WorldWideScience

Sample records for cellular automata-based mathematical

  1. Mosquito population dynamics from cellular automata-based simulation

    Science.gov (United States)

    Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning

    2016-02-01

    In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.

  2. Exploring Quantum Dot Cellular Automata Based Reversible Circuit

    Directory of Open Access Journals (Sweden)

    Saroj Kumar Chandra

    2012-03-01

    Full Text Available Quantum-dot Cellular Automata (QCA is a new technology for development of logic circuits based on nanotechnology, and it is an one of the alternative for designing high performance computing over existing CMOS technology. The basic logic in QCA does not use voltage level for logic representation rather it represent binary state by polarization of electrons on the Quantum Cell which is basic building block of QCA. Extensive work is going on QCA for circuit design due to low power consumption and regularity in the circuit.. Clocking is used in QCA circuit to synchronize and control the information flow and to provide the power to run the circuit. Reversible logic design is a well-known paradigm in digital computation, and if circuit developed is reversible then it consumes very low power. Here, in this paper we are presenting a Reversible Universal Gate (RUG based on Quantum-dot Cellular Automata (QCA. The RUG implemented by QCA Designer tool and also its behavior is simulated by it.

  3. Exploring Quantum Dot Cellular Automata Based Reversible Circuit

    Directory of Open Access Journals (Sweden)

    Saroj Kumar Chandra

    2012-03-01

    Full Text Available Quantum-dot Cellular Automata (QCA is a new technology for development of logic circuits based on nanotechnology, and it is an one of the alternative for designing high performance computing over existing CMOS technology. The basic logic in QCA does not use voltage level for logic representation rather it represent binary state by polarization of electrons on the Quantum Cell which is basic building block of QCA. Extensive work is going on QCA for circuit design due to low power consumption and regularity in the circuit.. Clocking is used in QCA circuit to synchronize and control the information flow and to provide the power to run the circuit. Reversible logic design is a well-known paradigm in digital computation, and if circuit developed is reversible then it consumes very low power . Here, in this paper we are presenting a Reversible Universal Gate (RUG based on Quantum-dot Cellular Automata (QCA. The RUG implemented by QCA Designer tool and also its behavior is simulated by it.

  4. The FPGA realization of the general cellular automata based cryptographic hash functions: Performance and effectiveness

    Directory of Open Access Journals (Sweden)

    P. G. Klyucharev

    2014-01-01

    Full Text Available In the paper the author considers hardware implementation of the GRACE-H family general cellular automata based cryptographic hash functions. VHDL is used as a language and Altera FPGA as a platform for hardware implementation. Performance and effectiveness of the FPGA implementations of GRACE-H hash functions were compared with Keccak (SHA-3, SHA-256, BLAKE, Groestl, JH, Skein hash functions. According to the performed tests, performance of the hardware implementation of GRACE-H family hash functions significantly (up to 12 times exceeded performance of the hardware implementation of previously known hash functions, and effectiveness of that hardware implementation was also better (up to 4 times.

  5. CCABC: Cyclic Cellular Automata Based Clustering For Energy Conservation in Sensor Networks

    CERN Document Server

    Banerjee, Indrajit; Rahaman, Hafizur

    2011-01-01

    Sensor network has been recognized as the most significant technology for next century. Despites of its potential application, wireless sensor network encounters resource restriction such as low power, reduced bandwidth and specially limited power sources. This work proposes an efficient technique for the conservation of energy in a wireless sensor network (WSN) by forming an effective cluster of the network nodes distributed over a wide range of geographical area. The clustering scheme is developed around a specified class of cellular automata (CA) referred to as the modified cyclic cellular automata (mCCA). It sets a number of nodes in stand-by mode at an instance of time without compromising the area of network coverage and thereby conserves the battery power. The proposed scheme also determines an effective cluster size where the inter-cluster and intra-cluster communication cost is minimum. The simulation results establish that the cyclic cellular automata based clustering for energy conservation in sens...

  6. A cellular automata-based model of Earth's magnetosphere in relation with Dst index

    Science.gov (United States)

    Banerjee, Adrija; Bej, Amaresh; Chatterjee, T. N.

    2015-05-01

    The disturbance storm time (Dst) index, a measure of the strength of a geomagnetic storm, is difficult to predict by some conventional methods due to its abstract structural complexity and stochastic nature though a timely geomagnetic storm warning could save society from huge economic losses and hours of related hazards. Self-organized criticality and the concept of many-body interactive nonlinear system can be considered an explanation for the fundamental mechanism of the nonstationary geomagnetic disturbances controlled by the perturbed interplanetary conditions. The present paper approaches this natural phenomena by a sandpile-like cellular automata-based model of magnetosphere, taking the real-time solar wind and both the direction and magnitude of the BZ component of the real-time interplanetary magnetic field as the system-controlling input parameters. Moreover, three new parameters had been introduced in the model which modify the functional relationships between the variables and regulate the dynamical behavior of the model to closely approximate the actual geomagnetic fluctuations. The statistical similarities between the dynamics of the model and that of the actual Dst index series during the entire 22nd solar cycle signifies the acceptability of the model.

  7. Simple Cellular Automata-Based Linear Models for the Shrinking Generator

    CERN Document Server

    Fúster-Sabater, Amparo

    2010-01-01

    Structural properties of two well-known families of keystream generators, Shrinking Generators and Cellular Automata, have been analyzed. Emphasis is on the equivalence of the binary sequences obtained from both kinds of generators. In fact, Shrinking Generators (SG) can be identified with a subset of linear Cellular Automata (mainly rule 90, rule 150 or a hybrid combination of both rules). The linearity of these cellular models can be advantageously used in the cryptanalysis of those keystream generators.

  8. Parallel Cellular Automata-based simulation of laser dynamics using dynamic load balancing

    NARCIS (Netherlands)

    Guisado, J.L.; Fernández de Vega, F.; Jiménez Morales, F.; Iskra, K.A.; Sloot, P.M.A.; Garnica, Ó.

    2008-01-01

    In order to analyze the feasibility of executing a parallel bioinspired model of laser dynamics on a heterogeneous non-dedicated cluster, we evaluate its performance including artificial load to simulate other tasks or jobs submitted by other users. As the model is based on a synchronous cellular au

  9. A Compact Self-organizing Cellular Automata-based Genetic Algorithm

    CERN Document Server

    Barmpoutis, Vasileios

    2007-01-01

    A Genetic Algorithm (GA) is proposed in which each member of the population can change schemata only with its neighbors according to a rule. The rule methodology and the neighborhood structure employ elements from the Cellular Automata (CA) strategies. Each member of the GA population is assigned to a cell and crossover takes place only between adjacent cells, according to the predefined rule. Although combinations of CA and GA approaches have appeared previously, here we rely on the inherent self-organizing features of CA, rather than on parallelism. This conceptual shift directs us toward the evolution of compact populations containing only a handful of members. We find that the resulting algorithm can search the design space more efficiently than traditional GA strategies due to its ability to exploit mutations within this compact self-organizing population. Consequently, premature convergence is avoided and the final results often are more accurate. In order to reinforce the superior mutation capability, ...

  10. Cellular automata-based artificial life system of horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Ji-xin Liu

    2016-02-01

    Full Text Available Mutation and natural selection is the core of Darwin's idea about evolution. Many algorithms and models are based on this idea. However, in the evolution of prokaryotes, more and more researches have indicated that horizontal gene transfer (HGT would be much more important and universal than the authors had imagined. Owing to this mechanism, the prokaryotes not only become adaptable in nearly any environment on Earth, but also form a global genetic bank and a super communication network with all the genes of the prokaryotic world. Under this background, they present a novel cellular automata model general gene transfer to simulate and study the vertical gene transfer and HGT in the prokaryotes. At the same time, they use Schrodinger's life theory to formulate some evaluation indices and to discuss the intelligence and cognition of prokaryotes which is derived from HGT.

  11. A cellular automata based FPGA realization of a new metaheuristic bat-inspired algorithm

    Science.gov (United States)

    Progias, Pavlos; Amanatiadis, Angelos A.; Spataro, William; Trunfio, Giuseppe A.; Sirakoulis, Georgios Ch.

    2016-10-01

    Optimization algorithms are often inspired by processes occuring in nature, such as animal behavioral patterns. The main concern with implementing such algorithms in software is the large amounts of processing power they require. In contrast to software code, that can only perform calculations in a serial manner, an implementation in hardware, exploiting the inherent parallelism of single-purpose processors, can prove to be much more efficient both in speed and energy consumption. Furthermore, the use of Cellular Automata (CA) in such an implementation would be efficient both as a model for natural processes, as well as a computational paradigm implemented well on hardware. In this paper, we propose a VHDL implementation of a metaheuristic algorithm inspired by the echolocation behavior of bats. More specifically, the CA model is inspired by the metaheuristic algorithm proposed earlier in the literature, which could be considered at least as efficient than other existing optimization algorithms. The function of the FPGA implementation of our algorithm is explained in full detail and results of our simulations are also demonstrated.

  12. Quantum-dot cellular automata based reversible low power parity generator and parity checker design for nanocommunication

    Institute of Scientific and Technical Information of China (English)

    Jadav Chandra DAS; Debashis DE

    2016-01-01

    Quantum-dot cellular automata (QCA) is an emerging area of research in reversible computing. It can be used to design nanoscale circuits. In nanocommunication, the detection and correction of errors in a received message is a major factor. Besides, device density and power dissipation are the key issues in the nanocommunication architecture. For the first time, QCA-based designs of the reversible low-power odd parity generator and odd parity checker using the Feynman gate have been achieved in this study. Using the proposed parity generator and parity checker circuit, a nanocommunication architecture is pro-posed. The detection of errors in the received message during transmission is also explored. The proposed QCA Feynman gate outshines the existing ones in terms of area, cell count, and delay. The quantum costs of the proposed conventional reversible circuits and their QCA layouts are calculated and compared, which establishes that the proposed QCA circuits have very low quantum cost compared to conventional designs. The energy dissipation by the layouts is estimated, which ensures the possibility of QCA nano-device serving as an alternative platform for the implementation of reversible circuits. The stability of the proposed circuits under thermal randomness is analyzed, showing the operational efficiency of the circuits. The simulation results of the proposed design are tested with theoretical values, showing the accuracy of the circuits. The proposed circuits can be used to design more complex low-power nanoscale lossless nanocommunication architecture such as nano-transmitters and nano-receivers.

  13. Cellular Automata-based Chloride Ion Diffusion Simulation of Concrete Bridges under Multi-factor Coupling Actions

    Institute of Scientific and Technical Information of China (English)

    ZHU Jinsong; HE Likun

    2012-01-01

    Abstract In order to accurately simulate the diffusion of chloride ion in the existing concrete bridge and acquire the precise chloride ion concentration at given time,a cellular automata (CA)-based model is proposed.The process of chloride ion diffusion is analyzed by the CA-based method and a nonlinear solution of the Fick's second law is obtained.Considering the impact of various factors such as stress states,temporal and spatial variability of diffusion parameters and water-cement ratio on the process of chloride ion diffusion,the model of chloride ion diffusion under multi-factor coupling actions is presented.A chloride ion penetrating experiment reported in the literature is used to prove the effectiveness and reasonability of the present method,and a T-type beam is taken as an illustrative example to analyze the process of chloride ion diffusion in practical application.The results indicate that CA-based method can simulate the diffusion of chloride ion in the concrete structures with acceptable precision.

  14. A STUDY ON CELLULAR AUTOMATA BASED ON RELATIONAL DATABASES AND SPATIO-TEMPORAL SIMULATIONS OF CULTURE DIFFUSION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a development of the extended Cellular Automata (CA), based on relational databases(RDB), to model dynamic interactions among spatial objects. The integration of Geographical Information System (GIS)and CA has the great advantage of simulating geographical processes. But standard CA has some restrictions in cellularshape and neighbourhood and neighbour rules, which restrict the CA's ability to simulate complex, real world environ-ments. This paper discusses a cell's spatial relation based on the spatial object's geometrical and non-geometrical characteris-tics, and extends the cell' s neighbour definition, and considers that the cell' s neighbour lies in the forms of not only spa-tial adjacency but also attribute correlation. This paper then puts forward that spatial relations between two different cellscan be divided into three types, including spatial adjacency, neighbourhood and complicated separation. Based on tradition-al ideas, it is impossible to settle CA's restrictions completely. RDB-based CA is an academic experiment, in whichsome fields are designed to describe the essential information needed to define and select a cell's neighbour. The cultureinnovation diffusion system has multiple forms of space diffusion and inherited characteristics that the RDB-based CA iscapable of simulating more effectively. Finally this paper details a successful case study on the diffusion of fashion weartrends. Compared to the original CA, the RDB-based CA is a more natural and efficient representation of human knowl-edge over space, and is an effective tool in simulating complex systems that have multiple forms of spatial diffusion.

  15. Mathematical Modeling of Cellular Metabolism.

    Science.gov (United States)

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    2016-01-01

    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.

  16. Cellular automata-based tunnel fire simulation%基于元胞自动机的井巷火灾仿真

    Institute of Scientific and Technical Information of China (English)

    李翠平; 胡磊; 侯定勇; 张佳

    2013-01-01

    提出了一种基于元胞自动机的井巷火灾可视化仿真方法。在矿井巷道可视化的基础上,通过对火灾元胞进行表征,综合考虑可燃物类型与投放密度、井巷通风、井巷坡度等因素对井巷火源引燃效果的影响及双扩散作用、井巷通风、浮力作用和节流作用等因素对火灾烟气蔓延效果的影响,采用概率函数进行元胞自动机建模,构建了表达元胞温度的井巷火源燃烧模型和表达元胞浓度的井巷火灾烟气蔓延模型。基于火源元胞燃烧演化规则和烟气元胞蔓延演化规则,通过可视化手段展示了井巷火灾火源燃烧和有害气体浓度的时空发展变化。同时以矿山实际数据进行检验,说明了基于元胞自动机的井巷火灾仿真的可行性与有效性。%This article introduces a mine fire visualization simulation method based on cellular automata. On the basis of mine tunnel visualization, a tunnel fire combustion model for expressing cellular temperature and a tunnel fire smoke spread model for expressing cellular concentration were built by fire cell characterization. In these models the influence of fuel type and input density, ventilation and roadway slope on mine fire ignition and the effect of double diffusion, ventilation, buoyancy and throttling on fire smoke spread were taken into account, and a probability function was used for cellular automata modelling. Then according to the fire cellular combustion evolution rules and smoke cellular spreading evolution rules, the spatial changes of tunnel fire burning and harmful gas concentration were demonstrated through visualization means. Actual data from a mine proves the feasibility and effectiveness of tunnel fire simulation based on cellular automata.

  17. 基于GPU的元胞自动机熔岩流动模拟%Lava flow simulation in cellular automata based on GPU

    Institute of Scientific and Technical Information of China (English)

    高超; 孟宪海; 李吉刚; 杨钦

    2015-01-01

    为解决基于元胞自动机进行熔岩流动模拟的计算效率问题,提出一种应用在元胞自动机上的GPU并行计算方法。将元胞自动机中每一个方形网格映射到GPU的一个逻辑计算单元上,通过并行计算,提高模拟的效率,解决传统串行计算方法的不足,使模拟达到实时性。模拟结果表明,在元胞自动机的物理模型理论基础上,用GPU并行计算进行加速,在模拟效果和时间效率上均取得了良好的效果。%To solve the computing efficiency problem of lava flow simulation based on cellular automata ,a GPU parallel compu‐ting method applied to cellular automata was proposed .Each square mesh in cellular automata was mapped to each core in the GPU .Through GPU parallel computing ,the efficiency of real‐time simulation was improved ,which solved the deficiency of tra‐ditional serial computing .The result demonstrates that lava flow simulation in cellular automata ,with the combination of the GPU parallel computing ,can achieve a high computing efficiency and a better simulation performance .

  18. Mathematical analysis of complex cellular activity

    CERN Document Server

    Bertram, Richard; Teka, Wondimu; Vo, Theodore; Wechselberger, Martin; Kirk, Vivien; Sneyd, James

    2015-01-01

    This book contains two review articles on mathematical physiology that deal with closely related topics but were written and can be read independently. The first article reviews the basic theory of calcium oscillations (common to almost all cell types), including spatio-temporal behaviors such as waves. The second article uses, and expands on, much of this basic theory to show how the interaction of cytosolic calcium oscillators with membrane ion channels can result in highly complex patterns of electrical spiking. Through these examples one can see clearly how multiple oscillatory processes interact within a cell, and how mathematical methods can be used to understand such interactions better. The two reviews provide excellent examples of how mathematics and physiology can learn from each other, and work jointly towards a better understanding of complex cellular processes. Review 1: Richard Bertram, Joel Tabak, Wondimu Teka, Theodore Vo, Martin Wechselberger: Geometric Singular Perturbation Analysis of Burst...

  19. VERIFICATION OF PARALLEL AUTOMATA-BASED PROGRAMS

    Directory of Open Access Journals (Sweden)

    M. A. Lukin

    2014-01-01

    Full Text Available The paper deals with an interactive method of automatic verification for parallel automata-based programs. The hierarchical state machines can be implemented in different threads and can interact with each other. Verification is done by means of Spin tool and includes automatic Promela model construction, conversion of LTL-formula to Spin format and counterexamples in terms of automata. Interactive verification gives the possibility to decrease verification time and increase the maximum size of verifiable programs. Considered method supports verification of the parallel system for hierarchical automata that interact with each other through messages and shared variables. The feature of automaton model is that each state machine is considered as a new data type and can have an arbitrary bounded number of instances. Each state machine in the system can run a different state machine in a new thread or have nested state machine. This method was implemented in the developed Stater tool. Stater shows correct operation for all test cases.

  20. Cellular Automata Based Traffic Flow Simulation and Actuated Signal Control Strategy%基于CA方法的交通流数值模拟及信号灯感应控制策略研究

    Institute of Scientific and Technical Information of China (English)

    陈晨; 陈建桥

    2011-01-01

    According to the theory of cellular automata ( CA), the urban traffic flows at 4 intersections were investigated and a set of discrete equations were proposed to describe the traffic dynamics. The effect of two signal control strategies, i.e., synchronous timing control and actuated control, on traffic flow were discussed. Simulation results show that ( 1 ) the effect of signal control strategies is related to the density of traffic flow; (2) and there exists a certain range of actuated control parameters in which the efficiency of traffic flow can be optimized. Therefore, in order to ensure the efficiency of traffic flow, one the proper signal control strategy should be chosen for different global densities of traffic flow.%采用细胞自动机方法(Cellular Automata:CA)模拟含4个路口的城市道路交通流状态,并通过离散方程描述车辆的运动过程.研究了信号灯控制策略(同步定时控制及感应控制)对交通流状态的影响.数值模拟结果表明,信号灯对交通流的影响与道路中车辆密度有关,同时,感应控制参数的选取存在一合理的取值范围,可优化交通流通行效率.因此,为保证交通流的通行效率,应针对不同的车辆密度,选取适当的信号灯控制方式.

  1. Simulation of Quantum Cellular Automatas Based on Quantum Genetic Algorithm%基于量子遗传算法的量子细胞自动机仿真方法

    Institute of Scientific and Technical Information of China (English)

    赵晓辉; 蔡理; 张鹏

    2011-01-01

    利用遗传算法对基于半经典模型的量子细胞自动机进行仿真时,通常会遇到多个极值,容易陷入局部最优.为将量子遗传算法用于量子细胞自动机仿真,对量子遗传算法进行改进,将二进制量子位改为多进制量子位,重新设计了量子旋转门的调整策略,并给出了具体实现步骤.通过对测试函数寻优和量子细胞自动机电路的仿真,结果表明,改进后的量子遗传算法平均误差低,不易陷入局部极值,收敛速度较快,适用于量子细胞自动机仿真.%Using genetic algorithm (GA), there are usually many extremes in the simulation of quantum cellular automatas (QCA) based on the semi-classical model and therefore it is apt to falling into local optimization. An improved quantum genetic algorithm (QGA) to displace original binary quantum bits with multistate quantum bits was proposed to use in the QCA simulation. The adjustment strategy of the quantum revolving gate was redesigned and the concrete steps to apply the improved method into the QCA simulation were also given. Through the test function optimization and QCA circuit simulation, the results show that the improved quantum genetic algorithm has many advantages, including a lower average error and a faster convergence speed, and is easy to get out local extremum. Thus the improved algorithm with more excellent performances is very suitable for the QCA simulation.

  2. 二阶可逆耦合触发细胞自动机的加密技术研究%Two-order Reversible Couple Toggle Cellular Automata Based Image Encryption Algorithm

    Institute of Scientific and Technical Information of China (English)

    彭川

    2012-01-01

    为了有效改进细胞自动机加密系统的实现复杂度和加解密效率,提出了一种二阶可逆耦合触发细胞自动机的图像加密方法.通过对简单的可逆细胞自动机进行扩展,构造二阶可逆细胞自动机,并以耦合触发规则对明文图像实行分块加密.二阶可逆细胞自动机的转移状态由其当前状态以及前一状态决定,有效增大了邻域范围,并且因为采用耦合触发规则,因此能明显增大加密系统的密钥空间,保证了系统的计算安全性.与一般触发自动机反向迭代的串行加密方式相比,该方法对于每个细胞的加密具有本质并行性,因此具有极高的加解密效率.通过实验验证其性能,结果表明与其它算法相比,该算法具有较大的密钥空间,能够有效抵抗蛮力攻击和差分分析攻击,且较小的邻域半径即可得到良好的加密效果,因此非常便于硬件实现.%To effectively improve the implement complexity and execution efficiency, an algorithm for image encryption is proposed which is based on two-order reversible couple toggle cellular automata (CA). By ways that extending the structure of simple reversible CA (RCA) and adopting couple toggle rules, the algorithm ciphers image which is divided into blocks previously. The CA's state is determined by previous state and next state, so it has larger key space and this can make system safe enough. Compared with general toggle CA (TCA) methods, the algorithm has much better efficiency because each cell is updated parallel Experiments and analysis indicate that this method has an enough large key space, high cipher and decipher speed and good scrambling effect. And the cryptosystem can resist brute attack and differential attack effectively.

  3. Students’ Perceptions of Learning Mathematics With Cellular Phones and Applets

    Directory of Open Access Journals (Sweden)

    Wajeeh M. Daher

    2009-03-01

    Full Text Available This paper describes the perceptions of middle school students regarding learning mathematics with cellular phones and web applets, their perceptions regarding the differences between these two electronic devices and their preferences regarding using the devices in learning mathematics. To analyze these perceptions I used the grounded theory approach which involves: open coding, axial coding, and selective coding, where the unit of analysis was the sentence in each of the interviews. The research findings imply that the participants perceived different aspects of both of the electronic devices: the availability of the device, the collaboration aspect, the communication aspect, the size of the device, and the swiftness of working with the device. These aspects influenced the participants’ decisions when, where and how to use each of the devices for the learning of mathematics. More participants preferred the cellular phone over the applet primarily for its small size which makes easy its portability as well as for its communication facilities.

  4. Multiscale mathematical modeling and simulation of cellular dynamical process.

    Science.gov (United States)

    Nakaoka, Shinji

    2014-01-01

    Epidermal homeostasis is maintained by dynamic interactions among molecules and cells at different spatiotemporal scales. Mathematical modeling and simulation is expected to provide clear understanding and precise description of multiscaleness in tissue homeostasis under systems perspective. We introduce a stochastic process-based description of multiscale dynamics. Agent-based modeling as a framework of multiscale modeling to achieve consistent integration of definitive subsystems is proposed. A newly developed algorithm that particularly aims to perform stochastic simulations of cellular dynamical process is introduced. Finally we review applications of multiscale modeling and quantitative study to important aspects of epidermal and epithelial homeostasis.

  5. Characteristics of Middle School Students Learning Actions in Outdoor Mathematical Activities with the Cellular Phone

    Science.gov (United States)

    Daher, Wajeeh; Baya'a, Nimer

    2012-01-01

    Learning in the cellular phone environment enables utilizing the multiple functions of the cellular phone, such as mobility, availability, interactivity, verbal and voice communication, taking pictures or recording audio and video, measuring time and transferring information. These functions together with mathematics-designated cellular phone…

  6. A mathematical model representing cellular immune development and response to Salmonella of chicken intestinal tissue

    NARCIS (Netherlands)

    Schokker, D.; Bannink, A.; Smits, M.A.; Rebel, J.M.J.

    2013-01-01

    The aim of this study was to create a dynamic mathematical model of the development of the cellular branch of the intestinal immune system of poultry during the first 42 days of life and of its response towards an oral infection with Salmonella enterica serovar Enteritidis. The system elements were

  7. Cellular Automata-Based Application for Driver Assistance in Indoor Parking Areas

    Directory of Open Access Journals (Sweden)

    Cándido Caballero-Gil

    2016-11-01

    Full Text Available This work proposes an adaptive recommendation mechanism for smart parking that takes advantage of the popularity of smartphones and the rise of the Internet of Things. The proposal includes a centralized system to forecast available indoor parking spaces, and a low-cost mobile application to obtain data of actual and predicted parking occupancy. The described scheme uses data from both sources bidirectionally so that the centralized forecast system is fed with data obtained with the distributed system based on smartphones, and vice versa. The mobile application uses different wireless technologies to provide the forecast system with actual parking data and receive from the system useful recommendations about where to park. Thus, the proposal can be used by any driver to easily find available parking spaces in indoor facilities. The client software developed for smartphones is a lightweight Android application that supplies precise indoor positioning systems based on Quick Response codes or Near Field Communication tags, and semi-precise indoor positioning systems based on Bluetooth Low Energy beacons. The performance of the proposed approach has been evaluated by conducting computer simulations and real experimentation with a preliminary implementation. The results have shown the strengths of the proposal in the reduction of the time and energy costs to find available parking spaces.

  8. The Design of ADAT: A Tool for Assessing Automata-Based Assignments

    Directory of Open Access Journals (Sweden)

    Zarina Shukur

    2008-01-01

    Full Text Available This study describes the design of an automatic assessment system for assessing an automata-based assignment. Automata concept is taught in several undergraduate computing courses such as Theory of Computation, Automata and Formal Languages and Compilers. We take two elements into consideration when assessing the student's answers; static element and dynamic element. The static element involves the number of states (initial and final as well and the number of transitions. Whilst the dynamic aspect involves executing the automata against several test data. In this work, we rely heavily on the JFLAP for drawing and executing the automata.

  9. Tree automata-based refinement with application to Horn clause verification

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick

    2015-01-01

    underlying the Horn clauses. Experiments using linear constraint problems and the abstract domain of convex polyhedra show that the refinement technique is practical and that iteration of abstract interpretation with tree automata-based refinement solves many challenging Horn clause verification problems. We......In this paper we apply tree-automata techniques to refinement of abstract interpretation in Horn clause verification. We go beyond previous work on refining trace abstractions; firstly we handle tree automata rather than string automata and thereby can capture traces in any Horn clause derivations...... rather than just transition systems; secondly, we show how algorithms manipulating tree automata interact with abstract interpretations, establishing progress in refinement and generating refined clauses that eliminate causes of imprecision. We show how to derive a refined set of Horn clauses in which...

  10. Horn clause verification with convex polyhedral abstraction and tree automata-based refinement

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick

    2017-01-01

    underlying the Horn clauses. Experiments using linear constraint problems and the abstract domain of convex polyhedra show that the refinement technique is practical and that iteration of abstract interpretation with tree automata-based refinement solves many challenging Horn clause verification problems. We......In this paper we apply tree-automata techniques to refinement of abstract interpretation in Horn clause verification. We go beyond previous work on refining trace abstractions; firstly we handle tree automata rather than string automata and thereby can capture traces in any Horn clause derivations...... rather than just transition systems; secondly, we show how algorithms manipulating tree automata interact with abstract interpretations, establishing progress in refinement and generating refined clauses that eliminate causes of imprecision. We show how to derive a refined set of Horn clauses in which...

  11. REDUNDANT ELECTRIC MOTOR DRIVE CONTROL UNIT DESIGN USING AUTOMATA-BASED APPROACH

    Directory of Open Access Journals (Sweden)

    Yuri Yu. Yankin

    2014-11-01

    Full Text Available Implementation of redundant unit for motor drive control based on programmable logic devices is discussed. Continuous redundancy method is used. As compared to segregated standby redundancy and whole system standby redundancy, such method provides preservation of all unit functions in case of redundancy and gives the possibility for continuous monitoring of major and redundant elements. Example of that unit is given. Electric motor drive control channel block diagram contains two control units – the major and redundant; it also contains four power supply units. Control units programming was carried out using automata-based approach. Electric motor drive control channel model was developed; it provides complex simulation of control state-machine and power converter. Through visibility and hierarchy of finite state machines debug time was shortened as compared to traditional programming. Control state-machine description using hardware description language is required for its synthesis with FPGA-devices vendor design software. This description was generated automatically by MATLAB software package. To verify results two prototype control units, two prototype power supply units, and device mock-up were developed and manufactured. Units were installed in the device mock-up. Prototype units were created in accordance with requirements claimed to deliverable hardware. Control channel simulation and tests results in the perfect state and during imitation of major element fault are presented. Automata-based approach made it possible to observe and debug control state-machine transitions during simulation of transient processes, occurring at imitation of faults. Results of this work can be used in development of fault tolerant electric motor drive control channels.

  12. How students learn to coordinate knowledge of physical and mathematical models in cellular physiology

    Science.gov (United States)

    Lira, Matthew

    This dissertation explores the Knowledge in Pieces (KiP) theory to account for how students learn to coordinate knowledge of mathematical and physical models in biology education. The KiP approach characterizes student knowledge as a fragmented collection of knowledge elements as opposed to stable and theory-like knowledge. This dissertation sought to use this theoretical lens to account for how students understand and learn with mathematical models and representations, such as equations. Cellular physiology provides a quantified discipline that leverages concepts from mathematics, physics, and chemistry to understand cellular functioning. Therefore, this discipline provides an exemplary context for assessing how biology students think and learn with mathematical models. In particular, the resting membrane potential provides an exemplary concept well defined by models of dynamic equilibrium borrowed from physics and chemistry. In brief, membrane potentials, or voltages, "rest" when the electrical and chemical driving forces for permeable ionic species are equal in magnitude but opposite in direction. To assess students' understandings of this concept, this dissertation employed three studies: the first study employed the cognitive clinical interview to assess student thinking in the absence and presence of equations. The second study employed an intervention to assess student learning and the affordances of an innovative assessment. The third student employed a human-computer-interaction paradigm to assess how students learn with a novel multi-representational technology. Study 1 revealed that students saw only one influence--the chemical gradient--and that students coordinated knowledge of only this gradient with the related equations. Study 2 revealed that students benefited from learning with the multi-representational technology and that the assessment detected performance gains across both calculation and explanation tasks. Last, Study 3 revealed how students

  13. Designing a mathematical model for integrating dynamic cellular manufacturing into supply chain system

    Science.gov (United States)

    Aalaei, Amin; Davoudpour, Hamid

    2012-11-01

    This article presents designing a new mathematical model for integrating dynamic cellular manufacturing into supply chain system with an extensive coverage of important manufacturing features consideration of multiple plants location, multi-markets allocation, multi-period planning horizons with demand and part mix variation, machine capacity, and the main constraints are demand of markets satisfaction in each period, machine availability, machine time-capacity, worker assignment, available time of worker, production volume for each plant and the amounts allocated to each market. The aim of the proposed model is to minimize holding and outsourcing costs, inter-cell material handling cost, external transportation cost, procurement & maintenance and overhead cost of machines, setup cost, reconfiguration cost of machines installation and removal, hiring, firing and salary worker costs. Aimed to prove the potential benefits of such a design, presented an example is shown using a proposed model.

  14. Reversible quantum cellular automata

    CERN Document Server

    Schumacher, B

    2004-01-01

    We define quantum cellular automata as infinite quantum lattice systems with discrete time dynamics, such that the time step commutes with lattice translations and has strictly finite propagation speed. In contrast to earlier definitions this allows us to give an explicit characterization of all local rules generating such automata. The same local rules also generate the global time step for automata with periodic boundary conditions. Our main structure theorem asserts that any quantum cellular automaton is structurally reversible, i.e., that it can be obtained by applying two blockwise unitary operations in a generalized Margolus partitioning scheme. This implies that, in contrast to the classical case, the inverse of a nearest neighbor quantum cellular automaton is again a nearest neighbor automaton. We present several construction methods for quantum cellular automata, based on unitaries commuting with their translates, on the quantization of (arbitrary) reversible classical cellular automata, on quantum c...

  15. A conceptual mathematical model of the dynamic self-organisation of distinct cellular organelles.

    Directory of Open Access Journals (Sweden)

    Bernd Binder

    Full Text Available Formation, degradation and renewal of cellular organelles is a dynamic process based on permanent budding, fusion and inter-organelle traffic of vesicles. These processes include many regulatory proteins such as SNAREs, Rabs and coats. Given this complex machinery, a controversially debated issue is the definition of a minimal set of generic mechanisms necessary to enable the self-organization of organelles differing in number, size and chemical composition. We present a conceptual mathematical model of dynamic organelle formation based on interacting vesicles which carry different types of fusogenic proteins (FP playing the role of characteristic marker proteins. Our simulations (ODEs show that a de novo formation of non-identical organelles, each accumulating a different type of FP, requires a certain degree of disproportionation of FPs during budding. More importantly however, the fusion kinetics must indispensably exhibit positive cooperativity among these FPs, particularly for the formation of larger organelles. We compared different types of cooperativity: sequential alignment of corresponding FPs on opposite vesicle/organelles during fusion and pre-formation of FP-aggregates (equivalent, e.g., to SNARE clusters prior to fusion described by Hill kinetics. This showed that the average organelle size in the system is much more sensitive to the disproportionation strength of FPs during budding if the vesicular transport system gets along with a fusion mechanism based on sequential alignments of FPs. Therefore, pre-formation of FP aggregates within the membranes prior to fusion introduce robustness with respect to organelle size. Our findings provide a plausible explanation for the evolution of a relatively large number of molecules to confer specificity on the fusion machinery compared to the relatively small number involved in the budding process. Moreover, we could speculate that a specific cooperativity which may be described by Hill

  16. Cellular Automata as a learning process in Architecture and Urban design

    DEFF Research Database (Denmark)

    Jensen, Mads Brath; Foged, Isak Worre

    2014-01-01

    . An architectural methodological response to this situation is presented through the development of a conceptual computational design system that allows these dynamics to unfold and to be observed for architectural design decision taking. Reflecting on the development and implementation of a cellular automata based...

  17. A mathematical model of amphibian skin epithelium with two types of transporting cellular units

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Rasmussen, B E

    1985-01-01

    A computer model of ion transport across amphibian skin epithelium containing two types of cellular units, their relative number and sizes, and a paracellular pathway has been developed. The two cellular units are, a large Na+ transporting compartment representing the major epithelium from stratum...

  18. Design of discrete-time cellular neural networks based on mathematical morphology

    NARCIS (Netherlands)

    terBrugge, MH; Nijhuis, JAG; Spaanenburg, L

    1996-01-01

    Mathematical morphology is a discipline that provides a formal framework for the analysis and manipulation of images. Its theoretical foundations have been well-established in the last forty years and it has shown to be a powerful tool in the development of a large number of image processing applica

  19. A mathematical model to study the dynamics of epithelial cellular networks.

    Science.gov (United States)

    Abate, Alessandro; Vincent, Stéphane; Dobbe, Roel; Silletti, Alberto; Master, Neal; Axelrod, Jeffrey D; Tomlin, Claire J

    2012-01-01

    Epithelia are sheets of connected cells that are essential across the animal kingdom. Experimental observations suggest that the dynamical behavior of many single-layered epithelial tissues has strong analogies with that of specific mechanical systems, namely large networks consisting of point masses connected through spring-damper elements and undergoing the influence of active and dissipating forces. Based on this analogy, this work develops a modeling framework to enable the study of the mechanical properties and of the dynamic behavior of large epithelial cellular networks. The model is built first by creating a network topology that is extracted from the actual cellular geometry as obtained from experiments, then by associating a mechanical structure and dynamics to the network via spring-damper elements. This scalable approach enables running simulations of large network dynamics: the derived modeling framework in particular is predisposed to be tailored to study general dynamics (for example, morphogenesis) of various classes of single-layered epithelial cellular networks. In this contribution, we test the model on a case study of the dorsal epithelium of the Drosophila melanogaster embryo during early dorsal closure (and, less conspicuously, germband retraction).

  20. Mathematical modeling of sub-cellular asymmetry of fat-dachsous heterodimer for generation of planar cell polarity.

    Directory of Open Access Journals (Sweden)

    Mohit Kumar Jolly

    Full Text Available Planar Cell Polarity (PCP is an evolutionarily conserved characteristic of animal tissues marked by coordinated polarization of cells or structures in the plane of a tissue. In insect wing epithelium, for instance, PCP is characterized by en masse orientation of hairs orthogonal to its apical-basal axis and pointing along the proximal-distal axis of the organ. Directional cue for PCP has been proposed to be generated by complex sets of interactions amongst three proteins - Fat (Ft, Dachsous (Ds and Four-jointed (Fj. Ft and Ds are two atypical cadherins, which are phosphorylated by Fj, a Golgi kinase. Ft and Ds from adjacent cells bind heterophilically via their tandem cadherin repeats, and their binding affinities are regulated by Fj. Further, in the wing epithelium, sub-cellular levels of Ft-Ds heterodimers are seen to be elevated at the distal edges of individual cells, prefiguring their PCP. Mechanisms generating this sub-cellular asymmetry of Ft-Ds heterodimer in proximal and distal edges of cells, however, have not been resolved yet. Using a mathematical modeling approach, here we provide a framework for generation of this sub-cellular asymmetry of Ft-Ds heterodimer. First, we explain how the known interactions within Ft-Ds-Fj system translate into sub-cellular asymmetry of Ft-Ds heterodimer. Second, we show that this asymmetric localization of Ft-Ds heterodimer is lost when tissue-level gradient of Fj is flattened, or when phosphorylation of Ft by Fj is abolished, but not when tissue-level gradient of Ds is flattened or when phosphorylation of Ds is abrogated. Finally, we show that distal enrichment of Ds also amplifies Ft-Ds asymmetry. These observations reveal that gradient of Fj expression, phosphorylation of Ft by Fj and sub-cellular distal accumulation of Ds are three critical elements required for generating sub-cellular asymmetry of Ft-Ds heterodimer. Our model integrates the known experimental data and presents testable predictions

  1. Mathematical modeling of ultrasound in tissue engineering: From bioreactors to the cellular scale

    Science.gov (United States)

    Louw, Tobias M.

