WorldWideScience

Sample records for cells undergoing hematopoietic

  1. Massage for Children Undergoing Hematopoietic Cell Transplantation: A Qualitative Report

    OpenAIRE

    Ackerman, Sara L.; E. Anne Lown; Dvorak, Christopher C.; Dunn, Elizabeth A.; Abrams, Donald I; Horn, Biljana N.; Marcia Degelman; Cowan, Morton J.; Mehling, Wolf E.

    2012-01-01

    Background. No in-depth qualitative research exists about the effects of therapeutic massage with children hospitalized to undergo hematopoietic cell transplantation (HCT). The objective of this study is to describe parent caregivers' experience of the effects of massage/acupressure for their children undergoing HCT. Methods. We conducted a qualitative analysis of open-ended interviews with 15 parents of children in the intervention arm of a massage/acupressure trial. Children received both p...

  2. Oral changes in individuals undergoing hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Regina Haddad Barrach

    2015-04-01

    Full Text Available INTRODUCTION: Patients undergoing hematopoietic stem cell transplantation receive high doses of chemotherapy and radiotherapy, which cause severe immunosuppression.OBJECTIVE: To report an oral disease management protocol before and after hematopoietic stem cell transplantation.METHODS: A prospective study was carried out with 65 patients aged > 18 years, with hematological diseases, who were allocated into two groups: A (allogeneic transplant, 34 patients; B (autologous transplant, 31 patients. A total of three dental status assessments were performed: in the pre-transplantation period (moment 1, one week after stem cell infusion (moment 2, and 100 days after transplantation (moment 3. In each moment, oral changes were assigned scores and classified as mild, moderate, and severe risks.RESULTS: The most frequent pathological conditions were gingivitis, pericoronitis in the third molar region, and ulcers at the third moment assessments. However, at moments 2 and 3, the most common disease was mucositis associated with toxicity from the drugs used in the immunosuppression.CONCLUSION: Mucositis accounted for the increased score and potential risk of clinical complications. Gingivitis, ulcers, and pericoronitis were other changes identified as potential risk factors for clinical complications.

  3. Fractionated stem cell infusions for patients with plasma cell myeloma undergoing autologous hematopoietic cell transplantation.

    Science.gov (United States)

    Landau, Heather; Wood, Kevin; Chung, David J; Koehne, Guenther; Lendvai, Nikoletta; Hassoun, Hani; Lesokhin, Alexander; Hoover, Elizabeth; Zheng, Junting; Devlin, Sean M; Giralt, Sergio

    2016-08-01

    We conducted a phase II trial investigating the impact of fractionated hematopoietic cell infusions on engraftment kinetics and symptom burden in patients with plasma cell myeloma (PCM) undergoing autologous hematopoietic cell transplant (AHCT). We hypothesized that multiple hematopoietic cell infusions would reduce duration of neutropenia and enhance immune recovery resulting in a better tolerated procedure. Twenty-six patients received high-dose melphalan followed by multiple cell infusions (Days 0, +2, +4, +6) and were compared to PCM patients (N = 77) who received high-dose melphalan and a single infusion (Day 0) (concurrent control group). The primary endpoint was number of days with ANC Inventory. Median duration of neutropenia was similar in study (4 days, range 3-5) and control patients (4 days, range 3-9) (p = 0.654). There was no significant difference in the number of red cell or platelet transfusions, days of fever, diarrhea, antibiotics, number of documented infections, or length of admission. Symptom burden surveys showed that AHCT was well-tolerated in both study and control patients. We conclude that fractionated stem cell infusions following high-dose melphalan do not enhance engraftment kinetics or significantly alter patients' clinical course following AHCT in PCM. PMID:26758672

  4. Iron Overload in Patients Undergoing Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Vinod Pullarkat

    2010-01-01

    Full Text Available Recipients of hematopoietic stem cell transplantation (HSCT frequently have iron overload resulting from chronic transfusion therapy for anemia. In some cases, for example, in patients with myelodysplastic syndromes and thalassemia, this can be further exacerbated by increased absorption of iron from the gut as a result of ineffective erythropoiesis. Accumulating evidence has established the negative impact of elevated pretransplantation serum ferritin, a surrogate marker of iron overload, on overall survival and nonrelapse mortality after HSCT. Complications of HSCT associated with iron overload include increased bacterial and fungal infections as well as sinusoidal obstruction syndrome and possibly other regimen-related toxicities. Based on current evidence, particular attention should be paid to prevention and management of iron overload in allogeneic HSCT candidates, especially in patients with thalassemia and myelodysplastic syndromes. The pathophysiology of iron overload in the HSCT patient and optimum strategies to deal with iron overload during and after HSCT require further study.

  5. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    Full Text Available BACKGROUND: Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo. METHODOLOGY/PRINCIPAL FINDINGS: To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo. CONCLUSIONS/SIGNIFICANCE: Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  6. Stomatitis-Related Pain in Women with Breast Cancer Undergoing Autologous Hematopoietic Stem Cell Transplant

    OpenAIRE

    Fall-Dickson, Jane M.; Mock, Victoria; Berk, Ronald A.; Grimm, Patricia M.; Davidson, Nancy; Gaston-Johansson, Fannie

    2008-01-01

    The purpose of this cross-sectional, correlational study was to describe stomatitis-related pain in women with breast cancer undergoing autologous hematopoietic stem cell transplant. Hypotheses tested were that significant, positive relationships would exist between oral pain and stomatitis, state anxiety, depression, and alteration in swallowing. Stomatitis, sensory dimension of oral pain, and state anxiety were hypothesized to most accurately predict oral pain overall intensity. Thirty-two ...

  7. Evaluation of febrile neutropenia in patients undergoing hematopoietic stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Shahideh Amini

    2014-01-01

    Full Text Available The aim of this study was to determine the incidence and causes of fever as a major problem contributing to transplantation related mortality among patients undergoing hematopoietic stem cell transplantation (HSCT and evaluation of antibiotic use, according to reliable guidelines.We retrospectively reviewed hospital records of 195 adult patients who underwent HSCT between 2009-2011 at hematology-oncology and bone marrow transplantation research center. Baseline information and also data related to fever and neutropenia, patient's outcomes, duration of hospitalization and antibiotic use pattern were documented.A total of 195 patients were analyzed and a total of 268 febrile episodes in 180 patients were recorded (mean 1.5 episodes per patient. About 222 episodes (82% were associated with neutropenia which one-fourth of them were without any documented infection sources. Microbiologic documents showed that the relative frequencies of gram positive and gram negative bacteria were 62.5% and 37.5%, respectively. The hospital stay duration was directly related to the numbers of fever episodes (P<0.0001.The rate of febrile episodes in autologous stem cell transplantation was significantly higher compared to allogeneic type (P<0.05.It is necessary to determine not only the local profile of microbiologic pattern, but also antibiotic sensitivities in febrile neutropenic patients following hematopoietic stem cell transplantation, and reassess response to antibiotic treatment to establish any necessity for modifications to treatment guidelines in order to prevent any fatal complications from infection.

  8. Pharmacoeconomic analysis of palifermin to prevent mucositis among patients undergoing autologous hematopoietic stem cell transplantation.

    Science.gov (United States)

    Nooka, Ajay K; Johnson, Heather R; Kaufman, Jonathan L; Flowers, Christopher R; Langston, Amelia; Steuer, Conor; Graiser, Michael; Ali, Zahir; Shah, Nishi N; Rangaraju, Sravanti; Nickleach, Dana; Gao, Jingjing; Lonial, Sagar; Waller, Edmund K

    2014-06-01

    Trials have shown benefits of palifermin in reducing the incidence and severity of oral mucositis in patients with hematological malignancies undergoing autologous hematopoietic stem cell transplantation (HSCT) with total body irradiation (TBI)-based conditioning regimens. Similar outcome data are lacking for patients receiving non-TBI-based regimens. We performed a retrospective evaluation on the pharmacoeconomic benefit of palifermin in the setting of non-TBI-based conditioning and autologous HSCT. Between January 2002 and December 2010, 524 patients undergoing autologous HSCT for myeloma (melphalan 200 mg/m²) and lymphoma (high-dose busulfan, cyclophosphamide, and etoposide) as preparative regimen were analyzed. Use of patient-controlled analgesia (PCA) was significantly lower in the palifermin-treated groups (myeloma: 13% versus 53%, P inflation (myeloma: $167,820 versus $143,200, P < .001; lymphoma: $168,570 versus $148,590, P < .001). Palifermin treatment was not associated with a difference in days to neutrophil engraftment, length of stay, and overall survival and was associated with an additional cost of $5.5K (myeloma) and $14K (lymphoma) per day of PCA avoided. Future studies are suggested to evaluate the cost-effectiveness of palifermin compared with other symptomatic treatments to reduce transplant toxicity using validated measures for pain and quality of life. PMID:24607557

  9. Extramedullary Relapse Following Total Marrow and Lymphoid Irradiation in Patients Undergoing Allogeneic Hematopoietic Cell Transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Hyun [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Stein, Anthony [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States); Tsai, Nicole [Department of Biostatistics, City of Hope National Medical Center, Duarte, California (United States); Schultheiss, Timothy E. [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Palmer, Joycelynne [Department of Biostatistics, City of Hope National Medical Center, Duarte, California (United States); Liu, An [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Rosenthal, Joseph [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States); Department of Pediatrics, City of Hope National Medical Center, Duarte, California (United States); Forman, Stephen J. [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States); Wong, Jeffrey Y.C., E-mail: jwong@coh.org [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States)

    2014-05-01

    Purpose: Approximately 5% to 20% of patients who undergo total body irradiation (TBI) in preparation for hematopoietic cell transplantation (HCT) can develop extramedullary (EM) relapse. Whereas total marrow and lymphoid irradiation (TMLI) provides a more conformally targeted radiation therapy for patients, organ sparing has the potential to place the patient at a higher risk for EM relapse than TBI. This study evaluated EM relapse in patients treated with TMLI at our institution. Methods and Materials: Patients eligible for analysis had been enrolled in 1 of 3 prospective TMLI trials between 2006 and 2012. The TMLI targeted bones, major lymph node chains, liver, spleen, testes, and brain, using image-guided tomotherapy with total dose ranging from 12 to 15 Gy. Results: A total of 101 patients with a median age of 47 years were studied. The median follow-up was 12.8 months. Incidence of EM relapse and bone marrow (BM) relapse were 12.9% and 25.7%, respectively. Of the 13 patients who had EM relapse, 4 also had BM relapse, and 7 had EM disease prior to HCT. There were a total of 19 EM relapse sites as the site of initial recurrence: 11 soft tissue, 6 lymph node, 2 skin. Nine of these sites were within the target region and received ≥12 Gy. Ten initial EM relapse sites were outside of the target region: 5 sites received 10.1 to 11.4 Gy while 5 sites received <10 Gy. Pretransplantation EM was the only significant predictor of subsequent EM relapse. The cumulative incidence of EM relapse was 4% at 1 year and 11.4% at 2 years. Conclusions: EM relapse incidence was as frequent in regions receiving ≥10 Gy as those receiving <10 Gy. EM relapse rates following TMLI that included HCT regimens were comparable to published results with regimens including TBI and suggest that TMLI is not associated with an increased EM relapse risk.

  10. PROPHYLACTIC ADMINISTRATION OF DOXYCYCLINE REDUCES CENTRAL VENOUS CATHETER INFECTIONS IN PATIENTS UNDERGOING HEMATOPOIETIC CELL TRANSPLANTATION

    OpenAIRE

    Mohamed Kharfan-Dabaja; Mohamed Baydoun; Zaher Otrock; Samar Okaily; Rita Nehme; Racha Abu-Chahine; Ali Hamdan; Samar Noureddine; Souha Kanj; Zeina Kanafani; Ali Bazarbachi

    2013-01-01

    Hematopoietic stem cells are usually transfused through a central venous catheter (CVC), which also facilitates administration of medications and intravenous fluids. We had observed high rate of catheter-related blood-stream infection (CR-BSI) at our Bone Marrow Transplantation (BMT) unit despite prescribing fluoroquinolones for anti-bacterial prophylaxis. Accordingly, we implemented prophylactic use of a relatively inexpensive broad spectrum antibiotic, namely doxycycline to address this pro...

  11. Prophylactic Administration of Doxycycline Reduces Central Venous Catheter Infections in Patients Undergoing Hematopoietic Cell Transplantation

    OpenAIRE

    Baydoun, Mohamed; Otrock, Zaher K.; Okaily, Samar; Nehme, Rita; Abu-Chahine, Racha; Hamdan, Ali; Noureddine, Samar; Kanj, Souha; Kanafani, Zeina; Bazarbachi, Ali; Kharfan-Dabaja, Mohamed A.

    2013-01-01

    Hematopoietic stem cells are generally transfused through a central venous catheter (CVC), which also facilitates administration of medications and intravenous fluids. We had observed a high rate of CVC infections at our Bone Marrow Transplantation (BMT) unit. Accordingly, we evaluated the impact of administration of doxycycline as a prophylactic strategy to reduce CVC infection rates. Data was collected retrospectively on 54 consecutive patients, 26 who received doxycycline (doxycycline grou...

  12. Clofarabine-associated acute kidney injury in patients undergoing hematopoietic stem cell transplant

    OpenAIRE

    Petri, Camille R.; O’Donnell, Peter H.; Cao, Hongyuan; Artz, Andrew S.; Stock, Wendy; Wickrema, Amittha; Hard, Marjie; van Besien, Koen

    2014-01-01

    We examined clofarabine pharmacokinetics and association with renal toxicity in 62 patients participating in a phase I–II study of clofarabine–melphalan–alemtuzumab conditioning for hematopoietic stem cell transplant (HSCT). Pharmacokinetic parameters, including clofarabine area under the concentration–time curve (AUC), maximum concentration and clearance, were measured, and patients were monitored for renal injury. All patients had normal pretreatment creatinine values, but over half (55%) e...

  13. Selenium supplementation in patients undergoing hematopoietic stem cell transplantation: effects on pro-inflammatory cytokines levels

    OpenAIRE

    Daeian, Nesa; Radfar, Mania; Jahangard-Rafsanjani, Zahra; Hadjibabaie, Molouk; Ghavamzadeh, Ardeshir

    2014-01-01

    Background Pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) play an important role in the development of hematopoietic stem cell transplantation (HSCT) complications. We explored the effect of Selenium as an antioxidant and anti-inflammatory agent on pro-inflammatory cytokines levels in HSCT candidates. Findings Plasma concentrations of TNF-α, IL-1β and IL-6 were measured in 74 patients from a double-blind, randomized, p...

  14. PROPHYLACTIC ADMINISTRATION OF DOXYCYCLINE REDUCES CENTRAL VENOUS CATHETER INFECTIONS IN PATIENTS UNDERGOING HEMATOPOIETIC CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Mohamed Kharfan-Dabaja

    2013-02-01

    Full Text Available Hematopoietic stem cells are usually transfused through a central venous catheter (CVC, which also facilitates administration of medications and intravenous fluids. We had observed high rate of catheter-related blood-stream infection (CR-BSI at our Bone Marrow Transplantation (BMT unit despite prescribing fluoroquinolones for anti-bacterial prophylaxis. Accordingly, we implemented prophylactic use of a relatively inexpensive broad spectrum antibiotic, namely doxycycline to address this problem. We wanted to investigate whether doxycycline prophylaxis reduces CR-BSI rate. Data was collected retrospectively on 54 consecutive patients, 26 of whom received doxycycline (doxycycline group, and we compared their outcomes to a previous cohort of 28 patients who did not receive doxycycline (comparison group. The groups were comparable in regards to age, gender, hematopoietic cell transplant type, and primary diagnosis. No CVC infection (0% was observed in the doxycycline group, while 5 infection episodes (18.5% occurred in 4 patients in the comparison group (p<0.001. Episodes of CR-BSI were due to: Escherichia-coli (EC=1, coagulase-negative Staphylococcus-spp (CNSS=2, both EC & CNSS=1. Our results demonstrate that CR-BSI was reduced significantly after introducing doxycycline. This finding suggests a beneficial role for systemic use of doxycycline prophylaxis to prevent CR-BSI in adult BMT patients. Nevertheless, a randomized controlled study is warranted to confirm these findings.

  15. Physiological problems in patients undergoing autologous and allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Sevgisun Kapucu

    2014-01-01

    Full Text Available Objective: Stem cell transplantation is usually performed in an effort to extend the patient′s life span and to improve their quality of life. This study was conducted to determine the postoperative physiological effects experienced by patients who had undergone autologous and allogeneic stem cell transplantation. Methods: The research is a descriptive study conducted with a sample of 60 patients at Stem Cell Transplantation Units in Ankara. Percentile calculation and chi-square tests were used to evaluate the data. Results: When a comparison was made between patients who had undergone allogeneic Hematopoietic stem cell transplantation (HSCT and those who had undergone autologous HSCT, results indicated that problems occurred more often for the allogeneic HSCT patients. The problems included: Digestion (94.3%, dermatological (76.7%, cardiac and respiratory (66.7%, neurological (66.7%, eye (56.7%, infections (26.7% and Graft Versus Host Disease (5 patients. Furthermore, the problems with pain (50%, numbness and tingling (40%, and speech disorders (3 patients were observed more often in autologous BMT patients. Conclusion: Autologous and allogeneic patients experienced most of physical problems due to they receive high doses of chemotherapy. Therefore, it is recommended that an interdisciplinary support team approach should be usedtohelp reduce and manage the problems that may arise during patient care.

  16. Clofarabine-associated acute kidney injury in patients undergoing hematopoietic stem cell transplant.

    Science.gov (United States)

    Petri, Camille R; O'Donnell, Peter H; Cao, Hongyuan; Artz, Andrew S; Stock, Wendy; Wickrema, Amittha; Hard, Marjie; van Besien, Koen

    2014-12-01

    Abstract We examined clofarabine pharmacokinetics and association with renal toxicity in 62 patients participating in a phase I-II study of clofarabine-melphalan-alemtuzumab conditioning for hematopoietic stem cell transplant (HSCT). Pharmacokinetic parameters, including clofarabine area under the concentration-time curve (AUC), maximum concentration and clearance, were measured, and patients were monitored for renal injury. All patients had normal pretreatment creatinine values, but over half (55%) experienced acute kidney injury (AKI) after clofarabine administration. Age was the strongest predictor of AKI, with older patients at greater risk (p = 0.002). Clofarabine AUC was higher in patients who developed AKI, and patients with the highest dose-normalized AUCs experienced the most severe grades of AKI (p = 0.01). Lower baseline renal function, even when normal, was associated with lower clofarabine clearance (p = 0.008). These data suggest that renal-adjustment of clofarabine dosing should be considered for older and at-risk patients even when renal function is ostensibly normal. PMID:24564572

  17. Anti-thymocyte globulin-induced hyperbilirubinemia in patients with myelofibrosis undergoing allogeneic hematopoietic cell transplantation.

    Science.gov (United States)

    Ecsedi, Matyas; Schmohl, Jörg; Zeiser, Robert; Drexler, Beatrice; Halter, Jörg; Medinger, Michael; Duyster, Justus; Kanz, Lothar; Passweg, Jakob; Finke, Jürgen; Bethge, Wolfgang; Lengerke, Claudia

    2016-10-01

    Allogeneic hematopoietic cell transplantation (allo-HCT) remains the only curative treatment option for myelofibrosis (MF) despite the emergence of novel targeted therapies. To reduce graft rejection and graft-versus-host disease (GvHD), current allo-HCT protocols often include in vivo T lymphocyte depletion using polyclonal anti-thymocyte globulin (ATG). Shortly after ATG administration, an immediate inflammatory response with fever, chills, and laboratory alterations such as cytopenias, elevation of serum C-reactive protein, bilirubin, and transaminases can develop. Here, we explore whether MF patients, who commonly exhibit extramedullary hematopoiesis in the liver, might be particularly susceptible to ATG-induced liver toxicity. To test this hypothesis, we analyzed 130 control and 94 MF patients from three transplant centers treated with or without ATG during the allo-HCT conditioning regimen. Indeed, hyperbilirubinemia was found in nearly every MF patient treated with ATG (MF-ATG 54/60 = 90 %) as compared to non-ATG treated MF (MF-noATG 15/34 = 44.1 %, p < 0.001) and respectively ATG-treated non-MF patients of the control group (control-ATG, 43/77 = 56 %, p < 0.001). In contrast, transaminases were only inconsistently elevated. Hyperbilirubinemia was in most cases self-limiting and not predictive of increased incidence of non-relapse mortality, hepatic sinusoidal obstruction syndrome (SOS) or liver GvHD. In sum, awareness of this stereotypic bilirubin elevation in MF patients treated with ATG provides a relatively benign explanation for hyperbilirubinemia occurring in these patients during the early transplant. However, attention to drug levels of biliary excreted drugs is warranted, since altered bile flow may influence their clearance and enhance toxicity (e.g., busulfan, antifungal agents). PMID:27480090

  18. NRS2002 assesses nutritional status of leukemia patients undergoing hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Peng Liu; Zhao-Feng Zhang; Jing-Jing Cai; Bo-Shi Wang; Xia Yan

    2012-01-01

    Objective:To discuss whether nutritional risk screening 2002 (NRS2002) is appropriate for nutritional risk screening for leukemia patients before and after hematopoietic stem cell transplantation (HSCT),and whether there are risk differences in other conditions,such as age,gender and matching degree; to find the methods and indicators of nutritional risk screening for these patients before and after HSCT,in order to give timely intervention to guarantee the successful completion of the entire transplantation process.Methods:Nutritional risk of 99 leukemia patients was screened with NRS2002 before and after HSCT.The x2 test was applied to compare the risk differences between groups such as age,gender and matching degree,while the differences of other enumeration data,such as recent (1-3 months) weight loss,reduced food intake within one week and BMI,were compared by continuity correction.Results:Of the 99 leukemia patients,22 cases (22.2%) had nutritional risk before HSCT,while all patients had nutritional risk after HSCT; there is no significant difference in nutritional risk between male and female,and patients of less than 30 years old,not-full matched,recent (1-3 months) weight loss,reduced food intake within a week or BMI <18.5 were more likely to have nutritional risk; and 77 cases (77.8%) had weight loss,among which 49 patients (63.6%) had more than 5% weight loss within one month.Conclusions:This study showed that leukemia patients should receive the nutritional risk screening conventionally before and after HSCT,and NRS2002 was only appropriate for nutritional risk screening before HSCT.More attention should be paid to the patients less than 30 years old or not-full matched.Weight change was one of the important nutritional indicators for patients after HSCT.

  19. The polyomaviruses WUPyV and KIPyV: a retrospective quantitative analysis in patients undergoing hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Motamedi Nasim

    2012-09-01

    Full Text Available Abstract Background The polyomaviruses WUPyV and KIPyV have been detected in various sample types including feces indicating pathogenicity in the gastrointestinal (GI system. However, quantitative viral load data from other simultaneously collected sample types are missing. As a consequence, primary replication in the GI system cannot be differentiated from swallowed virus from the respiratory tract. Here we present a retrospective quantitative longitudinal analysis in simultaneously harvested specimens from different organ sites of patients undergoing hematopoietic stem cell transplantation (HSCT. This allows the definition of sample types where deoxyribonucleic acid (DNA detection can be expected and, as a consequence, the identification of their primary replication site. Findings Viral DNA loads from 37 patients undergoing HSCT were quantified in respiratory tract secretions (RTS, stool and urine samples as well as in leukocytes (n = 449. Leukocyte-associated virus could not be found. WUPyV was found in feces, RTS and urine samples of an infant, while KIPyV was repeatedly detected in RTS and stool samples of 4 adult patients. RTS and stool samples were matched to determine the viral load difference showing a mean difference of 2.3 log copies/ml (p  Conclusions The data collected in this study suggest that virus detection in the GI tract results from swallowed virus from the respiratory tract (RT. We conclude that shedding from the RT should be ruled out before viral DNA detection in the feces can be correlated to GI symptoms.

  20. Extracorporeal Photopheresis for the Prevention of Acute GVHD in Patients Undergoing Standard Myeloablative Conditioning and Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Shaughnessy, Paul J; Bolwell, Brian J; van Besien, Koen; Mistrik, Martin; Grigg, Andrew; Dodds, Anthony; Prince, H Miles; Durrant, Simon; Ilhan, Osman; Parenti, Dennis; Rogers, Jon; Gallo, Jose; Foss, Francine; Apperley, Jane; Zhang, Mei-Jie; Horowitz, Mary M; Abhyankar, Sunil

    2012-01-01

    Summary Graft-versus-host disease (GVHD) is partly mediated by host antigen presenting cells (APCs) that activate donor T-cells. Extracorporeal photopheresis (ECP) can modulate APC function and benefit some patients with GVHD. We report the results of a study using ECP administered prior to a standard myeloablative preparative regimen intended to prevent GVHD. Grade II-IV aGVHD developed in 9 (30%) of 30 recipients of HLA-matched related transplants and 13 (42%) of 31 recipients of HLA-matched unrelated or HLA-mismatched related donor transplants. Actuarial estimates of overall survival (OS) at day 100 and 1 year post transplant were 89% (95% CI, 78%-94%) and 77% (95% CI, 64%-86%), respectively. There were no unexpected adverse effects of ECP. Historical controls receiving similar conditioning and GVHD prophylaxis regimens but no ECP were identified from the database of the Center for International Blood and Marrow Transplant Research and multivariate analysis indicated a lower risk of grade II-IV aGVHD in patients receiving ECP (p=0.04). Adjusted OS at one year was 83% in the ECP study group and 67% in the historical control group (relative risk 0.44, 95% CI, 0.24-0.80) (p= 0.007). These preliminary data may indicate a potential survival advantage with ECP for transplant recipients undergoing standard myeloablative hematopoietic cell transplantation. PMID:19915634

  1. Study of Pulmonary Complications in Pediatric Patients With Storage Disorders Undergoing Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    2005-06-23

    I Cell Disease; Fucosidosis; Globoid Cell Leukodystrophy; Adrenoleukodystrophy; Mannosidosis; Niemann-Pick Disease; Pulmonary Complications; Mucopolysaccharidosis I; Mucopolysaccharidosis VI; Metachromatic Leukodystrophy; Gaucher's Disease; Wolman Disease

  2. Interactions between the gut microbiota, short-chain fatty acids and the immune system in pediatric patients undergoing hematopoietic stem cell transplantation

    OpenAIRE

    Nastasi, Claudia

    2015-01-01

    The gut microbiota (GM) is essential for human health and contributes to several diseases; indeed it can be considered an extension of the self and, together with the genetic makeup, determines the physiology of an organism. In this thesis has been studied the peripheral immune system reconstitution in pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (aHSCT) in the early phase; in parallel, have been also explored the gut microbiota variations as one of the...

  3. Clofarabine Combined with Busulfan Provides Excellent Disease Control in Adult Patients with Acute Lymphoblastic Leukemia Undergoing Allogeneic Hematopoietic Stem Cell Transplantation

    OpenAIRE

    Kebriaei, P.; Basset, Roland; Ledesma, C.; Ciurea, S; Parmar, S.; Shpall, EJ; Hosing, C.; Khouri, Issa; Qazilbash, M; Popat, U; Alousi, A.; Nieto, Y; Jones, RB; Lima, M.; Champlin, RE

    2012-01-01

    We investigated the safety and early disease-control data obtained with intravenous busulfan (Bu) combined with clofarabine (Clo) in patients with acute lymphoblastic leukemia (ALL) undergoing allogeneic hematopoietic stem cell transplantation (SCT). Fifty-one patients with median age 36 years (range 20–64) received a matched sibling (n=24), syngeneic (n=2) or matched unrelated donor transplant (n=25) for ALL in first complete remission (n=30), second complete remission (n=13), or with active...

  4. The Role of Social and Cognitive Processes in the Relationship between Fear Network and Psychological Distress among Parents of Children Undergoing Hematopoietic Stem Cell Transplantation

    OpenAIRE

    Virtue, Shannon Myers; Manne, Sharon; Mee, Laura; Bartell, Abraham; Sands, Stephen; Ohman-Strickland, Pamela; Gajda, Tina Marie

    2014-01-01

    The current study examined whether cognitive and social processing variables mediated the relationship between fear network and depression among parents of children undergoing hematopoietic stem cell transplant (HSCT). Parents whose children were initiating HSCT (N = 179) completed survey measures including fear network, Beck Depression Inventory (BDI), cognitive processing variables (positive reappraisal and self-blame) and social processing variables (emotional support and holding back from...

  5. Dose Escalation of Total Marrow Irradiation With Concurrent Chemotherapy in Patients With Advanced Acute Leukemia Undergoing Allogeneic Hematopoietic Cell Transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jeffrey Y.C., E-mail: jwong@coh.org [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Forman, Stephen; Somlo, George [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States); Rosenthal, Joseph [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States); Department of Pediatrics, City of Hope National Medical Center, Duarte, California (United States); Liu An; Schultheiss, Timothy; Radany, Eric [Department of Radiation Oncology, City of Hope National Medical Center, Duarte, California (United States); Palmer, Joycelynne [Department of Biostatistics, City of Hope National Medical Center, Duarte, California (United States); Stein, Anthony [Department of Hematology/Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California (United States)

    2013-01-01

    Purpose: We have demonstrated that toxicities are acceptable with total marrow irradiation (TMI) at 16 Gy without chemotherapy or TMI at 12 Gy and the reduced intensity regimen of fludarabine/melphalan in patients undergoing hematopoietic cell transplantation (HCT). This article reports results of a study of TMI combined with higher intensity chemotherapy regimens in 2 phase I trials in patients with advanced acute myelogenous leukemia or acute lymphoblastic leukemia (AML/ALL) who would do poorly on standard intent-to-cure HCT regimens. Methods and Materials: Trial 1 consisted of TMI on Days -10 to -6, etoposide (VP16) on Day -5 (60 mg/kg), and cyclophosphamide (CY) on Day -3 (100 mg/kg). TMI dose was 12 (n=3 patients), 13.5 (n=3 patients), and 15 (n=6 patients) Gy at 1.5 Gy twice daily. Trial 2 consisted of busulfan (BU) on Days -12 to -8 (800 {mu}M min), TMI on Days -8 to -4, and VP16 on Day -3 (30 mg/kg). TMI dose was 12 (n=18) and 13.5 (n=2) Gy at 1.5 Gy twice daily. Results: Trial 1 had 12 patients with a median age of 33 years. Six patients had induction failures (IF), and 6 had first relapses (1RL), 9 with leukemia blast involvement of bone marrow ranging from 10%-98%, 5 with circulating blasts (24%-85%), and 2 with chloromas. No dose-limiting toxicities were observed. Eleven patients achieved complete remission at Day 30. With a median follow-up of 14.75 months, 5 patients remained in complete remission from 13.5-37.7 months. Trial 2 had 20 patients with a median age of 41 years. Thirteen patients had IF, and 5 had 1RL, 2 in second relapse, 19 with marrow blasts (3%-100%) and 13 with peripheral blasts (6%-63%). Grade 4 dose-limiting toxicities were seen at 13.5 Gy (stomatitis and hepatotoxicity). Stomatitis was the most frequent toxicity in both trials. Conclusions: TMI dose escalation to 15 Gy is possible when combined with CY/VP16 and is associated with acceptable toxicities and encouraging outcomes. TMI dose escalation is not possible with BU/VP16 due to

  6. The effect of a multimodal intervention on treatment-related symptoms in patients undergoing hematopoietic stem cell transplantation: a randomized controlled trial

    DEFF Research Database (Denmark)

    Jarden, Mary; Nelausen, Knud; Hovgaard, Doris;

    2009-01-01

    in patients undergoing myeloablative allogeneic hematopoietic stem cell transplantation (allo-HSCT). Forty-two patients (18-65 years) were randomized either to an intervention or a control group. The intervention group received standard treatment and care, and a supervised four- to six-week structured...... months after allo-HCST. Through principal component analysis with varimax rotation, individual symptoms were grouped into five symptom clusters: mucositis, cognitive, gastrointestinal, affective, and functional symptom clusters. Then, a subsequent general estimate equation analysis revealed similar...

  7. Beneficial effect of the CXCL12-3'A variant for patients undergoing hematopoietic stem cell transplantation from unrelated donors.

    Science.gov (United States)

    Bogunia-Kubik, Katarzyna; Mizia, Sylwia; Polak, Małgorzata; Gronkowska, Anna; Nowak, Jacek; Kyrcz-Krzemień, Sławomira; Markiewicz, Mirosław; Dzierżak-Mietła, Monika; Koclęga, Anna; Sędzimirska, Mariola; Suchnicki, Krzysztof; Duda, Dorota; Lange, Janusz; Mordak-Domagała, Monika; Kościńska, Katarzyna; Jędrzejczak, Wiesław Wiktor; Kaczmarek, Beata; Hellmann, Andrzej; Kucharska, Agnieszka; Kowalczyk, Jerzy; Drabko, Katarzyna; Warzocha, Krzysztof; Hałaburda, Kazimierz; Tomaszewska, Agnieszka; Mika-Witkowska, Renata; Witkowska, Agnieszka; Goździk, Jolanta; Mordel, Anna; Wysoczańska, Barbara; Jaskula, Emilia; Lange, Andrzej

    2015-12-01

    The present study aimed to assess the impact of the CXCL12 gene polymorphism (rs1801157) on clinical outcome of hematopoietic stem cell transplantation from unrelated donors. Toxic complications were less frequent among patients transplanted from donors carrying the CXCL12-3'-A allele (42/79 vs. 105/151, p=0.014 and 24/79 vs. 73/151, p=0.009, for grade II-IV and III-IV, respectively). Logistic regression analyses confirmed a role of donor A allele (OR=0.509, p=0.022 and OR=0.473, p=0.013 for grade II-IV and III-IV toxicity). In addition, age of recipients (OR=0.980, p=0.036 and OR=0.981, p=0.040, respectively) was independently protective while female to male transplantation and HLA compatibility were not significant. The incidence of aGvHD (grades I-IV) was lower in patients having A allele (52/119 vs. 113/204, p=0.043) and AA homozygous genotype (6/25 vs. 159/298, p=0.005). Independent associations of both genetic markers with a decreased risk of aGvHD were also seen in multivariate analyses (A allele: OR=0.591, p=0.030; AA homozygosity: OR=0.257, p=0.006) in which HLA compatibility seemed to play less protective role (pHHV-6 reactivation (2/34 vs. 19/69, p=0.026). The presence of the CXCL12-3'-A variant was found to facilitate outcome of unrelated HSCT. PMID:25982843

  8. Chiaroscuro hematopoietic stem cell.

    OpenAIRE

    Quesenberry, P.; Habibian, M. (PhD); Dooner, M; Zhong, S.; Reilly, J; Peters, S.; De Becker, P; Grimaldi, C.; Carlson, J; REDDY, P; Nilsson, S.; Stewart, F. M.

    1998-01-01

    These observations suggest several immediate clinical strategies. In gene therapy, approaches could be targeted to obtain cycling of hematopoietic stem cells and gene-carrying retrovirus vector integration followed by engraftment at an appropriate time interval which favors engraftment. The same type of approach can be utilized for stem cell expansion approaches. Alternatively marrow or peripheral stem cell engraftment can be obtained with minimal to no toxicity in allochimeric strategies in ...

  9. Reduced intensity conditioning is superior to nonmyeloablative conditioning for older chronic myelogenous leukemia patients undergoing hematopoietic cell transplant during the tyrosine kinase inhibitor era

    DEFF Research Database (Denmark)

    Warlick, Erica; Ahn, Kwang Woo; Pedersen, Tanya L;

    2012-01-01

    Tyrosine kinase inhibitors (TKIs) and reduced intensity conditioning (RIC)/nonmyeloablative (NMA) conditioning hematopoietic cell transplants (HCTs) have changed the therapeutic strategy for chronic myelogenous leukemia (CML) patients. We analyzed post-HCT outcomes of 306 CML patients reported to...

  10. Efficacy of oral cryotherapy on oral mucositis prevention in patients with hematological malignancies undergoing hematopoietic stem cell transplantation: a meta-analysis of randomized controlled trials.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Controversy exists regarding whether oral cryotherapy can prevent oral mucositis (OM in patients with hematological malignancies undergoing hematopoietic stem cell transplantation (HSCT. The aim of the present meta-analysis was to evaluate the efficacy of oral cryotherapy for OM prevention in patients with hematological malignancies undergoing HSCT.PubMed and the Cochrane Library were searched through October 2014. Randomized controlled trials (RCTs comparing the effect of oral cryotherapy with no treatment or with other interventions for OM in patients undergoing HSCT were included. The primary outcomes were the incidence, severity, and duration of OM. The secondary outcomes included length of analgesic use, total parenteral nutrition (TPN use, and length of hospital stay.Seven RCTs involving eight articles analyzing 458 patients were included. Oral cryotherapy significantly decreased the incidence of severe OM (RR = 0.52, 95% CI = 0.27 to 0.99 and OM severity (SMD = -2.07, 95% CI = -3.90 to -0.25. In addition, the duration of TPN use and the length of hospitalization were markedly reduced (SMD = -0.56, 95% CI = -0.92 to -0.19; SMD = -0.44, 95% CI = -0.76 to -0.13; respectively. However, the pooled results were uncertain for the duration of OM and analgesic use (SMD = -0.13, 95% CI = -0.41 to 0.15; SMD = -1.15, 95% CI = -2.57 to 0.27; respectively.Oral cryotherapy is a readily applicable and cost-effective prophylaxis for OM in patients undergoing HSCT.

  11. The effect of a multimodal intervention on treatment-related symptoms in patients undergoing hematopoietic stem cell transplantation: a randomized controlled trial.

    Science.gov (United States)

    Jarden, Mary; Nelausen, Knud; Hovgaard, Doris; Boesen, Ellen; Adamsen, Lis

    2009-08-01

    Studies applying exercise, relaxation training, and psychoeducation have each indicated a positive impact on physical performance and/or psychological factors in patients diagnosed with cancer. We explored the longitudinal effect of a combination of these interventions on treatment-related symptoms in patients undergoing myeloablative allogeneic hematopoietic stem cell transplantation (allo-HSCT). Forty-two patients (18-65 years) were randomized either to an intervention or a control group. The intervention group received standard treatment and care, and a supervised four- to six-week structured exercise program, progressive relaxation, and psychoeducation during hospitalization, one hour per day for five days per week. The control group received standard treatment, care, and physiotherapy. A 24-item symptom assessment questionnaire was completed weekly during hospitalization, and at three and six months after allo-HCST. Through principal component analysis with varimax rotation, individual symptoms were grouped into five symptom clusters: mucositis, cognitive, gastrointestinal, affective, and functional symptom clusters. Then, a subsequent general estimate equation analysis revealed similar longitudinal patterns of intensity in all symptom clusters for intervention and control groups, but in the intervention group, there was an overall significant reduction (P<0.05) in symptom intensity over time for all clusters except the affective symptom cluster. This study provides beginning evidence for the efficacy of an exercise-based multimodal intervention in reducing the intensity of a spectrum of symptoms in this small sample of patients undergoing allo-HSCT.

  12. Hematopoietic stem cell transplantation

    OpenAIRE

    Eleftheria Hatzimichael; Mark Tuthill

    2010-01-01

    Eleftheria Hatzimichael1, Mark Tuthill21Department of Haematology, Medical School of Ioannina, University of Ioannina, Ioannina, Greece; 2Department of Medical Oncology, Hammersmith Hospital, Imperial College National Health Service Trust, London, UKAbstract: More than 25,000 hematopoietic stem cell transplantations (HSCTs) are performed each year for the treatment of lymphoma, leukemia, immune-deficiency illnesses, congenital metabolic defects, hemoglobinopathies, and myelodysplastic and mye...

  13. Is Vitamin C Supplementation Beneficial on Plasma Levels of Vitamin C and Total Anitioxidants for Pediatric Thalassemic Patients Undergoing Hematopoietic Stem Cell Transplantation?

    Directory of Open Access Journals (Sweden)

    Molouk Hadjibabaie

    2015-10-01

    Full Text Available Background: Thalassemic patients undergoing Hematopoietic Stem Cell Transplantation (HSCT are faced with cumulative high level of oxidative stress and depletion of critical antioxidants. Administration of antioxidants, is promising towards minimizing oxidative damage in both thalassemic and HSCT patients.Method: This was a prospective cross-sectional observational study. Patients as a part of institutional protocol were received Vitamin C (Vit C (all the patients received oral Vit C; 200 mg and 400 mg Vit C, if they were less or more than 20 kg respectively plus 10 mg/kg/day intravenous infusion of Vit C.We measured plasma Vit C and total antioxidant (TAs levels at four different time points; baseline, transplantation day (0, day +7 and day +14. We calculated mean and standard error for plasma levels of Vit C and TAs.Results: Fifthy patients enrolled in this study (mean age 7.97± 3.53. In all four time points, means of Vit C and TAs serum levels were under their reference values and their highest means were belong to baseline. Serum TAs and Vit C both depleted significantly from baseline to day 0 (P: 0.00 for both variables, then increased up to day +7 and it keeps rising till day +14 (P: 0.00 from day0 to day +7 and +14 for both variables. These changes were significant through the measurement time. There is also a significant correlation between baseline Vit C and baseline TAs (P: 0.11. This means the higher level of Vit C is correlated with higher level of TAs and vice versa.Conclusion: We did not observe any beneficial effects of administering Vit C in thalassemic patients undergoing HSCT in order to increase or prevent depletion of Vit C and TAs serum levels. This could be resolved by further investigations carrying out higher doses or longer duration and having a control group.

  14. Prevalence of Resistant Gram-Negative Bacilli in Bloodstream Infection in Febrile Neutropenia Patients Undergoing Hematopoietic Stem Cell Transplantation: A Single Center Retrospective Cohort Study.

    Science.gov (United States)

    Wang, Ling; Wang, Ying; Fan, Xing; Tang, Wei; Hu, Jiong

    2015-11-01

    Bloodstream infection (BSI) is an important cause of morbidity and mortality in patients undergoing hematopoietic stem cell transplantation (HSCT). To evaluate the causative bacteria and identify risk factors for BSI associated mortality in febrile neutropenia patients undergoing HSCT, we collected the clinical and microbiological data from patients underwent HSCT between 2008 and 2014 and performed a retrospective analysis. Throughout the study period, among 348 episodes of neutropenic fever in patients underwent HSCT, 89 episodes in 85 patients had microbiological defined BSI with a total of 108 isolates. Gram-negative bacteria (GNB) were the most common isolates (76, 70.3%) followed by gram-positive bacteria (GPB, 29, 26.9%) and fungus (3, 2.8%). As to the drug resistance, 26 multiple drug resistance (MDR) isolates were identified. Resistant isolates (n = 23) were more common documented in GNB, mostly Escherichia coli (9/36, 25%) and Klebsiella pneumonia (6/24, 25%). A total of 12 isolated were resistant to carbapenem including 4 K pneumoniae (4/24, 16.7%), 3 Stenotrophomonas maltophilia, and 1 Pseudomonas aeruginosa and other 4 GNB isolates (Citrobacter freumdii, Pseudomonas stutzeri, Acinetobacter baumanii, and Chryseobacterium indologenes). As to the GPB, only 3 resistant isolates were documented including 2 methicillin-resistant isolates (Staphylococcus hominis and Arcanobacterium hemolysis) and 1 vancomycin-resistant Enterococcus faecium. Among these 85 patients with documented BSI, 11 patients died of BSI as primary or associated cause with a BSI-related mortality of 13.1 ± 3.7% and 90-day overall survival after transplantation at 80.0 ± 4.3%. Patients with high-risk disease undergoing allo-HSCT, prolonged neutropenia (≥15 days) and infection with carbapenem-resistant GNB were associated with BSI associated mortality in univariate and multivariate analyses. Our report revealed a prevalence of GNB in BSI of neutropenic patients undergoing

  15. Prevalence of Resistant Gram-Negative Bacilli in Bloodstream Infection in Febrile Neutropenia Patients Undergoing Hematopoietic Stem Cell Transplantation: A Single Center Retrospective Cohort Study.

    Science.gov (United States)

    Wang, Ling; Wang, Ying; Fan, Xing; Tang, Wei; Hu, Jiong

    2015-11-01

    Bloodstream infection (BSI) is an important cause of morbidity and mortality in patients undergoing hematopoietic stem cell transplantation (HSCT). To evaluate the causative bacteria and identify risk factors for BSI associated mortality in febrile neutropenia patients undergoing HSCT, we collected the clinical and microbiological data from patients underwent HSCT between 2008 and 2014 and performed a retrospective analysis. Throughout the study period, among 348 episodes of neutropenic fever in patients underwent HSCT, 89 episodes in 85 patients had microbiological defined BSI with a total of 108 isolates. Gram-negative bacteria (GNB) were the most common isolates (76, 70.3%) followed by gram-positive bacteria (GPB, 29, 26.9%) and fungus (3, 2.8%). As to the drug resistance, 26 multiple drug resistance (MDR) isolates were identified. Resistant isolates (n = 23) were more common documented in GNB, mostly Escherichia coli (9/36, 25%) and Klebsiella pneumonia (6/24, 25%). A total of 12 isolated were resistant to carbapenem including 4 K pneumoniae (4/24, 16.7%), 3 Stenotrophomonas maltophilia, and 1 Pseudomonas aeruginosa and other 4 GNB isolates (Citrobacter freumdii, Pseudomonas stutzeri, Acinetobacter baumanii, and Chryseobacterium indologenes). As to the GPB, only 3 resistant isolates were documented including 2 methicillin-resistant isolates (Staphylococcus hominis and Arcanobacterium hemolysis) and 1 vancomycin-resistant Enterococcus faecium. Among these 85 patients with documented BSI, 11 patients died of BSI as primary or associated cause with a BSI-related mortality of 13.1 ± 3.7% and 90-day overall survival after transplantation at 80.0 ± 4.3%. Patients with high-risk disease undergoing allo-HSCT, prolonged neutropenia (≥15 days) and infection with carbapenem-resistant GNB were associated with BSI associated mortality in univariate and multivariate analyses. Our report revealed a prevalence of GNB in BSI of neutropenic patients undergoing

  16. Improved overall survival for pediatric patients undergoing allogeneic hematopoietic stem cell transplantation - A comparison of the last two decades.

    Science.gov (United States)

    Svenberg, Petter; Remberger, Mats; Uzunel, Mehmet; Mattsson, Jonas; Gustafsson, Britt; Fjaertoft, Gustav; Sundin, Mikael; Winiarski, Jacek; Ringdén, Olle

    2016-08-01

    Pediatric protocols for allogeneic hematopoietic SCT have been altered during the last two decades. To compare the outcomes in children (P1) and 2003-2013 (P2). We retrospectively analyzed 188 patients in P1 and 201 patients in P2. The most significant protocol changes during P2 compared with P1 were a decrease in MAC protocols, particularly those containing TBI, an increase in RIC protocols, and altered GvHD prophylaxis. In addition, P2 had more patients with nonmalignant diagnoses (p = 0.002), more mismatched (MM) donors (p = 0.01), and more umbilical CB grafts (p = 0.03). Mesenchymal or DSCs were used for severe acute GvHD during P2. Three-yr OS in P1 was 58%, and in P2, it was 78% (p < 0.001). Improved OS was seen in both malignant disorders (51% vs. 68%; p = 0.05) and nonmalignant disorders (77% vs. 87%; p = 0.04). Multivariate analysis showed that SCT during P2 was associated with reduced mortality (HR = 0.57; p = 0.005), reduced TRM (HR = 0.57; p = 0.03), unchanged relapse rate, similar rate of GF, less chronic GvHD (HR = 0.49; p = 0.01), and more acute GvHD (HR = 1.77, p = 0.007). During recent years, OS has improved at our center, possibly reflecting the introduction of less toxic conditioning regimens and a number of other methodological developments in SCT. PMID:27251184

  17. Extracorporeal Photopheresis for the Prevention of Acute GVHD in Patients Undergoing Standard Myeloablative Conditioning and Allogeneic Hematopoietic Stem Cell Transplantation

    OpenAIRE

    Shaughnessy, Paul J; Bolwell, Brian J.; van Besien, Koen; Mistrik, Martin; Grigg, Andrew; Dodds, Anthony; Prince, H. Miles; Durrant, Simon; Ilhan, Osman; Parenti, Dennis; Rogers, Jon; Gallo, Jose; Foss, Francine; Apperley, Jane; Zhang, Mei-Jie

    2009-01-01

    Graft-versus-host disease (GVHD) is partly mediated by host antigen presenting cells (APCs) that activate donor T-cells. Extracorporeal photopheresis (ECP) can modulate APC function and benefit some patients with GVHD. We report the results of a study using ECP administered prior to a standard myeloablative preparative regimen intended to prevent GVHD. Grade II-IV aGVHD developed in 9 (30%) of 30 recipients of HLA-matched related transplants and 13 (42%) of 31 recipients of HLA-matched unrela...

  18. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates capacity of hematopoietic stem cells to undergo lymphocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenhoerster, Lori S.; Tate, Everett R.; Lakatos, Peter A. [Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee (United States); Program in Environmental and Occupational Health, Milwaukee, WI 53211 (United States); Wang, Xuexia [Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee (United States); Program in Biostatistics, Milwaukee, WI 53211 (United States); Laiosa, Michael D., E-mail: laiosa@uwm.edu [Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee (United States); Program in Environmental and Occupational Health, Milwaukee, WI 53211 (United States)

    2014-06-01

    The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to complete lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3 μg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life.

  19. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates capacity of hematopoietic stem cells to undergo lymphocyte differentiation

    International Nuclear Information System (INIS)

    The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to complete lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3 μg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life

  20. The Role Of Multidetector Computed Tomography In The Early Diagnosis Of Invasive Pulmonary Aspergıllosis In Patients With Febrile Neutropenia Undergoing Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Nazan Çiledağ

    2012-03-01

    Full Text Available OBJECTIVE: To evaluate the vessel involvement and the role of multidedector computed tomograpy (MDCT in the early diagnosis of invasive pulmonary aspergillosis (IPA at MDCT in autologous bone morrow transplantation patients with febrile neutropenia and antibiotic-resistant fever of unknown origin with clinically suspected IPA. METHODS: 74 pulmonary MDCT examinations of 37 consecutive hematopoietic stem cell transplantation patients with febrile neutropenia with clinically suspected IPA were retrospectively evaluated. RESULTS: The diagnosis of IPA was made according to according to the Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Consensus Group criteria and 0, 14, 11 patients were diagnosed as proven, probable, possible IPA, respectively. Among 25 cases accepted as probable and possible IPA, all patients had pulmonary MDCT findings consistent with IPA. Remaining 12 patients were accepted as having fever of unknown origin (FUO and in these 12, MDCT showed patent vessel. In patients with probable/possible IPA, 72 focal pulmonary lesions were detected. In 41 of 72 (57%, vascular occlusion was detected. The CT halo sign was present in 25 of 41 (61% lesions. A clinical improvement, resolution of fever was observed following antifungal therapy in 19 (76% of 25 patients with probable/possible IPA. Six (25% patients diagnosed as IPA died during follow-up. Transplant related mortality at day 100 in patients with IPA and FUO were found to be 24% and 0%, respectively. CONCLUSION: In conclusion, MDCT has a potential role in early diagnosis of IPA by detection of vessel occlusion.

  1. COMPARISON OF THREE DISTINCT PROPHYLACTIC AGENTS AGAINST INVASIVE FUNGAL INFECTIONS IN PATIENTS UNDERGOING HAPLO-IDENTICAL HEMATOPOIETIC STEM CELL TRANSPLANTATION AND POST-TRANSPLANT CYCLOPHOSPHAMIDE

    Directory of Open Access Journals (Sweden)

    Jean Elcheikh

    2015-08-01

    Full Text Available Over the past decade, invasive fungal infections (IFI have remained an important problem in patients undergoing allogeneic haematopoietic stem cell transplantation (Allo-HSCT. The optimal approach for prophylactic antifungal therapy has yet to be determined. We conducted a retrospective, bi-institutional comparative clinical study, and compared the efficacy and safety of micafungin 50mg/day (iv with those of fluconazole (400mg/day or itraconazole 200mg/day (iv as prophylaxis for adult patients with various haematological diseases receiving haplo-identical allogeneic stem cell transplantation (haplo. Overall, 99 patients were identified; 30 patients received micafungin, and 69 patients received fluconazole or itraconazole. After a median follow-up of 13 months (range: 5-23, Proven or probable IFIs were reported in 3 patients (10% in the micafungin group and 8 patients (12% in the fluconazole or itraconazole group. Fewer patients in the micafungin group had invasive aspergillosis (1 [3%] vs. 5 [7%], P=0.6. A total of 4 (13% patients in the micafungin group and 23 (33% patients in the fluconazole or itraconazole group received empirical antifungal therapy (P = 0.14. No serious adverse events related to treatment were reported by patients and there was no treatment discontinuation because of drug-related adverse events in both groups. Despite the retrospective design of the study and limited sample, it contributes reassuring data to confirm results from randomised clinical trials, and to define a place for micafungin in prophylaxis after haplo.

  2. Higher Busulfan Dose Intensity Does Not Improve Outcomes of Patients Undergoing Allogeneic Hematopoietic Cell Transplantation Following Fludarabine, Busulfan-based Reduced Toxicity Conditioning

    OpenAIRE

    Hamadani, Mehdi; Craig, Michael; Gary S Phillips; Abraham, Jame; Tse, William; Cumpston, Aaron; Gibson, Laura; Remick, Scot C.; Bunner, Pamela; Leadmon, Sonia; Elder, Patrick; Hofmeister, Craig; Penza, Sam; Efebera, Yvonne; Andritsos, Leslie

    2011-01-01

    We evaluated the impact of busulfan dose-intensity in patients undergoing reduced toxicity/intensity conditioning allogeneic transplantation in a multicenter retrospective study of 112 consecutive patients. Seventy-five patients were conditioned with busulfan (0.8 mg/kg/dose IV × 8 doses), fludarabine (30mg/m2/day, days −7 to −3), and 6mg/kg of ATG (RIC group), while 37 patients received a more-intense conditioning with busulfan (130mg/m2/day IV, days −6 to −3), fludarabine (40mg/m2/day, days...

  3. The role of the embryonic microenvironment in hematopoietic cell development

    NARCIS (Netherlands)

    E. Haak (Esther)

    2007-01-01

    textabstractThe adult hematopoietic system is comprised of a hierarchy of cells with the hematopoietic stem cell (HSC) at its foundation. HSCs give rise to progenitors that differentiate into mature hematopoietic cells, which perform the physiological functions of the hematopoietic system. The matur

  4. PARASITIC INFECTIONS IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Isidro Jarque

    2016-07-01

    Full Text Available Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However, they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients.

  5. Parasitic Infections in Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Jarque, Isidro; Salavert, Miguel; Pemán, Javier

    2016-01-01

    Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients. PMID:27413527

  6. Oral mucositis in pediatric patients undergoing hematopoietic stem cell transplantation: clinical outcomes in a context of specialized oral care using low-level laser therapy.

    Science.gov (United States)

    Eduardo, Fernanda de Paula; Bezinelli, Leticia Mello; de Carvalho, Danielle Lima Corrêa; Lopes, Roberta Marques da Graça; Fernandes, Juliana Folloni; Brumatti, Melina; Vince, Carolina Sgaroni Camargo; de Azambuja, Alessandra Milani Prandini; Vogel, Cristina; Hamerschlak, Nelson; Correa, Luciana

    2015-05-01

    OM is a painful inflammatory condition of the oral mucosa, derived from the toxic effects of chemotherapy and radiotherapy. High OM severity is frequently present in HSCT pediatric patients, who exhibit multiple painful ulcers that limit their mastication and swallowing, leading to poor nutritional status. Few studies have demonstrated OM clinical outcomes in young patients undergoing HSCT. Feasibility of oral care and LLLT on OM prophylaxis and treatment is also poorly discussed. The aim of this study was to describe a specialized oral care protocol that included LLLT for pediatric patients undergoing transplantation and to demonstrate the clinical outcomes after OM prevention and treatment. Data from OM-related morbidity were collected from 51 HSCT pediatric patients treated daily with LLLT, followed by standard oral care protocols. All the patients, even infants and young children, accepted the daily oral care and LLLT well. The majority (80.0%) only exhibited erythema in the oral mucosa, and the maximum OM degree was WHO II. Patients who had undergone autologous and HLA-haploidentical transplants showed OM with the lowest severity. The frequency of total body irradiation and methotrexate prescriptions was higher in adolescents when compared with infants (p = 0.044), and adolescents also exhibited OM more severely than infants and young children. We found that good clinical outcomes were obtained using this therapy, mainly in regard to the control of OM severity and pain reduction in the oral cavity. Specialized oral care, including LLLT, is feasible and affordable for HSCT pediatric patients, although some adaptation in the patient's oral hygiene routine must be adopted with help from parents/companions and clinical staff.

  7. Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells

    OpenAIRE

    Sahin, Aysegul Ocal; Buitenhuis, Miranda

    2012-01-01

    Hematopoietic stem cell transplantation is the most powerful treatment modality for a large number of hematopoietic malignancies, including leukemia. Successful hematopoietic recovery after transplantation depends on homing of hematopoietic stem cells to the bone marrow and subsequent lodging of those cells in specific niches in the bone marrow. Migration of hematopoietic stem cells to the bone marrow is a highly regulated process that requires correct regulation of the expression and activit...

  8. Changes in Body Composition and Their Related Factors of Children Undergoing Hematopoietic Stem Cell Transplantation%造血干细胞移植患儿急性期人体组分改变及其相关因素

    Institute of Scientific and Technical Information of China (English)

    朱晨临; 楼建华; 张冰花; 洪莉

    2013-01-01

    Objective To describe changes in body composition of children during acute period after hematopoietic stem transplantation and to analyze their related factors. Methods From January to September 2012,40 patients undergoing hematopoietic stem cell transplantation in Shanghai Children's Medical Center were prospectively enrolled into the study. Height, weight and body composition were measured by direct segmental multi-frequency bioelectrical impedance analysis (DSM-BIA) were recorded before transplantation and at the 30th, 60th and 100th day after transplantation. Sex, age, transplantation method, graft source,total body irradiation,use of methylprednisolone, infection, the grade of mucositis and acute graft-versus-host disease (aGVHD) grade were also recorded. Results After hematopoietic stem cell transplantation, no significant change was observed in height Z-scores (F=0. 75,P = 0. 3883); body mass index(BMI) Z-values and fat-free mass for height (FFM-Ht) were significantly decreased but fat mass for height(FM-Ht) was also significantly increased(P<0. 05 or P<0. 01). After controlling children's age, the graft source was a significant factor affecting BMI Z and the total body irradiation was a significant factor affecting FM-Ht and infection was the a risk factor of FFM-Ht. Conclusion Children have high risks of emaciation and obesity during the acute period after hematopoietic stem cell transplantation. Irradiation may increase their fat mass, while infection may decreases fat-free mass. BMI may not be a good indicator to assess nutrition status of children undergoing transplantation.%目的 了解造血干细胞移植患儿急性期的人体组分变化情况并分析其相关因素.方法 前瞻性收集2012年1月至2012年9月在上海儿童医学中心进行造血干细胞移植的40例患儿的临床资料,在患儿进行造血干细胞移植前、移植后的第30、60和100天测量其身高、体质指数及使用直接节段多频生物电阻抗分析

  9. Autonomous behavior of hematopoietic stem cells

    NARCIS (Netherlands)

    Kamminga, LM; Akkerman, [No Value; Weersing, E; Ausema, A; Dontje, B; Van Zant, G; de Haan, G

    2000-01-01

    Objective. Mechanisms that affect the function of primitive hematopoietic stem cells with long-term proliferative potential remain largely unknown. Here we assessed whether properties of stem cells are cell-extrinsically or cell-autonomously regulated. Materials and Methods. We developed a model in

  10. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B;

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long......-term cultures. Support protocols describe methods for maintenance of vector-producing fibroblasts (VPF) and supernatant collection from these cells, screening medium components for the ability to support hematopoietic cell growth, and establishing colonies from long-term cultures. Other protocols provide PCR...

  11. Impact of Inflammatory Cytokine Gene Polymorphisms on Developing Acute Graft-versus-Host Disease in Children Undergoing Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Riccardo Masetti

    2015-01-01

    Full Text Available Single nucleotide polymorphisms (SNPs in gene encoding pro- and anti-inflammatory factors have been associated with the occurrence of aGvHD. We retrospectively tested a wide panel of 38 polymorphisms in 19 immunoregulatory genes, aiming to first establish, in a pediatric HSCT setting, which SNPs were significantly associated with the development of aGvHD. A significant association was found between aGvHD grades II–IV and SNPs of donor IL10-1082GG, and Fas-670CC + CT and recipient IL18-607 TT + TG genotype. aGvHD grades III-IV resulted associated with donor IL10-1082GG, Fas-670CC + CT, and TLR4-3612TT as well as the use of peripheral CD34+ cells as stem cell source. The multivariate analysis confirmed the association between donor IL10-1082GG and Fas-670CC + CT and aGvHD grades II–IV and between donor IL10-1082GG and TLR4-3612TT and aGvHD grades III-IV. In conclusion we found an association between IL10, FAS, and TLR4 in the donor and IL18 in the recipient and an increased risk of developing aGvHD in transplanted children. Knowledge of the SNPs of cytokine genes associated with aGvHD represents a useful tool for an integrated pretransplantation risk assessment and could guide the physicians to an optimal and more accurate HSCT planning.

  12. Advance in hematopoietic stem cells transplantation for leukemia

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiao-jun

    2008-01-01

    @@ During the past 50 years, intensive studies into the characteristics of hematopoietic stem cell transplantation immunology and the emergence of new immunosuppressant and anti-infective drugs have significantly improved the clinical result of hematopoietic stem cell transplantation (HSCT).

  13. Itraconazole for secondary prophylaxis of invasive fungal infection in patients undergoing chemotherapy and stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    施继敏

    2013-01-01

    Objective To evaluate the efficacy and safety of itraconazole for secondary prophylaxis of previous proven or probable invasive fungal infection (IFI) in patients undergoing chemotherapy or allogeneic hematopoietic stem cell transplantation (HSCT) in agranulocytosis state.

  14. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    Iain C. Macaulay

    2016-02-01

    Full Text Available The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment.

  15. Immunoselection techniques in hematopoietic stem cell transplantation.

    Science.gov (United States)

    Li Pira, Giuseppina; Biagini, Simone; Cicchetti, Elisabetta; Merli, Pietro; Brescia, Letizia Pomponia; Milano, Giuseppe Maria; Montanari, Mauro

    2016-06-01

    Hematopoietic Stem Cells Transplantation (HSCT) is an effective treatment for hematological and non-hematological diseases. The main challenge in autologous HSCT is purging of malignant cells to prevent relapse. In allogeneic HSCT graft-versus-host disease (GvHD) and opportunistic infections are frequent complications. Two types of graft manipulation have been introduced: the first one in the autologous context aimed at separating malignant cells from hematopoietic stem cells (HSC), and the second one in allogeneic HSCT aimed at reducing the incidence of GvHD and at accelerating immune reconstitution. Here we describe the manipulations used for cell purging in autologous HSCT or for T Cell Depletion (TCD) and T cell selection in allogeneic HSCT. More complex manipulations, requiring a Good Manufacturing Practice (GMP) facility, are briefly mentioned. PMID:27209628

  16. Recent advances in hematopoietic stem cell biology

    DEFF Research Database (Denmark)

    Bonde, Jesper; Hess, David A; Nolta, Jan A

    2004-01-01

    made recently in the field of stem cell biology, researchers now have improved tools to define novel populations of stem cells, examine them ex vivo using conditions that promote self-renewal, track them into recipients, and determine whether they can contribute to the repair of damaged tissues......PURPOSE OF REVIEW: Exciting advances have been made in the field of hematopoietic stem cell biology during the past year. This review summarizes recent progress in the identification, culture, and in vivo tracking of hematopoietic stem cells. RECENT FINDINGS: The roles of Wnt and Notch proteins...... in regulating stem cell renewal in the microenvironment, and how these molecules can be exploited in ex vivo stem cell culture, are reviewed. The importance of identification of stem cells using functional as well as phenotypic markers is discussed. The novel field of nanotechnology is then discussed...

  17. Induction of embryonic stem cells to hematopoietic cells in vitro

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to get hematopoietic cells from embryonic stem (ES) cells and to study development mechanisms of hematopoietic cells, the method of inducing embryonic stem cells to hematopoietic cells was explored by differenciating mouse ES cells and human embryonic cells in three stages. The differentiated cells were identified by flow cytometry, immunohistochemistry and Wright's staining. The results showed that embryoid bodies (EBs) could form when ES cells were cultured in the medium with 2-mercaptoethanol (2-ME). However, cytokines, such as stem cell factor (SCF), thrombopoietin (TPO), interleukin-3 (IL-3), interleukin-6 (IL-6), erythropoietin (EPO) and granular colony stimulating factor (G-CSF), were not helpful for forming EBs. SCF, TPO and embryonic cell conditional medium were useful for the differentiation of mouse EBs to hematopoietic progenitors. Eighty-six percent of these cells were CD34+ after 6-d culture. Hematopoietic progenitors differentiated to B lymphocytes when they were cocultured with primary bone marrow stroma cells in the DMEM medium with SCF and IL-6. 14 d later, most of the cells were CD34-CD38+. Wright's staining and immunohistochemistry showed that 80% of these cells were plasma-like morphologically and immunoglubolin positive. The study of hematopoietic cells from human embryonic cells showed that human embryonic cell differentiation was very similar to that of mouse ES cells. They could form EBs in the first stage and the CD34 positive cells account for about 48.5% in the second stage.

