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kniebel, M.; Basdere, B.; Seliger, G. [Technical Univ. Berlin, Inst. for Machine Tools and Factory Management, Dept. of Assembly Technology and Factory Management, Berlin (Germany)

    2004-07-01

    Concern over the negative environmental impacts associated with the production, use, and end-of-life (EOL) of cellular telephones is particularly high due to large production volumes and characteristically short time scales of technological and stylistic obsolescence. Landfilled or incinerated cellular telephones create the potential for release of toxic substances. The European legislation has passed the directive on Waste of Electrical and Electronic Equipment (WEEE) to regulate their collection and appropriate end-of-life treatment. Manufacturers must conduct material recycling or remanufacturing processes to recover resources. While recovery rates can hardly be met economically by material recycling, remanufacturing and reusing cellular phones is developing into a reasonable alternative. Both end-of-life options require disassembly processes for WEEE compliant treatment. Due to the high number of different cell phone variants and their typical design that fits components into tight enclosing spaces, cellular phone disassembly becomes a challenging task. These challenges and the expected high numbers of phones to be returned in the course of the WEEE urges for automated disassembly. A hybrid disassembly system has been developed to ensure the mass-treatment of obsolete cellular phones. It has been integrated into a prototypical remanufacturing factory for cellular phones that has been planned based on market data. (orig.)

  6. Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency

    Science.gov (United States)

    Yang, Zhe; Jiang, Zhaozhong; Cao, Zhong; Zhang, Chao; Gao, Di; Luo, Xingen; Zhang, Xiaofang; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2014-08-01

    We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell for nanoparticle stabilization, poly(γ-glutamic acid) (γ-PGA) and mTAT (a cell-penetrating peptide) for accelerated cellular uptake, and a nuclear localization signal peptide (NLS) for enhanced intracellular transport of DNA to the nucleus. In vitro study showed that coating of the binary PPMS/DNA polyplex with γ-PGA promotes cellular uptake of the polyplex particles, particularly by γ-glutamyl transpeptidase (GGT)-positive cells through the GGT-mediated endocytosis pathway. Conjugating PEG to the γ-PGA led to the formation of a ternary PPMS/DNA/PGA-g-PEG polyplex with decreased positive charges on the surface of the polyplex particles and substantially higher stability in serum-containing aqueous medium. The cellular uptake rate was further improved by incorporating mTAT into the ternary polyplex system. Addition of the NLS peptide was designed to facilitate intracellular delivery of the plasmid to the nucleus--a rate-limiting step in the gene transfection process. As a result, compared with the binary PPMS/LucDNA polyplex, the new mTAT-quaternary PPMS/LucDNA/NLS/PGA-g-PEG-mTAT system exhibited reduced cytotoxicity, remarkably faster cellular uptake rate, and enhanced transport of DNA to the nucleus. All these advantageous functionalities contribute to the remarkable gene transfection efficiency of the mTAT-quaternary polyplex both in vitro and in vivo, which exceeds that of the binary polyplex and commercial Lipofectamine™ 2000/DNA lipoplex. The multifunctional mTAT-quaternary polyplex system with improved efficiency and reduced cytotoxicity represents a new type of promising non-viral vectors for the delivery of therapeutic genes to treat tumors.We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell

  7. Adaptive pressure-controlled cellular structures for shape morphing I: design and analysis

    International Nuclear Information System (INIS)

    Luo, Quantian; Tong, Liyong

    2013-01-01

    This work investigates adaptive bio-inspired pressure cellular structures for shape morphing. Optimum designs for cellular structures with void and pressure cells are proposed and then structural analyses are conducted. In the present design, a unit cell is comprised of straight and curved walls. When compressed air is pumped into a pressure cell, the curved walls deform in bending due to the pressure difference in two adjacent cells that leads to overall structural deformation in extension. One-dimensional actuation strain up to 35% can be theoretically achieved. In part I, we present basic design concepts and cellular mechanics. Unlike conventional structural analysis for cellular structures, a statically indeterminate unit cell is considered and novel analytical formulations are derived for the present pressurized cellular structures in linear and nonlinear analyses. In part II, we will present experimental testing and finite element analysis to demonstrate the feasibility of the present pressurized cellular actuators for morphing wings and to validate the present cellular mechanics formulations. (paper)

  8. Cellular Automata Ideas in Digital Circuits and Switching Theory.

    Science.gov (United States)

    Siwak, Pawel P.

    1985-01-01

    Presents two examples which illustrate the usefulness of ideas from cellular automata. First, Lee's algorithm is recalled and its cellular nature shown. Then a problem from digraphs, which has arisen from analyzing predecessing configurations in the famous Conway's "game of life," is considered. (Author/JN)

  9. Targeting Mitochondria to Counteract Age-Related Cellular Dysfunction

    Directory of Open Access Journals (Sweden)

    Corina T. Madreiter-Sokolowski

    2018-03-01

    Full Text Available Senescence is related to the loss of cellular homeostasis and functions, which leads to a progressive decline in physiological ability and to aging-associated diseases. Since mitochondria are essential to energy supply, cell differentiation, cell cycle control, intracellular signaling and Ca2+ sequestration, fine-tuning mitochondrial activity appropriately, is a tightrope walk during aging. For instance, the mitochondrial oxidative phosphorylation (OXPHOS ensures a supply of adenosine triphosphate (ATP, but is also the main source of potentially harmful levels of reactive oxygen species (ROS. Moreover, mitochondrial function is strongly linked to mitochondrial Ca2+ homeostasis and mitochondrial shape, which undergo various alterations during aging. Since mitochondria play such a critical role in an organism’s process of aging, they also offer promising targets for manipulation of senescent cellular functions. Accordingly, interventions delaying the onset of age-associated disorders involve the manipulation of mitochondrial function, including caloric restriction (CR or exercise, as well as drugs, such as metformin, aspirin, and polyphenols. In this review, we discuss mitochondria’s role in and impact on cellular aging and their potential to serve as a target for therapeutic interventions against age-related cellular dysfunction.

  10. Deciphering cellular morphology and biocompatibility using polymer microarrays

    International Nuclear Information System (INIS)

    Pernagallo, Salvatore; Unciti-Broceta, Asier; DIaz-Mochon, Juan Jose; Bradley, Mark

    2008-01-01

    A quantitative and qualitative analysis of cellular adhesion, morphology and viability is essential in understanding and designing biomaterials such as those involved in implant surfaces or as tissue-engineering scaffolds. As a means to simultaneously perform these studies in a high-throughput (HT) manner, we report a normalized protocol which allows the rapid analysis of a large number of potential cell binding substrates using polymer microarrays and high-content fluorescence microscopy. The method was successfully applied to the discovery of optimal polymer substrates from a 214-member polyurethane library with mouse fibroblast cells (L929), as well as simultaneous evaluation of cell viability and cellular morphology. Analysis demonstrated high biocompatibility of the binding polymers and permitted the identification of several different cellular morphologies, showing that specific polymer interactions may provoke changes in cell shape. In addition, SAR studies showed a clear correspondence between cellular adhesion and polymer structure. The approach can be utilized to perform multiple experiments (up to 1024 single experiments per slide) in a highly reproducible manner, leading to the generation of vast amounts of data in a short time period (48-72 h) while reducing dramatically the quantities of polymers, reagents and cells used

  11. In vitro chemical and cellular tests applied to uranium trioxide with different hydration states

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Chalabreysse, J.; Henge-Napoli, M.H.; Pujol, E.

    1992-01-01

    A simple and rapid in vitro chemical solubility test applicable to industrial uranium trioxide (UO 3 ) was developed together with two in vitro cellular tests using rat alveolar macrophages maintained either in gas phase or in alginate beads at 37 degrees C. Industrial UO 3 was characterized by particle size, X-ray, and IR spectra, and chemical transformation (e.g., aging and hydration of the dust) was also studied. Solvents used for the in vitro chemical solubility study included carbonates, citrates, phosphates, water, Eagle's basal medium, and Gamble's solution (simulated lung fluid), alone, with oxygen, or with superoxide ions. Results, expressed in terms of the half-time of dissolution, according to International Commission on Radiological Protection (ICRP) classification (D,W,Y), varied for different hydration states of UO 3 , showing a lower solubility of hydrated UO 3 in solvents compared to basic UO 3 or UO 3 heated at 450 degrees C. Two in vitro cellular tests on cultured rat alveolar macrophages (cells maintained in gas phase and cells immobilized in alginate beads) were used on the same UO 3 samples and generally showed a lower solution transfer rate in the presence of macrophages than in the culture medium alone. The results of in vitro chemical and cellular tests were compared, with four main conclusions; a good reproducibility of the three tests in Eagle's basal medium of the effect of hydration state on solubility, the classification of UO 3 in terms of ICRP solubility criteria, and the ability of macrophoges to decrease uranium solubility in medium. 16 refs., 3 figs., 4 tabs

  12. The Effects Radiation on Cellular Components of the Immune

    International Nuclear Information System (INIS)

    Zubaidah-Alatas

    2001-01-01

    The immune system describes the body's ability to defend itself against various foreign intruders named as antigens by calling on an immune mechanism. Antigens penetration into body activate the body's immune system that may be humoral response, cellular response, or both. The immune response is primarily mediated by two cell types, lymphocyte and macrophage. This paper will discuss the cellular component of immune system and the radiation effects on various cells involved in system. Moreover, the effects of radiation on humoral and cellular responses and the relation among immunity, cancer and radiotherapy are also described. (author)

  13. Tuneable nanoparticle-nanofiber composite substrate for improved cellular adhesion.

    Science.gov (United States)

    Nicolini, Ariana M; Toth, Tyler D; Yoon, Jeong-Yeol

    2016-09-01

    This work presents a novel technique using a reverse potential electrospinning mode for fabricating nanoparticle-embedded composites that can be tailored to represent various fiber diameters, surface morphologies, and functional groups necessary for improved cellular adhesion. Polycaprolactone (PCL) nanofibers were electrospun in both traditional positive (PP) and reverse potential (RP) electrical fields. The fibers were incorporated with 300nm polystyrene (PS) fluorescent particles, which contained carboxyl, amine groups, and surfactants. In the unconventional RP, the charged colloidal particles and surfactants were shown to have an exaggerated effect on Taylor cone morphology and fiber diameter caused by the changes in charge density and surface tension of the bulk solution. The RP mode was shown to lead to a decrease in fiber diameter from 1200±100nm (diameter±SE) for the nanofibers made with PCL alone to 440±80nm with the incorporation of colloidal particles, compared to the PP mode ranging from 530±90nm to 350±50nm, respectively. The nanoparticle-nanofiber composite substrates were cultured with human umbilical vein endothelial cells (HUVECs) and evaluated for cellular viability and adhesion for up to 5 days. Adhesion to the nanofibrous substrates was improved by 180±10% with the addition of carboxylated particles and by 480±60% with the functionalization of an RGD ligand compared to the PCL nanofibers. The novel approach of electrospinning in the RP mode with the addition of colloids in order to alter charge density and surface tension could be utilized towards many applications, one being implantable biomaterials and tissue engineered scaffolds as demonstrated in this work. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. HYDROXYUREA TREATMENT DECREASES GLOMERULAR HYPERFILTRATION IN CHILDREN WITH SICKLE CELL ANEMIA

    Science.gov (United States)

    Aygun, Banu; Mortier, Nicole A.; Smeltzer, Matthew P.; Shulkin, Barry L.; Hankins, Jane S.; Ware, Russell E.