    Tissue engineering seeks to provide a means to treat injuries that are beyond the body's natural ability to repair without the issues associated with allografts. Autologous cells are cultured in a bioreactor which controls the cellular environment (including mechanical stimulation) for optimal tissue growth. We investigate ultrasound as an effective means of mechanical stimulation by predicting the ultrasonic field in a bioreactor, as well as ultrasonic bioeffects at the cellular level. The Transfer Matrix Angular Spectrum Approach was found to be the most accurate and computationally efficient bioreactor model. Three critical factors influence experimental results: (1) the diameter of the tissue engineering scaffold greatly affects the ultrasonic field; (2) the position of the ultrasonic transducer and liquid level in the tissue culture well determines the maximum pressure amplitude in the bioreactor, but the pressure can be controlled by measuring the transducer input electrical impedance and manipulating the applied voltage; and (3) the position of pressure nodes are influenced by ultrasonic frequency and liquid level; this will affect the response of cells to applied ultrasound. On the cellular level, it was shown that chondrocytes respond to ultrasound with frequency dependence. A predicted resonance frequency near 5MHz matched experimental results showing maximum expression of load inducible genes at 5MHz. Mechanical stresses are concentrated near the nucleus at resonance, alluding to the possibility that the nucleus may directly sense ultrasonic stimulation. We postulate that ultrasound influences the transport of p-ERK to the nucleus or causes minor chromatin reorganization, leading to the observed frequency dependent gene expression. We linked in vitro ultrasonic stimulation to in vivo mechanical stimulation generated by natural movement. The chondrocyte's response to impact is under-damped, and the cell oscillates with a frequency close to the model

  2. A Novel Stochastic Learning Automata Based SON Interference Mitigation Framework for 5G HetNets

    Directory of Open Access Journals (Sweden)

    M. N. Qureshi

    2016-12-01

    Full Text Available Long Term Evolution Advanced (LTE-A Heterogeneous Networks (HetNet are an important aspect of 5th generation mobile communication systems. They consists of high power macrocells along with low power cells i.e. picocells and femtocells to fill up macrocell coverage gaps. HetNet permit deployment of femtocells by users for added flexibility, but then interference issues between neighbouring cells have to be addressed as all femtocells use the same frequency channels for transmission. To mitigate this problem, LTE-A standard offers two new features, one is carrier aggregation in which Component Carriers (CC form the basic aggregate units shared among cells and the other is enhanced Inter-Cell Interference Co-ordination (eICIC through X2 interface. The physical implementation of these features is left open to research. This paper investigates two distinct techniques for orthogonal CC selection through Stochastic Cellular Learning Automata (SCLA to improve the QoS performance of a femtocell. The first, technique uses SCLA with user feedback, and the second technique uses SCLA with a central publishing server where all cells upload their past used CC vectors. SCLA methods are better suited for Self Organizing Network (SON as they do not require synchronized cell coordination, have low complexity and have good optimization characteristics. The simulation results show that the techniques enhance the cell edge performance considerably.

  3. Cell damage from radiation-induced bystander effects for different cell densities simulated by a mathematical model via cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Meireles, Sincler P. de; Santos, Adriano M.; Grynberg, Suely Epsztein, E-mail: spm@cdtn.b, E-mail: amsantos@cdtn.b, E-mail: seg@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Nunes, Maria Eugenia S., E-mail: mariaeugenia@iceb.ufop.b [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2011-07-01

    During recent years, there has been a shift from an approach focused entirely on DNA as the main target of ionizing radiation to a vision that considers complex signaling pathways in cells and among cells within tissues. Several newly recognized responses were classified as the so-called non-target responses in which the biological effects are not directly related to the amount of energy deposited in the DNA of cells that were traversed by radiation. In 1992 the bystander effect was described referring to a series of responses such as death, chromosomal instability or other abnormalities that occur in non-irradiated cells that came into contact with irradiated cells or medium from irradiated cells. In this work, we have developed a mathematical model via cellular automata, to quantify cell death induced by the bystander effect. The model is based on experiments with irradiated cells conditioned medium which suggests that irradiated cells secrete molecules in the medium that are capable of damaging other cells. The computational model consists of two-dimensional cellular automata which is able to simulate the transmission of bystander signals via extrinsic route and via Gap junctions. The model has been validated by experimental results in the literature. The time evolution of the effect and the dose-response curves were obtained in good accordance to them. Simulations were conducted for different values of bystander and irradiated cell densities with constant dose. From this work, we have obtained a relationship between cell density and effect. (author)

  4. Mathematics

    CERN Document Server

    Eringen, A Cemal

    2013-01-01

    Continuum Physics: Volume 1 - Mathematics is a collection of papers that discusses certain selected mathematical methods used in the study of continuum physics. Papers in this collection deal with developments in mathematics in continuum physics and its applications such as, group theory functional analysis, theory of invariants, and stochastic processes. Part I explains tensor analysis, including the geometry of subspaces and the geometry of Finsler. Part II discusses group theory, which also covers lattices, morphisms, and crystallographic groups. Part III reviews the theory of invariants th

  5. A mathematical model of cortical bone remodeling at cellular level under mechanical stimulus

    Institute of Scientific and Technical Information of China (English)

    Qing-Hua Qin; Ya-Nan Wang

    2012-01-01

    A bone cell population dynamics model for cortical bone remodeling under mechanical stimulus is developed in this paper.The external experiments extracted from the literature which have not been used in the creation of the model are used to test the validity of the model.Not only can the model compare reasonably well with these experimental results such as the increase percentage of final values of bone mineral content (BMC) and bone fracture energy (BFE) among different loading schemes (which proves the validity of the model),but also predict the realtime development pattern of BMC and BFE,as well as the dynamics of osteoblasts (OBA),osteoclasts (OCA),nitric oxide (NO) and prostaglandin E2 (PGE2) for each loading scheme,which can hardly be monitored through experiment.In conclusion,the model is the first of its kind that is able to provide an insight into the quantitative mechanism of bone remodeling at cellular level by which bone cells are activated by mechanical stimulus in order to start resorption/formation of bone mass.More importantly,this model has laid a solid foundation based on which future work such as systemic control theory analysis of bone remodeling under mechanical stimulus can be investigated.The to-be identified control mechanism will help to develop effective drugs and combined nonpharmacological therapies to combat bone loss pathologies.Also this deeper understanding of how mechanical forces quantitatively interact with skeletal tissue is essential for the generation of bone tissue for tissue replacement purposes in tissue engineering.

  6. Mathematics

    CERN Document Server

    Stein, Sherman K

    2010-01-01

    Anyone can appreciate the beauty, depth, and vitality of mathematics with the help of this highly readable text, specially developed from a college course designed to appeal to students in a variety of fields. Readers with little mathematical background are exposed to a broad range of subjects chosen from number theory, topology, set theory, geometry, algebra, and analysis. Starting with a survey of questions on weight, the text discusses the primes, the fundamental theorem of arithmetic, rationals and irrationals, tiling, tiling and electricity, probability, infinite sets, and many other topi

  7. Uncertainty analysis and data-assimilation of remote sensing data for the calibration of cellular automata based land-use models

    NARCIS (Netherlands)

    Kwast, J. van der; Voorde, T. van de; Jong, K. de; Uljee, I.; Karssenberg, D.J.; Canters, F.; Engelen, G.; Poelmans, L.

    2012-01-01

    A correct historic calibration of land-use models is important, because they are more and more used by decision makers. Existing calibration methods, however, do not sufficiently take into account uncertainties in input parameters. For that reason, uncertainties that propagate through simulations of

  8. Discrete mathematics and physics on the Planck-scale exemplified by means of a class of "cellular network models" and their dynamics

    CERN Document Server

    Requardt, M

    1996-01-01

    Starting from the hypothesis that both physics, in particular space-time and the physical vacuum, and the corresponding mathematics are discrete on the Planck scale we develop a certain framework in form of a class of '{\\it cellular networks}' consisting of cells (nodes) interacting with each other via bonds according to a certain {\\it 'local law'} which governs their evolution. Both the internal states of the cells and the strength/orientation of the bonds are assumed to be dynamical variables. We introduce a couple of candidates of such local laws which, we think, are capable of catalyzing the unfolding of the network towards increasing complexity and pattern formation. In section 3 the basis is laid for a version of '{\\it discrete analysis}' and {\\it 'discrete topology/geometry'} which, starting from different, perhaps more physically oriented principles, manages to make contact with the much more abstract machinery of Connes et al. and may complement the latter approach. In section 4 a, as far as we can s...

  9. Mathematical model of uptake and metabolism of arsenic(III in human hepatocytes - Incorporation of cellular antioxidant response and threshold-dependent behavior

    Directory of Open Access Journals (Sweden)

    Isukapalli Sastry S

    2011-01-01

    Full Text Available Abstract Background Arsenic is an environmental pollutant, potent human toxicant, and oxidative stress agent with a multiplicity of health effects associated with both acute and chronic exposures. A semi-mechanistic cellular-level toxicokinetic (TK model was developed in order to describe the uptake, biotransformation and clearance of arsenical species in human hepatocytes. Notable features of this model are the incorporation of arsenic-glutathione complex formation and a "switch-like" formulation to describe the antioxidant response of hepatocytes to arsenic exposure. Results The cellular-level TK model applies mass action kinetics in order to predict the concentrations of trivalent and pentavalent arsenicals in hepatocytes. The model simulates uptake of arsenite (iAsIII via aquaporin isozymes 9 (AQP9s, glutathione (GSH conjugation, methylation by arsenic methyltransferase (AS3MT, efflux through multidrug resistant proteins (MRPs and the induced antioxidant response via thioredoxin reductase (TR activity. The model was parameterized by optimization of model estimates for arsenite (iAsIII, monomethylated (MMA and dimethylated (DMA arsenicals concentrations with time-course experimental data in human hepatocytes for a time span of 48 hours, and dose-response data at 24 hours for a range of arsenite concentrations from 0.1 to 10 μM. Global sensitivity analysis of the model showed that at low doses the transport parameters had a dominant role, whereas at higher doses the biotransformation parameters were the most significant. A parametric comparison of the TK model with an analogous model developed for rat hepatocytes from the literature demonstrated that the biotransformation of arsenite (e.g. GSH conjugation has a large role in explaining the variation in methylation between rats and humans. Conclusions The cellular-level TK model captures the temporal modes of arsenical accumulation in human hepatocytes. It highlighted the key biological

  10. Non-probabilistic cellular automata-enhanced stereo vision simultaneous localization and mapping

    Science.gov (United States)

    Nalpantidis, Lazaros; Sirakoulis, Georgios Ch; Gasteratos, Antonios

    2011-11-01

    In this paper, a visual non-probabilistic simultaneous localization and mapping (SLAM) algorithm suitable for area measurement applications is proposed. The algorithm uses stereo vision images as its only input and processes them calculating the depth of the scenery, detecting occupied areas and progressively building a map of the environment. The stereo vision-based SLAM algorithm embodies a stereo correspondence algorithm that is tolerant to illumination differentiations, the robust scale- and rotation-invariant feature detection and matching speeded-up robust features method, a computationally effective v-disparity image calculation scheme, a novel map-merging module, as well as a sophisticated cellular automata-based enhancement stage. A moving robot equipped with a stereo camera has been used to gather image sequences and the system has autonomously mapped and measured two different indoor areas.

  11. Solving a mathematical model integrating unequal-area facilities layout and part scheduling in a cellular manufacturing system by a genetic algorithm.

    Science.gov (United States)

    Ebrahimi, Ahmad; Kia, Reza; Komijan, Alireza Rashidi

    2016-01-01

    In this article, a novel integrated mixed-integer nonlinear programming model is presented for designing a cellular manufacturing system (CMS) considering machine layout and part scheduling problems simultaneously as interrelated decisions. The integrated CMS model is formulated to incorporate several design features including part due date, material handling time, operation sequence, processing time, an intra-cell layout of unequal-area facilities, and part scheduling. The objective function is to minimize makespan, tardiness penalties, and material handling costs of inter-cell and intra-cell movements. Two numerical examples are solved by the Lingo software to illustrate the results obtained by the incorporated features. In order to assess the effects and importance of integration of machine layout and part scheduling in designing a CMS, two approaches, sequentially and concurrent are investigated and the improvement resulted from a concurrent approach is revealed. Also, due to the NP-hardness of the integrated model, an efficient genetic algorithm is designed. As a consequence, computational results of this study indicate that the best solutions found by GA are better than the solutions found by B&B in much less time for both sequential and concurrent approaches. Moreover, the comparisons between the objective function values (OFVs) obtained by sequential and concurrent approaches demonstrate that the OFV improvement is averagely around 17 % by GA and 14 % by B&B.

  12. Mathematical Competences

    DEFF Research Database (Denmark)

    Westphael, Henning; Mogensen, Arne

    2013-01-01

    In this article we present the notion of Mathematical competences as a tool to describe the mathematically gifted students.......In this article we present the notion of Mathematical competences as a tool to describe the mathematically gifted students....

  13. Mathematical modelling of metabolism

    DEFF Research Database (Denmark)

    Gombert, Andreas Karoly; Nielsen, Jens

    2000-01-01

    Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes...... availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology....... available. Both stoichiometric and kinetic models have been used to investigate the metabolism, which has resulted in defining the optimal fermentation conditions, as well as in directing the genetic changes to be introduced in order to obtain a good producer strain or cell line. With the increasing...

  14. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  15. Automata-Based CSL Model Checking

    DEFF Research Database (Denmark)

    Zhang, Lijun; Jansen, David N.; Nielson, Flemming;

    2011-01-01

    For continuous-time Markov chains, the model-checking problem with respect to continuous-time stochastic logic (CSL) has been introduced and shown to be decidable by Aziz, Sanwal, Singhal and Brayton in 1996. The presented decision procedure, however, has exponential complexity. In this paper, we...

  16. A New Model for Multi-Objective PMU Placement Considering Actual Worth of Uncertainties Using Cellular Learning Automata

    Directory of Open Access Journals (Sweden)

    Seyed Mahdi Mazhari

    2012-06-01

    Full Text Available Phasor measurement units (PMUS are crucial elements of wide-area state estimation system in Smart Grids, as they maintain a high quality observability on electrical quantities of power system. This paper proposes a new approach for multi-objective PMU placement considering actual worth of contingency conditions. Moreover, a new fitness function is introduced to simultaneously find the minimum number of PMUs as well as to maximize the measurement redundancies. In addition, a cellular learning automata based algoritm is employed for optimization process. The developed method is applied to IEEE test systems and obtained results are reported in several scenarios. Detailed numerical results and comparisons presented in the paper show that the proposed approach could noticeably improve the quality of problem solutions under uncertainties and can be used as an effective tool for multi-objective PMU placement within an actual large-scale transmission network.

  17. Mathematics Underground

    Science.gov (United States)

    Luther, Kenneth H.

    2012-01-01

    Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…

  18. Mathematical Footprints Discovering Mathematics Everywhere

    CERN Document Server

    Pappas, Theoni

    1999-01-01

    MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent

  19. Cellular Telephone

    Institute of Scientific and Technical Information of China (English)

    杨周

    1996-01-01

    Cellular phones, used in automobiles, airliners, and passenger trains, are basically low-power radiotelephones. Calls go through radio transmitters that are located within small geographical units called cells. Because each cell’s signals are too weak to interfere with those of other cells operating on the same fre-

  20. Mathematical bridges

    CERN Document Server

    Andreescu, Titu; Tetiva, Marian

    2017-01-01

    Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics. Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bri...

  1. Mathematics disorder

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001534.htm Mathematics disorder To use the sharing features on this page, please enable JavaScript. Mathematics disorder is a condition in which a child's ...

  2. Rainforest Mathematics

    Science.gov (United States)

    Kilpatrick, Jeremy

    2014-01-01

    This paper addresses the contested way that ethnomathematics has sometimes been received by mathematicians and others and what that disagreement might suggest about issues in mathematics education; namely, (a) the relation of ethnomathematics to academic mathematics; (b) recent efforts to reform secondary school mathematics so that it prepares…

  3. Mathematical modelling

    DEFF Research Database (Denmark)

    Blomhøj, Morten

    2004-01-01

    Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...

  4. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  5. Mathematical Modeling and Pure Mathematics

    Science.gov (United States)

    Usiskin, Zalman

    2015-01-01

    Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…

  6. Theoretical Mathematics

    Science.gov (United States)

    Stöltzner, Michael

    Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.

  7. Financial mathematics

    CERN Document Server

    Jothi, A Lenin

    2009-01-01

    Financial services, particularly banking and insurance services is the prominent sector for the development of a nation. After the liberalisation of financial sector in India, the scope of getting career opportunities has been widened. It is heartening to note that various universities in India have introduced professional courses on banking and insurance. A new field of applied mathematics has come into prominence under the name of Financial Mathematics. Financial mathematics has attained much importance in the recent years because of the role played by mathematical concepts in decision - m

  8. Mathematical scandals

    CERN Document Server

    Pappas, Theoni

    1997-01-01

    In this highly readable volume of vignettes of mathematical scandals and gossip, Theoni Pappas assembles 29 fascinating stories of intrigue and the bizarre ? in short, the human background of the history of mathematics. Might a haberdasher have changed Einstein's life? Why was the first woman mathematician murdered? How come there's no Nobel Prize in mathematics?Mathematics is principally about numbers, equations, and solutions, all of them precise and timeless. But, behind this arcane matter lies the sometimes sordid world of real people, whose rivalries and deceptions

  9. Engineering mathematics

    CERN Document Server

    Stroud, K A

    2013-01-01

    A groundbreaking and comprehensive reference that's been a bestseller since it first debuted in 1970, the new seventh edition of Engineering Mathematics has been thoroughly revised and expanded. Providing a broad mathematical survey, this innovative volume covers a full range of topics from the very basic to the advanced. Whether you're an engineer looking for a useful on-the-job reference or want to improve your mathematical skills, or you are a student who needs an in-depth self-study guide, Engineering Mathematics is sure to come in handy time and time again.

  10. Mathematics everywhere

    CERN Document Server

    Aigner, Martin; Spain, Philip G

    2010-01-01

    Mathematics is all around us. Often we do not realize it, though. Mathematics Everywhere is a collection of presentations on the role of mathematics in everyday life, through science, technology, and culture. The common theme is the unique position of mathematics as the art of pure thought and at the same time as a universally applicable science. The authors are renowned mathematicians; their presentations cover a wide range of topics. From compact discs to the stock exchange, from computer tomography to traffic routing, from electronic money to climate change, they make the "math inside" unde

  11. Experimental Mathematics and Mathematical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, Jonathan M.; Broadhurst, David; Zudilin, Wadim

    2009-06-26

    One of the most effective techniques of experimental mathematics is to compute mathematical entities such as integrals, series or limits to high precision, then attempt to recognize the resulting numerical values. Recently these techniques have been applied with great success to problems in mathematical physics. Notable among these applications are the identification of some key multi-dimensional integrals that arise in Ising theory, quantum field theory and in magnetic spin theory.

  12. Mathematics 2

    CERN Document Server

    Kodaira, Kunihiko

    1996-01-01

    This is the translation from the Japanese textbook for the grade 11 course, "General Mathematics". It is part of the easier of the three elective courses in mathematics offered at this level and is taken by about 40% of students. The book covers basic notions of probability and statistics, vectors, exponential, logarithmic, and trigonometric functions, and an introduction to differentiation and integration.

  13. Mathematical logic

    CERN Document Server

    Kleene, Stephen Cole

    2002-01-01

    Undergraduate students with no prior instruction in mathematical logic will benefit from this multi-part text. Part I offers an elementary but thorough overview of mathematical logic of 1st order. Part II introduces some of the newer ideas and the more profound results of logical research in the 20th century. 1967 edition.

  14. Optimization of Inter Cellular Movement of Parts in Cellular Manufacturing System Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Siva Prasad Darla

    2014-01-01

    Full Text Available In the modern manufacturing environment, Cellular Manufacturing Systems (CMS have gained greater importance in job shop or batch-type production to gain economic advantage similar to those of mass production. Successful implementation of CMS highly depends on the determination of part families; machine cells and minimizing inter cellular movement. This study considers machine component grouping problems namely inter-cellular movement and cell load variation by developing a mathematical model and optimizing the solution using Genetic Algorithm to arrive at a cell formation to minimize the inter-cellular movement and cell load variation. The results are presented with a numerical example.

  15. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  16. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  17. Speed mathematics

    CERN Document Server

    Handley, Bill

    2012-01-01

    This new, revised edition of the bestselling Speed Mathematics features new chapters on memorising numbers and general information, calculating statistics and compound interest, square roots, logarithms and easy trig calculations. Written so anyone can understand, this book teaches simple strategies that will enable readers to make lightning-quick calculations. People who excel at mathematics use better strategies than the rest of us; they are not necessarily more intelligent. With Speed Mathematics you'll discover methods to make maths easy and fun. This book is perfect for stud

  18. Mathematical physics

    CERN Document Server

    Geroch, Robert

    1985-01-01

    Mathematical Physics is an introduction to such basic mathematical structures as groups, vector spaces, topological spaces, measure spaces, and Hilbert space. Geroch uses category theory to emphasize both the interrelationships among different structures and the unity of mathematics. Perhaps the most valuable feature of the book is the illuminating intuitive discussion of the ""whys"" of proofs and of axioms and definitions. This book, based on Geroch's University of Chicago course, will be especially helpful to those working in theoretical physics, including such areas as relativity, particle

  19. Mathematical physiology

    CERN Document Server

    Sneyd, James

    2009-01-01

    There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. ...

  20. Mathematical modelling

    CERN Document Server

    2016-01-01

    This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

  1. Mortimer Mathematics

    Science.gov (United States)

    Yvon, Bernard R.; Walo, Trudy J.

    1975-01-01

    A large doll can be used to illustrate many mathematical concepts to young children. Examples of the concepts introduced with the doll include one-to-one correspondence (buttons with buttonholes) and relative sizes. (SD)

  2. Algorithmic mathematics

    CERN Document Server

    Hougardy, Stefan

    2016-01-01

    Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.

  3. Mathematics Reading

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Puzzles of purely logical nature are distinguished from most mathematical puzzles,in that thought rather than memory, that is,native mental ingenuity rather than a store of acquired information, is the key to their solution.

  4. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2010-01-01

    The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Autumn 2010 Ectent: 5 ects Class size: 15...

  5. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2010-01-01

    The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18......The introduction of the mathematics needed for analysis, design and verification of discrete systems, including applications within programming languages for computer systems. Course sessions and project work. Semester: Spring 2010 Ectent: 5 ects Class size: 18...

  6. Mathematical statistics

    CERN Document Server

    Pestman, Wiebe R

    2009-01-01

    This textbook provides a broad and solid introduction to mathematical statistics, including the classical subjects hypothesis testing, normal regression analysis, and normal analysis of variance. In addition, non-parametric statistics and vectorial statistics are considered, as well as applications of stochastic analysis in modern statistics, e.g., Kolmogorov-Smirnov testing, smoothing techniques, robustness and density estimation. For students with some elementary mathematical background. With many exercises. Prerequisites from measure theory and linear algebra are presented.

  7. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>20051134 Chen Aibing (Faculty of Land Resource Engineering, Kunming University of Science and Technology) Kunming, Yunnan 650093, China); Qin Dexian MathematicEconomical Model of No. 5 Orebody in Gejiu Tin Mine, Yunnan Province (Acta Mineralogica Sinica, ISSN 1000 - 4734, CN 52 -1045/P, 24(2), 2004, p. 171-175, 5 illus. , 5 tables, 7 refs. ) Key words: tin deposits, mathematical models, Yunnan Province

  8. Dynamic Boolean Mathematics

    Science.gov (United States)

    Bossé, Michael J.; Adu-Gyamfi, Kwaku; Chandler, Kayla; Lynch-Davis, Kathleen

    2016-01-01

    Dynamic mathematical environments allow users to reify mathematical concepts through multiple representations, transform mathematical relations and organically explore mathematical properties, investigate integrated mathematics, and develop conceptual understanding. Herein, we integrate Boolean algebra, the functionalities of a dynamic…

  9. Game of Life Cellular Automata

    CERN Document Server

    Adamatzky, Andrew

    2010-01-01

    In the late 1960s, British mathematician John Conway invented a virtual mathematical machine that operates on a two-dimensional array of square cell. Each cell takes two states, live and dead. The cells' states are updated simultaneously and in discrete time. A dead cell comes to life if it has exactly three live neighbours. A live cell remains alive if two or three of its neighbours are alive, otherwise the cell dies. Conway's Game of Life became the most programmed solitary game and the most known cellular automaton. The book brings together results of forty years of study into computational

  10. Mathematical concepts

    CERN Document Server

    Jost, Jürgen

    2015-01-01

    The main intention of this book is to describe and develop the conceptual, structural and abstract thinking of mathematics. Specific mathematical structures are used to illustrate the conceptual approach; providing a deeper insight into mutual relationships and abstract common features. These ideas are carefully motivated, explained and illustrated by examples so that many of the more technical proofs can be omitted. The book can therefore be used: ·         simply as an overview of the panorama of mathematical structures and the relations between them, to be supplemented by more detailed texts whenever you want to acquire a working knowledge of some structure ·         by itself as a first introduction to abstract mathematics ·         together with existing textbooks, to put their results into a more general perspective ·         to gain a new and hopefully deeper perspective after having studied such textbooks Mathematical Concepts has a broader scope and is less detaile...

  11. Mathematical tapas

    CERN Document Server

    Hiriart-Urruty, Jean-Baptiste

    2016-01-01

    This book contains a collection of exercises (called “tapas”) at undergraduate level, mainly from the fields of real analysis, calculus, matrices, convexity, and optimization. Most of the problems presented here are non-standard and some require broad knowledge of different mathematical subjects in order to be solved. The author provides some hints and (partial) answers and also puts these carefully chosen exercises into context, presents information on their origins, and comments on possible extensions. With stars marking the levels of difficulty, these tapas show or prove something interesting, challenge the reader to solve and learn, and may have surprising results. This first volume of Mathematical Tapas will appeal to mathematicians, motivated undergraduate students from science-based areas, and those generally interested in mathematics.

  12. Mathematical writing

    CERN Document Server

    Vivaldi, Franco

    2014-01-01

    This book teaches the art of writing mathematics, an essential -and difficult- skill for any mathematics student.   The book begins with an informal introduction on basic writing principles and a review of the essential dictionary for mathematics. Writing techniques are developed gradually, from the small to the large: words, phrases, sentences, paragraphs, to end with short compositions. These may represent the introduction of a concept, the abstract of a presentation or the proof of a theorem. Along the way the student will learn how to establish a coherent notation, mix words and symbols effectively, write neat formulae, and structure a definition.   Some elements of logic and all common methods of proofs are featured, including various versions of induction and existence proofs. The book concludes with advice on specific aspects of thesis writing (choosing of a title, composing an abstract, compiling a bibliography) illustrated by large number of real-life examples. Many exercises are included; over 150...

  13. Mathematical biophysics

    CERN Document Server

    Rubin, Andrew

    2014-01-01

    This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question "what new information can be provided by the models that cannot be obtained directly from experimental data?" Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience. Provides succinct but authoritative coverage of a broad array of biophysical topics and models Wr...

  14. Physical mathematics

    CERN Document Server

    Cahill, Kevin

    2013-01-01

    Unique in its clarity, examples and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicists need in their courses and research. The author illustrates the mathematics with numerous physical examples drawn from contemporary research. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations and Bessel functions, this textbook covers topics such as the singular-value decomposition, Lie algebras, the tensors and forms of general relativity, the central limit theorem and Kolmogorov test of statistics, the Monte Carlo methods of experimental and theoretical physics, the renormalization group of condensed-matter physics and the functional derivatives and Feynman path integrals of quantum field theory.

  15. Mathematical morphology

    CERN Document Server

    Najman, Laurent

    2013-01-01

    Mathematical Morphology allows for the analysis and processing of geometrical structures using techniques based on the fields of set theory, lattice theory, topology, and random functions. It is the basis of morphological image processing, and finds applications in fields including digital image processing (DSP), as well as areas for graphs, surface meshes, solids, and other spatial structures. This book presents an up-to-date treatment of mathematical morphology, based on the three pillars that made it an important field of theoretical work and practical application: a solid theoretical foun

  16. Mathematical Lives

    CERN Document Server

    Bartocci, Claudio; Guerraggio, Angelo; Lucchetti, Roberto; Williams, Kim

    2011-01-01

    Steps forward in mathematics often reverberate in other scientific disciplines, and give rise to innovative conceptual developments or find surprising technological applications. This volume brings to the forefront some of the proponents of the mathematics of the twentieth century, who have put at our disposal new and powerful instruments for investigating the reality around us. The portraits present people who have impressive charisma and wide-ranging cultural interests, who are passionate about defending the importance of their own research, are sensitive to beauty, and attentive to the soci

  17. Mathematical papers

    CERN Document Server

    Green, George

    2005-01-01

    An almost entirely self-taught mathematical genius, George Green (1793 -1841) is best known for Green's theorem, which is used in almost all computer codes that solve partial differential equations. He also published influential essays, or papers, in the fields of hydrodynamics, electricity, and magnetism. This collection comprises his most significant works.The first paper, ""An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism,"" which is also the longest and perhaps the most Important, appeared In 1828. It introduced the term potential as desig

  18. Quotable Quotes in Mathematics

    Science.gov (United States)

    Lo, Bruce W. N.

    1983-01-01

    As a way to dispel negative feelings toward mathematics, a variety of quotations are given. They are categorized by: what mathematics is, mathematicians, mathematics and other disciplines, different areas of mathematics, mathematics and humor, applications of mathematics, and pure versus applied mathematics. (MNS)

  19. Mathematical stereochemistry

    CERN Document Server

    Fujita, Shinsaku

    2015-01-01

    Chirality and stereogenicity are closely related concepts and their differentiation and description is still a challenge in chemoinformatics. A new stereoisogram approach, developed by the author, is introduced in this book, providing a theoretical framework for mathematical aspects of modern stereochemistry. The discussion covers point-groups and permutation symmetry and exemplifies the concepts using organic molecules and inorganic complexes.

  20. Mathematical quantization

    CERN Document Server

    Weaver, Nik

    2001-01-01

    With a unique approach and presenting an array of new and intriguing topics, Mathematical Quantization offers a survey of operator algebras and related structures from the point of view that these objects are quantizations of classical mathematical structures. This approach makes possible, with minimal mathematical detail, a unified treatment of a variety of topics.Detailed here for the first time, the fundamental idea of mathematical quantization is that sets are replaced by Hilbert spaces. Building on this idea, and most importantly on the fact that scalar-valued functions on a set correspond to operators on a Hilbert space, one can determine quantum analogs of a variety of classical structures. In particular, because topologies and measure classes on a set can be treated in terms of scalar-valued functions, we can transfer these constructions to the quantum realm, giving rise to C*- and von Neumann algebras.In the first half of the book, the author quickly builds the operator algebra setting. He uses this ...

  1. A mathematical model for the study of lipid accumulation in oleaginous microorganisms. II. Study of cellular lipids of Mucor circinelloides during growth on a vegetable oil

    Directory of Open Access Journals (Sweden)

    Aggelis, G.

    1995-10-01

    Full Text Available Microbial oil production from fatty materials of animal or plant origin has been an object of research and industrial interest for many years. During the process of microbial growth/accumulation of fat reserves, the dominating phenomena that define the composition of endocellular fat are, first, the specific process of incorporation of substrate fatty acids into the microbial cell and, second, the endocellular changes of fatty acids defined by the enzymic capabilities of the microorganism. The fatty acids will either be degraded for growth needs or act as substrate of endocellular biotransformation processes, leading to concentration changes and production of "new" fatty acids which did not previously exist in the substrate.
    The purpose of the present work is to study the endocellular lipids of Mucor circinelloidesCBS 172-27 grown on sunflower oil. The mathematical model, described in part I, was applied in order to investigate the following:
    a. Microorganism specificity in the incorporation of substrate fatty acids.
    b. Microorganism specificity in the degradation of fatty acids present in the reserve fat.
    c. Possibilities of endocellular biotransformations during the microbial growth.
    In conclusion, this work is aimed at developing a quantitative expression of parameters defining the lipid composition of fat reserves. The proposed mathematical model can be used not only for selection of microbial strains having specific enzymic potential but also for substrate selection.

    La producción de aceites microbianos a partir de materiales grasos de origen animal o vegetal ha sido objeto de investigación e interés industrial durante muchos años. En el proceso de crecimiento microbiano/acumulación de reservas grasas, los fenómenos dominantes que definen la composición de grasa endocelular son, primero, el proceso específico de incorporación de ácidos grasos como sustratos en la célula microbiana

  2. Understanding in mathematics

    CERN Document Server

    Sierpinska, Anna

    1994-01-01

    The concept of understanding in mathematics with regard to mathematics education is considered in this volume, the main problem for mathematics teachers being how to facilitate their students'' understanding of the mathematics being taught.

  3. Mathematical tools

    Science.gov (United States)

    Capozziello, Salvatore; Faraoni, Valerio

    In this chapter we discuss certain mathematical tools which are used extensively in the following chapters. Some of these concepts and methods are part of the standard baggage taught in undergraduate and graduate courses, while others enter the tool-box of more advanced researchers. These mathematical methods are very useful in formulating ETGs and in finding analytical solutions.We begin by studying conformal transformations, which allow for different representations of scalar-tensor and f(R) theories of gravity, in addition to being useful in GR. We continue by discussing variational principles in GR, which are the basis for presenting ETGs in the following chapters. We close the chapter with a discussion of Noether symmetries, which are used elsewhere in this book to obtain analytical solutions.

  4. Mathematical epidemiology

    CERN Document Server

    Driessche, Pauline; Wu, Jianhong

    2008-01-01

    Based on lecture notes of two summer schools with a mixed audience from mathematical sciences, epidemiology and public health, this volume offers a comprehensive introduction to basic ideas and techniques in modeling infectious diseases, for the comparison of strategies to plan for an anticipated epidemic or pandemic, and to deal with a disease outbreak in real time. It covers detailed case studies for diseases including pandemic influenza, West Nile virus, and childhood diseases. Models for other diseases including Severe Acute Respiratory Syndrome, fox rabies, and sexually transmitted infections are included as applications. Its chapters are coherent and complementary independent units. In order to accustom students to look at the current literature and to experience different perspectives, no attempt has been made to achieve united writing style or unified notation. Notes on some mathematical background (calculus, matrix algebra, differential equations, and probability) have been prepared and may be downlo...

  5. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>20070721 Dong Yaosong (National Key La-boratory of Geological Process and Mineral resources, Institute of Mathematical Geology and Remote Sensing, China University of Geosciences, Wuhan 430074, China); Yang Yanchen Mutual Compensation of Nerval Net and Characteristic Analysis in Mineral Resources Exploration (Mineral Resources and Geology, ISSN1001-5663, CN45-1174/TD, 20(1), 2006, p.1-6, 3 illus., 6 tables, 5 refs.) Key words: prospecting and exploration of mineral, neural network systems

  6. MATHEMATICAL CONSTANTS.

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, H.P.; Potter, Elinor

    1971-03-01

    This collection of mathematical data consists of two tables of decimal constants arranged according to size rather than function, a third table of integers from 1 to 1000, giving some of their properties, and a fourth table listing some infinite series arranged according to increasing size of the coefficients of the terms. The decimal values of Tables I and II are given to 20 D.

  7. Teaching Mathematical Modeling in Mathematics Education

    Science.gov (United States)

    Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant

    2016-01-01

    Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…

  8. Mathematical modeling in chronobiology.

    Science.gov (United States)

    Bordyugov, G; Westermark, P O; Korenčič, A; Bernard, S; Herzel, H

    2013-01-01

    Circadian clocks are autonomous oscillators entrained by external Zeitgebers such as light-dark and temperature cycles. On the cellular level, rhythms are generated by negative transcriptional feedback loops. In mammals, the suprachiasmatic nucleus (SCN) in the anterior part of the hypothalamus plays the role of the central circadian pacemaker. Coupling between individual neurons in the SCN leads to precise self-sustained oscillations even in the absence of external signals. These neuronal rhythms orchestrate the phasing of circadian oscillations in peripheral organs. Altogether, the mammalian circadian system can be regarded as a network of coupled oscillators. In order to understand the dynamic complexity of these rhythms, mathematical models successfully complement experimental investigations. Here we discuss basic ideas of modeling on three different levels (1) rhythm generation in single cells by delayed negative feedbacks, (2) synchronization of cells via external stimuli or cell-cell coupling, and (3) optimization of chronotherapy.

  9. Flat Cellular (UMTS) Networks

    NARCIS (Netherlands)

    Bosch, H.G.P.; Samuel, L.G.; Mullender, S.J.; Polakos, P.; Rittenhouse, G.

    2007-01-01

    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective i

  10. Meeting in mathematics

    DEFF Research Database (Denmark)

    Mogensen, Arne; Georgiev, Vladimir; Ulovec, Andreas

    To encourage many more young people to appreciate the real nature and spirit of mathematics and possibly to be enrolled in mathematics study it is important to involve them in doing mathematics (not just learning about mathematics). This goal could be achieved if mathematics teachers are prepared...... to identify and work with mathematically gifted students (without loosing the rest). The book offers chapters on gifted students, mathematical competences and other issues....