  18. Hematopoietic stem cell transplantation in multiple sclerosis

    DEFF Research Database (Denmark)

    Rogojan, C; Frederiksen, J L

    2009-01-01

    Intensive immunosuppresion followed by hematopoietic stem cell transplantation (HSCT) has been suggested as potential treatment in severe forms of multiple sclerosis (MS). Since 1995 ca. 400 patients have been treated with HSCT. Stabilization or improvement occurred in almost 70% of cases at least...

  19. Cellular memory and, hematopoietic stem cell aging

    NARCIS (Netherlands)

    Kamminga, Leonie M.; de Haan, Gerald

    2006-01-01

    Hematopoietic stem cells (HSCs) balance self-renewal and differentiation in order to sustain lifelong blood production and simultaneously maintain the HSC pool. However, there is clear evidence that HSCs are subject to quantitative and qualitative exhaustion. In this review, we briefly discuss sever

  20. Proteomic cornerstones of hematopoietic stem cell differentiation

    DEFF Research Database (Denmark)

    Klimmeck, Daniel; Hansson, Jenny; Raffel, Simon;

    2012-01-01

    Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors...... which differentiate into lineage committed progenitors and subsequently mature cells. In this report, we applied an in-depth quantitative proteomic approach to analyze and compare the full proteomes of ex vivo isolated and FACS-sorted populations highly enriched for either multipotent hematopoietic stem....../progenitor cells (HSPCs, Lin(neg)Sca-1(+)c-Kit(+)) or myeloid committed precursors (Lin(neg)Sca-1(-)c-Kit(+)). By employing stable isotope dimethyl labeling and high-resolution mass spectrometry, more than 5,000 proteins were quantified. From biological triplicate experiments subjected to rigorous statistical...

  1. Unrelated hematopoietic stem cell registry and the role of the Hematopoietic Stem Cell Bank

    OpenAIRE

    Beom, Su-Hee; Kim, Eung Jo; Kim, Miok; Kim, Tai-Gyu

    2016-01-01

    Background The hematopoietic stem cell bank has been actively recruiting registrants since 1994. This study systematically reviews its operations and outcomes over the last 20 years. Methods Retrospective data on a total of 47,711 registrants were reviewed. Relevant data were processed using PASW Statistics for Windows, version 18.0. Results As of 2013, the Korean Network for Organ Sharing database contained 265,307 registrants. Of these, 49,037 (18%) registrants committed to hematopoietic ce...

  2. Motivo de retirada do cateter de Hickman em pacientes submetidos ao transplante de células-tronco hematopoéticas Rationale for Hickman catheter removal in patients undergoing hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Lais Carvalho Castanho

    2011-01-01

    retiro del catéter de Hickman, se hace necesaria una patronización de cuidados relacionados a ese catéter, tanto para el equipo de salud como para el paciente y su cuidador.OBJECTIVE: To identify rationale for removal of the first Hickman catheter implanted in patients undergoing allogeneic hematopoietic stem cell transplantation, the micro-organisms involved in the occurrence of infection, and the length of time the catheter was in situ. METHODS: A cross sectional, retrospective study was conducted. The sample consisted of 57 transplant recipients. To conduct chart review, an instrument was developed containing variables related to patient identification, time of catheter use, reason for withdrawal, and isolated micro-organisms. RESULTS: Among the reasons for catheter removal, frequent infection (49% was the most common; the Stenotrophomonas maltophilia microorganism (25% was the most frequently isolated. CONCLUSIONS: Due to the high incidence of infectious complications leading to Hickman catheter removal, it is essential to standardize catheter care for the health care team, patients and their caregivers.

  3. Clinical observation of parenteral nutrition support in patients undergoing hematopoietic stem cell transplantation%造血干细胞移植患者肠外营养支持的临床观察

    Institute of Scientific and Technical Information of China (English)

    余国攀; 孙竞; 江千里; 刘启发; 周红升; 范志平; 孟凡义; 曹睿

    2014-01-01

    目的 探讨肠外营养(PN)支持对造血干细胞移植患者的重要性及各种营养素的作用.方法 回顾性分析2008年1月至2009年9月106例接受造血干细胞移植患者的临床资料,根据营养支持方式不同分为PN组(n=42)和非PN组(n=64),比较两组患者在造血重建时间、口腔黏膜炎、肝功能异常、感染及移植物抗宿主病(GVHD)发生率等方面的差异;进一步分析核黄素、谷氨酰胺、结构脂肪乳等营养素的作用.结果 接受PN支持的42例患者中,包含接受核黄素的患者33例,谷氨酰胺24例,结构脂肪乳26例.PN组患者的口腔黏膜炎发生率显著低于非PN组(31.0%比51.6%,P=0.036),而两组的感染率(42.9%比46.9%,P=0.898)、GVHD发生率(21.4%比31.3%,P=0.267)、丙氨酸氨基转移酶(ALT)水平[(49.5±9.8) U/L比(69.9±10.9) U/L,P =0.196]、粒系重建时间[(11.6±0.3)d比(12.3±0.3)d,P=0.187]及血小板重建时间[(14.1±0.9)d比(13.3±0.4)d,P=0.386]差异均无统计学意义.核黄素组的口腔黏膜炎发生率为27.3%,有低于无核黄素组(44.4%)和非PN组(51.6%)的趋势,但差异无统计学意义(P =0.073).谷氨酰胺组、无谷氨酰胺组和非PN组在口腔黏膜炎发生率、感染率、GVHD发生率、ALT水平及造血重建时间方面的差异均无统计学意义(P均>0.05).结构脂肪乳组的ALT平均值为(38.7±4.9) U/L,有低于物理混合的中长链脂肪乳组[(68.5±23.0) U/L]和非PN组[(69.9±10.9) U/L]的趋势,但差异无统计学意义(P =0.243).结论 造血干细胞移植患者可从合理的PN中获益.核黄素对口腔黏膜炎的预防可能有益.结构脂肪乳与中长链脂肪乳对于肝脏功能具有同样的安全性.谷氨酰胺的作用有待进一步研究.%Objective To investigate the role of parenteral nutrition (PN) in patients undergoing hematopoietic stem cell transplantation (HSCT).Methods The clinical data of 106 patients who had undergone HSCT from January 2008 to

  4. Prostaglandin E2 regulates hematopoietic stem cell

    International Nuclear Information System (INIS)

    Prostaglandin E2 (PGE2) is a bioactive lipid molecule produced by cyclooxygenase (COX), which plays an important role on hematopoiesis. While it can block differentiation of myeloid progenitors but enhance proliferation of erythroid progenitors. Recent research found that PGE2 have the effects on hematopoietic stem cell (HSC) function and these effects were independent from effects on progenitor cells. Exposure of HSC cells to PGE2 in vitro can increase homing efficiency of HSC to the murine bone marrow compartment and decrease HSC apoptosis, meanwhile increase long-term stem cell engraftment. In-vivo treatment with PGE2 expands short-term HSC and engraftment in murine bone marrow but not long-term HSC.In addition, PGE2 increases HSC survival after radiation injury and enhance hematopoietic recovery, resulting maintains hematopoietic homeostasis. PGE2 regulates HSC homeostasis by reactive oxygen species and Wnt pathway. Clinical beneficial of 16, 16-dimethyl-prostaglandin E2 treatment to enhance engraftment of umbilical cord blood suggest important improvements to therapeutic strategies. (authors)

  5. The biology of hematopoietic stem cells.

    Science.gov (United States)

    Szilvassy, Stephen J

    2003-01-01

    Rarely has so much interest from the lay public, government, biotechnology industry, and special interest groups been focused on the biology and clinical applications of a single type of human cell as is today on stem cells, the founder cells that sustain many, if not all, tissues and organs in the body. Granting organizations have increasingly targeted stem cells as high priority for funding, and it appears clear that the evolving field of tissue engineering and regenerative medicine will require as its underpinning a thorough understanding of the molecular regulation of stem cell proliferation, differentiation, self-renewal, and aging. Despite evidence suggesting that embryonic stem (ES) cells might represent a more potent regenerative reservoir than stem cells collected from adult tissues, ethical considerations have redirected attention upon primitive cells residing in the bone marrow, blood, brain, liver, muscle, and skin, from where they can be harvested with relative sociological impunity. Among these, it is arguably the stem and progenitor cells of the mammalian hematopoietic system that we know most about today, and their intense study in rodents and humans over the past 50 years has culminated in the identification of phenotypic and molecular genetic markers of lineage commitment and the development of functional assays that facilitate their quantitation and prospective isolation. This review focuses exclusively on the biology of hematopoietic stem cells (HSCs) and their immediate progeny. Nevertheless, many of the concepts established from their study can be considered fundamental tenets of an evolving stem cell paradigm applicable to many regenerating cellular systems. PMID:14734085

  6. Radiation response of human hematopoietic cells

    International Nuclear Information System (INIS)

    The radiosensitivity and capacity to accumulate and repair sub-lethal damage has been studied in hematopoietic cell lines of human origin and in stem cells derived from blood and bone narrow of normal human donors. The results were analysed in terms of the linear quadratic and multitarget models. For the cell lines intrinsic radiosensitivity varied widely with D/sub o/'s ranging from 0.53 to 1.39 Gy. Five of the cell lines showed same capacity to accumulate sub-lethal damage and in three of these survival was enhanced by dose fractionation or reduction of dose rate. Among the cell lines of leukemic origin, several did not conform in one or more respects with the highly radiosensitive and repair deficient model associated with hematopoietic cells. There was no apparent correlation between radiation response and the phenotype (myeloid, lymphoid or undifferentiated) of the cell lines studied. Variability of radiation response and in some cases an unpredicted degree of radioresistance and capacity to repair sub-lethal damage has now been demonstrated for both cultured and primary explants of human leukemic cells. These observations have implications for the design of Total Body Irradiation protocols for use prior to bone narrow transplant

  7. Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells.

    Science.gov (United States)

    Slukvin, Igor I

    2013-12-12

    Significant advances in cellular reprogramming technologies and hematopoietic differentiation from human pluripotent stem cells (hPSCs) have already enabled the routine production of multiple lineages of blood cells in vitro and opened novel opportunities to study hematopoietic development, model genetic blood diseases, and manufacture immunologically matched cells for transfusion and cancer immunotherapy. However, the generation of hematopoietic cells with robust and sustained multilineage engraftment has not been achieved. Here, we highlight the recent advances in understanding the molecular and cellular pathways leading to blood development from hPSCs and discuss potential approaches that can be taken to facilitate the development of technologies for de novo production of hematopoietic stem cells.

  8. Exogenous endothelial cells as accelerators of hematopoietic reconstitution

    Directory of Open Access Journals (Sweden)

    Mizer J

    2012-11-01

    Full Text Available Abstract Despite the successes of recombinant hematopoietic-stimulatory factors at accelerating bone marrow reconstitution and shortening the neutropenic period post-transplantation, significant challenges remain such as cost, inability to reconstitute thrombocytic lineages, and lack of efficacy in conditions such as aplastic anemia. A possible means of accelerating hematopoietic reconstitution would be administration of cells capable of secreting hematopoietic growth factors. Advantages of this approach would include: a ability to regulate secretion of cytokines based on biological need; b long term, localized production of growth factors, alleviating need for systemic administration of factors that possess unintended adverse effects; and c potential to actively repair the hematopoietic stem cell niche. Here we overview the field of hematopoietic growth factors, discuss previous experiences with mesenchymal stem cells (MSC in accelerating hematopoiesis, and conclude by putting forth the rationale of utilizing exogenous endothelial cells as a novel cellular therapy for acceleration of hematopoietic recovery.

  9. Basic oral care for hematology–oncology patients and hematopoietic stem cell transplantation recipients

    DEFF Research Database (Denmark)

    Elad, Sharon; Raber-Durlacher, Judith E; Brennan, Michael T;

    2015-01-01

    PURPOSE: Hematology-oncology patients undergoing chemotherapy and hematopoietic stem cell transplantation (HSCT) recipients are at risk for oral complications which may cause significant morbidity and a potential risk of mortality. This emphasizes the importance of basic oral care prior to, during...

  10. Complications and Nursing of Central Venous Catheters Undergoing Hematopoietic Stem Cell Transplantation%中心静脉导管在骨髓造血干细胞移植应用中的并发症及其护理

    Institute of Scientific and Technical Information of China (English)

    刘瑞青

    2014-01-01

    Objective To explore the types , incidence and risk factors of the complications related to CVC used in children undergoing HSCT,and to explore how nurses should have a greater awareness of the prevention of complications .Methods Medical records were analyzed on 100 patients with CVC between October 2007 and October 2013.Results Overall , 186 complications were documented.The overall complication rate was 14.6/1000 CVC -days.Catheter complications were higher in nonmalignant disorders than hematological malignancies (χ2 =5.2, P=0.02).CVC malfunction rates were 1.7/1000 CVC-days (11.8%, n=22) and 0.07/1000 CVC-days for mechanical complications ( 0.5%, n=1 ).The overall CRI rate was 11.9/1000 CVC-days ( 81.2%, n=151 ).CRI episodes were higher in male than female children (χ2 =6.42, P=0.01).Nine CVC (7.9%) were removed due to infection, 70(61.4%) were removed at the end of therapy.In children who had nonhematological diseases , the rate of complications of CVC were higher than in those with hematological diseases ( odds ratio [ OR]=2.66 , concidence interval [ CI]=1.1~6.2.The risk for CRI in male children was nearly 2.5 times more compared with female children ( P =0.01 , OR =2.68 , CI =1.2 ~5.8 ).Conclusion Nurses must be aware of CVC complications and must follow guidelines and practice standards continuously.Rigorous attention should be paid to the aseptic technique . These are essential in all aspects of appropriate management of CVC.%目的:探讨中心静脉导管在骨髓造血干细胞移植(hematopoietic stem cell transplantation ,HSCT)应用中的并发症类型、发病率、危险因素,进一步探讨护理人员如何防止中心静脉导管( Central venous catheters ,CVC)并发症。方法收集本院2007-10~2013-10间100例患儿在HSCT中使用CVC的临床资料。结果共出现186次导管并发症,并发症发生率为14.6次/1000 CVC-days。良性血液病导管并发症高于恶性血液病导管并发症(χ2=5.2

  11. Epigenetic regulation of hematopoietic stem cell aging

    International Nuclear Information System (INIS)

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging

  12. Epigenetic regulation of hematopoietic stem cell aging

    Energy Technology Data Exchange (ETDEWEB)

    Beerman, Isabel, E-mail: isabel.beerman@childrens.harvard.edu [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States); Rossi, Derrick J. [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States)

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  13. Hematopoietic potential cells in skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Atsushi Asakura

    2007-01-01

    @@ During mouse embryogenesis,the formation of primi-tive hematopoiesis begins in the yolk sac on embryonic day 7.5(E7.5).Thereafter,definitive hematopoietic stem cell(HSC)activity is first detectable in the aorta-gonad-mesonephros(AGM)region on E10,followed by fetal liver and yolk sac.Subsequently,the fetal liver by E12 becomes the main tissue for definitive hematopoiesis.At a later time,HSC population in the fetal liver migrates to the bone marrow,which becomes the maior site of he-matopoiesis throughout normal adult life[1].

  14. Experimental Limitations Using Reprogrammed Cells for Hematopoietic Differentiation

    Directory of Open Access Journals (Sweden)

    Katharina Seiler

    2011-01-01

    Full Text Available We review here our experiences with the in vitro reprogramming of somatic cells to induced pluripotent stem cells (iPSC and subsequent in vitro development of hematopoietic cells from these iPSC and from embryonic stem cells (ESC. While, in principle, the in vitro reprogramming and subsequent differentiation can generate hematopoietic cell from any somatic cells, it is evident that many of the steps in this process need to be significantly improved before it can be applied to human cells and used in clinical settings of hematopoietic stem cell (HSC transplantations.

  15. Evolving concepts on the microenvironmental niche for hematopoietic stem cells.

    NARCIS (Netherlands)

    Raaijmakers, M.G.P.; Scadden, D.T.

    2008-01-01

    PURPOSE OF REVIEW: The hematopoietic stem cell niche is critical for the maintenance and proliferation of hematopoietic stem cells and, as such, is not only essential for steady-state hematopoiesis but may also be relevant to hematologic disease. The present review discusses recent advances in the u

  16. Engineering Hematopoietic Stem Cells: Lessons from Development.

    Science.gov (United States)

    Rowe, R Grant; Mandelbaum, Joseph; Zon, Leonard I; Daley, George Q

    2016-06-01

    Cell engineering has brought us tantalizingly close to the goal of deriving patient-specific hematopoietic stem cells (HSCs). While directed differentiation and transcription factor-mediated conversion strategies have generated progenitor cells with multilineage potential, to date, therapy-grade engineered HSCs remain elusive due to insufficient long-term self-renewal and inadequate differentiated progeny functionality. A cross-species approach involving zebrafish and mammalian systems offers complementary methodologies to improve understanding of native HSCs. Here, we discuss the role of conserved developmental timing processes in vertebrate hematopoiesis, highlighting how identification and manipulation of stage-specific factors that specify HSC developmental state must be harnessed to engineer HSCs for therapy. PMID:27257760

  17. Bone Marrow Vascular Niche: Home for Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Ningning He

    2014-01-01

    Full Text Available Though discovered later than osteoblastic niche, vascular niche has been regarded as an alternative indispensable niche operating regulation on hematopoietic stem cells (HSCs. As significant progresses gained on this type niche, it is gradually clear that the main work of vascular niche is undertaking to support hematopoiesis. However, compared to what have been defined in the mechanisms through which the osteoblastic niche regulates hematopoiesis, we know less in vascular niche. In this review, based on research data hitherto we will focus on component foundation and various functions of vascular niche that guarantee the normal hematopoiesis process within bone marrow microenvironments. And the possible pathways raised by various research results through which this environment undergoes its function will be discussed as well.

  18. Regulation of Hematopoietic Stem Cells by Bone Marrow Stromal Cells

    OpenAIRE

    Anthony, Bryan; Link, Daniel C.

    2013-01-01

    Hematopoietic stem cells (HSCs) reside in specialized microenvironments (niches) in the bone marrow. The stem cell niche is thought to provide signals that support key HSC properties, including self-renewal capacity and long-term multilineage repopulation ability. The stromal cells that comprise the stem cell niche and the signals that they generate that support HSC function are the subjects of intense investigation. Here we review the complex and diverse stromal cell populations that reside ...

  19. Comparison of Outcomes for Pediatric Patients With Acute Myeloid Leukemia in Remission and Undergoing Allogeneic Hematopoietic Cell Transplantation With Myeloablative Conditioning Regimens Based on Either Intravenous Busulfan or Total Body Irradiation: A Report From the Japanese Society for Hematopoietic Cell Transplantation.

    Science.gov (United States)

    Ishida, Hiroyuki; Kato, Motohiro; Kudo, Kazuko; Taga, Takashi; Tomizawa, Daisuke; Miyamura, Takako; Goto, Hiroaki; Inagaki, Jiro; Koh, Katsuyoshi; Terui, Kiminori; Ogawa, Atsushi; Kawano, Yoshifumi; Inoue, Masami; Sawada, Akihisa; Kato, Koji; Atsuta, Yoshiko; Yamashita, Takuya; Adachi, Souichi

    2015-12-01

    Pediatric patients with acute myeloid leukemia (AML) mainly receive myeloablative conditioning regimens based on busulfan (BU) or total body irradiation (TBI) before allogeneic hematopoietic cell transplantation (allo-HCT); however, the optimal conditioning regimen remains unclear. To identify which of these regimens is better for pediatric patients, we performed a retrospective analysis of nationwide registration data collected in Japan between 2006 and 2011 to assess the outcomes of patients receiving these regimens before a first allo-HCT. Myeloablative conditioning regimens based on i.v. BU (i.v. BU-MAC) (n = 69) or TBI (TBI-MAC) (n = 151) were compared in pediatric AML patients in first or second complete remission (CR1/CR2). The incidences of sinusoid obstruction syndrome, acute and chronic graft-versus-host disease, and early nonrelapse mortality (NRM) before day 100 were similar for both conditioning groups; however, the incidence of bacterial infection during the acute period was higher in the TBI-MAC group (P = .008). Both groups showed a similar incidence of NRM, and there was no significant difference in the incidence of relapse between the groups. Univariate and multivariate analyses revealed no significant differences in the 2-year relapse-free survival rates for the i.v. BU-MAC and TBI-MAC groups in the CR1/CR2 setting (71% versus 67%, P = .36; hazard ratio, .73; 95% CI, .43 to 1.24, respectively). TBI-MAC was no better than i.v. BU-MAC for pediatric AML patients in remission. Although this retrospective registry-based analysis has several limitations, i.v. BU-MAC warrants further evaluation in a prospective trial. PMID:26271192

  20. Comparison of Outcomes for Pediatric Patients With Acute Myeloid Leukemia in Remission and Undergoing Allogeneic Hematopoietic Cell Transplantation With Myeloablative Conditioning Regimens Based on Either Intravenous Busulfan or Total Body Irradiation: A Report From the Japanese Society for Hematopoietic Cell Transplantation.

    Science.gov (United States)

    Ishida, Hiroyuki; Kato, Motohiro; Kudo, Kazuko; Taga, Takashi; Tomizawa, Daisuke; Miyamura, Takako; Goto, Hiroaki; Inagaki, Jiro; Koh, Katsuyoshi; Terui, Kiminori; Ogawa, Atsushi; Kawano, Yoshifumi; Inoue, Masami; Sawada, Akihisa; Kato, Koji; Atsuta, Yoshiko; Yamashita, Takuya; Adachi, Souichi

    2015-12-01

    Pediatric patients with acute myeloid leukemia (AML) mainly receive myeloablative conditioning regimens based on busulfan (BU) or total body irradiation (TBI) before allogeneic hematopoietic cell transplantation (allo-HCT); however, the optimal conditioning regimen remains unclear. To identify which of these regimens is better for pediatric patients, we performed a retrospective analysis of nationwide registration data collected in Japan between 2006 and 2011 to assess the outcomes of patients receiving these regimens before a first allo-HCT. Myeloablative conditioning regimens based on i.v. BU (i.v. BU-MAC) (n = 69) or TBI (TBI-MAC) (n = 151) were compared in pediatric AML patients in first or second complete remission (CR1/CR2). The incidences of sinusoid obstruction syndrome, acute and chronic graft-versus-host disease, and early nonrelapse mortality (NRM) before day 100 were similar for both conditioning groups; however, the incidence of bacterial infection during the acute period was higher in the TBI-MAC group (P = .008). Both groups showed a similar incidence of NRM, and there was no significant difference in the incidence of relapse between the groups. Univariate and multivariate analyses revealed no significant differences in the 2-year relapse-free survival rates for the i.v. BU-MAC and TBI-MAC groups in the CR1/CR2 setting (71% versus 67%, P = .36; hazard ratio, .73; 95% CI, .43 to 1.24, respectively). TBI-MAC was no better than i.v. BU-MAC for pediatric AML patients in remission. Although this retrospective registry-based analysis has several limitations, i.v. BU-MAC warrants further evaluation in a prospective trial.

  1. Observation of humoral immunity reconstitution and its relationship with infection after autologous hematopoietic stem cell transplantation for patients with multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    刘俊茹

    2013-01-01

    Objective To study the humoral immunity reconstitution and its relationship with infection in patients with multiple myeloma(MM) after undergoing autologous hematopoietic stem cell transplantation(auto-HSCT)

  2. In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells

    OpenAIRE

    Amabile, Giovanni; Welner, Robert S.; Nombela-Arrieta, Cesar; D'Alise, Anna Morena; Di Ruscio, Annalisa; Ebralidze, Alexander K.; Kraytsberg, Yevgenya; Ye, Min; Kocher, Olivier; Neuberg, Donna S.; Khrapko, Konstantin; Silberstein, Leslie E.; Tenen, Daniel G

    2013-01-01

    Human hematopoietic cells develop within human iPSC-derived teratomas in immunodeficient mice.Co-transplantation of OP9 stromal cells along with human iPSCs increases hematopoietic specification within teratomas.

  3. The Neuropsychiatry of Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Mitchell R. Levy

    2006-06-01

    Full Text Available BACKGROUND AND OBJECTIVES: Regimens incorporating hematopoietic stem cell transplantation (HSCT have become widely utilized in disease treatments, particularly for cancer. These complex treatment programs also expose patients to central nervous system (CNS toxicities from chemotherapy, irradiation, infection, metabolic effects and immunosuppression. METHODS: Relevant recent medical literature from Medline and bibliographies in pertinent publications are reviewed with a focus on those cases and studies pertaining to neuropsychiatric effects of HSCT. RESULTS: High rates of neuropsychiatric sequelae occur on a continuum from acute to chronic. Adverse outcomes include focal CNS deficits and severe global manifestations such as seizures, encephalopathy and delirium. More graduated effects on cognition, energy and mood are frequently seen, impacting patient function. CONCLUSIONS: Additional research on neuropsychiatric outcomes and treatment interventions is needed in the HSCT setting. Risks for neuropsychiatric deficits should be part of an ongoing informed consent discussion among treating physicians, patients and families.

  4. Fetal liver stromal cells promote hematopoietic cell expansion

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kun; Hu, Caihong [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Zhou, Zhigang [Shanghai 1st People Hospital, Shanghai Jiao Tong University, Shanghai 201620 (China); Huang, Lifang; Liu, Wenli [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China); Sun, Hanying, E-mail: shanhum@163.com [Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 (China)

    2009-09-25

    Future application of hematopoietic stem and progenitor cells (HSPCs) in clinical therapies largely depends on their successful expansion in vitro. Fetal liver (FL) is a unique hematopoietic organ in which hematopoietic cells markedly expand in number, but the mechanisms involved remain unclear. Stromal cells (StroCs) have been suggested to provide a suitable cellular environment for in vitro expansion of HSPCs. In this study, murine StroCs derived from FL at E14.5, with a high level of Sonic hedgehog (Shh) and Wnt expression, were found to have an increased ability to support the proliferation of HSPCs. This effect was inhibited by blocking Shh signaling. Supplementation with soluble Shh-N promoted the proliferation of hematopoietic cells by activating Wnt signaling. Our findings suggest that FL-derived StroCs support proliferation of HSPCs via Shh inducing an autocrine Wnt signaling loop. The use of FL-derived StroCs and regulation of the Shh pathway might further enhance HPSC expansion.

  5. Parathyroid hormone mediates hematopoietic cell expansion through interleukin-6.

    Directory of Open Access Journals (Sweden)

    Flavia Q Pirih

    Full Text Available Parathyroid hormone (PTH stimulates hematopoietic cells through mechanisms of action that remain elusive. Interleukin-6 (IL-6 is upregulated by PTH and stimulates hematopoiesis. The purpose of this investigation was to identify actions of PTH and IL-6 in hematopoietic cell expansion. Bone marrow cultures from C57B6 mice were treated with fms-like tyrosine kinase-3 ligand (Flt-3L, PTH, Flt-3L plus PTH, or vehicle control. Flt-3L alone increased adherent and non-adherent cells. PTH did not directly impact hematopoietic or osteoclastic cells but acted in concert with Flt-3L to further increase cell numbers. Flt-3L alone stimulated proliferation, while PTH combined with Flt-3L decreased apoptosis. Flt-3L increased blasts early in culture, and later increased CD45(+ and CD11b(+ cells. In parallel experiments, IL-6 acted additively with Flt-3L to increase cell numbers and IL-6-deficient bone marrow cultures (compared to wildtype controls but failed to amplify in response to Flt-3L and PTH, suggesting that IL-6 mediated the PTH effect. In vivo, PTH increased Lin(- Sca-1(+c-Kit(+ (LSK hematopoietic progenitor cells after PTH treatment in wildtype mice, but failed to increase LSKs in IL-6-deficient mice. In conclusion, PTH acts with Flt-3L to maintain hematopoietic cells by limiting apoptosis. IL-6 is a critical mediator of bone marrow cell expansion and is responsible for PTH actions in hematopoietic cell expansion.

  6. Human Placenta Is a Potent Hematopoietic Niche Containing Hematopoietic Stem and Progenitor Cells throughout Development

    NARCIS (Netherlands)

    C. Robin (Catherine); K. Bollerot (Karine); S.C. Mendes (Sandra); E. Haak (Esther); M. Crisan (Mihaela); F. Cerisoli (Francesco); I. Lauw (Ivoune); P. Kaimakis (Polynikis); R.J.J. Jorna (Ruud); M. Vermeulen (Mark); M.H. Kayser (Manfred); R. van der Linden (Reinier); P. Imanirad (Parisa); M.M.A. Verstegen (Monique); H. Nawaz-Yousaf (Humaira); N. Papazian (Natalie); E.A.P. Steegers (Eric); T. Cupedo (Tom); E.A. Dzierzak (Elaine)

    2009-01-01

    textabstractHematopoietic stem cells (HSCs) are responsible for the life-long production of the blood system and are pivotal cells in hematologic transplantation therapies. During mouse and human development, the first HSCs are produced in the aorta-gonad-mesonephros region. Subsequent to this emerg

  7. Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms

    NARCIS (Netherlands)

    Radulovic, V.; de Haan, G.; Klauke, K.

    2013-01-01

    The equilibrium between self-renewal and differentiation of hematopoietic stem cells is regulated by epigenetic mechanisms. In particular, Polycomb-group (PcG) proteins have been shown to be involved in this process by repressing genes involved in cell-cycle regulation and differentiation. PcGs are

  8. Hematopoietic stem cell characterization and isolation.

    Science.gov (United States)

    Rossi, Lara; Challen, Grant A; Sirin, Olga; Lin, Karen Kuan-Yin; Goodell, Margaret A

    2011-01-01

    Hematopoietic stem cells (HSCs) are defined by the capabilities of multi-lineage differentiation and long-term self-renewal. Both these characteristics contribute to maintain the homeostasis of the system and allow the restoration of hematopoiesis after insults, such as infections or therapeutic ablation. Reconstitution after lethal irradiation strictly depends on a third, fundamental property of HSCs: the capability to migrate under the influence of specific chemokines. Directed by a chemotactic compass, after transplant HSCs find their way to the bone marrow, where they eventually home and engraft. HSCs represent a rare population that primarily resides in the bone marrow with an estimated frequency of 0.01% of total nucleated cells. Separating HSCs from differentiated cells that reside in the bone marrow has been the focus of intense investigation for years. In this chapter, we will describe in detail the strategy routinely used by our laboratory to purify murine HSCs, by exploiting their antigenic phenotype (KSL), combined with the physiological capability to efficiently efflux the vital dye Hoechst 33342, generating the so-called Side Population, or SP.

  9. MiR-24 promotes the survival of hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Tan Nguyen

    Full Text Available The microRNA, miR-24, inhibits B cell development and promotes myeloid development of hematopoietic progenitors. Differential regulation of cell survival in myeloid and lymphoid cells by miR-24 may explain how miR-24's affects hematopoietic progenitors. MiR-24 is reported to regulate apoptosis, either positively or negatively depending on cell context. However, no role for miR-24 in regulating cell death has been previously described in blood cells. To examine miR-24's effect on survival, we expressed miR-24 via retrovirus in hematopoietic cells and induced cell death with cytokine or serum withdrawal. We observed that miR-24 enhanced survival of myeloid and B cell lines as well as primary hematopoietic cells. Additionally, antagonizing miR-24 with shRNA in hematopoietic cells made them more sensitive to apoptotic stimuli, suggesting miR-24 functions normally to promote blood cell survival. Since we did not observe preferential protection of myeloid over B cells, miR-24's pro-survival effect does not explain its promotion of myelopoiesis. Moreover, expression of pro-survival protein, Bcl-xL, did not mimic miR-24's impact on cellular differentiation, further supporting this conclusion. Our results indicate that miR-24 is a critical regulator of hematopoietic cell survival. This observation has implications for leukemogenesis. Several miRNAs that regulate apoptosis have been shown to function as either tumor suppressors or oncogenes during leukemogenesis. MiR-24 is expressed highly in primary acute myelogenous leukemia, suggesting that its pro-survival activity could contribute to the transformation of hematopoietic cells.

  10. Hemorrhagic cystitis after hematopoietic stem cell trans-plantation: much progress and many remaining issues

    Institute of Scientific and Technical Information of China (English)

    Edmund K. Waller

    2007-01-01

    @@ The manuscript by Xu et al1 addresses an important question in the field of allogeneic hematopoietic progenitor cell transplantation (HPCT): how to identify those patients at risk for hemmoraghic cystitis. The authors performed a retrospective analysis of 250 patients undergoing allogeneic HPCT following myeloablative conditioning with busulfan and cyclophosphamide using a standard post-transplant immunoprophylaxis with cyclosporine, short-course methotrexate and mycophenylate.

  11. Allogeneic Hematopoietic Cell Transplantation in Patients with Myelodysplastic Syndrome and Concurrent Lymphoid Malignancy

    OpenAIRE

    Zimmerman, Zachary; Scott, Bart L.; Gopal, Ajay K.; Sandmaier, Brenda M.; Maloney, David G; Deeg, H. Joachim

    2011-01-01

    Allogeneic hematopoietic cell transplantation (HCT) can be curative for both myelodysplastic syndromes (MDS) and lymphoid malignancies. Little is known about the efficacy of allogeneic HCT in patients in whom both myeloid and lymphoid disorders are present at the time of HCT. We analyzed outcomes in 21 patients with MDS and concurrent lymphoid malignancy when undergoing allogeneic HCT. Seventeen patients had received extensive prior cytotoxic chemotherapy, including autologous HCT in seven, f...

  12. Immunotherapy of invasive fungal infection in hematopoietic stem cell transplant recipients

    OpenAIRE

    Lehrnbecher, Thomas; Schmidt, Stanislaw; Tramsen, Lars; Klingebiel, Thomas

    2013-01-01

    Despite the availability of new antifungal compounds, invasive fungal infection remains a significant cause of morbidity and mortality in children and adults undergoing allogeneic hematopoietic stem cell transplantation (HSCT). Allogeneic HSCT recipients suffer from a long lasting defect of different arms of the immune system, which increases the risk for and deteriorates the prognosis of invasive fungal infections. In turn, advances in understanding these immune deficits have resulted in pro...

  13. Hepatitis B-related events in autologous hematopoietic stem cell transplantation recipients

    Institute of Scientific and Technical Information of China (English)

    zcan; eneli; Zübeyde; Nur; zkurt; Kadir; Acar; Seyyal; Rota; Sahika; Zeynep; Aki; Zeynep; Arzu; Yegin; Münci; Yagci; Seren; zenirler; Gülsan; Türkz; Sucak

    2010-01-01

    AIM: To investigate the frequency of occult hepatitis B, the clinical course of hepatitis B virus (HBV) reactivation and reverse seroconversion and associated risk factors in autologous hematopoietic stem cell transplantation (HSCT) recipients. METHODS: This study was conducted in 90 patients undergoing autologous HSCT. Occult HBV infection was investigated by HBV-DNA analysis prior to transplantation, while HBV serology and liver function tests were screened prior to and serially after transplantation. HBV...

  14. Circulation and chemotaxis of fetal hematopoietic stem cells.

    OpenAIRE

    Christensen, Julie L.; Wright, Douglas E.; Wagers, Amy J.; Weissman, Irving L.

    2004-01-01

    The major site of hematopoiesis transitions from the fetal liver to the spleen and bone marrow late in fetal development. To date, experiments have not been performed to evaluate functionally the migration and seeding of hematopoietic stem cells (HSCs) during this period in ontogeny. It has been proposed that developmentally timed waves of HSCs enter the bloodstream only during distinct windows to seed the newly forming hematopoietic organs. Using competitive reconstitution assays to measure ...

  15. Characterization of Selectin Ligands on Hematopoietic Stem Cells

    KAUST Repository

    Mahmood, Hanan

    2013-05-18

    Successful bone marrow (BM) transplantation requires the homing of the transplanted hematopoietic stem/progenitor cells (HSPCs) to their bone marrow niche, where they undergo differentiation to form mature cells that are eventually released into the peripheral blood. However, the survival rate of patients receiving BM transplants is poor since many of the transplanted HSPCs do not make it to their BM niches in the recipient’s body. Since the availability of HSPCs from traditional sources is limited, transplanting more number of HSPCs is not a solution to this problem. This study aims to characterize the adhesion molecules mediating cell migration in order to better understand the adhesion mechanisms of HSCs with the bone marrow endothelium. This will aid in developing future tools to improve the clinical transplantation of HSPCs. This study also aims to understand the factors that influence HSPC proliferation in the bone marrow niche. E-selectin plays an important role in the process of homing; however, its ligands on HSPCs are not well characterized. We used western blotting and immunoprecipitation to show that endomucin is expressed on HSPCs and plays a role in the binding of HSPCs to E-selectin. We also studied the effect of recombinant E-selectin on the expression of a newly characterized E-selectin ligand in our lab, CD34, in HSPCs. This will provide us insight into novel roles for endomucin and E-selectin and help us to understand the factors influencing HSPC migration to BM endothelium.

  16. SBR-Blood: systems biology repository for hematopoietic cells.

    Science.gov (United States)

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-01

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles. PMID:26590403

  17. Prostaglandin E2 increases hematopoietic stem cell survival and accelerates hematopoietic recovery after radiation injury

    OpenAIRE

    Porter, Rebecca L.; Georger, Mary; Bromberg, Olga; McGrath, Kathleen E.; Frisch, Benjamin J.; Becker, Michael W.; Calvi, Laura M.

    2013-01-01

    Hematopoietic stem and progenitor cells (HSPCs), which continuously maintain all mature blood cells, are regulated within the marrow microenvironment. We previously reported that pharmacologic treatment of naïve mice with prostaglandin E2 (PGE2) expands HSPCs. However, the cellular mechanisms mediating this expansion remain unknown. Here we demonstrate that PGE2 treatment in naïve mice inhibits apoptosis of HSPCs without changing their proliferation rate. In a murine model of sub-lethal total...

  18. Hematopoietic Stem and Immune Cells in Chronic HIV Infection

    OpenAIRE

    Jielin Zhang; Clyde Crumpacker

    2015-01-01

    Hematopoietic stem cell (HSC) belongs to multipotent adult somatic stem cells. A single HSC can reconstitute the entire blood system via self-renewal, differentiation into all lineages of blood cells, and replenishment of cells lost due to attrition or disease in a person's lifetime. Although all blood and immune cells derive from HSC, immune cells, specifically immune memory cells, have the properties of HSC on self-renewal and differentiation into lineage effector cells responding to the in...

  19. Psychosocial Changes Associated with Participation in Art Therapy Interventions for Siblings of Pediatric Hematopoietic Stem Cell Transplant Patients

    Science.gov (United States)

    Wallace, Jo; Packman, Wendy; Huffman, Lynne C.; Horn, Biljana; Cowan, Morton; Amylon, Michael D.; Kahn, Colleen; Cordova, Matt; Moses, Jim

    2014-01-01

    Hematopoietic stem cell transplantation (HSCT) is an accepted medical treatment for many serious childhood diseases. HSCT is a demanding procedure that creates both physical and emotional challenges for patients and their family members. Research has demonstrated that siblings of children undergoing HSCT are at risk for developing psychosocial…

  20. Severe fludarabine neurotoxicity after reduced intensity conditioning regimen to allogeneic hematopoietic stem cell transplantation: a case report

    OpenAIRE

    C. Annaloro; Costa, A.; N.S. Fracchiolla; G. Mometto; S. Artuso; G. Saporiti; Tagliaferri, E.; GRIFONI, F.; Onida, F.; Cortelezzi, A.

    2015-01-01

    Key Clinical Message We present a case of severe, irreversible neurotoxicity in a 55-year-old-patient with myelofibrosis undergoing hematopoietic stem cell transplantation following a reduced intensity conditioning including fludarabine. The patient developed progressive sensory-motor, visual and consciousness disturbances, eventually leading to death. MRI imaging pattern was unique and attributable to fludarabine neurotoxicity.

  1. Severe fludarabine neurotoxicity after reduced intensity conditioning regimen to allogeneic hematopoietic stem cell transplantation: a case report.

    Science.gov (United States)

    Annaloro, Claudio; Costa, Antonella; Fracchiolla, Nicola S; Mometto, Gabriella; Artuso, Silvia; Saporiti, Giorgia; Tagliaferri, Elena; Grifoni, Federica; Onida, Francesco; Cortelezzi, Agostino

    2015-07-01

    We present a case of severe, irreversible neurotoxicity in a 55-year-old-patient with myelofibrosis undergoing hematopoietic stem cell transplantation following a reduced intensity conditioning including fludarabine. The patient developed progressive sensory-motor, visual and consciousness disturbances, eventually leading to death. MRI imaging pattern was unique and attributable to fludarabine neurotoxicity. PMID:26273463

  2. Hematopoietic stem cell transplantation for infantile osteopetrosis

    NARCIS (Netherlands)

    Orchard, Paul J.; Fasth, Anders L.; Le Rademacher, Jennifer L.; He, Wensheng; Boelens, Jaap Jan; Horwitz, Edwin M.; Al-Seraihy, Amal; Ayas, Mouhab; Bonfim, Carmem M.; Boulad, Farid; Lund, Troy; Buchbinder, David K.; Kapoor, Neena; OBrien, Tracey A.; Perez, Miguel A Diaz; Veys, Paul A.; Eapen, Mary

    2015-01-01

    We report the international experience in outcomes after related and unrelated hematopoietic transplantation for infantile osteopetrosis in 193 patients. Thirty-four percent of transplants used grafts from HLA-matched siblings, 13% from HLA-mismatched relatives, 12% from HLA-matched, and 41% from HL

  3. Secondary solid cancer screening following hematopoietic cell transplantation

    Science.gov (United States)

    Inamoto, Y; Shah, NN; Savani, BN; Shaw, BE; Abraham, AA; Ahmed, IA; Akpek, G; Atsuta, Y; Baker, KS; Basak, GW; Bitan, M; DeFilipp, Z; Gregory, TK; Greinix, HT; Hamadani, M; Hamilton, BK; Hayashi, RJ; Jacobsohn, DA; Kamble, RT; Kasow, KA; Khera, N; Lazarus, HM; Malone, AK; Lupo-Stanghellini, MT; Margossian, SP; Muffly, LS; Norkin, M; Ramanathan, M; Salooja, N; Schoemans, H; Wingard, JR; Wirk, B; Wood, WA; Yong, A; Duncan, CN; Flowers, MED; Majhail, NS

    2016-01-01

    Hematopoietic stem cell transplant (HCT) recipients have a substantial risk of developing secondary solid cancers, particularly beyond 5 years after HCT and without reaching a plateau overtime. A working group was established through the Center for International Blood and Marrow Transplant Research and the European Group for Blood and Marrow Transplantation with the goal to facilitate implementation of cancer screening appropriate to HCT recipients. The working group reviewed guidelines and methods for cancer screening applicable to the general population and reviewed the incidence and risk factors for secondary cancers after HCT. A consensus approach was used to establish recommendations for individual secondary cancers. The most common sites include oral cavity, skin, breast and thyroid. Risks of cancers are increased after HCT compared with the general population in skin, thyroid, oral cavity, esophagus, liver, nervous system, bone and connective tissues. Myeloablative TBI, young age at HCT, chronic GVHD and prolonged immunosuppressive treatment beyond 24 months were well-documented risk factors for many types of secondary cancers. All HCT recipients should be advised of the risks of secondary cancers annually and encouraged to undergo recommended screening based on their predisposition. Here we propose guidelines to help clinicians in providing screening and preventive care for secondary cancers among HCT recipients. PMID:25822223

  4. Dyslipidemia after allogeneic hematopoietic stem cell transplantation: evaluation and management.

    Science.gov (United States)

    Griffith, Michelle L; Savani, Bipin N; Boord, Jeffrey B

    2010-08-26

    Currently, approximately 15,000 to 20,000 patients undergo allogeneic hematopoietic stem cell transplantation (HSCT) annually throughout the world, with the number of long-term survivors increasing rapidly. In long-term follow-up after transplantation, the focus of care moves beyond cure of the original disease to the identification and treatment of late effects after HSCT. One of the more serious complications is therapy-related cardiovascular disease. Long-term survivors after HSCT probably have an increased risk of premature cardiovascular events. Cardiovascular complications related to dyslipidemia and other risk factors account for a significant proportion of late nonrelapse morbidity and mortality. This review addresses the risk and causes of dyslipidemia and impact on cardiovascular complications after HSCT. Immunosuppressive therapy, chronic graft-versus-host disease, and other long-term complications influence the management of dyslipidemia. There are currently no established guidelines for evaluation and management of dyslipidemia in HSCT patients; in this review, we have summarized our suggested approach in the HSCT population.

  5. Secondary solid cancer screening following hematopoietic cell transplantation.

    Science.gov (United States)

    Inamoto, Y; Shah, N N; Savani, B N; Shaw, B E; Abraham, A A; Ahmed, I A; Akpek, G; Atsuta, Y; Baker, K S; Basak, G W; Bitan, M; DeFilipp, Z; Gregory, T K; Greinix, H T; Hamadani, M; Hamilton, B K; Hayashi, R J; Jacobsohn, D A; Kamble, R T; Kasow, K A; Khera, N; Lazarus, H M; Malone, A K; Lupo-Stanghellini, M T; Margossian, S P; Muffly, L S; Norkin, M; Ramanathan, M; Salooja, N; Schoemans, H; Wingard, J R; Wirk, B; Wood, W A; Yong, A; Duncan, C N; Flowers, M E D; Majhail, N S

    2015-08-01

    Hematopoietic stem cell transplant (HCT) recipients have a substantial risk of developing secondary solid cancers, particularly beyond 5 years after HCT and without reaching a plateau overtime. A working group was established through the Center for International Blood and Marrow Transplant Research and the European Group for Blood and Marrow Transplantation with the goal to facilitate implementation of cancer screening appropriate to HCT recipients. The working group reviewed guidelines and methods for cancer screening applicable to the general population and reviewed the incidence and risk factors for secondary cancers after HCT. A consensus approach was used to establish recommendations for individual secondary cancers. The most common sites include oral cavity, skin, breast and thyroid. Risks of cancers are increased after HCT compared with the general population in skin, thyroid, oral cavity, esophagus, liver, nervous system, bone and connective tissues. Myeloablative TBI, young age at HCT, chronic GVHD and prolonged immunosuppressive treatment beyond 24 months were well-documented risk factors for many types of secondary cancers. All HCT recipients should be advised of the risks of secondary cancers annually and encouraged to undergo recommended screening based on their predisposition. Here we propose guidelines to help clinicians in providing screening and preventive care for secondary cancers among HCT recipients.

  6. The Genetic Landscape of Hematopoietic Stem Cell Frequency in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhou

    2015-07-01

    Full Text Available Prior efforts to identify regulators of hematopoietic stem cell physiology have relied mainly on candidate gene approaches with genetically modified mice. Here we used a genome-wide association study (GWAS strategy with the hybrid mouse diversity panel to identify the genetic determinants of hematopoietic stem/progenitor cell (HSPC frequency. Among 108 strains, we observed ∼120- to 300-fold variation in three HSPC populations. A GWAS analysis identified several loci that were significantly associated with HSPC frequency, including a locus on chromosome 5 harboring the homeodomain-only protein gene (Hopx. Hopx previously had been implicated in cardiac development but was not known to influence HSPC biology. Analysis of the HSPC pool in Hopx−/− mice demonstrated significantly reduced cell frequencies and impaired engraftment in competitive repopulation assays, thus providing functional validation of this positional candidate gene. These results demonstrate the power of GWAS in mice to identify genetic determinants of the hematopoietic system.

  7. Tritium contamination of hematopoietic stem cells alters long-term hematopoietic reconstitution

    International Nuclear Information System (INIS)

    Purpose: In vivo effects of tritium contamination are poorly documented. Here, we study the effects of tritiated Thymidine ([3H] Thymidine) or tritiated water (HTO) contamination on the biological properties of hematopoietic stem cells (HSC). Materials and methods: Mouse HSC were contaminated with concentrations of [3H] Thymidine ranging from 0.37-37.03 kBq/ml or of HTO ranging from 5-50 kBq/ml. The biological properties of contaminated HSC were studied in vitro after HTO contamination and in vitro and in vivo after [3H] Thymidine contamination. Results: Proliferation, viability and double-strand breaks were dependent on [3H] Thymidine or HTO concentrations used for contamination but in vitro myeloid differentiation of HSC was not affected by [3H] Thymidine contamination. [3H] Thymidine contaminated HSC showed a compromised long-term capacity of hematopoietic reconstitution and competition experiments showed an up to two-fold decreased capacity of contaminated HSC to reconstitute hematopoiesis. These defects were not due to impaired homing in bone marrow but to an initial decreased proliferation rate of HSC. Conclusion: These results indicate that contaminations of HSC with doses of tritium that do not result in cell death, induce short-term effects on proliferation and cell cycle and long-term effects on hematopoietic reconstitution capacity of contaminated HSC. (authors)

  8. Primary Immunodeficiency Diseases and Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ayse Ozkan

    2014-02-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is the only curative therapy for primary immunodeficiency diseases. Early diagnosis, including prenatally, and early transplantation improve HSCT outcomes. Survival rates improve with advances in the methods of preparing hosts and donor cells, and in supportive and conditioning regimes.

  9. Circulating hematopoietic progenitors and CD34+ cells predicted successful hematopoietic stem cell harvest in myeloma and lymphoma patients: experiences from a single institution

    Directory of Open Access Journals (Sweden)

    Yu JT

    2016-02-01

    Full Text Available Jui-Ting Yu,1,2,* Shao-Bin Cheng,3,* Youngsen Yang,1 Kuang-Hsi Chang,4 Wen-Li Hwang,1 Chieh-Lin Jerry Teng,1,5,6 1Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, 2Division of Hematology/Medical Oncology, Tungs' Taichung MetroHarbor Hospital, 3Division of General Surgery, Department of Surgery, 4Department of Medical Research and Education, Taichung Veterans General Hospital, 5Department of Life Science, Tunghai University, 6School of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China *These authors contributed equally to this work Background: Previous studies have shown that the numbers of both circulating hematopoietic progenitor cell (HPC and CD34+ cell are positively correlated with CD34+ cell harvest yield. However, the minimal numbers of both circulating HPCs and CD34+ cells required for performing an efficient hematopoietic stem cell (HSC harvest in lymphoma and myeloma patients have not been defined in our institution. Patients and methods: Medical records of 50 lymphoma and myeloma patients undergoing peripheral blood HSC harvest in our institution were retrospectively reviewed. The minimal and optimal HSC harvest yield required for the treatment was considered to be ≥2×106 CD34+ cells/kg and ≥5×106 CD34+ cells/kg, respectively. Results: The minimally required or optimal HSC yield obtained was not influenced by age (≥60 years, sex, underlying malignancies, disease status, multiple rounds of chemotherapy, or history of radiotherapy. The numbers of both circulating HPC and CD34+ cell were higher in patients with minimally required HSC yields (P=0.000 for HPC and P=0.000 for CD34+ cell and also in patients with optimal HSC yields (P=0.011 for HPC and P=0.006 for CD34+ cell. The cell count cutoff for obtaining minimally required HSC harvest was determined to be 20/mm3 for HPCs and 10/mm3 for CD34+ cells. Furthermore, the cell count cutoff for obtaining

  10. Red blood cell-incompatible allogeneic hematopoietic progenitor cell transplantation.

    Science.gov (United States)

    Rowley, S D; Donato, M L; Bhattacharyya, P

    2011-09-01

    Transplantation of hematopoietic progenitor cells from red cell-incompatible donors occurs in 30-50% of patients. Immediate and delayed hemolytic transfusion reactions are expected complications of red cell-disparate transplantation and both ABO and other red cell systems such as Kidd and rhesus can be involved. The immunohematological consequences of red cell-incompatible transplantation include delayed red blood cell recovery, pure red cell aplasia and delayed hemolysis from viable lymphocytes carried in the graft ('passenger lymphocytes'). The risks of these reactions, which may be abrupt in onset and fatal, are ameliorated by graft processing and proper blood component support. Red blood cell antigens are expressed on endothelial and epithelial tissues in the body and could serve to increase the risk of GvHD. Mouse models indicate that blood cell antigens may function as minor histocompatibility antigens affecting engraftment. Similar observations have been found in early studies of human transplantation for transfused recipients, although current conditioning and immunosuppressive regimens appear to overcome this affect. No deleterious effects from the use of red cell-incompatible hematopoietic grafts on transplant outcomes, such as granulocyte and platelet engraftments, the incidences of acute or chronic GvHD, relapse risk or OS, have been consistently demonstrated. Most studies, however, include limited number of patients, varying diagnoses and differing treatment regimens, complicating the detection of an effect of ABO-incompatible transplantation. Classification of patients by ABO phenotype ignoring the allelic differences of these antigens also may obscure the effect of red cell-incompatible transplantation on transplant outcomes. PMID:21897398

  11. Mesenchymal stromal cells and hematopoietic stem cell transplantation.

    Science.gov (United States)

    Bernardo, Maria Ester; Fibbe, Willem E

    2015-12-01

    Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent cells that can be isolated from various human tissues and culture-expanded ex vivo for clinical use. Due to their immunoregulatory properties and their ability to secrete growth factors, MSCs play a key role in the regulation of hematopoiesis and in the modulation of immune responses against allo- and autoantigens. In light of these properties, MSCs have been employed in clinical trials in the context of hematopoietic stem cell transplantation (HSCT) to facilitate engraftment of hematopoietic stem cells (HSCs) and to prevent graft failure, as well as to treat steroid-resistant acute graft-versus-host disease (GvHD). The available clinical evidence derived from these studies indicates that MSC administration is safe. Moreover, promising preliminary results in terms of efficacy have been reported in some clinical trials, especially in the treatment of acute GvHD. In this review we critically discuss recent advances in MSC therapy by reporting on the most relevant studies in the field of HSCT.

  12. DNA Damage Response in Hematopoietic Stem Cell Ageing.

    Science.gov (United States)

    Li, Tangliang; Zhou, Zhong-Wei; Ju, Zhenyu; Wang, Zhao-Qi

    2016-06-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically regulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing. PMID:27221660

  13. DNA Damage Response in Hematopoietic Stem Cell Ageing

    Institute of Scientific and Technical Information of China (English)

    Tangliang Li; Zhong-Wei Zhou; Zhenyu Ju; Zhao-Qi Wang

    2016-01-01

    Maintenance of tissue-specific stem cells is vital for organ homeostasis and organismal longevity. Hematopoietic stem cells (HSCs) are the most primitive cell type in the hematopoietic system. They divide asymmetrically and give rise to daughter cells with HSC identity (self-renewal) and progenitor progenies (differentiation), which further proliferate and differentiate into full hematopoietic lineages. Mammalian ageing process is accompanied with abnormalities in the HSC self-renewal and differentiation. Transcriptional changes and epigenetic modulations have been implicated as the key regulators in HSC ageing process. The DNA damage response (DDR) in the cells involves an orchestrated signaling pathway, consisting of cell cycle regulation, cell death and senescence, transcriptional regulation, as well as chromatin remodeling. Recent studies employ-ing DNA repair-deficient mouse models indicate that DDR could intrinsically and extrinsically reg-ulate HSC maintenance and play important roles in tissue homeostasis of the hematopoietic system. In this review, we summarize the current understanding of how the DDR determines the HSC fates and finally contributes to organismal ageing.

  14. Haemopedia: An Expression Atlas of Murine Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    Carolyn A. de Graaf

    2016-09-01

    Full Text Available Hematopoiesis is a multistage process involving the differentiation of stem and progenitor cells into distinct mature cell lineages. Here we present Haemopedia, an atlas of murine gene-expression data containing 54 hematopoietic cell types, covering all the mature lineages in hematopoiesis. We include rare cell populations such as eosinophils, mast cells, basophils, and megakaryocytes, and a broad collection of progenitor and stem cells. We show that lineage branching and maturation during hematopoiesis can be reconstructed using the expression patterns of small sets of genes. We also have identified genes with enriched expression in each of the mature blood cell lineages, many of which show conserved lineage-enriched expression in human hematopoiesis. We have created an online web portal called Haemosphere to make analyses of Haemopedia and other blood cell transcriptional datasets easier. This resource provides simple tools to interrogate gene-expression-based relationships between hematopoietic cell types and genes of interest.

  15. Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage.

    Science.gov (United States)

    Woolthuis, Carolien M; Park, Christopher Y

    2016-03-10

    The classical model of hematopoiesis has long held that hematopoietic stem cells (HSCs) sit at the apex of a developmental hierarchy in which HSCs undergo long-term self-renewal while giving rise to cells of all the blood lineages. In this model, self-renewing HSCs progressively lose the capacity for self-renewal as they transit into short-term self-renewing and multipotent progenitor states, with the first major lineage commitment occurring in multipotent progenitors, thus giving rise to progenitors that initiate the myeloid and lymphoid branches of hematopoiesis. Subsequently, within the myeloid lineage, bipotent megakaryocyte-erythrocyte and granulocyte-macrophage progenitors give rise to unipotent progenitors that ultimately give rise to all mature progeny. However, over the past several years, this developmental scheme has been challenged, with the origin of megakaryocyte precursors being one of the most debated subjects. Recent studies have suggested that megakaryocytes can be generated from multiple pathways and that some differentiation pathways do not require transit through a requisite multipotent or bipotent megakaryocyte-erythrocyte progenitor stage. Indeed, some investigators have argued that HSCs contain a subset of cells with biased megakaryocyte potential, with megakaryocytes directly arising from HSCs under steady-state and stress conditions. In this review, we discuss the evidence supporting these nonclassical megakaryocytic differentiation pathways and consider their relative strengths and weaknesses as well as the technical limitations and potential pitfalls in interpreting these studies. Ultimately, such pitfalls will need to be overcome to provide a comprehensive and definitive understanding of megakaryopoiesis. PMID:26787736

  16. Mobilization of hematopoietic progenitor cells in patients with liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Ursula; M; Gehling; Marc; Willems; Kathleen; Schlagner; Ralf; A; Benndorf; Maura; Dandri; Jrg; Petersen; Martina; Sterneck; Joerg-Matthias; Pollok; Dieter; K; Hossfeld; Xavier; Rogiers

    2010-01-01

    AIM:To test the hypothesis that liver cirrhosis is associated with mobilization of hematopoietic progenitor cells. METHODS:Peripheral blood samples from 72 patients with liver cirrhosis of varying etiology were analyzed by flow cytometry.Identified progenitor cell subsets were immunoselected and used for functional assays in vitro. Plasma levels of stromal cell-derived factor-1(SDF-1) were measured using an enzyme linked immunosorbent assay.RESULTS:Progenitor cells with a CD133 + /CD45 + CD14 + phenotype we...

  17. Population Pharmacokinetics of Busulfan in Pediatric and Young Adult Patients Undergoing Hematopoietic Cell Transplant: A Model-Based Dosing Algorithm for Personalized Therapy and Implementation into Routine Clinical Use

    Science.gov (United States)

    Long-Boyle, Janel; Savic, Rada; Yan, Shirley; Bartelink, Imke; Musick, Lisa; French, Deborah; Law, Jason; Horn, Biljana; Cowan, Morton J.; Dvorak, Christopher C.

    2014-01-01

    Background Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared to conventional dosing. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration-at-steady-state, Css) and implement a simple, model-based tool for the initial dosing of busulfan in children undergoing HCT. Patients and Methods Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone HCT with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the non-linear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly, Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model. Results Modeling of busulfan time-concentration data indicates busulfan CL displays non-linearity in children, decreasing up to approximately 20% between the concentrations of 250–2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan CL were actual body weight and age. The percentage of individuals achieving a therapeutic Css was significantly higher in subjects receiving initial doses based on the population PK model (81%) versus historical controls dosed on conventional guidelines (52%) (p = 0.02). Conclusion When compared to the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults. PMID:25162216

  18. Longitudinal Assessment of Hematopoietic Stem Cell Transplantation and Hyposalivation

    DEFF Research Database (Denmark)

    Laaksonen, Matti; Ramseier, Adrian; Rovó, Alicia;

    2011-01-01

    Hyposalivation is a common adverse effect of anti-neoplastic therapy of head and neck cancer, causing impaired quality of life and predisposition to oral infections. However, data on the effects of hematopoietic stem cell transplantation (HSCT) on salivary secretion are scarce. The present study...

  19. Sexual function 1-year after allogeneic hematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Noerskov, K H; Schjødt, I; Syrjala, K L;

    2016-01-01

    Treatment with allogeneic hematopoietic stem cell transplantation (HSCT) is associated with short and long-term toxicities that can result in alterations in sexual functioning. The aims of this prospective evaluation were to determine: (1) associations between HSCT and increased sexual dysfunction...

  20. Lentiviral hematopoietic stem cell gene therapy in inherited metabolic disorders

    NARCIS (Netherlands)

    G. Wagemaker (Gerard)

    2014-01-01

    textabstractAfter more than 20 years of development, lentiviral hematopoietic stem cell gene therapy has entered the stage of initial clinical implementation for immune deficiencies and storage disorders. This brief review summarizes the development and applications, focusing on the lysosomal enzyme

  1. SECOND MALIGNANCIES AFTER AUTOLOGOUS HEMATOPOIETIC CELL TRANSPLANTATION IN CHILDREN

    OpenAIRE

    Danner-Koptik, Karina E; Majhail, Navneet S.; Brazauskas, Ruta; Wang, Zhiwei; Buchbinder, David; Cahn, Jean-Yves; Dilley, Kimberley J.; Frangoul, Haydar A.; Gross, Thomas G.; Hale, Gregory A.; Hayashi, Robert J.; Hijiya, Nobuko; Kamble, Rammurti T.; Lazarus, Hillard M.; Marks, David I.

    2012-01-01

    Childhood autologous hematopoietic cell transplant (AHCT) survivors can be at risk for secondary malignant neoplasms (SMNs). We assembled a cohort of 1,487 pediatric AHCT recipients to investigate the incidence and risk factors for SMNs. Primary diagnoses included neuroblastoma (39%), lymphoma (26%), sarcoma (18%), CNS tumors (14%), and Wilms tumor (2%). Median follow-up was 8 years (range,

  2. Polycomb group proteins in hematopoietic stem cell aging and malignancies

    NARCIS (Netherlands)

    Klauke, Karin; de Haan, Gerald

    2011-01-01

    Protection of the transcriptional "stemness" network is important to maintain a healthy hematopoietic stem cells (HSCs) compartment during the lifetime of the organism. Recent evidence shows that fundamental changes in the epigenetic status of HSCs might be one of the driving forces behind many age-

  3. A new image of the hematopoietic stem cell vascular niche

    OpenAIRE

    Silberstein, Leslie E.; Lin, Charles P.

    2013-01-01

    The microenvironment within the bone marrow that maintains hematopoietic stem cell (HSC) quiescence is the subject of intense study. In a recent Nature paper, Kunisaki et al combine imaging techniques and computational modeling to define a novel arteriolar niche for quiescent HSCs within the bone marrow.

  4. Lung function after allogeneic hematopoietic stem cell transplantation in children

    DEFF Research Database (Denmark)

    Uhlving, Hilde Hylland; Larsen Bang, Cæcilie; Christensen, Ib Jarle;

    2013-01-01

    Reduction in pulmonary function (PF) has been reported in up to 85% of pediatric patients during the first year after hematopoietic stem cell transplantation (HSCT). Our understanding of the etiology for this decrease in lung function is, however, sparse. The aim of this study was to describe PF...

  5. Expansion of human cord blood hematopoietic stem cells for transplantation.

    Science.gov (United States)

    Chou, Song; Chu, Pat; Hwang, William; Lodish, Harvey

    2010-10-01

    A recent Science paper reported a purine derivative that expands human cord blood hematopoietic stem cells in culture (Boitano et al., 2010) by antagonizing the aryl hydrocarbon receptor. Major problems need to be overcome before ex vivo HSC expansion can be used clinically.

  6. Designer blood: creating hematopoietic lineages from embryonic stem cells

    Science.gov (United States)

    Olsen, Abby L.; Stachura, David L.; Weiss, Mitchell J.

    2006-01-01

    Embryonic stem (ES) cells exhibit the remarkable capacity to become virtually any differentiated tissue upon appropriate manipulation in culture, a property that has been beneficial for studies of hematopoiesis. Until recently, the majority of this work used murine ES cells for basic research to elucidate fundamental properties of blood-cell development and establish methods to derive specific mature lineages. Now, the advent of human ES cells sets the stage for more applied pursuits to generate transplantable cells for treating blood disorders. Current efforts are directed toward adapting in vitro hematopoietic differentiation methods developed for murine ES cells to human lines, identifying the key interspecies differences in biologic properties of ES cells, and generating ES cell-derived hematopoietic stem cells that are competent to repopulate adult hosts. The ultimate medical goal is to create patient-specific and generic ES cell lines that can be expanded in vitro, genetically altered, and differentiated into cell types that can be used to treat hematopoietic diseases. PMID:16254136

  7. Regulation of stem cells in the zebra fish hematopoietic system.

    Science.gov (United States)

    Huang, H-T; Zon, L I

    2008-01-01

    Hematopoietic stem cells (HSCs) have been used extensively as a model for stem cell biology. Stem cells share the ability to self-renew and differentiate into multiple cell types, making them ideal candidates for tissue regeneration or replacement therapies. Current applications of stem cell technology are limited by our knowledge of the molecular mechanisms that control their proliferation and differentiation, and various model organisms have been used to fill these gaps. This chapter focuses on the contributions of the zebra fish model to our understanding of stem cell regulation within the hematopoietic system. Studies in zebra fish have been valuable for identifying new genetic and signaling factors that affect HSC formation and development with important implications for humans, and new advances in the zebra fish toolbox will allow other aspects of HSC behavior to be investigated as well, including migration, homing, and engraftment.