    2015-01-01

    Background Glomerular hyperfiltration and microalbuminuria/proteinuria are early manifestations of sickle nephropathy. The effects of hydroxyurea therapy on these renal manifestations of sickle cell anemia (SCA) are not well defined. Objective To investigate the effects of hydroxyurea on glomerular filtration rate (GFR) measured by 99mTc-DTPA clearance, and on microalbuminuria/proteinuria in children with SCA. Study Design Hydroxyurea Study of Long-Term Effects (HUSTLE) is a prospective study (NCT00305175) with the goal of describing the long-term cellular, molecular, and clinical effects of hydroxyurea therapy in SCA. Glomerular filtration rate, urine microalbumin, and serum cystatin C were measured before initiating hydroxyurea therapy and then repeated after 3 years. Baseline and Year 3 values for HUSTLE subjects were compared using the Wilcoxon Signed Rank test. Associations between continuous variables were evaluated using Spearman correlation coefficient. Results Twenty-three children with SCA (median age 7.5 years, range 2.5–14.0 years) received hydroxyurea at maximum tolerated dose (MTD, 24.4 ± 4.5 mg/kg/day, range 15.3–30.6 mg/kg/day). After three years of treatment, GFR measured by 99mTc-DTPA decreased significantly from 167 ± 46 mL/min/1.73m2 to 145 ± 27 mL/min/1.73m2 (p=0.016). This decrease in GFR was significantly associated with increase in fetal hemoglobin (p= 0.042) and decrease in lactate dehydrogenase levels (p=0.035). Urine microalbumin and cystatin C levels did not change significantly. Conclusions Hydroxyurea at MTD is associated with a decrease in hyperfiltration in young children with SCA. PMID:23255310

  15. Mobility Management of Mobile IP Based on Multi-tier Cellular Systems%基于多层小区结构的移动IP移动性管理

    Institute of Scientific and Technical Information of China (English)

    唐宏; 吴中福; 聂能; 赵军; 熊思民

    2003-01-01

    In this paper,several currently existed Mobility Management Schemes of Mobile IP are simply analyzed,and so does the network structure of multi-tier cellular which nowadays is easily seen. Then we propose a few promo-tions on the strategies of mobility management when realizing mobile IP in multi-tier cellular network structure. Thekey of the promotions is that the required type of cell for a MN is determined based on the classification of its mobilitypattern. Consequently,the capacity of system may be increased while the frequency of handoff is decreased.

  16. Antioxidant properties of Taraxacum officinale fruit extract are involved in the protective effect against cellular death induced by sodium nitroprusside in brain of rats.

    Science.gov (United States)

    Colle, Dirleise; Arantes, Letícia Priscilla; Rauber, Ricardo; de Mattos, Sérgio Edgar Campos; Rocha, João Batista Teixeira da; Nogueira, Cristina Wayne; Soares, Félix Alexandre Antunes

    2012-07-01

    Taraxacum officinale Weber (Asteraceae), known as dandelion, is used for medicinal purposes due to its choleretic, diuretic, antitumor, antioxidant, antiinflammatory, and hepatoprotective properties. We sought to investigate the protective activity of T. officinale fruit extract against sodium nitroprusside (SNP)-induced decreased cellular viability and increased lipid peroxidation in the cortex, hippocampus, and striatum of rats in vitro. To explain the mechanism of the extract's antioxidant activity, its putative scavenger activities against NO, DPPH·, OH·, and H(2)O(2) were determined. Slices of cortex, hippocampus, and striatum were treated with 50 μM SNP and T. officinale fruit ethanolic extract (1-20 µg/mL) to determine cellular viability by MTT reduction assay. Lipid peroxidation was measure in cortical, hippocampal and striatal slices incubates with SNP (5 µM) and T. officinale fruit extract (1-20 µg/mL). We also determined the scavenger activities of T. officinale fruit extract against NO·, DPPH·, OH·, and H(2)O(2), as well as its iron chelating capacity. The extract (1, 5, 10, and 20 μg/mL) protected against SNP-induced decreases in cellular viability and increases in lipid peroxidation in the cortex, hippocampus, and striatum of rats. The extract had scavenger activity against DPPH· and NO· at low concentrations and was able to protect against H(2)O(2) and Fe(2+)-induced deoxyribose oxidation. T. officinale fruit extract has antioxidant activity and protects brain slices against SNP-induced cellular death. Possible mechanisms of action include its scavenger activities against reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are attributed to the presence of phenolic compounds in the extract.

  17. Cellular automaton simulation of counter flow with paired pedestrians

    Directory of Open Access Journals (Sweden)

    Hui Xiong

    2011-12-01

    Full Text Available Knowledge on pedestrian behavior is the basis to build decision support system for crowd evacuation management in emergency. In this paper, the impact of paired walking behavior on pedestrian counter flow in a channel is studied. The pedestrian walking behaviors are simulated by the cellular automaton model and the pedestrians are classified as single right walker, single left walker, paired right walker, and paired left walker. Single walker can move forward, leftward, rightward or stand still. The paired pedestrians are considered as a combined unit similar to the single walker in terms of route choice and they can move to the same direction simultaneously. It is found that flow and velocity decrease with increase of the paired rate in case of stable density. Simulation results reveal the phase transitions in terms of density from free flow to the unstable flow and from the unstable flow to the congestion flow. However, the critical densities of phase transition are unaffected by the channel size.

  18. Small nucleoli are a cellular hallmark of longevity.

    Science.gov (United States)

    Tiku, Varnesh; Jain, Chirag; Raz, Yotam; Nakamura, Shuhei; Heestand, Bree; Liu, Wei; Späth, Martin; Suchiman, H Eka D; Müller, Roman-Ulrich; Slagboom, P Eline; Partridge, Linda; Antebi, Adam

    2016-08-30

    Animal lifespan is regulated by conserved metabolic signalling pathways and specific transcription factors, but whether these pathways affect common downstream mechanisms remains largely elusive. Here we show that NCL-1/TRIM2/Brat tumour suppressor extends lifespan and limits nucleolar size in the major C. elegans longevity pathways, as part of a convergent mechanism focused on the nucleolus. Long-lived animals representing distinct longevity pathways exhibit small nucleoli, and decreased expression of rRNA, ribosomal proteins, and the nucleolar protein fibrillarin, dependent on NCL-1. Knockdown of fibrillarin also reduces nucleolar size and extends lifespan. Among wildtype C. elegans, individual nucleolar size varies, but is highly predictive for longevity. Long-lived dietary restricted fruit flies and insulin-like-peptide mutants exhibit small nucleoli and fibrillarin expression, as do long-lived dietary restricted and IRS1 knockout mice. Furthermore, human muscle biopsies from individuals who underwent modest dietary restriction coupled with exercise also display small nucleoli. We suggest that small nucleoli are a cellular hallmark of longevity and metabolic health conserved across taxa.

  19. Cellular and molecular mechanisms of alcohol-induced osteopenia.

    Science.gov (United States)

    Luo, Zhenhua; Liu, Yao; Liu, Yitong; Chen, Hui; Shi, Songtao; Liu, Yi

    2017-12-01

    Alcoholic beverages are widely consumed, resulting in a staggering economic cost in different social and cultural settings. Types of alcohol consumption vary from light occasional to heavy, binge drinking, and chronic alcohol abuse at all ages. In general, heavy alcohol consumption is widely recognized as a major epidemiological risk factor for chronic diseases and is detrimental to many organs and tissues, including bones. Indeed, recent findings demonstrate that alcohol has a dose-dependent toxic effect in promoting imbalanced bone remodeling. This imbalance eventually results in osteopenia, an established risk factor for osteoporosis. Decreased bone mass and strength are major hallmarks of osteopenia, which is predominantly attributed not only to inhibition of bone synthesis but also to increased bone resorption through direct and indirect pathways. In this review, we present knowledge to elucidate the epidemiology, potential pathogenesis, and major molecular mechanisms and cellular effects that underlie alcoholism-induced bone loss in osteopenia. Novel therapeutic targets for correcting alcohol-induced osteopenia are also reviewed, such as modulation of proinflammatory cytokines and Wnt and mTOR signaling and the application of new drugs.

  20. Humoral and cellular immune responses to modified hepatitis B ...

    African Journals Online (AJOL)

    These findings indicate that the vaccine induced both a humoral and cellular ... Keywords: Hepatitis B virus, Plasmid DNA, Vaccine, Spleen cytokines, Humoral and cellular immune responses ... produced in mice. ... were performed and HBsAg specific IgM and IgG ..... and protection elicited against Plasmodium berghei.

  1. Polyomavirus specific cellular immunity: from BK-virus-specific cellular immunity to BK-virus-associated nephropathy ?

    Directory of Open Access Journals (Sweden)

    manon edekeyser

    2015-06-01

    Full Text Available In renal transplantation, BK-virus-associated nephropathy has emerged as a major complication, with a prevalence of 5–10% and graft loss in >50% of cases. BK-virus is a member of the Polyomavirus family and rarely induces apparent clinical disease in the general population. However, replication of polyomaviruses, associated with significant organ disease, is observed in patients with acquired immunosuppression, which suggests a critical role for virus-specific cellular immunity to control virus replication and prevent chronic disease. Monitoring of specific immunity combined with viral load could be used to individually assess the risk of viral reactivation and virus control. We review the current knowledge on BK-virus specific cellular immunity and, more specifically, in immunocompromised patients. In the future, immune-based therapies could allow us to treat and prevent BK-virus-associated nephropathy.

  2. Design and evaluation of cellular power converter architectures

    Science.gov (United States)

    Perreault, David John

    Power electronic technology plays an important role in many energy conversion and storage applications, including machine drives, power supplies, frequency changers and UPS systems. Increases in performance and reductions in cost have been achieved through the development of higher performance power semiconductor devices and integrated control devices with increased functionality. Manufacturing techniques, however, have changed little. High power is typically achieved by paralleling multiple die in a sing!e package, producing the physical equivalent of a single large device. Consequently, both the device package and the converter in which the device is used continue to require large, complex mechanical structures, and relatively sophisticated heat transfer systems. An alternative to this approach is the use of a cellular power converter architecture, which is based upon the parallel connection of a large number of quasi-autonomous converters, called cells, each of which is designed for a fraction of the system rating. The cell rating is chosen such that single-die devices in inexpensive packages can be used, and the cell fabricated with an automated assembly process. The use of quasi-autonomous cells means that system performance is not compromised by the failure of a cell. This thesis explores the design of cellular converter architectures with the objective of achieving improvements in performance, reliability, and cost over conventional converter designs. New approaches are developed and experimentally verified for highly distributed control of cellular converters, including methods for ripple cancellation and current-sharing control. The performance of these techniques are quantified, and their dynamics are analyzed. Cell topologies suitable to the cellular architecture are investigated, and their use for systems in the 5-500 kVA range is explored. The design, construction, and experimental evaluation of a 6 kW cellular switched-mode rectifier is also addressed

  3. The nucleolus—guardian of cellular homeostasis and genome integrity.

    Science.gov (United States)

    Grummt, Ingrid

    2013-12-01

    All organisms sense and respond to conditions that stress their homeostasis by downregulating the synthesis of rRNA and ribosome biogenesis, thus designating the nucleolus as the central hub in coordinating the cellular stress response. One of the most intriguing roles of the nucleolus, long regarded as a mere ribosome-producing factory, is its participation in monitoring cellular stress signals and transmitting them to the RNA polymerase I (Pol I) transcription machinery. As rRNA synthesis is a most energy-consuming process, switching off transcription of rRNA genes is an effective way of saving the energy required to maintain cellular homeostasis during acute stress. The Pol I transcription machinery is the key convergence point that collects and integrates a vast array of information from cellular signaling cascades to regulate ribosome production which, in turn, guides cell growth and proliferation. This review focuses on the mechanisms that link cell physiology to rDNA silencing, a prerequisite for nucleolar integrity and cell survival.

  4. Antibody-dependent cellular cytotoxicity and skin disease

    International Nuclear Information System (INIS)

    Norris, D.A.; Lee, L.A.