  11. Authenticity of Mathematical Modeling

    Science.gov (United States)

    Tran, Dung; Dougherty, Barbara J.

    2014-01-01

    Some students leave high school never quite sure of the relevancy of the mathematics they have learned. They fail to see links between school mathematics and the mathematics of everyday life that requires thoughtful decision making and often complex problem solving. Is it possible to bridge the gap between school mathematics and the mathematics in…

  12. Asymptotic Behavior of Excitable Cellular Automata

    CERN Document Server

    Durrett, R; Durrett, Richard; Griffeath, David

    1993-01-01

    Abstract: We study two families of excitable cellular automata known as the Greenberg-Hastings Model (GHM) and the Cyclic Cellular Automaton (CCA). Each family consists of local deterministic oscillating lattice dynamics, with parallel discrete-time updating, parametrized by the range of interaction, the "shape" of its neighbor set, threshold value for contact updating, and number of possible states per site. GHM and CCA are mathematically tractable prototypes for the spatially distributed periodic wave activity of so-called excitable media observed in diverse disciplines of experimental science. Earlier work by Fisch, Gravner, and Griffeath studied the ergodic behavior of these excitable cellular automata on Z^2, and identified two distinct (but closely-related) elaborate phase portraits as the parameters vary. In particular, they noted the emergence of asymptotic phase diagrams (and Euclidean dynamics) in a well-defined threshold-range scaling limit. In this study we present several rigorous results and som...

  13. Figures of thought mathematics and mathematical texts

    CERN Document Server

    Reed, David

    2003-01-01

    Examines the ways in which mathematical works can be read as texts, examines their textual strategiesand demonstrates that such readings provide a rich source of philosophical debate regarding mathematics.

  14. From Mathematics and Education, to Mathematics Education

    OpenAIRE

    Furinghetti, Fulvia; Matos, José Manuel; Menghini, Marta

    2016-01-01

    This chapter takes a historical view of the development of mathematics education, from its initial status as a business mostly managed by mathematicians to the birth of mathematics education as a scientific field of research. Starting from the acknowledgement that research in mathematics education demands more than the traditional focus on discussing curricular options at distinct grade levels, we identified several specialized clusters, debating specific issues related to mathematics educati...

  15. Introducing philosophy of mathematics

    CERN Document Server

    Friend, Michele

    2014-01-01

    What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual acc

  16. Mathematical Story: A Metaphor for Mathematics Curriculum

    Science.gov (United States)

    Dietiker, Leslie

    2015-01-01

    This paper proposes a theoretical framework for interpreting the content found in mathematics curriculum in order to offer teachers and other mathematics educators comprehensive conceptual tools with which to make curricular decisions. More specifically, it describes a metaphor of "mathematics curriculum as story" and defines and…

  17. MATHEMATICAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>20102798 Gao Shengxiang(School of Resource and Earth Science,China University of Mining and Technology,Xuzhou 221008,China);Ye Rongzhang Establishment of Complex Geological Body FLAC3D Model by Using MATLAB Interface Program(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,37(5),2009,p.51-53,5 illus.,4 refs.,with English abstract)Key words:FLAC3D,computer programs20102799 Li Xiuzhen(Key Laboratory of Mountain Hazards and Surface Processes,Chinese Academy of Sciences,Chengdu 610041,China);Wang Chenghua Potential Landslide Identification Model Based on Fisher Discrimination Analysis Method and Its Application(The Chinese Journal of Geological Hazard and Control,ISSN1003-8035,CN11-2825/P,20(4),2009,p.23-26,40,2 tables,11 refs.)Key words:mathematical models,landslidesAiming at ancient(old)landslides,four kinds of discrimination indexes which included nine secondary indexes for potential landslides,such as landform character,slip surface character,landslide body structure and recent activities characters,were presented.Then according to Fisher Discrimination theory,Fisher Discrimination model for the potential landslides was built.The re

  18. Investigating the Effects of Stress Interaction Using a Cellular-automaton Based Model in Fault Networks of Varying Complexity.

    Science.gov (United States)

    Hetherington, A. P.; Steacy, S.; McCloskey, J.

    2007-12-01

    Seismicity spatial and temporal patterns are strongly influenced by stress interaction between faults. However the effects of such interaction on earthquake statistics is not yet well understood. Computer models provide accurate, large and complete datasets to investigate this issue and also have the benefit of allowing direct comparison of seismicity behavior in time and space in networks, with and without fault interaction. We investigate the effect of such interaction on modeled real-world fault networks of varying complexity using a cellular-automata based model. Each 3-D fault within the fault network is modeled by a discrete cellular automaton. The cell size is 1 km square which allows for a minimum earthquake size of approximately Mw=4. The cell strength is distributed fractally across each fault and all cells are loaded by a remote tectonic stressing rate. When the stress on a cell exceeds its strength, the cell fails and stress is transferred to its nearest neighbors which may in turn cause them to break allowing the earthquake to grow. These stress transfer rules allow realistic stress concentrations to develop at the boundary of the rupture. If the extent of the rupture exceeds a user defined minimum length, and if interaction between faults is allowed, a boundary element method is used to calculate stress transfer to neighboring faults. Here we present results from four simulated fault networks based on active faults in the San Francisco Bay Area, California, the Northern Anatolian Fault, Turkey, Southern California, and the Marlborough Fault System, South Island, New Zealand. These are chosen for their varying level of fault complexity and we examine both interacting and non-interacting models in terms of their b-value and recurrence intervals for each region. Results will be compared and discussed.

  19. Mathematical methods in biology and neurobiology

    CERN Document Server

    Jost, Jürgen

    2014-01-01

    Mathematical models can be used to meet many of the challenges and opportunities offered by modern biology. The description of biological phenomena requires a range of mathematical theories. This is the case particularly for the emerging field of systems biology. Mathematical Methods in Biology and Neurobiology introduces and develops these mathematical structures and methods in a systematic manner. It studies:   • discrete structures and graph theory • stochastic processes • dynamical systems and partial differential equations • optimization and the calculus of variations.   The biological applications range from molecular to evolutionary and ecological levels, for example:   • cellular reaction kinetics and gene regulation • biological pattern formation and chemotaxis • the biophysics and dynamics of neurons • the coding of information in neuronal systems • phylogenetic tree reconstruction • branching processes and population genetics • optimal resource allocation • sexual recombi...

  20. Transforming Primary Mathematics

    Science.gov (United States)

    Askew, Mike

    2011-01-01

    What is good mathematics teaching? What is mathematics teaching good for? Who is mathematics teaching for? These are just some of the questions addressed in "Transforming Primary Mathematics", a highly timely new resource for teachers which accessibly sets out the key theories and latest research in primary maths today. Under-pinned by findings…

  1. Mathematical Epistemologies at Work.

    Science.gov (United States)

    Noss, Richard

    2002-01-01

    Investigates young people's expression of mathematical ideas with a computer, the nature of mathematical practices, and the problem of mathematical meaning from cognitive and socio-cultural perspectives. Describes a mathematical activity system designed for learning and the role of digital technologies in helping to understand and reshape the…

  2. Students as Mathematics Consultants

    Science.gov (United States)

    Jensen, Jennifer L.

    2013-01-01

    If students are going to develop reasoning and thinking skills, use their mathematical knowledge, and recognize the relevance of mathematics in their lives, they need to experience mathematics in meaningful ways. Only then will their mathematical skills be transferrable to all other parts of their lives. To promote such flexible mathematical…

  3. Mathematics through millenia

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations.......A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations....

  4. Mathematics through Millenia

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    2005-01-01

    A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations.......A brief tour through the history of mathematics from the very beginnings to modern times, with an emphasis on the main contributions and important periods of mathematics in various civilizations....

  5. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  6. Mastering mathematics geometry & measures

    CERN Document Server

    Various

    2014-01-01

    Deliver outstanding lessons that build fluency, problem-solving and mathematical reasoning skills to enable sustained progress at Key Stage 3, in preparation for GCSE. Mastering Mathematics provides flexible online and print teaching and learning resources. The service focuses on strands within the curriculum to improve progression throughout Secondary Mathematics . Mastering Mathematics Student Books and Whiteboard eTextbooks are organised into progression strands in line with Mastering Mathematics Teaching and Learning Resources:. - Enable students to identify appropriate remediation or exte

  7. Nanostructured cellular networks.

    Science.gov (United States)

    Moriarty, P; Taylor, M D R; Brust, M

    2002-12-01

    Au nanocrystals spin-coated onto silicon from toluene form cellular networks. A quantitative statistical crystallography analysis shows that intercellular correlations drive the networks far from statistical equilibrium. Spin-coating from hexane does not produce cellular structure, yet a strong correlation is retained in the positions of nanocrystal aggregates. Mechanisms based on Marangoni convection alone cannot account for the variety of patterns observed, and we argue that spinodal decomposition plays an important role in foam formation.

  8. Some applications and prospects of cellular automata in traffic problems

    NARCIS (Netherlands)

    Goldengorin, Boris; Makarenko, Alexander; Smelyanec, Natalia; Yacoubi, SE; Chopard, B; Bandini, S

    2006-01-01

    In this paper we deal with mathematical modeling of participants' movement based on cellular automata (CA). We describe some improvements of CA models of pedestrian motion taking into account the real geometrical constraints induced by a specific restricted space. Also some presumable optimization p

  9. Simulating Complex Systems by Cellular Automata

    CERN Document Server

    Kroc, Jiri; Hoekstra, Alfons G

    2010-01-01

    Deeply rooted in fundamental research in Mathematics and Computer Science, Cellular Automata (CA) are recognized as an intuitive modeling paradigm for Complex Systems. Already very basic CA, with extremely simple micro dynamics such as the Game of Life, show an almost endless display of complex emergent behavior. Conversely, CA can also be designed to produce a desired emergent behavior, using either theoretical methodologies or evolutionary techniques. Meanwhile, beyond the original realm of applications - Physics, Computer Science, and Mathematics – CA have also become work horses in very different disciplines such as epidemiology, immunology, sociology, and finance. In this context of fast and impressive progress, spurred further by the enormous attraction these topics have on students, this book emerges as a welcome overview of the field for its practitioners, as well as a good starting point for detailed study on the graduate and post-graduate level. The book contains three parts, two major parts on th...

  10. Mathematics without boundaries surveys in pure mathematics

    CERN Document Server

    Pardalos, Panos

    2014-01-01

    The contributions in this volume have been written by eminent scientists from the international mathematical community and present significant advances in several theories, methods and problems of Mathematical Analysis, Discrete Mathematics, Geometry and their Applications. The chapters focus on both old and recent developments in Functional Analysis, Harmonic Analysis, Complex Analysis, Operator Theory, Combinatorics, Functional Equations, Differential Equations as well as a variety of Applications. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical Sciences, and especially to graduate students looking for the  latest information.

  11. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.

    2013-01-01

    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.

  12. Additional force field in cooling process of cellular Al alloy

    Institute of Scientific and Technical Information of China (English)

    郑明军; 何德坪; 戴戈

    2002-01-01

    The foaming process of Al alloy is similar to that of Al, but there is a solid-liquid state zone in the solidification process of cellular Al alloy which does not exist in the case of Al. In the unidirectional solidification of cellular Al alloy, the proportion of the solid phase gradually reduces from the solid front to the liquid front. This will introduce a force and result in a serious quick shrinkage. By the mathematic and physical mode, the solidification of the cellular Al alloy is studied. The data measured by experiment are close to the result calculated by the mode. This kind of shrinkage can be solved by suitable cooling method in appropriate growth stage. The compressive strength of the cellular Al alloy made by this way is 40% higher than that of cellular Al.

  13. Cellular automata modelling of hantarvirus infection

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Karim, Mohamad Faisal [School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail: faisal@usm.my; Md Ismail, Ahmad Izani [School of Mathematical Sciences, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail: izani@cs.usm.my; Ching, Hoe Bee [School of Mathematical Sciences, Universiti Sains Malaysia, Minden 11800, Penang (Malaysia)], E-mail: Bee_Ching_Janice_Hoe@dell.com

    2009-09-15

    Hantaviruses are a group of viruses which have been identified as being responsible for the outbreak of diseases such as the hantavirus pulmonary syndrome. In an effort to understand the characteristics and dynamics of hantavirus infection, mathematical models based on differential equations have been developed and widely studied. However, such models neglect the local characteristics of the spreading process and do not include variable susceptibility of individuals. In this paper, we develop an alternative approach based on cellular automata to analyze and study the spatiotemporal patterns of hantavirus infection.

  14. Designing beauty the art of cellular automata

    CERN Document Server

    Martínez, Genaro

    2016-01-01

    This fascinating, colourful book offers in-depth insights and first-hand working experiences in the production of art works, using simple computational models with rich morphological behaviour, at the edge of mathematics, computer science, physics and biology. It organically combines ground breaking scientific discoveries in the theory of computation and complex systems with artistic representations of the research results. In this appealing book mathematicians, computer scientists, physicists, and engineers brought together marvelous and esoteric patterns generated by cellular automata, which are arrays of simple machines with complex behavior. Configurations produced by cellular automata uncover mechanics of dynamic patterns formation, their propagation and interaction in natural systems: heart pacemaker, bacterial membrane proteins, chemical rectors, water permeation in soil, compressed gas, cell division, population dynamics, reaction-diffusion media and self-organisation. The book inspires artists to tak...

  15. SELF-ORGANIZED CRITICALITY AND CELLULAR AUTOMATA

    Energy Technology Data Exchange (ETDEWEB)

    CREUTZ,M.

    2007-01-01

    Cellular automata provide a fascinating class of dynamical systems based on very simple rules of evolution yet capable of displaying highly complex behavior. These include simplified models for many phenomena seen in nature. Among other things, they provide insight into self-organized criticality, wherein dissipative systems naturally drive themselves to a critical state with important phenomena occurring over a wide range of length and the scales. This article begins with an overview of self-organized criticality. This is followed by a discussion of a few examples of simple cellular automaton systems, some of which may exhibit critical behavior. Finally, some of the fascinating exact mathematical properties of the Bak-Tang-Wiesenfeld sand-pile model [1] are discussed.

  16. An Invitation to Mathematics

    CERN Document Server

    Schleicher, Dierk

    2011-01-01

    This "Invitation to Mathematics" consists of 14 contributions, many from the world's leading mathematicians, which introduce the readers to exciting aspects of current mathematical research. The contributions are as varied as the personalities of active mathematicians, but together they show mathematics as a rich and lively field of research. The contributions are written for interested students at the age of transition between high school and university who know high school mathematics and perhaps competition mathematics and who want to find out what current research mathematics is

  17. Mathematics for Language, Language for Mathematics

    Science.gov (United States)

    Prochazkova, Lenka Tejkalova

    2013-01-01

    The author discusses the balance and mutual influence of the language of instruction and mathematics in the context of CLIL, Content and Language Integrated Learning. Different aspects of the relationship of language and Mathematics teaching and learning are discussed: the benefits of using a foreign language of instruction, as well as the…

  18. Epigenetics and Cellular Metabolism

    Science.gov (United States)

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well. PMID:27695375

  19. Architected Cellular Materials

    Science.gov (United States)

    Schaedler, Tobias A.; Carter, William B.

    2016-07-01

    Additive manufacturing enables fabrication of materials with intricate cellular architecture, whereby progress in 3D printing techniques is increasing the possible configurations of voids and solids ad infinitum. Examples are microlattices with graded porosity and truss structures optimized for specific loading conditions. The cellular architecture determines the mechanical properties and density of these materials and can influence a wide range of other properties, e.g., acoustic, thermal, and biological properties. By combining optimized cellular architectures with high-performance metals and ceramics, several lightweight materials that exhibit strength and stiffness previously unachievable at low densities were recently demonstrated. This review introduces the field of architected materials; summarizes the most common fabrication methods, with an emphasis on additive manufacturing; and discusses recent progress in the development of architected materials. The review also discusses important applications, including lightweight structures, energy absorption, metamaterials, thermal management, and bioscaffolds.

  20. Mathematical and statistical analysis

    Science.gov (United States)

    Houston, A. Glen

    1988-01-01

    The goal of the mathematical and statistical analysis component of RICIS is to research, develop, and evaluate mathematical and statistical techniques for aerospace technology applications. Specific research areas of interest include modeling, simulation, experiment design, reliability assessment, and numerical analysis.

  1. Developing My Mathematics Identity

    Science.gov (United States)

    Gonzalez, Lidia

    2016-01-01

    Assuming the role of storyteller, the author uses her experiences as a graduate student and beginning teacher to reflect critically on issues related to mathematics, mathematics education, gender, and diversity.

  2. Semiotic Scaffolding in Mathematics

    DEFF Research Database (Denmark)

    Johansen, Mikkel Willum; Misfeldt, Morten

    2015-01-01

    This paper investigates the notion of semiotic scaffolding in relation to mathematics by considering its influence on mathematical activities, and on the evolution of mathematics as a research field. We will do this by analyzing the role different representational forms play in mathematical...... cognition, and more broadly on mathematical activities. In the main part of the paper, we will present and analyze three different cases. For the first case, we investigate the semiotic scaffolding involved in pencil and paper multiplication. For the second case, we investigate how the development of new...... in both mathematical cognition and in the development of mathematics itself, but mathematical cognition cannot itself be reduced to the use of semiotic scaffolding....

  3. Mathematics for the nonmathematician

    CERN Document Server

    Kline, Morris

    1967-01-01

    Erudite and entertaining overview follows development of mathematics from ancient Greeks to present. Topics include logic and mathematics, the fundamental concept, differential calculus, probability theory, much more. Exercises and problems.

  4. Cellular blue naevus

    Directory of Open Access Journals (Sweden)

    Mittal R

    2001-01-01

    Full Text Available A 31-year-old man had asymptomatic, stationary, 1.5X2 cm, shiny, smooth, dark blue nodule on dorsum of right hand since 12-14 years. In addition he had developed extensive eruption of yellow to orange papulonodular lesions on extensors of limbs and buttocks since one and half months. Investigations confirmed that yellow papules were xanthomatosis and he had associated diabetes mellitus and hyperlipidaemia. Biopsy of blue nodule confirmed the clinical diagnosis of cellular blue naevus. Cellular blue naevus is rare and its association with xanthomatosis and diabetes mellitus were interesting features of above patients which is being reported for its rarity.

  5. Predictive model to describe water migration in cellular solid foods during storage

    NARCIS (Netherlands)

    Voogt, J.A.; Hirte, A.; Meinders, M.B.J.

    2011-01-01

    BACKGROUND: Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. RESULTS: Water migration in cellular solid foods invo

  6. Predictive model to describe water migration in cellular solid foods during storage

    NARCIS (Netherlands)

    Voogt, J.A.; Hirte, A.; Meinders, M.B.J.

    2011-01-01

    Background: Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Results: Water migration in cellular solid foods invo

  7. Modern mathematics made simple

    CERN Document Server

    Murphy, Patrick

    1982-01-01

    Modern Mathematics: Made Simple presents topics in modern mathematics, from elementary mathematical logic and switching circuits to multibase arithmetic and finite systems. Sets and relations, vectors and matrices, tesselations, and linear programming are also discussed.Comprised of 12 chapters, this book begins with an introduction to sets and basic operations on sets, as well as solving problems with Venn diagrams. The discussion then turns to elementary mathematical logic, with emphasis on inductive and deductive reasoning; conjunctions and disjunctions; compound statements and conditional

  8. Mastering mathematics statistics & probability

    CERN Document Server

    Various

    2014-01-01

    Mastering Mathematics provides flexible online and print teaching and learning resources. The service focuses on strands within the curriculum to improve progression throughout Secondary Mathematics. Mastering Mathematics Student Books and eBooks are organised into progression strands in line with Mastering Mathematics Teaching and Learning Resources:. - Enable students to identify appropriate remediation or extension steps they need in order to progress, through easy to follow progression charts. - Clear explanations of the tools needed for the chapter followed by questions that develop fluen

  9. Mastering mathematics number

    CERN Document Server

    Various

    2014-01-01

    Mastering Mathematics provides flexible online and print teaching and learning resources. The service focuses on strands within the curriculum to improve progression throughout Secondary Mathematics. Mastering Mathematics Student Books and Whiteboard eTextbooks are organised into progression strands in line with Mastering Mathematics Teaching and Learning Resources:. - Enable students to identify appropriate remediation or extension steps they need in order to progress, through easy to follow progression charts. - Clear explanations of the tools needed for the chapter followed by questions tha

  10. Defining Mathematical Giftedness

    Science.gov (United States)

    Parish, Linda

    2014-01-01

    This theoretical paper outlines the process of defining "mathematical giftedness" for a present study on how primary school teaching shapes the mindsets of children who are mathematically gifted. Mathematical giftedness is not a badge of honour or some special value attributed to a child who has achieved something exceptional.…

  11. Mathematics, Programming, and STEM

    Science.gov (United States)

    Yeh, Andy; Chandra, Vinesh

    2015-01-01

    Learning mathematics is a complex and dynamic process. In this paper, the authors adopt a semiotic framework (Yeh & Nason, 2004) and highlight programming as one of the main aspects of the semiosis or meaning-making for the learning of mathematics. During a 10- week teaching experiment, mathematical meaning-making was enriched when primary…

  12. Mathematics and Sports

    Science.gov (United States)

    Gallian, Joseph A., Ed.

    2010-01-01

    "Mathematics and Sports", edited by Joseph A. Gallian, gathers 25 articles that illuminate the power and role of mathematics in the worlds of professional and recreational play. Divided into sections by the kind of sports, the book offers source materials for classroom use and student projects. Readers will encounter mathematical ideas from an…

  13. Eleventh Year Mathematics.

    Science.gov (United States)

    Buchman, Aaron; Zimmerman, Robert

    This outline for Eleventh Year Mathematics in New York adheres closely to the recommendations of The Commission of Mathematics of the College Entrance Examination Board and thus presents a unified development of certain aspects of algebra, trigonometry, and analytic geometry. Its aim is both as a terminal course in mathematics and as a solid…

  14. The GF Mathematics Library

    CERN Document Server

    Saludes, Jordi; 10.4204/EPTCS.79.6

    2012-01-01

    This paper is devoted to present the Mathematics Grammar Library, a system for multilingual mathematical text processing. We explain the context in which it originated, its current design and functionality and the current development goals. We also present two prototype services and comment on possible future applications in the area of artificial mathematics assistants.

  15. Creating Words in Mathematics

    Science.gov (United States)

    Galligan, Linda

    2016-01-01

    A "National Numeracy Report" and the Australian Curriculum (2014) have recognised the importance of language in mathematics. The general capabilities contained within the "Australian Curriculum: Mathematics" (2014) highlight literacy as an important tool in the teaching and learning of mathematics, from the interpretation of…

  16. Mathematics and mysticism.

    Science.gov (United States)

    Abraham, Ralph

    2015-12-01

    Is there a world of mathematics above and beyond ordinary reality, as Plato proposed? Or is mathematics a cultural construct? In this short article we speculate on the place of mathematical reality from the perspective of the mystical cosmologies of the ancient traditions of meditation, psychedelics, and divination.

  17. Mathematics and Chemistry

    Science.gov (United States)

    Henson, R.; Stumbles, A.

    1977-01-01

    The relationship between mathematics and chemistry has been changing rapidly in recent years. Some chemistry teachers have experienced difficulties in their teaching with the introduction of modern mathematics in the schools. Some suggestions for reinforcing the concepts and language of modern mathematics are put forth. (Author/MA)

  18. Modern Versus Traditional Mathematics

    Science.gov (United States)

    Roberts, A. M.

    1974-01-01

    The effect of different secondary school mathematics syllabi on first-year performance in college-level mathematics was studied in an attempt to evaluate the syllabus change. Students with a modern mathematics background performed sigficantly better on most first-year units. A topic-by-topic analysis of results is included. (DT)

  19. Translations toward Connected Mathematics

    Science.gov (United States)

    Applebaum, Mark; Leikin, Roza

    2010-01-01

    The translation principle allows students to solve problems in different branches of mathematics and thus to develop connectedness in their mathematical knowledge. Successful application of the translation principle depends on the classroom mathematical norms for the development of discussions and the comparison of different solutions to one…

  20. Students' Mathematical Noticing

    Science.gov (United States)

    Lobato, Joanne; Hohensee, Charles; Rhodehamel, Bohdan

    2013-01-01

    Even in simple mathematical situations, there is an array of different mathematical features that students can attend to or notice. What students notice mathematically has consequences for their subsequent reasoning. By adapting work from both cognitive science and applied linguistics anthropology, we present a focusing framework, which treats…

  1. Masculinities in mathematics

    CERN Document Server

    Mendick, Heather

    2006-01-01

    The study of mathematics, with other ''gendered'' subjects such as science and engineering, usually attracts more male than female pupils. This book explores this phenomenon, addressing the important question of why more boys than girls choose to study mathematics. It illuminates what studying mathematics means for both students and teachers.

  2. Mathematics a minimal introduction

    CERN Document Server

    Buium, Alexandru

    2013-01-01

    Pre-Mathematical Logic Languages Metalanguage Syntax Semantics Tautologies Witnesses Theories Proofs Argot Strategies Examples Mathematics ZFC Sets Maps Relations Operations Integers Induction Rationals Combinatorics Sequences Reals Topology Imaginaries Residues p-adics Groups Orders Vectors Matrices Determinants Polynomials Congruences Lines Conics Cubics Limits Series Trigonometry Integrality Reciprocity Calculus Metamodels Categories Functors Objectives Mathematical Logic Models Incompleteness Bibliography Index

  3. Cellular rehabilitation of photobiomodulation

    Science.gov (United States)

    Liu, Timon Cheng-Yi; Yuan, Jian-Qin; Wang, Yan-Fang; Xu, Xiao-Yang; Liu, Song-Hao

    2007-05-01

    Homeostasis is a term that refers to constancy in a system. A cell in homeostasis normally functions. There are two kinds of processes in the internal environment and external environment of a cell, the pathogenic processes (PP) which disrupts the old homeostasis (OH), and the sanogenetic processes (SP) which restores OH or establishes a new homeostasis (NH). Photobiomodualtion (PBM), the cell-specific effects of low intensity monochromatic light or low intensity laser irradiation (LIL) on biological systems, is a kind of modulation on PP or SP so that there is no PBM on a cell in homeostasis. There are two kinds of pathways mediating PBM, the membrane endogenetic chromophores mediating pathways which often act through reactive oxygen species, and membrane proteins mediating pathways which often enhance cellular SP so that it might be called cellular rehabilitation. The cellular rehabilitation of PBM will be discussed in this paper. It is concluded that PBM might modulate the disruption of cellular homeostasis induced by pathogenic factors such as toxin until OH has been restored or NH has been established, but can not change homeostatic processes from one to another one.

  4. Cellular Response to Irradiation

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; YAN Shi-Wei

    2011-01-01

    To explore the nonlinear activities of the cellular signaling system composed of one transcriptional arm and one protein-interaction arm, we use an irradiation-response module to study the dynamics of stochastic interactions.It is shown that the oscillatory behavior could be described in a unified way when the radiation-derived signal and noise are incorporated.

  5. CATALAN NUMBERS, DYCK LANGUAGE AND TIME SERIES OF ELEMENTARY CELLULAR AUTOMATON OF RULE 56

    Institute of Scientific and Technical Information of China (English)

    QIN Dakang; XIE Huimin

    2005-01-01

    A new approach to study the evolution complexity of cellular automata is proposed and explained thoroughly by an example of elementary cellular automaton of rule 56. Using the tools of distinct excluded blocks, computational search and symbolic dynamics, the mathematical structure underlying the time series generated from the elementary cellular automaton of rule 56 is analyzed and its complexity is determined, in which the Dyck language and Catalan numbers emerge naturally.

  6. Mathematics in ancient Greece

    CERN Document Server

    Dantzig, Tobias

    2006-01-01

    More than a history of mathematics, this lively book traces mathematical ideas and processes to their sources, stressing the methods used by the masters of the ancient world. Author Tobias Dantzig portrays the human story behind mathematics, showing how flashes of insight in the minds of certain gifted individuals helped mathematics take enormous forward strides. Dantzig demonstrates how the Greeks organized their precursors' melange of geometric maxims into an elegantly abstract deductive system. He also explains the ways in which some of the famous mathematical brainteasers of antiquity led

  7. The development of mathematics

    CERN Document Server

    Bell, E T

    1992-01-01

    ""This important book . . . presents a broad account of the part played by mathematics in the evolution of civilization, describing clearly the main principles, methods, and theories of mathematics that have survived from about 4000 BC to 1940.""― BooklistIn this time-honored study, one of the 20th century's foremost scholars and interpreters of the history and meaning of mathematics masterfully outlines the development of its leading ideas, and clearly explains the mathematics involved in each. According to the author, a professor of mathematics at the California Institute of Technology from

  8. Fundamental concepts of mathematics

    CERN Document Server

    Goodstein, R L

    Fundamental Concepts of Mathematics, 2nd Edition provides an account of some basic concepts in modern mathematics. The book is primarily intended for mathematics teachers and lay people who wants to improve their skills in mathematics. Among the concepts and problems presented in the book include the determination of which integral polynomials have integral solutions; sentence logic and informal set theory; and why four colors is enough to color a map. Unlike in the first edition, the second edition provides detailed solutions to exercises contained in the text. Mathematics teachers and people

  9. Philosophy of mathematics

    CERN Document Server

    Gabbay, Dov M; Woods, John

    2009-01-01

    One of the most striking features of mathematics is the fact that we are much more certain about the mathematical knowledge we have than about what mathematical knowledge is knowledge of. Are numbers, sets, functions and groups physical entities of some kind? Are they objectively existing objects in some non-physical, mathematical realm? Are they ideas that are present only in the mind? Or do mathematical truths not involve referents of any kind? It is these kinds of questions that have encouraged philosophers and mathematicians alike to focus their attention on issues in the philosophy of mat

  10. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2013-01-01

    Mathematics for Physical Chemistry is the ideal supplementary text for practicing chemists and students who want to sharpen their mathematics skills while enrolled in general through physical chemistry courses. This book specifically emphasizes the use of mathematics in the context of physical chemistry, as opposed to being simply a mathematics text. This 4e includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The early chapters are constructed around a sequence of mathematical topics, wit

  11. Mathematics for the imagination

    CERN Document Server

    Higgins, Peter

    2002-01-01

    Mathematics for the Imagination provides an accessible and entertaining investigation into mathematical problems in the world around us. From world navigation, family trees, and calendars to patterns, tessellations, and number tricks, this informative and fun new book helps you to understand the maths behind real-life questions and rediscover your arithmetical mind.This is a follow-up to the popular Mathematics for the Curious, Peter Higgins's first investigation into real-life mathematical problems.A highly involving book which encourages the reader to enter into the spirit of mathematical ex

  12. The nature of mathematics

    CERN Document Server

    Jourdain, Philip E B

    2007-01-01

    Anyone with an interest in mathematics will welcome the republication of this little volume by a remarkable mathematician who was also a logician, a philosopher, and an occasional writer of fiction and poetry. Originally published in 1913, and later included in the acclaimed anthology The World of Mathematics, Jourdain's survey shows how and why the methods of mathematics were developed, traces the development of mathematical science from the earliest to modern times, and chronicles the application of mathematics to natural science.Starting with the ancient Egyptians and Greeks, the author p

  13. What is mathematical logic?

    CERN Document Server

    Crossley, J N; Brickhill, CJ; Stillwell, JC

    2010-01-01

    Although mathematical logic can be a formidably abstruse topic, even for mathematicians, this concise book presents the subject in a lively and approachable fashion. It deals with the very important ideas in modern mathematical logic without the detailed mathematical work required of those with a professional interest in logic.The book begins with a historical survey of the development of mathematical logic from two parallel streams: formal deduction, which originated with Aristotle, Euclid, and others; and mathematical analysis, which dates back to Archimedes in the same era. The streams beg

  14. Introductory discrete mathematics

    CERN Document Server

    Balakrishnan, V K

    2010-01-01

    This concise text offers an introduction to discrete mathematics for undergraduate students in computer science and mathematics. Mathematics educators consider it vital that their students be exposed to a course in discrete methods that introduces them to combinatorial mathematics and to algebraic and logical structures focusing on the interplay between computer science and mathematics. The present volume emphasizes combinatorics, graph theory with applications to some stand network optimization problems, and algorithms to solve these problems.Chapters 0-3 cover fundamental operations involv

  15. Mathematics for physicists

    CERN Document Server

    Martin, B R

    2015-01-01

    Mathematics for Physicists is a relatively short volume covering all the essential mathematics needed for a typical first degree in physics, from a starting point that is compatible with modern school mathematics syllabuses. Early chapters deliberately overlap with senior school mathematics, to a degree that will depend on the background of the individual reader, who may quickly skip over those topics with which he or she is already familiar. The rest of the book covers the mathematics that is usually compulsory for all students in their first two years of a typical university physics degree, plus a little more. There are worked examples throughout the text, and chapter-end problem sets. Mathematics for Physicists features: * Interfaces with modern school mathematics syllabuses * All topics usually taught in the first two years of a physics degree * Worked examples throughout * Problems in every chapter, with answers to selected questions at the end of the book and full solutions on a website This text will ...

  16. Mathematics Is Physics

    CERN Document Server

    Leifer, M S

    2015-01-01

    In this essay, I argue that mathematics is a natural science---just like physics, chemistry, or biology---and that this can explain the alleged "unreasonable" effectiveness of mathematics in the physical sciences. The main challenge for this view is to explain how mathematical theories can become increasingly abstract and develop their own internal structure, whilst still maintaining an appropriate empirical tether that can explain their later use in physics. In order to address this, I offer a theory of mathematical theory-building based on the idea that human knowledge has the structure of a scale-free network and that abstract mathematical theories arise from a repeated process of replacing strong analogies with new hubs in this network. This allows mathematics to be seen as the study of regularities, within regularities, within ..., within regularities of the natural world. Since mathematical theories are derived from the natural world, albeit at a much higher level of abstraction than most other scientif...

  17. The History of Mathematics and Mathematical Education

    Science.gov (United States)

    Grattan-Guinness, I.

    1977-01-01

    Answers to questions which were asked after the author's various lectures in Australia are gathered here. Topics touched upon include "new" mathematics, unknown constants and free variables, propositional functions, linear algebra, arithmetic and geometry, and student assessment. (MN)

  18. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  19. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  20. Environment Aware Cellular Networks

    KAUST Repository

    Ghazzai, Hakim

    2015-02-01

    The unprecedented rise of mobile user demand over the years have led to an enormous growth of the energy consumption of wireless networks as well as the greenhouse gas emissions which are estimated currently to be around 70 million tons per year. This significant growth of energy consumption impels network companies to pay huge bills which represent around half of their operating expenditures. Therefore, many service providers, including mobile operators, are looking for new and modern green solutions to help reduce their expenses as well as the level of their CO2 emissions. Base stations are the most power greedy element in cellular networks: they drain around 80% of the total network energy consumption even during low traffic periods. Thus, there is a growing need to develop more energy-efficient techniques to enhance the green performance of future 4G/5G cellular networks. Due to the problem of traffic load fluctuations in cellular networks during different periods of the day and between different areas (shopping or business districts and residential areas), the base station sleeping strategy has been one of the main popular research topics in green communications. In this presentation, we present several practical green techniques that provide significant gains for mobile operators. Indeed, combined with the base station sleeping strategy, these techniques achieve not only a minimization of the fossil fuel consumption but also an enhancement of mobile operator profits. We start with an optimized cell planning method that considers varying spatial and temporal user densities. We then use the optimal transport theory in order to define the cell boundaries such that the network total transmit power is reduced. Afterwards, we exploit the features of the modern electrical grid, the smart grid, as a new tool of power management for cellular networks and we optimize the energy procurement from multiple energy retailers characterized by different prices and pollutant

  1. Secondary School Mathematics Teachers' Attitude in Teaching Mathematics

    Directory of Open Access Journals (Sweden)

    Mulugeta Atnafu

    2014-02-01

    Full Text Available The purpose of this study was to examine Addis Ababa secondary school mathematics teachers’ attitude in teaching mathematics. 148 mathematics teachers were selected using cluster sampling from Addis Ababa administration region. The study used survey method of data collection and it includes both quantitative and qualitative research methods. From the independent t-test, ANOVA, tukey test and regression analysis, some of the results obtained were: the majority of the secondary school mathematics teachers do not possess positive attitude in teaching mathematics; the most challenge area that affect the attitude in teaching mathematics was motivation in teaching mathematics; no significant differences in all variables with respect to sex and service year; the medium age of mathematics teachers were found to have significantly the most successful in teaching mathematics than young and old mathematics teachers; the master mathematics teachers were found to have significantly the highest and the diploma mathematics teachers were found to have the least attitude, confidence and anxiety of teaching mathematics;the relatively high salary of the mathematics teachers were found to have significantly the highest attitude in teaching mathematics and the average salary of the mathematics teachers were found to have significantly the highest anxiety in teaching mathematics. All the variables sex, age, education, service year and salary of the mathematics teachers were significantly contributing to the equation for predicting mathematics teachers’ attitude and only education was significantly contributing to the equation for predicting mathematics teachers’ attitude in teaching mathematics.

  2. Open problems in mathematics

    CERN Document Server

    Nash, Jr, John Forbes

    2016-01-01

    The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer sc...

  3. Mathematical Sciences Institute Workshop

    CERN Document Server

    Scott, Philip

    1990-01-01

    A so-called "effective" algorithm may require arbitrarily large finite amounts of time and space resources, and hence may not be practical in the real world. A "feasible" algorithm is one which only requires a limited amount of space and/or time for execution; the general idea is that a feasible algorithm is one which may be practical on today's or at least tomorrow's computers. There is no definitive analogue of Church's thesis giving a mathematical definition of feasibility; however, the most widely studied mathematical model of feasible computability is polynomial-time computability. Feasible Mathematics includes both the study of feasible computation from a mathematical and logical point of view and the reworking of traditional mathematics from the point of view of feasible computation. The diversity of Feasible Mathematics is illustrated by the. contents of this volume which includes papers on weak fragments of arithmetic, on higher type functionals, on bounded linear logic, on sub recursive definitions ...