  8. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    Science.gov (United States)

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-01

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  9. "Early NK Cell Reconstitution Predicts Overall Survival in T-Cell Replete Allogeneic Hematopoietic Stem Cell Transplantation"

    DEFF Research Database (Denmark)

    Minculescu, Lia; Marquart, Hanne Vibeke; Friis, Lone Smidstrups;

    2016-01-01

    Early immune reconstitution plays a critical role in clinical outcome after allogeneic hematopoietic stem cell transplantation (HSCT). Natural killer (NK) cells are the first lymphocytes to recover after transplantation and are considered powerful effector cells in HSCT. We aimed to evaluate...... the clinical impact of early NK cell recovery in T-cell replete transplant recipients. Immune reconstitution was studied in 298 adult patients undergoing HSCT for acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) and myelodysplastic syndrome (MDS) from 2005 to 2013. In multivariate analysis NK...... cell numbers day 30 (NK30) >150cells/µL were independently associated with superior overall survival (hazard ratio 0.79, 95% confidence interval 0.66-0.95, p=0.01). Cumulative incidence analyses showed that patients with NK30 >150cells/µL had significantly less transplant related mortality (TRM), p=0...

  10. Imaging of complications from hematopoietic stem cell transplant

    OpenAIRE

    Tarun Pandey; Suresh Maximin; Puneet Bhargava

    2014-01-01

    Stem cell transplant has been the focus of clinical research for a long time given its potential to treat several incurable diseases like hematological malignancies, diabetes mellitus, and neuro-degenerative disorders like Parkinson disease. Hematopoietic stem cell transplantation (HSCT) is the oldest and most widely used technique of stem cell transplant. HSCT has not only been used to treat hematological disorders including hematological malignancies, but has also been found useful in tream...

  11. Symptoms after hospital discharge following hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Gamze Oguz

    2014-01-01

    Full Text Available Aims: The purposes of this study were to assess the symptoms of hematopoietic stem cell transplant patients after hospital discharge, and to determine the needs of transplant patients for symptom management. Materials and Methods: The study adopted a descriptive design. The study sample comprised of 66 hematopoietic stem cell transplant patients. The study was conducted in Istanbul. Data were collected using Patient Information Form and Memorial Symptom Assessment Scale (MSAS. Results: The frequency of psychological symptoms in hematopoietic stem cell transplant patients after discharge period (PSYCH subscale score 2.11 (standard deviation (SD = 0.69, range: 0.93-3.80 was higher in hematopoietic stem cell transplant patients than frequency of physical symptoms (PHYS subscale score: 1.59 (SD = 0.49, range: 1.00-3.38. Symptom distress caused by psychological and physical symptoms were at moderate level (Mean = 1.91, SD = 0.60, range: 0.95-3.63 and most distressing symptoms were problems with sexual interest or activity, difficulty sleeping, and diarrhea. Patients who did not have an additional chronic disease obtained higher MSAS scores. University graduates obtained higher Global Distress Index (GDI subscale and total MSAS scores with comparison to primary school graduates. Total MSAS, MSAS-PHYS subscale, and MSAS-PSYCH subscale scores were higher in patients with low level of income (P < 0.05. The patients (98.5% reported to receive education about symptom management after hospital discharge. Conclusions: Hematopoietic stem cell transplant patients continue to experience many distressing physical or psychological symptoms after discharge and need to be supported and educated for the symptom management.

  12. The Hematopoietic Stem Cell Niche—Home for Friend and Foe?

    OpenAIRE

    Daniela S Krause; Scadden, David T.; Preffer, Frederic I.

    2012-01-01

    The hematopoietic stem cell (HSC) niche is involved in the maintainance and regulation of quiescence, self-renewal and differentiation of hematopoietic stem cells and the fate of their progeny in mammals dealing with the daily stresses to the hematopoietic system. From the discovery that perturbations of the HSC niche can lead to hematopoietic disorders, we have now arrived at the prospect that the HSC niche may play a role in hematological malignancies and that this HSC niche may be a target...

  13. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin.

    Science.gov (United States)

    Palchaudhuri, Rahul; Saez, Borja; Hoggatt, Jonathan; Schajnovitz, Amir; Sykes, David B; Tate, Tiffany A; Czechowicz, Agnieszka; Kfoury, Youmna; Ruchika, Fnu; Rossi, Derrick J; Verdine, Gregory L; Mansour, Michael K; Scadden, David T

    2016-07-01

    Hematopoietic stem cell transplantation (HSCT) offers curative therapy for patients with hemoglobinopathies, congenital immunodeficiencies, and other conditions, possibly including AIDS. Autologous HSCT using genetically corrected cells would avoid the risk of graft-versus-host disease (GVHD), but the genotoxicity of conditioning remains a substantial barrier to the development of this approach. Here we report an internalizing immunotoxin targeting the hematopoietic-cell-restricted CD45 receptor that effectively conditions immunocompetent mice. A single dose of the immunotoxin, CD45-saporin (SAP), enabled efficient (>90%) engraftment of donor cells and full correction of a sickle-cell anemia model. In contrast to irradiation, CD45-SAP completely avoided neutropenia and anemia, spared bone marrow and thymic niches, enabling rapid recovery of T and B cells, preserved anti-fungal immunity, and had minimal overall toxicity. This non-genotoxic conditioning method may provide an attractive alternative to current conditioning regimens for HSCT in the treatment of non-malignant blood diseases. PMID:27272386

  14. Financial burden in recipients of allogeneic hematopoietic cell transplantation.

    Science.gov (United States)

    Khera, Nandita; Chang, Yu-hui; Hashmi, Shahrukh; Slack, James; Beebe, Timothy; Roy, Vivek; Noel, Pierre; Fauble, Veena; Sproat, Lisa; Tilburt, Jon; Leis, Jose F; Mikhael, Joseph

    2014-09-01

    Although allogeneic hematopoietic cell transplantation (HCT) is an expensive treatment for hematological disorders, little is known about the financial consequences for the patients who undergo this procedure. We analyzed factors associated with its financial burden and its impact on health behaviors of allogeneic HCT recipients. A questionnaire was retrospectively mailed to 482 patients who underwent allogeneic HCT from January 2006 to June 2012 at the Mayo Clinic, to collect information regarding current financial concerns, household income, employment, insurance, out-of-pocket expenses, and health and functional status. A multivariable logistic regression analysis identified factors associated with financial burden and treatment nonadherence. Of the 268 respondents (56% response rate), 73% reported that their sickness had hurt them financially. All patients for whom the insurance information was available (missing, n = 13) were insured. Forty-seven percent of respondents experienced financial burden, such as household income decreased by >50%, selling/mortgaging home, or withdrawing money from retirement accounts. Three percent declared bankruptcy. Younger age and poor current mental and physical functioning increased the likelihood of financial burden. Thirty-five percent of patients reported deleterious health behaviors because of financial constraints. These patients were likely to be younger, have lower education, and with a longer time since HCT. Being employed decreased the likelihood of experiencing financial burden and treatment nonadherence due to concern about costs. A significant proportion of allogeneic HCT survivors experience financial hardship despite insurance coverage. Future research should investigate potential interventions to help at-risk patients and prevent adverse financial outcomes after this life-saving procedure.

  15. Allogeneic hematopoietic cell transplantation without fluconazole and fluoroquinolone prophylaxis.

    Science.gov (United States)

    Heidenreich, D; Kreil, S; Nolte, F; Reinwald, M; Hofmann, W-K; Klein, S A

    2016-01-01

    Fluoroquinolone (FQ) and fluconazole prophylaxis is recommended for patients undergoing allogeneic hematopoietic cell transplantation (alloHCT). However, due to an uncertain scientific basis and the increasing emergence of resistant germs, this policy should be questioned. Therefore, FQ and fluconazole prophylaxis was omitted in alloHCT at our center. In this retrospective analysis, all consecutive patients (n = 63) who underwent first alloHCT at our institution from September 2010 to September 2013 were included. Patients neither received FQ nor fluconazole prophylaxis. Day 100 mortality, incidence of febrile neutropenia, bacterial infections, and invasive fungal diseases (IFD) were assessed. Sixteen patients who started conditioning under antimicrobial treatment/prophylaxis due to pre-existing neutropenia (3/16), IFD (12/16), or aortic valve replacement (1/16) were excluded from the analysis. Finally, 47 patients were transplanted without prophylaxis as intended. Day 100 mortality was 9 %. Febrile neutropenia occurred in 62 % (29/47); 17/47 patients (36 %) experienced a blood stream infection (BSI) with detection of Gram-positive bacteria in 14 patients, Gram-negative bacteria in five patients, and candida in one patient, respectively. Coagulase-negative staphylococci were the most frequently isolated Gram-positive bacteria; 12/21 isolated Gram-positive and 3/6 Gram-negative bacteria were FQ resistant. In 21 % (10/47) of the patients, IFD (1x proven, 1x probable, and 8x possible) were diagnosed. To conclude, all three criteria, day 100 mortality, the incidence of IFD, and BSI, are in the range of published data for patients transplanted with FQ and fluconazole prophylaxis. These data demonstrate that alloHCT is feasible without FQ and fluconazole prophylaxis.

  16. Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate

    Science.gov (United States)

    Grover, Amit; Mancini, Elena; Moore, Susan; Mead, Adam J.; Atkinson, Deborah; Rasmussen, Kasper D.; O’Carroll, Donal; Jacobsen, Sten Eirik W.

    2014-01-01

    The erythroid stress cytokine erythropoietin (Epo) supports the development of committed erythroid progenitors, but its ability to act on upstream, multipotent cells remains to be established. We observe that high systemic levels of Epo reprogram the transcriptomes of multi- and bipotent hematopoietic stem/progenitor cells in vivo. This induces erythroid lineage bias at all lineage bifurcations known to exist between hematopoietic stem cells (HSCs) and committed erythroid progenitors, leading to increased erythroid and decreased myeloid HSC output. Epo, therefore, has a lineage instructive role in vivo, through suppression of non-erythroid fate options, demonstrating the ability of a cytokine to systematically bias successive lineage choices in favor of the generation of a specific cell type. PMID:24493804

  17. Allogeneic hematopoietic stem-cell transplantation for leukocyte adhesion deficiency

    DEFF Research Database (Denmark)

    Qasim, Waseem; Cavazzana-Calvo, Marina; Davies, E Graham;

    2009-01-01

    of leukocyte adhesion deficiency who underwent hematopoietic stem-cell transplantation between 1993 and 2007 was retrospectively analyzed. Data were collected by the registries of the European Society for Immunodeficiencies/European Group for Blood and Marrow Transplantation, and the Center for International......, with full donor engraftment in 17 cases, mixed multilineage chimerism in 7 patients, and mononuclear cell-restricted chimerism in an additional 3 cases. CONCLUSIONS: Hematopoietic stem-cell transplantation offers long-term benefit in leukocyte adhesion deficiency and should be considered as an early...... therapeutic option if a suitable HLA-matched stem-cell donation is available. Reduced-intensity conditioning was particularly safe, and mixed-donor chimerism seems sufficient to prevent significant symptoms, although careful long-term monitoring will be required for these patients....

  18. Polycomb-group proteins in hematopoietic stem cell regulation and hematopoietic neoplasms.

    Science.gov (United States)

    Radulović, V; de Haan, G; Klauke, K

    2013-03-01

    The equilibrium between self-renewal and differentiation of hematopoietic stem cells is regulated by epigenetic mechanisms. In particular, Polycomb-group (PcG) proteins have been shown to be involved in this process by repressing genes involved in cell-cycle regulation and differentiation. PcGs are histone modifiers that reside in two multi-protein complexes: Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2). The existence of multiple orthologs for each Polycomb gene allows the formation of a multitude of distinct PRC1 and PRC2 sub-complexes. Changes in the expression of individual PcG genes are likely to cause perturbations in the composition of the PRC, which affect PRC enzymatic activity and target selectivity. An interesting recent development is that aberrant expression of, and mutations in, PcG genes have been shown to occur in hematopoietic neoplasms, where they display both tumor-suppressor and oncogenic activities. We therefore comprehensively reviewed the latest research on the role of PcG genes in normal and malignant blood cell development. We conclude that future research to elucidate the compositional changes of the PRCs and methods to intervene in PRC assembly will be of great therapeutic relevance to combat hematological malignancies.

  19. Clinical use of statins in hematopoietic stem cell transplantation: Old drugs and new horizons.

    Science.gov (United States)

    Mohammadi, Mehdi; Vaezi, Mohammad; Mirrahimi, Bahador; Hadjibabaie, Molouk

    2016-01-01

    Hydroxymethylglutaryl Co-enzyme A reductase inhibitors, also known as statins, are a class of anti-hyperlipidemic agents. These drugs have been employed vastly to reduce the morbidity and mortality of cardiovascular disorders. Soon after their introduction, benefits other than their primary actions were discovered. Along with these pleiotropic properties, a series of mainly favorable effects has been proposed in patients intended to undergo hematopoietic stem cell transplantation. These actions address some complications encountered by this special population such as graft-versus-host disease, efficacy of chemotherapy, infections, etc. This review presents the current evidence surrounding these issues. PMID:27047650

  20. Hematopoietic Stem Cell Targeting with Surface-Engineered Lentiviral Vectors

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Els Verhoeyen and Francois-Loic Cosset Adapted from [*Gene Transfer: Delivery and Expression of DNA and RNA*](http://www.cshlpress.com/link/genetrnp.htm) (eds. Friedmann and Rossi). CSHL Press, Cold Spring Harbor, NY, USA, 2007. ### INTRODUCTION In the protocol presented here, hematopoietic stem cells (HSCs) are specifically transduced with a vector displaying the HSC-activating polypeptides, stem cell factor (SCF) and thrombopoietin (TPO). Targeted HSC transduction is e...

  1. Experiments on Gene Transferring to Primary Hematopoietic Cells by Liposome

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Liposomes have showed many advantages in mediating exogenous gene into many cell types in vitro and in vivo. But few data are available concerning gene transfer into hematopoietic cells. In this report, we described two-marker genes (Neo R and Lac Z) co-transferred into hematopoietic cells of human and mouse by using liposome in vitro. The efficiency of gene transfer was tested by Xgal staining and observation of colony formation. The X-gal blue staining rate of transduced cells was about (13.33±2. 68) % in human and about (16. 28±2.95) % in mouse without G418 selection. After G418 selection, the blue cell rate was (46. 06±3.47)%in human and (43. 45±4. 1) % in mouse, which were markedly higher than those before selection, suggesting that high-efficiency gene transfer and expression could be attained in primary hematopoietic cells using this easy and harmless transduction protocol. At the same time, this protocol provided experimental data for clinicians to investigate the biology of marrow reconstitution and trace the origin of relapse after autologous bone marrow transplantation for the patients with leukemia.

  2. Aging, Clonality, and Rejuvenation of Hematopoietic Stem Cells.

    Science.gov (United States)

    Akunuru, Shailaja; Geiger, Hartmut

    2016-08-01

    Aging is associated with reduced organ function and increased disease incidence. Hematopoietic stem cell (HSC) aging driven by both cell intrinsic and extrinsic factors is linked to impaired HSC self-renewal and regeneration, aging-associated immune remodeling, and increased leukemia incidence. Compromised DNA damage responses and the increased production of reactive oxygen species (ROS) have been previously causatively attributed to HSC aging. However, recent paradigm-shifting concepts, such as global epigenetic and cytoskeletal polarity shifts, cellular senescence, as well as the clonal selection of HSCs upon aging, provide new insights into HSC aging mechanisms. Rejuvenating agents that can reprogram the epigenetic status of aged HSCs or senolytic drugs that selectively deplete senescent cells provide promising translational avenues for attenuating hematopoietic aging and, potentially, alleviating aging-associated immune remodeling and myeloid malignancies. PMID:27380967

  3. Hematopoietic Stem Cells Expansion in Rotating Wall Vessel

    Institute of Scientific and Technical Information of China (English)

    Yang LIU; Tian-Qing LIU; Xiu-Bo FAN; Dan GE; Zhan-Feng CUI; Xue-Hu MA

    2005-01-01

    @@ 1 Introduction Clinical trials have demonstrated that ex vivo expanded hematopoietic stem cells (HSCs) and progenitors offer great promise in reconstituting in vivo hematopoiesis in patients who have undergone intensive chemotherapy.It is therefore necessary to develop a clinical-scale culture system to provide the expanded HSCs and progenitors.Static culture systems such as T-flasks and gas-permeable blood bags are the most widely used culture devices for expanding hematopoietic cells. But they reveal several inherent limitations: ineffective mixing, lack of control options for dissolved oxygen and pH and difficulty in continuous feeding, which restricts the usefulness of static systems. Several advanced bioreactors have been used in the field of HSCs expansion. But hematopoietic cells are extremely sensitive to shear, so cells in bioreactors such as stirred and perfusion culture systems may suffer physical damage. This problem will be improved by applying the rotating wall vessel (RWV) bioreactor in clinic because of its low shear and unique structure. In this research, cord blood (CB) HSCs were expanded by means of a cell-dilution feeding protocol in RWV.

  4. Stepwise development of hematopoietic stem cells from embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kenji Matsumoto

    Full Text Available The cellular ontogeny of hematopoietic stem cells (HSCs remains poorly understood because their isolation from and their identification in early developing small embryos are difficult. We attempted to dissect early developmental stages of HSCs using an in vitro mouse embryonic stem cell (ESC differentiation system combined with inducible HOXB4 expression. Here we report the identification of pre-HSCs and an embryonic type of HSCs (embryonic HSCs as intermediate cells between ESCs and HSCs. Both pre-HSCs and embryonic HSCs were isolated by their c-Kit(+CD41(+CD45(- phenotype. Pre-HSCs did not engraft in irradiated adult mice. After co-culture with OP9 stromal cells and conditional expression of HOXB4, pre-HSCs gave rise to embryonic HSCs capable of engraftment and long-term reconstitution in irradiated adult mice. Blast colony assays revealed that most hemangioblast activity was detected apart from the pre-HSC population, implying the early divergence of pre-HSCs from hemangioblasts. Gene expression profiling suggests that a particular set of transcripts closely associated with adult HSCs is involved in the transition of pre-HSC to embryonic HSCs. We propose an HSC developmental model in which pre-HSCs and embryonic HSCs sequentially give rise to adult types of HSCs in a stepwise manner.

  5. Polycomb group proteins in hematopoietic stem cell aging and malignancies.

    Science.gov (United States)

    Klauke, Karin; de Haan, Gerald

    2011-07-01

    Protection of the transcriptional "stemness" network is important to maintain a healthy hematopoietic stem cells (HSCs) compartment during the lifetime of the organism. Recent evidence shows that fundamental changes in the epigenetic status of HSCs might be one of the driving forces behind many age-related HSC changes and might pave the way for HSC malignant transformation and subsequent leukemia development, the incidence of which increases exponentially with age. Polycomb group (PcG) proteins are key epigenetic regulators of HSC cellular fate decisions and are often found to be misregulated in human hematopoietic malignancies. In this review, we speculate that PcG proteins balance HSC aging against the risk of developing cancer, since a disturbance in PcG genes and proteins affects several important cellular processes such as cell fate decisions, senescence, apoptosis, and DNA damage repair.

  6. Lnk deficiency partially mitigates hematopoietic stem cell aging

    OpenAIRE

    Bersenev, Alexey; Rozenova, Krasimira; Balcerek, Joanna; JIANG, JING; Wu, Chao; Tong, Wei

    2012-01-01

    Upon aging, the number of hematopoietic stem cells (HSCs) in the bone marrow increases while their repopulation potential declines. Moreover, aged HSCs exhibit lineage bias in reconstitution experiments with an inclination towards myeloid at the expense of lymphoid potential. The adaptor protein Lnk is an important negative regulator of HSC homeostasis, as Lnk deficiency is associated with a 10-fold increase in HSC numbers in young mice. However, the age-related increase in functional HSC num...

  7. FIFTY YEARS OF MELPHALAN USE IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

    OpenAIRE

    Bayraktar, Ulas D.; Bashir, Qaiser; Qazilbash, Muzaffar; Champlin, Richard E.; Ciurea, Stefan O.

    2012-01-01

    Melphalan remains the most widely used agent in preparative regimens for hematopoietic stem-cell transplantation. From its initial discovery more than 50 years ago, it has been gradually incorporated in the conditioning regimens for both autologous and allogeneic transplantation due to its myeloablative properties and broad antitumor effects as a DNA alkylating agent. Melphalan remains the mainstay conditioning for multiple myeloma and lymphomas; and has been used successfully in preparative ...

  8. Bone Marrow Vascular Niche: Home for Hematopoietic Stem Cells

    OpenAIRE

    Ningning He; Lu Zhang; Jian Cui; Zongjin Li

    2014-01-01

    Though discovered later than osteoblastic niche, vascular niche has been regarded as an alternative indispensable niche operating regulation on hematopoietic stem cells (HSCs). As significant progresses gained on this type niche, it is gradually clear that the main work of vascular niche is undertaking to support hematopoiesis. However, compared to what have been defined in the mechanisms through which the osteoblastic niche regulates hematopoiesis, we know less in vascular niche. In this rev...

  9. Hematopoietic stem cell transplantation for infantile osteopetrosis.

    Science.gov (United States)

    Orchard, Paul J; Fasth, Anders L; Le Rademacher, Jennifer; He, Wensheng; Boelens, Jaap Jan; Horwitz, Edwin M; Al-Seraihy, Amal; Ayas, Mouhab; Bonfim, Carmem M; Boulad, Farid; Lund, Troy; Buchbinder, David K; Kapoor, Neena; O'Brien, Tracey A; Perez, Miguel A Diaz; Veys, Paul A; Eapen, Mary

    2015-07-01

    We report the international experience in outcomes after related and unrelated hematopoietic transplantation for infantile osteopetrosis in 193 patients. Thirty-four percent of transplants used grafts from HLA-matched siblings, 13% from HLA-mismatched relatives, 12% from HLA-matched, and 41% from HLA-mismatched unrelated donors. The median age at transplantation was 12 months. Busulfan and cyclophosphamide was the most common conditioning regimen. Long-term survival was higher after HLA-matched sibling compared to alternative donor transplantation. There were no differences in survival after HLA-mismatched related, HLA-matched unrelated, or mismatched unrelated donor transplantation. The 5- and 10-year probabilities of survival were 62% and 62% after HLA-matched sibling and 42% and 39% after alternative donor transplantation (P = .01 and P = .002, respectively). Graft failure was the most common cause of death, accounting for 50% of deaths after HLA-matched sibling and 43% of deaths after alternative donor transplantation. The day-28 incidence of neutrophil recovery was 66% after HLA-matched sibling and 61% after alternative donor transplantation (P = .49). The median age of surviving patients is 7 years. Of evaluable surviving patients, 70% are visually impaired; 10% have impaired hearing and gross motor delay. Nevertheless, 65% reported performance scores of 90 or 100, and in 17%, a score of 80 at last contact. Most survivors >5 years are attending mainstream or specialized schools. Rates of veno-occlusive disease and interstitial pneumonitis were high at 20%. Though allogeneic transplantation results in long-term survival with acceptable social function, strategies to lower graft failure and hepatic and pulmonary toxicity are urgently needed. PMID:26012570

  10. Hematopoietic stem cell transplantation for infantile osteopetrosis.

    Science.gov (United States)

    Orchard, Paul J; Fasth, Anders L; Le Rademacher, Jennifer; He, Wensheng; Boelens, Jaap Jan; Horwitz, Edwin M; Al-Seraihy, Amal; Ayas, Mouhab; Bonfim, Carmem M; Boulad, Farid; Lund, Troy; Buchbinder, David K; Kapoor, Neena; O'Brien, Tracey A; Perez, Miguel A Diaz; Veys, Paul A; Eapen, Mary

    2015-07-01

    We report the international experience in outcomes after related and unrelated hematopoietic transplantation for infantile osteopetrosis in 193 patients. Thirty-four percent of transplants used grafts from HLA-matched siblings, 13% from HLA-mismatched relatives, 12% from HLA-matched, and 41% from HLA-mismatched unrelated donors. The median age at transplantation was 12 months. Busulfan and cyclophosphamide was the most common conditioning regimen. Long-term survival was higher after HLA-matched sibling compared to alternative donor transplantation. There were no differences in survival after HLA-mismatched related, HLA-matched unrelated, or mismatched unrelated donor transplantation. The 5- and 10-year probabilities of survival were 62% and 62% after HLA-matched sibling and 42% and 39% after alternative donor transplantation (P = .01 and P = .002, respectively). Graft failure was the most common cause of death, accounting for 50% of deaths after HLA-matched sibling and 43% of deaths after alternative donor transplantation. The day-28 incidence of neutrophil recovery was 66% after HLA-matched sibling and 61% after alternative donor transplantation (P = .49). The median age of surviving patients is 7 years. Of evaluable surviving patients, 70% are visually impaired; 10% have impaired hearing and gross motor delay. Nevertheless, 65% reported performance scores of 90 or 100, and in 17%, a score of 80 at last contact. Most survivors >5 years are attending mainstream or specialized schools. Rates of veno-occlusive disease and interstitial pneumonitis were high at 20%. Though allogeneic transplantation results in long-term survival with acceptable social function, strategies to lower graft failure and hepatic and pulmonary toxicity are urgently needed.

  11. Are hematopoietic stem cells involved in hepatocarcinogenesis?

    OpenAIRE

    Facciorusso, Antonio; Antonino, Matteo; Del Prete, Valentina; Neve, Viviana; Scavo, Maria Principia; Barone, Michele

    2014-01-01

    The liver has three cell lineages able to proliferate after a hepatic injury: the mature hepatocyte, the ductular “bipolar” progenitor cell termed “oval cell” and the putative periductular stem cell. Hepatocytes can only produce other hepatocytes whereas ductular progenitor cells are considerate bipolar since they can give rise to biliary cells or hepatocytes. Periductular stem cells are rare in the liver, have a very long proliferation potential and may be multipotent, being this aspect stil...

  12. Hematopoietic Stem and Immune Cells in Chronic HIV Infection

    Directory of Open Access Journals (Sweden)

    Jielin Zhang

    2015-01-01

    Full Text Available Hematopoietic stem cell (HSC belongs to multipotent adult somatic stem cells. A single HSC can reconstitute the entire blood system via self-renewal, differentiation into all lineages of blood cells, and replenishment of cells lost due to attrition or disease in a person’s lifetime. Although all blood and immune cells derive from HSC, immune cells, specifically immune memory cells, have the properties of HSC on self-renewal and differentiation into lineage effector cells responding to the invading pathogens. Moreover, the interplay between immune memory cell and viral pathogen determines the course of a viral infection. Here, we state our point of view on the role of blood stem and progenitor cell in chronic HIV infection, with a focus on memory CD4 T-cell in the context of HIV/AIDS eradication and cure.

  13. Hematopoietic Stem and Immune Cells in Chronic HIV Infection.

    Science.gov (United States)

    Zhang, Jielin; Crumpacker, Clyde

    2015-01-01

    Hematopoietic stem cell (HSC) belongs to multipotent adult somatic stem cells. A single HSC can reconstitute the entire blood system via self-renewal, differentiation into all lineages of blood cells, and replenishment of cells lost due to attrition or disease in a person's lifetime. Although all blood and immune cells derive from HSC, immune cells, specifically immune memory cells, have the properties of HSC on self-renewal and differentiation into lineage effector cells responding to the invading pathogens. Moreover, the interplay between immune memory cell and viral pathogen determines the course of a viral infection. Here, we state our point of view on the role of blood stem and progenitor cell in chronic HIV infection, with a focus on memory CD4 T-cell in the context of HIV/AIDS eradication and cure. PMID:26300920

  14. Cryopreservation of hematopoietic stem/progenitor cells for therapeutic use.

    Science.gov (United States)

    Watt, Suzanne M; Austin, Eric; Armitage, Sue

    2007-01-01

    To date, more than 25,000 hematopoietic transplants have been carried out across Europe for hematological disorders, the majority being for hematological malignancies. At least 70% of these are autologous transplants, the remaining 30% being allogeneic, which are sourced from related (70% of the allogeneic) or unrelated donors. Peripheral blood mobilized with granulocyte colony stimulating factor is the major source of stem cells for transplantation, being used in approx 95% of autologous transplants and in approx 65% of allogeneic transplants. Other cell sources used for transplantation are bone marrow and umbilical cord blood. One crucial advance in the treatment of these disorders has been the development of the ability to cryopreserve hematopoietic stem cells for future transplantation. For bone marrow and mobilized peripheral blood, the majority of cryopreserved harvests come from autologous collections that are stored prior to a planned infusion following further treatment of the patient or at the time of a subsequent relapse. Other autologous harvests are stored as backup or "rainy day" harvests, the former specifically being intended to rescue patients who develop graft failure following an allogeneic transplant or who may require this transplant at a later date. Allogeneic bone marrow and mobilized peripheral blood are less often cryopreserved than autologous harvests. This is in contrast to umbilical cord blood that may be banked for directed or sibling (related) hematopoietic stem cell transplants, for allogeneic unrelated donations, and for autologous donations. Allogeneic unrelated donations are of particular use for providing a source of hematopoietic stem cells for ethnic minorities, patients with rare human leukocyte antigen types, or where the patient urgently requires a transplant and cannot wait for the weeks to months required to prepare a bone marrow donor. There are currently more than 200,000 banked umbilical cord blood units registered with

  15. Haploidentical Hematopoietic Stem-Cell Transplantation in Adults

    Directory of Open Access Journals (Sweden)

    Salem Alshemmari

    2011-01-01

    Full Text Available Haploidentical hematopoietic stem-cell transplantation is an alternative transplant strategy for patients without an HLA-matched donor. Still, only half of patients who might benefit from transplantation are able to find an HLA-matched related or unrelated donor. Haploidentical donor is readily available for many patients in need of immediate stem-cell transplantation. Historical experience with haploidentical stem-cell transplantation has been characterised by a high rejection rate, graft-versus-host disease, and transplant-related mortality. Important advances have been made in this field during the last 20 years. Many drawbacks of haploidentical transplants such as graft failure and significant GVHD have been overcome due to the development of new extensive T cell depletion methods with mega dose stem-cell administration. However, prolonged immune deficiency and an increased relapse rate remain unresolved problems of T cell depletion. New approaches such as partial ex vivo or in vivo alloreactive T cell depletion and posttransplant cell therapy will allow to improve immune reconstitution in haploidentical transplants. Results of unmanipulated stem-cell transplantation with using ATG and combined immunosuppression in mismatched/haploidentical transplant setting are promising. This paper focuses on recent advances in haploidentical hematopoietic stem-cell transplantation for hematologic malignancies.

  16. Gene-modified hematopoietic stem cells for cancer immunotherapy.

    Science.gov (United States)

    Larson, Sarah; De Oliveira, Satiro N

    2014-01-01

    The rapid expansion of available cancer immunotherapies has resulted in favorable early outcomes. Specifically the use of gene therapy to introduce chimeric antigen receptors (CARs) and T cell receptors (TCRs) in T cells creates new immunotherapy options for patients. While showing early success with these approaches, limitations remain that can be overcome by the use of modification of hematopoietic stem cells (HSCs) to express CARs and TCRs. With modern gene therapy technologies, increased safety and control of the modification of the HSCs can be achieved through the use of a suicide gene.

  17. Cancer Immunotherapy Using Engineered Hematopoietic Stem Cells

    OpenAIRE

    Gschweng, Eric Hans

    2015-01-01

    Engineering the immune system against cancer ideally provides surgical precision against the antigen bearing target cell while avoiding the systemic, off-target toxicity of chemotherapy. Successful treatment of patients in the clinic has been achieved by the expression of anti-cancer T-cell receptors (TCR) and chimeric antigen receptors (CAR) in T cells followed by infusion of these cells into cancer patients. Unfortunately, while many patients initially respond showing anti-tumor efficacy, t...

  18. Bone Marrow GvHD after Allogeneic Hematopoietic Stem Cell Transplantation

    OpenAIRE

    Szyska, Martin; Na, Il-Kang

    2016-01-01

    The bone marrow is the origin of all hematopoietic lineages and an important homing site for memory cells of the adaptive immune system. It has recently emerged as a graft-versus-host disease (GvHD) target organ after allogeneic stem cell transplantation (alloHSCT), marked by depletion of both hematopoietic progenitors and niche-forming cells. Serious effects on the restoration of hematopoietic function and immunological memory are common, especially in patients after myeloablative conditioni...

  19. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Xiao, Xia; Luo, Hongmei; Vanek, Kenneth N; LaRue, Amanda C; Schulte, Bradley A; Wang, Gavin Y

    2015-06-01

    Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs.

  20. TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells

    DEFF Research Database (Denmark)

    Langlois, Thierry; da Costa Reis Monte Mor, Barbara; Lenglet, Gaëlle;

    2014-01-01

    . Here, we show that TET2 expression is low in human embryonic stem (ES) cell lines and increases during hematopoietic differentiation. ShRNA-mediated TET2 knockdown had no effect on the pluripotency of various ES cells. However, it skewed their differentiation into neuroectoderm at the expense...... profile, including abnormal expression of neuronal genes. Intriguingly, when TET2 was knockdown in hematopoietic cells, it increased hematopoietic development. In conclusion, our work suggests that TET2 is involved in different stages of human embryonic development, including induction of the mesoderm...... and hematopoietic differentiation. Stem Cells 2014....

  1. Human Hematopoietic Stem Cells Can Survive In Vitro for Several Months

    Directory of Open Access Journals (Sweden)

    Taro Ishigaki

    2009-01-01

    Full Text Available We previously reported that long-lasting in vitro hematopoiesis could be achieved using the cells differentiated from primate embryonic stem (ES cells. Thus, we speculated that hematopoietic stem cells differentiated from ES cells could sustain long-lasting in vitro hematopoiesis. To test this hypothesis, we investigated whether human hematopoietic stem cells could similarly sustain long-lasting in vitro hematopoiesis in the same culture system. Although the results varied between experiments, presumably due to differences in the quality of each hematopoietic stem cell sample, long-lasting in vitro hematopoiesis was observed to last up to nine months. Furthermore, an in vivo analysis in which cultured cells were transplanted into immunodeficient mice indicated that even after several months of culture, hematopoietic stem cells were still present in the cultured cells. To the best of our knowledge, this is the first report to show that human hematopoietic stem cells can survive in vitro for several months.

  2. Hematopoietic Stem Cell Transplantation and History

    Directory of Open Access Journals (Sweden)

    Atila Tanyeli

    2014-02-01

    Full Text Available Attemps to employ marrow stem cell for therapeutic purpose began in 1940’s. Marrow transplantation might be of use not only in irradiation protection, but also with therapeutic aim to marrow aplasia, leukemia and other diseases. The use and defining tissue antigens in humans were crucial to the improving of transplantation. The administration of methotrexate for GVHD improved the long term survival. Conditioning regimens for myeloablation designed according to diseases. Cord blood and peripheral blood stem cells were used for transplantion after 1980’s. Cord blood and bone marrow stem cell banks established to find HLA matched donor.

  3. Effect of titrated parenteral nutrition on body composition after allogeneic hematopoietic stem cell transplantation in children: a double-blind, randomized, multicenter trial123

    OpenAIRE

    Sharma, Tanvi S.; Bechard, Lori J.; Feldman, Henry A.; Venick, Robert; Gura, Kathleen; Gordon, Catherine M; Sonis, Andrew; Guinan, Eva C.; Duggan, Christopher

    2011-01-01

    Background: Children undergoing hematopoietic stem cell transplantation (HSCT) often require parenteral nutrition (PN) to optimize caloric intake. Standard approaches to nutritional supplementation provide 130–150% of estimated energy expenditure, but resting energy expenditure (REE) may be lower than expected after HSCT. Provision of PN exceeding energy needs may lead to overfeeding and associated complications.

  4. The Hematopoietic Stem Cell Therapy for Exploration of Space

    Science.gov (United States)

    Roach, Allana Nicole; Brezo, Jelena

    2002-01-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological/cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. While the cause of these symptoms are not yet fully delineated, one possible explanation could be the inhibition of hematopoietic stem cell (HSC) growth and hematopoiesis in space. HSCs differentiate into all types of blood cells, and growing evidence indicates that the HSCs also have the ability to transdifferentiate to various tissues, including muscle, skin, liver, neuronal cells and possibly bone. Therefore, a hypothesis was advanced in this laboratory that the hematopoietic stem cell-based therapy, herein called the hematopoietic stem cell therapy (HSCT), could mitigate some of the disorders described above. Due to the magnitude of this project our laboratory has subdivided it into 3 sections: a) HSCT for space anemia; b) HSCT for muscle and bone losses; and c) HSCT for immunodeficiency. Toward developing the HSCT protocol for space anemia, the HSC transplantation procedure was established using a mouse model of beta thalassemia. In addition, the NASA Rotating Wall Vessel (RWV) culture system was used to grow HSCs in space condition. To investigate the HSCT for muscle loss and bone loss, donor HSCs were genetically marked either by transfecting the beta-galactosidase-containing plasmid, pCMV.SPORT-beta-gal or by preparing from b-galactosidase transgenic mice. The transdifferentiation of HSCs to muscle is traced by the reporter gene expression in the hindlimb suspended mice with some positive outcome, as studied by the X-gal staining procedure. The possible structural contribution of HSCs against muscle loss is being investigated histochemically.

  5. Alefacept and Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    2016-04-26

    Thalassemia; Sickle Cell Disease; Glanzmann Thrombasthenia; Wiskott-Aldrich Syndrome; Chronic-granulomatous Disease; Severe Congenital Neutropenia; Leukocyte Adhesion Deficiency; Schwachman-Diamond Syndrome; Diamond-Blackfan Anemia; Fanconi Anemia; Dyskeratosis-congenita; Chediak-Higashi Syndrome; Severe Aplastic Anemia

  6. How do I perform hematopoietic progenitor cell selection?

    Science.gov (United States)

    Avecilla, Scott T; Goss, Cheryl; Bleau, Sharon; Tonon, Jo-Ann; Meagher, Richard C

    2016-05-01

    Graft-versus-host disease remains the most important source of morbidity and mortality associated with allogeneic stem cell transplantation. The implementation of hematopoietic progenitor cell (HPC) selection is employed by some stem cell processing facilities to mitigate this complication. Current cell selection methods include reducing the number of unwanted T cells (negative selection) and/or enriching CD34+ hematopoietic stem/progenitors (positive selection) using immunomagnetic beads subjected to magnetic fields within columns to separate out targeted cells. Unwanted side effects of cell selection as a result of T-cell reduction are primary graft failure, increased infection rates, delayed immune reconstitution, possible disease relapse, and posttransplant lymphoproliferative disease. The Miltenyi CliniMACS cell isolation system is the only device currently approved for clinical use by the Food and Drug Administration. It uses magnetic microbeads conjugated with a high-affinity anti-CD34 monoclonal antibody capable of binding to HPCs in marrow, peripheral blood, or umbilical cord blood products. The system results in significantly improved CD34+ cell recoveries (50%-100%) and consistent 3-log CD3+ T-cell reductions compared to previous generations of CD34+ cell selection procedures. In this article, the CliniMACS procedure is described in greater detail and the authors provide useful insight into modifications of the system. Successful implementation of cell selection procedures can have a significant positive clinical effect by greatly increasing the pool of donors for recipients requiring transplants. However, before a program implements cell selection techniques, it is important to consider the time and financial resources required to properly and safely perform these procedures. PMID:26919388

  7. Imaging of complications from hematopoietic stem cell transplant

    Directory of Open Access Journals (Sweden)

    Tarun Pandey

    2014-01-01

    Full Text Available Stem cell transplant has been the focus of clinical research for a long time given its potential to treat several incurable diseases like hematological malignancies, diabetes mellitus, and neuro-degenerative disorders like Parkinson disease. Hematopoietic stem cell transplantation (HSCT is the oldest and most widely used technique of stem cell transplant. HSCT has not only been used to treat hematological disorders including hematological malignancies, but has also been found useful in treamtent of genetic, immunological, and solid tumors like neuroblastoma, lymphoma, and germ cell tumors. In spite of the rapid advances in stem cell technology, success rate with this technique has not been universal and many complications have also been seen with this form of therapy. The key to a successful HSCT therapy lies in early diagnosis and effective management of complications associated with this treatment. Our article aims to review the role of imaging in diagnosis and management of stem cell transplant complications associated with HSCT.

  8. Effects of T-Cell Depletion on Allogeneic Hematopoietic Stem Cell Transplantation Outcomes in AML Patients

    Directory of Open Access Journals (Sweden)

    Gabriela Soriano Hobbs

    2015-03-01

    Full Text Available Graft versus host disease (GVHD remains one of the leading causes of morbidity and mortality associated with conventional allogeneic hematopoietic stem cell transplantation (HCT. The use of T-cell depletion significantly reduces this complication. Recent prospective and retrospective data suggest that, in patients with AML in first complete remission, CD34+ selected grafts afford overall and relapse-free survival comparable to those observed in recipients of conventional grafts, while significantly decreasing GVHD. In addition, CD34+ selected grafts allow older patients, and those with medical comorbidities or with only HLA-mismatched donors to successfully undergo transplantation. Prospective data are needed to further define which groups of patients with AML are most likely to benefit from CD34+ selected grafts. Here we review the history of T-cell depletion in AML, and techniques used. We then summarize the contemporary literature using CD34+ selection in recipients of matched or partially mismatched donors (7/8 or 8/8 HLA-matched, and provide a summary of the risks and benefits of using T-cell depletion.

  9. Autologous hematopoietic stem cell transplantation in classical Hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Afonso José Pereira Cortez

    2011-02-01

    Full Text Available BACKGROUND: Hodgkin's lymphoma has high rates of cure, but in 15% to 20% of general patients and between 35% and 40% of those in advanced stages, the disease will progress or will relapse after initial treatment. For this group, hematopoietic stem cell transplantation is considered one option of salvage therapy. OBJECTIVES: To evaluate a group of 106 patients with Hodgkin's lymphoma, who suffered relapse or who were refractory to treatment, submitted to autologous hematopoietic stem cell transplantation in a single transplant center. METHODS: A retrospective study was performed with data collected from patient charts. The analysis involved 106 classical Hodgkin's lymphoma patients who were consecutively submitted to high-dose chemotherapy followed by autologous transplants in a single institution from April 1993 to December 2006. RESULTS: The overall survival rates of this population at five and ten years were 86% and 70%, respectively. The disease-free survival was approximately 60% at five years. Four patients died of procedure-related causes but relapse of classical Hodgkin's lymphoma after transplant was the most frequent cause of death. Univariate analysis shows that sensitivity to pre-transplant treatment and hemoglobin < 10 g/dL at diagnosis had an impact on patient survival. Unlike other studies, B-type symptoms did not seem to affect overall survival. Lactic dehydrogenase and serum albumin concentrations analyzed at diagnosis did not influence patient survival either. CONCLUSION: Autologous hematopoietic stem cell transplantation is an effective treatment strategy for early and late relapse in classical Hodgkin's lymphoma for cases that were responsive to pre-transplant chemotherapy. Refractory to treatment is a sign of worse prognosis. Additionally, a hemoglobin concentration below 10 g/dL at diagnosis of Hodgkin's lymphoma has a negative impact on the survival of patients after transplant. As far as we know this relationship has not

  10. ETS transcription factors in hematopoietic stem cell development.

    Science.gov (United States)

    Ciau-Uitz, Aldo; Wang, Lu; Patient, Roger; Liu, Feng

    2013-12-01

    Hematopoietic stem cells (HSCs) are essential for the maintenance of the hematopoietic system. However, these cells cannot be maintained or created in vitro, and very little is known about their generation during embryogenesis. Many transcription factors and signaling pathways play essential roles at various stages of HSC development. Members of the ETS ('E twenty-six') family of transcription factors are recognized as key regulators within the gene regulatory networks governing hematopoiesis, including the ontogeny of HSCs. Remarkably, although all ETS transcription factors bind the same DNA consensus sequence and overlapping tissue expression is observed, individual ETS transcription factors play unique roles in the development of HSCs. Also, these transcription factors are recurrently used throughout development and their functions are context-dependent, increasing the challenge of studying their mechanism of action. Critically, ETS factors also play roles under pathological conditions, such as leukemia and, therefore, deciphering their mechanism of action will not only enhance our knowledge of normal hematopoiesis, but also inform protocols for their creation in vitro from pluripotent stem cells and the design of new therapeutic approaches for the treatment of malignant blood cell diseases. In this review, we summarize the key findings on the roles of ETS transcription factors in HSC development and discuss novel mechanisms by which they could control hematopoiesis.

  11. SHIPi Enhances Autologous and Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Sandra Fernandes

    2015-03-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is a highly effective procedure enabling long-term survival for patients with hematologic malignancy or heritable defects. Although there has been a dramatic increase in the success rate of HSCT over the last two decades, HSCT can result in serious, sometimes untreatable disease due to toxic conditioning regimens and Graft-versus-Host-Disease. Studies utilizing germline knockout mice have discovered several candidate genes that could be targeted pharmacologically to create a more favorable environment for transplant success. SHIP1 deficiency permits improved engraftment of hematopoietic stem-progenitor cells (HS-PCs and produces an immunosuppressive microenvironment ideal for incoming allogeneic grafts. The recent development of small molecule SHIP1 inhibitors has opened a different therapeutic approach by creating transient SHIP1-deficiency. Here we show that SHIP1 inhibition (SHIPi mobilizes functional HS-PC, accelerates hematologic recovery, and enhances donor HS-PC engraftment in both allogeneic and autologous transplant settings. We also observed the expansion of key cell populations known to suppress host-reactive cells formed during engraftment. Therefore, SHIPi represents a non-toxic, new therapeutic that has significant potential to improve the success and safety of therapies that utilize autologous and allogeneic HSCT.

  12. [Physiological regulation of hematopoietic stem cell and its molecular basis].

    Science.gov (United States)

    Dong, Fang; Hao, Sha; Cheng, Hui; Cheng, Tao

    2016-08-25

    As a classical type of tissue stem cells, hematopoietic stem cell (HSC) is the earliest discovered and has been widely applied in the clinic as a great successful example for stem cell therapy. Thus, HSC research represents a leading field in stem cell biology and regenerative medicine. Self-renewal, differentiation, quiescence, apoptosis and trafficking constitute major characteristics of functional HSCs. These characteristics also signify different dynamic states of HSC through physiological interactions with the microenvironment cues in vivo. This review covers our current knowledge on the physiological regulation of HSC and its underlying molecular mechanisms. It is our hope that this review will not only help our colleagues to understand how HSC is physiologically regulated but also serve as a good reference for the studies on stem cell and regenerative medicine in general. PMID:27546503

  13. ROLE AND TIMING OF HEMATOPOIETIC CELL TRANSPLANTATION FOR MYELODYSPLASTIC SYNDROME

    Directory of Open Access Journals (Sweden)

    Teresa L Field

    2010-07-01

    Full Text Available Allogeneic hematopoietic cell transplantation (HCT is the only curative treatment for patients with myelodysplastic syndromes (MDS.  Most patients with MDS are older than 60 years and age-associated morbidities limit the patients’ options for curative transplant therapy.  Since the development of conditioning regimens with reduced toxicity, the age limitations for HCT have waned for those patients with good performance status. This review will discuss the role of HCT for MDS based on prognostic features, the optimal timing of HCT, and outcomes based on patient age.

  14. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    Science.gov (United States)

    Ohi, Seigo; Roach, Allana-Nicole; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2003-01-01

    It is hypothesized that the hematopoietic stem cell therapy (HSCT) might countermeasure various space-caused disorders so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using animal models of disorders (hindlimb suspension unloading system and beta-thalassemia), the HSCT was tested for muscle loss, immunodeficiency and space anemia. The results indicate feasibility of HSCT for these disorders. To facilitate the HSCT in space, growth of HSCs were optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  15. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  16. Analysis and manipulation of hematopoietic progenitor and stem cells from murine embryonic tissues

    NARCIS (Netherlands)

    A. Medvinsky (Alexander); S. Taoudi (Samir); S.C. Mendes (Sandra); E.A. Dzierzak (Elaine)

    2008-01-01

    textabstractHematopoietic development begins in several locations in the mammalian embryo: yolk sac, aorta-gonad-mesonephros region (AGM), and the chorio-allantoic placenta. Generation of the most potent cells, adult definitive hematopoietic stem cells (HSCs), occurs within the body of the mouse emb

  17. Effects of hematopoietic growth factors on purified bone marrow progenitor cells

    NARCIS (Netherlands)

    F.J. Bot (Freek)

    1992-01-01

    textabstractWe have used highly enriched hematopoietic progenitor cells and in-vitro culture to examine the following questions: 1. The effects of recombinant lL-3 and GM-CSF on proliferation and differentiation of enriched hematopoietic progenitor cells have not been clearly defined: - how do IL~3

  18. Improvement of Thymopoiesis after Hematopoietic Stem Cell Transplantation by Cytokines: Translational studies in experimental animal models

    NARCIS (Netherlands)

    E-J. Wils (Evert-Jan)

    2011-01-01

    textabstractAllogeneic hematopoietic stem cell transplantation (AlloHSCT) is a powerful treatment modality that is frequently applied as part of treatment of hematological malignancies, aplastic anemia and inborn errors of hematopoietic progenitor cells. A major drawback of alloHSCT is the treatment

  19. Estradiol increases hematopoietic stem and progenitor cells independent of its actions on bone

    NARCIS (Netherlands)

    Illing, Anett; Liu, Peng; Ostermay, Susanne; Schilling, Arndt; de Haan, Gerald; Krust, Andree; Amling, Michael; Chambon, Pierre; Schinke, Thorsten; Tuckermann, Jan P.

    2012-01-01

    Hematopoietic stem and progenitor cells reside in vascular and endosteal niches in the bone marrow. Factors affecting bone remodeling were reported to influence numbers and mobilization of hematopoietic stem cells. We therefore analyzed the effects of estradiol acting anabolic on bone integrity. Her

  20. Renal function in high dose chemotherapy and autologous hematopoietic cell support treatment for breast cancer.

    Science.gov (United States)

    Merouani, A; Shpall, E J; Jones, R B; Archer, P G; Schrier, R W

    1996-09-01

    Autologous and allogeneic bone marrow grafting both require cytoreductive therapy but only the allogeneic procedure requires immunosuppressive agents. Allogeneic bone marrow transplantation has been reported to be associated with a high incidence of both renal failure and veno-occlusive disease (VOD) of the liver, the combination of which is associated with a high morbidity and mortality. There is less known about the frequency and severity of these complications in patients undergoing autologous bone marrow transplantation. In the present study renal, hepatic and other complications were examined in 232 patients with Stages II/III and IV breast cancer who were treated with high-dose chemotherapy and autologous hematopoietic cell support with either marrow or peripheral blood progenitor cells. The post-treatment severity of the renal dysfunction was classified as follows: Grade 0, normal renal function [ 25% decrement in GFR but twofold rise in serum creatinine but no need for dialysis; Grade 3 > than twofold rise in serum creatinine and need for dialysis. There were 102 patients (44%) who were classified as Grade 0 and 81 patients (35%) who were classified as Grade 1 renal dysfunction. Severe renal dysfunction (Grades 2 and 3) was observed in 49 of the 232 patients (21%). This severe renal dysfunction of 21% compares with a previously reported 53% incidence of severe renal dysfunction for allogeneic bone marrow transplantation. Similarly, the frequency of hepatic VOD was less (4.7% or 11 of 232 patients) in this autologous bone marrow transplant study as compared to a reported incidence of hepatic VOD ranging from 22 to 53% in large series of allogeneic bone marrow transplant patients. The severe renal dysfunction (Grades 2 and 3) in the present autologous hematopoietic cell support study correlated most significantly with sepsis, liver and pulmonary dysfunction. The major fall in GFR occurred during chemotherapy but before hematopoietic cell support, thus

  1. Desensitization for solid organ and hematopoietic stem cell transplantation.

    Science.gov (United States)

    Zachary, Andrea A; Leffell, Mary S

    2014-03-01

    Desensitization protocols are being used worldwide to enable kidney transplantation across immunologic barriers, i.e. antibody to donor HLA or ABO antigens, which were once thought to be absolute contraindications to transplantation. Desensitization protocols are also being applied to permit transplantation of HLA mismatched hematopoietic stem cells to patients with antibody to donor HLA, to enhance the opportunity for transplantation of non-renal organs, and to treat antibody-mediated rejection. Although desensitization for organ transplantation carries an increased risk of antibody-mediated rejection, ultimately these transplants extend and enhance the quality of life for solid organ recipients, and desensitization that permits transplantation of hematopoietic stem cells is life saving for patients with limited donor options. Complex patient factors and variability in treatment protocols have made it difficult to identify, precisely, the mechanisms underlying the downregulation of donor-specific antibodies. The mechanisms underlying desensitization may differ among the various protocols in use, although there are likely to be some common features. However, it is likely that desensitization achieves a sort of immune detente by first reducing the immunologic barrier and then by creating an environment in which an autoregulatory process restricts the immune response to the allograft.

  2. Progress toward curing HIV infection with hematopoietic cell transplantation.

    Science.gov (United States)

    Petz, Lawrence D; Burnett, John C; Li, Haitang; Li, Shirley; Tonai, Richard; Bakalinskaya, Milena; Shpall, Elizabeth J; Armitage, Sue; Kurtzberg, Joanne; Regan, Donna M; Clark, Pamela; Querol, Sergio; Gutman, Jonathan A; Spellman, Stephen R; Gragert, Loren; Rossi, John J

    2015-01-01

    HIV-1 infection afflicts more than 35 million people worldwide, according to 2014 estimates from the World Health Organization. For those individuals who have access to antiretroviral therapy, these drugs can effectively suppress, but not cure, HIV-1 infection. Indeed, the only documented case for an HIV/AIDS cure was a patient with HIV-1 and acute myeloid leukemia who received allogeneic hematopoietic cell transplantation (HCT) from a graft that carried the HIV-resistant CCR5-∆32/∆32 mutation. Other attempts to establish a cure for HIV/AIDS using HCT in patients with HIV-1 and malignancy have yielded mixed results, as encouraging evidence for virus eradication in a few cases has been offset by poor clinical outcomes due to the underlying cancer or other complications. Such clinical strategies have relied on HIV-resistant hematopoietic stem and progenitor cells that harbor the natural CCR5-∆32/∆32 mutation or that have been genetically modified for HIV-resistance. Nevertheless, HCT with HIV-resistant cord blood remains a promising option, particularly with inventories of CCR5-∆32/∆32 units or with genetically modified, human leukocyte antigen-matched cord blood. PMID:26251620

  3. File list: His.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 Histone Blood CD34 Hematopoietic stem... cells SRX026654 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  4. File list: His.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 Histone Blood CD34 Hematopoietic stem... cells SRX026654 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  5. File list: DNS.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 DNase-seq Blood CD34 Hematopoietic stem... cells SRX201280 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  6. File list: DNS.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 DNase-seq Blood CD34 Hematopoietic stem... cells SRX201280 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  7. Characterization of a human hematopoietic progenitor cell capable of forming blast cell containing colonies in vitro.

    OpenAIRE

    J. Brandt; Baird, N; Lu, L; Srour, E; R. HOFFMAN

    1988-01-01

    A hematopoietic cell (CFU-B1) capable of producing blast cell containing colonies in vitro was detected using a semisolid culture system. The CFU-B1 has the capacity for self-renewal and commitment to a number of hematopoietic lineages. Monoclonal antibody to the human progenitor cell antigen-1 (HPCA-1) and a monoclonal antibody against the major histocompatibility class II antigen (HLA-DR) were used with fluorescence activated cell sorting to phenotype the CFU-B1. The CFU-B1 was found to exp...

  8. Natural killer cells in non-hematopoietic malignancies.

    Science.gov (United States)

    Desbois, Mélanie; Rusakiewicz, Sylvie; Locher, Clara; Zitvogel, Laurence; Chaput, Nathalie

    2012-01-01

    Natural killer (NK) cells belong to the innate immune system and were initially described functionallywise by their spontaneous cytotoxic potential against transformed or virus-infected cells. A delicate balance between activating and inhibiting receptors regulates NK cell tolerance. A better understanding of tissue resident NK cells, of NK cell maturation stages and migration patterns has evolved allowing a thoughtful evaluation of their modus operandi. While evidence has been brought up for their relevance as gate keepers in some hematopoietic malignancies, the role of NK cells against progression and dissemination of solid tumors remains questionable. Hence, many studies pointed out the functional defects of the rare NK cell infiltrates found in tumor beds and the lack of efficacy of adoptively transferred NK cells in patients. However, several preclinical evidences suggest their anti-metastatic role in a variety of mouse tumor models. In the present review, we discuss NK cell functions according to their maturation stage and environmental milieu, the receptor/ligand interactions dictating tumor cell recognition and recapitulate translational studies aimed at deciphering their prognostic or predictive role against human solid malignancies. PMID:23269924

  9. Low antigenicity of hematopoietic progenitor cells derived from human ES cells

    Directory of Open Access Journals (Sweden)

    Eun-Mi Kim

    2010-02-01

    Full Text Available Eun-Mi Kim1, Nicholas Zavazava1,21Department of Internal Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, Iowa, USA; 2Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USAAbstract: Human embryonic stem (hES cells are essential for improved understanding of diseases and our ability to probe new therapies for use in humans. Currently, bone marrow cells and cord blood cells are used for transplantation into patients with hematopoietic malignancies, immunodeficiencies and in some cases for the treatment of autoimmune diseases. However, due to the high immunogenicity of these hematopoietic cells, toxic regimens of drugs are required for preconditioning and prevention of rejection. Here, we investigated the efficiency of deriving hematopoietic progenitor cells (HPCs from the hES cell line H13, after co-culturing with the murine stromal cell line OP9. We show that HPCs derived from the H13 ES cells poorly express major histocompatibility complex (MHC class I and no detectable class II antigens (HLA-DR. These characteristics make hES cell-derived hematopoietic cells (HPCs ideal candidates for transplantation across MHC barriers under minimal immunosuppression.Keywords: human embryonic stem cells, H13, hematopoiesis, OP9 stromal cells, immunogenicity

  10. End-of-life decision making in hematopoietic cell transplantation recipients.

    Science.gov (United States)

    Tee, M Encarlita; Balmaceda, Gayle Z; Granada, Myra A; Fowler, Clara S; Payne, Judith K

    2013-12-01

    Discussions about futile treatment options for patients undergoing hematopoietic cell transplantation (HCT) can be difficult for healthcare providers. These discussions often are not initiated before transplantation, but only after a patient's healthcare status deteriorates. Nurses are in a key position to provide support and advocate for patients and their families in end-of-life (EOL) decisions. A need exists for increased autonomy for nurses as patient advocates. Implementation of multidisciplinary nursing education, both in schools and in the workplace, will support these new responsibilities. This article will provide a review of the literature related to the nurse role in the transition from active treatment (aggressive care) to EOL care in the HCT population.

  11. The Hematopoietic Stem Cell Therapy for Exploration of Space

    Science.gov (United States)

    Ohi, S.

    Departments of Biochemistry &Molecular Biology, Genetics &Human Genetics, Pediatrics &Child Long-duration space missions require countermeasures against severe/invasive disorders in astronauts that are caused by space environments, such as hematological/cardiac abnormalities, bone/muscle losses, immunodeficiency, neurological disorders, and cancer. Some, if not all, of these disorders may be amenable to hematopoietic stem cell therapy and gene therapy. Growing evidence indicates that hematopoietic stem cells (HSCs) possess extraordinary plasticity to differentiate not only to all types of blood cells but also to various tissues, including bone, muscle, skin, liver and neuronal cells. Therefore, our working hypothesis is that the hematopoietic stem cell-based therapy, herein called as the hematopoietic stem cell therapy (HSCT), might provide countermeasure/prevention for hematological abnormalities, bone and muscle losses in space, thereby maintaining astronauts' homeostasis. Our expertise lies in recombinant adeno-associated virus (rAAV)-mediated gene therapy for the hemoglobinopathies, -thalassemia and sickle cell disease (Ohi S, Kim BC, J Pharm Sci 85: 274-281, 1996; Ohi S, et al. Grav Space Biol Bull 14: 43, 2000). As the requisite steps in this protocol, we established procedures for purification of HSCs from both mouse and human bone marrow in 1 G. Furthermore, we developed an easily harvestable, long-term liquid suspension culture system, which lasts more than one year, for growing/expanding HSCs without stromal cells. Human globin cDNAs/gene were efficiently expressed from the rAAVs in the mouse HSCs in culture. Additionally, the NASA Rotating Wall Vessel (RWV) culture system is being optimized for the HSC growth/expansion. Thus, using these technologies, the above hypothesis is being investigated by the ground-based experiments as follows: 1) -thalassemic mice (C57BL/6-Hbbth/Hbbth, Hbd-minor) are transplanted with normal isologous HSCs to correct the

  12. Amplification of Surface Antigen P43 Gene and Its Application in Detection of Toxoplasma Gondii in Allogeneic Hematopoietic Stem Cell Transplantation

    Institute of Scientific and Technical Information of China (English)

    ZHOUYongan; YUXinbing; 等

    2002-01-01

    Objective:To establish a rapid,specific and sensitive diagnostic technique for the human Toxoplasma gondii infection in the recipi-ents with allogeneic hematopoietic stem cell transplantation and discuss its clinical significance.Methods:30 patients undergoing allogeneic hematopoietic stem cell transplantation were detected by using ELISA and PCR.Results:Among 30 recipients undergiong allogeneic hematopoietic stem cell transplantation,3 were positive for Toxoplasma gondiii antigen and 5 for surface antigen p43 gene with the positive rate being 13.3% and 16.67% respectively.20 healthy people(negative for anti-Tox antibody)were also tested by using ELISA and PCR.Conclusion:PCR is an accurate,relatively rapid,sensitive and specific method for detecting P43 gene of Toxoplasma gondii.Be-canuse PCR can be applied to a variety of different clinical samples,it can be considered as a valuable additional tool for identification of Toxoplasma gondii infections.

  13. 儿童难治性自身免疫性疾病自体外周血干细胞动员采集和分选的临床研究%A study of the mobilization, collection and selection of autologous peripheral blood stem cells in patients with autoimmune diseases undergoing autologous hematopoietic stem cell transplantation in juvenile severe autoimmune disease

    Institute of Scientific and Technical Information of China (English)

    唐湘凤; 栾佐; 吴凤岐; 赖建铭; 吴南海; 王凯; 龚晓军; 黄友章

    2010-01-01

    Objective To explore the safety of mobilization and collection as well as the feasibility of selection of autologous peripheral blood stem cells (auto-PBSC) from patients with juvenile severe autoimmune diseases (AID) for autologous hematopoietic stem cell transplantation (auto-HSCT). The clinical significance of these procedure is evaluated. Methods Eight patients with AID, including four patients with systemic lupus erythematosus(SLE),two patients with dermatomysoitis, one patient with juvenile rheumatoid arthritis (JRA), one patient with multiple sclerosis(MS),underwent auto-HSCT. Auto-PBSCs were mobilized in 8 patients using cyclophosphamide(CTX) and granulocyte colony-stimulating factor (G-CSF), and their PBSCs were collected by CS-3000 Blood Cell Separator, then the CD34+cells were selected and purified by CliniMACS CD34+cell selection device. The CD34+ cells were frozenand preserved under -80 ℃ ALL patients received non-myeloablative or lymphoablative conditioning regimens which consisted of CTX/Mel/ATG or CTX/ATG or BEAM/ATG. All patient received CD34+ cells transplantation. The safety of mobilization and collection process of auto-PBSC as well asthe feasibility of selection and purification of CD34+cells were recorded and hematopoietic reconstruction were evaluated. Results All patients tolerated the collection process well, and there was no mobilization-related mortality. The number of collected MNCs and CD34+ cells were 8.35×108/kg and 7.92×106/kg respectively. The number of CD34+ and CD3+ cells after purification was 6.28×106/kg and0.71 ×105/kg respectively. The mean granulocytes and platelet engraftment occurred on days 11 and 15 after G-CSF regimen, and they can be collected using CS-3000 instrument. PBSC mobilization and collection from patients with juvenile severe AID is safe. The CD34+ cell can be highly purified. The auto-PBSC CD34+cell transplantation is an alternative therapy for severe AIDs that do not respond to conventional treatments

  14. RESULTS OF HEMATOPOIETIC CELL TRANSPLANTATION IN PEDIATRIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    A. Mousavi

    2008-05-01

    Full Text Available Hematopoietic cell transplantation (HCT is an accepted treatment for acute myeloid leukemia (AML in first remission, the treatment of choice for chronic myeloid leukemia (CML and high risk groups of ALL who relapse with conventional chemotherapy. We assessed results of HCT for pediatric leukemia in our center. A total of 92 children, 63 with diagnose of AML, 23 with ALL and 6 with CML received allogeneic transplantation from HLA full matched siblings (57.6% and autologous transplantation (42.4%. Source of hematopoietic cells were peripheral blood 83.7%, bone marrow 15.2% and cord blood 1.6%. The median transplanted nucleated cells were 6.4 ± 4.7 ×108 /Kg (body weight of patients and mononuclear cells were 5.5 ± 2.9×108/Kg. The most common conditioning regimens were cyclophosphamide + busulfan. Prophylaxis regimen for GVHD was cyclosporin ± methotrexate. GVHD occurred in 50 (54.3% patients. Eighty five of children had engraftment, 26 (28.6% relapsed and 57 (62% are alive. The most common cause of death was relapse (68.6%. Five years overall survival of patients with AML and ALL were 49% and 44% respectively and disease free survival of them were 52% and 49%. One year overall survival and disease free survival of CML was 57%. Overall survival increased with increasing age of patients at transplantation time (P = 0.06. Longer survival significantly related to earlier WBC and platelet recovery (P < 0.0001 and P = 0.006 respectively. Considering acceptable overall and disease free survival of patients after HCT, we concluded that is a good modality in treatment of leukemia of children.