    1985-01-01

    Antibody dependent cellular cytotoxicity (ADCC) is a recently described mechanism of immunologic lysis in which cellular targets sensitized by specific antibodies are efficiently and selectively lysed by Fc receptor (FcR) bearing nonspecific effectors. Immunoglobulins of various classes (IgG, IgM, IgA, IgE) and various cellular effectors (large granular lymphocytes, monocyte/macrophages, T lymphocytes, neutrophils, and eosinophils) can induce ADCC in vitro, and the importance of ADCC in vivo is being tested experimentally in resistance to viral, bacterial, and parasitic infection, in tumor surveillance, in allograft rejection, and in inflammatory diseases. There is much indirect evidence that ADCC may be the mechanism of damage of different cellular targets in skin diseases, but the best direct evidence concerns immunologic keratinocyte damage, especially in cutaneous lupus erythematosus (LE). The authors have shown that keratinocytes of several species are highly susceptible to lymphocyte and monocyte-mediated ADCC, but not to neutrophil or eosinophil ADCC in vitro using two different cytotoxicity assays. In contrast, complement was a relatively ineffective mediator of lysis of metabolically intact keratinocyte targets. Patients with certain cutaneous lupus syndromes have serum antibodies capable of inducing monocyte and lymphocyte ADCC of targets coated with extractable nuclear antigens. The authors have shown that these antigens apparently move to the cell membrane of keratinocytes in vitro following ultraviolet irradiation. In an animal model, they have shown that antibodies to SSA/Ro bind to human keratinocytes in vivo, especially after ultraviolet irradiation

  5. Creating the Chemistry in Cellular Respiration Concept Inventory (CCRCI)

    Science.gov (United States)

    Forshee, Jay Lance, II

    Students at our institution report cellular respiration to be the most difficult concept they encounter in undergraduate biology, but why students find this difficult is unknown. Students may find cellular respiration difficult because there is a large amount of steps, or because there are persistent, long-lasting misconceptions and misunderstandings surrounding their knowledge of chemistry, which affect their performance on cellular respiration assessments. Most studies of cellular respiration focus on student macro understanding of the process related to breathing, and matter and energy. To date, no studies identify which chemistry concepts are most relevant to students' development of an understanding of the process of cellular respiration or have developed an assessment to measure student understanding of them. Following the Delphi method, the researchers conducted expert interviews with faculty members from four-year, masters-, and PhD-granting institutions who teach undergraduate general biology, and are experts in their respective fields of biology. From these interviews, researchers identified twelve chemistry concepts important to understanding cellular respiration and using surveys, these twelve concepts were refined into five (electron transfer, energy transfer, thermodynamics (law/conservation), chemical reactions, and gradients). The researchers then interviewed undergraduate introductory biology students at a large Midwestern university to identify their knowledge and misconceptions of the chemistry concepts that the faculty had identified previously as important. The CCRCI was developed using the five important chemistry concepts underlying cellular respiration. The final version of the CCRCI was administered to n=160 introductory biology students during the spring 2017 semester. Reliability of the CCRCI was evaluated using Cronbach's alpha (=.7) and split-half reliability (=.769), and validity of the instrument was assessed through content validity

  6. Radiation-induced DNA damage and cellular lethality

    International Nuclear Information System (INIS)

    Sakai, K.; Okada, S.

    1984-01-01

    Radiation-induced DNA scissions and their repair were investigated in mammalian cells using an alkaline separation method. DNA breaks in mouse L5178Y cells and Chinese hamster V79 cells were grouped into three in terms of their repair profile; fast-reparable breaks (FRBs; T1/2 = 5 min), slow-reparable breaks (SRBs; T1/2 = 70 min) and non-reparable breaks (NRBs). The three types of DNA lesions were studied under conditions where cellular radiosensitivity was modified. The authors obtained the following results: 1. Cell cycle fluctuation: L5178Y showed maximum sensitivity at M and G/sub 1/-S boundary, and minimum sensitivity at G/sub 1/ and late S. Cycle dependency was not found for FRBs or SRBs, but NRBs showed bimodal fluctuation with peaks at M and G/sub 1/-S, and with bottoms at G/sub 1/ and late S. 2. Different sensitivity of L5178Y and V79: L5178Y cells were more sensitive to X-rays (D/sub ο/ = 0.9 Gy) than V79 (D/sub ο/ = 1.8 Gy). The amount of FRBs or SRBs was identical in the two cell lines. However, the amount of NRBs in L5178Y was greater than that in V79. 3. Split dose irradiation: The time interval between two doses resulted in a gradual decrease of NRBs. The time course of the decrease was similar to the split dose recovery in terms of cell death. The parallel relationship between NRBs and cell killing implies that NRBs could play an important role in radiation-induced cell death

  7. Similarities of cellular receptors for interferon and cortisol

    International Nuclear Information System (INIS)

    Filipic, B.; Schauer, P.; Likar, M.

    1977-01-01

    Cellular receptors are molecules located on the cell membrane. Their function is to bind different molecules to the cell surface. These molecules can penetrate into the cytoplasm and trigger cellular changes. One kind of such bound molecules are interferons and corticosteroids. Until very recently very little was known about interferon's receptors on the cell surface, mechanisms of interferon's binding to them or about kinetics of such binding. On the basis of results published elsewhere and on the basis of experimental results, the authors suggest: receptors for interferon and cortisol are glycoproteins located on the cell surface, in analogy with PHA receptors they are chemically sialoglycoproteins, binding kinetics of cortisol and interferon is similar, interferon and cortisol compete for cellular receptors, binding of cortisol or interferon is dependent on allosteric configuration of receptor molecules. (author)

  8. Soilless plant growth media influence the efficacy of phytohormones and phytohormone inhibitors.

    Science.gov (United States)

    Best, Norman B; Hartwig, Thomas; Budka, Joshua S; Bishop, Brandon J; Brown, Elliot; Potluri, Devi P V; Cooper, Bruce R; Premachandra, Gnanasiri S; Johnston, Cliff T; Schulz, Burkhard

    2014-01-01

    Plant growth regulators, such as hormones and their respective biosynthesis inhibitors, are effective tools to elucidate the physiological function of phytohormones in plants. A problem of chemical treatments, however, is the potential for interaction of the active compound with the growth media substrate. We studied the interaction and efficacy of propiconazole, a potent and specific inhibitor of brassinosteroid biosynthesis, with common soilless greenhouse growth media for rice, sorghum, and maize. Many of the tested growth media interacted with propiconazole reducing its efficacy up to a hundred fold. To determine the molecular interaction of inhibitors with media substrates, Fourier Transform Infrared Spectroscopy and sorption isotherm analysis was applied. While mica clay substrates absorbed up to 1.3 mg of propiconazole per g substrate, calcined clays bound up to 12 mg of propiconazole per g substrate. The efficacy of the gibberellic acid biosynthesis inhibitor, uniconazole, and the most active brassinosteroid, brassinolide, was impacted similarly by the respective substrates. Conversely, gibberellic acid showed no distinct growth response in different media. Our results suggest that the reduction in efficacy of propiconazole, uniconazole, and brassinolide in bioassays when grown in calcined clay is caused by hydrophobic interactions between the plant growth regulators and the growth media. This was further confirmed by experiments using methanol-water solvent mixes with higher hydrophobicity values, which reduce the interaction of propiconazole and calcined clay.

  9. A decrease in cyclin B1 levels leads to polyploidization in DNA damage-induced senescence.

    Science.gov (United States)

    Kikuchi, Ikue; Nakayama, Yuji; Morinaga, Takao; Fukumoto, Yasunori; Yamaguchi, Naoto

    2010-05-04

    Adriamycin, an anthracycline antibiotic, has been used for the treatment of various types of tumours. Adriamycin induces at least two distinct types of growth repression, such as senescence and apoptosis, in a concentration-dependent manner. Cellular senescence is a condition in which cells are unable to proliferate further, and senescent cells frequently show polyploidy. Although abrogation of cell division is thought to correlate with polyploidization, the mechanisms underlying induction of polyploidization in senescent cells are largely unclear. We wished, therefore, to explore the role of cyclin B1 level in polyploidization of Adriamycin-induced senescent cells. A subcytotoxic concentration of Adriamycin induced polyploid cells having the features of senescence, such as flattened and enlarged cell shape and activated beta-galactosidase activity. In DNA damage-induced senescent cells, the levels of cyclin B1 were transiently increased and subsequently decreased. The decrease in cyclin B1 levels occurred in G2 cells during polyploidization upon treatment with a subcytotoxic concentration of Adriamycin. In contrast, neither polyploidy nor a decrease in cyclin B1 levels was induced by treatment with a cytotoxic concentration of Adriamycin. These results suggest that a decrease in cyclin B1 levels is induced by DNA damage, resulting in polyploidization in DNA damage-induced senescence.

  10. FPGA Implementation of one-dimensional and two-dimensional cellular automata

    International Nuclear Information System (INIS)

    D'Antone, I.

    1999-01-01

    This report describes the hardware implementation of one-dimensional and two-dimensional cellular automata (CAs). After a general introduction to the cellular automata, we consider a one-dimensional CA used to implement pseudo-random techniques in built-in self test for VLSI. Due to the increase in digital ASIC complexity, testing is becoming one of the major costs in the VLSI production. The high electronics complexity, used in particle physics experiments, demands higher reliability than in the past time. General criterions are given to evaluate the feasibility of the circuit used for testing and some quantitative parameters are underlined to optimize the architecture of the cellular automaton. Furthermore, we propose a two-dimensional CA that performs a peak finding algorithm in a matrix of cells mapping a sub-region of a calorimeter. As in a two-dimensional filtering process, the peaks of the energy clusters are found in one evolution step. This CA belongs to Wolfram class II cellular automata. Some quantitative parameters are given to optimize the architecture of the cellular automaton implemented in a commercial field programmable gate array (FPGA)

  11. Upregulation of miR-96 enhances cellular proliferation of prostate cancer cells through FOXO1.

    Directory of Open Access Journals (Sweden)

    Benedikta S Haflidadóttir

    Full Text Available Aberrant expression of miR-96 in prostate cancer has previously been reported. However, the role and mechanism of action of miR-96 in prostate cancer has not been determined. In this study, the diagnostic and prognostic properties of miR-96 expression levels were investigated by qRT-PCR in two well documented prostate cancer cohorts. The miR-96 expression was found to be significantly higher in prostate cancer patients and correlate with WHO grade, and decreased overall survival time; patients with low levels of miR-96 lived 1.5 years longer than patients with high miR-96 levels. The therapeutic potential was further investigated in vitro, showing that ectopic levels of miR-96 enhances growth and cellular proliferation in prostate cancer cells, implying that miR-96 has oncogenic properties in this setting. We demonstrate that miR-96 expression decreases the transcript and protein levels of FOXO1 by binding to one of two predicted binding sites in the FOXO1 3'UTR sequence. Blocking this binding site completely inhibited the growth enhancement conveyed by miR-96. This finding was corroborated in a large external prostate cancer patient cohort where miR-96 expression inversely correlated to FOXO1 expression. Taken together these findings indicate that miR-96 plays a key role in prostate cancer cellular proliferation and can enhance prostate cancer progression. This knowledge might be utilized for the development of novel therapeutic tools for prostate cancer.

  12. Capacity on wireless quantum cellular communication system

    Science.gov (United States)

    Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-03-01

    Quantum technology is making excellent prospects in future communication networks. Entanglement generation and purification are two major components in quantum networks. Combining these two techniques with classical cellular mobile communication, we proposed a novel wireless quantum cellular(WQC) communication system which is possible to realize commercial mobile quantum communication. In this paper, the architecture and network topology of WQC communication system are discussed, the mathematical model of WQC system is extracted and the serving capacity, indicating the ability to serve customers, is defined and calculated under certain circumstances.

  13. Chaotic behavior in the disorder cellular automata

    International Nuclear Information System (INIS)

    Ko, J.-Y.; Hung, Y.-C.; Ho, M.-C.; Jiang, I-M.

    2008-01-01

    Disordered cellular automata (DCA) represent an intermediate class between elementary cellular automata and the Kauffman network. Recently, Rule 126 of DCA has been explicated: the system can be accurately described by a discrete probability function. However, a means of extending to other rules has not been developed. In this investigation, a density map of the dynamical behavior of DCA is formulated based on Rule 22 and other totalistic rules. The numerical results reveal excellent agreement between the model and original automata. Furthermore, the inhomogeneous situation is also discussed

  14. Repaglinide at a cellular level

    DEFF Research Database (Denmark)

    Krogsgaard Thomsen, M; Bokvist, K; Høy, M

    2002-01-01

    To investigate the hormonal and cellular selectivity of the prandial glucose regulators, we have undertaken a series of experiments, in which we characterised the effects of repaglinide and nateglinide on ATP-sensitive potassium ion (KATP) channel activity, membrane potential and exocytosis in ra...