  4. International Mathematical Internet Olympiad

    Directory of Open Access Journals (Sweden)

    Alexander Domoshnitsky

    2012-10-01

    Full Text Available Modern Internet technologies open new possibilities in wide spectrum of traditional methods used in mathematical education. One of the areas, where these technologies can be efficiently used, is an organization of mathematical competitions. Contestants can stay at their schools or universities and try to solve as many mathematical problems as possible and then submit their solutions through Internet. Simple Internet technologies supply audio and video connection between participants and organizers.

  5. Advances in mathematical economics

    CERN Document Server

    Yamazaki, Akira

    2006-01-01

    A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions.Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking for effective mathematical tools for their researchers.

  6. Interactive Mathematics Textbooks

    DEFF Research Database (Denmark)

    Sinclair, Robert

    1999-01-01

    We claim that important considerations have been overlooked in designinginteractive mathematics educational software in the past.In particular,most previous work has concentrated on how to make use ofpre-existing software in mathematics education, rather than firstasking the more...... fundamentalquestion of which requirements mathematics education puts on software, and thendesigning software to fulfil these requirements.We present a working prototype system which takes a script defining an interactivemathematicaldocument and then provides a reader with an interactive realization of thatdocument....

  7. Educating mathematics teacher educators

    DEFF Research Database (Denmark)

    Højgaard, Tomas; Jankvist, Uffe Thomas

    2014-01-01

    The paper argues for a three-dimensional course design structure for future mathematics teacher educators. More precisely we describe the design and implementation of a course basing itself on: the two mathematical competencies of modelling and problem tackling, this being the first dimension......; the two mathematical topics of differential equations and stochastics, this being the second dimension; and finally a third dimension the purpose of which is to deepen the two others by means of a didactical perspective....

  8. Learning Mathematics through Programming

    DEFF Research Database (Denmark)

    Misfeldt, Morten; Ejsing-Duun, Stine

    2015-01-01

    In this paper we explore the potentials for learning mathematics through programming by a combination of theoretically derived potentials and cases of practical pedagogical work. We propose a model with three interdependent learning potentials as programming which can: (1) help reframe the students...... to mathematics is paramount. Analyzing two cases, we suggest a number of ways in which didactical attention to epistemic mediation can support learning mathematics....

  9. Advances in mathematical economics

    CERN Document Server

    Maruyama, Toru

    2015-01-01

    The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories.

  10. Advances in mathematical economics

    CERN Document Server

    Maruyama, Toru

    2016-01-01

    The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories.

  11. Advances in mathematical economics

    CERN Document Server

    Yamazaki, Akira

    2006-01-01

    A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking for effective mathematical tools for their researchers.

  12. Mathematics in India

    CERN Document Server

    Plofker, Kim

    2009-01-01

    Based on extensive research in Sanskrit sources, Mathematics in India chronicles the development of mathematical techniques and texts in South Asia from antiquity to the early modern period. Kim Plofker reexamines the few facts about Indian mathematics that have become common knowledge--such as the Indian origin of Arabic numerals--and she sets them in a larger textual and cultural framework. The book details aspects of the subject that have been largely passed over in the past, including the relationships between Indian mathematics and astronomy, and their cross-fertilizations with Islamic sc

  13. Mathematics, Mathematicians, and Desire

    OpenAIRE

    Roodal Persad, Veda

    2014-01-01

    This thesis is about mapping the landscape of engagement with mathematics, including elucidating aspects of who we are, as human beings, when we do mathematics and of what mathematics calls us to do if we are to engage with it. Using the concept of desire in the psychoanalytic theory of Jacques Lacan and the forms of desire as elucidated by the Lacanian theorist, Mark Bracher, I seek to find out what the mathematical encounter takes (the demands and costs) and what it gives (the offers and re...

  14. Teaching secondary mathematics

    CERN Document Server

    Rock, David

    2013-01-01

    Solidly grounded in up-to-date research, theory and technology,?Teaching Secondary Mathematics?is a practical, student-friendly, and popular text for secondary mathematics methods courses. It provides clear and useful approaches for mathematics teachers, and shows how concepts typically found in a secondary mathematics curriculum can be taught in a positive and encouraging way. The thoroughly revised fourth edition combines this pragmatic approach with truly innovative and integrated technology content throughout. Synthesized content between the book and comprehensive companion websi

  15. Mathematical fallacies and paradoxes

    CERN Document Server

    Bunch, Bryan

    1982-01-01

    Stimulating, thought-provoking analysis of the most interesting intellectual inconsistencies in mathematics, physics, and language, including being led astray by algebra (De Morgan's paradox). 1982 edition.

  16. Mathematics in civilization

    CERN Document Server

    Resnikoff, Howard L

    2015-01-01

    Space flight, computers, lasers, and information technology ― these are but a few examples of the spectacular growth, development, and far-reaching applications of mathematics. But what of the field's past? Upon which intellectual milestones were the foundations of modern mathematics constructed? How has our comprehension of the physical universe, language, and the nature of thought itself been influenced and informed by the developments of mathematics through the ages?This lucid presentation examines how mathematics shaped and was shaped by the course of human events. In a format suited to co

  17. Mathematics at University

    DEFF Research Database (Denmark)

    Winsløw, Carl

    2015-01-01

    Mathematics is studied in universities by a large number of students. At the same time it is a field of research for a (smaller) number of university teachers. What relations, if any, exist between university research and teaching of mathematics? Can research “support” teaching? What research...... and what teaching? In this presentation we propose a theoretical framework to study these questions more precisely, based on the anthropological theory of didactics. As a main application, the links between the practices of mathematical research and university mathematics teaching are examined...

  18. Handbook of mathematics

    CERN Document Server

    Kuipers, L

    1969-01-01

    International Series of Monographs in Pure and Applied Mathematics, Volume 99: Handbook of Mathematics provides the fundamental mathematical knowledge needed for scientific and technological research. The book starts with the history of mathematics and the number systems. The text then progresses to discussions of linear algebra and analytical geometry including polar theories of conic sections and quadratic surfaces. The book then explains differential and integral calculus, covering topics, such as algebra of limits, the concept of continuity, the theorem of continuous functions (with examp

  19. 50 visions of mathematics

    CERN Document Server

    O'Briain, Dara

    2014-01-01

    Relax: no one understands technical mathematics without lengthy training but we all have an intuitive grasp of the ideas behind the symbols. To celebrate the 50th anniversary of the founding of the Institute of Mathematics and its Applications (IMA), this book is designed to showcase the beauty of mathematics - including images inspired by mathematical problems - together with its unreasonable effectiveness and applicability, without frying your brain. The book is a collection of 50 original essays contributed by a wide variety of authors. It contains articles by some of the best expositors of

  20. Meaning in mathematics

    CERN Document Server

    2011-01-01

    Is mathematics a highly sophisticated intellectual game in which the adepts display their skill by tackling invented problems, or are mathematicians engaged in acts of discovery as they explore an independent realm of mathematical reality? Why does this seemingly abstract discipline provide the key to unlocking the deep secrets of the physical universe? How one answers these questions will significantly influence metaphysical thinking about reality. This book is intended to fill a gap between popular 'wonders of mathematics' books and the technical writings of the philosophers of mathematics.

  1. Sixth form pure mathematics

    CERN Document Server

    Plumpton, C

    1968-01-01

    Sixth Form Pure Mathematics, Volume 1, Second Edition, is the first of a series of volumes on Pure Mathematics and Theoretical Mechanics for Sixth Form students whose aim is entrance into British and Commonwealth Universities or Technical Colleges. A knowledge of Pure Mathematics up to G.C.E. O-level is assumed and the subject is developed by a concentric treatment in which each new topic is used to illustrate ideas already treated. The major topics of Algebra, Calculus, Coordinate Geometry, and Trigonometry are developed together. This volume covers most of the Pure Mathematics required for t

  2. A Capstone Mathematics Course for Prospective Secondary Mathematics Teachers

    Science.gov (United States)

    Artzt, Alice F.; Sultan, Alan; Curcio, Frances R.; Gurl, Theresa

    2012-01-01

    This article describes an innovative capstone mathematics course that links college mathematics with school mathematics and pedagogy. It describes how college juniors in a secondary mathematics teacher preparation program engage in leadership experiences that enable them to learn mathematics for teaching while developing student-centered…

  3. On Mathematical Understanding: Perspectives of Experienced Chinese Mathematics Teachers

    Science.gov (United States)

    Cai, Jinfa; Ding, Meixia

    2017-01-01

    Researchers have long debated the meaning of mathematical understanding and ways to achieve mathematical understanding. This study investigated experienced Chinese mathematics teachers' views about mathematical understanding. It was found that these mathematics teachers embrace the view that understanding is a web of connections, which is a result…

  4. Mathematics for Teaching: A Form of Applied Mathematics

    Science.gov (United States)

    Stylianides, Gabriel J.; Stylianides, Andreas J.

    2010-01-01

    In this article we elaborate a conceptualisation of "mathematics for teaching" as a form of applied mathematics (using Bass's idea of characterising mathematics education as a form of applied mathematics) and we examine implications of this conceptualisation for the mathematical preparation of teachers. Specifically, we focus on issues of design…

  5. Exploring Differential Effects of Mathematics Courses on Mathematics Achievement

    Science.gov (United States)

    Ma, Xin; McIntyre, Laureen J.

    2005-01-01

    Using data from the Longitudinal Study of Mathematics Participation (N = 1,518 students from 34 schools), we investigated the effects of pure and applied mathematics courses on mathematics achievement, controlling for prior mathematics achievement. Results of multilevel modelling showed that the effects of pure mathematics were significant after…

  6. Using Mathematics Literature with Prospective Secondary Mathematics Teachers

    Science.gov (United States)

    Jett, Christopher C.

    2014-01-01

    Literature in mathematics has been found to foster positive improvements in mathematics learning. This manuscript reports on a mathematics teacher educator's use of literature via literature circles with 11 prospective secondary mathematics teachers in a mathematics content course. Using survey and reflection data, the author found that…

  7. Cellular communication through light.

    Directory of Open Access Journals (Sweden)

    Daniel Fels

    Full Text Available Information transfer is a fundamental of life. A few studies have reported that cells use photons (from an endogenous source as information carriers. This study finds that cells can have an influence on other cells even when separated with a glass barrier, thereby disabling molecule diffusion through the cell-containing medium. As there is still very little known about the potential of photons for intercellular communication this study is designed to test for non-molecule-based triggering of two fundamental properties of life: cell division and energy uptake. The study was performed with a cellular organism, the ciliate Paramecium caudatum. Mutual exposure of cell populations occurred under conditions of darkness and separation with cuvettes (vials allowing photon but not molecule transfer. The cell populations were separated either with glass allowing photon transmission from 340 nm to longer waves, or quartz being transmittable from 150 nm, i.e. from UV-light to longer waves. Even through glass, the cells affected cell division and energy uptake in neighboring cell populations. Depending on the cuvette material and the number of cells involved, these effects were positive or negative. Also, while paired populations with lower growth rates grew uncorrelated, growth of the better growing populations was correlated. As there were significant differences when separating the populations with glass or quartz, it is suggested that the cell populations use two (or more frequencies for cellular information transfer, which influences at least energy uptake, cell division rate and growth correlation. Altogether the study strongly supports a cellular communication system, which is different from a molecule-receptor-based system and hints that photon-triggering is a fine tuning principle in cell chemistry.

  8. Cellular automata: structures

    OpenAIRE

    Ollinger, Nicolas

    2002-01-01

    Jury : François Blanchard (Rapporteur), Marianne Delorme (Directeur), Jarkko Kari (Président), Jacques Mazoyer (Directeur), Dominique Perrin, Géraud Sénizergues (Rapporteur); Cellular automata provide a uniform framework to study an important problem of "complex systems" theory: how and why do system with a easily understandable -- local -- microscopic behavior can generate a more complicated -- global -- macroscopic behavior? Since its introduction in the 40s, a lot of work has been done to ...

  9. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  10. Failover in cellular automata

    CERN Document Server

    Kumar, Shailesh

    2010-01-01

    A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.

  11. Remedial Mathematics for Quantum Chemistry

    Science.gov (United States)

    Koopman, Lodewijk; Brouwer, Natasa; Heck, Andre; Buma, Wybren Jan

    2008-01-01

    Proper mathematical skills are important for every science course and mathematics-intensive chemistry courses rely on a sound mathematical pre-knowledge. In the first-year quantum chemistry course at this university, it was noticed that many students lack basic mathematical knowledge. To tackle the mathematics problem, a remedial mathematics…

  12. Proof and knowledge in mathematics

    CERN Document Server

    Detlefsen, Michael

    2005-01-01

    These questions arise from any attempt to discover an epistemology for mathematics. This collection of essays considers various questions concerning the nature of justification in mathematics and possible sources of that justification. Among these are the question of whether mathematical justification is a priori or a posteriori in character, whether logical and mathematical differ, and if formalization plays a significant role in mathematical justification,

  13. MIMO Cellular Networks with Simultaneous Wireless Information and Power Transfer

    OpenAIRE

    2016-01-01

    International audience; In this paper, we introduce a mathematical approach for system-level analysis and optimization of densely deployed multiple-antenna cellular networks, where low-energy devices are capable of decoding information data and harvesting power simultaneously. The base stations are assumed to be deployed according to a Poisson point process and tools from stochastic geometry are exploited to quantify the trade-off in terms of information rate and harvested power. It is shown ...

  14. The mathematics companion mathematical methods for physicists and engineers

    CERN Document Server

    Fischer-Cripps, Anthony C

    2014-01-01

    Part 1 Essential Mathematics: Basic mathematics. Differentiation. Integration. Exponentials and logarithms. Hyperbolic functions. Infinite series. Part 2 Advance Mathematics: Ordinary differential equations. Laplace transforms. Vector analysis. Partial derivatives. Multiple integrals. Fourier series. Special functions. Partial differential equations.

  15. Developing Mathematical Vocabulary.

    Science.gov (United States)

    Monroe, Eula Ewing; Orme, Michelle P.

    2002-01-01

    This article discusses the importance of mathematical vocabulary, difficulties students encounter in learning this vocabulary, and some instructional strategies. Two general methods for teaching vocabulary are discussed: context and explicit vocabulary instruction. The methods are summarized as they apply to mathematical vocabulary instruction and…

  16. Dyslexia, Dyspraxia and Mathematics.

    Science.gov (United States)

    Yeo, Dorian

    This book explores how primary school children with dyslexia or dyspraxia and difficulty in math can learn math and provides practical support and detailed teaching suggestions. It considers cognitive features that underlie difficulty with mathematics generally or with specific aspects of mathematics. It outlines the ways in which children usually…

  17. Computer Aided Mathematics

    DEFF Research Database (Denmark)

    Sinclair, Robert

    1998-01-01

    Course notes of a PhD course held in 1998. The central idea is to introduce students to computational mathematics using object oriented programming in C++.......Course notes of a PhD course held in 1998. The central idea is to introduce students to computational mathematics using object oriented programming in C++....

  18. See a Different Mathematics

    Science.gov (United States)

    Stallings, L. Lynn

    2007-01-01

    This article proposes four strategies for posing mathematics problems that raise the cognitive demands of the tasks given to students. Each strategy is illustrated with three common middle school mathematics examples: finding the greatest common factor, finding area or perimeter, and finding the equation of a line. Posing these types of problems…

  19. Teaching Mathematical Modelling.

    Science.gov (United States)

    Jones, Mark S.

    1997-01-01

    Outlines a course at the University of Glamorgan in the United Kingdom in which a computer algebra system (CAS) teaches mathematical modeling. The format is based on continual assessment of group and individual work stating the problem, a feature list, and formulation of the models. No additional mathematical word processing package is necessary.…

  20. Mathematics: Content and Pedagogy

    Science.gov (United States)

    Ediger, Marlow

    2009-01-01

    The debate has gone on for some time in terms of which is more salient for the teacher to be well versed in, mathematical content versus methods and approaches in teaching. Both are salient. They cannot be separated from each other. The mathematics teacher must indeed have broad, in-depth knowledge of subject matter as well as in teaching and…

  1. Mathematics and Literature

    Institute of Scientific and Technical Information of China (English)

    田琳

    2016-01-01

    In both China and the West, mathematics is closely connected with literature. The maths thought implied in Chinese and western literature is worth our study, and the maths thought in the field of literature is also appear in aesthetics and philoso-phy, so literature, mathematics, aesthetics and philosophy become a network of interconnected.

  2. Issues in Teaching Mathematics

    Science.gov (United States)

    Ediger, Marlow

    2013-01-01

    In this article, the author states that there are selected issues in mathematics instruction that educators should be well aware of when planning lessons and units of study. These issues provide a basis for thought and discussion when assisting pupils to attain more optimally. Purposeful studying of issues guides mathematics teachers in…

  3. Building Mathematics Vocabulary

    Science.gov (United States)

    Kovarik, Madeline

    2010-01-01

    Although mathematics is visual language of symbols and numbers it is also expressed and explained through written and spoken words. For students to excel in mathematics, they must recognize, comprehend and apply the requisite vocabulary. Thus, vocabulary instruction is as critical in content areas as it is in language arts. It is especially…

  4. Business Mathematics Curriculum.

    Science.gov (United States)

    EASTCONN Regional Educational Services Center, North Windham, CT.

    This curriculum guide for teaching business mathematics in the Connecticut Vocational-Technical School System is based on the latest thinking of instructors in the field, suggestions from mathematics authorities, and current instructional approaches in education. The curriculum guide consists of six sections: (1) career relationships and…

  5. History of Mathematics

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard; Gray, Jeremy

    Volume 1 in Theme on "History of Mathematics", in "Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO.......Volume 1 in Theme on "History of Mathematics", in "Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO....

  6. Mathematics Teaching and Inclusion

    DEFF Research Database (Denmark)

    This volume contains the proceedings of the 3rd Nordic Research Conference on Special Needs Education in Mathematics, which took place in Rebild organised by Aalborg University in November 23-25, 2005. The theme of the conference was Mathematics Education and Inclusion. The conference theme...

  7. Experimenting with Mathematical Biology

    Science.gov (United States)

    Sanft, Rebecca; Walter, Anne

    2016-01-01

    St. Olaf College recently added a Mathematical Biology concentration to its curriculum. The core course, Mathematics of Biology, was redesigned to include a wet laboratory. The lab classes required students to collect data and implement the essential modeling techniques of formulation, implementation, validation, and analysis. The four labs…

  8. Mathematics across the Curriculum.

    Science.gov (United States)

    Kleiman, Glenn M.

    1991-01-01

    Except for its relationship to science, mathematics is the forgotten cousin in interdisciplinary teaching and learning. In the Journeys in Mathematics project, teachers engage children in imaginative activities that inspire them to identify patterns and relationships, solve problems, and communicate accurately, using Jonathan Swift's…

  9. Mathematics Education in Argentina

    Science.gov (United States)

    Varsavsky, Cristina; Anaya, Marta

    2009-01-01

    This article gives an overview of the state of mathematics education in Argentina across all levels, in the regional and world contexts. Statistics are drawn from Mercosur and UNESCO data bases, World Education Indicators and various national time-series government reports. Mathematics results in national testing programmes, Programme for…

  10. Discrete Mathematics Re "Tooled."

    Science.gov (United States)

    Grassl, Richard M.; Mingus, Tabitha T. Y.

    1999-01-01

    Indicates the importance of teaching discrete mathematics. Describes how the use of technology can enhance the teaching and learning of discrete mathematics. Explorations using Excel, Derive, and the TI-92 proved how preservice and inservice teachers experienced a new dimension in problem solving and discovery. (ASK)

  11. Teaching Mathematical Induction I.

    Science.gov (United States)

    Dubinsky, Ed

    1986-01-01

    A novel approach to teaching mathematical induction was used, based on a Piagetian theory of learning abstract mathematical concepts in which the learner uses reflective abstraction to construct new schemas out of old ones. Computer experiences are used to induce students to make the appropriate reflective abstractions. (MNS)

  12. Elementary Mathematics Leaders

    Science.gov (United States)

    Fennell, Francis; Kobett, Beth McCord; Wray, Jonathan A.

    2013-01-01

    Elementary school mathematics leaders often come to the realization that their position, however titled and determined, although dedicated to addressing needs in math teaching and learning, also entails and directly involves leadership. Elementary school math specialists/instructional leaders (referenced here as elementary mathematics leaders, or…

  13. Mathematics and Gender.

    Science.gov (United States)

    Fennema, Elizabeth, Ed.; Leder, Gilah C., Ed.

    This book reports on various studies that have increased our understanding of why females and males learn different kinds and amounts of mathematics. In particular, this book explicates the Autonomous Learning Behavior model, proposed by Fennema and Peterson, which is a possible explanation of the development of gender differences in mathematics.…

  14. Astronomy and Mathematics Education

    Science.gov (United States)

    Ros, Rosa M.

    There are many European countries where Astronomy does not appear as a specific course on the secondary school. In these cases Astronomy content can be introduced by means of other subjects. There are some astronomical topics within the subject of Physics but this talk concerns introducing Astronomy in Mathematics classes. Teaching Astronomy through Mathematics would result in more exposure than through Physics as Mathematics is more prevalent in the curriculum. Generally it is not easy to motivate students in Mathematics but they are motivated to find out more about the universe and Astronomy current events than appears in the media. This situation can be an excellent introduction to several mathematics topics. The teachers in secondary and high school can use this idea in order to present more attractive mathematics courses. In particular some different examples will be offered regarding * Angles and spherical coordinates considering star traces * Logarithms and visual magnitudes * Plane trigonometry related orbital movements * Spherical trigonometry in connection with ecliptic obliquity * Conic curves related to sundial at several latitudes Some students do not enjoy studying Mathematics but they can be attracted by practical situations using Applied Mathematics: Astronomy is always very attractive to teenagers.

  15. The Algorithm of Continuous Optimization Based on the Modified Cellular Automaton

    Directory of Open Access Journals (Sweden)

    Oleg Evsutin

    2016-08-01

    Full Text Available This article is devoted to the application of the cellular automata mathematical apparatus to the problem of continuous optimization. The cellular automaton with an objective function is introduced as a new modification of the classic cellular automaton. The algorithm of continuous optimization, which is based on dynamics of the cellular automaton having the property of geometric symmetry, is obtained. The results of the simulation experiments with the obtained algorithm on standard test functions are provided, and a comparison between the analogs is shown.

  16. Mathematics of aperiodic order

    CERN Document Server

    Lenz, Daniel; Savinien, Jean

    2015-01-01

    What is order that is not based on simple repetition, that is, periodicity? How must atoms be arranged in a material so that it diffracts like a quasicrystal? How can we describe aperiodically ordered systems mathematically? Originally triggered by the – later Nobel prize-winning – discovery of quasicrystals, the investigation of aperiodic order has since become a well-established and rapidly evolving field of mathematical research with close ties to a surprising variety of branches of mathematics and physics. This book offers an overview of the state of the art in the field of aperiodic order, presented in carefully selected authoritative surveys. It is intended for non-experts with a general background in mathematics, theoretical physics or computer science, and offers a highly accessible source of first-hand information for all those interested in this rich and exciting field. Topics covered include the mathematical theory of diffraction, the dynamical systems of tilings or Delone sets, their cohomolog...

  17. Canadian Mathematical Congress

    CERN Document Server

    1977-01-01

    For two weeks in August, 1975 more than 140 mathematicians and other scientists gathered at the Universite de Sherbrooke. The occasion was the 15th Biennial Seminar of the Canadian Mathematical Congress, entitled Mathematics and the Life Sciences. Participants in this inter­ disciplinary gathering included researchers and graduate students in mathematics, seven different areas of biological science, physics, chemistry and medical science. Geographically, those present came from the United States and the United Kingdom as well as from academic departments and government agencies scattered across Canada. In choosing this particular interdisciplinary topic the programme committee had two chief objectives. These were to promote Canadian research in mathematical problems of the life sciences, and to encourage co-operation and exchanges between mathematical scientists" biologists and medical re­ searchers. To accomplish these objective the committee assembled a stim­ ulating programme of lectures and talks. Six ...

  18. Advanced engineering mathematics

    CERN Document Server

    Jeffrey, Alan

    2001-01-01

    Advanced Engineering Mathematics provides comprehensive and contemporary coverage of key mathematical ideas, techniques, and their widespread applications, for students majoring in engineering, computer science, mathematics and physics. Using a wide range of examples throughout the book, Jeffrey illustrates how to construct simple mathematical models, how to apply mathematical reasoning to select a particular solution from a range of possible alternatives, and how to determine which solution has physical significance. Jeffrey includes material that is not found in works of a similar nature, such as the use of the matrix exponential when solving systems of ordinary differential equations. The text provides many detailed, worked examples following the introduction of each new idea, and large problem sets provide both routine practice, and, in many cases, greater challenge and insight for students. Most chapters end with a set of computer projects that require the use of any CAS (such as Maple or Mathematica) th...

  19. Developing mathematical modelling competence

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Jensen, Tomas Højgaard

    2003-01-01

    In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding...... the balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....

  20. Mathematics in everyday life

    CERN Document Server

    Haigh, John

    2016-01-01

    How does mathematics impact everyday events? The purpose of this book is to show a range of examples where mathematics can be seen at work in everyday life. From money (APR, mortgage repayments, personal finance), simple first and second order ODEs, sport and games (tennis, rugby, athletics, darts, tournament design, soccer, snooker), business (stock control, linear programming, check digits, promotion policies, investment), the social sciences (voting methods, Simpson’s Paradox, drug testing, measurements of inequality) to TV game shows and even gambling (lotteries, roulette, poker, horse racing), the mathematics behind commonplace events is explored. Fully worked examples illustrate the ideas discussed and each chapter ends with a collection of exercises. Everyday Mathematics supports other first year modules by giving students extra practice in working with calculus, linear algebra, geometry, trigonometry and probability. Secondary/high school level mathematics is all that is required for students to und...

  1. Knowledge discovery for geographical cellular automata

    Institute of Scientific and Technical Information of China (English)

    LI Xia; Anthony Gar-On Yeh

    2005-01-01

    This paper proposes a new method for geographical simulation by applying data mining techniques to cellular automata. CA has strong capabilities in simulating complex systems. The core of CA is how to define transition rules. There are no good methods for defining these transition rules. They are usually defined by using heuristic methods and thus subject to uncertainties. Mathematical equations are used to represent transition rules implicitly and have limitations in capturing complex relationships. This paper demonstrates that the explicit transition rules of CA can be automatically reconstructed through the rule induction procedure of data mining. The proposed method can reduce the influences of individual knowledge and preferences in defining transition rules and generate more reliable simulation results. It can efficiently discover knowledge from a vast volume of spatial data.

  2. Particles and Patterns in Cellular Automata

    Energy Technology Data Exchange (ETDEWEB)

    Jen, E.; Das, R.; Beasley, C.E.

    1999-06-03

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Our objective has been to develop tools for studying particle interactions in a class of dynamical systems characterized by discreteness, determinism, local interaction, and an inherently parallel form of evolution. These systems can be described by cellular automata (CA) and the behavior we studied has improved our understanding of the nature of patterns generated by CAs, their ability to perform global computations, and their relationship to continuous dynamical systems. We have also developed a rule-table mathematics that enables one to custom-design CA rule tables to generate patterns of specified types, or to perform specified computational tasks.

  3. Examining Fourth-Grade Mathematics Writing: Features of Organization, Mathematics Vocabulary, and Mathematical Representations

    Science.gov (United States)

    Hebert, Michael A.; Powell, Sarah R.

    2016-01-01

    Increasingly, students are expected to write about mathematics. Mathematics writing may be informal (e.g., journals, exit slips) or formal (e.g., writing prompts on high-stakes mathematics assessments). In order to develop an effective mathematics-writing intervention, research needs to be conducted on how students organize mathematics writing and…

  4. Cellular image classification

    CERN Document Server

    Xu, Xiang; Lin, Feng

    2017-01-01

    This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR'12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP'13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one’s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is stable and effective in optical...

  5. Multiuser Cellular Network

    CERN Document Server

    Bao, Yi; Chen, Ming

    2011-01-01

    Modern radio communication is faced with a problem about how to distribute restricted frequency to users in a certain space. Since our task is to minimize the number of repeaters, a natural idea is enlarging coverage area. However, coverage has restrictions. First, service area has to be divided economically as repeater's coverage is limited. In this paper, our fundamental method is to adopt seamless cellular network division. Second, underlying physics content in frequency distribution problem is interference between two close frequencies. Consequently, we choose a proper frequency width of 0.1MHz and a relevantly reliable setting to apply one frequency several times. We make a few general assumptions to simplify real situation. For instance, immobile users yield to homogenous distribution; repeaters can receive and transmit information in any given frequency in duplex operation; coverage is mainly decided by antenna height. Two models are built up to solve 1000 users and 10000 users situations respectively....

  6. Engineering Cellular Metabolism.

    Science.gov (United States)

    Nielsen, Jens; Keasling, Jay D

    2016-03-10

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation.

  7. Mathematics as verbal behavior.

    Science.gov (United States)

    Marr, M Jackson

    2015-04-01

    "Behavior which is effective only through the mediation of other persons has so many distinguishing dynamic and topographical properties that a special treatment is justified and indeed demanded" (Skinner, 1957, p. 2). Skinner's demand for a special treatment of verbal behavior can be extended within that field to domains such as music, poetry, drama, and the topic of this paper: mathematics. For centuries, mathematics has been of special concern to philosophers who have continually argued to the present day about what some deem its "special nature." Two interrelated principal questions have been: (1) Are the subjects of mathematical interest pre-existing in some transcendental realm and thus are "discovered" as one might discover a new planet; and (2) Why is mathematics so effective in the practices of science and engineering even though originally such mathematics was "pure" with applications neither contemplated or even desired? I argue that considering the actual practice of mathematics in its history and in the context of acquired verbal behavior one can address at least some of its apparent mysteries. To this end, I discuss some of the structural and functional features of mathematics including verbal operants, rule-and contingency-modulated behavior, relational frames, the shaping of abstraction, and the development of intuition. How is it possible to understand Nature by properly talking about it? Essentially, it is because nature taught us how to talk.

  8. Modeling In Vitro Cellular Responses to Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Dwaipayan Mukherjee

    2014-01-01

    Full Text Available Engineered nanoparticles (NPs have been widely demonstrated to induce toxic effects to various cell types. In vitro cell exposure systems have high potential for reliable, high throughput screening of nanoparticle toxicity, allowing focusing on particular pathways while excluding unwanted effects due to other cells or tissue dosimetry. The work presented here involves a detailed biologically based computational model of cellular interactions with NPs; it utilizes measurements performed in human cell culture systems in vitro, to develop a mechanistic mathematical model that can support analysis and prediction of in vivo effects of NPs. The model considers basic cellular mechanisms including proliferation, apoptosis, and production of cytokines in response to NPs. This new model is implemented for macrophages and parameterized using in vitro measurements of changes in cellular viability and mRNA levels of cytokines: TNF, IL-1b, IL-6, IL-8, and IL-10. The model includes in vitro cellular dosimetry due to nanoparticle transport and transformation. Furthermore, the model developed here optimizes the essential cellular parameters based on in vitro measurements, and provides a “stepping stone” for the development of more advanced in vivo models that will incorporate additional cellular and NP interactions.

  9. The Greatest Mathematical Discovery?

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, Jonathan M.

    2010-05-12

    What mathematical discovery more than 1500 years ago: (1) Is one of the greatest, if not the greatest, single discovery in the field of mathematics? (2) Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? (3) Was fiercely resisted in Europe for hundreds of years after its discovery? (4) Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, together with the basic arithmetic computational schemes, which were discovered in India about 500 CE.

  10. Makers of mathematics

    CERN Document Server

    Hollingdale, Stuart

    2011-01-01

    Fascinating and highly readable, this book recounts the history of mathematics as revealed in the lives and writings of the most distinguished practitioners of the art: Archimedes, Descartes, Fermat, Pascal, Newton, Leibniz, Euler, Gauss, Hamilton, Einstein, and many more. Author Stuart Hollingdale introduces and explains the roles of these gifted and often colorful figures in the development of mathematics as well as the ways in which their work relates to mathematics as a whole.Although the emphasis in this absorbing survey is primarily biographical, Hollingdale also discusses major historic

  11. Higher engineering mathematics

    CERN Document Server

    John Bird

    2014-01-01

    A practical introduction to the core mathematics principles required at higher engineering levelJohn Bird's approach to mathematics, based on numerous worked examples and interactive problems, is ideal for vocational students that require an advanced textbook.Theory is kept to a minimum, with the emphasis firmly placed on problem-solving skills, making this a thoroughly practical introduction to the advanced mathematics engineering that students need to master. The extensive and thorough topic coverage makes this an ideal text for upper level vocational courses. Now in

  12. A history of mathematics

    CERN Document Server

    Boyer, Carl B

    2011-01-01

    The updated new edition of the classic and comprehensive guide to the history of mathematics. For more than forty years, A History of Mathematics has been the reference of choice for those looking to learn about the fascinating history of humankind's relationship with numbers, shapes, and patterns. This revised edition features up-to-date coverage of topics such as Fermat's Last Theorem and the Poincaré Conjecture , in addition to recent advances in areas such as finite group theory and computer-aided proofs.: Distills thousands of years of mathematics into a single, approachable volume; Cover

  13. Mathematical methods for physicists

    CERN Document Server

    Arfken, George B

    1985-01-01

    Mathematical Methods for Physicists, Third Edition provides an advanced undergraduate and beginning graduate study in physical science, focusing on the mathematics of theoretical physics. This edition includes sections on the non-Cartesian tensors, dispersion theory, first-order differential equations, numerical application of Chebyshev polynomials, the fast Fourier transform, and transfer functions. Many of the physical examples provided in this book, which are used to illustrate the applications of mathematics, are taken from the fields of electromagnetic theory and quantum mechanics. The He

  14. Applied impulsive mathematical models

    CERN Document Server

    Stamova, Ivanka

    2016-01-01

    Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.

  15. Logic in elementary mathematics

    CERN Document Server

    Exner, Robert M

    2011-01-01

    This applications-related introductory treatment explores facets of modern symbolic logic useful in the exposition of elementary mathematics. The authors convey the material in a manner accessible to those trained in standard elementary mathematics but lacking any formal background in logic. Topics include the statement calculus, proof and demonstration, abstract mathematical systems, and the restricted predicate calculus. The final chapter draws upon the methods of logical reasoning covered in previous chapters to develop solutions of linear and quadratic equations, definitions of order and

  16. Equations of mathematical physics

    CERN Document Server

    Tikhonov, A N

    2011-01-01

    Mathematical physics plays an important role in the study of many physical processes - hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced-undergraduate or graduate-level text considers only those problems leading to partial differential equations. The authors - two well-known Russian mathematicians - have focused on typical physical processes and the principal types of equations deailing with them. Special attention is paid throughout to mathematical formulation, ri

  17. Dependencies in Formal Mathematics

    CERN Document Server

    Alama, Jesse; Urban, Josef

    2011-01-01

    Dependencies in formal mathematical texts, large coherent formal libraries and proof assistants are introduced as an emerging research topic, analyzed from foundational, semantic, computational, and pragmatic perspectives, and put to practical use in computer-assisted mathematics. Two different approaches to dependency computation are implemented over two major proof assistants with different type disciplines, and a large-scale experimental comparison is provided based on large Coq and Mizar formal libraries. Apart from theoretical discussions, importance of dependency analysis for advanced automation of computer-assisted reasoning, and for efficient proof analysis and theory refactoring in substantial mathematical domains are experimentally demonstrated.

  18. Mathematical modelling techniques

    CERN Document Server

    Aris, Rutherford

    1995-01-01

    ""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode

  19. Constructivism in mathematics

    CERN Document Server

    Troelstra, AS

    1988-01-01

    Studies in Logic and the Foundations of Mathematics, Volume 123: Constructivism in Mathematics: An Introduction, Vol. II focuses on various studies in mathematics and logic, including metric spaces, polynomial rings, and Heyting algebras.The publication first takes a look at the topology of metric spaces, algebra, and finite-type arithmetic and theories of operators. Discussions focus on intuitionistic finite-type arithmetic, theories of operators and classes, rings and modules, linear algebra, polynomial rings, fields and local rings, complete separable metric spaces, and located sets. The te

  20. Mathematization in introductory physics

    Science.gov (United States)

    Brahmia, Suzanne M.