  15. The Hematopoietic Stem Cell Therapy for Exploration of Deep Space

    Science.gov (United States)

    Ohi, Seigo; Roach, Allana-Nicole; Ramsahai, Shweta; Kim, Bak C.; Fitzgerald, Wendy; Riley, Danny A.; Gonda, Steven R.

    2004-02-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological and cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. Exploiting the extraordinary plasticity of hematopoietic stem cells (HSCs), which differentiate not only to all types of blood cells, but also to various tissues, including muscle, bone, skin, liver, and neuronal cells, we advanced a hypothesis that some of the space-caused disorders might be amenable to hematopoietic stem cell therapy (HSCT) so as to maintain astronauts' homeostasis. If this were achievable, the HSCT could promote human exploration of deep space. Using mouse models of human anemia (β-thalassemia) and spaceflight (hindlimb suspension unloading system), we have obtained feasibility results of HSCT for space anemia, muscle loss, and immunodeficiency. For example, the β-thalassemic mice were successfully transplanted with isologous HSCs, resulting in chimerism of hemoglobin species and alleviation of the hemoglobinopathy. In the case of HSCT for muscle loss, β-galactosidase-marked HSCs, which were prepared from β-galactosidase-transgenic mice, were detected by the X-gal wholemount staining procedure in the hindlimbs of unloaded mice following transplantation. Histochemical and physical analyses indicated structural contribution of HSCs to the muscle. To investigate HSCT for immunodeficiency, β-galactosidase-transformed Escherichia coli was used as the reporter bacteria, and infected to control and the hindlimb suspended mice. Results of the X-gal stained tissues indicated that the HSCT could help eliminate the E. coli infection. In an effort to facilitate the HSCT in space, growth of HSCs has been optimized in the NASA Rotating Wall Vessel (RWV) culture systems, including Hydrodynamic Focusing Bioreactor (HFB).

  16. Hematopoietic cell transplantation for Crohn's disease; is it time?

    Institute of Scientific and Technical Information of China (English)

    Y Leung; M Geddes; J Storek; R Panaccione; PL Beck

    2006-01-01

    AIM: To review all studies in the literature that have assessed Hematopoietic cell transplantation (HCT)and Crohn's disease (CD) with the ultimate aims of determining if this is a viable treatment option for those with CD. A secondary aim was to review the above literature and determine if the studies shed further light on the mechanisms involved in the pathogenesis of CD.METHODS: An extensive Medline search was performed on all articles from 1970 to 2005 using the keywords;bone marrow transplant, stem cell, hematopoietic cell,Crohn's disease and inflammatory bowel disease.RESULTS: We identified one case in which a patient developed CD following an allogeneic HCT from a sibling suffering with CD. Evidence for transfer of the genetic predisposition to develop CD was also identified with report of a patient that developed severe CD following an allogeneic HCT. Following HCT it was found that the donor (that had no signs or symptoms of CD) and the recipient had several haplotype mismatches in HLA class Ⅲ genes in the IBD3 locus including a polymorphism of NOD2/CARD15 that has been associated with CD.Thirty three published cases of patients with CD who underwent either autologous or allogeneic HCT were identified. At the time of publication 29 of these 33patients were considered to be in remission. The median follow-up time was seven years, and twenty months for allogeneic and autologous HCT respectively. For patients who underwent HCT primarily for treatment of their CD there have been no mortalities related to transplant complications.CONCLUSION: Overall these preliminary data suggest that both allogeneic and autologous HCT may be effective in inducing remission in refractory CD. This supports the hypothesis that the hematolymphatic cells play a key role in CD and that resetting of the immune system may be a critical approach in the management or cure of CD.

  17. A novel complex, RUNX1-MYEF2, represses hematopoietic genes in erythroid cells

    NARCIS (Netherlands)

    B. van Riel (Boet); T. Pakozdi (Tibor); R.W.W. Brouwer; R. Monteiro (Rui); E. Tuladhar (Era); V. Franke (Vedran); J.C. Bryne; R.J.J. Jorna (Ruud); E.J. Rijkers; W.F.J. van IJcken (Wilfred); C. Andrieu-Soler (Charlotte); J.A.A. Demmers (Jeroen); R. Patient; E. Soler (Eric); B. Lenhard (Boris); F.G. Grosveld (Frank)

    2012-01-01

    textabstractRUNX1 is known to be an essential transcription factor for generating hematopoietic stem cells (HSC), but much less is known about its role in the downstream process of hematopoietic differentiation. RUNX1 has been shown to be part of a large transcription factor complex, together with L

  18. Of lineage and legacy: The development of mammalian hematopoietic stem cells

    NARCIS (Netherlands)

    E.A. Dzierzak (Elaine); N.A. Speck (Nancy)

    2008-01-01

    textabstractThe hematopoietic system is one of the first complex tissues to develop in the mammalian conceptus. Of particular interest in the field of developmental hematopoiesis is the origin of adult bone marrow hematopoietic stem cells. Tracing their origin is complicated because blood is a mobil

  19. Interaction of natural killer cells with neutrophils exerts a significant antitumor immunity in hematopoietic stem cell transplantation recipients.

    Science.gov (United States)

    Ueda, Ryosuke; Narumi, Kenta; Hashimoto, Hisayoshi; Miyakawa, Reina; Okusaka, Takuji; Aoki, Kazunori

    2016-01-01

    Autologous hematopoietic stem cell transplantation (HSCT) can induce a strong antitumor immunity by homeostatic proliferation (HP) of T cells and suppression of regulatory T cells following preconditioning-induced lymphopenia. However, the role of innate immunity including natural killer (NK) cells is still not understood. Here, first, we examined whether NK cells exert an antitumor effect after syngeneic HSCT in a murine colon cancer model. Flow cytometry showed that NK cells as well as T cells rapidly proliferated after HSCT, and the frequency of mature NK cells was increased in tumor during HP. Furthermore, NK cells undergoing HP were highly activated, which contributed to substantial tumor suppression. Then, we found that a large number of neutrophils accumulated in tumor early after syngeneic HSCT. It was recently reported that neutrophil-derived mediators modulate NK cell effector functions, and so we examined whether the neutrophils infiltrated in tumor are associated with NK cell-mediated antitumor effect. The depletion of neutrophils significantly impaired an activation of NK cells in tumor and increased the fraction of proliferative NK cells accompanied by a decrease in NK cell survival. The results suggested that neutrophils in tumor prevent NK cells from activation-induced cell death during HP, thus leading to a significant antitumor effect by NK cells. This study revealed a novel aspect of antitumor immunity induced by HSCT and may contribute to the development of an effective therapeutic strategy for cancer using HSCT.

  20. Fetal hepatic progenitors support long-term expansion of hematopoietic stem cells.

    Science.gov (United States)

    Chou, Song; Flygare, Johan; Lodish, Harvey F

    2013-05-01

    We have developed a coculture system that establishes DLK(+) fetal hepatic progenitors as the authentic supportive cells for expansion of hematopoietic stem (HSCs) and progenitor cells. In 1-week cultures supplemented with serum and supportive cytokines, both cocultured DLK(+) fetal hepatic progenitors and their conditioned medium supported rapid expansion of hematopoietic progenitors and a small increase in HSC numbers. In 2- and 3-week cultures DLK(+) cells, but not their conditioned medium, continuously and significantly (>20-fold) expanded both hematopoietic stem and progenitor cells. Physical contact between HSCs and DLK(+) cells was crucial to maintaining this long-term expansion. Similar HSC expansion (approximately sevenfold) was achieved in cocultures using a serum-free, low cytokine- containing medium. In contrast, DLK(-) cells are incapable of expanding hematopoietic cells, demonstrating that hepatic progenitors are the principle supportive cells for HSC expansion in the fetal liver.

  1. File list: Unc.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 Unclassified Blood CD34 Hematopoietic stem...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  2. File list: ALL.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 All antigens Blood CD34 Hematopoietic stem...,SRX813531,SRX097081,SRX097084,SRX180945,SRX180946,SRX180947,SRX029316 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  3. File list: InP.Bld.10.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.CD34_Hematopoietic_stem_cells hg19 Input control Blood CD34 Hematopoietic stem...c.jp/kyushu-u/hg19/assembled/InP.Bld.10.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  4. File list: Unc.Bld.50.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.CD34_Hematopoietic_stem_cells hg19 Unclassified Blood CD34 Hematopoietic stem...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  5. File list: Unc.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 Unclassified Blood CD34 Hematopoietic stem...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  6. File list: ALL.Bld.10.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.CD34_Hematopoietic_stem_cells hg19 All antigens Blood CD34 Hematopoietic stem...,SRX026654,SRX029315,SRX751542,SRX100320,SRX097082,SRX097084,SRX029316 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.10.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  7. File list: NoD.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 No description Blood CD34 Hematopoietic stem...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  8. File list: ALL.Bld.05.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.CD34_Hematopoietic_stem_cells hg19 All antigens Blood CD34 Hematopoietic stem...,SRX180940,SRX813531,SRX029315,SRX097082,SRX100320,SRX097084,SRX029316 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.05.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  9. File list: InP.Bld.20.AllAg.CD34_Hematopoietic_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.CD34_Hematopoietic_stem_cells hg19 Input control Blood CD34 Hematopoietic stem...c.jp/kyushu-u/hg19/assembled/InP.Bld.20.AllAg.CD34_Hematopoietic_stem_cells.bed ...

  10. ESAM is a novel human hematopoietic stem cell marker associated with a subset of human leukemias.

    Science.gov (United States)

    Ishibashi, Tomohiko; Yokota, Takafumi; Tanaka, Hirokazu; Ichii, Michiko; Sudo, Takao; Satoh, Yusuke; Doi, Yukiko; Ueda, Tomoaki; Tanimura, Akira; Hamanaka, Yuri; Ezoe, Sachiko; Shibayama, Hirohiko; Oritani, Kenji; Kanakura, Yuzuru

    2016-04-01

    Reliable markers are essential to increase our understanding of the biological features of human hematopoietic stem cells and to facilitate the application of hematopoietic stem cells in the field of transplantation and regenerative medicine. We previously identified endothelial cell-selective adhesion molecule (ESAM) as a novel functional marker of hematopoietic stem cells in mice. Here, we found that ESAM can also be used to purify human hematopoietic stem cells from all the currently available sources (adult bone marrow, mobilized peripheral blood, and cord blood). Multipotent colony-forming units and long-term hematopoietic-reconstituting cells in immunodeficient mice were found exclusively in the ESAM(High) fraction of CD34(+)CD38(-) cells. The CD34(+)CD38(-) fraction of cord blood and collagenase-treated bone marrow contained cells exhibiting extremely high expression of ESAM; these cells are likely to be related to the endothelial lineage. Leukemia cell lines of erythroid and megakaryocyte origin, but not those of myeloid or lymphoid descent, were ESAM positive. However, high ESAM expression was observed in some primary acute myeloid leukemia cells. Furthermore, KG-1a myeloid leukemia cells switched from ESAM negative to ESAM positive with repeated leukemia reconstitution in vivo. Thus, ESAM is a useful marker for studying both human hematopoietic stem cells and leukemia cells. PMID:26774386

  11. Age-related Deterioration of Hematopoietic Stem Cells

    OpenAIRE

    Kim, Mi Jung; Kim, Min Hwan; Kim, Seung Ah; Chang, Jae Suk

    2008-01-01

    Aging is the process of system deterioration over time in the whole body. Stem cells are self-renewing and therefore have been considered exempt from the aging process. Earlier studies by Hayflick showed that there is an intrinsic limit to the number of divisions that mammalian somatic cells can undergo, and cycling kinetics and ontogeny-related studies strongly suggest that even the most primitive stem cell functions exhibit a certain degree of aging. Despite these findings, studies on the e...

  12. Effect of cotransplantation of hematopoietic stem cells and embryonic AGM stromal cells on hematopoietic reconstitution in mice after bone marrow transplantation

    International Nuclear Information System (INIS)

    Objective: To explore the effects of cotransplantation of hematopoietic stem cells and stromal cells derived from aorta-gonad-mesonephros (AGM) region on hematopoietic reconstitution in mice after bone marrow transplantation (BMT). Methods: The typical mice model of syngeneic BMT was established and the mice were randomly divided into 4 groups: the control group, the BMT group, the group of cotransplantation of HSC with AGM stromal cells (the cotransplantation group) and the ligustrazine group (the LT group). On days 3, 7, 10, 14, 21 and 28 after BMT, the peripheral blood cells and bone marrow mononuclear cells (BMMNC) were counted, and histology changes of bone marrow were detected. Results: The levels of peripheral WBC, RBC, platelet, and BMMNC in the contransplantation group were significantly higher than those in the single BMT group and the LT group (P<0.05). Conclusions: Cotransplantation with AGM stromal cells could significantly promote hematopoietic reconstruction in mice after BMT. (authors)

  13. Gastrointestinal and hepatic complications of hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Hande H Tuncer; Naveed Rana; Cannon Milani; Angela Darko; Samer A Al-Homsi

    2012-01-01

    Recognition and management of gastrointestinal and hepatic complications of hematopoietic stem cell transplantation has gained increasing importance as indications and techniques of transplantation have expanded in the last few years.The transplant recipient is at risk for several complications including conditioning chemotherapy related toxicities,infections,bleeding,sinusoidal obstruction syndrome,acute and chronic graftversus-host disease (GVHD) as well as other long-term problems.The severity and the incidence of many complications have improved in the past several years as the intensity of conditioning regimens has diminished and better supportive care and GVHD prevention strategies have been implemented.Transplant clinicians,however,continue to be challenged with problems arising from human leukocyte antigen-mismatched and unrelated donor transplants,expanding transplant indications and age-limit.This review describes the most commonly seen transplant related complications,focusing on their pathogenesis,differential diagnosis and management.

  14. Analysis of the motivation for hematopoietic stem cell donation.

    Science.gov (United States)

    Aurelio, M T; Aniasi, A; Haworth, S E; Colombo, M B; Dimonopoli, T; Mocellin, M C; Poli, F; Torelli, R; Crespiatico, L; Serafini, M; Scalamogna, M

    2011-05-01

    The Italian Bone Marrow Donor Register is the institutional organization for management of unrelated hematopoietic stem cell donors. The law requires only a donor's clinical history, but not a psychosocial profile for registration. We have studied the donor's motivation for enlistment on the donor registry and the medical staff's need for this information to interact correctly with the donor. For this purpose we distributed a questionnaire to new donors at the 20 centers in the Lombardy Region over a period of 1 year. The analysis of the responses revealed a prevalence of extrinsic motivations that would not ensure continued registration for donation. Therefore, it is necessary that the donor be well informed and better educated about all aspects of donation, in order to produce a shift to an intrinsic motivation. This objective can be facilitated via professional training of health workers in communication. PMID:21620031

  15. Sexual Health in Hematopoietic Stem Cell Transplant Recipients

    Science.gov (United States)

    Li, Zhuoyan; Mewawalla, Prerna; Stratton, Pamela; Yong, Agnes S.M.; Shaw, Bronwen E.; Hashmi, Shahrukh; Jagasia, Madan; Mohty, Mohamad; Majhail, Navneet S.; Savani, Bipin N.; Rovó, Alicia

    2016-01-01

    Hematopoietic stem cell transplantation (HSCT) plays a central role in patients with malignant and, increasingly, nonmalignant conditions. As the number of transplants increases and the survival rate improves, long-term complications are important to recognize and treat to maintain quality of life. Sexual dysfunction is a commonly described but relatively often underestimated complication after HSCT. Conditioning regimens, generalized or genital graft-versus-host disease, medications, and cardiovascular complications as well as psychosocial problems are known to contribute significantly to physical and psychological sexual dysfunction. Moreover, it is often a difficult topic for patients, their significant others, and health care providers to discuss. Early recognition and management of sexual dysfunction after HSCT can lead to improved quality of life and outcomes for patients and their partners. This review focuses on the risk factors for and treatment of sexual dysfunction after transplantation and provides guidance concerning how to approach and manage a patient with sexual dysfunction after HSCT. PMID:26372459

  16. Bullous pemphigoid after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Kato, Keisuke; Koike, Kazutoshi; Kobayashi, Chie; Iijima, Shigeruko; Hashimoto, Takashi; Tsuchida, Masahiro

    2015-06-01

    Bullous pemphigoid (BP) is an autoimmune skin disorder characterized by subepidermal blisters due to deposit of autoantibody against dermal basement membrane protein. It has been reported that BP can occur after allogeneic hematopoietic stem cell transplantation (HSCT). We describe a patient with BP having autoantibody against BP180 after unrelated-donor HSCT against T lymphoblastic leukemia. The patient was treated with steroid leading to complete resolution of BP, but T lymphoblastic leukemia progressed rapidly after steroid hormone treatment. Given that immunosuppressant may reduce graft-versus-tumor effect, immunomodulatory agents such as nicotinamide and tetracycline, erythromycin, and immunoglobulin may be appropriate as soon as typical blister lesions are seen after HSCT. PMID:26113316

  17. Gastrointestinal Complications Following Hematopoietic Stem Cell Transplantation in Children

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Hye; Lim, Gye Yeon; Im, Soo Ah; Chung, Nak Gyun; Hahn, Seung Tae [St. Mary' s Hospital, The Catholic University of Korea, Seoul (Korea, Republic of)

    2008-10-15

    Gastrointestinal system involvement is one of the principal complications seen in the recipients of hematopoietic stem cell transplantation (HSCT), and it is also a major cause of morbidity and death in these patients. The major gastrointestinal complications include typhlitis (neutropenic enterocolitis), pseudomembranous enterocolitis, viral enteritis, graft-versus-host disease, benign pneumatosis intestinalis, intestinal thrombotic microangiopathy, and post-transplantation lymphoproliferative disease. As these patients present with nonspecific abdominal symptoms, evaluation with using such imaging modalities as ultrasonography and CT is essential in order to assess the extent of gastrointestinal involvement and to diagnose these complications. We present here a pictorial review of the imaging features and other factors involved in the diagnosis of these gastrointestinal complications in pediatric HSCT recipients.

  18. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Christian Kosan

    2016-01-01

    Full Text Available All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function.

  19. Effect of Deep Space Radiation on Human Hematopoietic Cells

    Science.gov (United States)

    Kalota, Anna; Bennett, Paula; Swider, Cezary R.; Sutherland, Betsy M.; Gewirtz, Alan M.

    Astronaut flight crews on long-term missions in deep space will be exposed to a unique radiation environment as a result of exposure to galactic cosmic rays (GCR) and solar particle events (SPE). This environment consists predominantly of high energy protons, helium and high charge, high energy (HZE) atomic nuclei from iron predominantly, but all other elements as well. The effect of such particles, alone, or in combination, on human hematopoietic stem and progenitor cells (HSPC) has not been well studied but is clearly of interest since blood forming cells are known to be sensitive to radiation, and irreversible damage to these cells could quickly compromise a mission due to loss of marrow function. To better understand the effects of GCR and SPE on human stem/progenitor cell function, we have exposed partially purified CD34+ normal human marrow cells to protons, radioactive Fe, and Ti, alone, and in combination at varying doses up to 70cGy, and down to 1, 2, and 4 particle hits per nucleus. We then examined the effects of these radiations on HSPC function, as assessed by the ability to form CFU-GEMM, and LTCIC colonies in semi-solid culture medium. At the highest doses (50 and 70cGy), all radiation types tested significantly diminished the ability of CD34+ cells to form such colonies. The number of CFU-GEMM in irradiated samples was 70-90

  20. Response of hematopoietic stem cells to ionizing radiation

    International Nuclear Information System (INIS)

    Hematopoietic stem cells (HSCs) maintain blood and immune system throughout life and restore them after hematological injuries. Exposure of an organism to ionizing radiation (IR) causes rapid and acute myelosuppression and challenges the replenishment capacity of HSCs. Yet, the precise damages that are generated remain largely unexplored. To better understand these effects, phenotypic and functional changes in the stem/progenitor compartments of sublethally irradiated mice were monitored over a ten week period after radiation exposure. We report that shortly after sublethal IR-exposure, HSCs, defined by their repopulating ability, still segregate in the Hoechst dye excluding side population (SP); yet, their Sca-1 (S) and c-Kit (K) expression levels are increased and severely reduced, respectively, with a concurrent increase in the proportion of SPSK cells positive for established indicators of HSC presence: CD150+ and CD105+. A great proportion of HSCs quickly but transiently enter the cell cycle to replenish the bone marrow of myelo-ablated mice. Ten weeks after, whereas bone marrow cellularity has recovered and hematopoietic homeostasis is restored, major phenotypic modifications can be observed within the Lin-/low Sca-1+ c-Kit+ (LSK) stem/progenitor compartment: CD150+/Flk2- and CD150-/Flk2+ LSK cell frequencies are increased and dramatically reduced, respectively. CD150+ LSK cells also show impaired reconstitution capacity, accrued number of γ-H2AX foci and increased tendency to apoptosis. This demonstrates that the LSK compartment is not properly restored 10 weeks after sublethal exposure, and that long-term IR-induced injury to the bone marrow proceeds, at least partially, through direct damage to the stem cell pool. Thrombopoietin (TPO) has been shown to promote the survival of lethally irradiated mice when administrated quickly after exposure. We investigated the mechanisms underlying this effect, and found in a competitive transplant experiment that a

  1. Polarised cells, polarised views: Asymmetric cell division in hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Kim ePham

    2014-02-01

    Full Text Available It has long been recognised that alterations in cell shape and polarity play important roles in coordinating lymphocyte functions. In the last decade a new aspect of lymphocyte polarity, termed Asymmetric Cell Division (ACD, has attracted much attention. ACD has previously been shown to dictate or influence many aspects of development in model organisms such as the worm and the fly, and to be disrupted in disease. Recent observations that ACD also occurs in lymphocytes led to exciting speculations that ACD might influence lymphocyte differentiation and function, and leukaemia. However, dissecting the role that ACD might play in these activities is not straightforward, and the evidence to date for a functional role in lymphocyte fate determination has been controversial. In this review, we discuss the evidence to date for ACD in lymphocytes, and how it might influence lymphocyte fate. We also discuss current gaps in our knowledge, and suggest approaches to definitively test the physiological role of ACD in lymphocytes.

  2. DNA Damage: A Sensible Mediator of the Differentiation Decision in Hematopoietic Stem Cells and in Leukemia

    Directory of Open Access Journals (Sweden)

    Cary N. Weiss

    2015-03-01

    Full Text Available In the adult, the source of functionally diverse, mature blood cells are hematopoietic stem cells, a rare population of quiescent cells that reside in the bone marrow niche. Like stem cells in other tissues, hematopoietic stem cells are defined by their ability to self-renew, in order to maintain the stem cell population for the lifetime of the organism, and to differentiate, in order to give rise to the multiple lineages of the hematopoietic system. In recent years, increasing evidence has suggested a role for the accumulation of reactive oxygen species and DNA damage in the decision for hematopoietic stem cells to exit quiescence and to differentiate. In this review, we will examine recent work supporting the idea that detection of cell stressors, such as oxidative and genetic damage, is an important mediator of cell fate decisions in hematopoietic stem cells. We will explore the benefits of such a system in avoiding the development and progression of malignancies, and in avoiding tissue exhaustion and failure. Additionally, we will discuss new work that examines the accumulation of DNA damage and replication stress in aging hematopoietic stem cells and causes us to rethink ideas of genoprotection in the bone marrow niche.

  3. Mouse Hematopoietic Stem Cells, Unlike Human and Mouse Embryonic Stem Cells, Exhibit Checkpoint–Apoptosis Coupling

    OpenAIRE

    Rohrabaugh, Sara; Mantel, Charlie; Broxmeyer, Hal E.

    2008-01-01

    Previously, we reported that the spindle assembly checkpoint (SAC), which is coupled in somatic cells, is uncoupled from apoptosis-initiation in mouse and human embryonic stem cells (ESCs). This condition allows ESCs to tolerate and proliferate as polyploidy/aneuploid cells. Proper function of the SAC is vital to prevent polyploidy/aneuploidy during ex vivo hematopoietic stem cell (HSC) expansion. Here we address, for the first time, whether HSCs are more like ESCs or somatic cells with respe...

  4. Single-Cell Cytokine Profiling to Investigate Cellular Functional Diversity in Hematopoietic Malignancies.

    Science.gov (United States)

    Chen, Jonathan J; Kwak, Minsuk; Fan, Rong

    2016-01-01

    Single-cell analysis of cytokine production is increasingly recognized as an important method to understand the inflammatory microenvironment and hematopoietic disease state. Certain cytokines are critical to the regulation of lineage specification, and the aberrant production of these cytokines can contribute to lineage reprogramming. Here, we describe of a platform combining subnanoliter microchambers and a high-density antibody barcode array for the study of single-cell cytokine secretions in hematopoietic cancer cell populations. PMID:27581152

  5. Progress toward curing HIV infection with hematopoietic cell transplantation

    Directory of Open Access Journals (Sweden)

    Petz LD

    2015-07-01

    Full Text Available Lawrence D Petz,1 John C Burnett,2 Haitang Li,3 Shirley Li,3 Richard Tonai,1 Milena Bakalinskaya,4 Elizabeth J Shpall,5 Sue Armitage,6 Joanne Kurtzberg,7 Donna M Regan,8 Pamela Clark,9 Sergio Querol,10 Jonathan A Gutman,11 Stephen R Spellman,12 Loren Gragert,13 John J Rossi2 1StemCyte International Cord Blood Center, Baldwin Park, CA, USA; 2Department of Molecular and Cellular Biology, Irell and Manella Graduate School of Biological Sciences, 3Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA; 4CCR5-Δ32/Δ32 Research Department, StemCyte International Cord Blood Center, Baldwin Park, CA, USA; 5Department of Stem Cell Transplantation, University of Texas MD Anderson Cancer Center, Houston, TX, USA; 6MD Anderson Cord Blood Bank, Department of Stem Cell Transplantation, University of Texas MD Anderson Cancer Center, Houston, TX, USA; 7Carolinas Cord Blood Bank, Duke University Medical Center, Durham, NC, USA; 8St Louis Cord Blood Bank, SSM Cardinal Glennon Children's Medical Center, St Louis, MO, USA; 9Enhance Quality Consulting Inc., Oviedo, FL, USA; 10Cell Therapy Service and Cord Blood Bank, Banc de Sang i Teixits, Barcelona, Spain; 11BMT/Hematologic Malignancies, University of Colorado, Aurora, CO, USA; 12Immunobiology and Observational Research, CIBMTR, Minneapolis, MN, USA; 13National Marrow Donor Program/Be The Match, Minneapolis, MN, USA Abstract: HIV-1 infection afflicts more than 35 million people worldwide, according to 2014 estimates from the World Health Organization. For those individuals who have access to antiretroviral therapy, these drugs can effectively suppress, but not cure, HIV-1 infection. Indeed, the only documented case for an HIV/AIDS cure was a patient with HIV-1 and acute myeloid leukemia who received allogeneic hematopoietic cell transplantation (HCT from a graft that carried the HIV-resistant CCR5-Δ32/Δ32 mutation. Other attempts to establish a cure for HIV

  6. HSC-explorer: a curated database for hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Corinna Montrone

    Full Text Available HSC-Explorer (http://mips.helmholtz-muenchen.de/HSC/ is a publicly available, integrative database containing detailed information about the early steps of hematopoiesis. The resource aims at providing fast and easy access to relevant information, in particular to the complex network of interacting cell types and molecules, from the wealth of publications in the field through visualization interfaces. It provides structured information on more than 7000 experimentally validated interactions between molecules, bioprocesses and environmental factors. Information is manually derived by critical reading of the scientific literature from expert annotators. Hematopoiesis-relevant interactions are accompanied with context information such as model organisms and experimental methods for enabling assessment of reliability and relevance of experimental results. Usage of established vocabularies facilitates downstream bioinformatics applications and to convert the results into complex networks. Several predefined datasets (Selected topics offer insights into stem cell behavior, the stem cell niche and signaling processes supporting hematopoietic stem cell maintenance. HSC-Explorer provides a versatile web-based resource for scientists entering the field of hematopoiesis enabling users to inspect the associated biological processes through interactive graphical presentation.

  7. Recent advances in haploidentical hematopoietic stem cell transplantation using ex vivo T cell-depleted graft in children and adolescents.

    Science.gov (United States)

    Im, Ho Joon; Koh, Kyung-Nam; Seo, Jong Jin

    2016-03-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for children and adolescents with various malignant and non-malignant diseases. While human leukocyte antigen (HLA)-identical sibling donor is the preferred choice, matched unrelated volunteer donor is another realistic option for successful HSCT. Unfortunately, it is not always possible to find a HLA-matched donor for patients requiring HSCT, leading to a considerable number of deaths of patients without undergoing transplantation. Alternatively, allogeneic HSCT from haploidentical family members could provide donors for virtually all patients who need HSCT. Although the early attempts at allogeneic HSCT from haploidentical family donor (HFD) were disappointing, recent advances in the effective ex vivo depletion of T cells or unmanipulated in vivo regulation of T cells, better supportive care, and optimal conditioning regimens have significantly improved the outcomes of haploidentical HSCT. The ex vivo techniques used to remove T cells have evolved from the selection of CD34(+) hematopoietic stem cell progenitors to the depletion of CD3(+) cells, and more recently to the depletion of αβ(+) T cells. The recent emerging evidence for ex vivo T cell-depleted haploidentical HSCT has provided additional therapeutic options for pediatric patients with diseases curable by HSCT but has not found a suitable related or unrelated donor. This review discusses recent advances in haploidentical HSCT, focusing on transplant using ex vivo T cell-depleted grafts. In addition, our experiences with this novel approach for the treatment of pediatric patients with malignant and non-malignant diseases are described.

  8. The role of citrulline in patients following hematopoietic stem cell transplantation

    NARCIS (Netherlands)

    Herbers, A.H.E.

    2015-01-01

    Hematopoietic stem cell transplantation (HSCT) provides effective treatment of hematological malignancies and other disorders. However, the procedure temporarily compromises the immune system resulting in damage to the gastrointestinal (GI) tract, called mucosal barrier injury (MBI), and neutropenia

  9. Allogeneic hematopoietic stem cell transplantation for chronic myelomonocytic leukemia:a report of 12 patients

    Institute of Scientific and Technical Information of China (English)

    孙于谦

    2013-01-01

    Objective To retrospectively review the efficacy of allogeneic hematopoietic stem cell transplantation(allo-HSCT)for chronic myelomonocytic leukemia(CMML).Methods The engraftment,graft versus host disease(GVHD)

  10. Brain, Behavior, and Immunity: Biobehavioral influences on recovery following hematopoietic stem cell transplantation

    Science.gov (United States)

    Review of hematopoietic stem cell transplantation and its potential “window of opportunity” during which interventions targeting stress-related behavioral factors can influence the survival, health, and well-being of recipients.

  11. Oral features and dental health in Hurler Syndrome following hematopoietic stem cell transplantation.

    LENUS (Irish Health Repository)

    McGovern, Eleanor

    2010-09-01

    Hurler Syndrome is associated with a deficiency of a specific lysosomal enzyme involved in the degradation of glycosaminoglycans. Hematopoietic stem cell transplantation (HSCT) in early infancy is undertaken to help prevent the accumulation of glycosaminoglycans and improve organ function.

  12. Regulatory T cells and immune tolerance after allogeneic hematopoietic stem cell transplantation

    NARCIS (Netherlands)

    M. Bruinsma (Marieke)

    2010-01-01

    textabstractThe story of allogeneic hematopoietic stem cell transplantation (allo-SCT) begins after the atomic bombings of Hiroshima and Nagasaki in 1945. It was observed that fallout radiation caused dose-dependent depression of hematopoiesis 1. Research first focused on how to protect the hematopo

  13. Serum after autologous transplantation stimulates proliferation and expansion of human hematopoietic progenitor cells.

    Directory of Open Access Journals (Sweden)

    Thomas Walenda

    Full Text Available Regeneration after hematopoietic stem cell transplantation (HSCT depends on enormous activation of the stem cell pool. So far, it is hardly understood how these cells are recruited into proliferation and self-renewal. In this study, we have addressed the question if systemically released factors are involved in activation of hematopoietic stem and progenitor cells (HPC after autologous HSCT. Serum was taken from patients before chemotherapy, during neutropenia and after hematopoietic recovery. Subsequently, it was used as supplement for in vitro culture of CD34(+ cord blood HPC. Serum taken under hematopoietic stress (4 to 11 days after HSCT significantly enhanced proliferation, maintained primitive immunophenotype (CD34(+, CD133(+, CD45(- for more cell divisions and increased colony forming units (CFU as well as the number of cobblestone area-forming cells (CAFC. The stimulatory effect decays to normal levels after hematopoietic recovery (more than 2 weeks after HSCT. Chemokine profiling revealed a decline of several growth-factors during neutropenia, including platelet-derived growth factors PDGF-AA, PDGF-AB and PDGF-BB, whereas expression of monocyte chemotactic protein-1 (MCP-1 increased. These results demonstrate that systemically released factors play an important role for stimulation of hematopoietic regeneration after autologous HSCT. This feedback mechanism opens new perspectives for in vivo stimulation of the stem cell pool.

  14. Identification of a population of cells with hematopoietic stem cell properties in mouse aorta-gonad-mesonephros cultures

    International Nuclear Information System (INIS)

    The aorta-gonad-mesonephros (AGM) region is a primary source of definitive hematopoietic cells in the midgestation mouse embryo. In cultures of dispersed AGM regions, adherent cells containing endothelial cells are observed first, and then non-adherent hematopoietic cells are produced. Here we report on the characterization of hematopoietic cells that emerge in the AGM culture. Based on the expression profiles of CD45 and c-Kit, we defined three cell populations: CD45low c-Kit+ cells that had the ability to form hematopoietic cell colonies in methylcellulose media and in co-cultures with stromal cells; CD45low c-Kit- cells that showed a granulocyte morphology; CD45high c-Kitlow/- that exhibited a macrophage morphology. In co-cultures of OP9 stromal cells and freshly prepared AGM cultures, CD45low c-Kit+ cells from the AGM culture had the abilities to reproduce CD45low c-Kit+ cells and differentiate into CD45low c-Kit- and CD45high c-Kitlow/- cells, whereas CD45low c-Kit- and CD45high c-Kitlow/- did not produce CD45low c-Kit+ cells. Furthermore, CD45low c-Kit+ cells displayed a long-term repopulating activity in adult hematopoietic tissue when transplanted into the liver of irradiated newborn mice. These results indicate that CD45low c-Kit+ cells from the AGM culture have the potential to reconstitute multi-lineage hematopoietic cells

  15. Critical Role of Jak2 in the Maintenance and Function of Adult Hematopoietic Stem Cells

    OpenAIRE

    Akada, Hajime; Akada, Saeko; Hutchison, Robert E.; Sakamoto, Kazuhito; Wagner, Kay-Uwe; Mohi, Golam

    2014-01-01

    Jak2, a member of the Janus kinase family of non-receptor protein tyrosine kinases, is activated in response to a variety of cytokines, and functions in survival and proliferation of cells. An activating JAK2V617F mutation has been found in most patients with myeloproliferative neoplasms, and patients treated with Jak2 inhibitors show significant hematopoietic toxicities. However, the role of Jak2 in adult hematopoietic stem cells (HSCs) has not been clearly elucidated. Using a conditional Ja...

  16. Quality of life of hospitalized patients submitted to hematopoietic stem cells transplantation

    OpenAIRE

    Vanessa da Rocha; Luciana Puchalski Kalinke; Jorge Vinicius Cestari Felix; Maria de Fátima Montovani; Mariluci Alves Maftum; Paulo Ricardo Bittencourt Guimarães

    2015-01-01

    The objective of this study was to assess the quality of life and to identify the altered domains of adult patients with blood cancer, submitted to hematopoietic stem cells transplantation during hospitalization time. A longitudinal, observation and analytical study, conducted in a reference hospital for hematopoietic stem cell transplant. The data collection was during September of 2013 and September of 2014, including 25 patients and using questionnaires for sociodemographic and clinic char...

  17. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Science.gov (United States)

    Coste, Cécile; Neirinckx, Virginie; Gothot, André; Wislet, Sabine; Rogister, Bernard

    2015-01-01

    Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC) function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL) 12-abundant reticular (CAR) cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs), which have been recently identified as neural crest-derived cells (NCSCs). Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  18. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches?

    Directory of Open Access Journals (Sweden)

    Cécile eCoste

    2015-06-01

    Full Text Available Hematopoietic niches are defined as cellular and molecular microenvironments that regulate hematopoietic stem cell (HSC function together with stem cell autonomous mechanisms. Many different cell types have been characterized as contributors to the formation of HSC niches, such as osteoblasts, endothelial cells, Schwann cells, and mesenchymal progenitors. These mesenchymal progenitors have themselves been classified as CXC chemokine ligand (CXCL12-abundant reticular (CAR cells, stem cell factor expressing cells, or nestin-positive mesenchymal stem cells (MSCs, which have been recently identified as neural crest-derived cells (NCSCs. Together, these cells are spatially associated with HSCs and believed to provide appropriate microenvironments for HSC self-renewal, differentiation, mobilization and hibernation both by cell-to-cell contact and soluble factors. Interestingly, it appears that regulatory pathways governing the hematopoietic niche homeostasis are operating in the neurogenic niche as well. Therefore, this review paper aims to compare both the regulation of hematopoietic and neurogenic niches, in order to highlight the role of NCSCs and nervous system components in the development and the regulation of the hematopoietic system.

  19. Complications of central venous catheter in patients transplanted with hematopoietic stem cells in a specialized service

    Science.gov (United States)

    Barretta, Lidiane Miotto; Beccaria, Lúcia Marinilza; Cesarino, Cláudia Bernardi; Pinto, Maria Helena

    2016-01-01

    Abstract Objective: to identify the model, average length of stay on site and complications of central venous catheter in patients undergoing transplant of hematopoietic stem cells and verify the corresponding relationship between the variables: age, gender, medical diagnosis, type of transplant, implanted catheter and insertion site. Method: a retrospective and quantitative study with a sample of 188 patients transplanted records between 2007 and 2011. Results: the majority of patients used Hickman catheter with an average length of stay on site of 47.6 days. The complication fever/bacteremia was significant in young males with non-Hodgkin's lymphoma undergoing autologous transplant, which remained with the device for a long period in the subclavian vein. Conclusion: nurses should plan with their team the minimum waiting time, recommended between the catheter insertion and start of the conditioning regimen, as well as not to extend the length of time that catheter should be on site and undertake their continuing education, focusing on the prevention of complications. PMID:27276021

  20. Complications of central venous catheter in patients transplanted with hematopoietic stem cells in a specialized service

    Directory of Open Access Journals (Sweden)

    Lidiane Miotto Barretta

    2016-01-01

    Full Text Available Abstract Objective: to identify the model, average length of stay on site and complications of central venous catheter in patients undergoing transplant of hematopoietic stem cells and verify the corresponding relationship between the variables: age, gender, medical diagnosis, type of transplant, implanted catheter and insertion site. Method: a retrospective and quantitative study with a sample of 188 patients transplanted records between 2007 and 2011. Results: the majority of patients used Hickman catheter with an average length of stay on site of 47.6 days. The complication fever/bacteremia was significant in young males with non-Hodgkin's lymphoma undergoing autologous transplant, which remained with the device for a long period in the subclavian vein. Conclusion: nurses should plan with their team the minimum waiting time, recommended between the catheter insertion and start of the conditioning regimen, as well as not to extend the length of time that catheter should be on site and undertake their continuing education, focusing on the prevention of complications.

  1. Paracrine Molecules of Mesenchymal Stem Cells for Hematopoietic Stem Cell Niche

    OpenAIRE

    Tian Li; Yaojiong Wu

    2011-01-01

    Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are both adult stem cells residing in the bone marrow. MSCs interact with HSCs, they stimulate and enhance the proliferation of HSCs by secreting regulatory molecules and cytokines, providing a specialized microenvironment for controlling the process of hematopoiesis. In this paper we discuss how MSCs contribute to HSC niche, maintain the stemness and proliferation of HSCs, and support HSC transplantation.

  2. Cellular Barcoding Links B-1a B Cell Potential to a Fetal Hematopoietic Stem Cell State at the Single-Cell Level

    DEFF Research Database (Denmark)

    Kristiansen, Trine A; Jaensson Gyllenbäck, Elin; Zriwil, Alya;

    2016-01-01

    Hematopoietic stem cells (HSCs) undergo a functional switch in neonatal mice hallmarked by a decrease in self-renewing divisions and entry into quiescence. Here, we investigated whether the developmental attenuation of B-1a cell output is a consequence of a shift in stem cell state during ontogeny....... Using cellular barcoding for in vivo single-cell fate analyses, we found that fetal liver definitive HSCs gave rise to both B-1a and B-2 cells. Whereas B-1a potential diminished in all HSCs with time, B-2 output was maintained. B-1a and B-2 plasticity could be reinitiated in a subset of adult HSCs...... by ectopic expression of the RNA binding protein LIN28B, a key regulator of fetal hematopoiesis, and this coincided with the clonal reversal to fetal-like elevated self-renewal and repopulation potential. These results anchor the attenuation of B-1a cell output to fetal HSC behavior and demonstrate...

  3. Role of Hematopoietic Stem Cells in Inflammation of the Pancreas during Diabetes Mellitus.

    Science.gov (United States)

    Dygai, A M; Skurikhin, E G; Pershina, O V; Ermakova, N N; Krupin, V A; Ermolaeva, L A; Stakheeva, M N; Choinzonov, E L; Goldberg, V E; Reikhart, D V; Ellinidi, V N; Kravtsov, V Yu

    2016-02-01

    The model of streptozotocin-induced diabetes mellitus in C57Bl/6 mice was employed to study the role of precursors of insulin-producing β-cells, hematopoietic stem cells, and progenitor hematopoietic cells in inflammation. In addition to provoking hyperglycemia, streptozotocin elevated serum levels of IL-1β and hyaluronic acid, induced edema in the pancreatic insular tissue and its infiltration by inflammatory cells (neutrophils, lymphocytes, and macrophages) and fibroblasts. Inflammation in pancreatic islets was accompanied by necrotic processes and decreasing counts of multipotent progenitor β-cells (CD45(-), TER119(-), c-kit-1(-), and Flk-1(-)), oligopotent progenitor β-cells (CD45(-), TER119(-), CD133(+), and CD49f(low)), and insulinproducing β-cells (Pdx1(+)). Pancreatic infl ammation was preceded by elevation of the number of short-term hematopoietic stem cells (Lin-Sca-1(+)c-kit(+)CD34(+)) relative to long-term cells (Lin(-)Sca-1(+)c-kit(+)CD34(-)) in the bone marrow as well as recruitment of hematopoietic stem and progenitor cells into circulation. Transplantation of bone marrow hematopoietic stem and progenitor cells from diabetic C57Bl/6 donor mice to recipient CBA mice with 5-fluorouracilinduced leukopenia accelerated regeneration of granulocytopoiesis in recipient mice. PMID:26906195

  4. Regulatory Systems in Bone Marrow for Hematopoietic Stem/Progenitor Cells Mobilization and Homing

    Directory of Open Access Journals (Sweden)

    P. Alvarez

    2013-01-01

    Full Text Available Regulation of hematopoietic stem cell release, migration, and homing from the bone marrow (BM and of the mobilization pathway involves a complex interaction among adhesion molecules, cytokines, proteolytic enzymes, stromal cells, and hematopoietic cells. The identification of new mechanisms that regulate the trafficking of hematopoietic stem/progenitor cells (HSPCs cells has important implications, not only for hematopoietic transplantation but also for cell therapies in regenerative medicine for patients with acute myocardial infarction, spinal cord injury, and stroke, among others. This paper reviews the regulation mechanisms underlying the homing and mobilization of BM hematopoietic stem/progenitor cells, investigating the following issues: (a the role of different factors, such as stromal cell derived factor-1 (SDF-1, granulocyte colony-stimulating factor (G-CSF, and vascular cell adhesion molecule-1 (VCAM-1, among other ligands; (b the stem cell count in peripheral blood and BM and influential factors; (c the therapeutic utilization of this phenomenon in lesions in different tissues, examining the agents involved in HSPCs mobilization, such as the different forms of G-CSF, plerixafor, and natalizumab; and (d the effects of this mobilization on BM-derived stem/progenitor cells in clinical trials of patients with different diseases.

  5. The association of killer cell immunoglobulin like receptor gene polylmorphism with cytomegalovirus infection after hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    吴小津

    2013-01-01

    Objective To explore the influence of the killer cell immunoglobulin like receptor(KIR)gene polymorphism on cytomegalovirus(CMV)infection and pathogenesis after hematopoietic stem cell transplantation(HSCT)

  6. Optimising gene therapy of hypoparathyroidism with hematopoietic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yi; L(U) Bing-jie; XU Ping; SONG Chun-fang

    2005-01-01

    Background The treatment of hypoparathyroidism (HPT) is still a difficult clinical problem, which necessitates a new therapy. Gene therapy of HPT has been valuable, but how to improve the gene transfer efficiency and expression stability is a problem. This study was designed to optimize the gene therapy of HPT with hematopoietic stem cells (HSCs) recombined with the parathyroid hormone (PTH) gene. Methods The human PTH gene was amplified by polymerase chain reaction (PCR) from pcDNA3.1-PTH vectors and inserted into murine stem cell virus (MSCV) vectors with double enzyme digestion (EcoRI and XhoI). The recombinant vectors were transfected into PA317 packaging cell lines by the lipofectin method and screened by G418 selective medium. The condensed recombinant retroviruses were extracted and used to infect HSCs, which were injected into mice suffering from HPT. The change of symptoms and serum levels of PTH and calcium in each group of mice were investigated. Results The human PTH gene was inserted into MSCV vectors successfully and the titres were up to 2×107 colony forming unit (CFU)/ml in condensed retroviral solution. The secretion of PTH reached 15 ng·10-6·cell-1 per 48 hours. The wild type viruses were not detected via PCR amplification, so they were safe for use. The mice suffering from HPT recovered quickly and the serum levels of calcium and PTH remained normal for about three months after the HSCs recombined with PTH were injected into them. The therapeutic effect of this method was better than simple recombinant retroviruses injection.Conclusions The recombinant retroviral vectors MSCV-PTH and the high-titre condensed retroviral solution recombined with the PTH gene are obtained. The recombinant retroviral solution could infect HSCs at a high rate of efficiency. The infected HSCs could cure HPT in mice. This method has provided theoretical evidence for the clinical gene therapy of HPT.

  7. Hematopoietic System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    2011370 The efficacy and safety of second allogeneic hematopoietic stem cell transplantation for post-transplant hematologic malignancies relapse. CHEN Yuhong(陳育紅),et al.Instit Hematol,People’s Hosp,Peking Univ,Beijing 100044. Abstract:Objective To investigate the safety and efficacy of second allogeneic hematopoietic stem cell transplantation for the relapsed hematologic malignancies.Methods The data of 25 relapsed patients received the second allogeneic transplantation as a salvage therapy

  8. Placental Growth Factor Expression Is Required for Bone Marrow Endothelial Cell Support of Primitive Murine Hematopoietic Cells

    OpenAIRE

    Xiaoying Zhou; Barsky, Lora W.; Adams, Gregor B

    2013-01-01

    Two distinct microenvironmental niches that regulate hematopoietic stem/progenitor cell physiology in the adult bone marrow have been proposed; the endosteal and the vascular niche. While extensive studies have been performed relating to molecular interactions in the endosteal niche, the mechanisms that regulate hematopoietic stem/progenitor cell interaction with bone marrow endothelial cells are less well defined. Here we demonstrate that endothelial cells derived from the bone marrow suppor...

  9. Hematopoietic Cell Transplantation Outcomes in Monosomal Karyotype Myeloid Malignancies.

    Science.gov (United States)

    Pasquini, Marcelo C; Zhang, Mei-Jie; Medeiros, Bruno C; Armand, Philippe; Hu, Zhen-Huan; Nishihori, Taiga; Aljurf, Mahmoud D; Akpek, Görgün; Cahn, Jean-Yves; Cairo, Mitchell S; Cerny, Jan; Copelan, Edward A; Deol, Abhinav; Freytes, César O; Gale, Robert Peter; Ganguly, Siddhartha; George, Biju; Gupta, Vikas; Hale, Gregory A; Kamble, Rammurti T; Klumpp, Thomas R; Lazarus, Hillard M; Luger, Selina M; Liesveld, Jane L; Litzow, Mark R; Marks, David I; Martino, Rodrigo; Norkin, Maxim; Olsson, Richard F; Oran, Betul; Pawarode, Attaphol; Pulsipher, Michael A; Ramanathan, Muthalagu; Reshef, Ran; Saad, Ayman A; Saber, Wael; Savani, Bipin N; Schouten, Harry C; Ringdén, Olle; Tallman, Martin S; Uy, Geoffrey L; Wood, William A; Wirk, Baldeep; Pérez, Waleska S; Batiwalla, Minoo; Weisdorf, Daniel J

    2016-02-01

    The presence of monosomal karyotype (MK+) in acute myeloid leukemia (AML) is associated with dismal outcomes. We evaluated the impact of MK+ in AML (MK+AML, n = 240) and in myelodysplastic syndrome (MDS) (MK+MDS, n = 221) on hematopoietic cell transplantation outcomes compared with other cytogenetically defined groups (AML, n = 3360; MDS, n = 1373) as reported to the Center for International Blood and Marrow Transplant Research from 1998 to 2011. MK+ AML was associated with higher disease relapse (hazard ratio, 1.98; P < .01), similar transplantation-related mortality (TRM) (hazard ratio, 1.01; P = .90), and worse survival (hazard ratio, 1.67; P < .01) compared with those outcomes for other cytogenetically defined AML. Among patients with MDS, MK+ MDS was associated with higher disease relapse (hazard ratio, 2.39; P < .01), higher TRM (hazard ratio, 1.80; P < .01), and worse survival (HR, 2.02; P < .01). Subset analyses comparing chromosome 7 abnormalities (del7/7q) with or without MK+ demonstrated higher mortality for MK+ disease in for both AML (hazard ratio, 1.72; P < .01) and MDS (hazard ratio, 1.79; P < .01). The strong negative impact of MK+ in myeloid malignancies was observed in all age groups and using either myeloablative or reduced-intensity conditioning regimens. Alternative approaches to mitigate disease relapse in this population are needed.

  10. Endocrinopathies after Allogeneic and Autologous Transplantation of Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Francesco Orio

    2014-01-01

    Full Text Available Early and late endocrine disorders are among the most common complications in survivors after hematopoietic allogeneic- (allo- and autologous- (auto- stem cell transplant (HSCT. This review summarizes main endocrine disorders reported in literature and observed in our center as consequence of auto- and allo-HSCT and outlines current options for their management. Gonadal impairment has been found early in approximately two-thirds of auto- and allo-HSCT patients: 90–99% of women and 60–90% of men. Dysfunctions of the hypothalamus-pituitary-growth hormone/insulin growth factor-I axis, hypothalamus-pituitary-thyroid axis, and hypothalamus-pituitary-adrenal axis were documented as later complicances, occurring in about 10, 30, and 40–50% of transplanted patients, respectively. Moreover, overt or subclinical thyroid complications (including persistent low-T3 syndrome, chronic thyroiditis, subclinical hypo- or hyperthyroidism, and thyroid carcinoma, gonadal failure, and adrenal insufficiency may persist many years after HSCT. Our analysis further provides evidence that main recognized risk factors for endocrine complications after HSCT are the underlying disease, previous pretransplant therapies, the age at HSCT, gender, total body irradiation, posttransplant derangement of immune system, and in the allogeneic setting, the presence of graft-versus-host disease requiring prolonged steroid treatment. Early identification of endocrine complications can greatly improve the quality of life of long-term survivors after HSCT.

  11. OP9-Lhx2 stromal cells facilitate derivation of hematopoietic progenitors both in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Xiaoli Chen

    2015-09-01

    Full Text Available Generating engraftable hematopoietic stem cells (HSCs from pluripotent stem cells (PSCs is an ideal approach for obtaining induced HSCs for cell therapy. However, the path from PSCs to robustly induced HSCs (iHSCs in vitro remains elusive. We hypothesize that the modification of hematopoietic niche cells by transcription factors facilitates the derivation of induced HSCs from PSCs. The Lhx2 transcription factor is expressed in fetal liver stromal cells but not in fetal blood cells. Knocking out Lhx2 leads to a fetal hematopoietic defect in a cell non-autonomous role. In this study, we demonstrate that the ectopic expression of Lhx2 in OP9 cells (OP9-Lhx2 accelerates the hematopoietic differentiation of PSCs. OP9-Lhx2 significantly increased the yields of hematopoietic progenitor cells via co-culture with PSCs in vitro. Interestingly, the co-injection of OP9-Lhx2 and PSCs into immune deficient mice also increased the proportion of hematopoietic progenitors via the formation of teratomas. The transplantation of phenotypic HSCs from OP9-Lhx2 teratomas but not from the OP9 control supported a transient repopulating capability. The upregulation of Apln gene by Lhx2 is correlated to the hematopoietic commitment property of OP9-Lhx2. Furthermore, the enforced expression of Apln in OP9 cells significantly increased the hematopoietic differentiation of PSCs. These results indicate that OP9-Lhx2 is a good cell line for regeneration of hematopoietic progenitors both in vitro and in vivo.

  12. Cigarette Smoke Alters the Hematopoietic Stem Cell Niche

    Directory of Open Access Journals (Sweden)

    Robert W. Siggins

    2014-02-01

    Full Text Available Effects of tobacco smoke on hematologic derangements have received little attention. This study employed a mouse model of cigarette smoke exposure to explore the effects on bone marrow niche function. While lung cancer is the most widely studied consequence of tobacco smoke exposure, other malignancies, including leukemia, are associated with tobacco smoke exposure. Animals received cigarette smoke exposure for 6 h/day, 5 days/week for 9 months. Results reveal that the hematopoietic stem and progenitor cell (HSPC pool size is reduced by cigarette smoke exposure. We next examined the effect of cigarette smoke exposure on one supporting cell type of the niche, the mesenchymal stromal cells (MSCs. Smoke exposure decreased the number of MSCs. Transplantation of naïve HSPCs into irradiated mice with cigarette smoke exposure yielded fewer numbers of engrafted HSPCs. This result suggests that smoke-exposed mice possess dysfunctional niches, resulting in abnormal hematopoiesis. Co-culture experiments using MSCs isolated from control or cigarette smoke-exposed mice with naïve HSPCs in vitro showed that MSCs from cigarette smoke-exposed mice generated marked expansion of naïve HSPCs. These data show that cigarette smoke exposure decreases in vivo MSC and HSC number and also increases pro-proliferative gene expression by cigarette smoke-exposed MSCs, which may stimulate HSPC expansion. These results of this investigation are clinically relevant to both bone marrow donors with a history of smoking and bone marrow transplant (BMT recipients with a history of smoking.

  13. Donor parity no longer a barrier for female-to-male hematopoietic stem cell transplantation

    OpenAIRE

    van Halteren, Astrid GS; Miranda P Dierselhuis; Netelenbos, Tanja; Fechter, Mirjam

    2014-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) is a widely applied treatment for disorders mainly involving the hematopoietic system. The success of this treatment depends on many different patient- and donor-specific factors. Based on higher CD34+ yields and superior clinical outcomes associated with the use of male donors, males are generally seen as the preferred HSCT donor. In addition, female donors are notorious for bearing memory type lymphocytes induced by previous pregnanc...

  14. Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice

    OpenAIRE

    Nijagal, Amar; Wegorzewska, Marta; Jarvis, Erin; Le, Tom; Tang, Qizhi; MacKenzie, Tippi C.

    2011-01-01

    Transplantation of allogeneic stem cells into the early gestational fetus, a treatment termed in utero hematopoietic cell transplantation (IUHCTx), could potentially overcome the limitations of bone marrow transplants, including graft rejection and the chronic immunosuppression required to prevent rejection. However, clinical use of IUHCTx has been hampered by poor engraftment, possibly due to a host immune response against the graft. Since the fetal immune system is relatively immature, we h...

  15. Regulatory T-cell immunotherapy for allogeneic hematopoietic stem-cell transplantation

    OpenAIRE

    Horch, Matthew; Nguyen, Vu H

    2012-01-01

    From mouse studies to recently published clinical trials, evidence has accumulated on the potential use of regulatory T cells (Treg) in preventing and treating graft-versus-host disease following hematopoietic-cell transplantation (HCT). However, controversies remain as to the phenotype and stability of various Treg subsets and their respective roles in vivo, the requirement of antigen-specificity of Treg to reduce promiscuous suppression, and the molecular mechanisms by which Treg suppress, ...

  16. [Potential of hematopoietic stem cells as the basis for generation of advanced therapy medicinal products].

    Science.gov (United States)

    Bönig, H; Heiden, M; Schüttrumpf, J; Müller, M M; Seifried, E

    2011-07-01

    Individualized, (stem) cell-based therapies of congenital and acquired illnesses are among the most exciting medical challenges of the twenty-first century. Before the full potential of such therapies can be achieved, many basic scientific and biotechnological questions remain to be answered. What is the ideal source for the generation of such cellular drugs is one of those issues. In many respects, hematopoietic stem cells fulfill the requirements for stem cells as starting material for novel cellular therapeutics, including the simple access to large amounts of stem cells, the availability of good phenotypic markers for their prospective isolation, and an extensive body of knowledge about the in vitro manipulation of these cells. This manuscript discusses the general and specific usability of hematopoietic stem cells as starting material for novel cellular therapeutics and presents some examples of hematological and nonhematological therapeutic approaches which are based on hematopoietic stem cells.

  17. In Vivo Repopulating Activity Emerges at the Onset of Hematopoietic Specification during Embryonic Stem Cell Differentiation

    OpenAIRE

    Stella Pearson; Sara Cuvertino; Maud Fleury; Georges Lacaud; Valerie Kouskoff

    2015-01-01

    Summary The generation of in vivo repopulating hematopoietic cells from in vitro differentiating embryonic stem cells has remained a long-standing challenge. To date, hematopoietic engraftment has mostly been achieved through the enforced expression of ectopic transcription factors. Here, we describe serum-free culture conditions that allow the generation of in vivo repopulating hematopoietic cells in the absence of ectopically expressed factors. We show that repopulating activity arises imme...

  18. Heparinized crosslinked collagen structures for the expansion and differentiation of hematopoietic stem cells

    NARCIS (Netherlands)

    Siebum, Bastiaan

    2007-01-01

    It is generally accepted that bone marrow contains niches that regulate the activity of hematopoietic stem cells (HSCs). These cells are the source of all different blood cells. In their niche the HSCs are localized in a specific microenvironment, where they interact with stromal cells, extracellula

  19. Hematopoietic stem cells: potential new applications for translational medicine.

    Science.gov (United States)

    Felfly, Hady; Haddad, Gabriel G

    2014-01-01

    Hematopoietic stem cells (HSC) are multipotent cells that produce the various lineages of blood and HSC transplantations (HSCT) are widely used to reconstitute damaged bone marrow (BM). Over time, HSCT has evolved for the treatment of non-blood diseases as well, brain in particular. However, HSCT required total myeloablation through irradiation and/or chemotherapy for the treatment of BM-related diseases, and HSCs are difficult to safely deliver in large amounts into the brain. In blood disorders, for a minimal myelosuppression to be sufficient and allow donor cells to engraft, it is necessary to determine the minimal percentage of normal BM cells needed to achieve phenotypic correction. Recent studies on animal models of ?-thalassemia and sickle cell disease (SCD), through Competitive Repopulation Assay (CRA) following lethal irradiation of recipients, demonstrated that an average of 25% normal BM cells allows the production of enough normal red blood cells to significantly correct the ?-thalassemia and SCD phenotypes, at the levels of BM, blood, histology, and survival, with normal donor cells contributing to 50-60% of peripheral red blood cells. Further assays using mild myelosuppression showed that long term sustained phenotypic correction can be obtained for both diseases through a novel transplantation strategy based on modulating four parameters: dose of irradiation/myelosuppression, number of transplanted cells, timing of cell injections, and number of cell doses. Through a minimal dose of irradiation of 1Gy (100 Rads) or 2Gy, two injections of BM cells within the first 24h after myelosuppression resulted in engraftment in 100% of mice and a sustained therapeutic mixed chimerism in ?-thalassemia, while three to four injections were needed to achieve a similar outcome in SCD. Following the success of these trials, we modified this novel HSCT strategy and applied it to determine whether we can protect mice from lethal stroke induced through the Middle

  20. Aneuploidy impairs hematopoietic stem cell fitness and is selected against in regenerating tissues in vivo.

    Science.gov (United States)

    Pfau, Sarah J; Silberman, Rebecca E; Knouse, Kristin A; Amon, Angelika

    2016-06-15

    Aneuploidy, an imbalanced karyotype, is a widely observed feature of cancer cells that has long been hypothesized to promote tumorigenesis. Here we evaluate the fitness of cells with constitutional trisomy or chromosomal instability (CIN) in vivo using hematopoietic reconstitution experiments. We did not observe cancer but instead found that aneuploid hematopoietic stem cells (HSCs) exhibit decreased fitness. This reduced fitness is due at least in part to the decreased proliferative potential of aneuploid hematopoietic cells. Analyses of mice with CIN caused by a hypomorphic mutation in the gene Bub1b further support the finding that aneuploidy impairs cell proliferation in vivo. Whereas nonregenerating adult tissues are highly aneuploid in these mice, HSCs and other regenerative adult tissues are largely euploid. These findings indicate that, in vivo, mechanisms exist to select against aneuploid cells.

  1. Aneuploidy impairs hematopoietic stem cell fitness and is selected against in regenerating tissues in vivo.

    Science.gov (United States)

    Pfau, Sarah J; Silberman, Rebecca E; Knouse, Kristin A; Amon, Angelika

    2016-06-15

    Aneuploidy, an imbalanced karyotype, is a widely observed feature of cancer cells that has long been hypothesized to promote tumorigenesis. Here we evaluate the fitness of cells with constitutional trisomy or chromosomal instability (CIN) in vivo using hematopoietic reconstitution experiments. We did not observe cancer but instead found that aneuploid hematopoietic stem cells (HSCs) exhibit decreased fitness. This reduced fitness is due at least in part to the decreased proliferative potential of aneuploid hematopoietic cells. Analyses of mice with CIN caused by a hypomorphic mutation in the gene Bub1b further support the finding that aneuploidy impairs cell proliferation in vivo. Whereas nonregenerating adult tissues are highly aneuploid in these mice, HSCs and other regenerative adult tissues are largely euploid. These findings indicate that, in vivo, mechanisms exist to select against aneuploid cells. PMID:27313317

  2. Long-term outcomes among older patients following nonmyeloablative conditioning and allogeneic hematopoietic cell transplantation for advanced hematologic malignancies

    DEFF Research Database (Denmark)

    Sorror, Mohamed L; Sandmaier, Brenda M; Storer, Barry E;

    2011-01-01

    A minimally toxic nonmyeloablative regimen was developed for allogeneic hematopoietic cell transplantation (HCT) to treat patients with advanced hematologic malignancies who are older or have comorbid conditions....

  3. Autologous hematopoietic stem cell transplantation in autoimmune diseases.

    Science.gov (United States)

    Annaloro, Claudio; Onida, Francesco; Lambertenghi Deliliers, Giorgio

    2009-12-01

    The term 'autoimmune diseases' encompasses a spectrum of diseases whose clinical manifestations and, possibly, biological features vary widely. The results of conventional treatment are considered unsatisfactory in aggressive forms, with subsets of patients having short life expectancies. Relying on wide experimental evidence and more feeble clinical data, some research groups have used autologous hematopoietic stem cell transplantation (HSCT) in the most disabling autoimmune diseases with the aim of resetting the patient's immune system. Immunoablative conditioning regimens are preferred over their myeloablative counterparts, and some form of in vivo and/or ex vivo T-cell depletion is generally adopted. Despite 15 years' experience, published controlled clinical trials are still lacking, with the evidence so far available coming from pilot studies and registry surveys. In multiple sclerosis, clinical improvement, or at least lasting disease stabilization, can be achieved in the majority of the patients; nevertheless, the worst results are observed in patients with progressive disease, where no benefit can be expected from conventional therapy. Concerning rheumatologic diseases, wide experience has been acquired in systemic sclerosis, with long-term improvements in cutaneous disease being frequently reported, although visceral involvement remains unchanged at best. Autografting has proved to be barely effective in rheumatoid arthritis and quite toxic in juvenile idiopathic arthritis, whereas it leads to clinical remission and the reversal of visceral impairment in the majority of patients with systemic lupus erythematosus. A promising indication is Crohn's disease, in which long-term endoscopic remission is frequently observed. Growing experience with autologous HCST in autoimmune diseases has progressively reduced concerns about transplant-related mortality and secondary myelodysplasia/leukemia. Therefore, a sustained complete remission seems to be within the

  4. Natural killer cell differentiation from hematopoietic stem cells: a comparative analysis of heparin- and stromal cell-supported methods

    NARCIS (Netherlands)

    Dezell, S.A.; Ahn, Y.O.; Spanholtz, J.; Wang, H.; Weeres, M.; Jackson, S.; Cooley, S.; Dolstra, H.; Miller, J.S.; Verneris, M.R.

    2012-01-01

    Natural killer (NK) cells differentiated from hematopoietic stem cells (HSCs) may have significant clinical benefits over NK cells from adult donors, including the ability to choose alloreactive donors and potentially more robust in vivo expansion. Stromal-based methods have been used to study the d

  5. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells.