  15. Cellular buckling in long structures

    NARCIS (Netherlands)

    Hunt, G.W.; Peletier, M.A.; Champneys, A.R.; Woods, P.D.; Wadee, M.A.; Budd, C.J.; Lord, G.J.

    2000-01-01

    A long structural system with an unstable (subcritical)post-buckling response that subsequently restabilizes typically deformsin a cellular manner, with localized buckles first forming and thenlocking up in sequence. As buckling continues over a growing number ofcells, the response can be described

  16. Cellular proton dynamics in Elodea canadensis leaves induced by cadmium.

    Science.gov (United States)

    Tariq Javed, M; Lindberg, Sylvia; Greger, Maria

    2014-04-01

    Our earlier investigations showed that Elodea canadensis shoots, grown in the presence of cadmium (Cd), caused basification of the surrounding medium. The present study was aimed to examine the proton dynamics of the apoplastic, cytosolic and vacuolar regions of E. canadensis leaves upon Cd exposure and to establish possible linkage between cellular pH changes and the medium basification. The changes in cytosolic calcium [Ca(2+)]cyt was also investigated as the [Ca(2+)]cyt and [pH]cyt homeostasis are closely linked. The cellular H(+) and Ca(2+) concentrations were monitored by fluorescence microscopy and ion-specific fluorescent dyes. Cadmium concentration of leaf-cell walls was measured after plant cultivation at different fixed levels of starting pH. The protoplasts from E. canadensis leaves were isolated by use of a newly developed enzymatic method. Upon Cd addition, both cytosolic and vacuolar pH of leaf protoplasts increased with a concomitant rise in the cytosolic Ca(2+) concentration. Time course studies revealed that changes in [Ca(2+)]cyt and [pH]cyt followed similar dynamics. Cadmium (0.5 μM) exposure decreased the apoplastic pH by 0.85 units. The maximum cell wall bound Cd-contents were obtained in plants grown at low starting pH. It is concluded that Cd treatment causes apoplastic acidosis in E. canadensis leaves associated with enhanced Cd binding to the cell walls and, consequently, reduced Cd influx into the cytosol. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Cellular Kinetics of Perivascular MSC Precursors

    Directory of Open Access Journals (Sweden)

    William C. W. Chen

    2013-01-01

    Full Text Available Mesenchymal stem/stromal cells (MSCs and MSC-like multipotent stem/progenitor cells have been widely investigated for regenerative medicine and deemed promising in clinical applications. In order to further improve MSC-based stem cell therapeutics, it is important to understand the cellular kinetics and functional roles of MSCs in the dynamic regenerative processes. However, due to the heterogeneous nature of typical MSC cultures, their native identity and anatomical localization in the body have remained unclear, making it difficult to decipher the existence of distinct cell subsets within the MSC entity. Recent studies have shown that several blood-vessel-derived precursor cell populations, purified by flow cytometry from multiple human organs, give rise to bona fide MSCs, suggesting that the vasculature serves as a systemic reservoir of MSC-like stem/progenitor cells. Using individually purified MSC-like precursor cell subsets, we and other researchers have been able to investigate the differential phenotypes and regenerative capacities of these contributing cellular constituents in the MSC pool. In this review, we will discuss the identification and characterization of perivascular MSC precursors, including pericytes and adventitial cells, and focus on their cellular kinetics: cell adhesion, migration, engraftment, homing, and intercellular cross-talk during tissue repair and regeneration.

  18. Force control for mechanoinduction of impedance variation in cellular organisms

    International Nuclear Information System (INIS)

    Nam, Joo Hoo; Chen, Peter C Y; Lu, Zhe; Luo, Hong; Lin, Wei; Ge, Ruowen

    2010-01-01

    Constantly exposed to various forms of mechanical forces inherent in their physical environment (such as gravity, stress induced by fluid flow or cell–cell interactions, etc), cellular organisms sense such forces and convert them into biochemical signals through the processes of mechanosensing and mechanotransduction that eventually lead to biological changes. The effect of external forces on the internal structures and activities in a cellular organism may manifest in changes its physical properties, such as impedance. Studying variation in the impedance of a cellular organism induced by the application of an external mechanical force represents a meaningful endeavor (from a biosystems perspective) in exploring the complex mechanosensing and mechanotransduction mechanisms that govern the behavior of a cellular organism under the influence of external mechanical stimuli. In this paper we describe the development of an explicit force-feedback control system for exerting an indentation force on a cellular organism while simultaneously measuring its impedance. To demonstrate the effectiveness of this force-control system, we have conducted experiments using zebrafish embryos as a test model of a cellular organism. We report experimental results demonstrating that the application of a properly controlled external force leads to a significant change in the impedance of a zebrafish embryo. These results offer support for a plausible explanation that activities of pore canals in the chorion are responsible for the observed change in impedance.

  19. Universal map for cellular automata

    International Nuclear Information System (INIS)

    García-Morales, V.

    2012-01-01

    A universal map is derived for all deterministic 1D cellular automata (CAs) containing no freely adjustable parameters and valid for any alphabet size and any neighborhood range (including non-symmetrical neighborhoods). The map can be extended to an arbitrary number of dimensions and topologies and to arbitrary order in time. Specific CA maps for the famous Conway's Game of Life and Wolfram's 256 elementary CAs are given. An induction method for CAs, based in the universal map, allows mathematical expressions for the orbits of a wide variety of elementary CAs to be systematically derived. -- Highlights: ► A universal map is derived for all deterministic 1D cellular automata (CA). ► The map is generalized to 2D for Von Neumann, Moore and hexagonal neighborhoods. ► A map for all Wolfram's 256 elementary CAs is derived. ► A map for Conway's “Game of Life” is obtained.

  20. 47 CFR 22.960 - Cellular unserved area radiotelephone licenses subject to competitive bidding.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Cellular unserved area radiotelephone licenses... (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.960 Cellular... applications for cellular unserved area Phase I and Phase II licenses filed after July 26, 1993 are subject to...

  1. Cellular fibroadenoma on Core needle biopsy: management recommendations for the radiologist.

    Science.gov (United States)

    Edwards, Teresa; Jaffer, Shabnam; Szabo, Janet R; Sonnenblick, Emily B; Margolies, Laurie R

    2016-01-01

    Cellular fibroadenomas (CFA) are difficult to distinguish from phyllodes tumor (PT) at biopsy. This study's purpose was to determine what CFA characteristics were associated with recommendations to follow-up or excise and if the current algorithm was correct. Databases from 2002 to 2014 were reviewed. Mass characteristics and post biopsy recommendations were recorded. 81 CFAs were diagnosed; 19 cellular and 62 with slightly cellular stroma. 21 masses were surgically excised with 2 PTs diagnosed. Larger mass size and increased histologic cellularity were associated with excision recommendation, but only clinical growth was associated with PT. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A survey on the modeling and applications of cellular automata theory

    Science.gov (United States)

    Gong, Yimin

    2017-09-01

    The Cellular Automata Theory is a discrete model which is now widely used in scientific researches and simulations. The model is comprised of some cells which changes according to a specific rule over time. This paper provides a survey of the Modeling and Applications of Cellular Automata Theory, which focus on the program realization of Cellular Automata Theory and the application of Cellular Automata in each field, such as road traffic, land use, and cutting machines. Each application is further explained, and several related main models are briefly introduced. This research aims to help decision-makers formulate appropriate development plans.

  3. Error performance analysis in downlink cellular networks with interference management

    KAUST Repository

    Afify, Laila H.; Elsawy, Hesham; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    Modeling aggregate network interference in cellular networks has recently gained immense attention both in academia and industry. While stochastic geometry based models have succeeded to account for the cellular network geometry, they mostly

  4. Hydrogen peroxide probes directed to different cellular compartments.

    OpenAIRE

    Mikalai Malinouski; You Zhou; Vsevolod V Belousov; Dolph L Hatfield; Vadim N Gladyshev

    2011-01-01

    Background Controlled generation and removal of hydrogen peroxide play important roles in cellular redox homeostasis and signaling. We used a hydrogen peroxide biosensor HyPer, targeted to different compartments, to examine these processes in mammalian cells. Principal Findings Reversible responses were observed to various redox perturbations and signaling events. HyPer expressed in HEK 293 cells was found to sense low micromolar levels of hydrogen peroxide. When targeted to various cellular ...

  5. Cellular Basis for ADT-Induced Acceleration of Sarcopenia

    Science.gov (United States)

    2015-10-01

    1 AWARD NUMBER: W81XWH-14-1-0454 TITLE: Cellular Basis for ADT-Induced Acceleration of Sarcopenia PRINCIPAL INVESTIGATOR: Joe V...AND SUBTITLE Cellular Basis for ADT-Induced Acceleration of Sarcopenia 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0454 5c. PROGRAM...cell function and thereby regenerative capability contribute to the acceleration of sarcopenia observed in prostate cancer patients undergoing ADT

  6. Effect of propolis on mitotic and cellular proliferation indices in human blood lymphocytes

    International Nuclear Information System (INIS)

    Montoro, A.; Almonacid, M.; Villaescusa, J.; Barquinero, J.; Barrios, L.; Verdu, G.; Perez, J.

    2006-01-01

    The study of the frequency of chromosomal aberrations per cell is the tool used in Biological dosimetry studies. Using dose-effect calibration curve obtained in our laboratory, we can evaluate the radioprotector effect of the EEP (ethanolic extract of propolis) in cultures in vitro. Propolis is the generic name for resinous substance collected by honeybees. The results showed a reduction in chromosomal aberrations's frequency of up to 50 %. The following study consisted of analyzing human peripheral blood lymphocytes exposed to 2 Gy γ rays, in presence and absence of EEP, the change in the frequency of chromosome aberrations was analysed with biological dosimetry. The protection against the formation of dicentric and ring was dose-dependent, but there seemed to be a maximum protection, i.e. a further increase in the concentration of EEP does not show additional protection. This work studies the effect of the EEP of the cellular cycle using the mitotic and cellular proliferation index, as an alternative for the screening cytostatic activity. The results indicate that the lymphocytes which were cultures in presence of EEP exhibited a significant and dependent-concentration decrease in mitotic index and proliferation kinetics. The possible mechanisms involved in the radioprotective influence of EEP are discussed. (authors)

  7. Effect of propolis on mitotic and cellular proliferation indices in human blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Montoro, A.; Almonacid, M.; Villaescusa, J. [Valencia Hospital Univ. la Fe, Servicio de Proteccion Radiologica (Spain); Barquinero, J. [Barcelona Univ. Autonom, Servicio de Dosimetria Biologica, Unidad de Antropologia, Dept. de Biologia Animal, Vegetal y Ecologia, barcelona (Spain); Barrios, L. [Barcelona Univ. Autonoma, Dept. de Biologia Celular y Fisiologia. Unidad de Biologia Celular (Spain); Verdu, G. [Valencia Univ. Politecnica, Dept. de Ingenieria Quimica y Nuclear (Spain); Perez, J. [Hospital la Fe, Seccion de Radiofisica, Servicio de Radioterapia, valencia (Spain)

    2006-07-01

    The study of the frequency of chromosomal aberrations per cell is the tool used in Biological dosimetry studies. Using dose-effect calibration curve obtained in our laboratory, we can evaluate the radioprotector effect of the EEP (ethanolic extract of propolis) in cultures in vitro. Propolis is the generic name for resinous substance collected by honeybees. The results showed a reduction in chromosomal aberrations's frequency of up to 50 %. The following study consisted of analyzing human peripheral blood lymphocytes exposed to 2 Gy {gamma} rays, in presence and absence of EEP, the change in the frequency of chromosome aberrations was analysed with biological dosimetry. The protection against the formation of dicentric and ring was dose-dependent, but there seemed to be a maximum protection, i.e. a further increase in the concentration of EEP does not show additional protection. This work studies the effect of the EEP of the cellular cycle using the mitotic and cellular proliferation index, as an alternative for the screening cytostatic activity. The results indicate that the lymphocytes which were cultures in presence of EEP exhibited a significant and dependent-concentration decrease in mitotic index and proliferation kinetics. The possible mechanisms involved in the radioprotective influence of EEP are discussed. (authors)