    Mathematization is central to STEM disciplines as a cornerstone of the quantitative reasoning that characterizes these fields. Introductory physics is required for most STEM majors in part so that students develop expert-like mathematization. This dissertation describes coordinated research and curriculum development for strengthening mathematization in introductory physics; it blends scholarship in physics and mathematics education in the form of three papers. The first paper explores mathematization in the context of physics, and makes an original contribution to the measurement of physics students' struggle to mathematize. Instructors naturally assume students have a conceptual mastery of algebra before embarking on a college physics course because these students are enrolled in math courses beyond algebra. This paper provides evidence that refutes the validity of this assumption and categorizes some of the barriers students commonly encounter with quantification and representing ideas symbolically. The second paper develops a model of instruction that can help students progress from their starting points to their instructor's desired endpoints. Instructors recognize that the introductory physics course introduces new ideas at an astonishing rate. More than most physicists realize, however, the way that mathematics is used in the course is foreign to a large portion of class. This paper puts forth an instructional model that can move all students toward better quantitative and physical reasoning, despite the substantial variability of those students' initial states. The third paper describes the design and testing of curricular materials that foster mathematical creativity to prepare students to better understand physics reasoning. Few students enter introductory physics with experience generating equations in response to specific challenges involving unfamiliar quantities and units, yet this generative use of mathematics is typical of the thinking involved in

  1. Fundamentals of university mathematics

    CERN Document Server

    McGregor, C M; Stothers, W W

    2010-01-01

    The third edition of this popular and effective textbook provides in one volume a unified treatment of topics essential for first year university students studying for degrees in mathematics. Students of computer science, physics and statistics will also find this book a helpful guide to all the basic mathematics they require. It clearly and comprehensively covers much of the material that other textbooks tend to assume, assisting students in the transition to university-level mathematics.Expertly revised and updated, the chapters cover topics such as number systems, set and functions, differe

  2. Constructing mathematical knowledge

    CERN Document Server

    Ernest, Paul

    2012-01-01

    This book provides a panorama of complimentary and forward looking perspectives on the learning of mathematics and epistemology from some of the leading contributors to the field. It explores constructivist and social theories of learning, and discusses the role of the computer in the light of these theories. It brings analyses from psychoanalysis, Hermeneutics and other perspectives to bear on the issues of mathematics and learning. It enquires into the nature of enquiry itself, and an important emergent theme is the role of language. Finally it relates the history of mathematics to its te

  3. First aid in mathematics

    CERN Document Server

    Sulley, Robert

    2014-01-01

    Achieve the best possible standard with this bestselling book of traditional practice and guidance - now in colour!. First Aid in Mathematics provides all the help and support needed for learning and practising Mathematics. It offers comprehensive coverage of core mathematical topics in clear and accessible language. It is suitable for both native English speakers and students of English as a second language and can be used in class, or as a reference and revision book. - Develops a strong basis of understanding with core topics covered in clear and accessible language. - Improves student's ab

  4. The Mathematics of Knots

    CERN Document Server

    Banagl, Markus

    2011-01-01

    The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested

  5. Mentoring in mathematics education

    CERN Document Server

    Hyde, Rosalyn

    2013-01-01

    Designed to support both teachers and university-based tutors in mentoring pre-service and newly qualified mathematics teachers at both primary and secondary levels, Mentoring Mathematics Teachers offers straightforward practical advice that is based on practice, underpinned by research, and geared specifically towards this challenging subject area.Developed by members of The Association of Mathematics Education Teachers, the authors draw upon the most up-to-date research and theory to provide evidence-based practical guidance. Themes covered include:

  6. Mathematics for the liberal arts

    CERN Document Server

    Bindner, Donald; Hemmeter, Joe

    2014-01-01

    Presents a clear bridge between mathematics and the liberal arts Mathematics for the Liberal Arts provides a comprehensible and precise introduction to modern mathematics intertwined with the history of mathematical discoveries. The book discusses mathematical ideas in the context of the unfolding story of human thought and highlights the application of mathematics in everyday life. Divided into two parts, Mathematics for the Liberal Arts first traces the history of mathematics from the ancient world to the Middle Ages, then moves on to the Renaissance and finishes with the development of modern mathematics. In the second part, the book explores major topics of calculus and number theory, including problem-solving techniques and real-world applications. This book emphasizes learning through doing, presents a practical approach, and features: A detailed explanation of why mathematical principles are true and how the mathematical processes workNumerous figures and diagrams as well as hundreds of worked example...

  7. Mathematics, anxiety, and the brain.

    Science.gov (United States)

    Moustafa, Ahmed A; Tindle, Richard; Ansari, Zaheda; Doyle, Margery J; Hewedi, Doaa H; Eissa, Abeer

    2017-02-03

    Given that achievement in learning mathematics at school correlates with work and social achievements, it is important to understand the cognitive processes underlying abilities to learn mathematics efficiently as well as reasons underlying the occurrence of mathematics anxiety (i.e. feelings of tension and fear upon facing mathematical problems or numbers) among certain individuals. Over the last two decades, many studies have shown that learning mathematical and numerical concepts relies on many cognitive processes, including working memory, spatial skills, and linguistic abilities. In this review, we discuss the relationship between mathematical learning and cognitive processes as well as the neural substrates underlying successful mathematical learning and problem solving. More importantly, we also discuss the relationship between these cognitive processes, mathematics anxiety, and mathematics learning disabilities (dyscalculia). Our review shows that mathematical cognition relies on a complex brain network, and dysfunction to different segments of this network leads to varying manifestations of mathematical learning disabilities.

  8. Cellular bioluminescence imaging.

    Science.gov (United States)

    Welsh, David K; Noguchi, Takako

    2012-08-01

    Bioluminescence imaging of live cells has recently been recognized as an important alternative to fluorescence imaging. Fluorescent probes are much brighter than bioluminescent probes (luciferase enzymes) and, therefore, provide much better spatial and temporal resolution and much better contrast for delineating cell structure. However, with bioluminescence imaging there is virtually no background or toxicity. As a result, bioluminescence can be superior to fluorescence for detecting and quantifying molecules and their interactions in living cells, particularly in long-term studies. Structurally diverse luciferases from beetle and marine species have been used for a wide variety of applications, including tracking cells in vivo, detecting protein-protein interactions, measuring levels of calcium and other signaling molecules, detecting protease activity, and reporting circadian clock gene expression. Such applications can be optimized by the use of brighter and variously colored luciferases, brighter microscope optics, and ultrasensitive, low-noise cameras. This article presents a review of how bioluminescence differs from fluorescence, its applications to cellular imaging, and available probes, optics, and detectors. It also gives practical suggestions for optimal bioluminescence imaging of single cells.

  9. Cellular neurothekeoma with melanocytosis.

    Science.gov (United States)

    Wu, Ren-Chin; Hsieh, Yi-Yueh; Chang, Yi-Chin; Kuo, Tseng-Tong

    2008-02-01

    Cellular neurothekeoma (CNT) is a benign dermal tumor mainly affecting the head and neck and the upper extremities. It is characterized histologically by interconnecting fascicles of plump spindle or epithelioid cells with ample cytoplasm infiltrating in the reticular dermis. The histogenesis of CNT has been controversial, although it is generally regarded as an immature counterpart of classic/myxoid neurothekeoma, a tumor with nerve sheath differentiation. Two rare cases of CNT containing melanin-laden cells were described. Immunohistochemical study with NKI/C3, vimentin, epithelial membrane antigen, smooth muscle antigen, CD34, factor XIIIa, collagen type IV, S100 protein and HMB-45 was performed. Both cases showed typical growth pattern of CNT with interconnecting fascicles of epithelioid cells infiltrating in collagenous stroma. One of the nodules contained areas exhibiting atypical cytological features. Melanin-laden epithelioid or dendritic cells were diffusely scattered throughout one nodule, and focally present in the peripheral portion of the other nodule. Both nodules were strongly immunoreactive to NKI/C3 and vimentin, but negative to all the other markers employed. CNT harboring melanin-laden cells may pose diagnostic problems because of their close resemblance to nevomelanocytic lesions and other dermal mesenchymal tumors. These peculiar cases may also provide further clues to the histogenesis of CNT.

  10. Prospective Mathematics Teachers' Attitudes Towards Learning Mathematics with Technology

    Science.gov (United States)

    Ipek, A. Sabri; Berigel, Muhammed; Albayrak, Mustafa

    2007-01-01

    Role of technology which is an important tool for new approaches in learning mathematics is rapidly increasing at focus point of learning mathematics with new designs. One of the biggest factors at learning and instructing technology based mathematic education is attitudes of mathematics teachers towards technology. At this study, attitudes of…

  11. Handbook of mathematics

    CERN Document Server

    Bronshtein, I N; Musiol, Gerhard; Mühlig, Heiner

    2015-01-01

    This guide book to mathematics contains in handbook form the fundamental working knowledge of mathematics which is needed as an everyday guide for working scientists and engineers, as well as for students. Easy to understand, and convenient to use, this guide book gives concisely the information necessary to evaluate most problems which occur in concrete applications. In the newer editions emphasis was laid on those fields of mathematics that became more important for the formulation and modeling of technical and natural processes, namely Numerical Mathematics, Probability Theory and Statistics, as well as Information Processing. Besides many enhancements and  new paragraphs,  new sections on Geometric and Coordinate Transformations, Quaternions and Applications, and Lie Groups and Lie Algebras were added for the sixth edition.

  12. Mathematical methods for physicists

    CERN Document Server

    Arfken, George B

    2005-01-01

    This best-selling title provides in one handy volume the essential mathematical tools and techniques used to solve problems in physics. It is a vital addition to the bookshelf of any serious student of physics or research professional in the field. The authors have put considerable effort into revamping this new edition.* Updates the leading graduate-level text in mathematical physics* Provides comprehensive coverage of the mathematics necessary for advanced study in physics and engineering* Focuses on problem-solving skills and offers a vast array of exercises * Clearly illustrates and proves mathematical relationsNew in the Sixth Edition:* Updated content throughout, based on users'' feedback * More advanced sections, including differential forms and the elegant forms of Maxwell''s equations* A new chapter on probability and statistics* More elementary sections have been deleted

  13. Visualization and mathematics III

    CERN Document Server

    Polthier, Konrad

    2003-01-01

    This research book on Mathematical Visualization contains state of the art presentations on visualization problems in mathematics, on fundamental mathematical research in computer graphics, and on software frameworks for the application of visualization to real-world problems. All contributions were written by leading experts in the field and peer-refereed by an international editorial team. The book grew out of the third international workshop "Visualization and Mathematics", which was held from May 22-25, 2002 in Berlin. The themes of the book cover important recent developments on - Geometry and Combinatorics of Meshes - Discrete Vector Fields and Topology - Geometric Modelling - Image Based Visualization - Software Environments and Applications - Education and Communication The variety of topics makes the book a suitable resource for researchers, lecturers, and practitioners; http://www-sfb288.math.tu-berlin.de/vismath/

  14. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2005-01-01

    Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data.* Numerous examples and problems interspersed throughout the presentations * Each extensive chapter contains a preview, objectives, and ...

  15. My Mathematical Education

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ 1 Early Education in China I entered Fulun Middle School in Tientsin in January 1923. It was a four-year high school and I was admitted to the second semester of the first year. The mathematical curriculum consisted of:

  16. Mathematics for multimedia

    CERN Document Server

    Wickerhauser, Mladen Victor

    2003-01-01

    Mathematics and Multimedia focuses on the mathematics behind multimedia applications. This timely and thoroughly modern text is a rigorous survey of selected results from algebra and analysis, requiring only undergraduate math skills.The topics are `gems'' chosen for their usefulness in understanding and creating application software for multimedia signal processing and communication.The book is aimed at a wide audience, including computer science and mathematics majors and those interested in employing mathematics in multimedia design and implementation. For the instructor, the material is divided into six chapters that may be presented in six lecture hours each. Thus, the entire text may be covered in one semester, with time left for examinations and student projects. For the student,there are more than 100 exercises with complete solutions, and numerous example programs in Standard C. Each chapter ends with suggestions for further reading. A companion website provides more insight for both instructors an...

  17. Making Mathematical Induction Meaningful

    Science.gov (United States)

    Hirsch, Christian R.

    1976-01-01

    The author argues that the "least number principle" (well-ordering for positive integers) is more intuitively acceptable to high school students than mathematical induction which can be derived from it. (SD)

  18. Fostering Mathematical Curiosity.

    Science.gov (United States)

    Knuth, Eric J.

    2002-01-01

    Demonstrates what it might mean to engage students in problem posing and how teachers might begin to create classroom environments that encourage, develop, and foster mathematical curiosity. (Author/NB)

  19. Mathematical analysis II

    CERN Document Server

    Canuto, Claudio

    2015-01-01

    The purpose of the volume is to provide a support textbook for a second lecture course on Mathematical Analysis. The contents are organised to suit, in particular, students of Engineering, Computer Science and Physics, all areas in which mathematical tools play a crucial role. The basic notions and methods concerning integral and differential calculus for multivariable functions, series of functions and ordinary differential equations are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The pedagogical layout echoes the one used in the companion text Mathematical Analysis I. The book’s structure has a specifically-designed modular nature, which allows for great flexibility in the preparation of a lecture course on Mathematical Analysis. The style privileges clarity in the exposition and a linear progression through the theory. The material is organised on two levels. The first, reflected in this book, allows students to grasp the essential ideas, ...

  20. Mathematical foundations of neurocomputing

    Energy Technology Data Exchange (ETDEWEB)

    Amari, S. (Tokyo Univ. (Japan). Faculty of Engineering)

    1990-09-01

    Neurocomputing makes use of parallel dynamical interactions of modifiable neuron-like elements. It is important to show, by mathematical treatments, the capabilities and limitations of information processing by various architectures of neural networks. This paper, gives mathematical foundations to neurocomputing. It considers the capabilities of transformations by layered networks, statistical neurodynamics, the dynamical characteristics of associative memory, a general theory of neural learning, and self-organization of neural networks.

  1. Mathematical Optimiation in Economics

    CERN Document Server

    De Finetti, Bruno

    2011-01-01

    Preface by B. de Finetti.- G.Th. Guilbaud: Les equilibres dans les modeles economiques.-H.W. Kuhn: Locational problems and mathematical programming.- M. Morishima: The multi-sectoral theory of economic growth.- B. Martos, J. Kornai: Experiments in Hungary with industry-wide and economy wide programming.- A. Prekopa: Probability distribution problems concerning stochastic programming problems.- R. Frisch: General principles and mathematical techniques of macroeconomic programming.

  2. Understanding mathematical proof

    CERN Document Server

    Taylor, John

    2014-01-01

    Introduction The need for proof The language of mathematics Reasoning Deductive reasoning and truth Example proofs Logic and ReasoningIntroduction Propositions, connectives, and truth tables Logical equivalence and logical implication Predicates and quantification Logical reasoning Sets and Functions Introduction Sets and membership Operations on setsThe Cartesian product Functions and composite functions Properties of functions The Structure of Mathematical ProofsIntroduction Some proofs dissected An informal framework for proofs Direct proof A more formal framework Finding Proofs Direct proo

  3. Mathematics and linguistics

    Energy Technology Data Exchange (ETDEWEB)

    Landauer, C.; Bellman, K.L.

    1996-12-31

    In this paper, we study foundational issues that we believe will help us develop a theoretically sound approach to constructing complex systems. The two theoretical approaches that have helped us understand and develop computational systems in the past are mathematics and linguistics. We describe some differences and strengths of the approaches, and propose a research program to combine the richness of linguistic reasoning with the precision of mathematics.

  4. Mathematics for electronic technology

    CERN Document Server

    Howson, D P

    1975-01-01

    Mathematics for Electronic Technology is a nine-chapter book that begins with the elucidation of the introductory concepts related to use of mathematics in electronic engineering, including differentiation, integration, partial differentiation, infinite series, vectors, vector algebra, and surface, volume and line integrals. Subsequent chapters explore the determinants, differential equations, matrix analysis, complex variable, topography, graph theory, and numerical analysis used in this field. The use of Fourier method for harmonic analysis and the Laplace transform is also described. The ma

  5. Mathematical foundations of thermodynamics

    CERN Document Server

    Giles, R; Stark, M; Ulam, S

    2013-01-01

    Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn

  6. Addressing mathematics & statistics anxiety

    OpenAIRE

    Kotecha, Meena

    2015-01-01

    This paper should be of interest to mathematics and statistics educators ranging from pre-university to university education sectors. It will discuss some features of the author’s teaching model developed over her longitudinal study conducted to understand and address mathematics and statistics anxiety, which is one of the main barriers to engaging with these subjects especially in non-specialist undergraduates. It will demonstrate how a range of formative assessments are used to kindle, as w...

  7. The reality of Mathematics

    Science.gov (United States)

    Ligomenides, Panos A.

    2009-05-01

    The power of mathematics is discussed as a way of expressing reasoning, aesthetics and insight in symbolic non-verbal communication. The human culture of discovering mathematical ways of thinking in the enterprise of exploring the understanding of the nature and the evolution of our world through hypotheses, theories and experimental affirmation of the scientific notion of algorithmic and non-algorithmic [`]computation', is examined and commended upon.

  8. Challenges in Mathematical Cognition

    Directory of Open Access Journals (Sweden)

    Lara Alcock

    2016-04-01

    Full Text Available This paper reports on a collaborative exercise designed to generate a coherent agenda for research on mathematical cognition. Following an established method, the exercise brought together 16 mathematical cognition researchers from across the fields of mathematics education, psychology and neuroscience. These participants engaged in a process in which they generated an initial list of research questions with the potential to significantly advance understanding of mathematical cognition, winnowed this list to a smaller set of priority questions, and refined the eventual questions to meet criteria related to clarity, specificity and practicability. The resulting list comprises 26 questions divided into six broad topic areas: elucidating the nature of mathematical thinking, mapping predictors and processes of competence development, charting developmental trajectories and their interactions, fostering conceptual understanding and procedural skill, designing effective interventions, and developing valid and reliable measures. In presenting these questions in this paper, we intend to support greater coherence in both investigation and reporting, to build a stronger base of information for consideration by policymakers, and to encourage researchers to take a consilient approach to addressing important challenges in mathematical cognition.

  9. A history of mathematics

    CERN Document Server

    Boyer, Carl B

    1989-01-01

    "Boyer and Merzbach distill thousands of years of mathematics into this fascinating chronicle. From the Greeks to Godel, the mathematics is brilliant; the cast of characters is distinguished; the ebb and flow of ideas is everywhere evident. And, while tracing the development of European mathematics, the authors do not overlook the contributions of Chinese, Indian, and Arabic civilizations. Without doubt, this is--and will long remain--a classic one-volume history of mathematics and mathematicians who create it." --William Dunham Author, Journey Through Genius, The Great Theorems of Mathematics "When we read a book like A History of Mathematics, we get the picture of a mounting structure, ever taller and broader and more beautiful and magnificent--and with a foundation, moreover, that is as untainted and as functional now as it was when Thales worked out the first geometrical theorems nearly 26 centuries ago." --From the Foreword by Isaac Asimov "One of the most useful and comprehensive general introductions t...

  10. New mathematical cuneiform texts

    CERN Document Server

    Friberg, Jöran

    2016-01-01

    This monograph presents in great detail a large number of both unpublished and previously published Babylonian mathematical texts in the cuneiform script. It is a continuation of the work A Remarkable Collection of Babylonian Mathematical Texts (Springer 2007) written by Jöran Friberg, the leading expert on Babylonian mathematics. Focussing on the big picture, Friberg explores in this book several Late Babylonian arithmetical and metro-mathematical table texts from the sites of Babylon, Uruk and Sippar, collections of mathematical exercises from four Old Babylonian sites, as well as a new text from Early Dynastic/Early Sargonic Umma, which is the oldest known collection of mathematical exercises. A table of reciprocals from the end of the third millennium BC, differing radically from well-documented but younger tables of reciprocals from the Neo-Sumerian and Old-Babylonian periods, as well as a fragment of a Neo-Sumerian clay tablet showing a new type of a labyrinth are also discussed. The material is presen...

  11. Learning higher mathematics

    CERN Document Server

    Pontrjagin, Lev Semenovič

    1984-01-01

    Lev Semenovic Pontrjagin (1908) is one of the outstanding figures in 20th century mathematics. In a long career he has made fundamental con­ tributions to many branches of mathematics, both pure and applied. He has received every honor that a grateful government can bestow. Though in no way constrained to do so, he has through the years taught mathematics courses at Moscow State University. In the year 1975 he set himself the task of writing a series of books on secondary school and beginning university mathematics. In his own words, "I wished to set forth the foundations of higher mathematics in a form that would have been accessible to myself as a lad, but making use of all my experience as a scientist and a teacher, ac­ cumulated over many years. " The present volume is a translation of the first two out of four moderately sized volumes on this theme planned by Pro­ fessor Pontrjagin. The book begins at the beginning of modern mathematics, analytic ge­ ometry in the plane and 3-dimensional space. Refin...

  12. Post Mathematical Attitudes Among Prospective Elementary Teachers as Predicted by General Mathematics Skills, Modern Mathematics Skills, Modern Mathematics Achievement, and Prior Mathematical Attitudes.

    Science.gov (United States)

    Wilson, John Martin, Jr.

    The purpose of this study was to investigate the interrelationship of general mathematics skills, modern mathematics skills, modern mathematics achievement, prior mathematical attitudes, and postmathematical attitudes of prospective elementary teachers. A sample of 206 students was drawn from 286 students enrolled in a modern mathematics course.…

  13. Mathematical points as didactical ideas

    DEFF Research Database (Denmark)

    Mogensen, Arne

    2012-01-01

    Mathematics teaching in Denmark was recently recommended better organized in sequences with clear mathematical pedagogical goals and a focus on mathematical points. In this paper I define a mathematical point and inform on coding of transcripts in a video based Danish research study on grade 8...

  14. Celebrating Mathematics All Year 'Round

    Science.gov (United States)

    Daire, Sandra Arguelles

    2010-01-01

    Celebrating mathematics should be a yearlong event in which students in mathematics classes of all levels engage in mathematics activities and competitions that will encourage growth in mathematical knowledge, enthusiasm for the subject, and collaboration among students of different abilities and backgrounds. Pi Day and Pi Week festivities--a good…

  15. Teacher's Guide to Secondary Mathematics.

    Science.gov (United States)

    Duval County Schools, Jacksonville, FL.

    This is a teacher's guide to secondary school mathematics. Developed for use in the Duval County Public Schools, Jacksonville, Florida. Areas of mathematics covered are algebra, analysis, calculus, computer literacy, computer science, geometry, analytic geometry, general mathematics, consumer mathematics, pre-algebra, probability and statistics,…

  16. Motivating Students to Study Mathematics

    Institute of Scientific and Technical Information of China (English)

    田枫

    2005-01-01

    Teaching required mathematics courses poses a challenge to teachers at all levels. Many of these difficulties are the result of cultural attitudes that make it socially acceptable, even trendy, to lack mathematical knowledge. Most of our students are aware of the inherent value of mathematics; but because mathematics is a subject that requires hard work, they choose to deny its importance.

  17. Assessment and realistic mathematics education

    NARCIS (Netherlands)

    Heuvel-Panhuizen, M.H.A.M. van den

    1996-01-01

    This book describes the consequences of Realistic Mathematics Education (RME) for assessing students’ understanding of mathematics in primary school. RME is the Dutch answer to the worldwide need to reform mathematics education. Changed ideas about mathematics as a school subject, its goals, ideas a

  18. MATHEMATICS EDUCATION FOR LOGISTICS ENGINEERING

    OpenAIRE

    BÉLA ILLÉS; GABRIELLA BOGNÁR

    2012-01-01

    Mathematics is a crucial language in all engineering courses and researches where mathematical modeling, simulation and manipulation are commonly used. Engineering Mathematics courses are considered difficult courses in engineering curricula. This is reflected in engineering students’ performance at the end of each semester for these courses. Our goal is to overview a few questions on mathematics as a core subject of engineering.

  19. Semantic Processing of Mathematical Gestures

    Science.gov (United States)

    Lim, Vanessa K.; Wilson, Anna J.; Hamm, Jeff P.; Phillips, Nicola; Iwabuchi, Sarina J.; Corballis, Michael C.; Arzarello, Ferdinando; Thomas, Michael O. J.

    2009-01-01

    Objective: To examine whether or not university mathematics students semantically process gestures depicting mathematical functions (mathematical gestures) similarly to the way they process action gestures and sentences. Semantic processing was indexed by the N400 effect. Results: The N400 effect elicited by words primed with mathematical gestures…

  20. Computers in the Mathematics Curriculum.

    Science.gov (United States)

    Ediger, Marlow

    This paper examines ways that mathematics teachers and supervisors can use computers in a quality mathematics curriculum in a school setting. Teachers and supervisors continually need to appraise the present mathematics curriculum and make necessary changes. A modern mathematics curriculum makes much use of technology. Society emphasizes heavy use…

  1. Free fall and cellular automata

    Directory of Open Access Journals (Sweden)

    Pablo Arrighi

    2016-03-01

    Full Text Available Three reasonable hypotheses lead to the thesis that physical phenomena can be described and simulated with cellular automata. In this work, we attempt to describe the motion of a particle upon which a constant force is applied, with a cellular automaton, in Newtonian physics, in Special Relativity, and in General Relativity. The results are very different for these three theories.

  2. About Strongly Universal Cellular Automata

    Directory of Open Access Journals (Sweden)

    Maurice Margenstern

    2013-09-01

    Full Text Available In this paper, we construct a strongly universal cellular automaton on the line with 11 states and the standard neighbourhood. We embed this construction into several tilings of the hyperbolic plane and of the hyperbolic 3D space giving rise to strongly universal cellular automata with 10 states.

  3. Reactive Programming of Cellular Automata

    OpenAIRE

    Boussinot, Frédéric

    2004-01-01

    Implementation of cellular automata using reactive programming gives a way to code cell behaviors in an abstract and modular way. Multiprocessing also becomes possible. The paper describes the implementation of cellular automata with the reactive programming language LOFT, a thread-based extension of C. Self replicating loops considered in artificial life are coded to show the interest of the approach.

  4. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  5. Finite mathematics models and applications

    CERN Document Server

    Morris, Carla C

    2015-01-01

    Features step-by-step examples based on actual data and connects fundamental mathematical modeling skills and decision making concepts to everyday applicability Featuring key linear programming, matrix, and probability concepts, Finite Mathematics: Models and Applications emphasizes cross-disciplinary applications that relate mathematics to everyday life. The book provides a unique combination of practical mathematical applications to illustrate the wide use of mathematics in fields ranging from business, economics, finance, management, operations research, and the life and social sciences.

  6. Assessment and realistic mathematics education

    OpenAIRE

    Heuvel-Panhuizen, M.H.A.M. van den

    1996-01-01

    This book describes the consequences of Realistic Mathematics Education (RME) for assessing students’ understanding of mathematics in primary school. RME is the Dutch answer to the worldwide need to reform mathematics education. Changed ideas about mathematics as a school subject, its goals, ideas about teaching and learning mathematics, require new forms of assessment. Within RME this means a preference for observation and individual interviews. However, written tests have not been abandoned...

  7. Mathematical problems for chemistry students

    CERN Document Server

    Pota, Gyorgy

    2011-01-01

    Mathematical Problems for Chemistry Students has been compiled and written (a) to help chemistrystudents in their mathematical studies by providing them with mathematical problems really occurring in chemistry (b) to help practising chemists to activate their applied mathematical skills and (c) to introduce students and specialistsof the chemistry-related fields (physicists, mathematicians, biologists, etc.) intothe world of the chemical applications.Some problems of the collection are mathematical reformulations of those in the standard textbooks of chemistry, others we

  8. Mathematical structures for computer graphics

    CERN Document Server

    Janke, Steven J

    2014-01-01

    A comprehensive exploration of the mathematics behind the modeling and rendering of computer graphics scenes Mathematical Structures for Computer Graphics presents an accessible and intuitive approach to the mathematical ideas and techniques necessary for two- and three-dimensional computer graphics. Focusing on the significant mathematical results, the book establishes key algorithms used to build complex graphics scenes. Written for readers with various levels of mathematical background, the book develops a solid foundation for graphics techniques and fills in relevant grap

  9. Attitudes toward Mathematics: Relationships to Mathematics Achievement, Gender, Mathematics Course-taking Plans, and Career Interests.

    Science.gov (United States)

    Thorndike-Christ, Tracy

    The relationship of attitudes toward mathematics to mathematics performance, gender, mathematics course-taking plans, and career interests were investigated. Students enrolled in public middle and high school mathematics courses (722 male, 794 female) served as subjects. The Fennema-Sherman Math Attitude scales were used to measure attitudes…

  10. Mathematics education a spectrum of work in mathematical sciences departments

    CERN Document Server

    Hsu, Pao-sheng; Pollatsek, Harriet

    2016-01-01

    Many in the mathematics community in the U.S. are involved in mathematics education in various capacities. This book highlights the breadth of the work in K-16 mathematics education done by members of US departments of mathematical sciences. It contains contributions by mathematicians and mathematics educators who do work in areas such as teacher education, quantitative literacy, informal education, writing and communication, social justice, outreach and mentoring, tactile learning, art and mathematics, ethnomathematics, scholarship of teaching and learning, and mathematics education research. Contributors describe their work, its impact, and how it is perceived and valued. In addition, there is a chapter, co-authored by two mathematicians who have become administrators, on the challenges of supporting, evaluating, and rewarding work in mathematics education in departments of mathematical sciences. This book is intended to inform the readership of the breadth of the work and to encourage discussion of its val...

  11. A mathematical medley fifty easy pieces on mathematics

    CERN Document Server

    Szpiro, George G

    2010-01-01

    Szpiro's book provides a delightful, well-written, eclectic selection of mathematical tidbits that makes excellent airplane reading for anyone with an interest in mathematics, regardless of their mathematical background. Excellent gift material. -Keith Devlin, Stanford University, author of The Unfinished Game and The Language of Mathematics It is great to have collected in one volume the many varied, insightful and often surprising mathematical stories that George Szpiro has written in his mathematical columns for the newspapers through the years. -Marcus du Sautoy, Oxford University, author

  12. Cellular systems biology profiling applied to cellular models of disease.

    Science.gov (United States)

    Giuliano, Kenneth A; Premkumar, Daniel R; Strock, Christopher J; Johnston, Patricia; Taylor, Lansing

    2009-11-01

    Building cellular models of disease based on the approach of Cellular Systems Biology (CSB) has the potential to improve the process of creating drugs as part of the continuum from early drug discovery through drug development and clinical trials and diagnostics. This paper focuses on the application of CSB to early drug discovery. We discuss the integration of protein-protein interaction biosensors with other multiplexed, functional biomarkers as an example in using CSB to optimize the identification of quality lead series compounds.

  13. Mathematical olympiad challenges

    CERN Document Server

    Andreescu, Titu

    2000-01-01

    Mathematical Olympiad Challenges is a rich collection of problems put together by two experienced and well-known professors and coaches of the U.S. International Mathematical Olympiad Team. Hundreds of beautiful, challenging, and instructive problems from algebra, geometry, trigonometry, combinatorics, and number theory were selected from numerous mathematical competitions and journals. An important feature of the work is the comprehensive background material provided with each grouping of problems. The problems are clustered by topic into self-contained sections with solutions provided separately. All sections start with an essay discussing basic facts and one or two representative examples. A list of carefully chosen problems follows and the reader is invited to take them on. Additionally, historical insights and asides are presented to stimulate further inquiry. The emphasis throughout is on encouraging readers to move away from routine exercises and memorized algorithms toward creative solutions to open-e...

  14. Frontiers in mathematical biology

    CERN Document Server

    1994-01-01

    Volume 100, which is the final volume of the LNBM series serves to commemorate the acievements in two decades of this influential collection of books in mathematical biology. The contributions, by the leading mathematical biologists, survey the state of the art in the subject, and offer speculative, philosophical and critical analyses of the key issues confronting the field. The papers address fundamental issues in cell and molecular biology, organismal biology, evolutionary biology, population ecology, community and ecosystem ecology, and applied biology, plus the explicit and implicit mathematical challenges. Cross-cuttting issues involve the problem of variation among units in nonlinear systems, and the related problems of the interactions among phenomena across scales of space, time and organizational complexity.

  15. Mathematical analysis I

    CERN Document Server

    Zorich, Vladimir A

    2015-01-01

    VLADIMIR A. ZORICH is professor of mathematics at Moscow State University. His areas of specialization are analysis, conformal geometry, quasiconformal mappings, and mathematical aspects of thermodynamics. He solved the problem of global homeomorphism for space quasiconformal mappings. He holds a patent in the technology of mechanical engineering, and he is also known by his book Mathematical Analysis of Problems in the Natural Sciences . This second English edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds; asymptotic methods; Fourier, Laplace, and Legendre transforms; elliptic functions; and distributions. Especially notable in this course are the clearly expressed orientation toward the natural sciences and the informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems...

  16. Mathematics difficulties & classroom leadership

    DEFF Research Database (Denmark)

    Schmidt, Maria Christina Secher

    2016-01-01

    This article investigates possible links between inclusion, students, for whom mathematics is extensively difficult, and classroom leadership through a case study on teaching strategies and student participation in four classrooms at two different primary schools in Denmark. Three sets of results...... are presented: 1) descriptions of the teachers’ classroom leadership to include all their students in the learning community, 2) the learning community produced by stated and practiced rules for teaching and learning behavior, 3) the classroom behavior of students who experience difficulties with mathematics....... The findings suggest that the teachers’ pedagogical choices and actions support an active learning environment for students in diverse learning needs, and that the teachers practise dimensions of inclusive classroom leadership that are known to be successful for teaching mathematics to all students. Despite...

  17. Persian architecture and mathematics

    CERN Document Server

    2012-01-01

    This volulme features eight original papers dedicated to the theme “Persian Architecture and Mathematics,” guest edited by Reza Sarhangi. All papers were approved through a rigorous process of blind peer review and edited by an interdisciplinary scientific editorial committee. Topics range from symmetry in ancient Persian architecture to the elaborate geometric patterns and complex three-dimensional structures of standing monuments of historical periods, from the expression of mathematical ideas to architectonic structures, and from decorative ornament to the representation of modern group theory and quasi-crystalline patterns. The articles discuss unique monuments Persia, including domed structures and two-dimensional patterns, which have received significant scholarly attention in recent years. This book is a unique contribution to studies of Persian architecture in relation to mathematics.

  18. Basic mathematics for biochemists

    CERN Document Server

    Cornish-Bowden, Athel

    1981-01-01

    Some teachers of biochemistry think it positively beneficial for students to struggle with difficult mathematics. I do not number myself among these people, although I have derived much personal pleasure from the study of mathematics and from applying it to problems that interest me in biochemistry. On the contrary, I think that students choose courses in biochemistry out of interest in biochemistry and that they should not be encumbered with more mathematics than is absolutely required for a proper understanding of biochemistry. This of course includes physical chemistry, because a biochemist ignorant of physical chemistry is no biochemist. I have been guided by these beliefs in writing this book. I have laid heavy emphasis on those topics, such as the use of logarithms, that play an important role in biochemistry and often cause problems in teaching; I have ignored others, such as trigonometry, that one can manage without. The proper treatment of statistics has been more difficult to decide. Although it cle...

  19. Mathematical models of morphogenesis

    Directory of Open Access Journals (Sweden)

    Dilão Rui

    2015-01-01

    Full Text Available Morphogenesis is the ensemble of phenomena that generates the form and shape of organisms. Organisms are classified according to some of its structural characteristics, to its metabolism and to its form. In particular, the empirical classification associated with the phylum concept is related with the form and shape of organisms. In the first part of this talk, we introduce the class of mathematical models associated the Turing approach to pattern formation. In the Turing approach, morphogenesis models are described by reaction-diffusion parabolic partial differential equations. Based on this formalism, we present a mathematical model describing the first two hours of development of the fruit fly Drosophila. In the second part of this talk, we present results on Pareto optimality to calibrate and validate mathematical models.

  20. Principles of mathematical modeling

    CERN Document Server

    Dym, Clive

    2004-01-01

    Science and engineering students depend heavily on concepts of mathematical modeling. In an age where almost everything is done on a computer, author Clive Dym believes that students need to understand and "own" the underlying mathematics that computers are doing on their behalf. His goal for Principles of Mathematical Modeling, Second Edition, is to engage the student reader in developing a foundational understanding of the subject that will serve them well into their careers. The first half of the book begins with a clearly defined set of modeling principles, and then introduces a set of foundational tools including dimensional analysis, scaling techniques, and approximation and validation techniques. The second half demonstrates the latest applications for these tools to a broad variety of subjects, including exponential growth and decay in fields ranging from biology to economics, traffic flow, free and forced vibration of mechanical and other systems, and optimization problems in biology, structures, an...

  1. Advances in mathematical economics

    CERN Document Server

    Yamazaki, Akira

    2005-01-01

    A lot of economic problems can be formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who are seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking effective mathematical tools for their research. The editorial board of this series comprises the following prominent economists and mathematicians: Managing Editors: S. Kusuoka (Univ. Tokyo), T. Maruyama (Keio Univ.). Editors: R. Anderson (U.C. Berkeley), C. Castaing (Univ. Montpellier), F.H. Clarke (Univ. Lyon I), G. Debreu (U.C. Berkeley), E. Dierker (Univ. Vienna), D. Duffie (Stanford Univ.), L.C. Evans (U.C. Berkeley), T. Fujimoto (Okayama Univ.), J.-M. Grandmont...

  2. Engineering mathematics pocket book

    CERN Document Server

    Bird, John

    2008-01-01

    This compendium of essential formulae, definitions, tables and general information provides the mathematical information required by students, technicians, scientists and engineers in day-to-day engineering practice. A practical and versatile reference source, now in its fourth edition, the layout has been changed and the book has been streamlined to ensure the information is even more quickly and readily available - making it a handy companion on-site, in the office as well as for academic study. It also acts as a practical revision guide for those undertaking BTEC Nationals, Higher Nationals and NVQs, where engineering mathematics is an underpinning requirement of the course.All the essentials of engineering mathematics - from algebra, geometry and trigonometry to logic circuits, differential equations and probability - are covered, with clear and succinct explanations and illustrated with over 300 line drawings and 500 worked examples based in real-world application. The emphasis throughout the book is on ...

  3. Mathematical methods in engineering

    CERN Document Server

    Machado, José

    2014-01-01

    This book presents a careful selection of the contributions presented at the Mathematical Methods in Engineering (MME10) International Symposium, held at the Polytechnic Institute of Coimbra- Engineering Institute of Coimbra (IPC/ISEC), Portugal, October 21-24, 2010. The volume discusses recent developments about theoretical and applied mathematics toward the solution of engineering problems, thus covering a wide range of topics, such as:  Automatic Control, Autonomous Systems, Computer Science, Dynamical Systems and Control,  Electronics, Finance and Economics, Fluid Mechanics and Heat Transfer, Fractional Mathematics, Fractional Transforms and Their Applications,  Fuzzy Sets and Systems, Image and Signal Analysis, Image Processing, Mechanics, Mechatronics, Motor Control and Human Movement Analysis, Nonlinear Dynamics, Partial Differential Equations, Robotics, Acoustics, Vibration and Control, and Wavelets.