    Science.gov (United States)

    Luevano, Martha; Domogala, Anna; Blundell, Michael; Jackson, Nicola; Pedroza-Pacheco, Isabela; Derniame, Sophie; Escobedo-Cousin, Michelle; Querol, Sergio; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2014-01-01

    Adoptive natural killer (NK) cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC) has become an alluring option for NK cell therapy, with umbilical cord blood (UCB) and mobilized peripheral blood (PBCD34(+)) being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34(+)) and frozen PBCD34(+) to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34(+) cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34(+) cultures. NK cells generated from CBCD34(+) and PBCD34(+) expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34(+)-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34(+)-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34(+) for the production of NK cells in vitro results in higher cell numbers than PBCD34(+), without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC.

  6. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Martha Luevano

    Full Text Available Adoptive natural killer (NK cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC has become an alluring option for NK cell therapy, with umbilical cord blood (UCB and mobilized peripheral blood (PBCD34(+ being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34(+ and frozen PBCD34(+ to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34(+ cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34(+ cultures. NK cells generated from CBCD34(+ and PBCD34(+ expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34(+-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34(+-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34(+ for the production of NK cells in vitro results in higher cell numbers than PBCD34(+, without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC.

  7. Invasive aspergillosis in hematopoietic stem cell transplant recipients: a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Viviane Maria Hessel Carvalho-Dias

    2008-10-01

    Full Text Available Invasive aspergillosis (IA currently is an important cause of mortality in subjects undergoing hematopoietic stem cell transplants (HSCT and is also an important cause of opportunistic respiratory and disseminated infections in other types of immunocompromised patients. We examined the medical records of 24 cases of proven and probable invasive aspergillosis (IA at the Hospital de Clinicas of the Federal University of Parana, Brazil, from January 1996 to October 2006. During this period occurred a mean of 2.2 cases per year or 3.0 cases per 100 HSTC transplants. There was a significant relationship between structural changes in the bone marrow transplant (BMT Unit and the occurrence of IA cases (p=0.034, relative risk (RR = 2.47. Approximately 83% of the patients died due to invasive fungal infection within 60 days of follow up. Some factors tended to be associated with mortality, but these associations were not significant. These included corticosteroid use, neutropenia (<100 cells/mm³ at diagnosis, patients that needed to change antifungal therapy because of toxicity of the initial first-line regimen and disseminated disease. These factors should be monitored in BMT units to help prevent IA. Physicians should be aware of the risk factors for developing invasive fungal infections and try to reduce or eliminate them. However, once this invasive disease begins, appropriate diagnostic and treatment measures must be implemented as soon as possible in order to prevent the high mortality rates associated with this condition.

  8. Pre-malignant lymphoid cells arise from hematopoietic stem/progenitor cells in chronic lymphocytic leukemia.

    Science.gov (United States)

    Kikushige, Yoshikane; Miyamoto, Toshihiro

    2015-11-01

    Human malignancies progress through a multistep process that includes the development of critical somatic mutations over the clinical course. Recent novel findings have indicated that hematopoietic stem cells (HSCs), which have the potential to self-renew and differentiate into multilineage hematopoietic cells, are an important cellular target for the accumulation of critical somatic mutations in hematological malignancies and play a central role in myeloid malignancy development. In contrast to myeloid malignancies, mature lymphoid malignancies, such as chronic lymphocytic leukemia (CLL), are thought to originate directly from differentiated mature lymphocytes; however, recent compelling data have shown that primitive HSCs and hematopoietic progenitor cells contribute to the pathogenesis of mature lymphoid malignancies. Several representative mutations of hematological malignancies have been identified within the HSCs of CLL and lymphoma patients, indicating that the self-renewing long-lived fraction of HSCs can serve as a reservoir for the development of oncogenic events. Novel mice models have been established as human mature lymphoma models, in which specific oncogenic events target the HSCs and immature progenitor cells. These data collectively suggest that HSCs can be the cellular target involved in the accumulation of oncogenic events in the pathogenesis of mature lymphoid and myeloid malignancies.

  9. Antifungal Therapy in Hematopoietic Stem Cell Transplant Recipients.

    Science.gov (United States)

    Busca, Alessandro; Pagano, Livio

    2016-01-01

    Invasive fungal infections (IFI) represent a major hindrance to the success of hematopoietic stem cell transplantation (HSCT), contributing substantially to morbidity and infection-related mortality. During the most recent years several reports indicate an overall increase of IFI among hematologic patients, in particular, invasive aspergillosis, that may be explained, at least partially, by the fact that diagnoses only suspected in the past, are now more easily established due to the application of serum biomarkers and early use of CT scan. Along with new diagnostic options, comes the recent development of novel antifungal agents that expanded the spectrum of activity over traditional treatments contributing to the successful management of fungal diseases. When introduced in 1959, Amphotericin B deoxycholate (d-AmB) was a life-saving drug, and the clinical experience over 50 years has proven that this compound is effective although toxic. Given the superior safety profile, lipid formulations of AmB have now replaced d-AmB in many circumstances. Similarly, echinocandins have been investigated as initial therapy for IA in several clinical trials including HSCT recipients, although the results were moderately disappointing leading to a lower grade of recommendation in the majority of published guidelines. Azoles represent the backbone of therapy for treating immunocompromised patients with IFI, including voriconazole and the newcomer isavuconazole; in addition, large studies support the use of mold-active azoles, namely voriconazole and posaconazole, as antifungal prophylaxis in HSCT recipients. The aim of the present review is to summarize the clinical application of antifungal agents most commonly employed in the treatment of IFI. PMID:27648202

  10. Bone marrow transplantation in mice as a tool for studying the role of hematopoietic cells in metabolic and cardiovascular diseases

    NARCIS (Netherlands)

    Aparicio-Vergara, Marcela; Shiri-Sverdlov, Ronit; de Haan, Gerald; Hofker, Marten H.

    2010-01-01

    Hematopoietic cells have been established as major players in cardiovascular disease, with an important role in the etiology of atherosclerotic plaque. In addition, hematopoietic cells, and in particular the cells of monocyte and macrophage lineages, have recently been unmasked as one of the main ca

  11. Identification of a novel population of human cord blood cells with hematopoietic and chondrocytic potential

    Institute of Scientific and Technical Information of China (English)

    Karen E JAY; Anne ROULEAU; T Michael UNDERHILL; Mickie BHATIA

    2004-01-01

    With the exception of mature erythrocytes, cells within the human hematopoietic system are characterized by the cell surface expression of the pan-leukocyte receptor CD45. Here, we identify a novel subset among mononuclear cord blood cells depleted of lineage commitment markers (Lin-) that are devoid of CD45 expression. Surprisingly, functional examination of Lin-CD45- cells also lacking cell surface CD34 revealed they were capable of multipotential hematopoietic progenitor capacity. Co-culture with mouse embryonic limb bud cells demonstrated that Lin-CD45-CD34- cells were capable of contributing to cartilage nodules and differentiating into human chondrocytes. BMP-4, a mesodermal factor known to promote chondrogenesis, significantly augmented Lin-CD45-CD34- differentiation into chondrocytes.Moreover, unlike CD34+ human hematopoietic stem cells, Lin-CD45-CD34- cells were unable to proliferate or survive in liquid cultures, whereas single Lin-CD45-CD34- cells were able to chimerize the inner cell mass (ICM) of murine blastocysts and proliferate in this embryonic environment. Our study identifies a novel population of Lin-CD45-CD34-cells capable of commitment into both hematopoietic and chondrocytic lineages, suggesting that human cord blood may provide a more ubiquitous source of tissue with broader developmental potential than previously appreciated.

  12. The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation.

    NARCIS (Netherlands)

    Walasek, M.A.; Bystrykh, L.; Boom, V. van den; Olthof, S.; Ausema, A.; Ritsema, M.; Huls, G.A.; Haan, G. de; Os, R. van

    2012-01-01

    Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small molecule

  13. Nucleofection, an efficient nonviral method to transfer genes into human hematopoietic stem and progenitor cells.

    NARCIS (Netherlands)

    Levetzow, G. von; Spanholtz, J.; Beckmann, J.; Fischer, J.; Kogler, G.; Wernet, P.; Punzel, M.; Giebel, B.

    2006-01-01

    The targeted manipulation of the genetic program of single cells as well as of complete organisms has strongly enhanced our understanding of cellular and developmental processes and should also help to increase our knowledge of primary human stem cells, e.g., hematopoietic stem cells (HSCs), within

  14. The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation

    NARCIS (Netherlands)

    Walasek, Marta A.; Bystrykh, Leonid; van den Boom, Vincent; Olthof, Sandra; Ausema, Albertina; Ritsema, Martha; Huls, Gerwin; de Haan, Gerald; van Os, Ronald

    2012-01-01

    Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small molecule

  15. The effects of proliferation and DNA damage on hematopoietic stem cell function determine aging.

    Science.gov (United States)

    Khurana, Satish

    2016-07-01

    In most of the mammalian tissues, homeostasis as well as injury repair depend upon a small number of resident adult stem cells. The decline in tissue/organ function in aged organisms has been directly linked with poorly functioning stem cells. Altered function of hematopoietic stem cells (HSCs) is at the center of an aging hematopoietic system, a tissue with high cellular turnover. Poorly engrafting, myeloid-biased HSCs with higher levels of DNA damage accumulation are the hallmark features of an aged hematopoietic system. These cells show a higher proliferation rate than their younger counterparts. It was proposed that quiescence of these cells over long period of time leads to accumulation of DNA damage, eventually resulting in poor function/pathological conditions in hematopoietic system. However, various mouse models with premature aging phenotype also show highly proliferative HSCs. This review examines the evidence that links proliferation of HSCs with aging, which leads to functional changes in the hematopoietic system. Developmental Dynamics 245:739-750, 2016. © 2016 Wiley Periodicals, Inc. PMID:26813236

  16. GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry

    OpenAIRE

    Ku, Chia-Jui; Hosoya, Tomonori; Maillard, Ivan; Engel, James Douglas

    2012-01-01

    Maintaining hematopoietic stem cell (HSC) quiescence is a critical property for the life-long generation of blood cells. Approximately 75% of cells in a highly enriched long-term repopulating HSC (LT-HSC) pool (Lin−Sca1+c-KithiCD150+CD48−) are quiescent, with only a small percentage of the LT-HSCs in cycle. Transcription factor GATA-3 is known to be vital for the development of T cells at multiple stages in the thymus and for Th2 differentiation in the peripheral organs. Although it is well d...

  17. Correlation between survivin mRNA expression and homoharringtonine induced apoptosis of malignant hematopoietic cells

    Institute of Scientific and Technical Information of China (English)

    CAI Zhen; BAO Han-ying; LIN Mao-fang

    2005-01-01

    Background The inhibitor of apoptosis (IAP) gene family is involved in the suppression of apoptotic cell death as well as an increasing number of seemingly unrelated cellular functions. It is not known, however, whether IAP expression in malignant hematopoietic cells is affected by chemotherapeutic agents such as homoharringtonine (HHT). In this study, we investigated mRNA expression levels of IAPs, especially survivin, in various hematopoietic cell lines in relation with apoptosis induced by HHT. Methods Semiquantitative reverse transcriptase polymerase chain reaction was used to determine survivin mRNA levels. Cell apoptosis was examined by flow cytometry. Cell viability and proliferation assay was evaluated by MTT. The experiments were performed on the malignant hematopoietic cell lines MUTZ-1, K562, Jurkat, RMPI and HL60, with or without survivin antisense-oligodeoxynucleotides (AS-ODN) and HHT.Results The expression levels of survivin mRNA were variable in the cell lines and negatively correlated to HHT induced cell apoptosis. Survivin AS-ODN significantly decreased mRNA level of survivin, but not those of bax and bcl-2. Survivin also inhibited MUTZ-1 cell growth and induced apoptosis in a dose dependent manner. AS-ODN and HHT showed synergistic effect on MUTZ-1 cell growth.Conclusion The apoptotic effect of HHT on the hematopoietic cell lines is associated with decreased level of survivin expression. Survivin could be a new marker for drug sensitivity and a new target for cancer treatment.

  18. The MICA-129 dimorphism affects NKG2D signaling and outcome of hematopoietic stem cell transplantation.

    Science.gov (United States)

    Isernhagen, Antje; Malzahn, Dörthe; Viktorova, Elena; Elsner, Leslie; Monecke, Sebastian; von Bonin, Frederike; Kilisch, Markus; Wermuth, Janne Marieke; Walther, Neele; Balavarca, Yesilda; Stahl-Hennig, Christiane; Engelke, Michael; Walter, Lutz; Bickeböller, Heike; Kube, Dieter; Wulf, Gerald; Dressel, Ralf

    2015-11-01

    The MHC class I chain-related molecule A (MICA) is a highly polymorphic ligand for the activating natural killer (NK)-cell receptor NKG2D. A single nucleotide polymorphism causes a valine to methionine exchange at position 129. Presence of a MICA-129Met allele in patients (n = 452) undergoing hematopoietic stem cell transplantation (HSCT) increased the chance of overall survival (hazard ratio [HR] = 0.77, P = 0.0445) and reduced the risk to die due to acute graft-versus-host disease (aGVHD) (odds ratio [OR] = 0.57, P = 0.0400) although homozygous carriers had an increased risk to experience this complication (OR = 1.92, P = 0.0371). Overall survival of MICA-129Val/Val genotype carriers was improved when treated with anti-thymocyte globulin (HR = 0.54, P = 0.0166). Functionally, the MICA-129Met isoform was characterized by stronger NKG2D signaling, triggering more NK-cell cytotoxicity and interferon-γ release, and faster co-stimulation of CD8(+) T cells. The MICA-129Met variant also induced a faster and stronger down-regulation of NKG2D on NK and CD8(+) T cells than the MICA-129Val isoform. The reduced cell surface expression of NKG2D in response to engagement by MICA-129Met variants appeared to reduce the severity of aGVHD.

  19. NK Cells and Other Innate Lymphoid Cells in Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Vacca, Paola; Montaldo, Elisa; Croxatto, Daniele; Moretta, Francesca; Bertaina, Alice; Vitale, Chiara; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-01-01

    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34+ cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT. PMID:27242795

  20. NK Cells and Other Innate Lymphoid Cells in Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Vacca, Paola; Montaldo, Elisa; Croxatto, Daniele; Moretta, Francesca; Bertaina, Alice; Vitale, Chiara; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-01-01

    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34(+) cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  1. Placenta as a source of hematopoietic stem cells

    NARCIS (Netherlands)

    E.A. Dzierzak (Elaine); C. Robin (Catherine)

    2010-01-01

    textabstractThe placenta is a large, highly vascularised hematopoietic tissue that functions during the embryonic and foetal development of eutherian mammals. Although recognised as the interface tissue important in the exchange of oxygen, nutrients and waste products between the foetus and mother,

  2. Expansive effects of aorta-gonad-mesonephros-derived stromal cells on hematopoietic stem cells from embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    FU Jin-rong; LIU Wen-li; ZHOU Yu-feng; ZHOU Jian-feng; SUN Han-ying; LUO Li; ZHANG Heng; XU Hui-zhen

    2005-01-01

    Background Hematopoietic stem cells (HSCs) give rise to all blood and immune cells and are used in clinical transplantation protocols to treat a wide variety of refractory diseases, but the amplification of HSCs has been difficult to achieve in vitro. In the present study, the expansive effects of aorta-gonad-mesonephros (AGM) region derived stromal cells on HSCs were explored, attempting to improve the efficiency of HSC transplantation in clinical practice.Methods The murine stromal cells were isolated from the AGM region of 12 days postcoitum (dpc) murine embryos and bone marrow(BM)of 6 weeks old mice, respectively. After identification with flow cytometry and immunocytochemistry, the stromal cells were co-cultured with ESCs-derived, cytokines-induced HSCs. The maintenance and expansion of ESCs-derived HSCs were evaluated by detecting the population of CD34+ and CD34+Sca-1+cells with flow cytometry and the blast colony-forming cells (BL-CFCs), high proliferative potential colony-forming cells (HPP-CFCs) by using semi-solid medium colonial culture. Finally, the homing and hematopoietic reconstruction abilities of HSCs were evaluated using a murine model of HSC transplantation in vivo.Results AGM and BM-derived stromal cells were morphologically and phenotypically similar, and had the features of stromal cells. When co-cultured with AGM or BM stromal cells, more primitive progenitor cells (HPP-CFCs ) could be detected in ESCs derived hematopoietic precursor cells, but BL-CFC's expansion could be detected only when co-cultured with AGM-derived stromal cells. The population of CD34+ hematopoietic stem/progenitor cells were expanded 3 times,but no significant expansion in the population of CD34+Sca-1+ cells was noted when co-cultured with BM stromal cells. While both CD34+ hematopoietic stem/progenitor cells and CD34+Sca-1+ cells were expanded 4 to 5 times respectively when co-cultured with AGM stromal cells. AGM region-derived stromal cells, like BM-derived stromal

  3. PRDM11 is dispensable for the maintenance and function of hematopoietic stem and progenitor cells

    DEFF Research Database (Denmark)

    Thoren, Lina A; Fog, Cathrine K; Jensen, Klaus T;

    2013-01-01

    Hematopoietic stem cells (HSC)(1) supply organisms with life-long output of mature blood cells. To do so, the HSC pool size has to be maintained by HSC self-renewing divisions. PRDM3 and PRDM16 have been documented to regulate HSC self-renewal, maintenance and function. We found Prdm11 to have...... similar expression patterns in the hematopoietic stem and progenitor cell (HSPC) compartments as Prdm3 and Prdm16. Therefore, we undertook experiments to test if PRDM11 regulates HSC self-renewal, maintenance and function by investigating the Prdm11(-/-) mice. Our data shows that phenotypic HSPCs...

  4. DI-3-butylphthalide-enhanced hematopoietic stem cell transplantation and endogenous stem cell mobilization for the treatment of cerebral infarcts

    Institute of Scientific and Technical Information of China (English)

    Baoquan Lu; Xiaoming Shang; Yongqiu Li; Hongying Ma; Chunqin Liu; Jianmin Li; Yingqi Zhang; Shaoxin Yao

    2011-01-01

    Exogenous stem cell transplantation and endogenous stem cell mobilization are both effective for the treatment of acute cerebral infarction. The compound dl-3-butylphthalide is known to improve microcirculation and help brain cells at the infarct loci. This experiment aimed to investigate the effects of dl-3-butylphthalide intervention based on the transplantation of hematopoietic stem cells and mobilization of endogenous stem cells in a rat model of cerebral infarction, following middle cerebral artery occlusion. Results showed that neurological function was greatly improved and infarct volume was reduced in rats with cerebral infarction. Data also showed that dl-3-butylphthalide can promote hematopoietic stem cells to transform into vascular endothelial cells and neuronal-like cells, and also enhance the therapeutic effect on cerebral infarction by hematopoietic stem cell transplantation and endogenous stem cell mobilization.

  5. Assessing the Influence of Different Comorbidities Indexes on the Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation in a Developing Country.

    Directory of Open Access Journals (Sweden)

    Gustavo Machado Teixeira

    Full Text Available Although the application of Hematopoietic Cell Transplantation-specific Comorbidity Index (HCT-CI has enabled better prediction of transplant-related mortality (TRM in allogeneic hematopoietic stem cell transplants (AHSCT, data from developing countries are scarce. This study prospectively evaluated the HCT-CI and the Adult Comorbidity Evaluation (ACE-27, in its original and in a modified version, as predictors of post-transplant complications in adults undergoing a first related or unrelated AHSCT in Brazil. Both bone marrow (BM and peripheral blood stem cells (PBSC as graft sources were included. We analyzed the cumulative incidence of granulocyte and platelet recovery, sinusoidal obstructive syndrome, acute and chronic graft-versus-host disease, relapse and transplant-related mortality, and rates of event-free survival and overall survival. Ninety-nine patients were assessed. Median age was 38 years (18-65 years; HCT-CI ≥ 3 accounted for only 8% of cases; hematologic malignancies comprised 75.8% of the indications for AHSCT. There was no association between the HCT-CI or the original or modified ACE-27 with TRM or any other studied outcomes after AHSCT. These results show that, in the population studied, none of the comorbidity indexes seem to be associated with AHSCT outcomes. A significantly low frequency of high-risk (HCT-CI ≥ 3 in this Brazilian population might justify these results.

  6. The Sequence of Cyclophosphamide and Myeloablative Total Body Irradiation in Hematopoietic Cell Transplantation for Patients with Acute Leukemia.

    Science.gov (United States)

    Holter-Chakrabarty, Jennifer L; Pierson, Namali; Zhang, Mei-Jie; Zhu, Xiaochun; Akpek, Görgün; Aljurf, Mahmoud D; Artz, Andrew S; Baron, Frédéric; Bredeson, Christopher N; Dvorak, Christopher C; Epstein, Robert B; Lazarus, Hillard M; Olsson, Richard F; Selby, George B; Williams, Kirsten M; Cooke, Kenneth R; Pasquini, Marcelo C; McCarthy, Philip L

    2015-07-01

    Limited clinical data are available to assess whether the sequencing of cyclophosphamide (Cy) and total body irradiation (TBI) changes outcomes. We evaluated the sequence in 1769 (CyTBI, n = 948; TBICy, n = 821) recipients of related or unrelated hematopoietic cell transplantation who received TBI (1200 to 1500 cGY) for acute leukemia from 2003 to 2010. The 2 cohorts were comparable for median age, performance score, type of leukemia, first complete remission, Philadelphia chromosome-positive acute lymphoblastic leukemia, HLA-matched siblings, stem cell source, antithymocyte globulin use, TBI dose, and type of graft-versus-host disease (GVHD) prophylaxis. The sequence of TBI did not significantly affect transplantation-related mortality (24% versus 23% at 3 years, P = .67; relative risk, 1.01; P = .91), leukemia relapse (27% versus 29% at 3 years, P = .34; relative risk, .89, P = .18), leukemia-free survival (49% versus 48% at 3 years, P = .27; relative risk, .93; P = .29), chronic GVHD (45% versus 47% at 1 year, P = .39; relative risk, .9; P = .11), or overall survival (53% versus 52% at 3 years, P = .62; relative risk, .96; P = .57) for CyTBI and TBICy, respectively. Corresponding cumulative incidences of sinusoidal obstruction syndrome were 4% and 6% at 100 days (P = .08), respectively. This study demonstrates that the sequence of Cy and TBI does not impact transplantation outcomes and complications in patients with acute leukemia undergoing hematopoietic cell transplantation with myeloablative conditioning.

  7. Effect of genistein on cell cycle of bone marrow hematopoietic cells in normal and irradiated mice

    International Nuclear Information System (INIS)

    Objective: To study the effects of genistein on cell cycle, proliferation and expression of bcl-2 gene in bone marrow hematopoietic cells (BMHCs) of normal and irradiated mice in order to explore mechanisms for protection of genistein from radiation-induced hematopoietic system injury. Methods: Adult male BALB/c mice were orally administered with genistein (160 mg/kg b.w.) 24 h before irradiation. Cell cycles in BMHCs of the normal and irradiated mice were measured by flow cytometry. The protein and mRNA expressions of bcl-2 gene in BMHCs were analyzed by Western blot and RT-PCR, respectively. Results: a) Transitory and significant changes occurred in the cell cycle of BMHCs in the normal mice after administration of genistein: first, the proliferation suppression of BMHCs was observed and most cells were arrested in G0/G1 phase on day 1; second, progression of cells from G0/G1 phase into S phase was observed, accumulation of cells in S phase on day 2, and back to the normal level on day 4. b) Genistein, administration 24 h before irradiation, decreased the percentage of BMHCs in G0/G1 phase and increased cell proliferation. Moreover, genistein up-regulated the protein and mRNA expressions of bcl-2 in BMHCs in the irradiated mice. Conclusions: It was shown that changing with cell cycle, strengthening of radioresistant, suppressing of radiation-induced apoptosis, and enhancing of proliferation and differentiation of BMHCs maybe the underlying mechanisms for genistein protection of hematopoietic system against radiation damage. (authors)

  8. [Human herpesvirus-6-associated diseases in hematopoietic stem cell transplantation: an update].

    Science.gov (United States)

    Ogata, Masao

    2016-03-01

    Human herpesvirus (HHV)-6 belongs to the Betaherpesvirinae subfamily of human herpesviruses. Primary HHV-6 infection commonly causes exanthem subitum. Like other herpesviruses, HHV-6 is capable of persisting in the host after the primary infection. Under conditions of immunosuppression, latent HHV-6 can be reactivated. Between 30% and 70% of patients who undergo allogeneic hematopoietic cell transplantation (allo-HCT) experience HHV-6 reactivation at 2-4 weeks after transplantation. Accumulating evidence indicates that HHV-6 is an actual cause of encephalitis after allo-HCT. Risk factors for HHV-6 encephalitis include cord blood transplantation and an inflammatory milieu, which occurs in the early period after allo-HCT. Although HHV-6 encephalitis is associated with a poor prognosis, no validated treatments or preventative measures have as yet been established. HHV-6 reactivation may also cause myelitis, bone marrow suppression, lung disease, hepatitis, delirium, and graft-versus-host disease. However, such associations have not been consistently demonstrated and causality remains uncertain. This review updates the latest information regarding the clinical syndrome accompanying HHV-6 reactivation, with a particular focus on HHV-6 encephalitis, in the form of a series of questions and answers. PMID:27076241

  9. [Human herpesvirus-6-associated diseases in hematopoietic stem cell transplantation: an update].

    Science.gov (United States)

    Ogata, Masao

    2016-03-01

    Human herpesvirus (HHV)-6 belongs to the Betaherpesvirinae subfamily of human herpesviruses. Primary HHV-6 infection commonly causes exanthem subitum. Like other herpesviruses, HHV-6 is capable of persisting in the host after the primary infection. Under conditions of immunosuppression, latent HHV-6 can be reactivated. Between 30% and 70% of patients who undergo allogeneic hematopoietic cell transplantation (allo-HCT) experience HHV-6 reactivation at 2-4 weeks after transplantation. Accumulating evidence indicates that HHV-6 is an actual cause of encephalitis after allo-HCT. Risk factors for HHV-6 encephalitis include cord blood transplantation and an inflammatory milieu, which occurs in the early period after allo-HCT. Although HHV-6 encephalitis is associated with a poor prognosis, no validated treatments or preventative measures have as yet been established. HHV-6 reactivation may also cause myelitis, bone marrow suppression, lung disease, hepatitis, delirium, and graft-versus-host disease. However, such associations have not been consistently demonstrated and causality remains uncertain. This review updates the latest information regarding the clinical syndrome accompanying HHV-6 reactivation, with a particular focus on HHV-6 encephalitis, in the form of a series of questions and answers.

  10. Incidence, etiology, and outcome of pleural effusions in allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Modi, Dipenkumar; Jang, Hyejeong; Kim, Seongho; Deol, Abhinav; Ayash, Lois; Bhutani, Divaya; Lum, Lawrence G; Ratanatharathorn, Voravit; Manasa, Richard; Mellert, Kendra; Uberti, Joseph P

    2016-09-01

    Pleural effusion is a known entity in patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT); however, the incidence, risk factors, and morbidity-mortality outcomes associated with pleural effusions remain unknown. We retrospectively evaluated pleural effusions in 618 consecutive adult patients who underwent allogeneic HSCT from January 2008 to December 2013 at our institution. Seventy one patients developed pleural effusion at a median of 40 days (range, 1 - 869) post-HSCT with the cumulative incidence of 9.9% (95% CI, 7.7 - 12.5%) at 1 year. Infectious etiology was commonly associated with pleural effusions followed by volume overload and serositis type chronic GVHD. In multivariate analysis, higher comorbidity index (P = 0.03) and active GVHD (P = 0.018) were found to be significant independent predictors for pleural effusion development. Higher comorbidity index, very high disease risk index, ≤7/8 HLA matching, and unrelated donor were associated with inferior overall survival (OS) (P < 0.03). More importantly, patients with pleural effusion were noted to have poor OS in comparison to patients without pleural effusion (P < 0.001). Overall, pleural effusion is a frequently occurring complication after allogeneic HSCT, adding to morbidity and mortality and hence, early identification is required. Am. J. Hematol. 91:E341-E347, 2016. © 2016 Wiley Periodicals, Inc. PMID:27238902

  11. Erythropoietin therapy after allogeneic hematopoietic cell transplantation: a prospective, randomized trial.

    Science.gov (United States)

    Jaspers, Aurélie; Baron, Frédéric; Willems, Evelyne; Seidel, Laurence; Hafraoui, Kaoutar; Vanstraelen, Gaetan; Bonnet, Christophe; Beguin, Yves

    2014-07-01

    We conducted a prospective randomized trial to assess hemoglobin (Hb) response to recombinant human erythropoietin (rhEPO) therapy after hematopoietic cell transplantation (HCT). Patients (N = 131) were randomized (1:1) between no treatment (control arm) or erythropoietin at 500 U/kg per week (EPO arm). Patients were also stratified into 3 cohorts: patients undergoing myeloablative HCT with rhEPO to start on day (D)28, patients given nonmyeloablative HCT (NMHCT) with rhEPO to start on D28, and patients also given NMHCT but with rhEPO to start on D0. The proportion of complete correctors (ie, Hb ≥13 g/dL) before D126 posttransplant was 8.1% in the control arm (median not reached) and 63.1% in the EPO arm (median, 90 days) (P < .001). Hb levels were higher and transfusion requirements decreased (P < .001) in the EPO arm, but not during the first month in the nonmyeloablative cohort starting rhEPO on D0. There was no difference in rates of thromboembolic events or other complications between the 2 arms. This is the first randomized trial to demonstrate that rhEPO therapy hastens erythroid recovery and decreases transfusion requirements when started one month after allogeneic HCT. There was no benefit to start rhEPO earlier after NMHCT.

  12. The consensus sequence of FAMLF alternative splice variants is overexpressed in undifferentiated hematopoietic cells

    Directory of Open Access Journals (Sweden)

    W.L. Chen

    2015-07-01

    Full Text Available The familial acute myeloid leukemia related factor gene (FAMLF was previously identified from a familial AML subtractive cDNA library and shown to undergo alternative splicing. This study used real-time quantitative PCR to investigate the expression of the FAMLF alternative-splicing transcript consensus sequence (FAMLF-CS in peripheral blood mononuclear cells (PBMCs from 119 patients with de novo acute leukemia (AL and 104 healthy controls, as well as in CD34+ cells from 12 AL patients and 10 healthy donors. A 429-bp fragment from a novel splicing variant of FAMLF was obtained, and a 363-bp consensus sequence was targeted to quantify total FAMLF expression. Kruskal-Wallis, Nemenyi, Spearman's correlation, and Mann-Whitney U-tests were used to analyze the data. FAMLF-CS expression in PBMCs from AL patients and CD34+ cells from AL patients and controls was significantly higher than in control PBMCs (P<0.0001. Moreover, FAMLF-CS expression in PBMCs from the AML group was positively correlated with red blood cell count (rs =0.317, P=0.006, hemoglobin levels (rs =0.210, P=0.049, and percentage of peripheral blood blasts (rs =0.256, P=0.027, but inversely correlated with hemoglobin levels in the control group (rs =–0.391, P<0.0001. AML patients with high CD34+ expression showed significantly higher FAMLF-CS expression than those with low CD34+ expression (P=0.041. Our results showed that FAMLF is highly expressed in both normal and malignant immature hematopoietic cells, but that expression is lower in normal mature PBMCs.

  13. Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow

    DEFF Research Database (Denmark)

    Potocnik, A J; Brakebusch, C; Fässler, R

    2000-01-01

    Homing of hematopoietic stem cells (HSCs) into hematopoietic organs is a prerequisite for the establishment of hematopoiesis during embryogenesis and after bone marrow transplantation. We show that beta1 integrin-deficient HSCs from the para-aortic splanchnopleura and the fetal blood had hematoly......Homing of hematopoietic stem cells (HSCs) into hematopoietic organs is a prerequisite for the establishment of hematopoiesis during embryogenesis and after bone marrow transplantation. We show that beta1 integrin-deficient HSCs from the para-aortic splanchnopleura and the fetal blood had...

  14. Prostate cancer cells metastasize to the hematopoietic stem cell niche in bone

    Institute of Scientific and Technical Information of China (English)

    Evan T Keller

    2011-01-01

    @@ The majority of men with advanced prostate cancer develop bone metastases as opposed to metastases at other sites.1 It has been unclear why prostate cancer selectively metastasizes to and proliferates in bone.Recently, Shiozawa et al.Delineated a mechanism that may account for the establishment of prostate cancer in bone.2 Specifically, they identified that prostate cancer cells compete with hematopoietic stem cells (HSC) for the osteoblast in the HSC niche of the bone.Defining the mechanisms through which prostate cancer cells establish themselves in bone is critical towards developing effective therapeutic strategies to prevent or target bone metastases.

  15. A problem-solving education intervention in caregivers and patients during allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Bevans, Margaret; Wehrlen, Leslie; Castro, Kathleen; Prince, Patricia; Shelburne, Nonniekaye; Soeken, Karen; Zabora, James; Wallen, Gwenyth R

    2014-05-01

    The aim of this study was to determine the effect of problem-solving education on self-efficacy and distress in informal caregivers of allogeneic hematopoietic stem cell transplantation patients. Patient/caregiver teams attended three 1-hour problem-solving education sessions to help cope with problems during hematopoietic stem cell transplantation. Primary measures included the Cancer Self-Efficacy Scale-transplant and Brief Symptom Inventory-18. Active caregivers reported improvements in self-efficacy (p education; caregiver responders also reported better health outcomes such as fatigue. The effect of problem-solving education on self-efficacy and distress in hematopoietic stem cell transplantation caregivers supports its inclusion in future interventions to meet the multifaceted needs of this population.

  16. CELLULAR AND MOLECULAR BASIS OF HAPLOIDENTICAL HEMATOPOIETIC STEM CELL TRANSPLANTATION IN THE SUCCESSFUL TREATMENT OF HIGH RISK LEUKEMIAS.

    Directory of Open Access Journals (Sweden)

    FRANCO eLOCATELLI

    2013-02-01

    Full Text Available Natural Killer (NK cells are involved in innate immune responses and play a major role in tumor surveillance and in defence against viruses. Human NK cells recognize HLA-class I molecules via surface receptors (KIR and NKG2A delivering signals that inhibit NK cell function and kill HLA-class I-deficient target cells, a frequent event in tumors or virus-infected cells. NK cell triggering is mediated by activating receptors that recognize ligands expressed primarily on tumors or virus-infected cells. NK cells play also a key role in the cure of high-risk leukemias. Thus, donor-derived alloreactive NK cells are fundamental effectors in adult acute myeloid leukemia (AML and in pediatric acute lymphoblastic leukemia (ALL patients undergoing haploidentical hematopoietic stem cell transplantation (HSCT. Alloreactive NK cells mediate killing of leukemia cells and patient’s DC, thus preventing respectively leukemic relapses and graft-versus-host responses. FACS analysis of KIRs expressed by NK cells allows to define the size of the alloreactive NK subset and the selection of the best potential donor. Recently, it has been shown that also the expression of activating KIRs, in particular the (C2-specific KIR2DS1, may contribute to donor NK alloreactivity. It has also been established a correlation between the size of the alloreactive NK cell population and the clinical outcome. Notably, the alloreactive NK cells derived from donor’s HSC are generated and persist in patients over time. The high survival rates of patients undergoing haploidentical HSCT highlight an important new reality in the setting of allograft performed to cure otherwise fatal leukemias. Novel approaches are in progress to further improve the clinical outcome based on the infusion of donor alloreactive NK cells either as a component of the transplanted cell population or as in vitro expanded NK cells.

  17. NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements

    DEFF Research Database (Denmark)

    Weischelfeldt, Joachim Lütken; Damgaard, Inge; Bryder, David;

    2008-01-01

    been addressed in detail. Here we use mouse genetics to demonstrate that hematopoietic-specific deletion of Upf2, a core NMD factor, led to the rapid, complete, and lasting cell-autonomous extinction of all hematopoietic stem and progenitor populations. In contrast, more differentiated cells were only...

  18. Control of AC133/CD133 and impact on human hematopoietic progenitor cells through nucleolin.

    Science.gov (United States)

    Bhatia, S; Reister, S; Mahotka, C; Meisel, R; Borkhardt, A; Grinstein, E

    2015-11-01

    AC133 is a prominent surface marker of CD34+ and CD34- hematopoietic stem/progenitor cell (HSPC) subsets. AC133+ HSPCs contain high progenitor cell activity and are capable of hematopoietic reconstitution. Furthermore, AC133 is used for prospective isolation of tumor-initiating cells in several hematological malignancies. Nucleolin is a multifunctional factor of growing and cancer cells, which is aberrantly active in certain hematological neoplasms, and serves as a candidate molecular target for cancer therapy. Nucleolin is involved in gene transcription and RNA metabolism and is prevalently expressed in HSPCs, as opposed to differentiated hematopoietic tissue. The present study dissects nucleolin-mediated activation of surface AC133 and its cognate gene CD133, via specific interaction of nucleolin with the tissue-dependent CD133 promoter P1, as a mechanism that crucially contributes to AC133 expression in CD34+ HSPCs. In mobilized peripheral blood (MPB)-derived HSPCs, nucleolin elevates colony-forming unit (CFU) frequencies and enriches granulocyte-macrophage CFUs. Furthermore, nucleolin amplifies long-term culture-initiating cells and also promotes long-term, cytokine-dependent maintenance of hematopoietic progenitor cells. Active β-catenin, active Akt and Bcl-2 levels in MPB-derived HSPCs are nucleolin-dependent, and effects of nucleolin on these cells partially rely on β-catenin activity. The study provides new insights into molecular network relevant to stem/progenitor cells in normal and malignant hematopoiesis. PMID:26183533

  19. Advances in unrelated and alternative donor hematopoietic cell transplantation for nonmalignant disorders

    NARCIS (Netherlands)

    Shenoy, Shalini; Boelens, Jaap J.

    2015-01-01

    PURPOSE OF REVIEW: The role of hematopoietic cell transplantation in non-malignant disorders has increased exponentially with the recognition that multiple diseases can be controlled or cured if engrafted with donor-derived cells. This review provides an overview of advances made in alternative dono

  20. Hypercholesterolemia Tunes Hematopoietic Stem/Progenitor Cells for Inflammation and Atherosclerosis

    OpenAIRE

    Xiaojuan Ma; Yingmei Feng

    2016-01-01

    As the pathological basis of cardiovascular disease (CVD), atherosclerosis is featured as a chronic inflammation. Hypercholesterolemia is an independent risk factor for CVD. Accumulated studies have shown that hypercholesterolemia is associated with myeloid cell expansion, which stimulates innate and adaptive immune responses, strengthens inflammation, and accelerates atherosclerosis progression. Hematopoietic stem/progenitor cells (HSPC) in bone marrow (BM) expresses a panel of lipoprotein r...

  1. The polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion

    NARCIS (Netherlands)

    Kamminga, LM; Bystrykh, LV; Boer, AC; Houwer, S; Douma, J; Weersing, E; Dontje, B; de Haan, G

    2006-01-01

    The molecular mechanism responsible for a decline of stem cell functioning after replicative stress remains unknown. We used mouse embryonic fibroblasts (MEFs) and hematopoietic stem cells (HSCs) to identify genes involved in the process of cellular aging. In proliferating and senescent MEFs one of

  2. Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization

    DEFF Research Database (Denmark)

    van Pel, M.; van Os, R.; Velders, G.A.;

    2006-01-01

    Here, we report that cytokine-induced (granulocyte colony-stimulating factor and IL-8) hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) mobilization is completely inhibited after low-dose (0.5 Gy) total-body irradiation (TBI). Because neutrophil granular proteases......-dose TBI, both Serpina1 mRNA and protein concentrations were increased in BM extracts, compared with extracts that were obtained from controls. The inhibitory activity in BM extracts of irradiated mice was reversed by addition of an Ab directed against Serpina1. To further study a possible in vivo role...

  3. A Rare Complication Developing After Hematopoietic Stem Cell Transplantation: Wernicke’s Encephalopathy

    Directory of Open Access Journals (Sweden)

    Soner Solmaz

    2015-12-01

    Full Text Available Thiamine is a water-soluble vitamin. Thiamine deficiency can present as a central nervous system disorder known as Wernicke’s encephalopathy, which classically manifests as confusion, ataxia, and ophthalmoplegia. Wernicke’s encephalopathy has rarely been reported following hematopoietic stem cell transplantation. Herein, we report Wernicke’s encephalopathy in a patient with acute myeloid leukemia who had been receiving prolonged total parenteral nutrition after haploidentical allogeneic hematopoietic stem cell transplantation. To the best of our knowledge, this is the first case reported from Turkey in the literature.

  4. A Rare Complication Developing After Hematopoietic Stem Cell Transplantation: Wernicke’s Encephalopathy

    Science.gov (United States)

    Solmaz, Soner; Gereklioğlu, Çiğdem; Tan, Meliha; Demir, Şenay; Yeral, Mahmut; Korur, Aslı; Boğa, Can; Özdoğu, Hakan

    2015-01-01

    Thiamine is a water-soluble vitamin. Thiamine deficiency can present as a central nervous system disorder known as Wernicke’s encephalopathy, which classically manifests as confusion, ataxia, and ophthalmoplegia. Wernicke’s encephalopathy has rarely been reported following hematopoietic stem cell transplantation. Herein, we report Wernicke’s encephalopathy in a patient with acute myeloid leukemia who had been receiving prolonged total parenteral nutrition after haploidentical allogeneic hematopoietic stem cell transplantation. To the best of our knowledge, this is the first case reported from Turkey in the literature. PMID:25912759

  5. An overlooked tumor promoting immunoregulation by non-hematopoietic stromal cells.

    Science.gov (United States)

    Bose, Anamika; Ghosh, Tithi; Baral, Rathindranath

    2016-08-01

    Multidirectional complex communication between tumor-residing hematopoietic and non-hematopoietic stromal cells (NHSCs) decisively regulates cancer development, progression and therapeutic responses. HSCs predominantly participate in the immune regulations, while, NHSCs, provide parenchymal support or serve as a conduit for other cells or support angiogenesis. However, recent reports suggest NHSCs can additionally participate in ongoing tumor promoting immune reactions within tumor-microenvironment (TME). In this review, based on the state-of-art knowledge and accumulated evidence by us, we discuss the role of quite a few NHSCs in tumor from immunological perspectives. Understanding such consequence of NHSCs will surely pave the way in crafting effective cancer management. PMID:27311851

  6. Black hairy tongue associated with allo peripheral blood hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    LUO Yi; ZOU Ping; LI Qiu-bai; YOU Yong

    2010-01-01

    @@ Tongue lesions resulting from mucositis are a frequent complication of high-dose chemotherapy and irradiation. They are very common in patients with hematopoietic stem cell transplantation, and tongue lesions due to other causes have also been reported. Black hairy tongue (BHT) is a special tongue lesion, not rare in the population with tobacco abuse, but so far it has not been reported after allo peripheral blood hematopoietic stem cell transplantation (allo-PBHST). Here we presented a patient who developed BHT after allo-PBHST and discussed the factors that may cause this condition.

  7. National Hematopoietic Stem Cells Transplant Registry in Poland: Nationwide Internet Reporting System and Results.

    Science.gov (United States)

    Łęczycka, A; Dudkiewicz, M; Czerwiński, J; Malanowski, P; Żalikowska-Hołoweńko, J; Danielewicz, R

    2016-06-01

    History of hematopoietic stem cell transplantations in Poland begins in early 1980s; the 1st bone marrow allotransplantation was performed in 1983 in the Central Clinical Hospital of the Military Medical Academy in Warsaw. Following years brought the 1st autologous stem cell transplantations. Ten years later, unrelated bone marrow transplantation was performed for the 1st time by the team of the Hematology and Blood and Marrow Transplantation Unit in Katowice. Since then, hematopoietic stem cell transplantation developed to be standard procedure and one of the most important therapies applied in leukemia treatment. The number of allotransplantations in Poland has grown significantly in the past 2 decades, which generated new needs and problems. In 2005, based on a new Transplant Law, a National Transplants Registry was created. Its main role is to collect data (registration of procedures and follow-up data) related to every transplantation case for stem cells and tissues as well as for organs. We present statistics concerning stem cell transplantations performed in Poland, as collected in the National Transplants Registry in the years 2006-2014. There are 18 centers transplanting hematopoietic stem cells in Poland. The total number of hematopoietic stem cell transplantations performed in 2006-2014 was 3,537, with allotransplantations from relatives accounted for 1,491 and from unrelated donors for 2,046. The main indication for allotransplantation in past years was acute leukemia. PMID:27496493

  8. National Hematopoietic Stem Cells Transplant Registry in Poland: Nationwide Internet Reporting System and Results.

    Science.gov (United States)

    Łęczycka, A; Dudkiewicz, M; Czerwiński, J; Malanowski, P; Żalikowska-Hołoweńko, J; Danielewicz, R

    2016-06-01

    History of hematopoietic stem cell transplantations in Poland begins in early 1980s; the 1st bone marrow allotransplantation was performed in 1983 in the Central Clinical Hospital of the Military Medical Academy in Warsaw. Following years brought the 1st autologous stem cell transplantations. Ten years later, unrelated bone marrow transplantation was performed for the 1st time by the team of the Hematology and Blood and Marrow Transplantation Unit in Katowice. Since then, hematopoietic stem cell transplantation developed to be standard procedure and one of the most important therapies applied in leukemia treatment. The number of allotransplantations in Poland has grown significantly in the past 2 decades, which generated new needs and problems. In 2005, based on a new Transplant Law, a National Transplants Registry was created. Its main role is to collect data (registration of procedures and follow-up data) related to every transplantation case for stem cells and tissues as well as for organs. We present statistics concerning stem cell transplantations performed in Poland, as collected in the National Transplants Registry in the years 2006-2014. There are 18 centers transplanting hematopoietic stem cells in Poland. The total number of hematopoietic stem cell transplantations performed in 2006-2014 was 3,537, with allotransplantations from relatives accounted for 1,491 and from unrelated donors for 2,046. The main indication for allotransplantation in past years was acute leukemia.

  9. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells

    Science.gov (United States)

    Hoban, Megan D.; Cost, Gregory J.; Mendel, Matthew C.; Romero, Zulema; Kaufman, Michael L.; Joglekar, Alok V.; Ho, Michelle; Lumaquin, Dianne; Gray, David; Lill, Georgia R.; Cooper, Aaron R.; Urbinati, Fabrizia; Senadheera, Shantha; Zhu, Allen; Liu, Pei-Qi; Paschon, David E.; Zhang, Lei; Rebar, Edward J.; Wilber, Andrew; Wang, Xiaoyan; Gregory, Philip D.; Holmes, Michael C.; Reik, Andreas; Hollis, Roger P.

    2015-01-01

    Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the β-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the β-globin locus with minimal off-target modification. By codelivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34+ hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγnull mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34+ cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers. PMID:25733580

  10. Development of Hematopoietic and Endothelial Cells from Human Embryonic Stem Cells: Lessons from the Studies using Mouse as a Model

    OpenAIRE

    Anna Jezierski; Albert Swedani; Lisheng Wang

    2007-01-01

    The current progress using the human embryonic stem cell (hESC) model system has provided much insight into the early origins of the hematopoietic and endothelial lineages, particularly the elusive hemangioblast. Recently, the cellular hierarchy and molecular regulation controlling hematopoietic commitment have been further elucidated. These findings not only provide new insights into early human development, but also advance the knowledge required to develop techniques capable of generating ...

  11. Basal Cell Skin Cancer after Total-Body Irradiation and Hematopoietic Cell Transplantation

    OpenAIRE

    Schwartz, Jeffrey L.; Kopecky, Kenneth J.; Robert W. Mathes; Leisenring, Wendy M; Friedman, Debra L.; Deeg, H. Joachim

    2009-01-01

    Previous studies identified radiation therapy as a key modifier of basal cell carcinoma (BCC) risk in survivors of hematopoietic cell transplantation (HCT). In the present analysis, risk of BCC was analyzed in relation to age at transplant, attained age, race, total-body irradiation (TBI), and radiation fractionation in 6,306 patients who received HCT at ages 0–65 years after conditioning regimens with (n = 3870) or without (n = 2436) TBI, and who were followed from 100 days to 36.2 years aft...

  12. Proteome Profiling in Lung Injury after Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Bhargava, Maneesh; Viken, Kevin J; Dey, Sanjoy; Steinbach, Michael S; Wu, Baolin; Jagtap, Pratik D; Higgins, LeeAnn; Panoskaltsis-Mortari, Angela; Weisdorf, Daniel J; Kumar, Vipin; Arora, Mukta; Bitterman, Peter B; Ingbar, David H; Wendt, Chris H

    2016-08-01

    Pulmonary complications due to infection and idiopathic pneumonia syndrome (IPS), a noninfectious lung injury in hematopoietic stem cell transplant (HSCT) recipients, are frequent causes of transplantation-related mortality and morbidity. Our objective was to characterize the global bronchoalveolar lavage fluid (BALF) protein expression of IPS to identify proteins and pathways that differentiate IPS from infectious lung injury after HSCT. We studied 30 BALF samples from patients who developed lung injury within 180 days of HSCT or cellular therapy transfusion (natural killer cell transfusion). Adult subjects were classified as having IPS or infectious lung injury by the criteria outlined in the 2011 American Thoracic Society statement. BALF was depleted of hemoglobin and 14 high-abundance proteins, treated with trypsin, and labeled with isobaric tagging for relative and absolute quantification (iTRAQ) 8-plex reagent for two-dimensional capillary liquid chromatography (LC) and data dependent peptide tandem mass spectrometry (MS) on an Orbitrap Velos system in higher-energy collision-induced dissociation activation mode. Protein identification employed a target-decoy strategy using ProteinPilot within Galaxy P. The relative protein abundance was determined with reference to a global internal standard consisting of pooled BALF from patients with respiratory failure and no history of HSCT. A variance weighted t-test controlling for a false discovery rate of ≤5% was used to identify proteins that showed differential expression between IPS and infectious lung injury. The biological relevance of these proteins was determined by using gene ontology enrichment analysis and Ingenuity Pathway Analysis. We characterized 12 IPS and 18 infectious lung injury BALF samples. In the 5 iTRAQ LC-MS/MS experiments 845, 735, 532, 615, and 594 proteins were identified for a total of 1125 unique proteins and 368 common proteins across all 5 LC-MS/MS experiments. When comparing IPS to

  13. Induction of hematopoietic and endothelial cell program orchestrated by ETS transcription factor ER71/ETV2.

    Science.gov (United States)

    Liu, Fang; Li, Daofeng; Yu, Yik Yeung Lawrence; Kang, Inyoung; Cha, Min-Ji; Kim, Ju Young; Park, Changwon; Watson, Dennis K; Wang, Ting; Choi, Kyunghee

    2015-05-01

    The ETS factor ETV2 (aka ER71) is essential for the generation of the blood and vascular system, as ETV2 deficiency leads to a complete block in blood and endothelial cell formation and embryonic lethality in the mouse. However, the ETV2-mediated gene regulatory network and signaling governing hematopoietic and endothelial cell development are poorly understood. Here, we map ETV2 global binding sites and carry out in vitro differentiation of embryonic stem cells, and germ line and conditional knockout mouse studies to uncover mechanisms involved in the hemangiogenic fate commitment from mesoderm. We show that ETV2 binds to enhancers that specify hematopoietic and endothelial cell lineages. We find that the hemangiogenic progenitor population in the developing embryo can be identified as FLK1(high)PDGFRα(-). Notably, these hemangiogenic progenitors are exclusively sensitive to ETV2-dependent FLK1 signaling. Importantly, ETV2 turns on other Ets genes, thereby establishing an ETS hierarchy. Consequently, the hematopoietic and endothelial cell program initiated by ETV2 is maintained partly by other ETS factors through an ETS switching mechanism. These findings highlight the critical role that transient ETV2 expression plays in the regulation of hematopoietic and endothelial cell lineage specification and stability.

  14. Flotillins are involved in the polarization of primitive and mature hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Lawrence Rajendran

    Full Text Available BACKGROUND: Migration of mature and immature leukocytes in response to chemokines is not only essential during inflammation and host defense, but also during development of the hematopoietic system. Many molecules implicated in migratory polarity show uniform cellular distribution under non-activated conditions, but acquire a polarized localization upon exposure to migratory cues. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present evidence that raft-associated endocytic proteins (flotillins are pre-assembled in lymphoid, myeloid and primitive hematopoietic cells and accumulate in the uropod during migration. Furthermore, flotillins display a polarized distribution during immunological synapse formation. Employing the membrane lipid-order sensitive probe Laurdan, we show that flotillin accumulation in the immunological synapse is concomittant with membrane ordering in these regions. CONCLUSIONS: Together with the observation that flotillin polarization does not occur in other polarized cell types such as polarized epithelial cells, our results suggest a specific role for flotillins in hematopoietic cell polarization. Based on our results, we propose that in hematopoietic cells, flotillins provide intrinsic cues that govern segregation of certain microdomain-associated molecules during immune cell polarization.

  15. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity

    DEFF Research Database (Denmark)

    Jensen, Helle; Andresen, Lars; Hansen, Karen Aagaard;

    2009-01-01

    We show that inhibition of HDAC activity leads to surface expression of Hsp70 on various hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC inhibitor-mediated Hsp70 surface expression was confined to the apoptotic Annexin V-positive c......We show that inhibition of HDAC activity leads to surface expression of Hsp70 on various hematopoietic cancer cells, an occurance that was not observed on naïve or activated peripheral blood cells. HDAC inhibitor-mediated Hsp70 surface expression was confined to the apoptotic Annexin V......-positive cells and blocked by inhibition of apoptosis. Other chemotherapeutic inducers of apoptosis such as etoposide and camptothecin also led to a robust induction of Hsp70 surface expression. Hsp70 expression was, however, not caused by induction of apoptosis per se, as activated CD4 T cells remained Hsp70...... surface-negative despite effective induction of apoptosis. Interestingly, inhibition of endolysosomes or normal ER/Golgi transport did not affect Hsp70 surface expression. Intracellular calcium and the transcription factor Sp1, which has been shown previously to be important for the intracellular stress...

  16. Adoptive precursor cell therapy to enhance immune reconstitution after hematopoietic stem cell transplantation in mouse and man

    Science.gov (United States)

    Holland, Amanda M.; Zakrzewski, Johannes L.; Goldberg, Gabrielle L.; Ghosh, Arnab

    2016-01-01

    Hematopoietic stem cell transplantation is a curative therapy for hematological malignancies. T cell deficiency following transplantation is a major cause of morbidity and mortality. In this review, we discuss adoptive transfer of committed precursor cells to enhance T cell reconstitution and improve overall prognosis after transplantation. PMID:19015856

  17. Hematopoietic Stem Cell Transplantation in Adult Sickle Cell Disease: Problems and Solutions

    Directory of Open Access Journals (Sweden)

    Hakan Özdoğu

    2015-09-01

    Full Text Available Sickle cell disease-related organ injuries cannot be prevented despite hydroxyurea use, infection prophylaxis, and supportive therapies. As a consequence, disease-related mortality reaches 14% in adolescents and young adults. Hematopoietic stem cell transplantation is a unique curative therapeutic approach for sickle cell disease. Myeloablative allogeneic hematopoietic stem cell transplantation is curative for children with sickle cell disease. Current data indicate that long-term disease-free survival is about 90% and overall survival about 95% after transplantation. However, it is toxic in adults due to organ injuries. In addition, this curative treatment approach has several limitations, such as difficulties to find donors, transplant-related mortality, graft loss, graft-versus-host disease (GVHD, and infertility. Engraftment effectivity and toxicity for transplantations performed with nonmyeloablative reduced-intensity regimens in adults are being investigated in phase 1/2 trials at many centers. Preliminary data indicate that GVHD could be prevented with transplantations performed using reduced-intensity regimens. It is necessary to develop novel regimens to prevent graft loss and reduce the risk of GVHD.

  18. High-dose total body irradiation and myeloablative conditioning before allogeneic hematopoietic cell transplantation: time to rethink?

    Science.gov (United States)

    Mohty, Mohamad; Malard, Florent; Savani, Bipin N

    2015-04-01

    Over the last decade, the care of patients undergoing allogeneic hematopoietic cell transplantation (allo-HCT) has significantly improved, leading to a decrease in deaths related to allo-HCT as well as improved long-term survival. However, for many patients, long-term survivorship is associated with a substantial burden of chronic morbidities. Indeed, malignant and nonmalignant late complications after allo-HCT are numerous and usually multifactorial, with all organs and tissues a potential target. In many cases, these long-term side effects are associated with the use of high-dose total body irradiation, myeloablative conditioning regimens, and the onset of chronic graft-versus-host disease. It appears to be essential to change the natural history of these late effects. This requires the introduction of improved conditioning regimens and the development of lifelong monitoring controls, patient counseling, and preventative treatment measures. This approach will allow us to pursue our efforts to improve patient outcome.

  19. Hematopoietic cells as sources for patient-specific iPSCs and disease modeling.

    Science.gov (United States)

    Ye, Zhaohui; Liu, Cyndi F; Jang, Yoon-Young

    2011-09-01

    In addition to being an attractive source for cell replacement therapy, human induced pluripotent stem cells (iPSCs) also have great potential for disease modeling and drug development. During the recent several years, cell reprogramming technologies have evolved to generate virus-free and integration-free human iPSCs from easily accessible sources such as patient skin fibroblasts and peripheral blood samples. Hematopoietic cells from umbilical cord blood banks and Epstein Barr virus (EBV) immortalized B lymphocyte repositories represent alternative sources for human genetic materials of diverse backgrounds. Ability to reprogram these banked blood cells to pluripotency and differentiate them into a variety of specialized and functional cell types provides valuable tools for studying underlying mechanisms of a broad range of diseases including rare inherited disorders. Here we describe the recent advances in generating disease specific human iPSCs from these different types of hematopoietic cells and their potential applications in disease modeling and regenerative medicine. PMID:21857158

  20. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform.

    Science.gov (United States)

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W; Werner, Carsten; Pompe, Tilo

    2016-01-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin. PMID:27535453

  1. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform

    Science.gov (United States)

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W.; Werner, Carsten; Pompe, Tilo

    2016-08-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin.

  2. Hematopoietic stem cells: ex-vivo expansion and therapeutic potential for myocardial ischemia

    Directory of Open Access Journals (Sweden)

    Jingwei Lu

    2010-03-01

    Full Text Available Jingwei Lu, Vincent J Pompili, Hiranmoy DasCardiovascular Stem Cell Research Laboratory, The Dorothy M Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USAAbstract: Despite recent advances in cardiovascular medicine, ischemic heart disease remains the major cause of death in the United States and abroad. Cell-based therapy for degenerative diseases like myocardial ischemia using stem cells is currently under serious investigation. Various types of stem cells are being considered to be candidates for cell transplantation in cell-based therapy. Hematopoietic stem cells are one of the most promising cell types as several studies demonstrated their ability to improve ischemic cardiac functions by enhancing neovascularization and by reducing the total size of scar tissue. However, in order to procure sufficient numbers of functional stem cells, ex-vivo expansion technology became critically important. In this review, we focus on the state-of-the-art ex-vivo technology for the expansion of hematopoietic stem cells, and the underlying mechanisms regulating stem cell self-renewal as well as differentiation.Keywords: ischemic heart disease, ex-vivo expansion, hematopoietic stem cells, cytokines, nanofibers

  3. Analysis of leptin signalling in hematopoietic cells using an adapted MAPPIT strategy.

    Science.gov (United States)

    Montoye, T; Piessevaux, J; Lavens, D; Wauman, J; Catteeuw, D; Vandekerckhove, J; Lemmens, I; Tavernier, J

    2006-05-29

    The adipocyte-secreted hormone leptin participates in the regulation of hematopoiesis and enhances proliferation of hematopoietic cells. We used an adaptation of the MAPPIT mammalian two-hybrid method to study leptin signalling in a hematopoietic setting. We confirmed the known interactions of suppressor of cytokine signalling 3 (SOCS3) and STAT5 with the Y985 and Y1077 motifs of the leptin receptor, respectively. We also provide evidence for novel interactions at the Y1077 motif, including phospholipase C gamma and several members of the SOCS protein family, further underscoring the important role of the Y1077 motif in leptin signalling. PMID:16698021

  4. The Impact of HLA-E Polymorphisms in Graft-versus-Host Disease following HLA-E Matched Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ehteramolsadat Hosseini

    2012-03-01

    Full Text Available The  non-classical MHC  class-I mainly involves in the  regulation of  innate  immune responses where HLA-E  plays a significant role in the cell identification by natural killer cells. HLA-E is a main regulatory ligand for natural killer cells and given the importance of these effector cells in hematopoietic stem cell transplantation, we investigated the effect of HLA-E polymorphisms on post-hematopoietic stem cell transplantation outcomes.The study group included 56 donor-patient pairs with underlying malignant hematological disorders undergoing HLA-E  matched allogeneic hematopoietic stem cell transplantation. They were genotyped for HLA-E locus using a sequence specific primer-polymerase chain reaction. The  median follow-up was 20.6 months  (range 0.2-114.8 and  the  parameters assessed were acute and chronic graft-versus-host disease and overall survival.We showed a lower frequency of acute graft-versus-host disease (grade II or more; p=0.02and chronic graft-versus-host disease (extensive; p=0.04 in the patients with HLA- E*0103/0103 genotype compared to other genotypes of HLA-E. There was also an association between HLA-E*0103/0103 and improved overall survival (p=0.001.Conclusively, our  results  suggest a  protective  role  for  HLA-E*0103/0103  genotypeagainst acute graft-versus-host disease (grade II or more and chronic graft-versus-host disease (extensive as well as an association between this genotype and a better overall survival after HLA-E matched allogeneic hematopoietic stem cell transplantation.

  5. Generation of induced pluripotent stem cells as a potential source of hematopoietic stem cells for transplant in PNH patients.

    Science.gov (United States)

    Phondeechareon, Tanapol; Wattanapanitch, Methichit; U-Pratya, Yaowalak; Damkham, Chanapa; Klincumhom, Nuttha; Lorthongpanich, Chanchao; Kheolamai, Pakpoom; Laowtammathron, Chuti; Issaragrisil, Surapol

    2016-10-01

    Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia caused by lack of CD55 and CD59 on blood cell membrane leading to increased sensitivity of blood cells to complement. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for PNH, however, lack of HLA-matched donors and post-transplant complications are major concerns. Induced pluripotent stem cells (iPSCs) derived from patients are an attractive source for generating autologous HSCs to avoid adverse effects resulting from allogeneic HSCT. The disease involves only HSCs and their progeny; therefore, other tissues are not affected by the mutation and may be used to produce disease-free autologous HSCs. This study aimed to derive PNH patient-specific iPSCs from human dermal fibroblasts (HDFs), characterize and differentiate to hematopoietic cells using a feeder-free protocol. Analysis of CD55 and CD59 expression was performed before and after reprogramming, and hematopoietic differentiation. Patients' dermal fibroblasts expressed CD55 and CD59 at normal levels and the normal expression remained after reprogramming. The iPSCs derived from PNH patients had typical pluripotent properties and differentiation capacities with normal karyotype. After hematopoietic differentiation, the differentiated cells expressed early hematopoietic markers (CD34 and CD43) with normal CD59 expression. The iPSCs derived from HDFs of PNH patients have normal levels of CD55 and CD59 expression and hold promise as a potential source of HSCs for autologous transplantation to cure PNH patients. PMID:27465155

  6. IL-18 single nucleotide polymorphisms in hematologic malignancies with HLA matched sibling donor allogeneic hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    蔡小矜

    2014-01-01

    Objective To explore the impact of interleukin-18(IL-18)single nucleotide polymorphisms on outcomes of hematologic malignancies with HLA-matched sibling donor hematopoietic stem cell transplantation(allo-HSCT).Methods Single-nucleotide polymorphisms in IL-18 promoter was detected by PCR-sequence-specific primer analysis(PCR-SSP)in 93 recipients and their HLA matched sibling donors.Hematopoietic reconstitution,

  7. RARγ is critical for maintaining a balance between hematopoietic stem cell self-renewal and differentiation

    Science.gov (United States)

    Purton, Louise E.; Dworkin, Sebastian; Olsen, Gemma Haines; Walkley, Carl R.; Fabb, Stewart A.; Collins, Steven J.; Chambon, Pierre

    2006-01-01

    Hematopoietic stem cells (HSCs) sustain lifelong production of all blood cell types through finely balanced divisions leading to self-renewal and differentiation. Although several genes influencing HSC self-renewal have been identified, to date no gene has been described that, when activated, enhances HSC self-renewal and, when activated, promotes HSC differentiation. We observe that the retinoic acid receptor (RAR)γ is selectively expressed in primitive hematopoietic precursors and that the bone marrow of RARγ knockout mice exhibit markedly reduced numbers of HSCs associated with increased numbers of more mature progenitor cells compared with wild-type mice. In contrast, RARα is widely expressed in hematopoietic cells, but RARα knockout mice do not exhibit any HSC or progenitor abnormalities. Primitive hematopoietic precursors overexpressing RARα differentiate predominantly to granulocytes in short-term culture, whereas those overexpressing RARγ exhibit a much more undifferentiated phenotype. Furthermore, loss of RARγ abrogated the potentiating effects of all-trans retinoic acid on the maintenance of HSCs in ex vivo culture. Finally, pharmacological activation of RARγ ex vivo promotes HSC self-renewal, as demonstrated by serial transplant studies. We conclude that the RARs have distinct roles in hematopoiesis and that RARγ is a critical physiological and pharmacological regulator of the balance between HSC self-renewal and differentiation. PMID:16682494

  8. The transcriptional coactivator Cbp regulates self-renewal and differentiation in adult hematopoietic stem cells.

    NARCIS (Netherlands)

    Chan, W.I.; Hannah, R.L.; Dawson, M.A.; Pridans, C.; Foster, D.; Joshi, A.; Gottgens, B.; Deursen, J.M.A. van; Huntly, B.J.