  8. Simulation Modeling by Classification of Problems: A Case of Cellular Manufacturing

    International Nuclear Information System (INIS)

    Afiqah, K N; Mahayuddin, Z R

    2016-01-01

    Cellular manufacturing provides good solution approach to manufacturing area by applying Group Technology concept. The evolution of cellular manufacturing can enhance performance of the cell and to increase the quality of the product manufactured but it triggers other problem. Generally, this paper highlights factors and problems which emerge commonly in cellular manufacturing. The aim of the research is to develop a thorough understanding of common problems in cellular manufacturing. A part from that, in order to find a solution to the problems exist using simulation technique, this classification framework is very useful to be adapted during model building. Biology evolution tool was used in the research in order to classify the problems emerge. The result reveals 22 problems and 25 factors using cladistic technique. In this research, the expected result is the cladogram established based on the problems in cellular manufacturing gathered. (paper)

  9. Cellular Angiofibroma of Oral Mucosa: Report of Two Cases

    Science.gov (United States)

    2009-01-01

    Cellular angiofibroma is a benign vascular neoplasm that typically arises in the vulva, perineal, and paratesticular region. Microscopically the lesions exhibit multiple small, non-dilated capillary channels, many of which contain erythrocytes. The endothelial lining cells are prominent, with monomorphic oval nuclei. Interposed among the vessels are both delicate and mature collagen fibers with fibroblastic hypercellularity that is variable in older lesions where sclerosis is prominent. The lesions usually do not recur following simple excision. Recent evidence indicates that cellular angiofibromas may be cytogenetically related to spindle cell lipoma. This represents the first reported instances of cellular angiofibroma in the oral cavity. PMID:19644547

  10. Cellular Targets of Dietary Polyphenol Resveratrol

    National Research Council Canada - National Science Library

    Wu, Joseph M

    2006-01-01

    To test the hypothesis that resveratrol, a grape derived polyphenol, exerts its chemopreventive properties against prostate cancer by interacting with specific cellular targets, denoted resveratrol targeting proteins (RTPs...

  11. Teen Perceptions of Cellular Phones as a Communication Tool

    Science.gov (United States)

    Jonas, Denise D.

    2011-01-01

    The excitement and interest in innovative technologies has spanned centuries. However, the invention of the cellular phone has surpassed previous technology interests, and changed the way we communicate today. Teens make up the fastest growing market of current cellular phone users. Consequently, the purpose of this study was to determine teen…

  12. Contribution of cellular retinol-binding protein type 1 to retinol metabolism during mouse development.

    Science.gov (United States)

    Matt, Nicolas; Schmidt, Carsten K; Dupé, Valérie; Dennefeld, Christine; Nau, Heinz; Chambon, Pierre; Mark, Manuel; Ghyselinck, Norbert B

    2005-05-01

    Within cells, retinol (ROL) is bound to cytoplasmic proteins (cellular retinol-binding proteins [CRBPs]), whose proposed function is to protect it from unspecific enzymes through channeling to retinoid-metabolizing pathways. We show that, during development, ROL and retinyl ester levels are decreased in CRBP type 1 (CRBP1) -deficient embryos and fetuses by 50% and 80%, respectively. The steady state level of retinoic acid (RA) is also decreased but to a lesser extent. However, CRBP1-null fetuses do not exhibit the abnormalities characteristic of a vitamin A-deficiency syndrome. Neither CRBP1 deficiency alters the expression patterns of RA-responding genes during development, nor does CRBP1 availability modify the expression of an RA-dependent gene in primary embryonic fibroblasts treated with ROL. Therefore, CRBP1 is required in prenatal life to maintain normal amounts of ROL and to ensure its efficient storage but seems of secondary importance for RA synthesis, at least under conditions of maternal vitamin A sufficiency. Copyright 2005 Wiley-Liss, Inc.

  13. Protective effect of gallic acid and Syzygium cumini extract against oxidative stress-induced cellular injury in human lymphocytes.

    Science.gov (United States)

    De Bona, Karine Santos; Bonfanti, Gabriela; Bitencourt, Paula Eliete Rodrigues; da Silva, Thainan Paz; Borges, Raphaela Maleski; Boligon, Aline; Pigatto, Aline; Athayde, Margareth Lynde; Moretto, Maria Beatriz

    2016-01-01

    Syzygium cumini (Myrtaceae) presents antioxidant, anti-inflammatory, hypoglycemic and antibacterial effects; however, the cellular and molecular mechanisms of action in the immune system are not yet completely elucidated. This study evaluates the in vitro effect of gallic acid and aqueous S. cumini leaf extract (ASc) on adenosine deaminase (ADA) and dipeptidyl peptidase IV (DPP-IV) activities, cell viability and oxidative stress parameters in lymphocytes exposed to 2, 2'-azobis-2-amidinopropane dihydrochloride (AAPH). Lymphocytes were incubated with ASc (100 and 500 µg/ml) and gallic acid (50 and 200 µM) at 37 °C for 30 min followed by incubation with AAPH (1 mM) at 37 °C for 2 h. After the incubation time, the lymphocytes were used for determinations of ADA, DPP-IV and lactate dehydrogenase (LDH) activities, lipid peroxidation, protein thiol (P-SH) group levels and cellular viability by colorimetric methods. (i) HPLC fingerprinting of ASc revealed the presence of catechin, epicatechin, rutin, quercitrin, isoquercitrin, quercetin, kaempferol and chlorogenic, caffeic, gallic and ellagic acids; (ii) for the first time, ASc reduced the AAPH-induced increase in ADA activity, but no effect was observed on DPP-IV activity; (iii) ASc increased P-SH groups and cellular viability and decreased LDH activity, but was not able to reduce the AAPH-induced lipid peroxidation; (iv) gallic acid showed less protective effects than ASc. ASc affects the purinergic system and may modulate adenosine levels, indicating that the extract of this plant exhibits immunomodulatory properties. ASc also may potentially prevent the cellular injury induced by oxidative stress, highlighting its cytoprotective effects.

  14. Lipids, lipid droplets and lipoproteins in their cellular context; an ultrastructural approach

    NARCIS (Netherlands)

    Mesman, R.J.

    2013-01-01

    Lipids are essential for cellular life, functioning either organized as bilayer membranes to compartmentalize cellular processes, as signaling molecules or as metabolic energy storage. Our current knowledge on lipid organization and cellular lipid homeostasis is mainly based on biochemical data.

  15. New approaches to detect 8-hydroxyguanine in γ-irradiated cellular DNA

    International Nuclear Information System (INIS)

    Mei, Nan; Tamae, Kazuyoshi; Hirano, Takeshi; Kasai, Hiroshi; Kunugita, Naoki

    2003-01-01

    This report describes an assay to detect 8-hydroxydeoxyguanosine 5'-monophosphate (8-OH-dGMP) in cellular DNA by modification of enzyme treatment after DNA extraction, using a high-performance liquid chromatography system equipped with an electrochemical detector (HPLC-ECD). This modification greatly reduces the measured background level of 8-hydroxyguanine (8-OH-Gua) in DNA, and improves the HPLC-ECD sensitivity to measure oxidative DNA damage. The 8-OH-Gua value in the DNA was expressed by the ratio of 8-OH-dGMP to deoxycytidine 5'-monophosphate (dCMP). Background level of 8-OH-Gua in DNA under our conditions was several times lower than that by a previous method. The human lung carcinoma cells (A549) were exposed to γ-rays of 20-100 Gy. A dose-dependent increase in oxidative DNA damage of 8-OH-Gua was observed. Furthermore, using commercial FITC-kit of an immunohistochemical type procedure, 8-OH-Gua was clearly detected in A549 cells and the fluorescence intensity of cells with oxidative DNA damage increased with the doses of γ-irradiation. Using an 8-OH-Gua repair activity assay, we also found that γ-rays decreased the repair enzyme activity. We conclude that the 8-OH-Gua level in human cellular DNA increases partly by the generation of reactive oxygen species (ROS) and partly by the inhibition of repair activity for 8-OH-Gua. (author)

  16. An improved cellular automaton method to model multispecies biofilms.

    Science.gov (United States)

    Tang, Youneng; Valocchi, Albert J

    2013-10-01

    Biomass-spreading rules used in previous cellular automaton methods to simulate multispecies biofilm introduced extensive mixing between different biomass species or resulted in spatially discontinuous biomass concentration and distribution; this caused results based on the cellular automaton methods to deviate from experimental results and those from the more computationally intensive continuous method. To overcome the problems, we propose new biomass-spreading rules in this work: Excess biomass spreads by pushing a line of grid cells that are on the shortest path from the source grid cell to the destination grid cell, and the fractions of different biomass species in the grid cells on the path change due to the spreading. To evaluate the new rules, three two-dimensional simulation examples are used to compare the biomass distribution computed using the continuous method and three cellular automaton methods, one based on the new rules and the other two based on rules presented in two previous studies. The relationship between the biomass species is syntrophic in one example and competitive in the other two examples. Simulation results generated using the cellular automaton method based on the new rules agree much better with the continuous method than do results using the other two cellular automaton methods. The new biomass-spreading rules are no more complex to implement than the existing rules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Surjective cellular automata with zero entropy are almost one-to-one

    International Nuclear Information System (INIS)

    Moothathu, T.K.S.

    2011-01-01

    Highlights: → We use information about maps with zero entropy from Ergodic Theory. → Surjective cellular automata with zero entropy are almost one-to-one. → Surjective, additive cellular automata with zero entropy are injective. - Abstract: We show that any one-dimensional surjective cellular automata whose entropy is zero with respect to the uniform Bernoulli measure must be almost one-to-one.

  18. Pre-analytical and post-analytical evaluation in the era of molecular diagnosis of sexually transmitted diseases: cellularity control and internal control

    Directory of Open Access Journals (Sweden)

    Loria Bianchi

    2014-06-01

    Full Text Available Background. Increase of molecular tests performed on DNA extracted from various biological materials should not be carried out without an adequate standardization of the pre-analytical and post-analytical phase. Materials and Methods. Aim of this study was to evaluate the role of internal control (IC to standardize pre-analytical phase and the role of cellularity control (CC in the suitability evaluation of biological matrices, and their influence on false negative results. 120 cervical swabs (CS were pre-treated and extracted following 3 different protocols. Extraction performance was evaluated by amplification of: IC, added in each mix extraction; human gene HPRT1 (CC with RT-PCR to quantify sample cellularity; L1 region of HPV with SPF10 primers. 135 urine, 135 urethral swabs, 553 CS and 332 ThinPrep swabs (TP were tested for C. trachomatis (CT and U. parvum (UP with RT-PCR and for HPV by endpoint-PCR. Samples were also tested for cellularity. Results. Extraction protocol with highest average cellularity (Ac/sample showed lowest number of samples with inhibitors; highest HPV positivity was achieved by protocol with greatest Ac/PCR. CS and TP under 300.000 cells/sample showed a significant decrease of UP (P<0.01 and HPV (P<0.005 positivity. Female urine under 40.000 cells/mL were inadequate to detect UP (P<0.05. Conclusions. Our data show that IC and CC allow optimization of pre-analytical phase, with an increase of analytical quality. Cellularity/sample allows better sample adequacy evaluation, crucial to avoid false negative results, while cellularity/PCR allows better optimization of PCR amplification. Further data are required to define the optimal cut-off for result normalization.