  4. Unified Stochastic Geometry Model for MIMO Cellular Networks with Retransmissions

    KAUST Repository

    Afify, Laila H.

    2016-10-11

    This paper presents a unified mathematical paradigm, based on stochastic geometry, for downlink cellular networks with multiple-input-multiple-output (MIMO) base stations (BSs). The developed paradigm accounts for signal retransmission upon decoding errors, in which the temporal correlation among the signal-to-interference-plus-noise-ratio (SINR) of the original and retransmitted signals is captured. In addition to modeling the effect of retransmission on the network performance, the developed mathematical model presents twofold analysis unification for MIMO cellular networks literature. First, it integrates the tangible decoding error probability and the abstracted (i.e., modulation scheme and receiver type agnostic) outage probability analysis, which are largely disjoint in the literature. Second, it unifies the analysis for different MIMO configurations. The unified MIMO analysis is achieved by abstracting unnecessary information conveyed within the interfering signals by Gaussian signaling approximation along with an equivalent SISO representation for the per-data stream SINR in MIMO cellular networks. We show that the proposed unification simplifies the analysis without sacrificing the model accuracy. To this end, we discuss the diversity-multiplexing tradeoff imposed by different MIMO schemes and shed light on the diversity loss due to the temporal correlation among the SINRs of the original and retransmitted signals. Finally, several design insights are highlighted.

  5. Whether Philosophers Need Contemporary Mathematics?

    Directory of Open Access Journals (Sweden)

    Erovenko V. A.

    2013-01-01

    Full Text Available The article discusses the various problems of mathematical education of philosophers. Even a negative school experience of practical development of mathematics gives an idea of mathematics as a special item that requires in-depth study to understand it as a whole. Knowledge of mathematics dispassionately verifies readiness to grasp an abstract philosophical reasoning. The true goal of mathematical education of philosophers is not just the acquisition of specific knowledge but first of all the development of thinking or intelligence aimed at cognition which is sometimes called philosophy. In this paper we are trying to answer the question: how and why mathematics is useful for university philosophical education? In particular, speaking about the course of modern mathematics for philosophers it is emphasized that professional philosophers are in a special position – they need modern mathematics as a component of the general methodology of cognition, so not separate details of mathematical techniques but basic mathematical principles are important for them. In the context of understanding mathematics, the mathematical course for philosophers should be based on methodological foundation, where the main role is devoted to the priority philosophical questions, developing mathematical ideas, taking into account the role of the emotional components of modern mathematical education.

  6. Applied mathematics made simple

    CERN Document Server

    Murphy, Patrick

    1982-01-01

    Applied Mathematics: Made Simple provides an elementary study of the three main branches of classical applied mathematics: statics, hydrostatics, and dynamics. The book begins with discussion of the concepts of mechanics, parallel forces and rigid bodies, kinematics, motion with uniform acceleration in a straight line, and Newton's law of motion. Separate chapters cover vector algebra and coplanar motion, relative motion, projectiles, friction, and rigid bodies in equilibrium under the action of coplanar forces. The final chapters deal with machines and hydrostatics. The standard and conte

  7. Mathematics for physicists

    CERN Document Server

    Dennery, Philippe

    1967-01-01

    ""A fine example of how to present 'classical' physical mathematics."" - American ScientistWritten for advanced undergraduate and graduate students, this volume provides a thorough background in the mathematics needed to understand today's more advanced topics in physics and engineering. Without sacrificing rigor, the authors develop the theoretical material at length, in a highly readable, and, wherever possible, in an intuitive manner. Each abstract idea is accompanied by a very simple, concrete example, showing the student that the abstraction is merely a generalization from easily understo

  8. Mathematics for the environment

    CERN Document Server

    Walter, Martin

    2011-01-01

    MATHEMATICS IS CONNECTED TO EVERYTHING ELSEEarth's Climate and Some Basic Principles One of the Greatest Crimes of the 20th Century Feedback Edison's Algorithm: Listening to Nature's Feedback Fuzzy Logic, Filters, the Bigger Picture Principle Consequences of the Crime: Suburbia's Topology A Toxic Consequence of the Crime Hubbert's Peak and the End of Cheap Oil Resource Wars: Oil and Water The CO2 Greenhouse Law of Svante ArrheniusEconomic Instability: Ongoing Causes Necessary Conditions for Economic Success The Mathematical Structure of Ponzi Schemes Dishonest Assessment of Risk One Reason Why

  9. Mathematical analysis fundamentals

    CERN Document Server

    Bashirov, Agamirza

    2014-01-01

    The author's goal is a rigorous presentation of the fundamentals of analysis, starting from elementary level and moving to the advanced coursework. The curriculum of all mathematics (pure or applied) and physics programs include a compulsory course in mathematical analysis. This book will serve as can serve a main textbook of such (one semester) courses. The book can also serve as additional reading for such courses as real analysis, functional analysis, harmonic analysis etc. For non-math major students requiring math beyond calculus, this is a more friendly approach than many math-centric o

  10. Discrete algorithmic mathematics

    CERN Document Server

    Maurer, Stephen B

    2005-01-01

    The exposition is self-contained, complemented by diverse exercises and also accompanied by an introduction to mathematical reasoning … this book is an excellent textbook for a one-semester undergraduate course and it includes a lot of additional material to choose from.-EMS, March 2006In a textbook, it is necessary to select carefully the statements and difficulty of the problems … in this textbook, this is fully achieved … This review considers this book an excellent one.-The Mathematical Gazette, March 2006

  11. The mathematics of games

    CERN Document Server

    Beasley, John D

    2006-01-01

    ""Mind-exercising and thought-provoking.""-New ScientistIf playing games is natural for humans, analyzing games is equally natural for mathematicians. Even the simplest of games involves the fundamentals of mathematics, such as figuring out the best move or the odds of a certain chance event. This entertaining and wide-ranging guide demonstrates how simple mathematical analysis can throw unexpected light on games of every type-games of chance, games of skill, games of chance and skill, and automatic games.Just how random is a card shuffle or a throw of the dice? Is bluffing a valid poker strat

  12. Phenomenology and Mathematics

    CERN Document Server

    Hartimo, Mirja

    2010-01-01

    During Edmund Husserl,s lifetime, modern logic and mathematics rapidly developed toward their current outlook and Husserl,s writings can be fruitfully compared and contrasted with both 19th century figures (Boole, Schroder, Weierstrass) as well as the 20th century characters (Heyting, Zermelo, Godel). Besides the more historical studies, the internal ones on Husserl alone and the external ones attempting to clarify his role in the more general context of the developing mathematics and logic, Husserl,s phenomenology offers also a systematically rich but little researched area of investigation.

  13. Comprehensive basic mathematics

    CERN Document Server

    Veena, GR

    2005-01-01

    Salient Features As per II PUC Basic Mathematics syllabus of Karnataka. Provides an introduction to various basic mathematical techniques and the situations where these could be usefully employed. The language is simple and the material is self-explanatory with a large number of illustrations. Assists the reader in gaining proficiency to solve diverse variety of problems. A special capsule containing a gist and list of formulae titled ''REMEMBER! Additional chapterwise arranged question bank and 3 model papers in a separate section---''EXAMINATION CORNER''.

  14. Mathematical foundations of elasticity

    CERN Document Server

    Marsden, Jerrold E

    1994-01-01

    This advanced-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It is directed to mathematicians, engineers and physicists who wish to see this classical subject in a modern setting with examples of newer mathematical contributions. Prerequisites include a solid background in advanced calculus and the basics of geometry and functional analysis.The first two chapters cover the background geometry ― developed as needed ― and use this discussion to obtain the basic results on kinematics and dynamics of con

  15. Concepts of modern mathematics

    CERN Document Server

    Stewart, Ian

    1995-01-01

    Some years ago, ""new math"" took the country's classrooms by storm. Based on the abstract, general style of mathematical exposition favored by research mathematicians, its goal was to teach students not just to manipulate numbers and formulas, but to grasp the underlying mathematical concepts. The result, at least at first, was a great deal of confusion among teachers, students, and parents. Since then, the negative aspects of ""new math"" have been eliminated and its positive elements assimilated into classroom instruction.In this charming volume, a noted English mathematician uses humor an

  16. Concepts of mathematical modeling

    CERN Document Server

    Meyer, Walter J

    2004-01-01

    Appropriate for undergraduate and graduate students, this text features independent sections that illustrate the most important principles of mathematical modeling, a variety of applications, and classic models. Students with a solid background in calculus and some knowledge of probability and matrix theory will find the material entirely accessible. The range of subjects includes topics from the physical, biological, and social sciences, as well as those of operations research. Discussions cover related mathematical tools and the historical eras from which the applications are drawn. Each sec

  17. Computer mathematics for programmers

    CERN Document Server

    Abney, Darrell H; Sibrel, Donald W

    1985-01-01

    Computer Mathematics for Programmers presents the Mathematics that is essential to the computer programmer.The book is comprised of 10 chapters. The first chapter introduces several computer number systems. Chapter 2 shows how to perform arithmetic operations using the number systems introduced in Chapter 1. The third chapter covers the way numbers are stored in computers, how the computer performs arithmetic on real numbers and integers, and how round-off errors are generated in computer programs. Chapter 4 details the use of algorithms and flowcharting as problem-solving tools for computer p

  18. Introduction to mathematical logic

    CERN Document Server

    Mendelson, Elliott

    2015-01-01

    The new edition of this classic textbook, Introduction to Mathematical Logic, Sixth Edition explores the principal topics of mathematical logic. It covers propositional logic, first-order logic, first-order number theory, axiomatic set theory, and the theory of computability. The text also discusses the major results of Gödel, Church, Kleene, Rosser, and Turing.The sixth edition incorporates recent work on Gödel's second incompleteness theorem as well as restoring an appendix on consistency proofs for first-order arithmetic. This appendix last appeared in the first edition. It is offered in th

  19. CLEP college mathematics

    CERN Document Server

    Friedman, Mel

    2012-01-01

    Earn College Credit with REA's Test Prep for CLEP* College Mathematics Everything you need to pass the exam and get the college credit you deserve.CLEP* is the most popular credit-by-examination program in the country, accepted by more than 2,900 colleges and universities. For over 15 years, REA has helped students pass the CLEP* exam and earn college credit while reducing their tuition costs. Our test prep for CLEP* College Mathematics and the free online tools that come with it, allow you to create a personalized CLEP* study plan that can be customized to fit you: your schedule, your lea

  20. Mathematics in modern immunology.

    Science.gov (United States)

    Castro, Mario; Lythe, Grant; Molina-París, Carmen; Ribeiro, Ruy M

    2016-04-01

    Mathematical and statistical methods enable multidisciplinary approaches that catalyse discovery. Together with experimental methods, they identify key hypotheses, define measurable observables and reconcile disparate results. We collect a representative sample of studies in T-cell biology that illustrate the benefits of modelling-experimental collaborations and that have proven valuable or even groundbreaking. We conclude that it is possible to find excellent examples of synergy between mathematical modelling and experiment in immunology, which have brought significant insight that would not be available without these collaborations, but that much remains to be discovered.

  1. Why Mathematics Works So Well

    CERN Document Server

    Yanofsky, Noson S

    2015-01-01

    A major question in philosophy of science involves the unreasonable effectiveness of mathematics in physics. Why should mathematics, created or discovered, with nothing empirical in mind be so perfectly suited to describe the laws of the physical universe? We review the well-known fact that the symmetries of the laws of physics are their defining properties. We show that there are similar symmetries of mathematical facts and that these symmetries are the defining properties of mathematics. By examining the symmetries of physics and mathematics, we show that the effectiveness is actually quite reasonable. In essence, we show that the regularities of physics are a subset of the regularities of mathematics.

  2. A Course in Cellular Bioengineering.

    Science.gov (United States)

    Lauffenburger, Douglas A.

    1989-01-01

    Gives an overview of a course in chemical engineering entitled "Cellular Bioengineering," dealing with how chemical engineering principles can be applied to molecular cell biology. Topics used are listed and some key references are discussed. Listed are 85 references. (YP)

  3. Panel Debate: Technics and technology in mathematics and mathematics education

    DEFF Research Database (Denmark)

    Misfeldt, Morten

    2015-01-01

    The use of computer technology for teaching and learning of mathematics has several consequences and does sometimes give rise to both controversies and misunderstandings. We address these problems by both a philosophical and a historical approach, investigating what it actually is that goes on when...... new technologies enter mathematics as a discipline and mathematics education as a societal practice. Our analysis suggests a focus on continuities in time and place in the sense that it is necessary to understand the history of “tool use” in mathematics and the various ways that scholastic and non......-scholastic mathematical practices adopt such tools. Furthermore we point to the strong interrelation between mathematics as a body of knowledge, mathematical activity and the technologies used for mathematical work. Finally we discuss how different theoretical lenses and epistemological outsets give rise to different...

  4. Can Mathematics Education and History of Mathematics Coexist?

    Science.gov (United States)

    Fried, Michael N.

    Despite the wide interest in combining mathematics education and the history of mathematics, there are grave and fundamental problems in this effort. The main difficulty is that while one wants to see historical topics in the classroom or an historical approach in teaching, the commitment to teach the modern mathematics and modern mathematical techniques necessary in the pure and applied sciences forces one either to trivialize history or to distort it. In particular, this commitment forces one to adopt a Whiggish approach to the history of mathematics. Two possible resolutions of the difficulty are (1) radical separation - putting the history of mathematics on a separate track from the ordinary course of instruction, and (2) radical accommodation - turning the study of mathematics into the study of mathematical texts.

  5. Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving

    Directory of Open Access Journals (Sweden)

    María F. Ayllón

    2016-04-01

    Full Text Available This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas, flexibility (range of ideas, novelty (unique idea and elaboration (idea development. These factors contribute, among others, to the fact that schoolchildren are competent in mathematics. The problem solving and posing are a very powerful evaluation tool that shows the mathematical reasoning and creative level of a person. Creativity is part of the mathematics education and is a necessary ingredient to perform mathematical assignments. This contribution presents some important research works about problem posing and solving related to the development of mathematical knowledge and creativity. To that end, it is based on various beliefs reflected in the literature with respect to notions of creativity, problem solving and posing.

  6. Energy Landscape of Cellular Networks

    Science.gov (United States)

    Wang, Jin

    2008-03-01

    Cellular Networks are in general quite robust and perform their biological functions against the environmental perturbations. Progresses have been made from experimental global screenings, topological and engineering studies. However, there are so far few studies of why the network should be robust and perform biological functions from global physical perspectives. In this work, we will explore the global properties of the network from physical perspectives. The aim of this work is to develop a conceptual framework and quantitative physical methods to study the global nature of the cellular network. The main conclusion of this presentation is that we uncovered the underlying energy landscape for several small cellular networks such as MAPK signal transduction network and gene regulatory networks, from the experimentally measured or inferred inherent chemical reaction rates. The underlying dynamics of these networks can show bi-stable as well as oscillatory behavior. The global shapes of the energy landscapes of the underlying cellular networks we have studied are robust against perturbations of the kinetic rates and environmental disturbances through noise. We derived a quantitative criterion for robustness of the network function from the underlying landscape. It provides a natural explanation of the robustness and stability of the network for performing biological functions. We believe the robust landscape is a global universal property for cellular networks. We believe the robust landscape is a quantitative realization of Darwinian principle of natural selection at the cellular network level. It may provide a novel algorithm for optimizing the network connections, which is crucial for the cellular network design and synthetic biology. Our approach is general and can be applied to other cellular networks.

  7. Mathematical Knowledge of Non-mathematics Students and Their Beliefs about Mathematics

    Directory of Open Access Journals (Sweden)

    Ljerka Jukic Matic

    2014-02-01

    Full Text Available Mathematics is tightly interwoven with science and engineering, where it has numerous applications. In the educational context, there is an ongoing debate who should teach mathematics to non-mathematicians and how this mathematics should be taught. The knowledge gained in mathematics course is used in another course (mathematics, science or engineering, hence students should retain core concepts some time after learning. Beliefs that students have about mathematics significantly influence on their learning, and consequently on the retained knowledge. We investigated retained calculus knowledge and beliefs about mathematics in two groups of first year students coming from the science and engineering study programs. The results showed that both groups of students showed better procedural knowledge than conceptual. Also they showed positive beliefs about mathematics in their study program, but were not certain where this knowledge will be used later. However they differed in the perception of mathematics as being exciting discipline. The educational implications of these findings are also discussed.

  8. New Technologies in Mathematics.

    Science.gov (United States)

    Sarmiento, Jorge

    An understanding of past technological advancements can help educators understand the influence of new technologies in education. Inventions such as the abacus, logarithms, the slide rule, the calculating machine, computers, and electronic calculators have all found their place in mathematics education. While new technologies can be very useful,…

  9. Ideation in mathematical writing

    DEFF Research Database (Denmark)

    Misfeldt, Morten

    2007-01-01

    This paper considers idea generation during the mathematical writing process. Two contrasting explanations of the creative potential in connection to writing is presented; writing as a process of setting and obtaining rhetorical goals and writing as a process of discovery. These views are then re...

  10. Mathematics, Vol. 2.

    Science.gov (United States)

    Bureau of Naval Personnel, Washington, DC.

    The second of three volumes of a mathematics training course for Navy personnel, this document contains material primarily found at the college level. Beginning with logarithms and trigonometry, the text moves into vectors and static equilibrium (physics). Coordinate geometry, conic sections, and the tangents, normals, and slopes of curves follow.…

  11. Towards mathematical philosophy

    CERN Document Server

    Hendricks, Vincent F

    2008-01-01

    Logical investigations in cognitive science have successfully utilized methods and systems of belief revision, non-monotonic logic and dynamic epistemic logic. This title deals with focal issues of belief revision. It contains a collection of articles applying methods of logic or, more generally, of mathematics to solve problems.

  12. Mathematics as Problem Solving.

    Science.gov (United States)

    Soifer, Alexander

    This book contains about 200 problems. It is suggested that it be used by students, teachers or anyone interested in exploring mathematics. In addition to a general discussion on problem solving, there are problems concerned with number theory, algebra, geometry, and combinatorics. (PK)

  13. Mathematical Difficulties and ADHD

    Science.gov (United States)

    Lucangeli, Daniela; Cabrele, Silvia

    2006-01-01

    Most of the research on academics and attention deficit hyperactivity disorder (ADHD) has focused on reading disorders in children with ADHD rather than difficulties in mathematics. In this article, we provide a comprehensive review of studies focusing on students with attention deficit disorders with or without hyperactivity and 1 area of…

  14. Storytelling + Origami = Storigami Mathematics

    Science.gov (United States)

    Mastin, Marla

    2007-01-01

    This article presents a way to engage students in mathematics learning by using the innovative instructional method of storigami. The author shares reactions from teachers who have used her storigami techniques in their classes and provides an example of storigami using the Norwegian fable "The Dog and the Mountain." (Contains 6 figures.)

  15. The story of mathematics

    CERN Document Server

    Mankiewicz, Richard

    2000-01-01

    Questioning how mathematics has evolved over the centuries and for what reasons; how human endeavour and changes in the way we live have been dependent on mathematics, this book tells the story of the impact this intellectual activity has had across cultures and civilizations. It shows how, far from being just the obsession of an elite group of philosophers, priests and scientists, mathematics has in some shape or other entered every area of human activity. The mysterious tally sticks of prehistoric peoples and the terrestial maps used for trade, exploration and warfare; the perennial fascination with the motions of heavenly bodies and changing perspectives on the art and science of vision; all are testament to a mathematics at the heart of history. The path of this changing discipline is marked by a wealth of images, from medieval manuscripts to the unsettling art of Dali or Duchamp, from the austere beauty of Babylonian clay tablets to the delicate complexity of computer-generated images. The text encompass...

  16. Designing for Mathematical Abstraction

    Science.gov (United States)

    Pratt, Dave; Noss, Richard

    2010-01-01

    Our focus is on the design of systems (pedagogical, technical, social) that encourage mathematical abstraction, a process we refer to as "designing for abstraction." In this paper, we draw on detailed design experiments from our research on children's understanding about chance and distribution to re-present this work as a case study in designing…

  17. Assessment Mathematics Teacher's Competencies

    Science.gov (United States)

    Alnoor, A. G.; Yuanxiang, Guo; Abudhuim, F. S.

    2007-01-01

    This paper aimed to identifying the professional efficiencies for the intermediate schools mathematics teachers and tries to know at what level the math teachers experience those competencies. The researcher used a descriptive research approach, the study data collected from specialist educators and teacher's experts and previous studies to…

  18. Mathematics in Action

    DEFF Research Database (Denmark)

    December 2004-November 2007 Denmark, Hungary, Lithuania, the Netherlands, Norway, Slovenia and Spain have cooperated in the project Mathematics in Action (MiA). The MiA project is supported by the Grundtvig action in the Socrates program of the European Commission. The aim of the project is to su......December 2004-November 2007 Denmark, Hungary, Lithuania, the Netherlands, Norway, Slovenia and Spain have cooperated in the project Mathematics in Action (MiA). The MiA project is supported by the Grundtvig action in the Socrates program of the European Commission. The aim of the project...... is to support quality of learning and teaching of mathematics in adult education in the EU countries and to support participation and success rates of adult learners. The target groups are teachers in adult learning institutions and teacher trainers. As a result of the MiA project this handbook presents...... examples of good practices and theoretical thoughts about doing and learning mathematics in actual real life situations. The first chapter gives an overview. The second chapter concerns important papers from the European Commission on key competences and how they set up challenges for teachers in adult...

  19. The Amazing Mathematical Race

    Science.gov (United States)

    Noblitt, Bethany A.; Buckley, Brooke E.

    2011-01-01

    Teams, pit stops, clues, time limits, fast forwards, challenges, and prizes are all components of the CBS hit show "The Amazing Race." They were also elements of the Amazing Mathematical Race sponsored by the Math and Stats Club at Northern Kentucky University in April 2009. Held in recognition of Math Awareness Month, which is advocated…

  20. Mathematics for quantum chemistry

    CERN Document Server

    Anderson, Jay Martin

    2005-01-01

    This concise volume offers undergraduates an introduction to mathematical formalism in problems of molecular structure and motion. The main topics cover the calculus of orthogonal functions, algebra of vector spaces, and Lagrangian and Hamiltonian formulation of classical mechanics and applications to molecular motion. Answers to problems. 1966 edition.

  1. Consumer Mathematics. Teaching Units.

    Science.gov (United States)

    North Carolina State Dept. of Public Instruction, Raleigh.

    GRADES OR AGES: Secondary school. SUBJECT MATTER: Consumer mathematics including--money management, transportation, probability, swindles and gyps, insurance, housing, taxes, consumer credit, banks, savings, and investments. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into ten parallel units, one for each of the above areas, which…

  2. The Making of Mathematics.

    Science.gov (United States)

    Thornton, Steve

    2000-01-01

    Describes the most enduring link between Napoleon and mathematics as the geometric result known as Napoleon's Theorem, which states that if equilateral triangles are drawn on the three sides of any triangle, the line segments joining the centers of these equilateral triangles will themselves form an equilateral triangle. (ASK)

  3. The Changing Curriculum: Mathematics.

    Science.gov (United States)

    Davis, Robert B.

    In this 1967 booklet, influences of technology, the non-achiever and the culturally disadvantaged, and the revolt against formalism are discussed in relation to the modern mathematics curriculum. Some projects and school programs described include PLATO, the Nuffield Project, the Nova School Program, Advanced Placement Program, and teacher…

  4. Using and Applying Mathematics

    Science.gov (United States)

    Knight, Rupert

    2011-01-01

    The Nobel prize winning physicist Richard Feynman (2007) famously enthused about "the pleasure of finding things out". In day-to-day classroom life, however, it is easy to lose and undervalue this pleasure in the process, as opposed to products, of mathematics. Finding things out involves a journey and is often where the learning takes place.…

  5. Corner Reflector Mathematics

    Science.gov (United States)

    Popelka, Susan R.

    2011-01-01

    Tiny prisms in reflective road signs and safety vests have interesting geometrical properties that can be discussed at any level of high school mathematics. At the beginning of the school year, the author teaches a unit on these reflective materials in her precalculus class so that students can review and strengthen their geometry and trigonometry…

  6. Flipping Freshman Mathematics

    Science.gov (United States)

    Zack, Laurie; Fuselier, Jenny; Graham-Squire, Adam; Lamb, Ron; O'Hara, Karen

    2015-01-01

    Our study compared a flipped class with a standard lecture class in four introductory courses: finite mathematics, precalculus, business calculus, and calculus 1. The flipped sections watched video lectures outside of class and spent time in class actively working on problems. The traditional sections had lectures in class and did homework outside…

  7. Freedom in mathematics

    CERN Document Server

    Cartier, Pierre; Heinzmann, Gerhard; Villani, Cédric

    2016-01-01

    This book challenges the views put forward by Pierre Cartier, one of the anchors of the famous Bourbaki group, and Cédric Villani, one of the most brilliant mathematicians of his generation, who received the Fields Medal in 2010. Jean Dhombres, mathematician and science historian, and Gerhard Heinzmann, philosopher of science and also a specialist in mathematics engage in a fruitful dialogue with the two mathematicians, prompting readers to reflect on mathematical activity and its social consequences in history as well as in the modern world. Cédric Villani’s popular success proves once again that a common awareness has developed, albeit in a very confused way, of the major role of mathematics in the construction and efficiency of natural sciences, which are at the origin of our technologies. Despite this, the idea that mathematics cannot be shared remains firmly entrenched, a perceived failing that has even been branded a lack of culture by vocal forces in the media as well as cultural and political esta...

  8. The Constructivist Mathematics Classroom

    Science.gov (United States)

    Jones, Karrie; Jones, Jennifer L.; Vermette, Paul J.

    2010-01-01

    By examining how people learn, the educational theories of Dewey, Piaget, Vygotsky and Bruner can be synthesized to give this set of core Constructivist principles. Principles of effective mathematics teaching: (1) allows learning that is "active" and "reflective". Students are required to transfer key concepts to new situations; (2) allows…

  9. Celebrate Mathematical Curiosity

    Science.gov (United States)

    Redford, Christine

    2011-01-01

    Children's mathematical questions are often based in real-world experiences, as they instinctively make connections to the world around them. In teaching math methods courses, this author recently started to emphasize the importance of fostering curiosity in, and activating the thinking of, the students. In this article, she describes how to tap…

  10. Mathematical Pattern Hunters

    Science.gov (United States)

    Whitin, Phyllis; Whitin, David J.

    2011-01-01

    The habit of looking for patterns, the skills to find them, and the expectation that patterns have explanations is an essential mathematical habit of mind for young children (Goldenberg, Shteingold, & Feurzeig 2003, 23). Work with patterns leads to the ability to form generalizations, the bedrock of algebraic thinking, and teachers must nurture…

  11. Speed mathematics simplified

    CERN Document Server

    Stoddard, Edward

    1994-01-01

    Entertaining, easy-to-follow suggestions for developing greater speed and accuracy in doing mathematical calculations. Surefire methods for multiplying without carrying, dividing with half the pencil work of long division, plus advice on how to add and subtract rapidly, master fractions, work quickly with decimals, handle percentages, and much more.

  12. Mathematics Teachers' Ideas about Mathematical Models: A Diverse Landscape

    Science.gov (United States)

    Bautista, Alfredo; Wilkerson-Jerde, Michelle H.; Tobin, Roger G.; Brizuela, Bárbara M.

    2014-01-01

    This paper describes the ideas that mathematics teachers (grades 5-9) have regarding mathematical models of real-world phenomena, and explores how teachers' ideas differ depending on their educational background. Participants were 56 United States in-service mathematics teachers. We analyzed teachers' written responses to three open-ended…

  13. Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving

    Science.gov (United States)

    Ayllón, María F.; Gómez, Isabel A.; Ballesta-Claver, Julio

    2016-01-01

    This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas), flexibility (range of ideas),…

  14. The aesthetic value of mathematical knowledge and mathematics teaching

    Directory of Open Access Journals (Sweden)

    Erovenko V. A.

    2016-01-01

    Full Text Available The article is devoted to identifying the value of the phenomenon of aesthetic value and beauty of mathematical knowledge and the beauty of mathematical theory of teaching mathematics. The aesthetic potential of mathematical knowledge allows the use of theater technology in the educational process with the active dialogic interaction between teacher and students. The criteria of beauty in mathematical theories are distinguished: the realization of beauty as the unity of the whole, and in the disclosure of the complex through the elementary; methodological interpretation of the beauty in the community of mathematical structures and optimal information content of the meta-language of mathematics; the practical embodiment of beauty in the formalization of the infinite through the finite. The beauty of mathematics is the force that permeates all the “layers of knowledge” not along, and across, although the effectiveness of mathematical activity due to aesthetic laws, which do not always lend themselves to unambiguous interpretation. In the article it is stated that, depending on the educational goals of communicative impact on the audience, in fact, “mathematical lectures theatricality” can have different characteristics, the most important of which are teachers artistry and artistic director's work of a teacher. This cultural phenomenon that includes the theatrical talent, helps create an atmosphere of cooperation needed in varying degrees of activity for pedagogical interaction. The author believes that such approach, developed on the basis of the Stanislavsky system, allows university professors of mathematics significantly improve mathematical lectures.

  15. The gentle art of mathematics

    CERN Document Server

    Pedoe, Dan

    2012-01-01

    This lighthearted work uses a variety of practical applications and puzzles to take a look at today's mathematical trends. In nine chapters, Professor Pedoe covers mathematical games, chance and choice, automatic thinking, and more.

  16. Nodal sets in mathematical physics

    Science.gov (United States)

    Brüning, J.

    2007-06-01

    We describe the main lines of mathematical research dealing with nodal sets of eigenfunctions since the days of Chladni. We present the material in a form hopefully suited to a nonspecialized but mathematically educated audience.

  17. Why Teach mathematics to Adults?

    DEFF Research Database (Denmark)

    Johansen, Lene Østergaard

    2008-01-01

         This Thesis focuses on the justification problem and especially the question Why teach mathematics  to adults with lack of basic mathematical skills? Reasons for mathematics education are seldom explicitly formulated, often the reasons are implicit and only in rare cases, we have direct access...... to reasons for mathematics education. When the Danish Government, in the autumn 1999, presented a coming reform of the Adult educational system including a brand new numeracy course for adults, PAE-mathematics, I felt that this could be the rare case. The research question of this thesis is answered through...... an analysis of the development of this new mathematics course. I have focused on reasons given by three different groups of active partners in the curriculum development process. I have focused on: (1) Politicians and Officials (2) The Curriculum Planners of PAE-mathematics (3) A selected group of mathematics...

  18. Integrating Mathematics and Social Issues

    Science.gov (United States)

    Harrell, Gregory K.

    2007-01-01

    This article illustrates how to integrate mathematics with social issues. Social issues discussed in the newspaper provide a rich context for connecting mathematical activities to the real world. The sample activities focus on measurement concepts. (Contains 2 figures.)

  19. How to solve mathematical problems

    CERN Document Server

    Wickelgren, Wayne A

    1995-01-01

    Seven problem-solving techniques include inference, classification of action sequences, subgoals, contradiction, working backward, relations between problems, and mathematical representation. Also, problems from mathematics, science, and engineering with complete solutions.

  20. Mathematics Education in Hungary Today.

    Science.gov (United States)

    Varga, Tamas

    1988-01-01

    Changes in mathematics education from the 1950s to the 1980s are briefly described by the author, who was a leading mathematics educator in Hungary. Illustrations focus on personal experience and small group interaction. (MNS)

  1. Mathematical Induction in the Classroom

    Science.gov (United States)

    Avital, Shmuel; Hansen, Rodney T.

    1976-01-01

    This paper discusses the process of investigating a mathematical situation, making conjectures, formulating an equation, then using mathematical induction to show the result is valid. Several examples appropriate for secondary school level are given. (DT)

  2. Mathematics Education and Language Diversity

    DEFF Research Database (Denmark)

    Moschkovich, Judit; Planas, Nuria

    This book examines multiple facets of language diversity and mathematics education. It features renowned authors from around the world and explores the learning and teaching of mathematics in contexts that include multilingual classrooms, indigenous education, teacher education, blind and deaf...

  3. Public Evacuation Process Modeling and Simulatiaon Based on Cellular Automata

    Directory of Open Access Journals (Sweden)

    Zhikun Wang

    2013-11-01

    Full Text Available Considering attraction of the nearest exit, repulsive force of the fire, barrier and its display style, effect of fire exit location on escape time in fire hazard, a mathematical model of evacuation process model was build based on cellular automatic theory. The program was developed by JavaScript. The influencing factors of evacuation were obtained through the simulation model by inputting crew size, creating initial positions of crew and fire seat stochastically. The experimental results show that the evacuation simulation model with authenticity and validity, which has guiding significance for people evacuation and public escape system design.  

  4. "The Mathematics of Economic Growth"

    OpenAIRE

    Nancy J. Wulwick

    1990-01-01

    Traditionally, economists have considered that mathematics acts as a universal language that lends clarity to theoretical statements. This paper proposes that mathematics does not function as a mere language. Rather, the advocacy of particular theoretical views and the choice of mathematical formalisms go hand-in-hand. The paper explores this issue by investigating the role of mathematics in developments of the theory of economic growth.

  5. Mastering mathematics for OCR GCSE

    CERN Document Server

    Lambert, Elaine

    2015-01-01

    Build your students' knowledge and understanding so that they can confidently reason, interpret, communicate mathematically and apply their mathematical skills to solve problems within mathematics and wider contexts; with resources developed specifically for the OCR GCSE 2015 specification by mathematics subject specialists experienced in teaching and examining GCSE. - Supports you and your students through the new specifications, with topic explanations and new. exam-style questions, written in line with the new assessment objectives. - Measure progress and assess learning throughout the cour

  6. A cellular automata model with probability infection and spatial dispersion

    Institute of Scientific and Technical Information of China (English)

    Jin Zhen; Liu Quan-Xing; Mainul Haque

    2007-01-01

    In this article, we have proposed an epidemic model based on the probability cellular automata theory. The essential mathematical features are analysed with the help of stability theory. We have given an alternative modelling approach for the spatiotemporal system which is more realistic from the practical point of view. A discrete and spatiotemporal approach is shown by using cellular automata theory. It is interesting to note that both the size of the endemic equilibrium and the density of the individuals increase with the increase of the neighbourhood size and infection rate, but the infections decrease with the increase of the recovery rate. The stability of the system around the positive interior equilibrium has been shown by using a suitable Lyapunov function. Finally, experimental data simulation for SARS disease in China in 2003 and a brief discussion are given.

  7. Hierarchical Cellular Structures in High-Capacity Cellular Communication Systems

    CERN Document Server

    Jain, R K; Agrawal, N K

    2011-01-01

    In the prevailing cellular environment, it is important to provide the resources for the fluctuating traffic demand exactly in the place and at the time where and when they are needed. In this paper, we explored the ability of hierarchical cellular structures with inter layer reuse to increase the capacity of mobile communication network by applying total frequency hopping (T-FH) and adaptive frequency allocation (AFA) as a strategy to reuse the macro and micro cell resources without frequency planning in indoor pico cells [11]. The practical aspects for designing macro- micro cellular overlays in the existing big urban areas are also explained [4]. Femto cells are inducted in macro / micro / pico cells hierarchical structure to achieve the required QoS cost effectively.

  8. The pragmatics of mathematics education vagueness and mathematical discourse

    CERN Document Server

    Rowland, Tim

    2003-01-01

    Drawing on philosophy of language and recent linguistic theory, Rowland surveys several approaches to classroom communication in mathematics. Are students intimidated by the nature of mathematics teaching? Many students appear fearful of voicing their understanding - is fear of error part of the linguistics of mathematics? The approaches explored here provide a rationale and a method for exploring and understanding speakers'' motives in classroom mathematics talk. Teacher-student interactions in mathematics are analysed, and this provides a toolkit that teachers can use to respond to the intellectual vulnerability of their students.

  9. The Magic of Mathematics Discovering the Spell of Mathematics

    CERN Document Server

    Pappas, Theoni

    2011-01-01

    Delves into the world of ideas, explores the spell mathematics casts on our lives, and helps you discover mathematics where you least expect it. Be spellbound by the mathematical designs found in nature. Learn how knots may untie the mysteries of life. Be mesmerized by the computer revolution. Discover how the hidden forces of mathematics hold architectural structures together connect your telephone calls help airplanes get off the ground solve the mysteries of the living cell. See how some artists use a mathematical palette in their works and how many writers draw upon the wealth of its ideas

  10. Transition to abstract mathematics learning mathematical thinking and writing

    CERN Document Server

    Maddox, Randall

    2008-01-01

    Constructing concise and correct proofs is one of the most challenging aspects of learning to work with advanced mathematics. Meeting this challenge is a defining moment for those considering a career in mathematics or related fields. Mathematical Thinking and Writing teaches readers to construct proofs and communicate with the precision necessary for working with abstraction. It is based on two premises: composing clear and accurate mathematical arguments is critical in abstract mathematics, and that this skill requires development and support. Abstraction is the destination, not the starting

  11. Putting Mathematical Tasks into Context

    Science.gov (United States)

    Nagle, Courtney R.; Styers, Jodie L.

    2015-01-01

    Although many factors affect students' mathematical activity during a lesson, the teacher's selection and implementation of tasks is arguably the most influential in determining the level of student engagement. Mathematical tasks are intended to focus students' attention on a particular mathematical concept and it is the careful developing and…

  12. Mathematical modeling in psychological researches

    Directory of Open Access Journals (Sweden)

    Aleksandra Zyolko

    2013-04-01

    Full Text Available The author considers the nature of mathematical modeling and its significance in psychological researches. The author distinguishes the types of mathematical models: deterministic, stochastic models and synergetic models. The system approach is proposed as an instrument of implementation of mathematical modelling in psychological research.