    2011-01-01

    The transcriptional coactivator Cbp plays an important role in a wide range of cellular processes, including proliferation, differentiation, and apoptosis. Although studies have shown its requirement for hematopoietic stem cell (HSC) development, its role in adult HSC maintenance, as well as the cel

  9. Introduction of a quality management system and outcome after hematopoietic stem-cell transplantation

    NARCIS (Netherlands)

    Gratwohl, A.; Brand, R.; Niederwieser, D.; Baldomero, H.; Chabannon, C.; Cornelissen, J.; Witte, T.J.M. de; Ljungman, P.; McDonald, F.; McGrath, E.; Passweg, J.; Peters, C.; Rocha, V.; Slaper-Cortenbach, I.; Sureda, A.; Tichelli, A.; Apperley, J.

    2011-01-01

    PURPOSE: A comprehensive quality management system called JACIE (Joint Accreditation Committee International Society for Cellular Therapy and the European Group for Blood and Marrow Transplantation), was introduced to improve quality of care in hematopoietic stem-cell transplantation (HSCT). We ther

  10. Introduction of a Quality Management System and Outcome After Hematopoietic Stem-Cell Transplantation

    NARCIS (Netherlands)

    Gratwohl, Alois; Brand, Ronald; Niederwieser, Dietger; Baldomero, Helen; Chabannon, Christian; Cornelissen, Jan; de Witte, Theo; Ljungman, Per; McDonald, Fiona; McGrath, Eoin; Passweg, Jakob; Peters, Christina; Rocha, Vanderson; Slaper-Cortenbach, Ineke; Sureda, Anna; Tichelli, Andre; Apperley, Jane

    2011-01-01

    Purpose A comprehensive quality management system called JACIE (Joint Accreditation Committee International Society for Cellular Therapy and the European Group for Blood and Marrow Transplantation), was introduced to improve quality of care in hematopoietic stem-cell transplantation (HSCT). We there

  11. Graft-versus-host disease and graft-versus-tumor effects after allogeneic hematopoietic cell transplantation

    DEFF Research Database (Denmark)

    Storb, Rainer; Gyurkocza, Boglarka; Storer, Barry E;

    2013-01-01

    We designed a minimal-intensity conditioning regimen for allogeneic hematopoietic cell transplantation (HCT) in patients with advanced hematologic malignancies unable to tolerate high-intensity regimens because of age, serious comorbidities, or previous high-dose HCT. The regimen allows the pures...

  12. Long-term outcome of Hurler syndrome patients after hematopoietic cell transplantation : an international multicenter study

    NARCIS (Netherlands)

    Aldenhoven, Mieke; Wynn, Robert F.; Orchard, Paul J.; O'Meara, Anne; Veys, Paul; Fischer, Alain; Valayannopoulos, Vassili; Neven, Benedicte; Rovelli, Attilio; Prasad, Vinod K.; Tolar, Jakub; Allewelt, Heather; Jones, Simon A.; Parini, Rossella; Renard, Marleen; Bordon, Victoria; Wulffraat, Nico M.; de Koning, Tom J.; Shapiro, Elsa G.; Kurtzberg, Joanne; Boelens, Jaap Jan

    2015-01-01

    Mucopolysaccharidosis type I-Hurler syndrome (MPS-IH) is a lysosomal storage disease characterized by multisystem morbidity and death in early childhood. Although hematopoietic cell transplantation (HCT) has been performed in these patients for more than 30 years, large studies on the long-term outc

  13. Long-term outcome of Hurler syndrome patients after hematopoietic cell transplantation : An international multicenter study

    NARCIS (Netherlands)

    Aldenhoven, Mieke; Wynn, Robert F.; Orchard, Paul J.; O'Meara, Anne; Veys, Paul; Fischer, Alain; Valayannopoulos, Vassili; Neven, Benedicte; Rovelli, Attilio; Prasad, Vinod K.; Tolar, Jakub; Allewelt, Heather; Jones, Simon A.; Parini, Rossella; Renard, Marleen; Bordon, Victoria; Wulffraat, Nico M.; de Koning, Tom J.; Shapiro, Elsa G.; Kurtzberg, Joanne; Boelens, Jaap Jan

    2015-01-01

    Mucopolysaccharidosis type I-Hurler syndrome (MPS-IH) is a lysosomal storage disease characterized by multisystem morbidity and death in early childhood. Although hematopoietic cell transplantation (HCT) has been performed in these patients for more than 30 years, large studies on the long-term outc

  14. The risk factors of post-transplant lymphoproliferative disorders following haploidentical hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    张春丽

    2014-01-01

    Objective Post-transplant lymphoproliferative disorder(PTLD)occurring after allogeneic hematopoietic stem cell transplantation(allo-HSCT)is rare but severe.Risk factors including pre-HSCT exposure variables,conditioning regimens,transplant-related complications,and post-HSCT immune reconstitution were investigated in the development of PTLD after allo-HSCT.Methods A

  15. Early highly aggressive MS successfully treated by hematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Fagius, J.; Lundgren, J.; Oberg, G.

    2009-01-01

    BACKGROUND: During the last 15 years, high-dose chemotherapy with autologous hematopoietic stem cell transplantation (HSCT) has globally been performed for severe multiple sclerosis (MS). Most patients have been in progressive phase with long disease duration. As a rule, treatment effect has been...

  16. Effectiveness of Partner Social Support Predicts Enduring Psychological Distress after Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Rini, Christine; Redd, William H.; Austin, Jane; Mosher, Catherine E.; Meschian, Yeraz Markarian; Isola, Luis; Scigliano, Eileen; Moskowitz, Craig H.; Papadopoulos, Esperanza; Labay, Larissa E.; Rowley, Scott; Burkhalter, Jack E.; Schetter, Christine Dunkel; DuHamel, Katherine N.

    2011-01-01

    Objective: Hematopoietic stem cell transplant (HSCT) survivors who are 1 to 3 years posttransplant are challenged by the need to resume valued social roles and activities--a task that may be complicated by enduring transplant-related psychological distress common in this patient population. The present study investigated whether transplant…

  17. Routine Surveillance for Bloodstream Infections in a Pediatric Hematopoietic Stem Cell Transplant Cohort: Do Patients Benefit?

    Directory of Open Access Journals (Sweden)

    Heather Rigby

    2007-01-01

    Full Text Available BACKGROUND: Hematopoietic stem cell transplant (HSCT recipients are at a high risk for late bloodstream infection (BSI. Controversy exists regarding the benefit of surveillance blood cultures in this immunosuppressed population. Despite the common use of this practice, the practical value is not well established in non-neutropenic children following HSCT.

  18. Outcome of hematopoietic stem cell transplantation for adenosine deaminase-deficient severe combined immunodeficiency

    NARCIS (Netherlands)

    Hassan, Amel; Booth, Claire; Brightwell, Alex; Allwood, Zoe; Veys, Paul; Rao, Kanchan; Hoenig, Manfred; Friedrich, Wilhelm; Gennery, Andrew; Slatter, Mary; Bredius, Robbert; Finocchi, Andrea; Cancrini, Caterina; Aiuti, Alessandro; Porta, Fulvio; Lanfranchi, Arnalda; Ridella, Michela; Steward, Colin; Filipovich, Alexandra; Marsh, Rebecca; Bordon, Victoria; Al-Muhsen, Saleh; Al-Mousa, Hamoud; Alsum, Zobaida; Al-Dhekri, Hasan; Al Ghonaium, Abdulaziz; Speckmann, Carsten; Fischer, Alain; Mahlaoui, Nizar; Nichols, Kim E.; Grunebaum, Eyal; Al Zahrani, Daifulah; Roifman, Chaim M.; Boelens, Jaap; Davies, E. Graham; Cavazzana-Calvo, Marina; Notarangelo, Luigi; Gaspar, H. Bobby

    2012-01-01

    Deficiency of the purine salvage enzyme adenosine deaminase leads to SCID (ADA-SCID). Hematopoietic cell transplantation (HCT) can lead to a permanent cure of SCID; however, little data are available on outcome of HCT for ADA-SCID in particular. In this multicenter retrospective study, we analyzed o

  19. Pulmonary Rehabilitation for Bronchiolitis Obliterans Syndrome after Hematopoietic Stem Cell Transplantation

    OpenAIRE

    Tran, Jerry; Norder, Emily; Diaz, Phil; Gary S Phillips; Elder, Pat; Devine, Steven M; Wood, Karen L.

    2012-01-01

    Bronchiolitis obliterans syndrome (BOS) is a progressive, insidious lung disease affecting allogeneic hematopoietic stem cell transplant (HSCT) recipients. Unfortunately, there is no standardized approach for treatment of BOS in post HSCT patients. Pulmonary rehabilitation is a standard treatment in emphysema, an irreversible obstructive lung disease secondary to tobacco abuse. The National Emphysema Treatment Trial (NETT) demonstrated improved exercise tolerance, decrease dyspnea, and increa...

  20. Collapse of Telomere Homeostasis in Hematopoietic Cells Caused by Heterozygous Mutations in Telomerase Genes

    NARCIS (Netherlands)

    Aubert, Geraldine; Baerlocher, Gabriela M.; Vulto, Irma; Poon, Steven S.; Lansdorp, Peter M.

    2012-01-01

    Telomerase activity is readily detectable in extracts from human hematopoietic stem and progenitor cells, but appears unable to maintain telomere length with proliferation in vitro and with age in vivo. We performed a detailed study of the telomere length by flow FISH analysis in leukocytes from 835

  1. ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation

    DEFF Research Database (Denmark)

    Knudsen, Kasper Jermiin; Rehn, Matilda Carolina; Hasemann, Marie Sigurd;

    2015-01-01

    The balance between self-renewal and differentiation is crucial for the maintenance of hematopoietic stem cells (HSCs). Whereas numerous gene regulatory factors have been shown to control HSC self-renewal or drive their differentiation, we have relatively few insights into transcription factors...

  2. The histone demethylase Jarid1b is required for hematopoietic stem cell self-renewal

    DEFF Research Database (Denmark)

    Stewart, Morag H; Albert, Mareike; Sroczynska, Patrycja;

    2015-01-01

    Jarid1b/KDM5b is a histone demethylase that regulates self-renewal and differentiation in stem cells and cancer, however its function in hematopoiesis is unclear. Here, we find that Jarid1b is highly expressed in primitive hematopoietic compartments and is overexpressed in acute myeloid leukemias...

  3. Standard sub-thermoneutral caging temperature influences radiosensitivity of hematopoietic stem and progenitor cells.

    Directory of Open Access Journals (Sweden)

    Benjamin J Povinelli

    Full Text Available The production of new blood cells relies on a hierarchical network of hematopoietic stem and progenitor cells (HSPCs. To maintain lifelong hematopoiesis, HSPCs must be protected from ionizing radiation or other cytotoxic agents. For many years, murine models have been a valuable source of information regarding factors that either enhance or reduce the survival of HSPCs after exposure of marrow to ionizing radiation. In a recent series of studies, however, it has become clear that housing-related factors such as the cool room temperature required for laboratory mice can exert a surprising influence on the outcome of experiments. Here we report that the mild, but chronic cold-stress endured by mice housed under these conditions exerts a protective effect on HSPCs after both non-lethal and lethal doses of total body irradiation (TBI. Alleviation of this cold-stress by housing mice at a thermoneutral temperature (30°C resulted in significantly greater baseline radiosensitivity to a lethal dose of TBI with more HSPCs from mice housed at thermoneutral temperature undergoing apoptosis following non-lethal TBI. Cold-stressed mice have elevated levels of norepinephrine, a key molecule of the sympathetic nervous system that binds to β-adrenergic receptors. We show that blocking this signaling pathway in vivo through use of the β-blocker propanolol completely mitigates the protective effect of cold-stress on HSPC apoptosis. Collectively this study demonstrates that chronic stress endured by the standard housing conditions of laboratory mice increases the resistance of HSPCs to TBI-induced apoptosis through a mechanism that depends upon β-adrenergic signaling. Since β-blockers are commonly prescribed to a wide variety of patients, this information could be important when predicting the clinical impact of HSPC sensitivity to TBI.

  4. The hematopoietic stem cell transplantation in Indonesia: an unsolved dilemma.

    Science.gov (United States)

    Hariman, H

    2008-08-01

    Allogeneic BMT was performed in Indonesia, but had to be stopped prematurely because of the small number of patients. In the beginning, only patients with sufficient financial resources to travel to western countries could undergo transplant procedures. When neighbouring countries (Singapore and Malaysia) began performing transplant, patients were referred to those centres. In both countries, the procedure is more economical and therefore patients come from a broader range of economic classes. The Indonesian hematologist must deal with the post-transplantation side effects, such as GVHD, which are mostly of the chronic type of GVHD. The types of the post-transplant complications do not differ too much from other centres and need the same treatment used in the transplant centres. Hematologists in Indonesia also treat complications of HSCT performed in other countries. When there is no recovery of HSCT development in Indonesia so far, many commercially oriented companies or centres from other countries see Indonesia as a good commercial market and offer services, some of which are not scientifically sound. One of the main problems is umbilical cord blood stem cell banking from foreign countries, which is eagerly offered to parents expecting a baby. Moreover, parents are not fully protected by law. In conclusion, Indonesia needs to revive its own HSCT program to serve and protect its own patients of being used as commercial targets by other countries. PMID:18724313

  5. TGFβ inhibition enhances the generation of hematopoietic progenitors from human ES cell-derived hemogenic endothelial cells using a stepwise strategy

    Institute of Scientific and Technical Information of China (English)

    Chengyan Wang; Liying Du; Yang Gao; Ming Yin; Mingxiao Ding; Hongkui Deng; Xuming Tang; Xiaomeng Sun; Zhenchuan Miao; Yaxin Lv; Yanlei Yang; Huidan Zhang; Pengbo Zhang; Yang Liu

    2012-01-01

    Embryonic hematopoiesis is a complex process.Elucidating the mechanism regulating hematopoietic differentiation from pluripotent stem cells would allow us to establish a strategy to efficiently generate hematopoietic cells.However,the mechanism governing the generation of hematopoietic progenitors from human embryonic stem cells (hESCs)remains unknown.Here,on the basis of the emergence of CD43+ hematopoietic cells from hemogenic endothelial (HE) cells,we demonstrated that VEGF was essential and sufficient,and that bFGF was synergistic with VEGF to specify the HE cells and the subsequent transition into CD43+ hematopoietic cells.Significantly,we identified TGFβ as a novel signal to regulate hematopoietic development,as the TGFβ inhibitor SB 431542 significantly promoted the transition from HE cells into CD43+ hematopoietic progenitor cells (HPCs) during hESC differentiation.By defining these critical signaling factors during hematopoietic differentiation,we can efficiently generate HPCs from hESCs.Our strategy could offer an in vitro model to study early human hematopoietic development.

  6. First-in-man clinical results with good manufacturing practice (GMP)-compliant polypeptide-expanded adenovirus-specific T cells after haploidentical hematopoietic stem cell transplantation.

    Science.gov (United States)

    Geyeregger, René; Freimüller, Christine; Stemberger, Julia; Artwohl, Michaela; Witt, Volker; Lion, Thomas; Fischer, Gottfried; Lawitschka, Anita; Ritter, Julia; Hummel, Michael; Holter, Wolfgang; Fritsch, Gerhard; Matthes-Martin, Susanne

    2014-05-01

    Adoptive immunotherapy against viral infections is a promising treatment option for patients after hematopoietic stem cell transplantation. However, the generation of virus-specific T cells is either cost-intensive or time-consuming. We developed the first GMP-compliant protocol to generate donor-derived adenovirus (HAdV), cytomegalovirus, and Epstein-Barr virus-specific T-cell lines (TCLs) within 12 days by the use of overlapping polypeptides derived from different viruses in combination with IL-15. Two patients after undergoing haploidentical hematopoietic stem cell transplantation with HAdV viremia displaying rising viral loads despite treatment with cidofovir received 1×10 donor-derived short-term expanded HAdV-specific TCLs per kg body weight. In both patients, HAdV-specific T cells could be detected by IFN-γ-ELISpot 30 and 22 days postinfusion, and resulted in complete clearance or >1.5 log reduction of viral load within 15 and 18 days, respectively. This protocol facilitates rapid and cost-effective generation of virus-specific TCLs, which appear to provide an effective treatment option.

  7. Engraftment potential of human fetal hematopoietic cells in NOD/SCID mice is not restricted to mitotically quiescent cells.

    Science.gov (United States)

    Wilpshaar, Jannine; Bhatia, Mickie; Kanhai, Humphrey H H; Breese, Robert; Heilman, Doug K; Johnson, Cynthia S; Falkenburg, J H Frederik; Srour, Edward F

    2002-07-01

    During fetal development, there is a continued demand for large numbers of primitive and mature hematopoietic cells. This demand may require that all potential hematopoietic stem cells (HSCs) migrate effectively to emerging hematopoietic sites and subsequently contribute to blood cell production, regardless of their cell cycle status. We recently established that umbilical cord blood cells in the G(1) phase of the cell cycle have a repopulating potential similar to cells in G(0), suggesting that cycling prenatal and neonatal HSCs may have the same functional capabilities described for quiescent, but not cycling, cells from adult sources. To establish the relationship between cell cycle status and hematopoietic potential at early stages of human ontogeny, the in vivo engraftment potential of mitotically defined fetal liver (FL) and fetal bone marrow (FBM) cells were examined in NOD/SCID recipients. Following transplantation of the same numbers of G(0), G(1), or S/G(2)+M CD34(+) cells from FL, equivalent percentages of recipient mice were chimeric (55%, 60%, and 60%, respectively). FBM-derived CD34(+) cells in all phases of the cell cycle engrafted in conditioned recipients and sustained human hematopoiesis, albeit at lower levels than their FL-derived counterparts. Multilineage differentiation was evident in all transplanted mice independent of the source or cell cycle status of graft cells. In addition, levels of chimerism in mice transplanted with fetal blood-derived G(0) or G(1) CD34(+) lineage-depleted cells were similar. These results support the assertion that mitotically quiescent and cycling fetal hematopoietic cells contain marrow-repopulating stem cells capable of multilineage engraftment in NOD/SCID mouse recipients. PMID:12070016

  8. Transduction of Murine Hematopoietic Stem Cells with Tetracycline-regulated Lentiviral Vectors.

    Science.gov (United States)

    Stahlhut, Maike; Schambach, Axel; Kustikova, Olga S

    2016-01-01

    Tetracycline-regulated integrating vectors allow pharmacologically controlled genetic modification of murine and human hematopoietic stem cells (HSCs). This approach combines the stable transgene insertion into a host genome with the opportunity for time- and dose-controlled reversible transgene expression in HSCs. Here, we describe the step-by-step protocol for transduction of murine stem-cell enriched populations of bone marrow cells, such as lineage negative cells (Lin(-)), with a lentiviral vector expressing the enhanced green fluorescent protein (EGFP) under the control of the tetracycline-regulated promoter. This chapter explains how to establish in vitro and in vivo systems to study transgene dose-dependent mechanisms affecting cell fate decisions of genetically modified hematopoietic cells. PMID:27317173

  9. Signaling pathways in self-renewing hematopoietic and leukemic stem cells : do all stem cells need a niche?

    NARCIS (Netherlands)

    Rizo, Aleksandra; Vellenga, Edo; de Haan, Gerald; Schuringa, Jan Jacob

    2006-01-01

    Many adult tissue stem cells, such as the cells of the hematopoietic system, gastrointestinal epithelium, brain, epidermis, mammary gland and lung have now been identified, all of them fulfilling a crucial role in supplying organisms with mature cells during normal homeostasis as well as in times of

  10. Wnt-inhibitory factor 1 dysregulation of the bone marrow niche exhausts hematopoietic stem cells

    OpenAIRE

    Schaniel, Christoph; Sirabella, Dario; Qiu, Jiajing; Niu, Xiaohong; Lemischka, Ihor R.; Moore, Kateri A.

    2011-01-01

    The role of Wnt signaling in hematopoietic stem cell fate decisions remains controversial. We elected to dysregulate Wnt signaling from the perspective of the stem cell niche by expressing the pan Wnt inhibitor, Wnt inhibitory factor 1 (Wif1), specifically in osteoblasts. Here we report that osteoblastic Wif1 overexpression disrupts stem cell quiescence, leading to a loss of self-renewal potential. Primitive stem and progenitor populations were more proliferative and elevated in bone marrow a...

  11. Various Forms of Tissue Damage and Danger Signals Following Hematopoietic Stem-Cell Transplantation

    OpenAIRE

    Ramadan, Abdulraouf; Paczesny, Sophie

    2015-01-01

    Hematopoietic stem-cell transplantation (HSCT) is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD), which is mediated by tissue damage resulting from the conditioning regimens before the transplantation and the alloreaction of dual immune components (activated donor T-cells and recipient’s antigen-presenting cells). This tissue damage leads to the release of alarmins and the trigger...

  12. Secreted proteome of the murine multipotent hematopoietic progenitor cell line DKmix

    OpenAIRE

    Luecke, N; Templin, C; Muetzelburg, M V; Neumann, D.; Just, I; Pich, A.(IFIC, Universitat de València, CSIC, Apt. Correus 22085, 46071 , València, Spain)

    2010-01-01

    Administration of the multipotent hematopoietic progenitor cell (HPC) line DKmix improved cardiac function after myocardial infarction and accelerated dermal wound healing due to paracrine mechanisms. The aim of this study was to analyse the secreted proteins of DKmix cells in order to identify the responsible paracrine factors and assess their relevance to the wide spectrum of therapeutic effects. A mass spectrometry (MS)-based approach was used to identify secreted proteins of DKmix cells. ...

  13. Hematopoietic stem and progenitor cells in HIV/AIDS and immune reconstitution

    Institute of Scientific and Technical Information of China (English)

    Jielin Zhang; Clyde S Crumpacker

    2010-01-01

    @@ The human immunodeficiency virus type 1 (HIV-1) causes an acquired immunodeficiency syndrome (AIDS).HIV-1 infects human immune cells,specifically CD4+ lymphocytes, which leads to AIDS and undermines reconstitution of immunity. The unique challenges of HIV/AIDS have triggered multidisciplinary investigators to study the virology of the pathogen and the biology of the host cells, especially the interactions of HIV-1 with T-lymphocytes,macrophages, and hematopoietic stem and progenitor cells (HSPC) [1-8].

  14. High-Throughput siRNA Screening to Reveal GATA-2 Upstream Transcriptional Mechanisms in Hematopoietic Cells

    OpenAIRE

    Saito, Yo; Fujiwara, Tohru; Ohashi, Keiichi; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Harigae, Hideo

    2015-01-01

    Hematopoietic stem cells can self-renew and differentiate into all blood cell types. The transcription factor GATA-2 is expressed in both hematopoietic stem and progenitor cells and is essential for cell proliferation, survival, and differentiation. Recently, evidence from studies of aplastic anemia, MonoMAC syndrome, and lung cancer has demonstrated a mechanistic link between GATA-2 and human pathophysiology. GATA-2-dependent disease processes have been extensively analyzed; however, the tra...

  15. Heparan Sulfate Inhibits Hematopoietic Stem and Progenitor Cell Migration and Engraftment in Mucopolysaccharidosis I*

    Science.gov (United States)

    Watson, H. Angharad; Holley, Rebecca J.; Langford-Smith, Kia J.; Wilkinson, Fiona L.; van Kuppevelt, Toin H.; Wynn, Robert F.; Wraith, J. Edmond; Merry, Catherine L. R.; Bigger, Brian W.

    2014-01-01

    Mucopolysaccharidosis I Hurler (MPSI-H) is a pediatric lysosomal storage disease caused by genetic deficiencies in IDUA, coding for α-l-iduronidase. Idua−/− mice share similar clinical pathology with patients, including the accumulation of the undegraded glycosaminoglycans (GAGs) heparan sulfate (HS), and dermatan sulfate (DS), progressive neurodegeneration, and dysostosis multiplex. Hematopoietic stem cell transplantation (HSCT) is the most effective treatment for Hurler patients, but reduced intensity conditioning is a risk factor in transplantation, suggesting an underlying defect in hematopoietic cell engraftment. HS is a co-receptor in the CXCL12/CXCR4 axis of hematopoietic stem and progenitor cell (HSPC) migration to the bone marrow (BM), but the effect of HS alterations on HSPC migration, or the functional role of HS in MPSI-H are unknown. We demonstrate defective WT HSPC engraftment and migration in Idua−/− recipient BM, particularly under reduced intensity conditioning. Both intra- but especially extracellular Idua−/− BM HS was significantly increased and abnormally sulfated. Soluble heparinase-sensitive GAGs from Idua−/− BM and specifically 2-O-sulfated HS, elevated in Idua−/− BM, both inhibited CXCL12-mediated WT HSPC transwell migration, while DS had no effect. Thus we have shown that excess overly sulfated extracellular HS binds, and sequesters CXCL12, limiting hematopoietic migration and providing a potential mechanism for the limited scope of HSCT in Hurler disease. PMID:25359774

  16. Identification of the Niche and Phenotype of the First Human Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Andrejs Ivanovs

    2014-04-01

    Full Text Available In various vertebrate species, the dorsal aorta (Ao is the site of specification of adult hematopoietic stem cells (HSCs. It has been observed that the upregulation of essential hematopoietic transcription factors and the formation of specific intra-aortic hematopoietic cell clusters occur predominantly in the ventral domain of the Ao (AoV. In the mouse, the first HSCs emerge in the AoV. Here, we demonstrate that in the human embryo the first definitive HSCs also emerge asymmetrically and are localized to the AoV, which thus identifies a functional niche for developing human HSCs. Using magnetic cell separation and xenotransplantations, we show that the first human HSCs are CD34+VE-cadherin+CD45+C-KIT+THY-1+Endoglin+RUNX1+CD38−/loCD45RA−. This population harbors practically all committed hematopoietic progenitors and is underrepresented in the dorsal domain of the Ao (AoD and urogenital ridges (UGRs. The present study provides a foundation for analysis of molecular mechanisms underpinning embryonic specification of human HSCs.

  17. Study on Fractionated Total Body Irradiation before Hematopoietic Stem Cell Transplantation

    Institute of Scientific and Technical Information of China (English)

    Tong Fang; Bo Liu; Hong Gao

    2009-01-01

    OBJECTIVE To observe the dose and the complications from total body irradiation before hematopoietic stem cell transplantation.METHODS This study involved 312 patients with total body irradiation before hematopoietic stem cell transplantation. They were entered into the treated research from May 1999 to October 2005. All patients had Received the irradiation from 60Co of an absorbed dose rate of (5.2 ± 1.13) cGy/min. The total dose of TBI was 7~12 Gy, 1 f/d × 2 d. A high-dose rate group (≥ 10 Gy) included 139 cases and a low-dose rate group (< 10 Gy) included 173 cases.RESULTS The probability of acute gastrointestinal reactions in the high-dose rate group was more compared with that in the low-dose rate group. The differences for other reactions, such as hematopoietic reconstitution and graft survival rate, between the two groups were insignificant.CONCLUSION Using fractional total body irradiation at a dose rate of 5 cGy/min, with a total dose of 7~12 Gy, 1 f/d x 2 d, with the lung receiving under 7.5 Gy is a safe and effective pretreatment for hematopoietic stem cell transplantation.

  18. Immunological Basis of Bone Marrow Failure after Allogeneic Hematopoietic Stem Cell Transplantation

    Science.gov (United States)

    Masouridi-Levrat, Stavroula; Simonetta, Federico; Chalandon, Yves

    2016-01-01

    Bone marrow failure (BMF) syndromes are severe complications of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In this paper, we distinguish two different entities, the graft failure (GF) and the poor graft function (PGF), and we review the current understanding of the interactions between the immune and hematopoietic compartments in these conditions. We first discuss how GF occurs as the result of classical alloreactive immune responses mediated by residual host cellular and humoral immunity persisting after conditioning and prevented by host and donor regulatory T cells. We next summarize the current knowledge about the contribution of inflammatory mediators to the development of PGF. In situations of chronic inflammation complicating allo-HSCT, such as graft-versus-host disease or infections, PGF seems to be essentially the result of a sustained impairment of hematopoietic stem cells (HSC) self-renewal and proliferation caused by inflammatory mediators, such as interferon-γ (IFN-γ) and tumor necrosis factor-α, and of induction of apoptosis through the Fas/Fas ligand pathway. Interestingly, the production of inflammatory molecules leads to a non-MHC restricted, bystander inhibition of hematopoiesis, therefore, representing a promising target for immunological interventions. Finally, we discuss immune-mediated impairment of bone marrow microenvironment as a potential mechanism hampering hematopoietic recovery. Better understanding of immunological mechanisms responsible for BMF syndromes after allo-HSCT may lead to the development of more efficient immunotherapeutic interventions. PMID:27695456

  19. Thrombotic obstruction of the central venous catheter in patients undergoing hematopoietic stem cell transplantation Obstrucción trombótica del catéter venoso central en pacientes sometidos al trasplante de células-tronco hematopoyéticas Obstrução trombótica do cateter venoso central em pacientes submetidos ao transplante de células-tronco hematopoéticas

    Directory of Open Access Journals (Sweden)

    Kátia Michelli Bertoldi Arone

    2012-08-01

    Full Text Available This is an integrative literature review with the aim of summarizing the prevention measures and treatment of thrombotic obstruction of long-term semi-implanted central venous catheters, in patients undergoing hematopoietic stem cell transplantation. The sample consisted of seven studies, being two randomized controlled clinical trials, three cohort studies and two case series. Regarding the prevention measures, one single study demonstrated effectiveness, which was a cohort study on the oral use of warfarin. In relation to the treatment measures, three studies evidenced effectiveness, one highlighted the efficacy of streptokinase or urokinase, one demonstrated the benefit of using low-molecular-weight heparin and the other treated the obstruction with heparin or urokinase. Catheter patency research shows a restricted evolution that does not follow the evolution of transplantations, mainly regarding nursing care.Se trata de una revisión integradora de la literatura con objeto de sintetizar las medidas de prevención y tratamiento de obstrucción trombótica del catéter venosos central de larga permanencia y semi-implantado, en pacientes sometidos al trasplante de células-tronco hematopoyéticas. La muestra abarcó a siete estudios: dos ensayos clínicos controlados aleatorizados, tres estudios de cohorte y dos series de casos. Respecto a las medidas de prevención, fue identificado un único estudio efectivo, uno cohorte sobre el uso de la warfarina oral. Sobre las medidas de tratamiento, tres estudios evidenciaron efectividad, uno apuntó la eficacia de la estreptoquinasa o uroquinasa, otro mostró beneficio del uso de heparina de bajo peso molecular y otro trató la obstrucción con heparina o uroquinasa. Se observa que la evolución de la investigación sobre la permeabilidad del catéter fue limitada, no acompañando la evolución del trasplante, principalmente respecto a los cuidados de enfermería.Trata-se de revisão integrativa da

  20. CD34 expression on long-term repopulating hematopoietic stem cells changes during developmental stages.

    Science.gov (United States)

    Matsuoka, S; Ebihara, Y; Xu, M; Ishii, T; Sugiyama, D; Yoshino, H; Ueda, T; Manabe, A; Tanaka, R; Ikeda, Y; Nakahata, T; Tsuji, K

    2001-01-15

    The CD34 antigen serves as an important marker for primitive hematopoietic cells in therapeutic transplantation of hematopoietic stem cells (HSC) and gene therapy, but it has remained an open question as to whether or not most HSC express CD34. Using a competitive long-term reconstitution assay, the results of this study confirm developmental changes in CD34 expression on murine HSC. In fetuses and neonates, CD34 was expressed on Lin(-)c-Kit(+) long-term repopulating HSC of bone marrow (BM), liver, and spleen. However, CD34 expression on HSC decreased with aging, and in mice older than 10 weeks, HSC were most enriched in the Lin(-)c-Kit(+)CD34(-) marrow cell fraction. A second transplantation was performed from primary recipients who were transplanted with neonatal Lin(-)c-Kit(+) CD34(high) HSC marrow. Although donor-type HSC resided in CD34-expressing cell fraction in BM cells of the first recipients 4 weeks after the first transplantation, the stem cell activity had shifted to Lin(-)c-Kit(+)CD34(-) cells after 16 weeks, indicating that adult Lin(-)c-Kit(+)CD34(-) HSC are the progeny of neonatal CD34-expresssing HSC. Assays for colony-forming cells showed that hematopoietic progenitor cells, unlike HSC, continue to express CD34 throughout murine development. The present findings are important because the clinical application of HSC can be extended, in particular as related to CD34-enriched HSC and umbilical cord blood HSC.

  1. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells.

    Science.gov (United States)

    Chou, Song; Lodish, Harvey F

    2010-04-27

    Previously we showed that the ~2% of fetal liver cells reactive with an anti-CD3epsilon monoclonal antibody support ex vivo expansion of both fetal liver and bone marrow hematopoietic stem cells (HSCs); these cells express two proteins important for HSC ex vivo expansion, IGF2, and angiopoietin-like 3. Here we show that these cells do not express any CD3 protein and are not T cells; rather, we purified these HSC-supportive stromal cells based on the surface phenotype of SCF(+)DLK(+). Competitive repopulating experiments show that SCF(+)DLK(+) cells support the maintenance of HSCs in ex vivo culture. These are the principal fetal liver cells that express not only angiopoietin-like 3 and IGF2, but also SCF and thrombopoietin, two other growth factors important for HSC expansion. They are also the principal fetal liver cells that express CXCL12, a factor required for HSC homing, and also alpha-fetoprotein (AFP), indicating that they are fetal hepatic stem or progenitor cells. Immunocytochemistry shows that >93% of the SCF(+) cells express DLK and Angptl3, and a portion of SCF(+) cells also expresses CXCL12. Thus SCF(+)DLK(+) cells are a highly homogenous population that express a complete set of factors for HSC expansion and are likely the primary stromal cells that support HSC expansion in the fetal liver.

  2. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues.

    Directory of Open Access Journals (Sweden)

    Eduardo K Moioli

    Full Text Available Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs and mesenchymal stem/progenitor cells (MSCs were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP scaffolds, followed by infusion of gel-suspended CD34(+ hematopoietic cells. Co-transplantation of CD34(+ HSCs and CD34(- MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+ and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+ cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+ cells. Based on additional in vitro results of endothelial differentiation of CD34(+ cells by vascular endothelial growth factor (VEGF, we adsorbed VEGF with co-transplanted CD34(+ and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+ cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone

  3. Bone marrow-derived hematopoietic stem and progenitor cells infiltrate allogeneic and syngeneic transplants.

    Science.gov (United States)

    Fan, Z; Enjoji, K; Tigges, J C; Toxavidis, V; Tchipashivili, V; Gong, W; Strom, T B; Koulmanda, M

    2014-12-01

    Lineage (CD3e, CD11b, GR1, B220 and Ly-76) negative hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) infiltrate islet allografts within 24 h posttransplantation. In fact, lineage(negative) Sca-1(+) cKit(+) ("LSK") cells, a classic signature for HSCs, were also detected among these graft infiltrating cells. Lineage negative graft infiltrating cells are functionally multi-potential as determined by a standard competitive bone marrow transplant (BMT) assay. By 3 months post-BMT, both CD45.1 congenic, lineage negative HSCs/HPCs and classic "LSK" HSCs purified from islet allograft infiltrating cells, differentiate and repopulate multiple mature blood cell phenotypes in peripheral blood, lymph nodes, spleen, bone marrow and thymus of CD45.2 hosts. Interestingly, "LSK" HSCs also rapidly infiltrate syngeneic islet transplants as well as allogeneic cardiac transplants and sham surgery sites. It seems likely that an inflammatory response, not an adaptive immune response to allo-antigen, is responsible for the rapid infiltration of islet and cardiac transplants by biologically active HSCs/HPCs. The pattern of hematopoietic differentiation obtained from graft infiltrating HSCs/HPCs, cells that are recovered from inflammatory sites, as noted in the competitive BMT assay, is not precisely the same as that of intramedullary HSCs. This does not refute the obvious multi-lineage potential of graft infiltrating HSCs/HPCs.

  4. Late Effects Surveillance Recommendations among Survivors of Childhood Hematopoietic Cell Transplantation: A Children's Oncology Group Report.

    Science.gov (United States)

    Chow, Eric J; Anderson, Lynnette; Baker, K Scott; Bhatia, Smita; Guilcher, Gregory M T; Huang, Jennifer T; Pelletier, Wendy; Perkins, Joanna L; Rivard, Linda S; Schechter, Tal; Shah, Ami J; Wilson, Karla D; Wong, Kenneth; Grewal, Satkiran S; Armenian, Saro H; Meacham, Lillian R; Mulrooney, Daniel A; Castellino, Sharon M

    2016-05-01

    Hematopoietic cell transplantation (HCT) is an important curative treatment for children with high-risk hematologic malignancies, solid tumors, and, increasingly, nonmalignant diseases. Given improvements in care, there are a growing number of long-term survivors of pediatric HCT. Compared with childhood cancer survivors who did not undergo transplantation, HCT survivors have a substantially increased burden of serious chronic conditions and impairments involving virtually every organ system and overall quality of life. This likely reflects the joint contributions of pretransplantation treatment exposures and organ dysfunction, the transplantation conditioning regimen, and any post-transplantation graft-versus-host disease (GVHD). In response, the Children's Oncology Group (COG) has created long-term follow-up guidelines (www.survivorshipguidelines.org) for survivors of childhood, adolescent, and young adult cancer, including those who were treated with HCT. Guideline task forces, consisting of HCT specialists, other pediatric oncologists, radiation oncologists, organ-specific subspecialists, nurses, social workers, other health care professionals, and patient advocates systematically reviewed the literature with regards to late effects after childhood cancer and HCT since 2002, with the most recent review completed in 2013. For the most recent review cycle, over 800 articles from the medical literature relevant to childhood cancer and HCT survivorship were reviewed, including 586 original research articles. Provided herein is an organ system-based overview that emphasizes the most relevant COG recommendations (with accompanying evidence grade) for the long-term follow-up care of childhood HCT survivors (regardless of current age) based on a rigorous review of the available evidence. These recommendations cover both autologous and allogeneic HCT survivors, those who underwent transplantation for nonmalignant diseases, and those with a history of chronic GVHD. PMID

  5. Fluid balance of pediatric hematopoietic stem cell transplant recipients and intensive care unit admission.

    Science.gov (United States)

    Benoit, Geneviève; Phan, Véronique; Duval, Michel; Champagne, Martin; Litalien, Catherine; Merouani, Aicha

    2007-03-01

    Fluid administration is essential in patients undergoing hematopoietic stem cell transplant (HSCT). Admission to pediatric intensive care unit (PICU) is required for 11-29% of pediatric HSCT recipients and is associated with high mortality. The objective of this study was to determine if a positive fluid balance acquired during the HSCT procedure is a risk factor for PICU admission. The medical records of 87 consecutive children who underwent a first HSCT were reviewed retrospectively for the following periods: from admission for HSCT to PICU admission for the first group (PICU group), and from admission for HSCT to hospital discharge for the second group (non-PICU group). Fluid balance was determined on the basis of weight gain (WG) and fluid overload (FO). PICU group consisted of 19 patients (21.8%). Among these, 13 (68.4%) developed>or=10% WG prior to PICU admission compared with 15 (22.1%) in the non-PICU group (por=10% FO prior to PICU admission compared with 31 (45.6%) in the non-PICU group (p=0.075). Following multivariate analysis, >or=10% WG (p=0.018) and cardiac dysfunction on admission for HSCT (p=0.036) remained independent risk factors for PICU admission. Smaller children (p=0.033) and patients with a twofold increase in serum creatinine (p=0.026) were at risk of developing>or=10% WG. This study shows that WG is a risk factor for PICU admission in pediatric HSCT recipients. Further research is needed to better understand the pathophysiology of WG in these patients and to determine the impact of WG prevention on PICU admission. PMID:17123119

  6. Mitigation of Late Renal and Pulmonary Injury After Hematopoietic Stem Cell Transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Eric P., E-mail: Eric.Cohen2@va.gov [Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Bedi, Manpreet; Irving, Amy A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Jacobs, Elizabeth; Tomic, Rade [Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Klein, John [Department of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Lawton, Colleen A.; Moulder, John E. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2012-05-01

    Purpose: To update the results of a clinical trial that assessed whether the angiotensin-converting enzyme inhibitor captopril was effective in mitigating chronic renal failure and pulmonary-related mortality in subjects undergoing total body irradiation (TBI) in preparation for hematopoietic stem cell transplantation (HSCT). Methods and Materials: Updated records of the 55 subjects who were enrolled in this randomized controlled trial were analyzed. Twenty-eight patients received captopril, and 27 patients received placebo. Definitions of TBI-HSCT-related chronic renal failure (and relapse) were the same as those in the 2007 analysis. Pulmonary-related mortality was based on clinical or autopsy findings of pulmonary failure or infection as the primary cause of death. Follow-up data for overall and pulmonary-related mortality were supplemented by use of the National Death Index. Results: The risk of TBI-HSCT-related chronic renal failure was lower in the captopril group (11% at 4 years) than in the placebo group (17% at 4 years), but this was not statistically significant (p > 0.2). Analysis of mortality was greatly extended by use of the National Death Index, and no patients were lost to follow-up for reasons other than death prior to 67 months. Patient survival was higher in the captopril group than in the placebo group, but this was not statistically significant (p > 0.2). The improvement in survival was influenced more by a decrease in pulmonary mortality (11% risk at 4 years in the captopril group vs. 26% in the placebo group, p = 0.15) than by a decrease in chronic renal failure. There was no adverse effect on relapse risk (p = 0.4). Conclusions: Captopril therapy produces no detectable adverse effects when given after TBI. Captopril therapy reduces overall and pulmonary-related mortality after radiation-based HSCT, and there is a trend toward mitigation of chronic renal failure.

  7. Hematopoietic stem cell transplantation in sickle cell disease: patient selection and special considerations

    Directory of Open Access Journals (Sweden)

    Bhatia M

    2015-07-01

    Full Text Available Monica Bhatia,1 Sujit Sheth21Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Medical Center, 2Division of Pediatric Hematology and Oncology, Weill Cornell Medical College, New York, NY, USAAbstract: Hematopoietic stem cell transplantation remains the only curative treatment currently in use for patients with sickle cell disease (SCD. The first successful hematopoietic stem cell transplantation was performed in 1984. To date, approximately 1,200 transplants have been reported. Given the high prevalence of this disorder in Africa, and its emergence in the developed world through immigration, this number is relatively small. There are many reasons for this; primary among them are the availability of a donor, the risks associated with this complex procedure, and the cost and availability of resources in the developing world. Of these, it is fair to say that the risks associated with the procedure have steadily decreased to the point where, if currently performed in a center with experience using a matched sibling donor, overall survival is close to 100% and event-free survival is over 90%. While there is little controversy around offering hematopoietic stem cell transplantation to symptomatic SCD patients with a matched sibling donor, there is much debate surrounding the use of this modality in “less severe” patients. An overview of the current state of our understanding of the pathology and treatment of SCD is important to show that our current strategy is not having the desired impact on survival of homozygous SCD patients, and should be changed to significantly impact the small proportion of these patients who have matched siblings and could be cured, especially those without overt clinical manifestations. Both patient families and providers must be made to understand the progressive nature of SCD, and should be encouraged to screen full siblings of patients with homozygous SCD for their potential to

  8. Ex vivo expansions and transplantations of mouse bone marrow-derived hematopoietic stem/progenitor cells

    Institute of Scientific and Technical Information of China (English)

    WANG Jin-fu(王金福); WU Yi-fan(吴亦凡); HARRINTONG Jenny; McNIECE Ian K.

    2004-01-01

    To examine the effects of co-culture with bone marrow mesenchymal stem cells on expansion of hematopoietic stem/progenitor cells and the capacities of rapid neutrophil engraftment and hematopoietic reconstitution of the expanded cells, we expanded mononuclear cells (MNCs) and CD34+/c-kit+ cells from mouse bone marrow and transplanted the expanded cells into the irradiated mice. MNCs were isolated from mouse bone marrow and CD34+/c-kit+ cells were selected from MNCs by using MoFlo Cell Sorter. MNCs and CD34+/c-kit+ cells were co-cultured with mouse bone marrow-derived mesenchymal stem cells (MSCs) under a two-step expansion. The expanded cells were then transplanted into sublethally irradiated BDF1 mice. Results showed that the co-culture with MSCs resulted in expansions of median total nucleated cells,CD34+ cells, GM-CFC and HPP-CFC respectively by 10.8-, 4.8-, 65.9- and 38.8-fold for the mononuclear cell culture, and respectively by 76.1-, 2.9-, 71.7- and 51.8-fold for the CD34+/c-kit+ cell culture. The expanded cells could rapidly engraft in the sublethally irradiated mice and reconstitute their hematopoiesis. Co-cultures with MSCs in conjunction with two-step expansion increased expansions of total nucleated cells, GM-CFC and HPP-CFC, which led us to conclude MSCs may create favorable environment for expansions of hematopoietic stem/progenitor cells. The availability of increased numbers of expanded cells by the co-culture with MSCs may result in more rapid engraftment ofneutrophils following infusion to transplant recipients.

  9. Flow-cytometric method for simultaneous analysis of mouse lung epithelial, endothelial, and hematopoietic lineage cells.

    Science.gov (United States)

    Singer, Benjamin D; Mock, Jason R; D'Alessio, Franco R; Aggarwal, Neil R; Mandke, Pooja; Johnston, Laura; Damarla, Mahendra

    2016-05-01

    Flow cytometry is a powerful tool capable of simultaneously analyzing multiple parameters on a cell-by-cell basis. Lung tissue preparation for flow cytometry requires creation of a single-cell suspension, which often employs enzymatic and mechanical dissociation techniques. These practices may damage cells and cause cell death that is unrelated to the experimental conditions under study. We tested methods of lung tissue dissociation and sought to minimize cell death in the epithelial, endothelial, and hematopoietic lineage cellular compartments. A protocol that involved flushing the pulmonary circulation and inflating the lung with Dispase, a bacillus-derived neutral metalloprotease, at the time of tissue harvest followed by mincing, digestion in a DNase and collagenase solution, and filtration before staining with fluorescent reagents concurrently maximized viable yields of epithelial, endothelial, and hematopoietic lineage cells compared with a standard method that did not use enzymes at the time of tissue harvest. Flow cytometry identified each population-epithelial (CD326(+)CD31(-)CD45(-)), endothelial (CD326(-)CD31(+)CD45(-)), and hematopoietic lineage (CD326(-)CD31(-)CD45(+))-and measured cellular viability by 7-aminoactinomycin D (7-AAD) staining. The Dispase method permitted discrimination of epithelial vs. endothelial cell death in a systemic lipopolysaccharide model of increased pulmonary vascular permeability. We conclude that application of a dissociative enzyme solution directly to the cellular compartments of interest at the time of tissue harvest maximized viable cellular yields of those compartments. Investigators could employ this dissociation method to simultaneously harvest epithelial, endothelial, and hematopoietic lineage and other lineage-negative cells for flow-cytometric analysis. PMID:26944088

  10. Different Motile Behaviors of Human Hematopoietic Stem versus Progenitor Cells at the Osteoblastic Niche

    Directory of Open Access Journals (Sweden)

    Katie Foster

    2015-11-01

    Full Text Available Despite advances in our understanding of interactions between mouse hematopoietic stem cells (HSCs and their niche, little is known about communication between human HSCs and the microenvironment. Using a xenotransplantation model and intravital imaging, we demonstrate that human HSCs display distinct motile behaviors to their hematopoietic progenitor cell (HPC counterparts, and the same pattern can be found between mouse HSCs and HPCs. HSCs become significantly less motile after transplantation, while progenitor cells remain motile. We show that human HSCs take longer to find their niche than previously expected and suggest that the niche be defined as the position where HSCs stop moving. Intravital imaging is the only technique to determine where in the bone marrow stem cells stop moving, and future analyses should focus on the environment surrounding the HSC at this point.

  11. Hematopoietic microenvironment. Origin, lineage, and transplantability of the stromal cells in long-term bone marrow cultures from chimeric mice.

    OpenAIRE

    Perkins, S; Fleischman, R A

    1988-01-01

    Studies of bone marrow transplant patients have suggested that the stromal cells of the in vitro hematopoietic microenvironment are transplantable into conditioned recipients. Moreover, in patients with myeloproliferative disorders, all of the stromal cells, which include presumptive endothelial cells, appear to be derived from hematopoietic precursors. To confirm these findings, we have constructed two chimeric mouse models: (a) traditional radiation chimeras, and (b) fetal chimeras, produce...

  12. Unrelated Hematopoietic Stem Cell Transplantation for Children with Acute Leukemia: Experience at a Single Institution

    OpenAIRE

    Lee, Jae Hee; Yoon, Hoi Soo; Song, Joon Sup; Choi, Eun Seok; Moon, Hyung Nam; Seo, Jong Jin; Im, Ho Joon

    2009-01-01

    We evaluate the outcomes in children with acute leukemia who received allogeneic hematopoietic stem cell transplantation (HCT) using unrelated donor. Fifty-six children in complete remission (CR) received HCT from unrelated donors between 2000 and 2007. Thirty-five had acute myeloid leukemia, and 21 had acute lymphoid leukemia. Stem cell sources included bone marrow in 38, peripheral blood in 4, and cord blood (CB) in 14. Four patients died before engraftment and 52 engrafted. Twenty patients...

  13. Efficient lymphoreticular prion propagation requires PrP(c) in stromal and hematopoietic cells.

    OpenAIRE

    Kaeser, P S; Klein, M A; Schwarz, P.; Aguzzi, A

    2001-01-01

    In most prion diseases, infectivity accumulates in lymphoreticular organs early after infection. Defects in hematopoietic compartments, such as impaired B-cell maturation, or in stromal compartments, such as abrogation of follicular dendritic cells, can delay or prevent lymphoreticular prion colonization. However, the nature of the compartment in which prion replication takes place is controversial, and it is unclear whether this compartment coincides with that expressing the normal prion pro...

  14. Efficient Lymphoreticular Prion Propagation Requires PrPc in Stromal and Hematopoietic Cells

    OpenAIRE

    Kaeser, Pascal S.; Klein, Michael A.; Schwarz, Petra; Aguzzi, Adriano

    2001-01-01

    In most prion diseases, infectivity accumulates in lymphoreticular organs early after infection. Defects in hematopoietic compartments, such as impaired B-cell maturation, or in stromal compartments, such as abrogation of follicular dendritic cells, can delay or prevent lymphoreticular prion colonization. However, the nature of the compartment in which prion replication takes place is controversial, and it is unclear whether this compartment coincides with that expressing the normal prion pro...

  15. Functional Reconstitution Of Natural Killer Cells In Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Md Ashik eUllah

    2016-04-01

    Full Text Available Natural killer (NK cells are the first lymphocyte population to reconstitute following allogeneic hematopoietic stem cell transplantation (HSCT and are important in mediating immunity against both leukemia and pathogens. Although NK cell numbers generally reconstitute within a month, the acquisition of mature NK cell phenotype and full functional competency can take 6 months or more, and is influenced by graft composition, concurrent pharmacologic immunosuppression, graft-versus-host disease and other clinical factors. In addition, cytomegalovirus infection and reactivation have a dominant effect on NK cell memory imprinting following allogeneic HSCT just as it does in healthy individuals. Our understanding of NK cell education and licensing has evolved in the years since the ‘missing self’ hypothesis for NK-mediated graft-versus-leukemia effect was first put forward. For example, we now know that NK cell ‘re-education’ can occur, and that unlicensed NK cells can be more protective than licensed NK cells in certain settings, thus raising new questions about how best to harness graft-versus-leukemia effect. Here we review current understanding of the functional reconstitution of NK cells and NK cell education following allogeneic HSCT, highlighting a conceptual framework for future research.

  16. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    Science.gov (United States)

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy.

  17. Ex vivo expansions and transplantations of mouse bone marrow-derived hematopoietic stem/progenitor cells

    Institute of Scientific and Technical Information of China (English)

    王金福; 吴亦凡; HARRINTONGJenny; McNIECEIanK.

    2004-01-01

    To examine the effects of co-culture with bone marrow mesenchymal stem cells on expansion of hematopoietic tem/progenitor cells and the capacities of rapid neutrophil engraftment and hematopoietic reconstitution of the expanded ells, we expanded mononuclear cells (MNCs) and CD34+/c-kit+ cells from mouse bone marrow and transplanted the expanded cells into the irradiated mice. MNCs were isolated from mouse bone marrow and CD34+/c-kit+ cells were selected from MNCs by using MoFlo Cell Sorter. MNCs and CD34+/c-kit+ cells were co-cultured with mouse bone marrow-derived mesenchymal stem cells (MSCs) under a two-step expansion. The expanded cells were then transplanted into sublethally irradiated BDF 1 mice. Results showed that the co-culture with MSCs resulted in expansions of median total nucleated cells, CD34+ cells, GM-CFC and HPP-CFC respectively by 10.8-, 4.8-, 65.9- and 38.8-fold for the mononuclear cell culture, and respectively by 76.1-, 2.9-, 71.7- and 51.8-fold for the CD34+/c-kit+ cell culture. The expanded cells could rapidly engraft in the sublethally irradiated mice and reconstitute their hematopoiesis. Co-cultures with MSCs in conjunction with two-step expansion increased expansions of total nucleated cells, GM-CFC and HPP-CFC, which led us to conclude MSCs may create favorable environment for expansions of hematopoietic stem/progenitor cells. The availability of increased numbers of expanded ceils by the co-culture with MSCs may result in more rapid engraftment ofneutrophils following infusion to transplant recipients.

  18. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block

    DEFF Research Database (Denmark)

    Kirstetter, Peggy; Anderson, Kristina; Porse, Bo T;

    2006-01-01

    of hematopoietic stem cell function was associated with decreased expression of Cdkn1a (encoding the cell cycle inhibitor p21(cdk)), Sfpi1, Hoxb4 and Bmi1 (encoding the transcription factors PU.1, HoxB4 and Bmi-1, respectively) and altered integrin expression in Lin(-)Sca-1(+)c-Kit(+) cells, whereas PU.1......Wnt signaling increases hematopoietic stem cell self-renewal and is activated in both myeloid and lymphoid malignancies, indicating involvement in both normal and malignant hematopoiesis. We report here activated canonical Wnt signaling in the hematopoietic system through conditional expression...... of a stable form of beta-catenin. This enforced expression led to hematopoietic failure associated with loss of myeloid lineage commitment at the granulocyte-macrophage progenitor stage; blocked erythrocyte differentiation; disruption of lymphoid development; and loss of repopulating stem cell activity. Loss...

  19. Differential Reponses of Hematopoietic Stem and Progenitor Cells to mTOR Inhibition

    Directory of Open Access Journals (Sweden)

    Aimin Yang

    2015-01-01

    Full Text Available Abnormal activation of the mammalian target of rapamycin (mTOR signaling pathway has been observed in a variety of human cancers. Therefore, targeting of the mTOR pathway is an attractive strategy for cancer treatment and several mTOR inhibitors, including AZD8055 (AZD, a novel dual mTORC1/2 inhibitor, are currently in clinical trials. Although bone marrow (BM suppression is one of the primary side effects of anticancer drugs, it is not known if pharmacological inhibition of dual mTORC1/2 affects BM hematopoietic stem and progenitor cells (HSPCs function and plasticity. Here we report that dual inhibition of mTORC1/2 by AZD or its analogue (KU-63794 depletes mouse BM Lin−Sca-1+c-Kit+ cells in cultures via the induction of apoptotic cell death. Subsequent colony-forming unit (CFU assays revealed that inhibition of mTORC1/2 suppresses the clonogenic function of hematopoietic progenitor cells (HPCs in a dose-dependent manner. Surprisingly, we found that dual inhibition of mTORC1/2 markedly inhibits the growth of day-14 cobblestone area-forming cells (CAFCs but enhances the generation of day-35 CAFCs. Given the fact that day-14 and day-35 CAFCs are functional surrogates of HPCs and hematopoietic stem cells (HSCs, respectively, these results suggest that dual inhibition of mTORC1/2 may have distinct effects on HPCs versus HSCs.

  20. Transforming Growth Factor β Drives Hemogenic Endothelium Programming and the Transition to Hematopoietic Stem Cells.

    Science.gov (United States)

    Monteiro, Rui; Pinheiro, Philip; Joseph, Nicola; Peterkin, Tessa; Koth, Jana; Repapi, Emmanouela; Bonkhofer, Florian; Kirmizitas, Arif; Patient, Roger

    2016-08-22

    Hematopoietic stem cells (HSCs) are self-renewing multipotent stem cells that generate mature blood lineages throughout life. They, together with hematopoietic progenitor cells (collectively known as HSPCs), emerge from hemogenic endothelium in the floor of the embryonic dorsal aorta by an endothelial-to-hematopoietic transition (EHT). Here we demonstrate that transforming growth factor β (TGFβ) is required for HSPC specification and that it regulates the expression of the Notch ligand Jagged1a in endothelial cells prior to EHT, in a striking parallel with the epithelial-to-mesenchymal transition (EMT). The requirement for TGFβ is two fold and sequential: autocrine via Tgfβ1a and Tgfβ1b produced in the endothelial cells themselves, followed by a paracrine input of Tgfβ3 from the notochord, suggesting that the former programs the hemogenic endothelium and the latter drives EHT. Our findings have important implications for the generation of HSPCs from pluripotent cells in vitro. PMID:27499523

  1. Lentivirus-mediated Gene Transfer in Hematopoietic Stem Cells Is Impaired in SHIV-infected, ART-treated Nonhuman Primates.

    Science.gov (United States)

    Younan, Patrick M; Peterson, Christopher W; Polacino, Patricia; Kowalski, John P; Obenza, Willimark; Miller, Hannah W; Milless, Brian P; Gafken, Phil; DeRosa, Stephen C; Hu, Shiu-Lok; Kiem, Hans-Peter

    2015-05-01

    Recent studies have demonstrated that genetically modified hematopoietic stem cells (HSCs) can reduce HIV viremia. We have developed an HIV/AIDS-patient model in Simian/human immunodeficiency virus (SHIV)-infected pigtailed macaques that are stably suppressed on antiretroviral therapy (ART: raltegravir, emtricitabine and tenofovir). Following SHIV infection and ART, animals undergo autologous HSC transplantation (HSCT) with lentivirally transduced cluster of differentiation (CD)34(+) cells expressing the mC46 anti-HIV fusion protein. We show that SHIV(+), ART-treated animals had very low gene marking levels after HSCT. Pretransduction CD34(+) cells contained detectable levels of all three ART drugs, likely contributing to the low gene transfer efficiency. Following HSCT recovery and the cessation of ART, plasma viremia rebounded, indicating that myeloablative total body irradiation cannot completely eliminate viral reservoirs after autologous HSCT. The kinetics of recovery following autologous HSCT in SHIV(+), ART-treated macaques paralleled those observed following transplantation of control animals. However, T-cell subset analyses demonstrated a high percentage of C-C chemokine receptor 5 (CCR5)-expressing CD4(+) T-cells after HSCT. These data suggest that an extended ART interruption time may be required for more efficient lentiviral transduction. To avoid complications associated with ART interruption in the context of high percentages of CD4(+)CCR5(+)T-cells after HSCT, the use of vector systems not impaired by the presence of residual ART may also be beneficial. PMID:25648264

  2. Mutual Interference between Cytomegalovirus and Reconstitution of Protective Immunity after Hematopoietic Cell Transplantation.

    Science.gov (United States)

    Reddehase, Matthias J

    2016-01-01

    Hematopoietic cell transplantation (HCT) is a therapy option for aggressive forms of hematopoietic malignancies that are resistant to standard antitumoral therapies. Hematoablative treatment preceding HCT, however, opens a "window of opportunity" for latent Cytomegalovirus (CMV) by releasing it from immune control with the consequence of reactivation of productive viral gene expression and recurrence of infectious virus. A "window of opportunity" for the virus represents a "window of risk" for the patient. In the interim between HCT and reconstitution of antiviral immunity, primarily mediated by CD8(+) T cells, initially low amounts of reactivated virus can expand exponentially, disseminate to essentially all organs, and cause multiple organ CMV disease, with interstitial pneumonia (CMV-IP) representing the most severe clinical manifestation. Here, I will review predictions originally made in the mouse model of experimental HCT and murine CMV infection, some of which have already paved the way to translational preclinical research and promising clinical trials of a preemptive cytoimmunotherapy of human CMV disease. Specifically, the mouse model has been pivotal in providing "proof of concept" for preventing CMV disease after HCT by adoptive transfer of preselected, virus epitope-specific effector and memory CD8(+) T cells bridging the critical interim. However, CMV is not a "passive antigen" but is a pathogen that actively interferes with the reconstitution of protective immunity by infecting bone marrow (BM) stromal cells that otherwise form niches for hematopoiesis by providing the structural microenvironment and by producing hematopoietically active cytokines, the hemopoietins. Depending on the precise conditions of HCT, reduced homing of transplanted hematopoietic stem- and progenitor cells to infected BM stroma and impaired colony growth and lineage differentiation can lead to "graft failure." In consequence, uncontrolled virus spread causes morbidity and

  3. Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression.

    Science.gov (United States)

    Anderson, Heidi; Patch, Taylor C; Reddy, Pavankumar N G; Hagedorn, Elliott J; Kim, Peter G; Soltis, Kathleen A; Chen, Michael J; Tamplin, Owen J; Frye, Maike; MacLean, Glenn A; Hübner, Kathleen; Bauer, Daniel E; Kanki, John P; Vogin, Guillaume; Huston, Nicholas C; Nguyen, Minh; Fujiwara, Yuko; Paw, Barry H; Vestweber, Dietmar; Zon, Leonard I; Orkin, Stuart H; Daley, George Q; Shah, Dhvanit I

    2015-12-24

    Rare endothelial cells in the aorta-gonad-mesonephros (AGM) transition into hematopoietic stem cells (HSCs) during embryonic development. Lineage tracing experiments indicate that HSCs emerge from cadherin 5 (Cdh5; vascular endothelial-cadherin)(+) endothelial precursors, and isolated populations of Cdh5(+) cells from mouse embryos and embryonic stem cells can be differentiated into hematopoietic cells. Cdh5 has also been widely implicated as a marker of AGM-derived hemogenic endothelial cells. Because Cdh5(-/-) mice embryos die before the first HSCs emerge, it is unknown whether Cdh5 has a direct role in HSC emergence. Our previous genetic screen yielded malbec (mlb(bw306)), a zebrafish mutant for cdh5, with normal embryonic and definitive blood. Using time-lapse confocal imaging, parabiotic surgical pairing of zebrafish embryos, and blastula transplantation assays, we show that HSCs emerge, migrate, engraft, and differentiate in the absence of cdh5 expression. By tracing Cdh5(-/-)green fluorescent protein (GFP)(+/+) cells in chimeric mice, we demonstrated that Cdh5(-/-)GFP(+/+) HSCs emerging from embryonic day 10.5 and 11.5 (E10.5 and E11.5) AGM or derived from E13.5 fetal liver not only differentiate into hematopoietic colonies but also engraft and reconstitute multilineage adult blood. We also developed a conditional mouse Cdh5 knockout (Cdh5(flox/flox):Scl-Cre-ER(T)) and demonstrated that multipotent hematopoietic colonies form despite the absence of Cdh5. These data establish that Cdh5, a marker of hemogenic endothelium in the AGM, is dispensable for the transition of hemogenic endothelium to HSCs. PMID:26385351

  4. Genetic Modification of Hematopoietic Stem Cells as a Therapy for HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Patrick Younan

    2013-11-01

    Full Text Available The combination of genetic modification and hematopoietic stem cell (HSC transplantation may provide the necessary means to develop an alternative treatment option to conventional antiretroviral therapy. As HSCs give rise to all hematopoietic cell types susceptible to HIV infection, modification of HSCs is an ideal strategy for the development of infection-resistant immune cell populations. Although promising results have been obtained in multiple animal models, additional evidence is needed to convincingly demonstrate the feasibility of this approach as a treatment of HIV-1 infected patients. Here, we review the potential of HSC transplantation and the recently identified limitations of this approach. Using the Berlin Patient as a model for a functional cure, we contrast the confines of autologous versus allogeneic transplantation. Finally, we suggest that although autologous, gene-modified HSC-transplantation may significantly reduce plasma viremia, reaching the lower detection limits currently obtainable through daily HAART will remain a challenging endeavor that will require innovative combinatorial therapies.

  5. Hematopoietic stem cell transplantation monitoring in childhood. Hematological diseases in Serbia: STR-PCR techniques

    Directory of Open Access Journals (Sweden)

    Krstić Aleksandra D.

    2007-01-01

    Full Text Available Hematopoietic stem cell transplantation (HSCT is a very successful method of treatment for children with different aquired or inborn diseases. The main goal of post-transplantation chimerism monitoring in HSCT is to predict negative events (such as disease relapse and graft rejection, in order to intervene with appropriate therapy and improve the probability of long-term DFS (disease free survival. In this context, by quantifying the relative amounts of donor and recipient cells present in the peripheral blood sample, it can be determined if engraftment has taken place at all, or if full or mixed chimerism exists. In a group of patients who underwent hematopoietic stem cell transplantation at the Mother and Child Health Care Institute, we decided to use standard human identfication tests based on multiplex PCR analyses of short tandem repeats (STRs, as they are highly informative, sensitive, and fast and therefore represent an optimal methodological approach to engraftment analysis.