  19. Effect of intratympanic dexamethasone, memantine and piracetam on cellular apoptosis due to cisplatin ototoxicity.

    Science.gov (United States)

    Topdag, M; Iseri, M; Gelenli, E; Yardimoglu, M; Yazir, Y; Ulubil, S A; Topdag, D O; Ustundag, E

    2012-11-01

    This study aimed to contribute to the literature on the prevention and treatment of ototoxicity due to various drugs and chemicals. This study compared the histological effects of intratympanic dexamethasone, memantine and piracetam on cellular apoptosis due to cisplatin ototoxicity, in 36 rats. Dexamethasone and memantine had significant effects on the stria vascularis, organ of Corti and spiral ganglion (p piracetam decreased the apoptosis rate, this effect was not statistically significant (p > 0.05). Dexamethasone and memantine were found superior to piracetam in reducing apoptosis due to cisplatin ototoxicity. Further studies of this subject are needed, incorporating electron microscopy and auditory brainstem response testing.

  20. MEMS-based thermally-actuated image stabilizer for cellular phone camera

    International Nuclear Information System (INIS)

    Lin, Chun-Ying; Chiou, Jin-Chern

    2012-01-01

    This work develops an image stabilizer (IS) that is fabricated using micro-electro-mechanical system (MEMS) technology and is designed to counteract the vibrations when human using cellular phone cameras. The proposed IS has dimensions of 8.8 × 8.8 × 0.3 mm 3 and is strong enough to suspend an image sensor. The processes that is utilized to fabricate the IS includes inductive coupled plasma (ICP) processes, reactive ion etching (RIE) processes and the flip-chip bonding method. The IS is designed to enable the electrical signals from the suspended image sensor to be successfully emitted out using signal output beams, and the maximum actuating distance of the stage exceeds 24.835 µm when the driving current is 155 mA. Depending on integration of MEMS device and designed controller, the proposed IS can decrease the hand tremor by 72.5%. (paper)

  1. The AAA+ ATPase p97, a cellular multitool.

    Science.gov (United States)

    Stach, Lasse; Freemont, Paul S

    2017-08-17

    The AAA+ (ATPases associated with diverse cellular activities) ATPase p97 is essential to a wide range of cellular functions, including endoplasmic reticulum-associated degradation, membrane fusion, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and chromatin-associated processes, which are regulated by ubiquitination. p97 acts downstream from ubiquitin signaling events and utilizes the energy from ATP hydrolysis to extract its substrate proteins from cellular structures or multiprotein complexes. A multitude of p97 cofactors have evolved which are essential to p97 function. Ubiquitin-interacting domains and p97-binding domains combine to form bi-functional cofactors, whose complexes with p97 enable the enzyme to interact with a wide range of ubiquitinated substrates. A set of mutations in p97 have been shown to cause the multisystem proteinopathy inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia. In addition, p97 inhibition has been identified as a promising approach to provoke proteotoxic stress in tumors. In this review, we will describe the cellular processes governed by p97, how the cofactors interact with both p97 and its ubiquitinated substrates, p97 enzymology and the current status in developing p97 inhibitors for cancer therapy. © 2017 The Author(s).

  2. Image Encryption and Chaotic Cellular Neural Network

    Science.gov (United States)

    Peng, Jun; Zhang, Du

    Machine learning has been playing an increasingly important role in information security and assurance. One of the areas of new applications is to design cryptographic systems by using chaotic neural network due to the fact that chaotic systems have several appealing features for information security applications. In this chapter, we describe a novel image encryption algorithm that is based on a chaotic cellular neural network. We start by giving an introduction to the concept of image encryption and its main technologies, and an overview of the chaotic cellular neural network. We then discuss the proposed image encryption algorithm in details, which is followed by a number of security analyses (key space analysis, sensitivity analysis, information entropy analysis and statistical analysis). The comparison with the most recently reported chaos-based image encryption algorithms indicates that the algorithm proposed in this chapter has a better security performance. Finally, we conclude the chapter with possible future work and application prospects of the chaotic cellular neural network in other information assurance and security areas.

  3. Carica Papaya Seed Extract Enhances Cellular Response to Stress ...

    African Journals Online (AJOL)

    Therefore, the present study was carried out to investigate the role of Carica papaya seed (CPS) extract that contains, Benzyl Isothiocyanates, one of the inducers of phase II enzymes in the regulation of cellular stress. The cellular responses were observed in U937 cells (human monocyte/macrophage cell line) at the ...

  4. Density-conserving affine continuous cellular automata solving the relaxed density classification problem

    International Nuclear Information System (INIS)

    Wolnik, Barbara; Dembowski, Marcin; Bołt, Witold; Baetens, Jan M; De Baets, Bernard

    2017-01-01

    The focus of this paper is on the density classification problem in the context of affine continuous cellular automata. Although such cellular automata cannot solve this problem in the classical sense, most density-conserving affine continuous cellular automata with a unit neighborhood radius are valid solutions of a slightly relaxed version of this problem. This result follows from a detailed study of the dynamics of the density-conserving affine continuous cellular automata that we introduce. (paper)

  5. Cellular structure of lean hydrogen flames in microgravity

    Science.gov (United States)

    Patnaik, G.; Kailasanath, K.

    1990-01-01

    Detailed, time-dependent, two-dimensional numerical simulations of premixed laminar flames have been used to study the initiation and subsequent development of cellular structures in lean hydrogen-air flames. The model includes detailed hydrogen-oxygen combustion with 24 elementary reactions of eight reactive species and a nitrogen diluent, molecular diffusion of all species, thermal conduction, viscosity, and convection. This model has been used to study the nonlinear evolution of cellular flame structure and shows that cell splitting, as observed in experiments, can be predicted numerically for sufficiently reactive mixtures. The structures that evolved also resembled the cellular structures observed in experiments. The present study shows that the 'cell-split limit' postulated from experimental observations is an intrinsic property of the mixture and that external factors such as heat losses are not necessary to cause this limit.

  6. Novel aspects of cellular action of dipeptidyl peptidase IV/CD26.

    Science.gov (United States)

    Ansorge, Siegfried; Nordhoff, Karsten; Bank, Ute; Heimburg, Anke; Julius, Heiko; Breyer, Doreen; Thielitz, Anja; Reinhold, Dirk; Täger, Michael

    2011-03-01

    The cellular dipeptidyl peptidase IV (DPIV, E.C.3.4.14.5, CD26) is a type II membrane peptidase with various physio-logical functions. Our main knowledge on DPIV comes from studies of soluble DPIV which plays a role in regulation of glucose homeostasis by inactivation of the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic poly-peptide. It has been reported that membrane-bound DPIV plays a crucial role in the immune system and in other tissues and cells, but the knowledge on the action of cellular DPIV and its regulation is limited. In this study, we show particularly for immune cells that DPIV and not DP8 or DP9 is the most potent member of the DPIV family in regulating cellular immune functions. Moreover, we provide evidence that soluble and cellular DPIV differ in functions and hand-ling of substrates and inhibitors owing to the different accessibility of peptide substrates to the two access paths of DPIV. The different functions are based on the favored access path of the central pore of cellular DPIV and a special central pore binding site which assists substrate access to the active site of the enzyme. The newly discovered central pore binding site mediates an autosterical regulation of cellular DPIV and is its most crucial target site to regulate cellular functions such as growth and cytokine production. Neuropeptide Y (NPY) processing by cellular DPIV was found to be inhibited by ligands which interact with the central pore binding site. This finding suggests a crucial role of the immunosuppressive cytokine NPY in the function of DPIV in growth regulation.

  7. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    Science.gov (United States)

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2018-01-20

    The nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) and NADP + /reduced NADP + (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD + -consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD + precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.

  8. Cellular uptake of radioiodine delivered by trastuzumab can be modified by the addition of epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Erika; Steffen, Ann-Charlott; Sundberg, Aasa L.; Carlsson, Joergen [Uppsala University, Division of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden); Persson, Mikael [Uppsala University, Division of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden); Uppsala University, Division of Experimental Urology, Department of Surgical Sciences, Rudbeck Laboratory, Uppsala (Sweden); Glimelius, Bengt [Uppsala University, Division of Oncology, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden)

    2005-07-01

    The purpose of this study was to analyse whether non-radiolabelled epidermal growth factor (EGF) can modify the cellular uptake of {sup 125}I when delivered as [{sup 125}I]trastuzumab. {sup 125}I was used as a marker for the diagnostically and therapeutically more interesting isotopes {sup 123}I (SPECT), {sup 124}I (PET) and {sup 131}I (therapy). The cell-associated radioactivity was measured in squamous carcinoma A431 cells following addition of [{sup 125}I]trastuzumab. Different concentrations of [{sup 125}I]trastuzumab and unlabelled EGF were used, and the total, membrane-bound and internalised radioactivity was measured. We also analysed how EGF and trastuzumab affected the cell growth. It was generally found that the cellular {sup 125}I uptake was decreased by the addition of EGF when [{sup 125}I]trastuzumab was added for short incubation times. However, if the incubation times were longer, EGF increased the {sup 125}I uptake. This shift came earlier when higher [{sup 125}I]trastuzumab concentrations were applied. The addition of EGF also influenced cell proliferation, and concentrations above 10 ng/ml reduced cell growth by approximately 20% after 24 h of incubation. By adding unlabelled EGF, it was possible to modify the cellular uptake of [{sup 125}I]trastuzumab. This points towards new approaches for the modification of radionuclide uptake in EGFR- and HER2-positive tumours. (orig.)

  9. Cellular automaton modeling of biological pattern formation characterization, examples, and analysis

    CERN Document Server

    Deutsch, Andreas

    2017-01-01

    This text explores the use of cellular automata in modeling pattern formation in biological systems. It describes several mathematical modeling approaches utilizing cellular automata that can be used to study the dynamics of interacting cell systems both in simulation and in practice. New in this edition are chapters covering cell migration, tissue development, and cancer dynamics, as well as updated references and new research topic suggestions that reflect the rapid development of the field. The book begins with an introduction to pattern-forming principles in biology and the various mathematical modeling techniques that can be used to analyze them. Cellular automaton models are then discussed in detail for different types of cellular processes and interactions, including random movement, cell migration, adhesive cell interaction, alignment and cellular swarming, growth processes, pigment cell pattern formation, tissue development, tumor growth and invasion, and Turing-type patterns and excitable media. In ...

  10. Epidemiological Safety Surveillance of Cellular Telephones in the US (invited paper)

    International Nuclear Information System (INIS)

    Dreyer, N.A.; Loughlin, J.E.; Rothman, K.J.

    1999-01-01

    In 1994 a surveillance programme was initiated to monitor the effects of exposure to the human head from radiofrequency waves, such as those emitted from handheld cellular telephones. Cellular carriers contributed information about 1.5 million telephone account holders, their phones and two months of data on minutes used and number of calls. Cellular telephone manufacturers provided data that allowed classification of phones as analogue or digital and a handheld or mobile (car or bag) for 67% of the phones. Thus far 1,021,767 individuals have been identified who had at least one active cellular telephone account in 1994 and/or 1995 and who used either a handheld (41%) or a mobile (59%) phone during the study period, but not both. Seventy-four per cent of the cohort had used their cellular phone for ≥2 years, and 30% for ≥3 years. (author)

  11. Modeling of coupled differential equations for cellular chemical signaling pathways: Implications for assay protocols utilized in cellular engineering.

    Science.gov (United States)

    O'Clock, George D

    2016-08-01

    Cellular engineering involves modification and control of cell properties, and requires an understanding of fundamentals and mechanisms of action for cellular derived product development. One of the keys to success in cellular engineering involves the quality and validity of results obtained from cell chemical signaling pathway assays. The accuracy of the assay data cannot be verified or assured if the effect of positive feedback, nonlinearities, and interrelationships between cell chemical signaling pathway elements are not understood, modeled, and simulated. Nonlinearities and positive feedback in the cell chemical signaling pathway can produce significant aberrations in assay data collection. Simulating the pathway can reveal potential instability problems that will affect assay results. A simulation, using an electrical analog for the coupled differential equations representing each segment of the pathway, provides an excellent tool for assay validation purposes. With this approach, voltages represent pathway enzyme concentrations and operational amplifier feedback resistance and input resistance values determine pathway gain and rate constants. The understanding provided by pathway modeling and simulation is strategically important in order to establish experimental controls for assay protocol structure, time frames specified between assays, and assay concentration variation limits; to ensure accuracy and reproducibility of results.