  13. The Emergence of Mathematical Structures

    Science.gov (United States)

    Hegedus, Stephen John; Moreno-Armella, Luis

    2011-01-01

    We present epistemological ruptures that have occurred in mathematical history and in the transformation of using technology in mathematics education in the twenty-first century. We describe how such changes establish a new form of digital semiotics that challenges learning paradigms and mathematical inquiry for learners today. We focus on drawing…

  14. Introductory mathematics for earth scientists

    CERN Document Server

    Yang, Xin-She

    2009-01-01

    Any quantitative work in earth sciences requires mathematical analysis and mathematical methods are essential to the modelling and analysis of the geological, geophysical and environmental processes involved. This book provides an introduction to the fundamental mathematics that all earth scientists need.

  15. Ethical Dimensions of Mathematics Education

    Science.gov (United States)

    Boylan, Mark

    2016-01-01

    The relationships between mathematics, mathematics education and issues such as social justice and equity have been addressed by the sociopolitical tradition in mathematics education. Others have introduced explicit discussion of ethics, advocating for its centrality. However, this is an area that is still under developed. There is a need for an…

  16. Mathematical Giftedness: A Creative Scenario

    Science.gov (United States)

    Sharma, Yogesh

    2013-01-01

    Identification and development of giftedness is a major task of mathematics teachers worldwide. An early identification of gifted children in mathematics can have a number of benefits, like, providing opportunities for the nourishment of their talent, saving them from burnout, and proper utilisation of mathematical talent in future. As creativity…

  17. Investigating Teachers' Images of Mathematics

    Science.gov (United States)

    Sterenberg, Gladys

    2008-01-01

    Research suggests that understanding new images of mathematics is very challenging and can contribute to teacher resistance. An explicit exploration of personal views of mathematics may be necessary for pedagogical change. One possible way for exploring these images is through mathematical metaphors. As metaphors focus on similarities, they can be…

  18. Experimental Mathematics and Computational Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, David H.; Borwein, Jonathan M.

    2009-04-30

    The field of statistics has long been noted for techniques to detect patterns and regularities in numerical data. In this article we explore connections between statistics and the emerging field of 'experimental mathematics'. These includes both applications of experimental mathematics in statistics, as well as statistical methods applied to computational mathematics.

  19. The Psychology of Learning Mathematics.

    Science.gov (United States)

    Skemp, Richard R.

    This book deals with the teaching of mathematical concepts through the use of the psychology of human learning. In the first part of the book, the thought processes which people adopt when they do mathematics are analyzed psychologically. Interpersonal and emotional factors affecting the learning of mathematics are discussed. The second part of…

  20. Mathematical modeling in biomedical imaging

    CERN Document Server

    2012-01-01

    This volume reports on recent mathematical and computational advances in optical, ultrasound, and opto-acoustic tomographies. It outlines the state-of-the-art and future directions in these fields and provides readers with the most recently developed mathematical and computational tools.  It is particularly suitable for researchers and graduate students in applied mathematics and biomedical engineering.

  1. Classifying cellular automata using grossone

    Science.gov (United States)

    D'Alotto, Louis

    2016-10-01

    This paper proposes an application of the Infinite Unit Axiom and grossone, introduced by Yaroslav Sergeyev (see [7] - [12]), to the development and classification of one and two-dimensional cellular automata. By the application of grossone, new and more precise nonarchimedean metrics on the space of definition for one and two-dimensional cellular automata are established. These new metrics allow us to do computations with infinitesimals. Hence configurations in the domain space of cellular automata can be infinitesimally close (but not equal). That is, they can agree at infinitely many places. Using the new metrics, open disks are defined and the number of points in each disk computed. The forward dynamics of a cellular automaton map are also studied by defined sets. It is also shown that using the Infinite Unit Axiom, the number of configurations that follow a given configuration, under the forward iterations of cellular automaton maps, can now be computed and hence a classification scheme developed based on this computation.

  2. Prognosis of Different Cellular Generations

    Directory of Open Access Journals (Sweden)

    Preetish Ranjan

    2013-04-01

    Full Text Available Technological advancement in mobile telephony from 1G to 3G, 4G and 5G has a very axiomatic fact that made an entire world a global village. The cellular system employs a different design approach and technology that most commercial radio and television system use. In the cellular system, the service area is divided into cells and a transmitter is designed to serve an individual cell. The system seeks to make efficient use of available channels by using low-power transmitters to allow frequency reuse at a smaller distance. Maximizing the number of times each channel can be reused in a given geographical area is the key to an efficient cellular system design. During the past three decades, the world has seen significant changes in telecommunications industry. There have been some remarkable aspects to the rapid growth in wireless communications, as seen by the large expansion in mobile systems. This paper focuses on “Past, Present & Future of Cellular Telephony” and some light has been thrown upon the technologies of the cellular systems, namely 1G, 2G, 2.5G, 3G and future generations like 4G and 5G systems as well.

  3. Mathematical Literacy: A new literacy or a new mathematics?

    Directory of Open Access Journals (Sweden)

    Renuka Vithal

    2006-10-01

    Full Text Available Mathematical Literacy is a ‘hot’ topic at present in most countries, whether it is referred to by that name, or in some cases as Numeracy, or Quantitative Literacy, or Matheracy, or as some part of Ethnomathematics, or related to Mathematics in Society. Questions continue to be asked about what is meant by mathematics in any concept of Mathematical Literacy and the use of the very word ‘Literacy’ in its association with Mathematics has been challenged. Its importance, however, lies in changing our perspective on mathematics teaching, away from the elitism so often associated with much mathematics education, and towards a more equitable, accessible and genuinely educational ideal.

  4. Cellular Automata Model for Elastic Solid Material

    Institute of Scientific and Technical Information of China (English)

    DONG Yin-Feng; ZHANG Guang-Cai; XU Ai-Guo; GAN Yan-Biao

    2013-01-01

    The Cellular Automaton (CA) modeling and simulation of solid dynamics is a long-standing difficult problem.In this paper we present a new two-dimensional CA model for solid dynamics.In this model the solid body is represented by a set of white and black particles alternatively positioned in the x-and y-directions.The force acting on each particle is represented by the linear summation of relative displacements of the nearest-neighboring particles.The key technique in this new model is the construction of eight coefficient matrices.Theoretical and numerical analyses show that the present model can be mathematically described by a conservative system.So,it works for elastic material.In the continuum limit the CA model recovers the well-known Navier equation.The coefficient matrices are related to the shear module and Poisson ratio of the material body.Compared with previous CA model for solid body,this model realizes the natural coupling of deformations in the x-and y-directions.Consequently,the wave phenomena related to the Poisson ratio effects are successfully recovered.This work advances significantly the CA modeling and simulation in the field of computational solid dynamics.

  5. Cooperative Handover Management in Dense Cellular Networks

    KAUST Repository

    Arshad, Rabe

    2017-02-07

    Network densification has always been an important factor to cope with the ever increasing capacity demand. Deploying more base stations (BSs) improves the spatial frequency utilization, which increases the network capacity. However, such improvement comes at the expense of shrinking the BSs\\' footprints, which increases the handover (HO) rate and may diminish the foreseen capacity gains. In this paper, we propose a cooperative HO management scheme to mitigate the HO effect on throughput gains achieved via cellular network densification. The proposed HO scheme relies on skipping HO to the nearest BS at some instances along the user\\'s trajectory while enabling cooperative BS service during HO execution at other instances. To this end, we develop a mathematical model, via stochastic geometry, to quantify the performance of the proposed HO scheme in terms of coverage probability and user throughput. The results show that the proposed cooperative HO scheme outperforms the always best connected based association at high mobility. Also, the value of BS cooperation along with handover skipping is quantified with respect to the HO skipping only that has recently appeared in the literature. Particularly, the proposed cooperative HO scheme shows throughput gains of 12% to 27% and 17% on average, when compared to the always best connected and HO skipping only schemes at user velocity ranging from 80 km/h to 160 Km/h, respectively.

  6. Mathematical Articles for the general public

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    2003-01-01

    Report on an article competition for mathematical articles addressing the general public arranged by the European Mathematical Society.......Report on an article competition for mathematical articles addressing the general public arranged by the European Mathematical Society....

  7. Novel Materials for Cellular Nanosensors

    DEFF Research Database (Denmark)

    Sasso, Luigi

    The monitoring of cellular behavior is useful for the advancement of biomedical diagnostics, drug development and the understanding of a cell as the main unit of the human body. Micro- and nanotechnology allow for the creation of functional devices that enhance the study of cellular dynamics...... modifications for electrochemical nanosensors for the detection of analytes released from cells. Two type of materials were investigated, each pertaining to the two different aspects of such devices: peptide nanostructures were studied for the creation of cellular sensing substrates that mimic in vivo surfaces...... and that offer advantages of functionalization, and conducting polymers were used as electrochemical sensor surface modifications for increasing the sensitivity towards relevant analytes, with focus on the detection of dopamine released from cells via exocytosis. Vertical peptide nanowires were synthesized from...

  8. Proof Auditing Formalised Mathematics

    Directory of Open Access Journals (Sweden)

    Mark Miles Adams

    2016-01-01

    Full Text Available The first three formalisations of major mathematical proofs have heralded a new age in formalised mathematics, establishing that informal proofs at the limits of what can be understood by humans can be checked by machine. However, formalisation itself can be subject to error, and yet there is currently no accepted process in checking, or even much concern that such checks have not been performed. In this paper, we motivate why we should be concerned about correctness, and argue the need for proof auditing, to rigorously and independently check a formalisation. We discuss the issues involved in performing an audit, and propose an effective and efficient auditing process. Throughout we use the Flyspeck Project, that formalises the Kepler Conjecture proof, to illustrate our point.

  9. Mathematical leadership vision.

    Science.gov (United States)

    Hamburger, Y A

    2000-11-01

    This article is an analysis of a new type of leadership vision, the kind of vision that is becoming increasingly pervasive among leaders in the modern world. This vision appears to offer a new horizon, whereas, in fact it delivers to its target audience a finely tuned version of the already existing ambitions and aspirations of the target audience. The leader, with advisors, has examined the target audience and has used the results of extensive research and statistical methods concerning the group to form a picture of its members' lifestyles and values. On the basis of this information, the leader has built a "vision." The vision is intended to create an impression of a charismatic and transformational leader when, in fact, it is merely a response. The systemic, arithmetic, and statistical methods employed in this operation have led to the coining of the terms mathematical leader and mathematical vision.

  10. Mathematical oncology 2013

    CERN Document Server

    Gandolfi, Alberto

    2014-01-01

    With chapters on free boundaries, constitutive equations, stochastic dynamics, nonlinear diffusion–consumption, structured populations, and applications of optimal control theory, this volume presents the most significant recent results in the field of mathematical oncology. It highlights the work of world-class research teams, and explores how different researchers approach the same problem in various ways. Tumors are complex entities that present numerous challenges to the mathematical modeler. First and foremost, they grow. Thus their spatial mean field description involves a free boundary problem. Second, their interiors should be modeled as nontrivial porous media using constitutive equations. Third, at the end of anti-cancer therapy, a small number of malignant cells remain, making the post-treatment dynamics inherently stochastic. Fourth, the growth parameters of macroscopic tumors are non-constant, as are the parameters of anti-tumor therapies. Changes in these parameters may induce phenomena that a...

  11. Mathematical analysis I

    CERN Document Server

    Canuto, Claudio

    2015-01-01

    The purpose of the volume is to provide a support for a first course in Mathematics. The contents are organised to appeal especially to Engineering, Physics and Computer Science students, all areas in which mathematical tools play a crucial role. Basic notions and methods of differential and integral calculus for functions of one real variable are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The layout has a specifically-designed modular nature, allowing the instructor to make flexible didactical choices when planning an introductory lecture course. The book may in fact be employed at three levels of depth. At the elementary level the student is supposed to grasp the very essential ideas and familiarise with the corresponding key techniques. Proofs to the main results befit the intermediate level, together with several remarks and complementary notes enhancing the treatise. The last, and farthest-reaching, level requires the additional study of ...

  12. Understanding engineering mathematics

    CERN Document Server

    Cox, Bill

    2001-01-01

    * Unique interactive style enables students to diagnose their strengths and weaknesses and focus their efforts where needed* Ideal for self-study and tutorial work, building from an initially supportive approach to the development of independent learning skills * Free website includes solutions to all exercises, additional topics and applications, guide to learning mathematics, and practice materialStudents today enter engineering courses with a wide range of mathematical skills, due to the many different pre-university qualifications studied. Bill Cox''s aim is for students to gain a thorough understanding of the maths they are studying, by first strengthening their background in the essentials of each topic. His approach allows a unique self-paced study style, in which students Review their strengths and weaknesses through self-administered diagnostic tests, then focus on Revision where they need it, to finally Reinforce the skills required.The book is structured around a highly successful ''transition'' ma...

  13. Mathematical tools for physicists

    CERN Document Server

    2005-01-01

    Mathematical Tools for Physisists is a unique collection of 18 review articles, each one written by a renowned expert of its field. Their professional style will be beneficial for advanced students as well as for the scientist at work. The first may find a comprehensive introduction while the latter use it as a quick reference.The contributions range from fundamental methods right up to the latest applications, including:Algebraic/ analytic / geometric methodsSymmetries and conservation lawsMathematical modellingQuantum computationGreat attention was paid to ensuring fast access to the information, and each carefully reviewed article features:an abstracta detailed table of contentscontinuous cross-referencingreferences to the most relevant publications in the field, andsuggestions for further reading, both introductory as well as highly specialized.In addition, a comprehensive index provides easy access to the enormous number of key words beyond the headlines

  14. Trends in contemporary mathematics

    CERN Document Server

    Strickland, Elisabetta

    2014-01-01

    This book covers a wide spectrum of hot topics and current trends in mathematics, including noncommutative algebra via deformation theory,  optimal transportation, nonlinear potential theory, kinetic theory and gas dynamics, geometric numerical integration, finite simple groups of small essential dimension, optimal control problems, extended Dynkin diagrams, spin glasses, aspherical closed manifolds, Boltzmann systems, birational geometry of projective varieties and directed graphs, nonlinear diffusion, geometric constructions of extremal metrics on complex manifolds, and Pell’s equation in polynomials. The book comprises a selection of contributions by leading international mathematicians who were speakers at the "INdAM Day", an initiative dating back to 2004 at which the most recent developments in contemporary mathematics are presented.

  15. Introduction to mathematical physics

    CERN Document Server

    Vaughn, Michael T

    2007-01-01

    A comprehensive survey of all the mathematical methods that should be available to graduate students in physics. In addition to the usual topics of analysis, such as infinite series, functions of a complex variable and some differential equations as well as linear vector spaces, this book includes a more extensive discussion of group theory than can be found in other current textbooks. The main feature of this textbook is its extensive treatment of geometrical methods as applied to physics. With its introduction of differentiable manifolds and a discussion of vectors and forms on such manifolds as part of a first-year graduate course in mathematical methods, the text allows students to grasp at an early stage the contemporary literature on dynamical systems, solitons and related topological solutions to field equations, gauge theories, gravitational theory, and even string theory

  16. a Contextualist Interpretation of Mathematics

    Science.gov (United States)

    Liu, Jie

    2014-03-01

    The nature of mathematics has been the subject of heated debate among mathematicians and philosophers throughout the ages. The realist and anti-realist positions have had longstanding debate over this problem, but some of the most important recent development has focused on the interpretations; each of the above positions has its own interpretation of the nature of mathematics. I argue in this paper a contextualist interpretation of mathematics, it elucidates the essential features of mathematical context. That is, being integral and having concrete structure, mathematical context is a recontextualizational process with determinate boundary.

  17. The Princeton companion to mathematics

    CERN Document Server

    Barrow-Green, June; Leader, Imre

    2008-01-01

    This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries, written especially for this book by some of the world's leading mathematicians, that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music--and much, much more

  18. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics

    Science.gov (United States)

    Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.

    2016-01-01

    Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…

  19. Mathematization Competencies of Pre-Service Elementary Mathematics Teachers in the Mathematical Modelling Process

    Science.gov (United States)

    Yilmaz, Suha; Tekin-Dede, Ayse

    2016-01-01

    Mathematization competency is considered in the field as the focus of modelling process. Considering the various definitions, the components of the mathematization competency are determined as identifying assumptions, identifying variables based on the assumptions and constructing mathematical model/s based on the relations among identified…

  20. Cellular models for Parkinson's disease.

    Science.gov (United States)

    Falkenburger, Björn H; Saridaki, Theodora; Dinter, Elisabeth

    2016-10-01

    Developing new therapeutic strategies for Parkinson's disease requires cellular models. Current models reproduce the two most salient changes found in the brains of patients with Parkinson's disease: The degeneration of dopaminergic neurons and the existence of protein aggregates consisting mainly of α-synuclein. Cultured cells offer many advantages over studying Parkinson's disease directly in patients or in animal models. At the same time, the choice of a specific cellular model entails the requirement to focus on one aspect of the disease while ignoring others. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types the aspects of Parkinson's disease they model along with technical advantages and disadvantages. It might also be helpful for researchers from other fields consulting literature on cellular models of Parkinson's disease. Important models for the study of dopaminergic neuron degeneration include Lund human mesencephalic cells and primary neurons, and a case is made for the use of non-dopaminergic cells to model pathogenesis of non-motor symptoms of Parkinson's disease. With regard to α-synuclein aggregates, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. Cellular models reproduce the two most salient changes of Parkinson's disease, the degeneration of dopaminergic neurons and the existence of α-synuclein aggregates. This article is intended for researchers planning to use cellular models for their studies. It describes for commonly used cell types and treatments the aspects of Parkinson's disease they model along with technical advantages and disadvantages. Furthermore, this article describes strategies to induce and measure aggregates with a focus on fluorescent techniques. This article is part of a special issue on Parkinson disease.

  1. Life insurance mathematics

    CERN Document Server

    Gerber, Hans U

    1997-01-01

    This concise introduction to life contingencies, the theory behind the actuarial work around life insurance and pension funds, will appeal to the reader who likes applied mathematics. In addition to model of life contingencies, the theory of compound interest is explained and it is shown how mortality and other rates can be estimated from observations. The probabilistic model is used consistently throughout the book. Numerous exercises (with answers and solutions) have been added, and for this third edition several misprints have been corrected.

  2. Mathematical statistics with applications

    CERN Document Server

    Wackerly, Dennis D; Scheaffer, Richard L

    2008-01-01

    In their bestselling MATHEMATICAL STATISTICS WITH APPLICATIONS, premiere authors Dennis Wackerly, William Mendenhall, and Richard L. Scheaffer present a solid foundation in statistical theory while conveying the relevance and importance of the theory in solving practical problems in the real world. The authors' use of practical applications and excellent exercises helps you discover the nature of statistics and understand its essential role in scientific research.

  3. Methods of applied mathematics

    CERN Document Server

    Hildebrand, Francis B

    1992-01-01

    This invaluable book offers engineers and physicists working knowledge of a number of mathematical facts and techniques not commonly treated in courses in advanced calculus, but nevertheless extremely useful when applied to typical problems in many different fields. It deals principally with linear algebraic equations, quadratic and Hermitian forms, operations with vectors and matrices, the calculus of variations, and the formulations and theory of linear integral equations. Annotated problems and exercises accompany each chapter.

  4. Mathematical foundations of biomechanics.

    Science.gov (United States)

    Niederer, Peter F

    2010-01-01

    The aim of biomechanics is the analysis of the structure and function of humans, animals, and plants by means of the methods of mechanics. Its foundations are in particular embedded in mathematics, physics, and informatics. Due to the inherent multidisciplinary character deriving from its aim, biomechanics has numerous connections and overlapping areas with biology, biochemistry, physiology, and pathophysiology, along with clinical medicine, so its range is enormously wide. This treatise is mainly meant to serve as an introduction and overview for readers and students who intend to acquire a basic understanding of the mathematical principles and mechanics that constitute the foundation of biomechanics; accordingly, its contents are limited to basic theoretical principles of general validity and long-range significance. Selected examples are included that are representative for the problems treated in biomechanics. Although ultimate mathematical generality is not in the foreground, an attempt is made to derive the theory from basic principles. A concise and systematic formulation is thereby intended with the aim that the reader is provided with a working knowledge. It is assumed that he or she is familiar with the principles of calculus, vector analysis, and linear algebra.

  5. Mathematical models of hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The ongoing research has largely been focused on the development of mathematical models of hysteretic nonlinearities with nonlocal memories. The distinct feature of these nonlinearities is that their current states depend on past histories of input variations. It turns out that memories of hysteretic nonlinearities are quite selective. Indeed, experiments show that only some past input extrema (not the entire input variations) leave their marks upon future states of hysteretic nonlinearities. Thus special mathematical tools are needed in order to describe nonlocal selective memories of hysteretic nonlinearities. The origin of such tools can be traced back to the landmark paper of Preisach. Their research has been primarily concerned with Preisach-type models of hysteresis. All these models have a common generic feature; they are constructed as superpositions of simplest hysteretic nonlinearities-rectangular loops. During the past four years, the study has been by and large centered around the following topics: (1) further development of Scalar and vector Preisach-type models of hysteresis; (2) experimental testing of Preisach-type models of hysteresis; (3) development of new models for viscosity (aftereffect) in hysteretic systems; (4) development of mathematical models for superconducting hysteresis in the case of gradual resistive transitions; (5) software implementation of Preisach-type models of hysteresis; and (6) development of new ideas which have emerged in the course of the research work. The author briefly describes the main scientific results obtained in the areas outlined above.

  6. Wronski's Foundations of Mathematics.

    Science.gov (United States)

    Wagner, Roi

    2016-09-01

    Argument This paper reconstructs Wronski's philosophical foundations of mathematics. It uses his critique of Lagrange's algebraic analysis as a vignette to introduce the problems that he raised, and argues that these problems have not been properly appreciated by his contemporaries and subsequent commentators. The paper goes on to reconstruct Wronski's mathematical law of creation and his notions of theory and techne, in order to put his objections to Lagrange in their philosophical context. Finally, Wronski's proof of his universal law (the expansion of a given function by any series of functions) is reviewed in terms of the above reconstruction. I argue that Wronski's philosophical approach poses an alternative to the views of his contemporary mainstream mathematicians, which brings up the contingency of their choices, and bridges the foundational concerns of early modernity with those of the twentieth-century foundations crisis. I also argue that Wronski's views may be useful to contemporary philosophy of mathematical practice, if they are read against their metaphysical grain.

  7. Mathematics for understanding disease.

    Science.gov (United States)

    Bies, R R; Gastonguay, M R; Schwartz, S L

    2008-06-01

    The application of mathematical models to reflect the organization and activity of biological systems can be viewed as a continuum of purpose. The far left of the continuum is solely the prediction of biological parameter values, wherein an understanding of the underlying biological processes is irrelevant to the purpose. At the far right of the continuum are mathematical models, the purposes of which are a precise understanding of those biological processes. No models in present use fall at either end of the continuum. Without question, however, the emphasis in regards to purpose has been on prediction, e.g., clinical trial simulation and empirical disease progression modeling. Clearly the model that ultimately incorporates a universal understanding of biological organization will also precisely predict biological events, giving the continuum the logical form of a tautology. Currently that goal lies at an immeasurable distance. Nonetheless, the motive here is to urge movement in the direction of that goal. The distance traveled toward understanding naturally depends upon the nature of the scientific question posed with respect to comprehending and/or predicting a particular disease process. A move toward mathematical models implies a move away from static empirical modeling and toward models that focus on systems biology, wherein modeling entails the systematic study of the complex pattern of organization inherent in biological systems.

  8. On Mathematical Proving

    Science.gov (United States)

    Stefaneas, Petros; Vandoulakis, Ioannis M.

    2015-12-01

    This paper outlines a logical representation of certain aspects of the process of mathematical proving that are important from the point of view of Artificial Intelligence. Our starting-point is the concept of proof-event or proving, introduced by Goguen, instead of the traditional concept of mathematical proof. The reason behind this choice is that in contrast to the traditional static concept of mathematical proof, proof-events are understood as processes, which enables their use in Artificial Intelligence in such contexts, in which problem-solving procedures and strategies are studied. We represent proof-events as problem-centered spatio-temporal processes by means of the language of the calculus of events, which captures adequately certain temporal aspects of proof-events (i.e. that they have history and form sequences of proof-events evolving in time). Further, we suggest a "loose" semantics for the proof-events, by means of Kolmogorov's calculus of problems. Finally, we expose the intented interpretations for our logical model from the fields of automated theorem-proving and Web-based collective proving.

  9. Cellular basis of Alzheimer's disease.

    Science.gov (United States)

    Bali, Jitin; Halima, Saoussen Ben; Felmy, Boas; Goodger, Zoe; Zurbriggen, Sebastian; Rajendran, Lawrence

    2010-12-01

    Alzheimer's disease (AD) is the most common form of neurodegenerative disease. A characteristic feature of the disease is the presence of amyloid-β (Aβ) which either in its soluble oligomeric form or in the plaque-associated form is causally linked to neurodegeneration. Aβ peptide is liberated from the membrane-spanning -amyloid precursor protein by sequential proteolytic processing employing β- and γ-secretases. All these proteins involved in the production of Aβ peptide are membrane associated and hence, membrane trafficking and cellular compartmentalization play important roles. In this review, we summarize the key cellular events that lead to the progression of AD.

  10. Discrete mathematics using a computer

    CERN Document Server

    Hall, Cordelia

    2000-01-01

    Several areas of mathematics find application throughout computer science, and all students of computer science need a practical working understanding of them. These core subjects are centred on logic, sets, recursion, induction, relations and functions. The material is often called discrete mathematics, to distinguish it from the traditional topics of continuous mathematics such as integration and differential equations. The central theme of this book is the connection between computing and discrete mathematics. This connection is useful in both directions: • Mathematics is used in many branches of computer science, in applica­ tions including program specification, datastructures,design and analysis of algorithms, database systems, hardware design, reasoning about the correctness of implementations, and much more; • Computers can help to make the mathematics easier to learn and use, by making mathematical terms executable, making abstract concepts more concrete, and through the use of software tools su...

  11. The Philosophy of Mathematics Education

    DEFF Research Database (Denmark)

    This survey provides a brief and selective overview of research in the philosophy of mathematics education. It asks what makes up the philosophy of mathematics education, what it means, what questions it asks and answers, and what is its overall importance and use? It provides overviews of critical...... mathematics education, and the most relevant modern movements in the philosophy of mathematics. A case study is provided of an emerging research tradition in one country. This is the Hermeneutic strand of research in the philosophy of mathematics education in Brazil. This illustrates one orientation towards...... research inquiry in the philosophy of mathematics education. It is part of a broader practice of ‘philosophical archaeology’: the uncovering of hidden assumptions and buried ideologies within the concepts and methods of research and practice in mathematics education. An extensive bibliography is also...

  12. Innovation in mathematics education: beyond the technology

    Directory of Open Access Journals (Sweden)

    Salvador Llinares

    2013-06-01

    Full Text Available Relationships between mathematical competence and mathematics teaching innovation do emerge the need for new practices of mathematics teaching. One of the aspects of this new practice is the interaction patterns in the classroom characterizing the mathematical discourse. From these perspectives, the relation between innovation and new mathematics practices defines different contexts for professional development of mathematics teacher.

  13. Representations used by mathematics student teachers in mathematical modeling process

    Directory of Open Access Journals (Sweden)

    Aytuğ Özaltun

    2014-02-01

    Full Text Available The purpose of this study is to determine representations used by mathematics student teachers in steps of mathematical modeling process based on their solutions of problems formed in the context of different classification of modeling. The study was conducted with fifteen secondary mathematics student teachers given a Mathematical Modeling course. The participants were separated into five collaboration groups of three students. Data were collected with the detailed written papers given by the groups for the problems and GeoGebra solution files. The groups benefited from verbal, algebraic, figural, tabular and dynamic representations while they were solving the problems. Considering all steps of the process, groups at most used verbal and algebraic representations. While they used only verbal representation in analyzing the problem, they benefited from at most verbal representation and then figural representation in establishing the systematic structure. The most used is algebraic and then verbal representations in the steps of mathematization, meta-mathematization, and mathematical analysis. In the steps of interpretation/evaluation and the model verification, the groups mainly benefited from verbal and then algebraic representations. Further researches towards why representations are preferred in the specific steps of the mathematical modeling process are suggested.Key Words: Mathematical modeling, modeling problems, mathematics student teachers, representations.

  14. [Mathematics - astronomy - astrology special library].

    Science.gov (United States)

    Gluch, Sibylle

    2011-01-01

    About 1560 Elector August of Saxony created an unusual library--one distinguished within its period by both its specialization and location. Situated within the Kunstkammer this library was mostly dedicated to the mathematical sciences and related disciplines. It contained works by the most important authors on mathematics, astronomy, and astrology from the classical, medieval, and early modern periods. This essay traces the formation and composition of August's library, and examines its function: What kind of relationship existed between the library and the Kunstkammer? In what way did the library mirror the interests of the Elector, and to what extend does it permit inferences regarding the Elector's knowledge of mathematics? From the analysis August emerges not as a specialist with a deep understanding of mathematics, but as a particular aficionado of mathematical applications. As a practitioner and general follower of the mathematical arts he took part in a far-reaching intellectual network the center of which lay in the University of Wittenberg. Here, Melanchthon had effectively strengthened the importance of the mathematical disciplines within the university curriculum. He regarded mathematics as the foremost science, arguing that before all other disciplines its method enabled man to recognize the harmonic order of the world, and to discern divine providence. Thus, mathematics offered consoling stability and support in an often seemingly chaotic world torn by religious controversies. This kind of esteem for the mathematical sciences did not presuppose expert knowledge. Hence, the fact that August does not appear to have read the mathematical books he collected does not come as a contradiction. On the contrary, for August it sufficed to recognize the potential of the mathematical sciences, which he brought into life through the creation of a specialized library that developed a rhetoric of its own. The collection of his Kunstkammer library spoke of a

  15. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Directory of Open Access Journals (Sweden)

    Jinpeng Qi

    Full Text Available Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR by using mathematical framework of kinetic theory of active particles (KTAP. Firstly, we focus on illustrating the profile of Cellular Repair System (CRS instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs and Repair Protein (RP generating, DSB-protein complexes (DSBCs synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  16. On Cellular MIMO Channel Capacity

    Science.gov (United States)

    Adachi, Koichi; Adachi, Fumiyuki; Nakagawa, Masao

    To increase the transmission rate without bandwidth expansion, the multiple-input multiple-output (MIMO) technique has recently been attracting much attention. The MIMO channel capacity in a cellular system is affected by the interference from neighboring co-channel cells. In this paper, we introduce the cellular channel capacity and evaluate its outage capacity, taking into account the frequency-reuse factor, path loss exponent, standard deviation of shadowing loss, and transmission power of a base station (BS). Furthermore, we compare the cellular MIMO downlink channel capacity with those of other multi-antenna transmission techniques such as single-input multiple-output (SIMO) and space-time block coded multiple-input single-output (STBC-MISO). We show that the optimum frequency-reuse factor F that maximizes 10%-outage capacity is 3 and both 50%- and 90%-outage capacities is 1 irrespective of the type of multi-antenna transmission technique, where q%-outage capacity is defined as the channel capacity that gives an outage probability of q%. We also show that the cellular MIMO channel capacity is always higher than those of SIMO and STBC-MISO.

  17. Cellular uptake of metallated cobalamins

    DEFF Research Database (Denmark)

    Tran, MQT; Stürup, Stefan; Lambert, Ian H.;

    2016-01-01

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN(-...

  18. Mathematics across cultures the history of non-Western mathematics

    CERN Document Server

    2000-01-01

    Mathematics Across Cultures: A History of Non-Western Mathematics consists of essays dealing with the mathematical knowledge and beliefs of cultures outside the United States and Europe. In addition to articles surveying Islamic, Chinese, Native American, Aboriginal Australian, Inca, Egyptian, and African mathematics, among others, the book includes essays on Rationality, Logic and Mathematics, and the transfer of knowledge from East to West. The essays address the connections between science and culture and relate the mathematical practices to the cultures which produced them. Each essay is well illustrated and contains an extensive bibliography. Because the geographic range is global, the book fills a gap in both the history of science and in cultural studies. It should find a place on the bookshelves of advanced undergraduate students, graduate students, and scholars, as well as in libraries serving those groups.

  19. Secondary School Mathematics Teachers' Attitude in Teaching Mathematics

    OpenAIRE

    2014-01-01

    The purpose of this study was to examine Addis Ababa secondary school mathematics teachers’ attitude in teaching mathematics. 148 mathematics teachers were selected using cluster sampling from Addis Ababa administration region. The study used survey method of data collection and it includes both quantitative and qualitative research methods. From the independent t-test, ANOVA, tukey test and regression analysis, some of the results obtained were: the majority of the secondary school mathemati...

  20. Global stability analysis on a class of cellular neural networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Yi

    2001-01-01

    [1]Chua, L. O., Yang, L., Cellular neural networks: Theory, IEEE Trans. CAS, 1988, (10): 1257.[2]Chua, L. O., Yang, L., Cellular neural networks: Applications, IEEE Trans. CAS, 1988, (10): 1273.[3]Chua, L. O., Roska, T., The CNN paradigm, IEEE Trans. CAS-I, 1993, (3): 147.[4]Matsumoto, T. Chua, L. O., Suzuki, H., CNN cloning template: Connected component detector, IEEE Trans. CAS, 1990, (8): 633.[5]Cao, L, Sun, Y, Yu, J., A CNN-based signature verification system,Proc. ICONIP′95, Beijing, 1995, 913—916.[6]Roska, T., Chua, L. O., The CNN universal machine: An analogic array computer, IEEE Trans. CAS Ⅱ, 1993, (3): 163.[7]Chua, L. O., Roska, T., Stability of a class of nonreciprocal cellular neural networks, IEEE Trans. CAS, 1990, (3): 1520.[8]Roska, T., Wu, C. W., Balsi, M. Et al., Stability and dynamics of delay type general and cellular neural networks, IEEE Trans. CAS, 1992, (6): 487.[9]Roska, T., Wu, C. W., Chua, L. O., Stability of cellular neural networks with dominant nonlinear and delaytype templates, IEEE Trans. CAS, 1993, (4): 270.[10]Civalleri, P. P., On stability of cellular neural networks with delay, IEEE Trans. CAS-I, 1993, (3): 157.[11]Gilli, G., Stability of cellular neural network and delayed cellular neural networks with nonpositive templates and nonmonotonic output functions, IEEE Trans CAS-I, 1994, (8): 518.[12]Baldi, P., Atiya, A. F., How delays affect neural dynamics and learning, IEEE Trans. On Neural Networks, 1994, (4): 612.[13]Liao, X. X., Mathematic foundation of cellular neural networks (Ⅰ), Science in China, Ser. A, 1994, 37(9): 902.[14]Liao, X. X., Mathematic foundation of cellular neural networks (Ⅱ), Science in China, Ser. A, 1994, 37(9): 1037.[15]Zhang, Y., Global exponential stability and periodic solutions of delay Hopfild neural networks, International J. Sys. Sci., 1996, (2): 227.[16]Zhang Yi, Zhong, S. M., Li, Z. L., Periodic solutions and global

  1. Experiencing mathematics what do we do, when we do mathematics?

    CERN Document Server

    Hersh, Reuben

    2014-01-01

    The question "What am I doing?" haunts many creative people, researchers, and teachers. Mathematics, poetry, and philosophy can look from the outside sometimes as ballet en pointe, and at other times as the flight of the bumblebee. Reuben Hersh looks at mathematics from the inside; he collects his papers written over several decades, their edited versions, and new chapters in his book Experiencing Mathematics, which is practical, philosophical, and in some places as intensely personal as Swann's madeleine. -Yuri Manin, Max Planck Institute, Bonn, Germany What happens when mid-career a mathemat

  2. Implementing a new mathematics curriculum: Mathematics teachers’ beliefs and practices

    Directory of Open Access Journals (Sweden)

    Ernest Ampadu

    2013-11-01

    Full Text Available Mathematics has become a ‘critical filter’ in the social, economic and professional development of individuals and forms a core component of the school curriculum in most countries. It is upon this utilitarian nature of mathematics to the individual and the society as a whole that the school mathematics curriculum has been undergoing a number of restructuring over the last three decades. In Ghana, a new mathematics curriculum was introduced in September 2007 which aims at shifting the teaching and learning of mathematics from a teacher-centered approach to more student-centered and participatory teaching and learning. However, since the introduction of the curriculum no study has specifically examined mathematics teachers’ teaching practices in relation to these new curriculum requirements. This study examines Junior High School (12-14 years mathematics teachers’ perceived and actual teaching practices in relation to the curriculum requirements. Participants in the study were 41 mathematics teachers’ from 22 Junior High Schools. A Semi-structured questionnaire was used to collect quantitative data about teachers’ perceived teaching practices, and classroom observation was used to collect qualitative data about actual classroom practices. The key findings include: teachers’ espoused the belief that their teaching practices are consistent with the principles and guidelines of the new mathematics curriculum. Teachers’ perceived teaching practices were not fully consistent with their actual practices. The movement towards a more constructivist approach as outlined in the curriculum was not fully evident in most of the classrooms observed.

  3. Mathematical marriages: intercourse between mathematics and Semiotic choice.

    Science.gov (United States)

    Wagner, Roy

    2009-04-01

    This paper examines the interaction between Semiotic choices and the presentation and solution of a family of contemporary mathematical problems centred around the so-called 'stable marriage problem'. I investigate how a socially restrictive choice of signs impacts mathematical production both in terms of problem formation and of solutions. I further note how the choice of gendered language ends up constructing a reality, which duplicates the very structural framework that it imported into mathematical analysis in the first place. I go on to point out some semiotic lines of flight from this interlocking grip of mathematics and gendered language.