  6. Immuno-metabolism and adipose tissue: The key role of hematopoietic stem cells.

    Science.gov (United States)

    Cousin, B; Casteilla, L; Laharrague, P; Luche, E; Lorsignol, A; Cuminetti, V; Paupert, J

    2016-05-01

    The field of immunometabolism has come a long way in the past decade, leading to the emergence of a new role for white adipose tissue (WAT) that is now recognized to stand at the junction of immune and metabolic regulations. Interestingly, a crucial role of the abundant and heterogeneous immune population present in WAT has been proposed in the induction and development of metabolic diseases. Although a large body of data focused on mature immune cells, only few scattered studies are dedicated to leukocyte production, and the activity of hematopoietic stem cells (HSC) in these pathological states. Considering that blood cell production and the differentiation of HSCs and their progeny is orchestrated, in part, by complex interacting signals emanating from their microenvironment, it thus seems worth to better understand the relationships between metabolism and HSC. This review discusses the alterations of hematopoietic process described in metabolic diseases and focused on the emerging data concerning HSC present in WAT.

  7. Reciprocal upregulation of Notch signaling molecules in hematopoietic progenitor and mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Kikuchi Y

    2011-01-01

    Full Text Available Although mesenchymal stem cells (MSCs play pivotal supportive roles in hematopoiesis, how they interact with hematopoietic stem cells (HSCs is not well understood. We investigated the interaction between HSCs and surrogate MSCs (C3H10T1/2 stromal cells, focusing on the molecular events induced by cell contact of these bipartite populations. C3H10T1/2 is a mesenchymal stromal cell line that can be induced to differentiate into preadipocytes (A54 and myoblasts (M1601. The stromal cell derivatives were cocultured with murine HSCs (Lineage-Sca1+, and gene expression profiles in stromal cells and HSCs were compared before and after the coculture. HSCs gave rise to cobblestone areas only on A54 cells, with ninefold more progenitors than on M1601 or undifferentiated C3H10T1/2 cells. Microarray-based screening and a quantitative reverse transcriptase directed-polymerase chain reaction showed that the levels of Notch ligands (Jagged1 and Delta-like 3 were increased in A54 cells upon interaction with HSCs. On the other hand, the expression of Notch1 and Hes1 was upregulated in the HSCs cocultured with A54 cells. A transwell assay revealed that the reciprocal upregulation was dependent on cell-to-cell contact. The result suggested that in the hematopoietic niche, HSCs help MSCs to produce Notch ligands, and in turn, MSCs help HSCs to express Notch receptor. Such a reciprocal upregulation would reinforce the downstream signaling to determine the fate of hematopoietic cell lineage. Clarification of the initiating events on cell contact should lead to the identification of specific molecular targets to facilitate HSC engraftment in transplantation therapy.

  8. Quantitative and qualitative in vitro analysis of the stem cell potential of hematopoietic cells purified from murine skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Celine Haond; Fran(c)oise Farace; Martine Guillier; Yann Lécluse; Frederic Mazurier; William Vainchenker; Ali G Turhan

    2007-01-01

    The murine skeletal muscle contains hematopoietic stem cells, but this potential has so far not been studied quantitatively or qualitatively in vitro. To quantity the hematopoietic stem cell potential, we have used highly purified SP/CD45+ cells in long-term culture initiating cell (LTC-IC) assays. The SP/CD45+ cell population purified from murine muscle was found to have significant stem cell activity with an LTC-IC frequency of 1/640. Single-cell-sorted SP/CD45+ cells from muscle exhibited robust proliferative activity in vitro at day 16 (380-fold amplification), especially after culture with OP-9 layers that also support embryonic stem cells. Amplified cell populations originating from single cells exhibited multilineage differentiation ability with evidence of myeloid, lymphoid and NK cell markers. Thus, our results demonstrate that hematopoietic stem cells that can be quantified by LTC-IC assays exist in the murine skeletal muscle and show also for the first time, at the single-cell level, that these cells exhibit multilineage differentiation ability and major proliferative potential.

  9. Hematopoietic microenvironment. Origin, lineage, and transplantability of the stromal cells in long-term bone marrow cultures from chimeric mice

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, S.; Fleischman, R.A.

    1988-04-01

    Studies of bone marrow transplant patients have suggested that the stromal cells of the in vitro hematopoietic microenvironment are transplantable into conditioned recipients. Moreover, in patients with myeloproliferative disorders, all of the stromal cells, which include presumptive endothelial cells, appear to be derived from hematopoietic precursors. To confirm these findings, we have constructed two chimeric mouse models: (a) traditional radiation chimeras, and (b) fetal chimeras, produced by placental injection of bone marrow into genetically anemic Wx/Wv fetuses, a technique that essentially precludes engraftment of nonhematopoietic cells. Using two-color indirect immunofluorescence, the stromal cells in long-term bone marrow culture derived from these chimeras were analyzed for donor or host origin by strain-specific H-2 antigens, and for cell lineage by a variety of other specific markers. 75-95% of the stromal cells were shown to be hematopoietic cells of the monocyte-macrophage lineage, based upon donor origin, phagocytosis, and expression of specific hematopoietic surface antigens. The remaining 5-25% of the stromal cells were exclusively host in origin. Apart from occasional fat cells, these cells uniformly expressed collagen type IV, laminin, and a surface antigen associated with endothelial cells. Since these endothelial-like cells are not transplantable into radiation or fetal chimeras, they are not derived from hematopoietic stem cells. The contrast between our findings and human studies suggests either unexpected species differences in the origin of stromal lineages or limitations in the previous methodology used to detect nonhematopoietic stromal cells.

  10. Hematopoietic microenvironment. Origin, lineage, and transplantability of the stromal cells in long-term bone marrow cultures from chimeric mice

    International Nuclear Information System (INIS)

    Studies of bone marrow transplant patients have suggested that the stromal cells of the in vitro hematopoietic microenvironment are transplantable into conditioned recipients. Moreover, in patients with myeloproliferative disorders, all of the stromal cells, which include presumptive endothelial cells, appear to be derived from hematopoietic precursors. To confirm these findings, we have constructed two chimeric mouse models: (a) traditional radiation chimeras, and (b) fetal chimeras, produced by placental injection of bone marrow into genetically anemic Wx/Wv fetuses, a technique that essentially precludes engraftment of nonhematopoietic cells. Using two-color indirect immunofluorescence, the stromal cells in long-term bone marrow culture derived from these chimeras were analyzed for donor or host origin by strain-specific H-2 antigens, and for cell lineage by a variety of other specific markers. 75-95% of the stromal cells were shown to be hematopoietic cells of the monocyte-macrophage lineage, based upon donor origin, phagocytosis, and expression of specific hematopoietic surface antigens. The remaining 5-25% of the stromal cells were exclusively host in origin. Apart from occasional fat cells, these cells uniformly expressed collagen type IV, laminin, and a surface antigen associated with endothelial cells. Since these endothelial-like cells are not transplantable into radiation or fetal chimeras, they are not derived from hematopoietic stem cells. The contrast between our findings and human studies suggests either unexpected species differences in the origin of stromal lineages or limitations in the previous methodology used to detect nonhematopoietic stromal cells

  11. Role of Geminin in cell fate determination of hematopoietic stem cells (HSCs).

    Science.gov (United States)

    Yasunaga, Shin'ichiro; Ohno, Yoshinori; Shirasu, Naoto; Zhang, Bo; Suzuki-Takedachi, Kyoko; Ohtsubo, Motoaki; Takihara, Yoshihiro

    2016-09-01

    Geminin exerts two distinct molecular roles. Geminin negatively regulates DNA replication licensing through the direct interaction with Cdt1 to prevent re-replication in proliferating cells. Geminin also regulates chromatin remodeling through the direct interaction with Brahma/Brg1 to maintain undifferentiated states of stem cells. We previously uncovered that Polycomb-group complex 1 and Hoxb4/Hoxa9, well-known intrinsic factors that are essential for maintaining the hematopoietic stem cell (HSC) activity, alternatively act as ubiquitin-proteasome systems for Geminin protein to reduce the protein expression level, and sustain the HSC activity. Thus, Geminin is presumed to play an important role in determining cell fate, i.e., turning on and off cellular quiescence and proliferation/differentiation, in HSCs. We recently generated recombinant cell-penetrating Geminin (CP-Geminin), enabling rapid incorporation and withdraw of Geminin protein in cells. CP-Geminin may be useful in regulating the cell cycle and chromatin configuration. In this article, we summarize current information on the molecular functions of Geminin and the regulatory system for Geminin protein expression, and argue for the molecular role of Geminin in cell fate determination of HSCs, and future perspective of a new technology for manipulating the activities of HSCs and cancer stem cells (CSCs). PMID:27422432

  12. Enhancing T cell reconstitution after hematopoietic stem cell transplantation: a brief update of the latest trends

    Science.gov (United States)

    Zakrzewski, Johannes L.; Goldberg, Gabrielle L.; Smith, Odette M.; van den Brink, Marcel R.M.

    2009-01-01

    Hematopoietic stem cell transplantation (HSCT) is associated with a period of immune incompetence that particularly affects the T cell lineage. Strategies to enhance T cell reconstitution could significantly improve the survival of HSCT recipients by decreasing the incidence of fatal infectious complications and by enhancing graft-versus-tumor activity. In recent years, a variety of promising strategies have been established in preclinical models to improve T cell recovery in particular after allogeneic T cell-depleted HSCT, without aggravating graft-versus-host disease while preserving or even improving graft-versus-tumor activity. These therapies include treatment with keratinocyte growth factor (KGF), growth hormone (GH), LHRH agonists, interleukin 7 (IL-7) and interleukin 15 (IL-15). Thanks to the establishment of Notch-based culture systems, adoptive cellular therapies with T lineage-committed precursor cells have become feasible, since early T cell progenitors can now easily be generated in vitro in large quantities and have been proven to be very effective in enhancing T cell reconstitution and anti-tumor activity after allogeneic T cell-depleted HSCT. The translation of most of these strategies into clinical trials is likely and in some cases Phase I/II studies are already underway. PMID:17905611

  13. Distinct Functions of Different scl Isoforms in Zebrafish Definitive Hematopoietic Stem Cell Initiation and Maintenance

    Science.gov (United States)

    Lan, Yahui

    2011-07-01

    The establishment of entire blood system relies on the multi-potent hematopoietic stem cells (HSCs), thus identifying the molecular mechanism in HSC generation is of importance for not only complementing the fundamental knowledge in stem cell biology, but also providing insights to the regenerative therapies. Recent researches have documented the formation of nascent HSCs through a direct transition from ventral aortic endothelium, named as endothelial hematopoietic transition (EHT) process. However, the precise genetic program engaged in this process remains largely elusive. The transcription factor scl plays pivotal and conserved roles in embryonic and adult hematopoiesis from teleosts to mammals. Our lab have previously identified a new truncated scl isoform, scl-beta, which is indispensible for the specification of HSCs in the ventral wall of dorsal aorta (VDA), the zebrafish equivalent of mammalian fetal hematopoietic organ. Here we observe that, by combining time-lapse confocal imaging of transgenic zebrafish and genetic epistasis analysis, scl-beta is expressed in a subset of ventral aortic endothelial cells and critical for their forthcoming transformation to hemogenic endothelium; in contrast, runx1 is required downstream to govern the successful egress of the hemogenic endothelial cells to become naive HSCs. In addition, the traditional known full-length scl-alpha isoform is firstly evidenced to be required for the maintenance or survival of newly formed HSCs in VDA. Collectively our data has established the genetic hierarchy controlling discrete steps in the consecutive process of HSC formation from endothelial cells and further development in VDA.

  14. The role of osteoblasts in regulating hematopoietic stem cell activity and tumor metastasis

    Directory of Open Access Journals (Sweden)

    Neiva K.

    2005-01-01

    Full Text Available Bone marrow stromal cells are critical regulators of hematopoiesis. Osteoblasts are part of the stromal cell support system in bone marrow and may be derived from a common precursor. Several studies suggested that osteoblasts regulate hematopoiesis, yet the entire mechanism is not understood. It is clear, however, that both hematopoietic precursors and osteoblasts interact for the production of osteoclasts and the activation of resorption. We observed that hematopoietic stem cells (HSCs regulate osteoblastic secretion of various growth factors, and that osteoblasts express some soluble factors exclusively in the presence of HSCs. Osteoblasts and hematopoietic cells are closely associated with each other in the bone marrow, suggesting a reciprocal relationship between them to develop the HSC niche. One critical component regulating the niche is stromal-derived factor-1 (SDF-1 and its receptor CXCR4 which regulates stem cell homing and, as we have recently demonstrated, plays a crucial role in facilitating those tumors which metastasize to bone. Osteoblasts produce abundant amounts of SDF-1 and therefore osteoblasts play an important role in metastasis. These findings are discussed in the context of the role of osteoblasts in marrow function in health and disease.

  15. Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration

    Directory of Open Access Journals (Sweden)

    E.A. Blaber

    2014-09-01

    Full Text Available Mechanical loading of mammalian tissues is a potent promoter of tissue growth and regeneration, whilst unloading in microgravity can cause reduced tissue regeneration, possibly through effects on stem cell tissue progenitors. To test the specific hypothesis that mechanical unloading alters differentiation of bone marrow mesenchymal and hematopoietic stem cell lineages, we studied cellular and molecular aspects of how bone marrow in the mouse proximal femur responds to unloading in microgravity. Trabecular and cortical endosteal bone surfaces in the femoral head underwent significant bone resorption in microgravity, enlarging the marrow cavity. Cells isolated from the femoral head marrow compartment showed significant down-regulation of gene expression markers for early mesenchymal and hematopoietic differentiation, including FUT1(−6.72, CSF2(−3.30, CD90(−3.33, PTPRC(−2.79, and GDF15(−2.45, but not stem cell markers, such as SOX2. At the cellular level, in situ histological analysis revealed decreased megakaryocyte numbers whilst erythrocytes were increased 2.33 fold. Furthermore, erythrocytes displayed elevated fucosylation and clustering adjacent to sinuses forming the marrow–blood barrier, possibly providing a mechanistic basis for explaining spaceflight anemia. Culture of isolated bone marrow cells immediately after microgravity exposure increased the marrow progenitor's potential for mesenchymal differentiation into in-vitro mineralized bone nodules, and hematopoietic differentiation into osteoclasts, suggesting an accumulation of undifferentiated progenitors during exposure to microgravity. These results support the idea that mechanical unloading of mammalian tissues in microgravity is a strong inhibitor of tissue growth and regeneration mechanisms, acting at the level of early mesenchymal and hematopoietic stem cell differentiation.

  16. Analysis of efficacy and prognosis of allogeneic hematopoietic stem cell transplantation from different donors in treatment of hematologic malignancies

    Institute of Scientific and Technical Information of China (English)

    余正平

    2013-01-01

    Objective To investigate the clinical efficacy of allogeneic hematopoietic stem cell transplantation(allo-HSCT) from unrelated donors and that from related donors in treatment of hematologic malignancies. Methods

  17. Analysis of the efficacy and prognosis on first-line autologous hematopoietic stem cell transplantation of patients with multiple myeloma

    Institute of Scientific and Technical Information of China (English)

    邹徳慧

    2013-01-01

    Objective To explore the efficacy and prognosis of first-line autologous hematopoietic stem cell transplantation(ASCT) for newly diagnosed patients with multiple myeloma(MM).Methods From January 2005 to

  18. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation.

    Science.gov (United States)

    Nestorowa, Sonia; Hamey, Fiona K; Pijuan Sala, Blanca; Diamanti, Evangelia; Shepherd, Mairi; Laurenti, Elisa; Wilson, Nicola K; Kent, David G; Göttgens, Berthold

    2016-08-25

    Maintenance of the blood system requires balanced cell fate decisions by hematopoietic stem and progenitor cells (HSPCs). Because cell fate choices are executed at the individual cell level, new single-cell profiling technologies offer exciting possibilities for mapping the dynamic molecular changes underlying HSPC differentiation. Here, we have used single-cell RNA sequencing to profile more than 1600 single HSPCs, and deep sequencing has enabled detection of an average of 6558 protein-coding genes per cell. Index sorting, in combination with broad sorting gates, allowed us to retrospectively assign cells to 12 commonly sorted HSPC phenotypes while also capturing intermediate cells typically excluded by conventional gating. We further show that independently generated single-cell data sets can be projected onto the single-cell resolution expression map to directly compare data from multiple groups and to build and refine new hypotheses. Reconstruction of differentiation trajectories reveals dynamic expression changes associated with early lymphoid, erythroid, and granulocyte-macrophage differentiation. The latter two trajectories were characterized by common upregulation of cell cycle and oxidative phosphorylation transcriptional programs. By using external spike-in controls, we estimate absolute messenger RNA (mRNA) levels per cell, showing for the first time that despite a general reduction in total mRNA, a subset of genes shows higher expression levels in immature stem cells consistent with active maintenance of the stem-cell state. Finally, we report the development of an intuitive Web interface as a new community resource to permit visualization of gene expression in HSPCs at single-cell resolution for any gene of choice. PMID:27365425

  19. WASH is required for the differentiation commitment of hematopoietic stem cells in a c-Myc–dependent manner

    OpenAIRE

    Xia, Pengyan; Wang, Shuo; Huang, Guanling; Zhu, Pingping; Li, Man; Ye, Buqing; Du, Ying; Fan, Zusen

    2014-01-01

    Hematopoiesis is fully dependent on hematopoietic stem cells (HSCs) that possess the capacity to self-renew and differentiate into all blood cell lineages. WASH, Wiskott–Aldrich syndrome protein (WASP) and SCAR homologue (WASH) is involved in endosomal sorting as an actin-nucleating protein. Here, we show that conditional WASH deletion in the hematopoietic system causes defective blood production of the host, leading to severe cytopenia and rapid anemia. WASH deficiency causes the accumulatio...

  20. Influence of cyclosporine on the occurrence of nephrotoxicity after allogeneic hematopoietic stem cell transplantation: a systematic review

    OpenAIRE

    Juliana Bastoni da Silva; Maria Helena Melo Lima; Sílvia Regina Secoli

    2014-01-01

    Cyclosporine, a drug used in immunosuppression protocols for hematopoietic stem cell transplantation that has a narrow therapeutic index, may cause various adverse reactions, including nephrotoxicity. This has a direct clinical impact on the patient. This study aims to summarize available evidence in the scientific literature on the use of cyclosporine in respect to its risk factor for the development of nephrotoxicity in patients submitted to hematopoietic stem cell transplantation. A system...

  1. Analysis of the feasibility of early hospital discharge after autologous hematopoietic stem cell transplantation and the implications to nursing care

    OpenAIRE

    Alessandra Barban; Fabio Luiz Coracin; Priscila Tavares Musqueira; Andrea Barban; Lilian Piron Ruiz; Milton Artur Ruiz; Rosaura Saboya; Frederico Luiz Dulley

    2014-01-01

    INTRODUCTION: Autologous hematopoietic stem cell transplantation is a conduct used to treat some hematologic diseases and to consolidate the treatment of others. In the field of nursing, the few published scientific studies on nursing care and early hospital discharge of transplant patients are deficient. Knowledge about the diseases treated using hematopoietic stem cell transplantation, providing guidance to patients and caregivers and patient monitoring are important nursing activities in ...

  2. Effect of radiation dose-rate on hematopoietic cell engraftment in adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Tiffany J Glass

    Full Text Available Although exceptionally high radiation dose-rates are currently attaining clinical feasibility, there have been relatively few studies reporting the biological consequences of these dose-rates in hematopoietic cell transplant (HCT. In zebrafish models of HCT, preconditioning before transplant is typically achieved through radiation alone. We report the comparison of outcomes in adult zebrafish irradiated with 20 Gy at either 25 or 800 cGy/min in the context of experimental HCT. In non-transplanted irradiated fish we observed no substantial differences between dose-rate groups as assessed by fish mortality, cell death in the kidney, endogenous hematopoietic reconstitution, or gene expression levels of p53 and ddb2 (damage-specific DNA binding protein 2 in the kidney. However, following HCT, recipients conditioned with the higher dose rate showed significantly improved donor-derived engraftment at 9 days post transplant (p ≤ 0.0001, and improved engraftment persisted at 31 days post transplant. Analysis for sdf-1a expression, as well as transplant of hematopoietic cells from cxcr4b -/- zebrafish, (odysseus, cumulatively suggest that the sdf-1a/cxcr4b axis is not required of donor-derived cells for the observed dose-rate effect on engraftment. Overall, the adult zebrafish model of HCT indicates that exceptionally high radiation dose-rates can impact HCT outcome, and offers a new system for radiobiological and mechanistic interrogation of this phenomenon. Key words: Radiation dose rate, Total Marrow Irradiation (TMI, Total body irradiation (TBI, SDF-1, Zebrafish, hematopoietic cell transplant.

  3. Cell-intrinsic in vivo requirement for the E47-p21 pathway in long-term hematopoietic stem cells.

    Science.gov (United States)

    Santos, Patricia M; Ding, Ying; Borghesi, Lisa

    2014-01-01

    Major regulators of long-term hematopoietic stem cell (LT-HSC) self-renewal and proliferation have been identified, but knowledge of their in vivo interaction in a linear pathway is lacking. In this study, we show a direct genetic link between the transcription factor E47 and the major cell cycle regulator p21 in controlling LT-HSC integrity in vivo under repopulation stress. Numerous studies have shown that E47 activates p21 transcription in hematopoietic subsets in vitro, and we now reveal the in vivo relevance of the E47-p21 pathway by reducing the gene dose of each factor individually (E47(het) or p21(het)) versus in tandem (E47(het)p21(het)). E47(het)p21(het) LT-HSCs and downstream short-term hematopoietic stem cells exhibit hyperproliferation and preferential susceptibility to mitotoxin compared to wild-type or single haploinsufficient controls. In serial adoptive transfers that rigorously challenge self-renewal, E47(het)p21(het) LT-HSCs dramatically and progressively decline, indicating the importance of cell-intrinsic E47-p21 in preserving LT-HSCs under stress. Transient numeric recovery of downstream short-term hematopoietic stem cells enabled the production of functionally competent myeloid but not lymphoid cells, as common lymphoid progenitors were decreased, and peripheral lymphocytes were virtually ablated. Thus, we demonstrate a developmental compartment-specific and lineage-specific requirement for the E47-p21 pathway in maintaining LT-HSCs, B cells, and T cells under hematopoietic repopulation stress in vivo.

  4. Non-hematopoietic cells in lymph nodes drive memory CD8 T cell inflation during murine cytomegalovirus infection.

    Directory of Open Access Journals (Sweden)

    Nicole Torti

    2011-10-01

    Full Text Available During human and murine cytomegalovirus (MCMV infection an exceptionally large virus-specific CD8 T cell pool is maintained in the periphery lifelong. This anomalous response is only seen for specific subsets of MCMV-specific CD8 T cells which are referred to as 'inflationary T cells'. How memory CD8 T cell inflation is induced and maintained is unclear, though their activated phenotype strongly suggests an involvement of persistent antigen encounter during MCMV latency. To dissect the cellular and molecular requirements for memory CD8 T cell inflation, we have generated a transgenic mouse expressing an MHC class I-restricted T cell receptor specific for an immunodominant inflationary epitope of MCMV. Through a series of adoptive transfer experiments we found that memory inflation was completely dependent on antigen presentation by non-hematopoietic cells, which are also the predominant site of MCMV latency. In particular, non-hematopoietic cells selectively induced robust proliferation of inflationary CD8 T cells in lymph nodes, where a majority of the inflationary CD8 T cells exhibit a central-memory phenotype, but not in peripheral tissues, where terminally differentiated inflationary T cells accumulate. These results indicate that continuous restimulation of central memory CD8 T cells in the lymph nodes by infected non-hematopoietic cells ensures the maintenance of a functional effector CD8 T pool in the periphery, providing protection against viral reactivation events.

  5. Hematopoietic Stem Cell Transplantation in Thalassemia and Sickle Cell Disease. Unicenter Experience in a Multi-Ethnic Population.

    OpenAIRE

    Marziali, Marco; Isgrò, Antonella; Gaziev, Javid; Lucarelli, Guido

    2009-01-01

    Hematopoietic stem cell transplantation (HSCT) still remains the only definitive cure currently available for patients with thalassemia and sickle cell anemia. Results of transplant in thalassemia and in sickle cell anemia have steadily improved over the last two decades due to improvements in preventive strategies, and effective control of transplant-related complications. From 2004 through 2009, 145 consecutive patients with thalassemia and sickle cell anemia, ethnically heterogeneous from ...

  6. Quality of life of hospitalized patients submitted to hematopoietic stem cells transplantation

    Directory of Open Access Journals (Sweden)

    Vanessa da Rocha

    2015-12-01

    Full Text Available The objective of this study was to assess the quality of life and to identify the altered domains of adult patients with blood cancer, submitted to hematopoietic stem cells transplantation during hospitalization time. A longitudinal, observation and analytical study, conducted in a reference hospital for hematopoietic stem cell transplant. The data collection was during September of 2013 and September of 2014, including 25 patients and using questionnaires for sociodemographic and clinic characteristics, QLQ-C30 and FACT-BMT. A significant statistical worsening (p<0.05 was found in global quality of life, functional scales, physical, social and family function, personal performance, additional worries and symptoms, fatigue, nausea and vomit, pain, loss of appetite and diarrhea. There is impairment in quality of life of patients during hospitalization for the transplantation. This study can subsidize the direction of actions for adequate support during all therapeutic period.

  7. Pilot experience with opebacan/rBPI21 in myeloablative hematopoietic cell transplantation [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Eva Guinan

    2015-12-01

    Full Text Available Bacterial infection and inflammation contribute significantly to the morbidity and mortality of myeloablative allogeneic hematopoietic cell transplantation (HCT. Endotoxin, a component of the outer membrane of Gram-negative bacteria, is a potent inflammatory stimulus in humans. Bactericidal/permeability increasing protein (BPI, a constituent of human neutrophil granules, binds endotoxin thereby precluding endotoxin-induced inflammation and also has direct anti-infective properties against bacteria. As a consequence of myeloablative therapy used in preparation for hematopoietic cell infusion, patients experience gastrointestinal leak of bacteria and bacterial toxins into the systemic circulation and a period of inflammatory cytokine elevation associated with subsequent regimen-related toxicities.  Patients frequently become endotoxemic and febrile as well as BPI-deficient due to sustained neutropenia. To examine whether enhancing endotoxin-neutralizing and anti-infective activity by exogenous administration of a recombinant N-terminal fragment of BPI (rBPI21, generic name opebacan might ameliorate regimen-related toxicities including infection, we recruited patients scheduled to undergo myeloablative HCT to participate in a proof-of-concept prospective phase I/II trial. After the HCT preparative regimen was completed, opebacan was initiated 18-36 hours prior to administration of allogeneic hematopoietic stem cells (defined as Day 0 and continued for 72 hours. The trial was to have included escalation of rBPI21 dose and duration but was stopped prematurely due to lack of further drug availability.  Therefore, to better understand the clinical course of opebacan-treated patients (n=6, we compared their outcomes with a comparable cohort meeting the same eligibility criteria and enrolled in a non-interventional myeloablative HCT observational study (n = 35.  Opebacan-treated participants had earlier platelet engraftment (p=0.005, mirroring

  8. Genetic engineering of hematopoietic stem cells to generate invariant natural killer T cells.

    Science.gov (United States)

    Smith, Drake J; Liu, Siyuan; Ji, Sunjong; Li, Bo; McLaughlin, Jami; Cheng, Donghui; Witte, Owen N; Yang, Lili

    2015-02-01

    Invariant natural killer T (iNKT) cells comprise a small population of αβ T lymphocytes. They bridge the innate and adaptive immune systems and mediate strong and rapid responses to many diseases, including cancer, infections, allergies, and autoimmunity. However, the study of iNKT cell biology and the therapeutic applications of these cells are greatly limited by their small numbers in vivo (∼0.01-1% in mouse and human blood). Here, we report a new method to generate large numbers of iNKT cells in mice through T-cell receptor (TCR) gene engineering of hematopoietic stem cells (HSCs). We showed that iNKT TCR-engineered HSCs could generate a clonal population of iNKT cells. These HSC-engineered iNKT cells displayed the typical iNKT cell phenotype and functionality. They followed a two-stage developmental path, first in thymus and then in the periphery, resembling that of endogenous iNKT cells. When tested in a mouse melanoma lung metastasis model, the HSC-engineered iNKT cells effectively protected mice from tumor metastasis. This method provides a powerful and high-throughput tool to investigate the in vivo development and functionality of clonal iNKT cells in mice. More importantly, this method takes advantage of the self-renewal and longevity of HSCs to generate a long-term supply of engineered iNKT cells, thus opening up a new avenue for iNKT cell-based immunotherapy.

  9. Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells

    Science.gov (United States)

    Yang, Lili; Baltimore, David

    2005-03-01

    A method to genetically program mouse hematopoietic stem cells to develop into functional CD8 or CD4 T cells of defined specificity in vivo is described. For this purpose, a bicistronic retroviral vector was engineered that efficiently delivers genes for both and chains of T cell receptor (TCR) to hematopoietic stem cells. When modified cell populations were used to reconstruct the hematopoietic lineages of recipient mice, significant percentages of antigen-specific CD8 or CD4 T cells were observed. These cells expressed normal surface markers and responded to peptide antigen stimulation by proliferation and cytokine production. Moreover, they could mature into memory cells after peptide stimulation. Using TCRs specific for a model tumor antigen, we found that the recipient mice were able to partially resist a challenge with tumor cells carrying the antigen. By combining cells modified with CD8- and CD4-specific TCRs, and boosting with dendritic cells pulsed with cognate peptides, complete suppression of tumor could be achieved and even tumors that had become established would regress and be eliminated after dendritic cell/peptide immunization. This methodology of "instructive immunotherapy" could be developed for controlling the growth of human tumors and attacking established pathogens.

  10. Assessment of human multi-potent hematopoietic stem/progenitor cell potential using a single in vitro screening system.

    Directory of Open Access Journals (Sweden)

    Julien Calvo

    Full Text Available Hematopoietic stem cells are responsible for the generation of the entire blood system through life. This characteristic relies on their ability to self renew and on their multi-potentiality. Thus quantification of the number of hematopoietic stem cells in a given cell population requires to show both properties in the studied cell populations. Although xenografts models that support human hematopoietic stem cells have been described, such in vivo experimental systems remain restrictive for high throughput screening purposes for example. In this work we developed a conditional tetracycline inducible system controlling the expression of the human NOTCH ligand Delta-like 1 in the murine stromal MS5 cells. We cultured hematopoietic immature cells enriched in progenitor/stem cells in contact with MS5 cells that conditionally express Delta-like 1, in conditions designed to generate multipotential lineage differentiation. We show that upon induction or repression of DL1 expression during co-culture, human immature CD34(+CD38(-/low(CD45RA(-CD90(+ cells can express their B, T, NK, granulo/monocytic and erythroid potentials in a single well, and at the single cell level. We also document the interference of low NOTCH activation with human B and myelo/erythroid lymphoid differentiation. This system represents a novel tool to precisely quantify human hematopoietic immature cells with both lymphoid and myeloid potentials.

  11. Hyperbaric oxygen: an important treatment modality in severe hemorrhagic cystitis after allogeneic hematopoietic stem cell transplantation

    OpenAIRE

    Deniz Sargın; Murat Tunç; Nuray Gürses; Oktay Perdeci; Sevgi Kalayoğlu-Beşışık; Mustafa Nuri Yenerel

    2009-01-01

    Objective: Hemorrhagic cystitis (HC) is a generally self-limited complication of hematopoietic stem cell transplantation (HSCT). It may occur in the early or late posttransplant period and can promote sometimes severe morbidity. We analyzed our data regarding HC in allogeneic HSCT patients in order to establish the efficacy of hyperbaric oxygen (HBO) therapy in severe HC and to document the main problems during its use. Material and Methods: Between March 1993 and August 2006, 161 patients re...

  12. Endoscopic diagnosis of cytomegalovirus gastritis after allogeneic hematopoietic stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Yasuo; Kakugawa; Masahiro; Kami; Takahisa; Matsuda; Yutaka; Saito; Sung-Won; Kim; Takahiro; Fukuda; Shin-ichiro; Mori; Tadakazu; Shimoda; Ryuji; Tanosaki; Daizo; Saito

    2010-01-01

    AIM:To clarify the endoscopic and clinical findings of cytomegalovirus(CMV) gastritis after allogeneic hematopoietic stem cell transplantation(allo-SCT).METHODS:Between 1999 and 2005,523 patients underwent allo-SCT at our hospital,and 115 of these patients with gastrointestinal symptoms underwent esophagogastroduodenoscopy.RESULTS:CMV gastritis was diagnosed pathologically in seven patients(1.3%) with the other 108 patients serving as controls.Six of the seven patients developed positive CMV antigenemia,and...

  13. Barriers to Mental Health Service Use among Hematopoietic Stem Cell Transplant Survivors

    OpenAIRE

    Mosher, Catherine E.; DuHamel, Katherine N.; Rini, Christine M.; Li, Yuelin; Isola, Luis; Labay, Larissa; Rowley, Scott; Papadopoulos, Esperanza; Moskowitz, Craig; Scigliano, Eileen; Grosskreutz, Celia; Redd, William H.

    2009-01-01

    Summary This study examined barriers to mental health service use and their demographic, medical, and psychosocial correlates among hematopoietic stem cell transplant (HSCT) survivors. A sample of 253 HSCT survivors who were 1- to 3-years post-transplant completed measures of demographic, physical, psychological, and social characteristics as well as a newly modified measure of barriers to mental health service use. Only 50% of distressed HSCT survivors had received mental health services. An...

  14. Salvage therapy for severe aplastic anemia after allogenenic hematopoietic cell transplant

    Institute of Scientific and Technical Information of China (English)

    张静

    2014-01-01

    Objective To probe a practical salvage strategy for relapse or failure patients with severe aplastic anemia(SAA)after allogenenic hematopoietic cell transplant(allo-HSCT).Methods The clinical characteristics and initial treatments of allo-HSCT,and the responses of a novel salvage therapy of cyclosporine alternately combined with levamisole(CsA&LMS regimen)plus danazol(DNZ)in 2 patients were reviewed and evaluated.

  15. Membranous nephropathy and lupus-like syndrome after hematopoietic cell transplantation: a case report

    OpenAIRE

    Stylianou Kostas; Stratakis Stavros; Mavroeidi Vasiliki; Petrakis Ioannis; Xydakis Dimitris; Vardaki Eleftheria; Stratigis Spyros; Perakis Kostas; Katsarou Theodora; Kanellou Peggy; Xylouri Irene; Petraki Constantina; Alexandrakis Michael; Daphnis Eugene

    2010-01-01

    Abstract Introduction The kidney is increasingly recognised as a target organ of chronic graft-versus-host disease after hematopoietic cell transplantation in the context of the development of the nephrotic syndrome. Chronic graft-versus-host disease is associated with autoimmune phenomena similar, but not identical, to those observed in various rheumatologic disorders, implicating autoimmunity as an important component of the disease. Case presentation We report the case of a 57-year-old Cau...

  16. Clonal-Level Responses of Functionally Distinct Hematopoietic Stem Cells to Trophic Factors

    OpenAIRE

    Mallaney, Cates; Kothari, Alok; Martens, Andrew; Challen, Grant A.

    2013-01-01

    Recent findings from several groups have identified distinct classes of hematopoietic stem cells (HSCs) in the bone marrow, each with inherent functional biases in terms of their differentiation, self-renewal, proliferation and lifespan. It has previously been demonstrated that myeloid- and lymphoid-biased HSCs can be prospectively enriched based on their degree of Hoechst dye efflux. In the present study, we used differential Hoechst efflux to enrich lineage-biased HSC subtypes and analyzed ...

  17. Embryonic stromal clones reveal developmental regulators of definitive hematopoietic stem cells

    OpenAIRE

    Durand, Charles; Robin, Catherine; Bollerot, Karine; Baron, Margaret H.; Ottersbach, Katrin; Dzierzak, Elaine

    2007-01-01

    Hematopoietic stem cell (HSC) self-renewal and differentiation is regulated by cellular and molecular interactions with the surrounding microenvironment. During ontogeny, the aorta–gonad–mesonephros (AGM) region autonomously generates the first HSCs and serves as the first HSC-supportive microenvironment. Because the molecular identity of the AGM microenvironment is as yet unclear, we examined two closely related AGM stromal clones that differentially support HSCs. Expression analyses identif...

  18. Chronic kidney disease after liver, cardiac, lung, heart–lung, and hematopoietic stem cell transplant

    OpenAIRE

    Hingorani, Sangeeta

    2008-01-01

    Patient survival after cardiac, liver, and hematopoietic stem cell transplant (HSCT) is improving; however, this survival is limited by substantial pretransplant and treatment-related toxicities. A major cause of morbidity and mortality after transplant is chronic kidney disease (CKD). Although the majority of CKD after transplant is attributed to the use of calcineurin inhibitors, various other conditions such as thrombotic microangiopathy, nephrotic syndrome, and focal segmental glomerulosc...

  19. Evaluating risk factors for Clostridium difficile infection in adult and pediatric hematopoietic cell transplant recipients

    OpenAIRE

    Boyle, Nicole M.; Magaret, Amalia; Stednick, Zach; Morrison, Alex; Butler-Wu, Susan; Zerr, Danielle; Rogers, Karin; Podczervinski, Sara; Cheng, Anqi; Wald, Anna; Pergam, Steven A

    2015-01-01

    Background Although hematopoietic cell transplant (HCT) recipients are routinely exposed to classic risk factors for Clostridium difficile infection (CDI), few studies have assessed CDI risk in these high-risk patients, and data are especially lacking for pediatric HCT recipients. We aimed to determine incidence and risk factors for CDI in adult and pediatric allogeneic HCT recipients. Methods CDI was defined as having diarrhea that tested positive for C. difficile via PCR, cytotoxin assay, o...

  20. Music Therapy for Patients Who Have Undergone Hematopoietic Stem Cell Transplant

    OpenAIRE

    Ratcliff, Chelsea G.; Sarah Prinsloo; Michael Richardson; Laura Baynham-Fletcher; Richard Lee; Alejandro Chaoul; Cohen, Marlene Z; Marcos de Lima; Lorenzo Cohen

    2014-01-01

    Objectives. This study examines the short- and long-term QOL benefits of a music therapy intervention for patients recovering from hematopoietic stem cell transplantation (HSCT). Methods. Ninety allogeneic HSCT patients, after transplant, were randomized to receive ISO-principle (i.e., mood matching) based music therapy (MT; n = 29), unstructured music (UM; n = 30), or usual care (UC; n = 31) for four weeks. The ISO principle posits that patients may shift their mood from one state to another...

  1. Cutaneous graft-versus-host disease after hematopoietic stem cell transplant - a review*

    Science.gov (United States)

    Villarreal, Cesar Daniel Villarreal; Alanis, Julio Cesar Salas; Pérez, Jose Carlos Jaime; Candiani, Jorge Ocampo

    2016-01-01

    Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplants (allo-HSCT) associated with significant morbidity and mortality. The earliest and most common manifestation is cutaneous graft-versus-host disease. This review focuses on the pathophysiology, clinical features, prevention and treatment of cutaneous graft-versus-host disease. We discuss various insights into the disease's mechanisms and the different treatments for acute and chronic skin graft-versus-host disease. PMID:27438202

  2. Herpesvirus-Associated Central Nervous System Diseases after Allogeneic Hematopoietic Stem Cell Transplantation

    OpenAIRE

    Meiqing Wu; Fen Huang; Xinmiao Jiang; Zhiping Fan; Hongsheng Zhou; Can Liu; Qianli Jiang; Yu Zhang; Ke Zhao; Li Xuan; Xiao Zhai; Fuhua Zhang; Changxin Yin; Jing Sun; Ru Feng

    2013-01-01

    Herpesvirus infections of the central nervous system (CNS) are associated with encephalitis/myelitis and lymphoproliferative diseases in immunocompromised individuals. As of now, data of herpesvirus-associated CNS diseases in transplant recipients is limited. Hence, in this prospective study, we investigated the incidence of herpesvirus-associated CNS diseases and explored the diagnosis of these diseases in 281 allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Herpesv...

  3. Qualitative Properties in a More General Delayed Hematopoietic Stem Cells Model*

    OpenAIRE

    Aziz-Alaoui M. A.; Yafia R.

    2013-01-01

    In this paper, we consider a more general model describing the dynamics of Hematopoietic Stem Cells (HSC) model with one delay. Its dynamics are studied in terms of local stability and Hopf bifurcation. We prove the existence of the possible steady state and their stability with respect to the time delay and without delay. We show that a sequence of Hopf bifurcations occur at the positive steady state as the delay crosses some critical values. We illustrate our results by some numerical ...

  4. Lung function and airway inflammation monitoring after hematopoietic stem cell transplantation.

    OpenAIRE

    Moermans, Catherine; Poulet, Christophe; Henket, Monique; Bonnet, Christophe; WILLEMS, Evelyne; Baron, Frédéric; Beguin, Yves; Louis, Renaud

    2013-01-01

    Background Induced sputum is a non-invasive method to investigate airway inflammation, which has been used to assess pulmonary inflammatory diseases. However, this procedure has not been studied in the context of hematopoietic stem cell transplantation (HSCT). Methods We monitored lung function in 182 patients who underwent HSCT and measured airway inflammation by sputum induction in 80 of them. We prospectively measured FEV1, FVC, DLCO, KCO, TLC, RV, exhaled nitric oxide (FeNO) as ...

  5. E47 regulates hematopoietic stem cell proliferation and energetics but not myeloid lineage restriction

    OpenAIRE

    Yang, Qi; Esplin, Brandt; Borghesi, Lisa

    2011-01-01

    The immune system is replenished by self-renewing hematopoietic stem cells (HSCs) that produce multipotent progenitors (MPPs) with little renewal capacity. E-proteins, the widely expressed basic helix-loop-helix transcription factors, contribute to HSC and MPP activity, but their specific functions remain undefined. Using quantitative in vivo and in vitro approaches, we show that E47 is dispensable for the short-term myeloid differentiation of HSCs but regulates their long-term capabilities. ...

  6. Vitamin D Deficiency and Survival in Children after Hematopoietic Stem Cell Transplant

    OpenAIRE

    Wallace, Gregory; Jodele, Sonata; Howell, Jonathan; Myers, Kasiani C.; Teusink, Ashley; Zhao, Xueheng; Setchell, Kenneth; Holtzapfel, Catherine; Lane, Adam; Taggart, Cynthia; Laskin, Benjamin L.; Davies, Stella M.

    2015-01-01

    Vitamin D has endocrine function as a key regulator of calcium absorption and bone homeostasis and also has intracrine function as an immunomodulator. Vitamin D deficiency before hematopoietic stem cell transplantation (HSCT) has been variably associated with higher risks of graft-versus-host disease (GVHD) and mortality. Children are at particular risk of growth impairment and bony abnormalities in the face of prolonged deficiency. There are few longitudinal studies of vitamin D deficient ch...

  7. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9

    OpenAIRE

    Mandal, Pankaj K.; Ferreira, Leonardo M. R.; Collins, Ryan; Meissner, Torsten B.; Boutwell, Christian L.; Friesen, Max; Vrbanac, Vladimir; Garrison, Brian S.; Stortchevoi, Alexei; Bryder, David; Musunuru, Kiran; Brand, Harrison; Tager, Andrew M.; Allen, Todd M.; Talkowski, Michael E.

    2014-01-01

    Genome editing via CRISPR/Cas9 has rapidly become the tool of choice by virtue of its efficacy and ease of use. However, CRISPR/Cas9 mediated genome editing in clinically relevant human somatic cells remains untested. Here, we report CRISPR/Cas9 targeting of two clinically relevant genes, B2M and CCR5, in primary human CD4+ T cells and CD34+ hematopoietic stem and progenitor cells (HSPCs). Use of single RNA guides led to highly efficient mutagenesis in HSPCs but not in T cells. A dual guide a...

  8. Dexamethasone facilitates erythropoiesis in murine embryonic stem cells differentiating into hematopoietic cells in vitro

    International Nuclear Information System (INIS)

    Differentiating embryonic stem (ES) cells are increasingly emerging as an important source of hematopoietic progenitors with a potential to be useful for both basic and clinical research applications. It has been suggested that dexamethasone facilitates differentiation of ES cells towards erythrocytes but the mechanism responsible for sequential expression of genes regulating this process are not well-understood. Therefore, we in vitro induced differentiation of murine ES cells towards erythropoiesis and studied the sequential expression of a set of genes during the process. We hypothesized that dexamethasone-activates its cognate nuclear receptors inducing up-regulation of erythropoietic genes such as GATA-1, Flk-1, Epo-R, and direct ES cells towards erythropoietic differentiation. ES cells were cultured in primary hematopoietic differentiation media containing methyl-cellulose, IMDM, IL-3, IL-6, and SCF to promote embryoid body (EB) formation. Total RNA of day 3, 5, and 9-old EBs was isolated for gene expression studies using RT-PCR. Cells from day 9 EBs were subjected to secondary differentiation using three different cytokines and growth factors combinations: (1) SCF, EPO, dexamethasone, and IGF; (2) SCF, IL-3, IL-6, and TPO; and (3) SCF IL-3, IL-6, TPO, and EPO. Total RNA from day 12 of secondary differentiated ES cells was isolated to study the gene expression pattern during this process. Our results demonstrate an up-regulation of GATA-1, Flk-1, HoxB-4, Epo-R, and globin genes (α-globin, βH-1 globin, β-major globin, ε -globin, and ζ-globin) in the 9-day-old EBs, whereas, RNA from 5-day-old EBs showed expression of HoxB-4, ε-globin, γ-globin, βH1-globin, and Flk-1. Three-day-old EBs showed only HoxB-4 and Flk-1 gene expression and lacked expression of all globin genes. These findings indicate that erythropoiesis-specific genes are activated later in the course of differentiation. Gene expression studies on the ES cells of secondary EB origin cultured

  9. Dietary recommendations for immunosuppressed patients of 17 hematopoietic stem cell transplantation centers in Brazil

    Directory of Open Access Journals (Sweden)

    Paola Pasini Vicenski

    2012-01-01

    Full Text Available INTRODUCTION: Low-microbial diets are recommended to reduce the risk of foodborne infections when hematopoietic stem cell transplantation patients have neutropenia. However there is no pattern concerning the composition of such a diet. OBJECTIVES: To collect information concerning the structure of nutrition departments and the diets recommended for immunosuppressed patients in transplant centers in Brazil. METHODS: Questionnaires were sent to the 45 Bone Marrow Transplantation Centers listed by the Sociedade Brasileira de Transplante de Medula Óssea (SBTMO. Completed questionnaires were returned by 17 centers. The questions were related to the profile and the structure of the nutrition department, at what point a general diet is allowed after transplantation, and which food is allowed during the critical period of immunosuppression and soon after transplantation. RESULTS: Of the 17 centers that participated, 82% have a professional nutritionist exclusively for the Transplant Department but only 41% have an area specifically for the preparation of diets for immunosuppressed patients. The patients are released from the low-microbial diet to general diets 90-100 days after allogeneic hematopoietic stem cell transplantation by 29% of the centers and only after suspension of immunosuppressive drugs in 24%. Most centers (88% restrict the consumption of raw fruits, all restrict the consumption of raw vegetables and 88% forbid the consumption of yogurt in the critical period of immunosuppression. There was no consensus on forbidden foods soon after transplantation. CONCLUSION: Major differences in diets recommended to hematopoietic stem cell transplantation patients were observed between the different centers.

  10. Therapeutic approaches of hematopoietic syndrome after serious accidental global irradiation. Ex vivo expansion interest of hematopoietic cells; Approches therapeutiques du syndrome hematopoietique apres irradiation globale accidentelle grave. Interet de l`expansion ex vivo des cellules hematopoietiques

    Energy Technology Data Exchange (ETDEWEB)

    Thierry, D.

    1994-12-31

    Aplasia is one of the main syndrome, appearing after one global accidental irradiation by one ionizing radiation source. The hematopoietic syndrome is characterized by a peripheric blood cell number fall; the cell marrow is reduced too.

  11. Autophagy as an ultrastructural marker of heavy metal toxicity in human cord blood hematopoietic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Di Gioacchino, Mario [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Medicine and Science of Ageing University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy)], E-mail: m.digioacchino@unich.it; Petrarca, Claudia; Perrone, Angela [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Medicine and Science of Ageing University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Farina, Massimo; Sabbioni, Enrico; Hartung, Thomas [Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Martino, Simone [Department of Experimental Medicine, University La Sapienza, Viale Regina Elena 324, 00161 Rome (Italy); Esposito, Diana L. [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Lotti, Lavinia Vittoria [Department of Experimental Medicine, University La Sapienza, Viale Regina Elena 324, 00161 Rome (Italy); Mariani-Costantini, Renato [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy)

    2008-03-15

    Stem cells are a key target of environmental toxicants, but little is known about their toxicological responses. We aimed at developing an in-vitro model based on adult human stem cells to identify biomarkers of heavy metal exposure. To this end we investigated the responses of human CD34+ hematopoietic progenitor cells to hexavalent chromium (Cr[VI]) and cadmium (Cd). Parallel cultures of CD34+ cells isolated from umbilical cord blood were exposed for 48 h to 0.1 {mu}M and 10 {mu}M Cr(VI) or Cd. Cultures treated with 10 {mu}M Cr(VI) or Cd showed marked cell loss. Ultrastructural analysis of surviving cells revealed prominent autophagosomes/autophagolysosomes, which is diagnostic of autophagy, associated with mitochondrial damage and replication, dilatation of the rough endoplasmic reticulum and Golgi complex, cytoplasmic lipid droplets and chromatin condensation. Treated cells did not show the morphologic hallmarks of apoptosis. Treatment with 0.1 {mu}M Cr(VI) or Cd did not result in cell loss, but at the ultrastructural level cells showed dilated endoplasmic reticulum and evidence of mitochondrial damage. We conclude that autophagy is implicated in the response of human hematopoietic stem cells to toxic concentrations of Cr(VI) and Cd. Autophagy, which mediates cell survival and death under stress, deserves further evaluation to be established as biomarker of metal exposure.

  12. Purification and characterization of fetal hematopoietic cells that express the common acute lymphoblastic leukemia antigen (CALLA)

    DEFF Research Database (Denmark)

    Hokland, P; Rosenthal, P; Griffin, J D;

    1983-01-01

    Fetal hematopoietic cells that express the common acute lymphoblastic leukemia antigen (CALLA) were purified from both fetal liver and fetal bone marrow by immune rosetting with sheep erythrocytes coated with rabbit anti-mouse immunoglobulin and by fluorescence-activated cell sorting. Dual fluore...... that these cells are relatively immature lymphoid cells, CALLA+ cells do not appear to contain either myeloid precursor cells (CFU-G/M) or the earliest lymphoid stem cells. Udgivelsesdato: 1983-Jan-1......Fetal hematopoietic cells that express the common acute lymphoblastic leukemia antigen (CALLA) were purified from both fetal liver and fetal bone marrow by immune rosetting with sheep erythrocytes coated with rabbit anti-mouse immunoglobulin and by fluorescence-activated cell sorting. Dual...... fluorescence techniques disclosed that these cells were heterogenous with respect to the expression of a series of differentiation and activation antigens defined by monoclonal antibodies. Thus, whereas all CALLA+ cells were Ia+ and expressed two activation antigens, J2 and T10, only 30-50% expressed B1...

  13. Todralazine protects zebra fish from lethal doses of ionizing radiation: role of hematopoietic stem cell expansion

    International Nuclear Information System (INIS)

    Radiation induced cell killing and hematopoietic stem cell depletion leads to compromised immune functions and opportunistic infections which significantly affect the recovery and survival upon irradiation. Any agent which can expand residual hematopoietic stem cells in irradiated organism can render protection from the effects of lethal doses of ionizing radiation. Johns Hopkins Clinical compound library (JHCCL) was screened for protection against lethal doses of ionizing radiation using developing zebra fish as a model organism. Modulation of radiation induced reactive oxygen species by the small molecules were done by DCFDA staining and for visual identification and quantification of apoptosis acridine orange assay, flow cytometry were employed respectively. Hematopoietic stem cell expansion potential was assessed by quantifying runx1 expression, a marker for definitive stem cells, were done by RT-PCR and by the kinetics of recovery from chemically induced anaemia. Todralazine hydrochloride from JHCCL exhibited promising results with potential anti radiation effects. A dose of 5μM was found to be the most effective and has rendered significant organ and whole body protection (100% survival advantage over a period of 6 days) against 20 Gy. However todralazine did not modulated radiation induced free radicals (monitored within 2 h of irradiation) and apoptosis in zebra fish embryos analysed at 8 and 24h post irradiation. Flow cytometric quantification of pre G1 population suggested the same. Chemoinformatics approaches were further carried out to elucidate possible targets which are contributing to its radioprotection potential. Structural similarity search suggested several targets and possible hematopoietic stem cell expanding potential. Treatment of zebra fish embryos with todralazine has lead to significant proliferation of hematopoietic stem cell as indicated by increase in expression of runx1. HSC expanding potential of todralazine was further supported by

  14. BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21.

    Science.gov (United States)

    Lee, Hyemin; Dai, Fangyan; Zhuang, Li; Xiao, Zhen-Dong; Kim, Jongchan; Zhang, Yilei; Ma, Li; You, M James; Wang, Zhong; Gan, Boyi

    2016-04-12

    BAF180 (also called PBRM1), a subunit of the SWI/SNF complex, plays critical roles in the regulation of chromatin remodeling and gene transcription, and is frequently mutated in several human cancers. However, the role of mammalian BAF180 in tumor suppression and tissue maintenance in vivo remains largely unknown. Here, using a conditional somatic knockout approach, we explored the cellular and organismal functions of BAF180 in mouse. BAF180 deletion in primary mouse embryonic fibroblasts (MEFs) triggers profound cell cycle arrest, premature cellular senescence, without affecting DNA damage response or chromosomal integrity. While somatic deletion of BAF180 in adult mice does not provoke tumor development, BAF180 deficient mice exhibit defects in hematopoietic system characterized by progressive reduction of hematopoietic stem cells (HSCs), defective long-term repopulating potential, and hematopoietic lineage developmental aberrations. BAF180 deletion results in elevated p21 expression in both MEFs and HSCs. Mechanistically, we showed that BAF180 binds to p21 promoter, and BAF180 deletion enhances the binding of modified histones associated with transcriptional activation on p21 promoter. Deletion of p21 rescues cell cycle arrest and premature senescence in BAF180 deficient MEFs, and partially rescues hematopoietic defects in BAF180 deficient mice. Together, our study identifies BAF180 as a critical regulator of cellular senescence and HSC homeostasis, which is at least partially regulated through BAF180-mediated suppression of p21 expression. Our results also suggest that senescence triggered by BAF180 inactivation may serve as a failsafe mechanism to restrain BAF180 deficiency-associated tumor development, providing a conceptual framework to further understand BAF180 function in tumor biology.

  15. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    Directory of Open Access Journals (Sweden)

    Lundeberg Joakim

    2006-04-01

    Full Text Available Abstract Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox. These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin.

  16. Eotaxin-Rich Proangiogenic Hematopoietic Progenitor Cells and CCR3+ Endothelium in the Atopic Asthmatic Response.

    Science.gov (United States)

    Asosingh, Kewal; Vasanji, Amit; Tipton, Aaron; Queisser, Kimberly; Wanner, Nicholas; Janocha, Allison; Grandon, Deepa; Anand-Apte, Bela; Rothenberg, Marc E; Dweik, Raed; Erzurum, Serpil C

    2016-03-01

    Angiogenesis is closely linked to and precedes eosinophilic infiltration in asthma. Eosinophils are recruited into the airway by chemoattractant eotaxins, which are expressed by endothelial cells, smooth muscles cells, epithelial cells, and hematopoietic cells. We hypothesized that bone marrow-derived proangiogenic progenitor cells that contain eotaxins contribute to the initiation of angiogenesis and inflammation in asthma. Whole-lung allergen challenge of atopic asthma patients revealed vascular activation occurs within hours of challenge and before airway inflammation. The eotaxin receptor CCR3 was expressed at high levels on submucosal endothelial cells in patients and a murine model of asthma. Ex vivo exposure of murine endothelial cells to eotaxins induced migration and angiogenesis. In mechanistic studies, wild-type mice transplanted with eotaxin-1/2-deficient bone marrow had markedly less angiogenesis and inflammation in an atopic asthma model, whereas adoptive transfer of proangiogenic progenitor cells from wild-type mice in an atopic asthma model into the eotaxin-1/2-deficient mice led to angiogenesis and airway inflammation. The findings indicate that Th2-promoting hematopoietic progenitor cells are rapidly recruited to the lung upon allergen exposure and release eotaxins that coordinately activate endothelial cells, angiogenesis, and airway inflammation. PMID:26810221

  17. Inducing effects of macrophage stimulating protein on the expansion of early hematopoietic progenitor cells in liquid culture

    Institute of Scientific and Technical Information of China (English)

    MA Li-xia; HUANG Yan-hong; CHENG La-mei; LEI Jun; WANG Qi-ru

    2007-01-01

    Background Macrophage stimulating protein (MSP) is produced by human bone marrow endothelial cells. In this study,we sought to observe its effects on inducing the expansion of early hematopoietic progenitor cells which were cultured in a liquid culture system in the presence of the combination of stem cell factor (SCF), interleukin 3 (IL-3), interleukin 6 (IL-6), granulocyte macrophage-colony stimulating factor (GM-CSF), erythropoietin (EPO) (Cys) and MSP or of Cys and bone marrow endothelial cell conditioned medium (EC-CM).Methods Human bone marrow CD34+ cells were separated and cultured in a liquid culture system for 6 days.Granulocyte-macrophage colony forming unit (CFU-GM) and colony forming unit-granulocyte, erythrocyte, macrophage,megakaryocyte (CFU-GEMM) were employed to assay the effects of different treatment on the proliferation of hematopoeitic stem/progenitor cells. The nitroblue tetrazolium (NBT) reductive test and hoechest 33258 staining were employed to reflect the differentiation and apoptosis of the cells respectively.Results MSP inhibited the proliferation of CFU-GM and CFU-GEMM in semi-solid culture and the inhibitory effect on CFU-GEMM was stronger than on CFU-GM. MSP inhibited the differentiation of early hematopoietic progenitor cells induced by hematopoietic stimulators. Bone marrow (BM) CFU-GEMM was 2.3-fold or 1.7-fold increase or significantly decreased in either Cys+EC-CM, Cys+MSP or Cys compared with 0 hour control in liquid culture system after 6 days.Conclusion MSP, a hematopoietic inhibitor, inhibits the differentiation of early hematopoietic progenitor cells induced by hematopoietic stimulators and makes the early hematopoietic progenitor cells expand in a liquid culture system.

  18. Natural killer cells in non-hematopoietic malignancies

    OpenAIRE

    Desbois, Mélanie; Rusakiewicz, Sylvie; Locher, Clara; Zitvogel, Laurence; Chaput, Nathalie

    2012-01-01

    Natural killer (NK) cells belong to the innate immune system and were initially described functionallywise by their spontaneous cytotoxic potential against transformed or virus-infected cells. A delicate balance between activating and inhibiting receptors regulates NK cell tolerance. A better understanding of tissue resident NK cells, of NK cell maturation stages and migration patterns has evolved allowing a thoughtful evaluation of their modus operandi. While evidence has been brought up for...

  19. Pro-angiogenic Hematopoietic Progenitor Cells and Endothelial Colony Forming Cells in Pathological Angiogenesis of Bronchial and Pulmonary Circulation

    OpenAIRE

    Duong, Heng; Erzurum, Serpil; Asosingh, Kewal

    2011-01-01

    Dysregulation of angiogenesis is a common feature of many disease processes. Vascular remodeling is believed to depend on the participation of endothelial progenitor cells, but the identification of endothelial progenitors in postnatal neovascularization remains elusive. Current understanding posits a role for circulating pro-angiogenic hematopoietic cells, which interact with local endothelial cells to establish an environment that favors angiogenesis in physiologic and pathophysiologic resp...

  20. Clinical relevance of KIRs in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Vojvodić Svetlana

    2010-01-01

    Full Text Available Introduction Natural Killer cells (NK cells represent the subset of peripheral lymphocytes that play critical role in the innate immune response to virus-infected and tumor transformed cells. Lysis of NK sensitived target cells could be mediated independently of antigen stimulation, and unlike cytotoxic T-lymphocytes, they do not require peptide presentation by the major histocompatibility complex (MHC molecules. NK cell cytotoxic activity is controlled by considerable number of cell surface Killer cell Immunoglobulin like Receptors (KIRs, which can exist in both inhibitory and activating isoforms. The inhibitory KIRs are mostly specific for HLA class I ligands and I HLA class like molecules, while the specificity of activating receptors is regarded to lectine-like superfamily. The role of NK cells in allogeneic haematopoietic stem cell transplantation (HSCT: NK cells are the first lymphocyte subset that reconstitute the peripheral blood following allogeneic HSCT. By selecting donors mismatched for relevant HLA ligands in the context of recipients KIR genotype, multiple roles for alloreactive donor NK cells have been demonstrated, in diminishing Graft vs. Host Disease (GvHD through selective killing of recipient dendritic cells, prevention of graft rejection by killing recipient T cells and participation in Graft vs. Leukaemia (GvL effect through destruction of residual host tumor cells. Conclusion Investigation of KIRs heterogenity play an important role in the field of HSCT, because it is useful for the early diagnosis of post transplant complications and can serve as a predictive risk factor for GvHD development.

  1. Blockage of caspase-1 activation ameliorates bone marrow inflammation in mice after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Qiao, Jianlin; Wu, Jinyan; Li, Yuanyuan; Xia, Yuan; Chu, Peipei; Qi, Kunming; Yan, Zhiling; Yao, Haina; Liu, Yun; Xu, Kailin; Zeng, Lingyu

    2016-01-01

    Conditioning regimens before hematopoietic stem cell transplantation (HSCT), cause damage to bone marrow and inflammation. Whether inflammasomes are involved in bone marrow inflammation remains unclear. The study aims to evaluate the role of inflammasomes in bone marrow inflammation after HSCT. On days 7, 14, 21 and 28 after HSCT, mice were sacrificed for analysis of bone marrow inflammation, pro-inflammatory cytokines secretion, inflammasomes expression and caspase-1 activation. Bone marrow inflammation with neutrophils and macrophages infiltration was observed after HSCT. Secretion of IL-1β, IL-18, TNF-α and IL-6 were elevated, with increased caspase-1 activation and inflammasomes expression. Caspase-1 inhibitor administration after HSCT significantly reduced infiltration of neutrophils and macrophages into bone marrow and increased the numbers of megakaryocytes and platelets. In conclusion, inflammasomes activation is involved in bone marrow inflammation after HSCT and caspase-1 inhibition attenuates bone marrow inflammation and promoted hematopoietic reconstitution, suggesting targeting caspase-1 might be beneficial for improving HSCT outcomes.

  2. Novel therapy for type 1 diabetes: autologous hematopoietic stem cell transplantation.

    Science.gov (United States)

    Li, Lirong; Gu, Weiqiong; Zhu, Dalong

    2012-12-01

    Type 1 diabetes is characterized pathologically by autoimmune insulitis-related islet β-cell destruction. Although intensive insulin therapy for patients with type 1 diabetes can correct hyperglycemia, this therapy does not prevent all diabetes-related complications. Recent studies have shown that autologous hematopoietic stem cell transplantation (HSCT) is a promising new approach for the treatment of type 1 diabetes by reconstitution of immunotolerance and preservation of islet β-cell function. Herein we discuss the therapeutic efficacy and potential mechanisms underlying the action of HSCT and other perspectives in the clinical management of type 1 diabetes.

  3. Effects of notoginosides on proliferation and upregulation of GR nuclear transcription factor in hematopoietic cells

    Institute of Scientific and Technical Information of China (English)

    Rui-lan GAO; Xiao-hong CHEN; Xiao-jie LIN; Xu-dai QIAN; Wei-hong XU; Beng Hock CHONC

    2007-01-01

    Aim: To investigate the effects of panax notoginosides (PNS) on the proliferation of human hematopoietic stem/progenitor cells, and to explore the signaling path-way of the nuclear transcription factor of the glucocorticoid receptor (GR-NTF) initiated by PNS related with the proliferation. Methods: The human CD34+ cells and bone marrow nuclear cells were exposed to PNS at a concentration of 0, 10, 25,50, and 100 mg/L, respectively, in semi-solid culture system to observe colony forming unite of all lineages, granulocyte, erythrocyte, and megakaryocyte (CFU-GEMM, CFU-GM, CFU-E, and CFU-MK). Three lineages of human hematopoietic cell lines, including granulocytic HL-60, erythrocytic K562, megakaryocytic CHRF-288, and Meg-01 cells were incubated with PNS at 20 mg/L for 14 d. Meanwhile,dexamethasone (Dex) was used as a positive control. The nuclear protein of the cells was analyzed by Western blotting with monoclonal antibodies against the amino or carboxyl terminus of GR-NTF. Electrophoretic mobility shift assay per-formed by using the 32p-radiolabeled GR-NTF consensus oligonucleotide. Results:PNS promoted the proliferation of CD34+ cells and significantly raised the colony numbers of CFU-GEMM by 34.7%~±16.0% over the non-PNS control (P<0.01).PNS also enhanced the proliferation of CFU-GM, CFU-E, and CFU-MK by 39.3%±5.7%, 33.3%±7.3%, and 26.2%±3.2%, respectively. GR-NTF protein levels of either the amino or carboxyl terminus in K562, CHRF-288, and Meg-01 treated by PNS increased by 2.4- 2.8 fold and 1.3- 3.9 fold over the untreated cells. GR-NTF binding activity, initiated by either PNS or Dex, was apparently elevated to form the complex of GR-NTF with DNA as higher density bands in K562 and CHRF-288 cells, and some activity appeared as a band in HL-60 cells induced by PNS.Conclusion: PNS displayed the action of hematopoietic growth factor-like or syn-ergistic efficacy to promote proliferation of human progenitor cells, may play a role in the upregulation of gene

  4. Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow

    OpenAIRE

    Balazs, Alejandro B.; Fabian, Attila J.; Esmon, Charles T.; Mulligan, Richard C.