  12. Multidrug and toxin extrusion proteins mediate cellular transport of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hong; Guo, Dong; Obianom, Obinna N. [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Su, Tong [Department of Oral Maxillofacial Surgery, the First Affiliated Hospital, Xiangya Medical School, Central South University, Hunan 410007 (China); Polli, James E. [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Shu, Yan, E-mail: yshu@rx.umaryland.edu [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States)

    2017-01-01

    Cadmium (Cd) is an environmentally prevalent toxicant posing increasing risk to human health worldwide. As compared to the extensive research in Cd tissue accumulation, little was known about the elimination of Cd, particularly its toxic form, Cd ion (Cd{sup 2+}). In this study, we aimed to examine whether Cd{sup 2+} is a substrate of multidrug and toxin extrusion proteins (MATEs) that are important in renal xenobiotic elimination. HEK-293 cells overexpressing the human MATE1 (HEK-hMATE1), human MATE2-K (HEK-hMATE2-K) and mouse Mate1 (HEK-mMate1) were used to study the cellular transport and toxicity of Cd{sup 2+}. The cells overexpressing MATEs showed a 2–4 fold increase of Cd{sup 2+} uptake that could be blocked by the MATE inhibitor cimetidine. A saturable transport profile was observed with the Michaelis-Menten constant (K{sub m}) of 130 ± 15.8 μM for HEK-hMATE1; 139 ± 21.3 μM for HEK-hMATE2-K; and 88.7 ± 13.5 μM for HEK-mMate1, respectively. Cd{sup 2+} could inhibit the uptake of metformin, a substrate of MATE transporters, with the half maximal inhibitory concentration (IC{sub 50}) of 97.5 ± 6.0 μM, 20.2 ± 2.6 μM, and 49.9 ± 6.9 μM in HEK-hMATE1, HEK-hMATE2-K, and HEK-mMate1 cells, respectively. In addition, hMATE1 could transport preloaded Cd{sup 2+} out of the HEK-hMATE1 cells, thus resulting in a significant decrease of Cd{sup 2+}-induced cytotoxicity. The present study has provided the first evidence supporting that MATEs transport Cd{sup 2+} and may function as cellular elimination machinery in Cd intoxication. - Highlights: • Cadmium is an environmentally prevalent toxicant. • Little was known regarding the elimination and detoxification of cadmium. • Cadmium ion is here demonstrated as a substrate of MATE transporters. • MATEs may function as cellular elimination machinery in cadmium detoxification.

  13. Minimal entropy approximation for cellular automata

    International Nuclear Information System (INIS)

    Fukś, Henryk

    2014-01-01

    We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim. (paper)

  14. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties

    Science.gov (United States)

    Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan

    2017-04-01

    We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson’s ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments.

  15. Time scale of diffusion in molecular and cellular biology

    International Nuclear Information System (INIS)

    Holcman, D; Schuss, Z

    2014-01-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function. (topical review)

  16. Time scale of diffusion in molecular and cellular biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  17. Evaluation of cellular influences caused by calcium carbonate nanoparticles.

    Science.gov (United States)

    Horie, Masanori; Nishio, Keiko; Kato, Haruhisa; Endoh, Shigehisa; Fujita, Katsuhide; Nakamura, Ayako; Kinugasa, Shinichi; Hagihara, Yoshihisa; Yoshida, Yasukazu; Iwahashi, Hitoshi

    2014-03-05

    The cellular effects of calcium carbonate (CaCO₃) nanoparticles were evaluated. Three kinds of CaCO₃ nanoparticles were employed in our examinations. One of the types of CaCO₃ nanoparticles was highly soluble. And solubility of another type of CaCO₃ nanoparticle was lower. A stable CaCO₃ nanoparticle medium dispersion was prepared and applied to human lung carcinoma A549 cells and human keratinocyte HaCaT cells. Then, mitochondrial activity, cell membrane damage, colony formation ability, DNA injury, induction of oxidative stress, and apoptosis were evaluated. Although the influences of CaCO₃ nanoparticles on mitochondrial activity and cell membrane damage were small, "soluble" CaCO₃ nanoparticles exerted some cellular influences. Soluble CaCO₃ nanoparticles also induced a cell morphological change. Colony formation was inhibited by CaCO₃ nanoparticle exposure. In particular, soluble CaCO₃ nanoparticles completely inhibited colony formation. The influence on intracellular the reactive oxygen species (ROS) level was small. Soluble CaCO₃ nanoparticles caused an increase in C/EBP-homologous protein (CHOP) expression and the activation of caspase-3. Moreover, CaCO₃ exposure increased intracellular the Ca²⁺ level and activated calpain. These results suggest that cellular the influences of CaCO₃ nanoparticles are mainly caused by intracellular calcium release and subsequently disrupt the effect of calcium signaling. In conclusion, there is possibility that soluble CaCO₃ nanoparticles induce cellular influences such as a cell morphological change. Cellular influence of CaCO₃ nanoparticles is caused by intracellular calcium release. If inhaled CaCO₃ nanoparticles have the potential to influence cellular events. However, the effect might be not severe because calcium is omnipresent element in cell. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Analysis of Drop Call Probability in Well Established Cellular ...

    African Journals Online (AJOL)

    Technology in Africa has increased over the past decade. The increase in modern cellular networks requires stringent quality of service (QoS). Drop call probability is one of the most important indices of QoS evaluation in a large scale well-established cellular network. In this work we started from an accurate statistical ...

  19. PBMC and MDAMB-231 cellular viability after telecobalt irradiation

    International Nuclear Information System (INIS)

    Andrade, Lidia M.; Campos, Tarcisio P.R.

    2002-01-01

    Radiotherapy by gamma rays are used for cancer treatment. Ionizing radiation effects on cells has been investigated. Studies in vitro were developed using tumor cell lines and ionizing radiation. The aim of this research was to test the cellular viability response of two cell types through MTT assay: human peripheral blood mononuclear cell (PBMC) and human breast carcinoma cell line MDAMB-231. These cells were irradiated with 60 Co source Theratron 80 radiotherapy machine from Atomic Energy Canada Limited with 20 x 20 cm field at 136.4 cGy/min, surface source distance 70 cm. Culture flasks contained 10 4 , 10 5 and 10 6 cells were irradiated with 100 Gy, 25 Gy, and 50 Gy using non fractionated doses. Cellular viability were evaluated 1h, 24h, 48h and 72h after irradiation and samples were measured by optical density at 595nm. Our results show that PBMC cells present lower cellular viability post irradiation. On the other hand, MDAMB-231 cells maintain viability after 50 Gy irradiation at 72h indicating cellular radioresistance. (author)

  20. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  1. Handover management in dense cellular networks: A stochastic geometry approach

    KAUST Repository

    Arshad, Rabe; Elsawy, Hesham; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2016-01-01

    Cellular operators are continuously densifying their networks to cope with the ever-increasing capacity demand. Furthermore, an extreme densification phase for cellular networks is foreseen to fulfill the ambitious fifth generation (5G) performance requirements. Network densification improves spectrum utilization and network capacity by shrinking base stations' (BSs) footprints and reusing the same spectrum more frequently over the spatial domain. However, network densification also increases the handover (HO) rate, which may diminish the capacity gains for mobile users due to HO delays. In highly dense 5G cellular networks, HO delays may neutralize or even negate the gains offered by network densification. In this paper, we present an analytical paradigm, based on stochastic geometry, to quantify the effect of HO delay on the average user rate in cellular networks. To this end, we propose a flexible handover scheme to reduce HO delay in case of highly dense cellular networks. This scheme allows skipping the HO procedure with some BSs along users' trajectories. The performance evaluation and testing of this scheme for only single HO skipping shows considerable gains in many practical scenarios. © 2016 IEEE.

  2. Handover management in dense cellular networks: A stochastic geometry approach

    KAUST Repository

    Arshad, Rabe

    2016-07-26

    Cellular operators are continuously densifying their networks to cope with the ever-increasing capacity demand. Furthermore, an extreme densification phase for cellular networks is foreseen to fulfill the ambitious fifth generation (5G) performance requirements. Network densification improves spectrum utilization and network capacity by shrinking base stations\\' (BSs) footprints and reusing the same spectrum more frequently over the spatial domain. However, network densification also increases the handover (HO) rate, which may diminish the capacity gains for mobile users due to HO delays. In highly dense 5G cellular networks, HO delays may neutralize or even negate the gains offered by network densification. In this paper, we present an analytical paradigm, based on stochastic geometry, to quantify the effect of HO delay on the average user rate in cellular networks. To this end, we propose a flexible handover scheme to reduce HO delay in case of highly dense cellular networks. This scheme allows skipping the HO procedure with some BSs along users\\' trajectories. The performance evaluation and testing of this scheme for only single HO skipping shows considerable gains in many practical scenarios. © 2016 IEEE.

  3. Genomic stability during cellular reprogramming: Mission impossible?

    Energy Technology Data Exchange (ETDEWEB)

    Joest, Mathieu von; Búa Aguín, Sabela; Li, Han, E-mail: han.li@pasteur.fr

    2016-06-15

    The generation of induced pluripotent stem cells (iPSCs) from adult somatic cells is one of the most exciting discoveries in recent biomedical research. It holds tremendous potential in drug discovery and regenerative medicine. However, a series of reports highlighting genomic instability in iPSCs raises concerns about their clinical application. Although the mechanisms cause genomic instability during cellular reprogramming are largely unknown, several potential sources have been suggested. This review summarizes current knowledge on this active research field and discusses the latest efforts to alleviate the genomic insults during cellular reprogramming to generate iPSCs with enhanced quality and safety.

  4. Retroperitoneal Cellular Angiofibroma: A Rare Gynecological Entity

    Directory of Open Access Journals (Sweden)

    Ana Brandão

    2017-12-01

    Full Text Available Cellular angiofibroma is a mesenchymal tumor, described in 1997, without gender preference, that usually appears at age 40. The vulvovaginal area is the most common site in women, mimicking vulvar benign tumors, like Bartholin gland cyst. However, there are a few described cases of a deep or extra-pelvic angiofibroma. Excision is the treatment of choice and the recurrence rate appears to be low. We present the case of a woman with a heterogeneous tumor in the right adnexial region. At the surgery, a retroperitoneal tumor was excised and the histopathological tissue analysis revealed a cellular angiofibroma.

  5. Cellular Response to Ionizing Radiation: A MicroRNA Story

    Science.gov (United States)

    Halimi, Mohammad; Asghari, S. Mohsen; Sariri, Reyhaneh; Moslemi, Dariush; Parsian, Hadi

    2012-01-01

    MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that microRNA-mediated gene regulation interferes with radio-related pathways in ionizing radiation. Here, we review the recent discoveries about miRNAs in cellular response to IR. Thoroughly understanding the mechanism of miRNAs in radiation response, it will be possible to design new strategies for improving radiotherapy efficiency and ultimately cancer treatment. PMID:24551775

  6. Muscle biopsies off-set normal cellular signaling in surrounding musculature

    DEFF Research Database (Denmark)

    Krag, Thomas O; Hauerslev, Simon; Dahlqvist, Julia R

    2013-01-01

    muscle tissue for at least 3 weeks after the biopsy was performed and magnetic resonance imaging suggests that an effect of a biopsy may persist for at least 5 months. Cellular signaling after a biopsy resembles what is seen in severe limb-girdle muscular dystrophy type 2I with respect to protein......Studies of muscle physiology and muscular disorders often require muscle biopsies to answer questions about muscle biology. In this context, we have often wondered if muscle biopsies, especially if performed repeatedly, would affect interpretation of muscle morphology and cellular signaling. We...... hypothesized that muscle morphology and cellular signaling involved in myogenesis/regeneration and protein turnover can be changed by a previous muscle biopsy in close proximity to the area under investigation. Here we report a case where a past biopsy or biopsies affect cellular signaling of the surrounding...