  4. Loving + hating mathematics challenging the myths of mathematical life

    CERN Document Server

    Hersh, Reuben

    2011-01-01

    Mathematics is often thought of as the coldest expression of pure reason. But few subjects provoke hotter emotions--and inspire more love and hatred--than mathematics. And although math is frequently idealized as floating above the messiness of human life, its story is nothing if not human; often, it is all too human. Loving and Hating Mathematics is about the hidden human, emotional, and social forces that shape mathematics and affect the experiences of students and mathematicians. Written in a lively, accessible style, and filled with gripping stories and anecdotes, Loving and Hating Mathema

  5. The Joy of Mathematics Discovering Mathematics All Around You

    CERN Document Server

    Pappas, Theoni

    1993-01-01

    Part of the joy of mathematics is that it is everywhere-in soap bubbles, electricity, da Vinci's masterpieces, even in an ocean wave. Written by the well-known mathematics teacher consultant, this volume's collection of over 200 clearly illustrated mathematical ideas, concepts, puzzles, and games shows where they turn up in the "real" world. You'll find out what a googol is, visit hotel infinity, read a thorny logic problem that was stumping them back in the 8th century. THE JOY OF MATHEMATICS is designed to be opened at random…it's mini essays are self-contained providing the reader

  6. Mathematical Physics and Life

    CERN Document Server

    Patel, A

    2002-01-01

    It is a fascinating subject to explore how well we can understand the processes of life on the basis of fundamental laws of physics. It is emphasised that viewing biological processes as manipulation of information extracts their important features. This information processing can be analysed using well-known methods of mathematical physics. The lowest level of biological information processing, involving DNA and proteins, is the easiest one to link to physical properties. Physical underpinnings of the genetic information that could have led to the universal language of 4 nucleotide bases and 20 amino acids are pointed out. Generalisations of Boolean logic, especially features of quantum dynamics, play a crucial role.

  7. A mathematical nature walk

    CERN Document Server

    Adam, John A

    2009-01-01

    How heavy is that cloud? Why can you see farther in rain than in fog? Why are the droplets on that spider web spaced apart so evenly? If you have ever asked questions like these while outdoors, and wondered how you might figure out the answers, this is a book for you. An entertaining and informative collection of fascinating puzzles from the natural world around us, A Mathematical Nature Walk will delight anyone who loves nature or math or both. John Adam presents ninety-six questions about many common natural phenomena--and a few uncommon ones--and then shows how to answer them using mostly b

  8. Mathematics, Physics and Music

    Science.gov (United States)

    Šikić, Zvonimir

    I discuss the Pythagorean law of small numbers and its use in interpretations of our sensory discriminations of consonance vs. dissonance. It seems that the fact of non-western musical traditions contradicts the law and forces us to interpret the discriminations as acquired and subjective. I would like to show that this is a wrong interpretation, because it is based on the irrelevant empirical evidence. It does not take into account the correct mathematical and physical explanation of the law, provided by Helmholtz's theory in 1877 and corroborated by Plomp-Levelt experiment in 1965.

  9. Islamic Mathematical Astronomy

    Science.gov (United States)

    Montelle, Clemency

    A short survey on Islamic mathematical astronomy practiced during the period running from the eight century until the fifteenth is presented. Various pertinent themes, such as the translation of foreign scientific works and their impact on the tradition; the introduction, assimilation, and critique of the Ptolemaic model; and the role of observations, will be covered. In addition, the zīj, the dominant format for astronomical works, will be briefly explained as well as the legacy of the Islamic tradition of astral sciences to other cultures.

  10. Engineering mathematics-II

    CERN Document Server

    Ganesh, A

    2009-01-01

    About the Book: This book Engineering Mathematics-II is designed as a self-contained, comprehensive classroom text for the second semester B.E. Classes of Visveswaraiah Technological University as per the Revised new Syllabus. The topics included are Differential Calculus, Integral Calculus and Vector Integration, Differential Equations and Laplace Transforms. The book is written in a simple way and is accompanied with explanatory figures. All this make the students enjoy the subject while they learn. Inclusion of selected exercises and problems make the book educational in nature. It shou

  11. Foundations of mathematical analysis

    CERN Document Server

    Johnsonbaugh, Richard

    2010-01-01

    This classroom-tested volume offers a definitive look at modern analysis, with views of applications to statistics, numerical analysis, Fourier series, differential equations, mathematical analysis, and functional analysis. Upper-level undergraduate students with a background in calculus will benefit from its teachings, along with beginning graduate students seeking a firm grounding in modern analysis. A self-contained text, it presents the necessary background on the limit concept, and the first seven chapters could constitute a one-semester introduction to limits. Subsequent chapters discuss

  12. Evolutionary Foundations of Mathematics

    CERN Document Server

    Tuncer, Ruhi

    2011-01-01

    We propose a simple cognitive model where qualitative and quantitative com- parisons enable animals to identify objects, associate them with their properties held in memory and make naive inference. Simple notions like equivalence re- lations, order relations are used. We then show that such processes are at the root of human mathematical reasoning by showing that the elements of totally ordered sets satisfy the Peano axioms. The process through which children learn counting is then formalized. Finally association is modeled as a Markov process leading to a stationary distribution.

  13. Essentials engineering mathematics

    CERN Document Server

    Jeffrey, Alan

    2004-01-01

    Real numbers, inequalities and intervalsFunction, domain and rangeBasic coordinate geometryPolar coordinatesMathematical inductionBinomial theoremCombination of functionsSymmetry in functions and graphsInverse functionsComplex numbers; real and imaginary formsGeometry of complex analysisModulus-argument form of a complex numberRoots of complex numbersLimitsOne-sided limitsDerivativesLeibniz's formulaDifferentialsDifferentiation of inverse trigonometric functionsImplicit differentiationParametrically defined curves and parametric differentiationThe exponential functionThe logarithmic functionHy

  14. Advanced engineering mathematics

    CERN Document Server

    Kreyszig, Erwin

    1972-01-01

    Introducing those areas of mathematics which are most important to practical problem solving in the field, this book pays particular attention to ordinary differential equations, linear algebra and vector analysis, complex analysis, and numerical methods. Fourier series and partial differential equations are also covered thoroughly. The problem sets in this edition have been updated and revised to give greater weight to modeling, phase-plane and numerical multi-step methods, and applications. Each section includes examples and problems illustrating concepts, methods and results, and their engineering applications.

  15. IGCSE core mathematics

    CERN Document Server

    Wall, Terry

    2013-01-01

    Give your core level students the support and framework they require to get their best grades with this book dedicated to the core level content of the revised syllabus and written specifically to ensure a more appropriate pace. This title has been written for Core content of the revised Cambridge IGCSE Mathematics (0580) syllabus for first teaching from 2013. ? Gives students the practice they require to deepen their understanding through plenty of practice questions. ? Consolidates learning with unique digital resources on the CD, included free with every book. We are working with Cambridge

  16. Mathematics for engineering

    CERN Document Server

    Bolton, W

    2012-01-01

    Mathematics for Engineering has been carefully designed to provide a maths course for a wide ability range, and does not go beyond the requirements of Advanced GNVQ. It is an ideal text for any pre-degree engineering course where students require revision of the basics and plenty of practice work. Bill Bolton introduces the key concepts through examples set firmly in engineering contexts, which students will find relevant and motivating. The second edition has been carefully matched to the Curriculum 2000 Advanced GNVQ units:

  17. Mathematics and Microeconomics

    Directory of Open Access Journals (Sweden)

    Catalin Angelo Ioan

    2014-04-01

    Full Text Available The article deals a number of issues regarding the use of mathematics in economics. The end of construction entails a different approach. Good organization of its with bright windows on each floor, gives confidence and calls the frightened yesterday, to come and admire both crystal mirrors (outstanding results facing each other, which increases in a continuous recurring building details. On each floor, the visitor is coming from one of the windows and enjoys the scenery as you climb, always different, more comprehensive and fascinating.

  18. Mathematical analysis of deception.

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Deanna Tamae Koike (University of California at Davis, Davis, CA); Durgin, Nancy Ann

    2003-10-01

    This report describes the results of a three year research project about the use of deception in information protection. The work involved a collaboration between Sandia employees and students in the Center for Cyber Defenders (CCD) and at the University of California at Davis. This report includes a review of the history of deception, a discussion of some cognitive issues, an overview of previous work in deception, the results of experiments on the effects of deception on an attacker, and a mathematical model of error types associated with deception in computer systems.

  19. A sub-cellular viscoelastic model for cell population mechanics.

    Directory of Open Access Journals (Sweden)

    Yousef Jamali

    Full Text Available Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical and 'in silico' (computational models as an alternate solution. This paper introduces a single-cell-based model representing the cross section of a typical tissue. Each cell in this model is an individual unit containing several sub-cellular elements, such as the elastic plasma membrane, enclosed viscoelastic elements that play the role of cytoskeleton, and the viscoelastic elements of the cell nucleus. The cell membrane is divided into segments where each segment (or point incorporates the cell's interaction and communication with other cells and its environment. The model is capable of simulating how cells cooperate and contribute to the overall structure and function of a particular tissue; it mimics many aspects of cellular behavior such as cell growth, division, apoptosis and polarization. The model allows for investigation of the biomechanical properties of cells, cell-cell interactions, effect of environment on cellular clusters, and how individual cells work together and contribute to the structure and function of a particular tissue. To evaluate the current approach in modeling different topologies of growing tissues in distinct biochemical conditions of the surrounding media, we model several key cellular phenomena, namely monolayer cell culture, effects of adhesion intensity, growth of epithelial cell through interaction with extra-cellular matrix (ECM, effects of a gap in the ECM, tensegrity and tissue morphogenesis and formation of hollow epithelial acini. The proposed computational model enables one to isolate the effects of biomechanical properties of individual cells and the

  20. Investigating CTL mediated killing with a 3D cellular automaton.

    Directory of Open Access Journals (Sweden)

    Frederik Graw

    2009-08-01

    Full Text Available Cytotoxic T lymphocytes (CTLs are important immune effectors against intra-cellular pathogens. These cells search for infected cells and kill them. Recently developed experimental methods in combination with mathematical models allow for the quantification of the efficacy of CTL killing in vivo and, hence, for the estimation of parameters that characterize the effect of CTL killing on the target cell populations. It is not known how these population-level parameters relate to single-cell properties. To address this question, we developed a three-dimensional cellular automaton model of the region of the spleen where CTL killing takes place. The cellular automaton model describes the movement of different cell populations and their interactions. Cell movement patterns in our cellular automaton model agree with observations from two-photon microscopy. We find that, despite the strong spatial nature of the kinetics in our cellular automaton model, the killing of target cells by CTLs can be described by a term which is linear in the target cell frequency and saturates with respect to the CTL levels. Further, we find that the parameters describing CTL killing on the population level are most strongly impacted by the time a CTL needs to kill a target cell. This suggests that the killing of target cells, rather than their localization, is the limiting step in CTL killing dynamics given reasonable frequencies of CTL. Our analysis identifies additional experimental directions which are of particular importance to interpret estimates of killing rates and could advance our quantitative understanding of CTL killing.

  1. Modeling Integrated Cellular Machinery Using Hybrid Petri-Boolean Networks

    Science.gov (United States)

    Berestovsky, Natalie; Zhou, Wanding; Nagrath, Deepak; Nakhleh, Luay

    2013-01-01

    The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM) that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them using such more

  2. Modeling integrated cellular machinery using hybrid Petri-Boolean networks.

    Directory of Open Access Journals (Sweden)

    Natalie Berestovsky

    Full Text Available The behavior and phenotypic changes of cells are governed by a cellular circuitry that represents a set of biochemical reactions. Based on biological functions, this circuitry is divided into three types of networks, each encoding for a major biological process: signal transduction, transcription regulation, and metabolism. This division has generally enabled taming computational complexity dealing with the entire system, allowed for using modeling techniques that are specific to each of the components, and achieved separation of the different time scales at which reactions in each of the three networks occur. Nonetheless, with this division comes loss of information and power needed to elucidate certain cellular phenomena. Within the cell, these three types of networks work in tandem, and each produces signals and/or substances that are used by the others to process information and operate normally. Therefore, computational techniques for modeling integrated cellular machinery are needed. In this work, we propose an integrated hybrid model (IHM that combines Petri nets and Boolean networks to model integrated cellular networks. Coupled with a stochastic simulation mechanism, the model simulates the dynamics of the integrated network, and can be perturbed to generate testable hypotheses. Our model is qualitative and is mostly built upon knowledge from the literature and requires fine-tuning of very few parameters. We validated our model on two systems: the transcriptional regulation of glucose metabolism in human cells, and cellular osmoregulation in S. cerevisiae. The model produced results that are in very good agreement with experimental data, and produces valid hypotheses. The abstract nature of our model and the ease of its construction makes it a very good candidate for modeling integrated networks from qualitative data. The results it produces can guide the practitioner to zoom into components and interconnections and investigate them

  3. Modern problems in insurance mathematics

    CERN Document Server

    Martin-Löf, Anders

    2014-01-01

    This book is a compilation of 21 papers presented at the International Cramér Symposium on Insurance Mathematics (ICSIM) held at Stockholm University in June, 2013. The book comprises selected contributions from several large research communities in modern insurance mathematics and its applications. The main topics represented in the book are modern risk theory and its applications, stochastic modelling of insurance business, new mathematical problems in life and non-life insurance, and related topics in applied and financial mathematics. The book is an original and useful source of inspiration and essential reference for a broad spectrum of theoretical and applied researchers, research students and experts from the insurance business. In this way, Modern Problems in Insurance Mathematics will contribute to the development of research and academy–industry co-operation in the area of insurance mathematics and its applications.

  4. An introduction to mathematical cryptography

    CERN Document Server

    Hoffstein, Jeffrey; Silverman, Joseph H

    2014-01-01

    This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cr...

  5. Mathematical problems in meteorological modelling

    CERN Document Server

    Csomós, Petra; Faragó, István; Horányi, András; Szépszó, Gabriella

    2016-01-01

    This book deals with mathematical problems arising in the context of meteorological modelling. It gathers and presents some of the most interesting and important issues from the interaction of mathematics and meteorology. It is unique in that it features contributions on topics like data assimilation, ensemble prediction, numerical methods, and transport modelling, from both mathematical and meteorological perspectives. The derivation and solution of all kinds of numerical prediction models require the application of results from various mathematical fields. The present volume is divided into three parts, moving from mathematical and numerical problems through air quality modelling, to advanced applications in data assimilation and probabilistic forecasting. The book arose from the workshop “Mathematical Problems in Meteorological Modelling” held in Budapest in May 2014 and organized by the ECMI Special Interest Group on Numerical Weather Prediction. Its main objective is to highlight the beauty of the de...

  6. Image mathematical morphology and image restoration application in detecting underground bin level

    Institute of Scientific and Technical Information of China (English)

    SUN Ji-ping; WU Bing

    2004-01-01

    By using image recognition technology, the underground bin level can be detdcted. The bin image is noised by vibration, atomy, backgroun and so on. The image restoration and image mathematical morphology were used based on neural network.A modified Hopfield network was presented for image restoration. The greed algorithm with n-simultaneous updates and apartially asynchronous algorithm were combined, improving convergence and avoiding synchronization penalties. Mathematical morphology was widely applicated in digital image processing. The basic idea of mathematical morphology is to use construction element measure image morphology for solving understand problem. Presented advanced Cellular neural network that forms MMCNN equation to be suit for mathematical morphology filter. It gave the theory of MMCNN dynamic extent and stable state. It was evidenced that arrived mathematical morphology filter through steady of dynamic precess in definite condition. The results of implementation were applied in detecting undergroug bin level.

  7. Discrete mathematics: methods and challenges

    OpenAIRE

    Alon, Noga

    2002-01-01

    Combinatorics is a fundamental mathematical discipline as well as an essential component of many mathematical areas, and its study has experienced an impressive growth in recent years. One of the main reasons for this growth is the tight connection between Discrete Mathematics and Theoretical Computer Science, and the rapid development of the latter. While in the past many of the basic combinatorial results were obtained mainly by ingenuity and detailed reasoning, the modern theory has grown ...

  8. Raising Public Awareness of Mathematics

    CERN Document Server

    Behrends, Ehrhard; Rodrigues, José Francisco

    2012-01-01

    This collective book aims to encourage and inspire actions directed towards raising public awareness of the importance of mathematical sciences for our contemporary society in a cultural and historical perspective. Mathematical societies, in Europe and around the world, can find ideas, blueprints and suggestions for activities - including concerted actions with other international organizations - directed towards raising public awareness of science, technology and other fields where mathematics plays a strong role. The material is divided into four parts: * National experiences * Exhibitions /

  9. Mathematical modeling with multidisciplinary applications

    CERN Document Server

    Yang, Xin-She

    2013-01-01

    Features mathematical modeling techniques and real-world processes with applications in diverse fields Mathematical Modeling with Multidisciplinary Applications details the interdisciplinary nature of mathematical modeling and numerical algorithms. The book combines a variety of applications from diverse fields to illustrate how the methods can be used to model physical processes, design new products, find solutions to challenging problems, and increase competitiveness in international markets. Written by leading scholars and international experts in the field, the

  10. Cognitive science and mathematics education

    CERN Document Server

    Schoenfeld, Alan H

    2013-01-01

    This volume is a result of mathematicians, cognitive scientists, mathematics educators, and classroom teachers combining their efforts to help address issues of importance to classroom instruction in mathematics. In so doing, the contributors provide a general introduction to fundamental ideas in cognitive science, plus an overview of cognitive theory and its direct implications for mathematics education. A practical, no-nonsense attempt to bring recent research within reach for practicing teachers, this book also raises many issues for cognitive researchers to consider.

  11. Digital Repository of Mathematical Formulae

    OpenAIRE

    Howard S. Cohl; McClain, Marjorie A.; Saunders, Bonita V.; Schubotz, Moritz; Williams, Janelle C.

    2014-01-01

    The purpose of the NIST Digital Repository of Mathematical Formulae (DRMF) is to create a digital compendium of mathematical formulae for orthogonal polynomials and special functions (OPSF) and of associated mathematical data. The DRMF addresses needs of working mathematicians, physicists and engineers: providing a platform for publication and interaction with OPSF formulae on the web. Using MediaWiki extensions and other existing technology (such as software and macro collections developed f...

  12. Mastering mathematics for Edexcel GCSE

    CERN Document Server

    Davis, Heather; Liggett, Linda

    2015-01-01

    Help students to develop their knowledge, skills and understanding so that they can reason mathematically, communicate mathematical information and apply mathematical techniques in solving problems; with resources developed specifically for the Edexcel GCSE 2015 specification with leading Assessment Consultant Keith Pledger and a team of subject specialists. - Supports you and your students through the new specifications, with topic explanations and new exam-style questions, to support the new assessment objectives. - Builds understanding and measures progress throughout the course with plenty

  13. Mathematics Admission Test Remarks

    Directory of Open Access Journals (Sweden)

    Ideon Erge

    2016-12-01

    Full Text Available Since 2014, there have been admission tests in mathematics for applicants to the Estonian University of Life Sciences for Geodesy, Land Management and Real Estate Planning; Civil Engineering; Hydraulic Engineering and Water Pollution Control; Engineering and Technetronics curricula. According to admission criteria, the test must be taken by students who have not passed the specific mathematics course state exam or when the score was less than 20 points. The admission test may also be taken by those who wish to improve their state exam score. In 2016, there were 126 such applicants of whom 63 took the test. In 2015, the numbers were 129 and 89 and in 2014 150 and 47 accordingly. The test was scored on scale of 100. The arithmetic average of the score was 30.6 points in 2016, 29.03 in 2015 and 18.84 in 2014. The test was considered to be passed with 1 point in 2014 and 20 points in 2015 and 2016. We analyzed test results and gave examples of problems which were solved exceptionally well or not at all.

  14. AI and Mathematical Education

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2012-01-01

    Full Text Available From ancient times, the history of human beings has developed by a succession of steps and sometimes jumps, until reaching the relative sophistication of the modern brain and culture. Researchers are attempting to create systems that mimic human thinking, understand speech, or beat the best human chess player. Understanding the mechanisms of intelligence, and creating intelligent artifacts are the twin goals of Artificial Intelligence (AI. Great mathematical minds have played a key role in AI in recent years; to name only a few: Janos Neumann (also known as John von Neumann, Konrad Zuse, Norbert Wiener, Claude E. Shannon, Alan M. Turing, Grigore Moisil, Lofti A. Zadeh, Ronald R. Yager, Michio Sugeno, Solomon Marcus, or Lászlo A. Barabási. Introducing the study of AI is not merely useful because of its capability for solving difficult problems, but also because of its mathematical nature. It prepares us to understand the current world, enabling us to act on the challenges of the future.

  15. Solid Mathematical Marbling.

    Science.gov (United States)

    Lu, Shufang; Jin, Xiaogang; Jaffer, Aubrey; Gao, Fei; Mao, Xiaoyang

    2016-05-25

    Years of research have been devoted to computer-generated two-dimensional marbling. However, three-dimensional marbling has yet to be explored. In this paper, we present mathematical marbling of three-dimensional solids which supports a compact random-access vector representation. Our solid marbling textures are created by composing closed-form 3D pattern tool functions. These tool functions are an injection function and five deformation functions. The injection function is used to generate basic patterns, and the deformation functions are responsible for transforming the basic pattern into complex marbling effects. The resulting representation is feature preserving and resolution-independent. Our approach can render high-quality images preserving both the sharp features and the smooth color variations of a solid texture. When implemented on the GPU, our representation enables efficient color evaluation during the real-time solid marbling texture mapping. The color of a point in the volume space is computed by the 3D pattern tool functions from its coordinates. Our method consumes very little memory because only the mathematical functions and their corresponding parameters are stored. In addition, we develop an intuitive user interface and a genetic algorithm to facilitate the solid marbling texture authoring process. We demonstrate the effectiveness of our approach through various solid marbling textures and 3D objects carved from them.

  16. Feasible mathematics II

    CERN Document Server

    Remmel, Jeffrey

    1995-01-01

    Perspicuity is part of proof. If the process by means of which I get a result were not surveyable, I might indeed make a note that this number is what comes out - but what fact is this supposed to confirm for me? I don't know 'what is supposed to come out' . . . . 1 -L. Wittgenstein A feasible computation uses small resources on an abstract computa­ tion device, such as a 'lUring machine or boolean circuit. Feasible math­ ematics concerns the study of feasible computations, using combinatorics and logic, as well as the study of feasibly presented mathematical structures such as groups, algebras, and so on. This volume contains contributions to feasible mathematics in three areas: computational complexity theory, proof theory and algebra, with substantial overlap between different fields. In computational complexity theory, the polynomial time hierarchy is characterized without the introduction of runtime bounds by the closure of certain initial functions under safe composition, predicative recursion on nota...

  17. Reversibly assembled cellular composite materials.

    Science.gov (United States)

    Cheung, Kenneth C; Gershenfeld, Neil

    2013-09-13

    We introduce composite materials made by reversibly assembling a three-dimensional lattice of mass-produced carbon fiber-reinforced polymer composite parts with integrated mechanical interlocking connections. The resulting cellular composite materials can respond as an elastic solid with an extremely large measured modulus for an ultralight material (12.3 megapascals at a density of 7.2 milligrams per cubic centimeter). These materials offer a hierarchical decomposition in modeling, with bulk properties that can be predicted from component measurements and deformation modes that can be determined by the placement of part types. Because site locations are locally constrained, structures can be produced in a relative assembly process that merges desirable features of fiber composites, cellular materials, and additive manufacturing.

  18. Descartes’s mathematical thought

    CERN Document Server

    Sasaki, Chikara

    2003-01-01

    Covering both the history of mathematics and of philosophy, Descartes's Mathematical Thought reconstructs the intellectual career of Descartes most comprehensively and originally in a global perspective including the history of early modern China and Japan. Especially, it shows what the concept of "mathesis universalis" meant before and during the period of Descartes and how it influenced the young Descartes. In fact, it was the most fundamental mathematical discipline during the seventeenth century, and for Descartes a key notion which may have led to his novel mathematics of algebraic analysis.

  19. The fundamentals of mathematical analysis

    CERN Document Server

    Fikhtengol'ts, G M

    1965-01-01

    The Fundamentals of Mathematical Analysis, Volume 1 is a textbook that provides a systematic and rigorous treatment of the fundamentals of mathematical analysis. Emphasis is placed on the concept of limit which plays a principal role in mathematical analysis. Examples of the application of mathematical analysis to geometry, mechanics, physics, and engineering are given. This volume is comprised of 14 chapters and begins with a discussion on real numbers, their properties and applications, and arithmetical operations over real numbers. The reader is then introduced to the concept of function, i

  20. Mathematics for physics with calculus

    CERN Document Server

    Das, Biman

    2005-01-01

    Designed for students who plan to take or who are presently taking calculus-based physics courses. This book will develop necessary mathematical skills and help students gain the competence to use precalculus, calculus, vector algebra, vector calculus, and the statistical analysis of experimental data. Students taking intermediate physics, engineering, and other science courses will also find the book useful-and will be able to use the book as a mathematical resource for these intermediate level courses. The book emphasizes primarily the use of mathematical techniques and mathematical concepts in Physics and does not go into their rigorous developments.

  1. On Wittgenstein's philosophy of mathematics

    CERN Document Server

    Merker, Joel

    2008-01-01

    Mathematics cannot anymore be assimilated to a linguistic game, where formal proofs are strongly differentiated with conjectural thinking, without building any category of knowledge to understand the passage (Wittgenstein's gist). Nowadays, philosophy has to face with the growing, exponential ramified tree of speculative mathematical thinking. Our main (problematical) theses are: 1. In mathematics, there is no empirical automatism, and no separate, physical-like motricity. 2: The irreversible-synthetical must force to complexify the exegetical game of philosophy; numerical experiments in algebra and in number theory are a kind of letting blow up all possible problems; 4. The nature of mathematical questioning still remains in question.

  2. A bridge to advanced mathematics

    CERN Document Server

    Sentilles, Dennis

    2011-01-01

    This helpful workbook-style ""bridge"" book introduces students to the foundations of advanced mathematics, spanning the gap between a practically oriented calculus sequence and subsequent courses in algebra and analysis with a more theoretical slant. Part 1 focuses on logic and number systems, providing the most basic tools, examples, and motivation for the manner, method, and concerns of higher mathematics. Part 2 covers sets, relations, functions, infinite sets, and mathematical proofs and reasoning. Author Dennis Sentilles also discusses the history and development of mathematics as well a

  3. Glycosylation regulates prestin cellular activity.

    Science.gov (United States)

    Rajagopalan, Lavanya; Organ-Darling, Louise E; Liu, Haiying; Davidson, Amy L; Raphael, Robert M; Brownell, William E; Pereira, Fred A

    2010-03-01

    Glycosylation is a common post-translational modification of proteins and is implicated in a variety of cellular functions including protein folding, degradation, sorting and trafficking, and membrane protein recycling. The membrane protein prestin is an essential component of the membrane-based motor driving electromotility changes (electromotility) in the outer hair cell (OHC), a central process in auditory transduction. Prestin was earlier identified to possess two N-glycosylation sites (N163, N166) that, when mutated, marginally affect prestin nonlinear capacitance (NLC) function in cultured cells. Here, we show that the double mutant prestin(NN163/166AA) is not glycosylated and shows the expected NLC properties in the untreated and cholesterol-depleted HEK 293 cell model. In addition, unlike WT prestin that readily forms oligomers, prestin(NN163/166AA) is enriched as monomers and more mobile in the plasma membrane, suggesting that oligomerization of prestin is dependent on glycosylation but is not essential for the generation of NLC in HEK 293 cells. However, in the presence of increased membrane cholesterol, unlike the hyperpolarizing shift in NLC seen with WT prestin, cells expressing prestin(NN163/166AA) exhibit a linear capacitance function. In an attempt to explain this finding, we discovered that both WT prestin and prestin(NN163/166AA) participate in cholesterol-dependent cellular trafficking. In contrast to WT prestin, prestin(NN163/166AA) shows a significant cholesterol-dependent decrease in cell-surface expression, which may explain the loss of NLC function. Based on our observations, we conclude that glycosylation regulates self-association and cellular trafficking of prestin(NN163/166AA). These observations are the first to implicate a regulatory role for cellular trafficking and sorting in prestin function. We speculate that the cholesterol regulation of prestin occurs through localization to and internalization from membrane microdomains by

  4. Stochastic Nature in Cellular Processes

    Institute of Scientific and Technical Information of China (English)

    刘波; 刘圣君; 王祺; 晏世伟; 耿轶钊; SAKATA Fumihiko; GAO Xing-Fa

    2011-01-01

    The importance of stochasticity in cellular processes is increasingly recognized in both theoretical and experimental studies. General features of stochasticity in gene regulation and expression are briefly reviewed in this article, which include the main experimental phenomena, classification, quantization and regulation of noises. The correlation and transmission of noise in cascade networks are analyzed further and the stochastic simulation methods that can capture effects of intrinsic and extrinsic noise are described.

  5. Cellular fiber–reinforced concrete

    OpenAIRE

    Isachenko S.; Kodzoev M.

    2016-01-01

    Methods disperse reinforcement of concrete matrix using polypropylene, glass, basalt and metal fibers allows to make the construction of complex configuration, solve the problem of frost products. Dispersed reinforcement reduces the overall weight of the structures. The fiber replaces the secondary reinforcement, reducing the volume of use of structural steel reinforcement. Cellular Fiber concretes are characterized by high-performance properties, especially increased bending strength and...

  6. Identification of Nonstationary Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    AndrewI.Adamatzky

    1992-01-01

    The principal feature of nonstationary cellular automata(NCA) is that a local transitiol rule of each cell is changed at each time step depending on neighborhood configuration at previous time step.The identification problem for NCA is extraction of local transition rules and the establishment of mechanism for changing these rules using sequence of NCA configurations.We present serial and parallel algorithms for identification of NCA.

  7. CELLULAR INTERACTIONS MEDIATED BY GLYCONECTIDS

    OpenAIRE

    Popescu, O.; Sumanovski, L. T.; I. Checiu; Elisabeta Popescu; G. N. Misevic

    1999-01-01

    Cellular interactions involve many types of cell surface molecules and operate via homophilic and/or heterophilic protein-protein and protein-carbohydrate binding. Our investigations in different model-systems (marine invertebrates and mammals) have provided direct evidence that a novel class of primordial proteoglycans, named by us gliconectins, can mediate cell adhesion via a new alternative molecular mechanism of polyvalent carbohydrate-carbohydrate binding. Biochemical characterization of...

  8. The insect cellular immune response

    Institute of Scientific and Technical Information of China (English)

    Michael R. Strand

    2008-01-01

    The innate immune system of insects is divided into humoral defenses that include the production of soluble effector molecules and cellular defenses like phagocytosis and encapsulation that are mediated by hemocytes. This review summarizes current understanding of the cellular immune response. Insects produce several terminally differentiated types of hemocytes that are distinguished by morphology, molecular and antigenic markers, and function. The differentiated hemocytes that circulate in larval or nymphal stage insects arise from two sources: progenitor cells produced during embryogenesis and mesodermally derived hematopoietic organs. Regulation of hematopoiesis and hemocyte differentiation also involves several different signaling pathways. Phagocytosis and encapsulation require that hemocytes first recognize a given target as foreign followed by activation of downstream signaling and effector responses. A number of humoral and cellular receptors have been identified that recognize different microbes and multicellular parasites. In turn, activation of these receptors stimulates a number of signaling pathways that regulate different hemocyte functions. Recent studies also identify hemocytes as important sources of a number of humoral effector molecules required for killing different foreign invaders.

  9. Progress of cellular dedifferentiation research

    Institute of Scientific and Technical Information of China (English)

    LIU Hu-xian; HU Da-hai; JIA Chi-yu; FU Xiao-bing

    2006-01-01

    Differentiation, the stepwise specialization of cells, and transdifferentiation, the apparent switching of one cell type into another, capture much of the stem cell spotlight. But dedifferentiation, the developmental reversal of a cell before it reinvents itself, is an important process too. In multicellular organisms, cellular dedifferentiation is the major process underlying totipotency, regeneration and formation of new stem cell lineages. In humans,dedifferentiation is often associated with carcinogenesis.The study of cellular dedifferentiation in animals,particularly early events related to cell fate-switch and determination, is limited by the lack of a suitable,convenient experimental system. The classic example of dedifferentiation is limb and tail regeneration in urodele amphibians, such as salamanders. Recently, several investigators have shown that certain mammalian cell types can be induced to dedifferentiate to progenitor cells when stimulated with the appropriate signals or materials. These discoveries open the possibility that researchers might enhance the endogenous regenerative capacity of mammals by inducing cellular dedifferentiation in vivo.

  10. Studies in Mathematics, Volume XVI. Some Uses of Mathematics: A Source Book for Teachers and Students of School Mathematics.

    Science.gov (United States)

    Bell, Max S., Ed.

    This is a collection of articles dealing with mathematical applications for use by high school teachers and students. The articles are intended to illustrate several themes: (1) how mathematics is applied via construction of mathematical models; (2) the various types of activities in applied mathematics; (3) the role of pure mathematics in applied…

  11. The Relationships among Mathematics Teaching Efficacy, Mathematics Self-Efficacy, and Mathematical Beliefs for Elementary Pre-Service Teachers

    Science.gov (United States)

    Briley, Jason S.

    2012-01-01

    Ninety-five elementary pre-service teachers enrolled in a mathematics content course for elementary school teachers completed 3 surveys to measure mathematics teaching efficacy, mathematics self-efficacy, and mathematical beliefs. The pre-service teachers who reported stronger beliefs in their capabilities to teach mathematics effectively were…

  12. The Relationships among Pre-Service Mathematics Teachers' Beliefs about Mathematics, Mathematics Teaching, and Use of Technology in China

    Science.gov (United States)

    Yang, Xinrong; Leung, Frederick K. S.

    2015-01-01

    This paper investigated pre-service mathematics teachers' mathematics beliefs, beliefs about information and communication technology (ICT), and their relationships. 787 pre-service mathematics teachers in China completed a survey questionnaire measuring their beliefs about the nature of mathematics, beliefs about mathematics learning and…

  13. Amplitude metrics for cellular circadian bioluminescence reporters.

    Science.gov (United States)

    St John, Peter C; Taylor, Stephanie R; Abel, John H; Doyle, Francis J

    2014-12-01

    Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary

  14. Illuminating the Identities of Mathematics Teachers and Mathematics Teacher Educators

    Science.gov (United States)

    Johnson, Kate R.

    2013-01-01

    This dissertation builds on research about teacher identities (e.g., Agee, 2004; Sumara & Luce-Kapler, 1996; Ronfeldt & Grossman, 2008), teaching mathematics for social justice (e.g., Felton, 2010; Gutstein, 2006; Skovsmose, 1985; Stinson & Wager, 2012) and learning to teach mathematics for social justice (e.g., Gau, 2005; Gonzalez,…

  15. Prospective Secondary Mathematics Teachers' Perspectives and Mathematical Knowledge for Teaching

    Science.gov (United States)

    Karagöz-Akar, Gülseren

    2016-01-01

    This study investigated the relationship between prospective secondary mathematics teachers' perspectives and their mathematical knowledge for teaching in action. Data from two prospective teachers' practice-teachings, one in geometry and one in algebra, their lesson plans and self-reflections were analyzed with Teacher Perspectives and Knowledge…

  16. Mathematical Power: Exploring Critical Pedagogy in Mathematics and Statistics

    Science.gov (United States)

    Lesser, Lawrence M.; Blake, Sally

    2007-01-01

    Though traditionally viewed as value-free, mathematics is actually one of the most powerful, yet underutilized, venues for working towards the goals of critical pedagogy--social, political and economic justice for all. This emerging awareness is due to how critical mathematics educators such as Frankenstein, Skovsmose and Gutstein have applied the…

  17. Opinions of Secondary School Mathematics Teachers on Mathematical Modelling

    Science.gov (United States)

    Tutak, Tayfun; Güder, Yunus

    2013-01-01

    The aim of this study is to identify the opinions of secondary school mathematics teachers about mathematical modelling. Qualitative research was used. The participants of the study were 40 secondary school teachers working in the Bingöl Province in Turkey during 2012-2013 education year. Semi-structured interview form prepared by the researcher…

  18. Mathematical Observations: The Genesis of Mathematical Discovery in the Classroom

    Science.gov (United States)

    Beaugris, Louis M.

    2013-01-01

    In his "Proofs and Refutations," Lakatos identifies the "Primitive Conjecture" as the first stage in the pattern of mathematical discovery. In this article, I am interested in ways of reaching the "Primitive Conjecture" stage in an undergraduate classroom. I adapted Realistic Mathematics Education methods in an…

  19. Cellular communications a comprehensive and practical guide

    CERN Document Server

    Tripathi, Nishith

    2014-01-01

    Even as newer cellular technologies and standards emerge, many of the fundamental principles and the components of the cellular network remain the same. Presenting a simple yet comprehensive view of cellular communications technologies, Cellular Communications provides an end-to-end perspective of cellular operations, ranging from physical layer details to call set-up and from the radio network to the core network. This self-contained source forpractitioners and students represents a comprehensive survey of the fundamentals of cellular communications and the landscape of commercially deployed

  20. Some unsolved problems in discrete mathematics and mathematical cybernetics

    Science.gov (United States)

    Korshunov, Aleksei D.

    2009-10-01

    There are many unsolved problems in discrete mathematics and mathematical cybernetics. Writing a comprehensive survey of such problems involves great difficulties. First, such problems are rather numerous and varied. Second, they greatly differ from each other in degree of completeness of their solution. Therefore, even a comprehensive survey should not attempt to cover the whole variety of such problems; only the most important and significant problems should be reviewed. An impersonal choice of problems to include is quite hard. This paper includes 13 unsolved problems related to combinatorial mathematics and computational complexity theory. The problems selected give an indication of the author's studies for 50 years; for this reason, the choice of the problems reviewed here is, to some extent, subjective. At the same time, these problems are very difficult and quite important for discrete mathematics and mathematical cybernetics. Bibliography: 74 items.