    2006-01-01

    The hematopoietic stem cell (HSC) is a unique cell type found in bone marrow, which has the capacity for both self-renewal and differentiation into all blood lineages. The identification of genes expressed specifically in HSCs may help identify gene products vital to the control of self-renewal and/or differentiation, as well as antigens capable of forming the basis for improved methods of stem cell isolation. In previous studies, we identified a number of genes that appeared to be differenti...

  5. IGF binding protein 2 supports the survival and cycling of hematopoietic stem cells

    OpenAIRE

    Huynh, HoangDinh; Zheng, Junke; Umikawa, Masato; Zhang, Chaozheng; Silvany, Robert; Iizuka, Satoru; Holzenberger, Martin; Zhang, Wei; Zhang, Cheng Cheng

    2011-01-01

    The role of IGF binding protein 2 (IGFBP2) in cell growth is intriguing and largely undefined. Previously we identified IGFBP2 as an extrinsic factor that supports ex vivo expansion of hematopoietic stem cells (HSCs). Here we showed that IGFBP2-null mice have fewer HSCs than wild-type mice. While IGFBP2 has little cell-autonomous effect on HSC function, we found decreased in vivo repopulation of HSCs in primary and secondary transplanted IGFBP2-null recipients. Importantly, bone marrow stroma...

  6. Emp is a component of the nuclear matrix of mammalian cells and undergoes dynamic rearrangements during cell division

    International Nuclear Information System (INIS)

    Emp, originally detected in erythroblastic islands, is expressed in numerous cell types and tissues suggesting a functionality not limited to hematopoiesis. To study the function of Emp in non-hematopoietic cells, an epitope-tagged recombinant human Emp was expressed in HEK cells. Preliminary studies revealed that Emp partitioned into both the nuclear and Triton X-100-insoluble cytoskeletal fractions in approximately a 4:1 ratio. In this study, we report investigations of Emp in the nucleus. Sequential extractions of interphase nuclei showed that recombinant Emp was present predominantly in the nuclear matrix. Immunofluorescence microscopy showed that Emp was present in typical nuclear speckles enriched with the spliceosome assembly factor SC35 and partially co-localized with actin staining. Coimmunoprecipitation and GST-pull-down assays confirmed the apparent close association of Emp with nuclear actin. During mitosis, Emp was detected at the mitotic spindle/spindle poles, as well as in the contractile ring during cytokinesis. These results suggest that Emp undergoes dynamic rearrangements within the nuclear architecture that are correlated with cell division

  7. Exercise-induced norepinephrine decreases circulating hematopoietic stem and progenitor cell colony-forming capacity.

    Directory of Open Access Journals (Sweden)

    Julia M Kröpfl

    Full Text Available A recent study showed that ergometry increased circulating hematopoietic stem and progenitor cell (CPC numbers, but reduced hematopoietic colony forming capacity/functionality under normoxia and normobaric hypoxia. Herein we investigated whether an exercise-induced elevated plasma free/bound norepinephrine (NE concentration could be responsible for directly influencing CPC functionality. Venous blood was taken from ten healthy male subjects (25.3+/-4.4 yrs before and 4 times after ergometry under normoxia and normobaric hypoxia (FiO2<0.15. The circulating hematopoietic stem and progenitor cell numbers were correlated with free/bound NE, free/bound epinephrine (EPI, cortisol (Co and interleukin-6 (IL-6. Additionally, the influence of exercise-induced NE and blood lactate (La on CPC functionality was analyzed in a randomly selected group of subjects (n = 6 in vitro under normoxia by secondary colony-forming unit granulocyte macrophage assays. Concentrations of free NE, EPI, Co and IL-6 were significantly increased post-exercise under normoxia/hypoxia. Ergometry-induced free NE concentrations found in vivo showed a significant impairment of CPC functionality in vitro under normoxia. Thus, ergometry-induced free NE was thought to trigger CPC mobilization 10 minutes post-exercise, but as previously shown impairs CPC proliferative capacity/functionality at the same time. The obtained results suggest that an ergometry-induced free NE concentration has a direct negative effect on CPC functionality. Cortisol may further influence CPC dynamics and functionality.

  8. Hematopoietic Stem Cell Transplantation in Children with Acute Lymphoblastic Leukemia

    OpenAIRE

    Ibrahim Bayram

    2014-01-01

    In children patients with acute lymphoblastic leukemia, according to the European bone marrow transplant handbook, the indications for stem cell transplantation, conditioning regimen, donor selection and information about sources of stem cells will be evaluated.

  9. Cord Blood-Derived Hematopoietic Stem/Progenitor Cells: Current Challenges in Engraftment, Infection, and Ex Vivo Expansion

    OpenAIRE

    Katsuhiro Kita; Lee, Jong O; Finnerty, Celeste C.; Herndon, David N

    2011-01-01

    Umbilical cord blood has served as an alternative to bone marrow for hematopoietic transplantation since the late 1980s. Numerous clinical studies have proven the efficacy of umbilical cord blood. Moreover, the possible immaturity of cells in umbilical cord blood gives more options to recipients with HLA mismatch and allows for the use of umbilical cord blood from unrelated donors. However, morbidity and mortality rates associated with hematopoietic malignancies still remain relatively high, ...

  10. Hematopoietic expression of oncogenic BRAF promotes aberrant growth of monocyte-lineage cells resistant to PLX4720

    OpenAIRE

    Kamata, Tamihiro; Dankort, David; Kang, Jing; Giblett, Susan; Pritchard, Catrin A.; McMahon, Martin; Leavitt, Andrew D.

    2013-01-01

    Mutational activation of BRAF leading to expression of the BRAFV600E oncoprotein was recently identified in a high percentage of specific hematopoietic neoplasms in monocyte/histiocyte and mature B-cell lineages. Although BRAFV600E is a driver oncoprotein and pharmacological target in solid tumors such as melanoma, lung and thyroid cancer, it remains unknown whether BRAFV600E is an appropriate therapeutic target in hematopoietic neoplasms. To address this critical question, we generated a mou...

  11. Total body irradiation in hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Fundagul Andic

    2014-06-01

    Full Text Available Total body irradiation is used in conjunction with chemotherapy as a conditioning regimen in the treatment of many disease such as leukemia, myelodysplastic syndrome, aplastic anemia, multiple myeloma and lymphoma prior to the hematopoetic stem cell transplantation. The main purposes of the hematopoetic stem cell transplantation are eradication of the recipient bone marrow and any residual cancer cells, creation of space in the receipient bone marrow for donor hematopoetic stem cells, and immunosuppression to prevent rejection of donor stem cells in the case of an allotransplant. [Archives Medical Review Journal 2014; 23(3.000: 398-410

  12. The hematopoietic stem cell and its niche: a comparative view.

    Science.gov (United States)

    Martinez-Agosto, Julian A; Mikkola, Hanna K A; Hartenstein, Volker; Banerjee, Utpal

    2007-12-01

    Stem cells have been identified as a source of virtually all highly differentiated cells that are replenished during the lifetime of an animal. The critical balance between stem and differentiated cell populations is crucial for the long-term maintenance of functional tissue types. Stem cells maintain this balance by choosing one of several alternate fates: self-renewal, commitment to differentiate, and senescence or cell death. These characteristics comprise the core criteria by which these cells are usually defined. The self-renewal property is important, as it allows for extended production of the corresponding differentiated cells throughout the life span of the animal. A microenvironment that is supportive of stem cells is commonly referred to as a stem cell niche. In this review, we first present some general concepts regarding stem cells and their niches, comparing stem cells of many different kinds from diverse organisms, and in the second part, we compare specific aspects of hematopoiesis and the niches that support hematopoiesis in Drosophila, zebrafish and mouse. PMID:18056420

  13. Long-term adaptation to hypoxia preserves hematopoietic stem cell function.

    Science.gov (United States)

    Chen, Jichun; Kang, Ju-Gyeong; Keyvanfar, Keyvan; Young, Neal S; Hwang, Paul M

    2016-09-01

    Molecular oxygen sustains aerobic life, but it also serves as the substrate for oxidative stress, which has been associated with the pathogenesis of disease and with aging. Compared with mice housed in normoxia (21% O2), reducing ambient oxygen to 10% O2 (hypoxia) resulted in increased hematopoietic stem cell (HSC) function as measured by bone marrow (BM) cell engraftment onto lethally irradiated recipients. The number of BM c-Kit(+)Sca-1(+)Lin(-) (KSL) cells as well as the number of cells with other hematopoietic stem and progenitor cell markers were increased in hypoxia mice, whereas the BM cells' colony-forming capacity remained unchanged. KSL cells from hypoxia mice showed a decreased level of oxidative stress and increased expression of transcription factor Gata1 and cytokine receptor c-Mpl, consistent with the observations of increased erythropoiesis and enhanced HSC engraftment. These observations demonstrate the benefit of a hypoxic HSC niche and suggest that hypoxic conditions can be further optimized to preserve stem cell integrity in vivo. PMID:27118043

  14. Isolation and Assessment of Single Long-Term Reconstituting Hematopoietic Stem Cells from Adult Mouse Bone Marrow.

    Science.gov (United States)

    Kent, David G; Dykstra, Brad J; Eaves, Connie J

    2016-01-01

    Hematopoietic stem cells with long-term repopulating activity can now be routinely obtained at purities of 40% to 50% from suspensions of adult mouse bone marrow. Here we describe robust protocols for both their isolation as CD45(+) EPCR(+) CD150(+) CD48(-) (ESLAM) cells using multiparameter cell sorting and for tracking their clonal growth and differentiation activity in irradiated mice transplanted with single ESLAM cells. The simplicity of these procedures makes them attractive for characterizing the molecular and biological properties of individual hematopoietic stem cells with unprecedented power and precision. © 2016 by John Wiley & Sons, Inc. PMID:27532815

  15. Reconstructing the in vivo dynamics of hematopoietic stem cells from telomere length distributions.

    Science.gov (United States)

    Werner, Benjamin; Beier, Fabian; Hummel, Sebastian; Balabanov, Stefan; Lassay, Lisa; Orlikowsky, Thorsten; Dingli, David; Brümmendorf, Tim H; Traulsen, Arne

    2015-10-15

    We investigate the in vivo patterns of stem cell divisions in the human hematopoietic system throughout life. In particular, we analyze the shape of telomere length distributions underlying stem cell behavior within individuals. Our mathematical model shows that these distributions contain a fingerprint of the progressive telomere loss and the fraction of symmetric cell proliferations. Our predictions are tested against measured telomere length distributions in humans across all ages, collected from lymphocyte and granulocyte sorted telomere length data of 356 healthy individuals, including 47 cord blood and 28 bone marrow samples. We find an increasing stem cell pool during childhood and adolescence and an approximately maintained stem cell population in adults. Furthermore, our method is able to detect individual differences from a single tissue sample, i.e. a single snapshot. Prospectively, this allows us to compare cell proliferation between individuals and identify abnormal stem cell dynamics, which affects the risk of stem cell related diseases.

  16. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Ceccaldi, Raphael; Parmar, Kalindi; Mouly, Enguerran; Delord, Marc; Kim, Jung Min; Regairaz, Marie; Pla, Marika; Vasquez, Nadia; Zhang, Qing-Shuo; Pondarre, Corinne; Peffault de Latour, Régis; Gluckman, Eliane; Cavazzana-Calvo, Marina; Leblanc, Thierry; Larghero, Jérôme; Grompe, Markus; Socié, Gérard; D'Andrea, Alan D; Soulier, Jean

    2012-07-01

    Fanconi anemia (FA) is an inherited DNA repair deficiency syndrome. FA patients undergo progressive bone marrow failure (BMF) during childhood, which frequently requires allogeneic hematopoietic stem cell transplantation. The pathogenesis of this BMF has been elusive to date. Here we found that FA patients exhibit a profound defect in hematopoietic stem and progenitor cells (HSPCs) that is present before the onset of clinical BMF. In response to replicative stress and unresolved DNA damage, p53 is hyperactivated in FA cells and triggers a late p21(Cdkn1a)-dependent G0/G1 cell-cycle arrest. Knockdown of p53 rescued the HSPC defects observed in several in vitro and in vivo models, including human FA or FA-like cells. Taken together, our results identify an exacerbated p53/p21 "physiological" response to cellular stress and DNA damage accumulation as a central mechanism for progressive HSPC elimination in FA patients, and have implications for clinical care.

  17. Importance of killer immunoglobulin-like receptors in allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Danilo Santana Alessio Franceschi

    2011-01-01

    Full Text Available Hematopoietic stem cell transplantation is the treatment of choice for many hematologic diseases, such as multiple myeloma, bone marrow aplasia and leukemia. Human leukocyte antigen (HLA compatibility is an important tool to prevent post-transplant complications such as graft rejection and graft-versus-host disease, but the high rates of relapse limit the survival of transplant patients. Natural Killer cells, a type of lymphocyte that is a key element in the defense against tumor cells, cells infected with viruses and intracellular microbes, have different receptors on their surfaces that regulate their cytotoxicity. Killer immunoglobulin-like receptors are the most important, interacting consistently with human leukocyte antigen class I molecules present in other cells and thus controlling the activation of natural killer cells. Several studies have shown that certain combinations of killer immunoglobulin-like receptors and human leukocyte antigens (in both donors and recipients can affect the chances of survival of transplant patients, particularly in relation to the graft-versusleukemia effect, which may be associated to decreased relapse rates in certain groups. This review aims to shed light on the mechanisms and effects of killer immunoglobulin-like receptors - human leukocyte antigen associations and their implications following hematopoietic stem cell transplantation, and to critically analyze the results obtained by the studies presented herein.

  18. Regulation of hematopoiesis and the hematopoietic stem cell niche by Wnt signaling pathways

    Institute of Scientific and Technical Information of China (English)

    Michael J Nemeth; David M Bodine

    2007-01-01

    Hematopoietic stem cells (HSCs) are a rare population of cells that are responsible for life-long generation of blood cells of all lineages. In order to maintain their numbers, HSCs must establish a balance between the opposing cell fates of self-renewal (in which the ability to function as HSCs is retained) and initiation of hematopoietic differentiation. Multiple signaling pathways have been implicated in the regulation of HSC cell fate. One such set of pathways are those activated by the Wnt family of ligands. Wnt signaling pathways play a crucial role during embryogenesis and deregulation of these pathways has been implicated in the formation of solid tumors. Wnt signaling also plays a role in the regulation of stem cells from multiple tissues, such as embryonic, epidermal, and intestinal stem cells. However, the function of Wnt signaling in HSC biology is still controversial. In this review, we will discuss the basic characteristics of the adult HSC and its regulatory microenvironment, the "niche", focusing on the regulation of the HSC and its niche by the Wnt signaling pathways.

  19. The Microtubule Plus-End Tracking Protein CLASP2 Is Required for Hematopoiesis and Hematopoietic Stem Cell Maintenance

    Directory of Open Access Journals (Sweden)

    Ksenija Drabek

    2012-10-01

    Full Text Available Mammalian CLASPs are microtubule plus-end tracking proteins whose essential function as regulators of microtubule behavior has been studied mainly in cultured cells. We show here that absence of murine CLASP2 in vivo results in thrombocytopenia, progressive anemia, and pancytopenia, due to defects in megakaryopoiesis, in erythropoiesis, and in the maintenance of hematopoietic stem cell activity. Furthermore, microtubule stability and organization are affected upon attachment of Clasp2 knockout hematopoietic stem-cell-enriched populations, and these cells do not home efficiently toward their bone marrow niche. Strikingly, CLASP2-deficient hematopoietic stem cells contain severely reduced mRNA levels of c-Mpl, which encodes the thrombopoietin receptor, an essential factor for megakaryopoiesis and hematopoietic stem cell maintenance. Our data suggest that thrombopoietin signaling is impaired in Clasp2 knockout mice. We propose that the CLASP2-mediated stabilization of microtubules is required for proper attachment, homing, and maintenance of hematopoietic stem cells and that this is necessary to sustain c-Mpl transcription.

  20. The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice.

    Science.gov (United States)

    Zhang, Qing-Shuo; Deater, Matthew; Schubert, Kathryn; Marquez-Loza, Laura; Pelz, Carl; Sinclair, David A; Grompe, Markus

    2015-07-01

    Fanconi anemia is a genetic bone marrow failure syndrome. The current treatment options are suboptimal and do not prevent the eventual onset of aplastic anemia requiring bone marrow transplantation. We previously showed that resveratrol, an antioxidant and an activator of the protein deacetylase Sirt1, enhanced hematopoiesis in Fancd2 mutant mice and improved the impaired stem cell quiescence observed in this disease. Given that Sirt1 is important for the function of hematopoietic stem cells, we hypothesized that Sirt1 activation may improve hematopoiesis. Indeed, Fancd2(-/-) mice and wild-type mice treated with the selective Sirt1 activator SRT3025 had increased numbers of hematopoietic stem and progenitor cells, platelets and white blood cells. SRT3025 was also protective against acetaldehyde-induced hematopoietic damage. Unlike resveratrol, however, SRT3025 did not affect stem cell quiescence, suggesting distinct mechanisms of action. Conditional deletion of Sirt1 in hematopoietic cells did not abrogate the beneficial effects of SRT3025, indicating that the drug did not act by directly stimulating Sirt1 in stem cells, but must be acting indirectly via extra-hematopoietic effects. RNA-Seq transcriptome analysis revealed the down-regulation of Egr1-p21 expression, providing a potential mechanism for improved hematopoiesis. Overall, our data indicate that SRT3025 or related compounds may be beneficial in Fanconi anemia and other bone marrow failure syndromes.

  1. The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice

    Directory of Open Access Journals (Sweden)

    Qing-Shuo Zhang

    2015-07-01

    Full Text Available Fanconi anemia is a genetic bone marrow failure syndrome. The current treatment options are suboptimal and do not prevent the eventual onset of aplastic anemia requiring bone marrow transplantation. We previously showed that resveratrol, an antioxidant and an activator of the protein deacetylase Sirt1, enhanced hematopoiesis in Fancd2 mutant mice and improved the impaired stem cell quiescence observed in this disease. Given that Sirt1 is important for the function of hematopoietic stem cells, we hypothesized that Sirt1 activation may improve hematopoiesis. Indeed, Fancd2−/− mice and wild-type mice treated with the selective Sirt1 activator SRT3025 had increased numbers of hematopoietic stem and progenitor cells, platelets and white blood cells. SRT3025 was also protective against acetaldehyde-induced hematopoietic damage. Unlike resveratrol, however, SRT3025 did not affect stem cell quiescence, suggesting distinct mechanisms of action. Conditional deletion of Sirt1 in hematopoietic cells did not abrogate the beneficial effects of SRT3025, indicating that the drug did not act by directly stimulating Sirt1 in stem cells, but must be acting indirectly via extra-hematopoietic effects. RNA-Seq transcriptome analysis revealed the down-regulation of Egr1–p21 expression, providing a potential mechanism for improved hematopoiesis. Overall, our data indicate that SRT3025 or related compounds may be beneficial in Fanconi anemia and other bone marrow failure syndromes.

  2. FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells

    Directory of Open Access Journals (Sweden)

    Cobos Everardo

    2005-01-01

    Full Text Available Abstract Background Hematopoiesis is a complex developmental process controlled by a large number of factors that regulate stem cell renewal, lineage commitment and differentiation. Secreted proteins, including the hematopoietic growth factors, play critical roles in these processes and have important biological and clinical significance. We have employed representational difference analysis to identify genes that are differentially expressed during experimentally induced myeloid differentiation in the murine EML hematopoietic stem cell line. Results One identified clone encoded a previously unidentified protein of 541 amino acids that contains an amino terminal signal sequence but no other characterized domains. This protein is a member of family of related proteins that has been named family with sequence similarity 20 (FAM20 with three members (FAM20A, FAM20B and FAM20C in mammals. Evolutionary comparisons revealed the existence of a single FAM20 gene in the simple vertebrate Ciona intestinalis and the invertebrate worm Caenorhabditis elegans and two genes in two insect species, Drosophila melanogaster and Anopheles gambiae. Six FAM20 family members were identified in the genome of the pufferfish, Fugu rubripes and five members in the zebrafish, Danio rerio. The mouse Fam20a protein was ectopically expressed in a mammalian cell line and found to be a bona fide secreted protein and efficient secretion was dependent on the integrity of the signal sequence. Expression analysis revealed that the Fam20a gene was indeed differentially expressed during hematopoietic differentiation and that the other two family members (Fam20b and Fam20c were also expressed during hematcpoiesis but that their mRNA levels did not vary significantly. Likewise FAM20A was expressed in more limited set of human tissues than the other two family members. Conclusions The FAM20 family represents a new family of secreted proteins with potential functions in regulating

  3. Evidence for diversity in transcriptional profiles of single hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Carlos A Ramos

    2006-09-01

    Full Text Available Hematopoietic stem cells replenish all the cells of the blood throughout the lifetime of an animal. Although thousands of stem cells reside in the bone marrow, only a few contribute to blood production at any given time. Nothing is known about the differences between individual stem cells that dictate their particular state of activation readiness. To examine such differences between individual stem cells, we determined the global gene expression profile of 12 single stem cells using microarrays. We showed that at least half of the genetic expression variability between 12 single cells profiled was due to biological variation in 44% of the genes analyzed. We also identified specific genes with high biological variance that are candidates for influencing the state of readiness of individual hematopoietic stem cells, and confirmed the variability of a subset of these genes using single-cell real-time PCR. Because apparent variation of some genes is likely due to technical factors, we estimated the degree of biological versus technical variation for each gene using identical RNA samples containing an RNA amount equivalent to that of single cells. This enabled us to identify a large cohort of genes with low technical variability whose expression can be reliably measured on the arrays at the single-cell level. These data have established that gene expression of individual stem cells varies widely, despite extremely high phenotypic homogeneity. Some of this variation is in key regulators of stem cell activity, which could account for the differential responses of particular stem cells to exogenous stimuli. The capacity to accurately interrogate individual cells for global gene expression will facilitate a systems approach to biological processes at a single-cell level.

  4. Sleeping Beauty-Mediated Drug Resistance Gene Transfer in Human Hematopoietic Progenitor Cells.

    Science.gov (United States)

    Hyland, Kendra A; Olson, Erik R; McIvor, R Scott

    2015-10-01

    The Sleeping Beauty (SB) transposon system can insert sequences into mammalian chromosomes, supporting long-term expression of both reporter and therapeutic genes. Hematopoietic progenitor cells (HPCs) are an ideal therapeutic gene transfer target as they are used in therapy for a variety of hematologic and metabolic conditions. As successful SB-mediated gene transfer into human CD34(+) HPCs has been reported by several laboratories, we sought to extend these studies to the introduction of a therapeutic gene conferring resistance to methotrexate (MTX), potentially providing a chemoprotective effect after engraftment. SB-mediated transposition of hematopoietic progenitors, using a transposon encoding an L22Y variant dihydrofolate reductase fused to green fluorescent protein, conferred resistance to methotrexate and dipyridamole, a nucleoside transport inhibitor that tightens MTX selection conditions, as assessed by in vitro hematopoietic colony formation. Transposition of individual transgenes was confirmed by sequence analysis of transposon-chromosome junctions recovered by linear amplification-mediated PCR. These studies demonstrate the potential of SB-mediated transposition of HPCs for expression of drug resistance genes for selective and chemoprotective applications. PMID:26176276

  5. Collection of hematopoietic stem cells from patients with autoimmune diseases

    NARCIS (Netherlands)

    Burt, RK; Fassas, A; Snowden, JA; Kozak, T; Wulffraat, NM; Nash, RA; Dunbar, CE; Arnold, R; Prentice, G; Bingham, S; Marmont, AM; McSweeney, PA; van Laar, J.M.

    2001-01-01

    We reviewed data from 24 transplant centers in Asia, Australia, Europe, and North America to determine the outcomes of stem cell collection including methods used, cell yields, effects on disease activity, and complications in patients with autoimmune diseases. Twenty-one unprimed bone marrow harves

  6. Origin and fate of hematopoietic stem precursor cells in the leech Hirudo medicinalis

    Directory of Open Access Journals (Sweden)

    A Grimaldi

    2016-07-01

    Full Text Available The hematopoietic process by which blood cells are formed has been intensely studied for over a century using several model systems. An increasing amount of evidence shows that hematopoiesis, angiogenesis, immune response and the regulating these processes (i.e., cytokines are highly conserved across taxonomic groups. Over the last decade, the leech Hirudo medicinalis, given its simple anatomy and its repertoire of less varied cell types when compared to vertebrates, has been proposed as a powerful model for studying basic steps of hematopoiesis and immune responses. Here, I provide a broad overview of H. medicinalis hematopoiesis and I highlight the benefits of using leech as a model.

  7. Association of HMGB1 polymorphisms with outcome after allogeneic hematopoietic cell transplantation

    DEFF Research Database (Denmark)

    Kornblit, Brian Thomas; Masmas, Tania; Petersen, Søren;

    2010-01-01

    activation of antigen presenting cells (APCs) and propagation of inflammation. HMGB1 is implicated in the pathophysiology of a variety of inflammatory diseases, and we have recently found the variation in the HMGB1 gene to be associated with mortality in patients with systemic inflammatory response syndrome......Several studies have demonstrated that genetic variation in cytokine genes can modulate the immune reactions after allogeneic hematopoietic cell transplantation (HCT). High mobility group box 1 protein (HMBG1) is a pleiotropic cytokine that functions as a pro-inflammatory signal, important for the...

  8. Measuring ATP Concentration in a Small Number of Murine Hematopoietic Stem Cells.

    Science.gov (United States)

    Szade, Krzysztof; Zukowska, Monika; Jozkowicz, Alicja; Dulak, Jozef

    2016-01-01

    The metabolism of quiescent adult stem cells differs from the metabolism of differentiated cells. The metabolic processes are tightly regulated and their alterations disturb function of stem cells. One of the indicators of metabolic status of cells is the ATP level. While the method of measuring the ATP levels has been known for many years, estimating ATP levels in small population of defined stem cells isolated directly from the tissue has remained challenging. Here, we show our method of measuring the ATP levels in hematopoietic stem cells sorted from murine bone marrow. We used magnetic sorting as well as cell sorter and adopted the commonly used bioluminescence-based detection kits in described protocol. Our strategy allows to measure ATP levels in 1000 highly purified HSC.

  9. Autologous peripheral hematopoietic stem-cell transplantation in a patient with refractory pemphigus

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The aim of this study is to explore the effectiveness of autologous peripheral hematopoietic stem-cell transplantation in the treatment of refractory pemphigus.A 35-year-old male patient presented with a 4-year history of recurrent bullae on his trunk and extremities.The diagnosis of pemphigus was made on the basis of the clinical,histologic and immunofluorescence findings.The patient had shown resistance to conventional therapy with glucocorticoid and immunosuppressive agents.Two months before admission,he complained of hip joint pain.X-ray and CT scan revealed aseptic necrosis of the femoral head.Stem-cell mobilization was achieved by treatment with cyclophosphamide,granulocyte colony-stimulating factor (G-CSF)and rituximab.Peripheral blood stem cells were collected via leukapheresis and cryopreserved for later use.Immunoablation was accomplished by using cyclophosphamide(200 mg/kg;divided into 50 mg/kg on days-5,-4,-3,and-2),antithymocyte globulin(ATG;10 mg/kg;divided into 2.5 mg/kg on days-6,-5,-4,and-3),and rituximab (1200 mg/d;divided into 600 mg/d on days 0 and 7).Autologous peripheral hematopoietic stem cell transplantation was followed by reconstitution of the immune system which was monitored by flow cytometry.The glucocorticoid was withdrawn immediately after transplantation.The pemphigus titer turned negative 6 weeks after transplantation and remained negative.The patient was in complete drug-free remission with no evidence of residual clinical or serological activity of pemphigus during 1 year of followup.The patient's response suggests that autologous peripheral hematopoietic stem cell transplantation may be a potential "cure" for refractory pemphigus.However,further studies are needed to evaluate the risk-benefit ratio of this approach in patients with pemphigus showing resistance to conventional therapy.

  10. Gab2 promotes hematopoietic stem cell maintenance and self-renewal synergistically with STAT5.

    Directory of Open Access Journals (Sweden)

    Geqiang Li

    Full Text Available BACKGROUND: Grb2-associated binding (Gab adapter proteins play major roles in coordinating signaling downstream of hematopoietic cytokine receptors. In hematopoietic cells, Gab2 can modulate phosphatidylinositol-3 kinase and mitogen associated protein kinase activities and regulate the long-term multilineage competitive repopulating activity of hematopoietic stem cells (HSCs. Gab2 may also act in a linear pathway upstream or downstream of signal transducer and activator of transcription-5 (STAT5, a major positive regulator of HSC function. Therefore, we aimed to determine whether Gab2 and STAT5 function in hematopoiesis in a redundant or non-redundant manner. METHODOLOGY/PRINCIPAL FINDINGS: To do this we generated Gab2 mutant mice with heterozygous and homozygous deletions of STAT5. In heterozygous STAT5 mutant mice, deficiencies in HSC/multipotent progenitors were reflected by decreased long-term repopulating activity. This reduction in repopulation function was mirrored in the reduced growth response to early-acting cytokines from sorted double mutant c-Kit(+Lin(-Sca-1(+ (KLS cells. Importantly, in non-ablated newborn mice, the host steady-state engraftment ability was impaired by loss of Gab2 in heterozygous STAT5 mutant background. Fetal liver cells isolated from homozygous STAT5 mutant mice lacking Gab2 showed significant reduction in HSC number (KLS CD150(+CD48(-, reduced HSC survival, and dramatic loss of self-renewal potential as measured by serial transplantation. CONCLUSIONS/SIGNIFICANCE: These data demonstrate new functions for Gab2 in hematopoiesis in a manner that is non-redundant with STAT5. Furthermore, important synergy between STAT5 and Gab2 was observed in HSC self-renewal, which might be exploited to optimize stem cell-based therapeutics.

  11. High incidence of oral squamous cell carcinoma independent of HPV infection after allogeneic hematopoietic SCT in Taiwan.

    Science.gov (United States)

    Chen, M H; Chang, P M; Li, W Y; Hsiao, L T; Hong, Y C; Liu, C Y; Gau, J P; Liu, J H; Chen, P M; Chiou, T J; Tzeng, C H

    2011-04-01

    Hematopoietic SCT (HSCT) is a well-recognized therapeutic procedure to prolong life and cure patients with life-threatening hematological malignancies; however, the risk of developing secondary carcinoma may increase in long-term survivors. The objective of this study was to determine the incidence and risk factors for secondary squamous carcinoma after HSCT. Between 1984 and 2004, 170 allogeneic HSCT recipients aged >15 years, who had survived for >5 years were enrolled. Demographic data and the characteristics of secondary carcinoma were collected and analyzed for the determination of the incidence and risk of developing secondary carcinoma. Eight patients developed secondary carcinoma, including five oral squamous cell carcinomas, one esophageal, one gastric and one ovarian carcinoma, but no cutaneous carcinomas were detected at a median follow-up of 14.1 years (range, 5.1-23.3 years) after HSCT. The accrual 10-year cumulative incidence of secondary carcinoma was 2.89%. In univariate and multivariate analyses, chronic GVHD and age >40 years at the time of HSCT were both significant risk factors independently associated with the development of secondary carcinoma. Thus, the occurrence of secondary carcinoma is one of the late complications in patients undergoing HSCT. Oral squamous cell carcinoma was more common in our patients after HSCT, indicating the need for lifelong surveillance of the oral cavity. Moreover, because of the relatively long latency in developing secondary carcinoma, extended follow-up is required for a thorough understanding of the incidence and characteristics of secondary carcinoma after HSCT. PMID:20622906

  12. Oncogenic Kras initiates leukemia in hematopoietic stem cells.

    OpenAIRE

    Amit J Sabnis; Cheung, Laurene S.; Monique Dail; Hio Chung Kang; Marianne Santaguida; Hermiston, Michelle L.; Emmanuelle Passegué; Kevin Shannon; Braun, Benjamin S.

    2009-01-01

    Author Summary Ras proteins act as molecular switches that relay growth signals from outside the cell. This mechanism is often subverted in cancer, and Ras proteins are activated directly by RAS gene mutations in approximately one-third of human malignancies. We have modeled this in mice engineered to have a Ras mutation. These mice develop a disease similar to chronic leukemias in humans called myeloproliferative disorders. It is marked by a fatal accumulation of mature and immature cells in...

  13. Mutual Interference between Cytomegalovirus and Reconstitution of Protective Immunity after Hematopoietic Cell Transplantation

    Science.gov (United States)

    Reddehase, Matthias J.

    2016-01-01

    Hematopoietic cell transplantation (HCT) is a therapy option for aggressive forms of hematopoietic malignancies that are resistant to standard antitumoral therapies. Hematoablative treatment preceding HCT, however, opens a “window of opportunity” for latent Cytomegalovirus (CMV) by releasing it from immune control with the consequence of reactivation of productive viral gene expression and recurrence of infectious virus. A “window of opportunity” for the virus represents a “window of risk” for the patient. In the interim between HCT and reconstitution of antiviral immunity, primarily mediated by CD8+ T cells, initially low amounts of reactivated virus can expand exponentially, disseminate to essentially all organs, and cause multiple organ CMV disease, with interstitial pneumonia (CMV-IP) representing the most severe clinical manifestation. Here, I will review predictions originally made in the mouse model of experimental HCT and murine CMV infection, some of which have already paved the way to translational preclinical research and promising clinical trials of a preemptive cytoimmunotherapy of human CMV disease. Specifically, the mouse model has been pivotal in providing “proof of concept” for preventing CMV disease after HCT by adoptive transfer of preselected, virus epitope-specific effector and memory CD8+ T cells bridging the critical interim. However, CMV is not a “passive antigen” but is a pathogen that actively interferes with the reconstitution of protective immunity by infecting bone marrow (BM) stromal cells that otherwise form niches for hematopoiesis by providing the structural microenvironment and by producing hematopoietically active cytokines, the hemopoietins. Depending on the precise conditions of HCT, reduced homing of transplanted hematopoietic stem- and progenitor cells to infected BM stroma and impaired colony growth and lineage differentiation can lead to “graft failure.” In consequence, uncontrolled virus spread

  14. Mutual Interference between Cytomegalovirus and Reconstitution of Protective Immunity after Hematopoietic Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Matthias J. Reddehase

    2016-08-01

    Full Text Available Hematopoietic cell transplantation (HCT is a therapy option for aggressive forms of hematopoietic malignancies that are resistant to standard antitumoral therapies. Hematoablative treatment preceding HCT, however, opens a ‘window of opportunity’ for latent cytomegalovirus (CMV by releasing it from immune control with the consequence of reactivation of productive viral gene expression and recurrence of infectious virus. A ‘window of opportunity’ for the virus represents a ‘window of risk’ for the patient. In the interim between HCT and reconstitution of antiviral immunity, primarily mediated by CD8+ T cells, initially low amounts of reactivated virus can expand exponentially, disseminate to essentially all organs, and cause multiple organ CMV disease, with interstitial pneumonia (CMV-IP representing the most severe clinical manifestation. Here I will review predictions originally made in the mouse model of experimental HCT and murine CMV infection, some of which have already paved the way to translational preclinical research and promising clinical trials of a pre-emptive cytoimmunotherapy of human CMV disease. Specifically, the mouse model has been pivotal in providing ‘proof of concept’ for preventing CMV disease after HCT by adoptive transfer of preselected, virus epitope-specific effector and memory CD8+ T cells bridging the critical interim. CMV, however, is not a ‘passive antigen’ but is a pathogen that actively interferes with the reconstitution of protective immunity by infecting bone marrow stromal cells that otherwise form niches for hematopoiesis by providing the structural microenvironment and by producing hematopoietically active cytokines, the hemopoietins. Depending on the precise conditions of HCT, reduced homing of transplanted hematopoietic stem- and progenitor cells to infected bone marrow stroma and impaired colony growth and lineage differentiation can lead to ‘graft failure’. In consequence

  15. Low Doses of Oxygen Ion Irradiation Cause Acute Damage to Hematopoietic Cells in Mice.

    Directory of Open Access Journals (Sweden)

    Jianhui Chang

    Full Text Available One of the major health risks to astronauts is radiation on long-duration space missions. Space radiation from sun and galactic cosmic rays consists primarily of 85% protons, 14% helium nuclei and 1% high-energy high-charge (HZE particles, such as oxygen (16O, carbon, silicon, and iron ions. HZE particles exhibit dense linear tracks of ionization associated with clustered DNA damage and often high relative biological effectiveness (RBE. Therefore, new knowledge of risks from HZE particle exposures must be obtained. In the present study, we investigated the acute effects of low doses of 16O irradiation on the hematopoietic system. Specifically, we exposed C57BL/6J mice to 0.1, 0.25 and 1.0 Gy whole body 16O (600 MeV/n irradiation and examined the effects on peripheral blood (PB cells, and bone marrow (BM hematopoietic stem cells (HSCs and hematopoietic progenitor cells (HPCs at two weeks after the exposure. The results showed that the numbers of white blood cells, lymphocytes, monocytes, neutrophils and platelets were significantly decreased in PB after exposure to 1.0 Gy, but not to 0.1 or 0.25 Gy. However, both the frequency and number of HPCs and HSCs were reduced in a radiation dose-dependent manner in comparison to un-irradiated controls. Furthermore, HPCs and HSCs from irradiated mice exhibited a significant reduction in clonogenic function determined by the colony-forming and cobblestone area-forming cell assays. These acute adverse effects of 16O irradiation on HSCs coincided with an increased production of reactive oxygen species (ROS, enhanced cell cycle entry of quiescent HSCs, and increased DNA damage. However, none of the 16O exposures induced apoptosis in HSCs. These data suggest that exposure to low doses of 16O irradiation induces acute BM injury in a dose-dependent manner primarily via increasing ROS production, cell cycling, and DNA damage in HSCs. This finding may aid in developing novel strategies in the protection of the

  16. Low Doses of Oxygen Ion Irradiation Cause Acute Damage to Hematopoietic Cells in Mice.

    Science.gov (United States)

    Chang, Jianhui; Luo, Yi; Wang, Yingying; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2016-01-01

    One of the major health risks to astronauts is radiation on long-duration space missions. Space radiation from sun and galactic cosmic rays consists primarily of 85% protons, 14% helium nuclei and 1% high-energy high-charge (HZE) particles, such as oxygen (16O), carbon, silicon, and iron ions. HZE particles exhibit dense linear tracks of ionization associated with clustered DNA damage and often high relative biological effectiveness (RBE). Therefore, new knowledge of risks from HZE particle exposures must be obtained. In the present study, we investigated the acute effects of low doses of 16O irradiation on the hematopoietic system. Specifically, we exposed C57BL/6J mice to 0.1, 0.25 and 1.0 Gy whole body 16O (600 MeV/n) irradiation and examined the effects on peripheral blood (PB) cells, and bone marrow (BM) hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) at two weeks after the exposure. The results showed that the numbers of white blood cells, lymphocytes, monocytes, neutrophils and platelets were significantly decreased in PB after exposure to 1.0 Gy, but not to 0.1 or 0.25 Gy. However, both the frequency and number of HPCs and HSCs were reduced in a radiation dose-dependent manner in comparison to un-irradiated controls. Furthermore, HPCs and HSCs from irradiated mice exhibited a significant reduction in clonogenic function determined by the colony-forming and cobblestone area-forming cell assays. These acute adverse effects of 16O irradiation on HSCs coincided with an increased production of reactive oxygen species (ROS), enhanced cell cycle entry of quiescent HSCs, and increased DNA damage. However, none of the 16O exposures induced apoptosis in HSCs. These data suggest that exposure to low doses of 16O irradiation induces acute BM injury in a dose-dependent manner primarily via increasing ROS production, cell cycling, and DNA damage in HSCs. This finding may aid in developing novel strategies in the protection of the hematopoietic

  17. In vitro inhibitory effects of imatinib mesylate on stromal cells and hematopoietic progenitors from bone marrow

    Directory of Open Access Journals (Sweden)

    P.B. Soares

    2013-01-01

    Full Text Available Imatinib mesylate (IM is used to treat chronic myeloid leukemia (CML because it selectively inhibits tyrosine kinase, which is a hallmark of CML oncogenesis. Recent studies have shown that IM inhibits the growth of several non-malignant hematopoietic and fibroblast cells from bone marrow (BM. The aim of the present study was to evaluate the effects of IM on stromal and hematopoietic progenitor cells, specifically in the colony-forming units of granulocyte/macrophage (CFU-GM, using BM cultures from 108 1.5- to 2-month-old healthy Swiss mice. The results showed that low concentrations of IM (1.25 µM reduced the growth of CFU-GM in clonogenic assays. In culture assays with stromal cells, fibroblast proliferation and α-SMA expression by immunocytochemistry analysis were also reduced in a concentration-dependent manner, with a survival rate of approximately 50% with a dose of 2.5 µM. Cell viability and morphology were analyzed using MTT and staining with acrydine orange/ethidium bromide. Most cells were found to be viable after treatment with 5 µM IM, although there was gradual growth inhibition of fibroblastic cells while the number of round cells (macrophage-like cells increased. At higher concentrations (15 µM, the majority of cells were apoptotic and cell growth ceased completely. Oil red staining revealed the presence of adipocytes only in untreated cells (control. Cell cycle analysis of stromal cells by flow cytometry showed a blockade at the G0/G1 phases in groups treated with 5-15 µM. These results suggest that IM differentially inhibits the survival of different types of BM cells since toxic effects were achieved.

  18. Effects of low-level radiation upon the hematopoietic steam cell: implications for leukemogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cronkite, E.P.; Bond, V.P.; Carsten, A.L.; Miller, M.E.; Bullis, J.E.

    1983-01-01

    These studies have addressed firstly the effect of single small doses of x-ray upon murine hematopoietic stem cells to obtain a better estimate of the D/sub q/. It is small, of the order of 20 rads. Secondly, a dose fractionation schedule tht does not kill or perturb the kinetics of hemopoietic cell proliferation was sought in order to investigate the leukemogenic potential of low level radiation upon an unperturbed hemopoietic system. The studies reported herein show tht 1.25 rads every other day decrease the CFU-S content of bone marrow by the time 40 rads are accumulated. Studies on the effect of 0.5, 1.0, 2.0, and 3.0 rads 3 times per week are under way. Two rads 3 times per week produced a modest decrease in CFU-S content of bone marrow after an accumulation of 68 rads. With 3.0 rads 3 times per week an accumulation of 102 rads produces a significant decrease in CFU-S content of bone marrow. Dose fractionation at 0.5 and 1.0 rad 3 times per week has not produced a CFU-S depression after accumulation of 17 and 34 rads. Radiation leukemogenesis studies published to date have utilized single doses and chronic exposure schedules that probably have significantly perturbed the kinetics of hematopoietic stem cells. Whether radiation will produce leukemia in animal models with dose schedules that do not perturb kinetics of hematopoietic stem cells remains to be seen.

  19. The Ly-6A (Sca-1) GFP transgene is expressed in all adult mouse hematopoietic stem cells

    NARCIS (Netherlands)

    X. Ma (Xiaoqian); C.I. Robin; K. Ottersbach (Katrin); E.A. Dzierzak (Elaine)

    2002-01-01

    textabstractThe Sca-1 cell surface glycoprotein is used routinely as a marker of adult hematopoietic stem cells (HSCs), allowing a >100-fold enrichment of these rare cells from the bone marrow of the adult mouse. The Sca-1 protein is encoded by the Ly-6A/E gene, a small 4-exon gene

  20. VARIATIONS IN RADIATION SENSITIVITY AND REPAIR AMONG DIFFERENT HEMATOPOIETIC STEM-CELL SUBSETS FOLLOWING FRACTIONATED-IRRADIATION

    NARCIS (Netherlands)

    DOWN, JD; BOUDEWIJN, A; VANOS, R; THAMES, HD; PLOEMACHER, RE

    1995-01-01

    The radiation dose-survival of various hematopoietic cell subsets in murine bone marrow (BM) was determined in the cobblestone area forming cell (CAFC) assay under conditions of single-, split-, and multiple-dose irradiation. A greater recovery in cell survival with decreasing dose per fraction, or

  1. Expansion on stromal cells preserves the undifferentiated state of human hematopoietic stem cells despite compromised reconstitution ability.

    Directory of Open Access Journals (Sweden)

    Mattias Magnusson

    Full Text Available Lack of HLA-matched hematopoietic stem cells (HSC limits the number of patients with life-threatening blood disorders that can be treated by HSC transplantation. So far, insufficient understanding of the regulatory mechanisms governing human HSC has precluded the development of effective protocols for culturing HSC for therapeutic use and molecular studies. We defined a culture system using OP9M2 mesenchymal stem cell (MSC stroma that protects human hematopoietic stem/progenitor cells (HSPC from differentiation and apoptosis. In addition, it facilitates a dramatic expansion of multipotent progenitors that retain the immunophenotype (CD34+CD38-CD90+ characteristic of human HSPC and proliferative potential over several weeks in culture. In contrast, transplantable HSC could be maintained, but not significantly expanded, during 2-week culture. Temporal analysis of the transcriptome of the ex vivo expanded CD34+CD38-CD90+ cells documented remarkable stability of most transcriptional regulators known to govern the undifferentiated HSC state. Nevertheless, it revealed dynamic fluctuations in transcriptional programs that associate with HSC behavior and may compromise HSC function, such as dysregulation of PBX1 regulated genetic networks. This culture system serves now as a platform for modeling human multilineage hematopoietic stem/progenitor cell hierarchy and studying the complex regulation of HSC identity and function required for successful ex vivo expansion of transplantable HSC.

  2. Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice

    Institute of Scientific and Technical Information of China (English)

    TIAN Bei; LI Xiao-xin; SHEN Li; ZHAO Min; YU Wen-zhen

    2010-01-01

    Background Hematopoietic stem cells (HSCs) can be used to deliver functionally active angiostatic molecules to the retinal vasculature by targeting active astrocytes and may be useful in targeting pre-angiogenic retinal lesions. We sought to determine whether HSC mobilization can ameliorate early diabetic retinopathy in mice.Methods Mice were devided into four groups: normal mice control group, normal mice HSC-mobilized group, diabetic mice control group and diabetic mice HSC mobilized group. Murine stem cell growth factor (murine SCF) and recombined human granulocyte colony stimulating factor (rhG-csf) were administered to the mice with diabetes and without diabetes for continuous 5 days to induce autologous HSCs mobilization, and subcutaneous injection of physiological saline was used as control. Immunohistochemical double staining was conducted with anti-mouse rat CD31 monoclonal antibody and anti-BrdU rat antibody.Results Marked HSCs clearly increased after SCF plus G-csf-mobilization. Non-mobilized diabetic mice showed more HSCs than normal mice (P=0.032), and peripheral blood significantly increased in both diabetic and normal mice (P=0.000).Diabetic mice showed more CD31 positive capillary vessels (P=0.000) and accelerated endothelial cell regeneration. Only diabetic HSC-mobilized mice expressed both BrdU and CD31 antigens in the endothelial cells of new capillaries.Conclusion Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice.

  3. Differential outcome of neurological HCMV infection in two hematopoietic stem cell transplant recipients

    Directory of Open Access Journals (Sweden)

    Colombo Anna

    2012-10-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV infection of the central nervous system (CNS is a rare but life threatening condition which may follow hematopoietic stem cell transplantation. Diagnosis, monitoring and treatment approaches rely on anecdotal reports. Case presentations The different outcomes of HCMV CNS disease in an adult and a pediatric T-cell depleted hematopoietic stem cell transplant (HSCT recipient are reported. In the first case, HCMV encephalitis emerged in the context of simultaneous impairment of the T- and B-cell immunity. Antiviral treatment only reduced viral load in peripheral blood and the patient died. In the second case, an HCMV radiculopathy was observed and antiviral treatment was adjusted on the basis of intrathecal drug level. In addition, donor HCMV-specific cytotoxic T lymphocytes (CTLs were infused. Viral load in the CNS decreased and the patient recovered from the acute event. In neither case were drug-resistant HCMV variants observed in blood or CNS samples. Conclusions T-cell depleted HSCT appears a predisposing condition for CNS HCMV infection since never observed in other HSCT recipients at our center in the last 15 years. Intensive diagnostic approaches and timely aggressive combination treatments might improve clinical outcome in these patients.

  4. Promotion of Erythropoietic Differentiation in Hematopoietic Stem Cells by SOCS3 Knock-Down.

    Directory of Open Access Journals (Sweden)

    Yu-xiao Liu

    Full Text Available Suppressor of cytokine signaling 3 (SOCS3 plays an important role in mice fetal liver erythropoiesis, but the roles of SOCS3 in human hematopoietic stem cells (HSCs have not been well investigated. In the present study, lentiviral small interference RNA expression vectors (shRNA of SOCS3 were constructed and stably transferred into HSCs. We found that SOCS3 knockdown induced erythroid expansion in HSCs. Conversely, Ectopic expression of SOCS3 in progenitor cells blocked erythroid expansion and erythroid colony formation of HSCs. To further explore the involved mechanism, we compared gene expression profiles of SOCS3-shRNA tranduced HSCs with that of control HSCs by whole genome microarrays. The results indicated that cell developmental process related genes, especially hematopoietic lineage-specific genes, associated with the responses to SOCS3 in HSCs.Downexpression of SOCS3 in HSCs or differentiated erythroid progenitor cells induced a transcriptional program enriched for erythroid development relative genes. Our results proved that SOCS3 down-expression induced lineage commitment towards erythroid progenitor cell fate by activation of erythroid-specific gene in HSCs and provided new insight into the mechanism of erythropoietic development.

  5. Enhanced generation of myeloid lineages in hematopoietic differentiation from embryonic stem cells by silencing transcriptional repressor Twist-2.

    Science.gov (United States)

    Sharabi, Andrew B; Lee, Sung-Hyung; Goodell, Margaret A; Huang, Xue F; Chen, Si-Yi

    2009-12-01

    The self-renewal and multilineage differentiation of embryonic stem cells (ESC) is largely governed by transcription factors or repressors. Extensive efforts have focused on elucidating critical factors that control the differentiation of specific cell lineages, for instance, myeloid lineages in hematopoietic development. In this study, we found that Twist-2, a basic helix-loop-helix (bHLH) transcription factor, plays a critical role in inhibiting the differentiation of ESC. Murine ES cells, in which Twist-2 expression is silenced by lentivirally delivered shRNA, exhibit an enhanced formation of primary embryoid bodies (EB) and enhanced differentiation into mesodermally derived hematopoietic colonies. Furthermore, Twist-2 silenced (LV-siTwist-2) ESC display significantly increased generation of myeloid lineages (Gr-1(+) and F4/80(+) cells) during in vitro hematopoietic differentiation. Treatment with the Toll-like receptor (TLR) 4 ligand synergistically stimulates the generation of primary EB formation as well as of hematopoietic progenitors differentiated from LV-siTwist-2 ES cells. Thus, this study reveals the critical role of the transcriptional repressor Twist-2 in regulating the development of myeloid lineage in hematopoietic differentiation from ESC. This study also suggests a potential strategy for directional differentiation of ESC by inhibiting a transcriptional repressor.

  6. Change in Erythropoietin Pharmacokinetics Following Hematopoietic Transplantation

    OpenAIRE

    Widness, JA; Schmidt, RL; Hohl, RJ; Goldman, FD; Al-Huniti, NH; Freise, KJ; Veng-Pedersen, P.

    2007-01-01

    Pre-clinical studies have demonstrated that bone marrow ablation has a profound effect in decreasing erythropoietin (EPO) elimination. The study’s objective was to determine in humans if EPO pharmacokinetics (PKs) are perturbed following bone marrow ablation. EPO PK studies were performed in eight subjects, aged 4 to 61 years, undergoing fully myeloablative hematopoietic stem cell transplantation. Serial PK studies using intravenous injection of recombinant human EPO (92±2.0 U/kg) (mean±SEM) ...

  7. Individualization of drug exposure in pediatric hematopoietic stem cell transplantation

    NARCIS (Netherlands)

    Bartelink, I.H.

    2012-01-01

    Allogeneic haematopoeitic stem cell transplantation is a potentially curative treatment for a variety of diseases. Its use is limited by 1) the risk of graft failures and relapse of malignant diseases, 2) transplantation-associated complications, and 3) late effects. There is a large and largely unp

  8. The cytosolic protein G0S2 maintains quiescence in hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Takeshi Yamada

    Full Text Available Bone marrow hematopoietic stem cells (HSCs balance proliferation and differentiation by integrating complex transcriptional and post-translational mechanisms regulated by cell intrinsic and extrinsic factors. We found that transcripts of G(0/G(1 switch gene 2 (G0S2 are enriched in lineage(- Sca-1(+ c-kit(+ (LSK CD150(+ CD48(- CD41(- cells, a population highly enriched for quiescent HSCs, whereas G0S2 expression is suppressed in dividing LSK CD150(+ CD48(- cells. Gain-of-function analyses using retroviral expression vectors in bone marrow cells showed that G0S2 localizes to the mitochondria, endoplasmic reticulum, and early endosomes in hematopoietic cells. Co-transplantation of bone marrow cells transduced with the control or G0S2 retrovirus led to increased chimerism of G0S2-overexpressing cells in femurs, although their contribution to the blood was reduced. This finding was correlated with increased quiescence in G0S2-overexpressing HSCs (LSK CD150(+ CD48(- and progenitor cells (LS(-K. Conversely, silencing of endogenous G0S2 expression in bone marrow cells increased blood chimerism upon transplantation and promoted HSC cell division, supporting an inhibitory role for G0S2 in HSC proliferation. A proteomic study revealed that the hydrophobic domain of G0S2 interacts with a domain of nucleolin that is rich in arginine-glycine-glycine repeats, which results in the retention of nucleolin in the cytosol. We showed that this cytosolic retention of nucleolin occurs in resting, but not proliferating, wild-type LSK CD150(+ CD48(- cells. Collectively, we propose a novel model of HSC quiescence in which elevated G0S2 expression can sequester nucleolin in the cytosol, precluding its pro-proliferation functions in the nucleolus.

  9. Hematopoietic Stem Cell Transplantation in Pediatric Myelodysplastic Syndromes

    OpenAIRE

    Gulay Sezgin

    2014-01-01

    Myelodysplastic syndromes (MDSs) are a heterogenous group of hemopoietic clonal disorders characterized by ineffective hemopoiesis and frequent evolution to leukemia.They are rare entities, particularly in children.Recently,they have been classified into 3 major groups: MDS, juvenile myelomonocytic leukemia, and Down syndrome–associated myeloid leukemia.Haematopoietic stem cell transplantation(HSCT) is the treatment of choice and results in cure rates of around 60%.

  10. Hematopoietic Stem Cell Transplantation in Pediatric Myelodysplastic Syndromes

    Directory of Open Access Journals (Sweden)

    Gulay Sezgin

    2014-02-01

    Full Text Available Myelodysplastic syndromes (MDSs are a heterogenous group of hemopoietic clonal disorders characterized by ineffective hemopoiesis and frequent evolution to leukemia.They are rare entities, particularly in children.Recently,they have been classified into 3 major groups: MDS, juvenile myelomonocytic leukemia, and Down syndrome–associated myeloid leukemia.Haematopoietic stem cell transplantation(HSCT is the treatment of choice and results in cure rates of around 60%.

  11. Neutrophil function in children following allogeneic hematopoietic stem cell transplant.

    Science.gov (United States)

    Kent, Michael W; Kelher, Marguerite R; Silliman, Christopher C; Quinones, Ralph

    2016-08-01

    HSCT is a lifesaving procedure for children with malignant and non-malignant conditions. The conditioning regimen renders the patient severely immunocompromised and recovery starts with neutrophil (PMN) engraftment. We hypothesize that children demonstrate minimal PMN dysfunction at engraftment and beyond, which is influenced by the stem cell source and the conditioning regimen. Peripheral blood was serially collected from children at 1 to 12 months following allogeneic HSCT. PMN superoxide (O2-) production, degranulation (elastase), CD11b surface expression, and phagocytosis were assessed. Twenty-five patients, mean age of 10.5 yr with 65% males, comprised the study and transplant types included: 14 unrelated cord blood stem cells (cords), seven matched related bone marrow donors, three matched unrelated bone marrow donors, and one peripheral blood progenitor cells. Engraftment occurred at 24 days. There were no significant differences between controls and patients in PMN O2- production, phagocytosis, CD11b surface expression, and total PMN elastase. Elastase release was significantly decreased <6 months vs. controls (p < 0.05) and showed normalization by six months for cords only. The conditioning regimen did not affect PMN function. PMN function returns with engraftment, save elastase release, which occurs later related to the graft source utilized, and its clinical significance is unknown. PMID:27114335

  12. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-11-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly, as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood.

  13. DNA Damage and Repair in Epithelium after Allogeneic Hematopoietic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Maria Themeli

    2012-11-01

    Full Text Available Allogeneic hematopoietic stem cell transplantation (allo-HSCT in humans, following hematoablative treatment, results in biological chimeras. In this case, the transplanted hematopoietic, immune cells and their derivatives can be considered the donor genotype, while the other tissues are the recipient genotype. The first sequel, which has been recognized in the development of chimerical organisms after allo-HSCT, is the graft versus host (GvH reaction, in which the new developed immune cells from the graft recognize the host’s epithelial cells as foreign and mount an inflammatory response to kill them. There is now accumulating evidence that this chronic inflammatory tissue stress may contribute to clinical consequences in the transplant recipient. It has been recently reported that host epithelial tissue acquire genomic alterations and display a mutator phenotype that may be linked to the occurrence of a GvH reaction. The current review discusses existing data on this recently discovered phenomenon and focuses on the possible pathogenesis, clinical significance and therapeutic implications.

  14. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors.

    Science.gov (United States)

    Modlich, Ute; Navarro, Susana; Zychlinski, Daniela; Maetzig, Tobias; Knoess, Sabine; Brugman, Martijn H; Schambach, Axel; Charrier, Sabine; Galy, Anne; Thrasher, Adrian J; Bueren, Juan; Baum, Christopher

    2009-11-01

    Gene transfer vectors may cause clonal imbalance and even malignant cell transformation by insertional upregulation of proto-oncogenes. Lentiviral vectors (LV) with their preferred integration in transcribed genes are considered less genotoxic than gammaretroviral vectors (GV) with their preference for integration next to transcriptional start sites and regulatory gene regions. Using a sensitive cell culture assay and a series of self-inactivating (SIN) vectors, we found that the lentiviral insertion pattern was approximately threefold less likely than the gammaretroviral to trigger transformation of primary hematopoietic cells. However, lentivirally induced mutants also showed robust replating, in line with the selection for common insertion sites (CIS) in the first intron of the Evi1 proto-oncogene. This potent proto-oncogene thus represents a CIS for both GV and LV, despite major differences in their integration mechanisms. Altering the vectors' enhancer-promoter elements had a greater effect on safety than the retroviral insertion pattern. Clinical grade LV expressing the Wiskott-Aldrich syndrome (WAS) protein under control of its own promoter had no transforming potential. Mechanistic studies support the conclusion that enhancer-mediated gene activation is the major cause for insertional transformation of hematopoietic cells, opening rational strategies for risk prevention.

  15. A Novel Population of Mesenchymal Progenitors with Hematopoietic Potential Originated from CD14- Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Gang Hu, Peng Liu, Jie Feng, Yan Jin

    2011-01-01

    Full Text Available Hemopoietic system derived progenitor cells with mesenchymal features have been identified including CD14+ monocyte-derived progenitors. However, it is unclear whether there are mesenchyme derived progenitors with hematopoietic potential. Herein, we identified a novel CD14- cell-derived population with both mesenchymal and hematopoietic features in rat peripheral blood, and this cell population is different from the CD14+ monocyte-derived progenitors but designated peripheral blood multipotential mesenchymal progenitors (PBMMPs. Phenotype analysis demonstrated expression of mesenchymal markers in PBMMPs including BMPRs, Endoglin/CD105, Fibronectin (Fn, Vimentin (Vim, Collagen (Col I/II/III along with hematopoietic marker CD34. CD14+ cell-derived population shared the same characteristics with CFs. In mixed culture of CD14+ and CD14- cells, PBMMPs were a predominant component and expressed CD29high, CD73high, CD34high, CD45low and CD90. Except for the value of mixed T lymphocytes and CD14+ cell-derived population, hematopoietic characters of cultured PBMMPs were indicated by CD14-/CD34+/CD45-/CD90+. The mesenchymal origin was further confirmed by comparing PBMMPs with bone marrow stromal cells. Finally, we transplanted PBMMPs into a skin wound model, and results showed the specific potential of PBMMPs in not only extracellular matrix secretion but epidermal regeneration. This study provides evidence that peripheral blood contains common hematopoietic-mesenchymal progenitors from both hematopoietic and mesenchymal lineages, and CD34+ mesenchymal progenitors are a possible alternative source of epidermal cells in wound healing.

  16. Interleukin-33: a mediator of inflammation targeting hematopoietic stem and progenitor cells and their progenies

    Directory of Open Access Journals (Sweden)

    Hongnga eLe

    2013-05-01

    Full Text Available Inflammation is defined as a physiological response initiated by a variety of conditions that cause insult to the body, such as infection and tissue injury. Inflammation is triggered by specialized receptors in the innate immune system, which recognized by microbial components known as pathogen-associated molecular patterns (PAMPs or endogenous signals produced by damaged cells (damage-associated molecular patterns, DAMPs. IL-33 is a cytokine that is released predominantly at the epithelial barrier when it is exposed to pathogens, allergens, or injury-inducing stimuli. IL-33 target cells are various, ranging from hematopoietic stem and progenitor cells (HSPCs and essentially all types of their progeny to many nonhematopoietic cells. The pleiotrophic actions of IL-33 suggest that IL-33 is involved in every phase of the inflammatory process. In this review, we discuss recent advances in the understanding of how IL-33 orchestrates inflammatory responses by regulating HSPCs and innate immune cells.

  17. GATA-3 REGULATES THE SELF-RENEWAL OF LONG-TERM HEMATOPOIETIC STEM CELLS

    Science.gov (United States)

    Frelin, Catherine; Herrington, Robert; Janmohamed, Salima; Barbara, Mary; Tran, Gary; Paige, Christopher J.; Benveniste, Patricia; Zuñiga-Pflücker, Juan-Carlos; Souabni, Abdallah; Busslinger, Meinrad; Iscove, Norman N

    2016-01-01

    Gata3 is expressed and required for differentiation and function throughout the T lymphocyte lineage. Despite evidence it may also be expressed in multipotent hematopoietic stem cells (HSC), any role in these cells has remained unclear. Here we show GATA3 was cytoplasmic in quiescent long-term stem cells from steady state bone marrow, but relocated to the nucleus when HSC cycle. Relocation depended on p38-MAPK signaling and was associated with diminished capacity for long-term reconstitution upon transfer to irradiated mice. Deletion of Gata3 enhanced repopulating capacity and augmented self-renewal of long term HSC in cell-autonomous fashion, without affecting cell cycle. These observations position Gata3 as a regulator of the balance between self-renewal and differentiation in HSC acting downstream of the p38 signaling pathway. PMID:23974957

  18. Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates

    Directory of Open Access Journals (Sweden)

    Armando Vilchis-Ordoñez

    2015-01-01

    Full Text Available B-cell acute lymphoblastic leukemia (B-ALL is a serious public health problem in the pediatric population worldwide, contributing to 85% of deaths from childhood cancers. Understanding the biology of the disease is crucial for its clinical management and the development of therapeutic strategies. In line with that observed in other malignancies, chronic inflammation may contribute to a tumor microenvironment resulting in the damage of normal processes, concomitant to development and maintenance of neoplastic cells. We report here that hematopoietic cells from bone marrow B-ALL have the ability to produce proinflammatory and growth factors, including TNFα, IL-1β, IL-12, and GM-CSF that stimulate proliferation and differentiation of normal stem and progenitor cells. Our findings suggest an apparently distinct CD13+CD33+ population of leukemic cells contributing to a proinflammatory microenvironment that may be detrimental to long-term normal hematopoiesis within B-ALL bone marrow.

  19. Human Herpesvirus 6 Infection after Hematopoietic Cell Transplantation: Is Routine Surveillance Necessary?

    OpenAIRE

    Betts, Brian C.; Young, Jo-Anne H.; Ustun, Celalettin; Cao, Qing; Weisdorf, Daniel J.

    2011-01-01

    Human herpesvirus 6 (HHV6) may be an important pathogen following allogeneic hematopoietic cell transplantation (HCT). We prospectively evaluated weekly HHV6 viremia testing after allogeneic HCT using a quantitative polymerase chain reaction (PCR)-based assay. HHV-6 viremia was detected in 46 of 82 (56%) patients at a median of 23 days post-HCT (range: day + 10 to + 168). More males (65% vs females 39%, P = .03) and recipients of umbilical cord blood (UCB 69% vs unrelated donor [URD], 46% vs ...

  20. Practical Aspects of Allogeneic Hematopoietic Cell Transplantation for Patients with Poor-Risk Chronic Lymphocytic Leukemia

    Directory of Open Access Journals (Sweden)

    Julio Delgado

    2011-01-01

    Full Text Available Allogeneic hematopoietic cell transplantation has become a viable option for younger patients with poor-risk chronic lymphocytic leukemia. The results obtained with either conventional or reduced-intensity conditioning regimens have been recently evaluated and compared with alternative nontransplant strategies. This manuscript deals with practical aspects of the procedure, including patient and donor selection, conditioning regimen, GVHD prophylaxis, disease monitoring, infectious and noninfectious complications, and timing of the procedure. Finally, we speculate on how we could improve the results obtained with the procedure and new advances currently in clinical trials.