  7. Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy.This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa, cells on soft substrates (150-300 Pa exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins and glycolysis (e.g., phosphofructokinase-1, whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway.The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical

  8. Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

    Science.gov (United States)

    Louis, S.J.; Raines, G.L.

    2003-01-01

    We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.

  9. Manufacturing processes of cellular metals. Part I. Liquid route processes

    International Nuclear Information System (INIS)

    Fernandez, P.; Cruz, L. J.; Coleto, J.

    2008-01-01

    With its interesting and particular characteristics, cellular metals are taking part of the great family of new materials. They can have open or closed porosity. At the present time, the major challenge for the materials researchers is based in the manufacturing techniques improvement in order to obtain reproducible and reliable cellular metals with quality. In the present paper, the different production methods to manufacture cellular metals by liquid route are reviewed; making a short description about the main parameters involved and the advantages and drawbacks in each of them. (Author) 106 refs

  10. Growth Hormone Receptor Antagonist Transgenic Mice Have Increased Subcutaneous Adipose Tissue Mass, Altered Glucose Homeostasis and No Change in White Adipose Tissue Cellular Senescence.

    Science.gov (United States)

    Comisford, Ross; Lubbers, Ellen R; Householder, Lara A; Suer, Ozan; Tchkonia, Tamara; Kirkland, James L; List, Edward O; Kopchick, John J; Berryman, Darlene E

    2016-01-01

    Growth hormone (GH)-resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests that long-lived GH-resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice. The objective of this study was to examine WAT senescence, WAT distribution and glucose homeostasis in dwarf GH receptor antagonist (GHA) transgenic mice, a unique mouse strain having decreased GH action but normal longevity. 18-month-old female GHA mice and wild-type (WT) littermate controls were used. Prior to dissection, body composition, fasting blood glucose as well as glucose and insulin tolerance tests were performed. WAT distribution was determined by weighing four distinct WAT depots at the time of dissection. Cellular senescence in four WAT depots was assessed using senescence-associated β-galactosidase staining to quantify the senescent cell burden, and real-time qPCR to quantify gene expression of senescence markers p16 and IL-6. GHA mice had a 22% reduction in total body weight, a 33% reduction in lean mass and a 10% increase in body fat percentage compared to WT controls. GHA mice had normal fasting blood glucose and improved insulin sensitivity; however, they exhibited impaired glucose tolerance. Moreover, GHA mice displayed enhanced lipid storage in the inguinal subcutaneous WAT depot (p < 0.05) and a 1.7-fold increase in extra-/intraperitoneal WAT ratio compared to controls (p < 0.05). Measurements of WAT cellular senescence showed no difference between GHA mice and WT controls. Similar to other mice with decreased GH action, female GHA mice display reduced age-related lipid redistribution and improved insulin sensitivity, but no change in cellular senescence. The similar abundance of

  11. High-strength cellular ceramic composites with 3D microarchitecture.

    Science.gov (United States)

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-02-18

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m(3); only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina-polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m(3).

  12. Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence.

    Science.gov (United States)

    Li, Dong; Zheng, Wei; Qu, Jianan Y

    2008-10-15

    A time-resolved spectroscopic imaging system is built to study the fluorescence characteristics of nicotinamide adenine dinucleotide (NADH), an important metabolic coenzyme and endogenous fluorophore in cells. The system provides a unique approach to measure fluorescence signals in different cellular organelles and cytoplasm. The ratios of free over protein-bound NADH signals in cytosol and nucleus are slightly higher than those in mitochondria. The mitochondrial fluorescence contributes about 70% of overall cellular fluorescence and is not a completely dominant signal. Furthermore, NADH signals in mitochondria, cytosol, and the nucleus respond to the changes of cellular activity differently, suggesting that cytosolic and nuclear fluorescence may complicate the well-known relationship between mitochondrial fluorescence and cellular metabolism.

  13. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters

    DEFF Research Database (Denmark)

    Sezgin, Erdinc; Betul Can, Fatma; Schneider, Falk

    2016-01-01

    Cholesterol is a crucial component of cellular membranes, but knowledge of its intracellular dynamics is scarce. Thus, it is of utmost interest to develop tools for visualization of cholesterol organization and dynamics in cells and tissues. For this purpose, many studies make use of fluorescently...... for their performance in cellular assays: 1) plasma membrane incorporation, specifically the preference for more ordered membrane environments in phase separated giant unilamellar vesicles (GUVs) and giant plasma membrane vesicles (GPMVs); 2) cellular trafficking, specifically subcellular localization in Niemann-Pick C...... in the intracellular trafficking assay. However, none showed positive performance in all assays. Our results constitute a concise guide for the careful use of fluorescent cholesterol analogs in visualizing cellular cholesterol dynamics....

  14. The splenomegaly of myeloproliferative and lymphoproliferative disorders: splenic cellularity and vascularity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B (Capital Hospital, Peking University Medical College, Beijing (China)); Lewis, S.M. (Department of Haematology, Royal Postgraduate Medical School, London (UK))

    1989-01-01

    Employing radionuclide scanning, the volume of the spleen, its red cell pool and plasma pool have been measured in vivo, and the relative proportions of cellularity and vascularity of the spleen have been calcualted in 51 patients with myeloproliferactive and lymphoproliferative disorders. In primary proliferative polycythaemia (polycythaemia vera), the increase of spleen size was attributed mainly to the increase of splenic vascularity; in myelofibrosis and in hairy cell leukaemia, the increase of spleen size was associated with increase in both splenic vascularity and cellularity, whilst in size was associated with increase in both splenic vascularity and cellularity, whilst in CGL and CLL the increase was attributed more to cellularity than to vascularity. (author).

  15. Respiratory syncytial virus increases lung cellular bioenergetics in neonatal C57BL/6 mice

    International Nuclear Information System (INIS)

    Alsuwaidi, Ahmed R.; Albawardi, Alia; Almarzooqi, Saeeda; Benedict, Sheela; Othman, Aws R.; Hartwig, Stacey M.; Varga, Steven M.; Souid, Abdul-Kader

    2014-01-01

    We have previously reported that lung cellular bioenergetics (cellular respiration and ATP) increased in 4–10 week-old BALB/c mice infected with respiratory syncytial virus (RSV). This study examined the kinetics and changes in cellular bioenergetics in ≤2-week-old C57BL/6 mice following RSV infection. Mice (5–14 days old) were inoculated intranasally with RSV and the lungs were examined on days 1–10 post-infection. Histopathology and electron microscopy revealed preserved pneumocyte architectures and organelles. Increased lung cellular bioenergetics was noted from days 1–10 post-infection. Cellular GSH remained unchanged. These results indicate that the increased lung cellular respiration (measured by mitochondrial O 2 consumption) and ATP following RSV infection is independent of either age or genetic background of the host. - Highlights: • RSV infection increases lung cellular respiration and ATP in neonatal C57BL/6 mice. • Increased lung cellular bioenergetics is a biomarker of RSV infection. • Lung cellular glutathione remains unchanged in RSV infection

  16. Respiratory syncytial virus increases lung cellular bioenergetics in neonatal C57BL/6 mice

    Energy Technology Data Exchange (ETDEWEB)

    Alsuwaidi, Ahmed R., E-mail: alsuwaidia@uaeu.ac.ae [Departments of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates); Albawardi, Alia, E-mail: alia.albawardi@uaeu.ac.ae [Departments of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates); Almarzooqi, Saeeda, E-mail: saeeda.almarzooqi@uaeu.ac.ae [Departments of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates); Benedict, Sheela, E-mail: sheela.benedict@uaeu.ac.ae [Departments of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates); Othman, Aws R., E-mail: aws.rashad@uaeu.ac.ae [Departments of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates); Hartwig, Stacey M., E-mail: stacey-hartwig@uiowa.edu [Department of Microbiology, Department of Pathology and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242 (United States); Varga, Steven M., E-mail: steven-varga@uiowa.edu [Department of Microbiology, Department of Pathology and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242 (United States); Souid, Abdul-Kader, E-mail: asouid@uaeu.ac.ae [Departments of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain (United Arab Emirates)

    2014-04-15

    We have previously reported that lung cellular bioenergetics (cellular respiration and ATP) increased in 4–10 week-old BALB/c mice infected with respiratory syncytial virus (RSV). This study examined the kinetics and changes in cellular bioenergetics in ≤2-week-old C57BL/6 mice following RSV infection. Mice (5–14 days old) were inoculated intranasally with RSV and the lungs were examined on days 1–10 post-infection. Histopathology and electron microscopy revealed preserved pneumocyte architectures and organelles. Increased lung cellular bioenergetics was noted from days 1–10 post-infection. Cellular GSH remained unchanged. These results indicate that the increased lung cellular respiration (measured by mitochondrial O{sub 2} consumption) and ATP following RSV infection is independent of either age or genetic background of the host. - Highlights: • RSV infection increases lung cellular respiration and ATP in neonatal C57BL/6 mice. • Increased lung cellular bioenergetics is a biomarker of RSV infection. • Lung cellular glutathione remains unchanged in RSV infection.

  17. A chimera embryo assay reveals a decrease in embryonic cellular proliferation induced by sperm from X-irradiated male mice

    International Nuclear Information System (INIS)

    Obasaju, M.F.; Wiley, L.M.; Oudiz, D.J.; Raabe, O.; Overstreet, J.W.

    1989-01-01

    Male mice were divided into three experimental groups and a control group. Mice in the experimental groups received one of three doses of acute X irradiation (1.73, 0.29, and 0.05 Gy) and together with the control unirradiated mice were then mated weekly to unirradiated female mice for a 9-week experimental period. Embryos were recovered from the weekly matings at the four-cell stage and examined by the chimera assay for proliferative disadvantage. Aggregation chimeras were constructed of embryos from female mice mated to irradiated males (experimental embryos) and embryos from females mated to unexposed males (control embryos) and contained either one experimental embryo and one control embryo (heterologous chimera) or two control embryos (control chimera). The control embryo in heterologous chimeras and either embryo in control chimeras were prelabeled with the vital dye fluorescein isothiocyanate (FITC), and the chimeras were cultured for 40 h and viewed under phase-contrast and epifluorescence microscopy to obtain total embryo cell number and the cellular contribution from the FITC-labeled embryo. Experimental and control embryos that were cultured singly were also examined for embryo cell number at the end of the 40-h culture period. In control chimeras, the mean ratio of the unlabeled cells:total chimera cell number (henceforth referred to as ''mean ratio'') was 0.50 with little or no weekly variation over the 9-week experimental period. During Weeks 4-7, the mean ratios of heterologous chimeras differed significantly from the mean ratio of control chimeras with the greatest differences occurring during Week 7 (0.41 for chimeras of 0.05 Gy dose group, 0.40 for chimeras of the 0.29 Gy dose group, and 0.17 for chimeras of the 1.73 Gy dose group)

  18. Involvement of Sib Proteins in the Regulation of Cellular Adhesion in Dictyostelium discoideum▿ †

    OpenAIRE

    Cornillon, Sophie; Froquet, Romain; Cosson, Pierre

    2008-01-01

    Molecular mechanisms ensuring cellular adhesion have been studied in detail in Dictyostelium amoebae, but little is known about the regulation of cellular adhesion in these cells. Here, we show that cellular adhesion is regulated in Dictyostelium, notably by the concentration of a cellular secreted factor accumulating in the medium. This constitutes a quorum-sensing mechanism allowing coordinated regulation of cellular adhesion in a Dictyostelium population. In order to understand the mechani...

  19. Dynamic cellular manufacturing system design considering ...

    Indian Academy of Sciences (India)

    Kamal Deep

    cellular manufacturing system in a company is division of ... designed to be assembled from a small number of stan- ..... contingency part process route in addition to the alternate .... istic industrial manufacturing vision considering multiple.

  20. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    International Nuclear Information System (INIS)

    Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun

    2011-01-01

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25–200 μg/mL) and incubation time (0–72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).