WorldWideScience

Sample records for cells u251 pten-mutant

  1. MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol

    International Nuclear Information System (INIS)

    Substantial data indicate that the oncogene microRNA 21 (miR-21) is significantly elevated in glioblastoma multiforme (GBM) and regulates multiple genes associated with cancer cell proliferation, apoptosis, and invasiveness. Thus, miR-21 can theoretically become a target to enhance the chemotherapeutic effect in cancer therapy. So far, the effect of downregulating miR-21 to enhance the chemotherapeutic effect to taxol has not been studied in human GBM. Human glioblastoma U251 (PTEN-mutant) and LN229 (PTEN wild-type) cells were treated with taxol and the miR-21 inhibitor (in a poly (amidoamine) (PAMAM) dendrimer), alone or in combination. The 50% inhibitory concentration and cell viability were determined by the MTT assay. The mechanism between the miR-21 inhibitor and the anticancer drug taxol was analyzed using the Zheng-Jun Jin method. Annexin V/PI staining was performed, and apoptosis and the cell cycle were evaluated by flow cytometry analysis. Expression of miR-21 was investigated by RT-PCR, and western blotting was performed to evaluate malignancy related protein alteration. IC(50) values were dramatically decreased in cells treated with miR-21 inhibitor combine with taxol, to a greater extent than those treated with taxol alone. Furthermore, the miR-21 inhibitor significantly enhanced apoptosis in both U251 cells and LN229 cells, and cell invasiveness was obviously weakened. Interestingly, the above data suggested that in both the PTEN mutant and the wild-type GBM cells, miR-21 blockage increased the chemosensitivity to taxol. It is worth noting that the miR-21 inhibitor additively interacted with taxol on U251cells and synergistically on LN229 cells. Thus, the miR-21 inhibitor might interrupt the activity of EGFR pathways, independently of PTEN status. Meanwhile, the expression of STAT3 and p-STAT3 decreased to relatively low levels after miR-21 inhibitor and taxol treatment. The data strongly suggested that a regulatory loop between miR-21 and STAT3 might

  2. Inhibition of X-rays irradiaiton combined with thalidomide on glioma U251 cells

    International Nuclear Information System (INIS)

    In order to investigate the inhibition effect of X-rays combined with thalidomide on glioma U251 cells, the cell scratch assay was used to detect the inhibition of thalidomide on U251 cells. And H3-TdR incorporation assay and colony formation were used to investigate the enhancement effect of thalidomide on the sensitivity of U251 cells to X-rays. It has been found that thalidomide has synergistic effect on therapy of glioma U251 cells if it is combined with X-rays irradiation as it can inhibit cells infiltration, DNA synthesis and colony formation. When the survival rate of glioma U251 cells is 50%, the radio-sensitization factors of 60 μg/mL and 100 μg/mL thalidomide is 1.18 and 1.51 respectively. The results reveal that thalidomide could significantly improve radio-sensitivity of glioma U251 cells. (authors)

  3. Radiosensitivity of brain cancer stem cells from malignant glicoma cell line U251 in vitro

    International Nuclear Information System (INIS)

    Objective: To investigate the radiosensitivity of brain cancer stem cells of different conditions isolated from malignant glioma cell line U251 irt vitro. Methods: The brain cancer stem cells in U251 or the brain cancer stem cells isolated from U251 were irradiated by 60Co γ-rays. TUNEL and Annexin-FITC were employed to detect the apoptosis. The brain cancer stem cells were subcutaneously transplanted to nude mouse. Flow cytometry was used to detect cell cycle. Results: The brain cancer stem cells isolated from malignant glioma cell line U251 were in active cell cycle and sensitive to 60Co γ-rays. Thed apoptotic cells were increased obviously after irradiation. After subcutaneously transplanted to unde mouse, there was no tumor appear. However; the brain cancer stem cells existed in U251 were in G0-G1 and resisted to 60Co γ-rays. They differentiated into the parent glioma type after traqnsplantation. Conclusions: The brain cancer stem cells existed in the malignant glioma cell line is resisted to irradiation, and this phenomenon may explain the glioma relapse irt situ after radiation therapy. (authors)

  4. The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells

    International Nuclear Information System (INIS)

    Previous study reported that resveratrol has anti-tumor activity. In this study, we investigated the involvement of autophagy in the resveratrol-induced apoptotic death of human U251 glioma cells. The growth inhibition of U251 cells induced by resveratrol was assessed with methyl thiazolyl tetrazolium (MTT). The activation of autophagy and proapoptotic effect were characterized by monodansylcadaverine labeling and Hoechst stain, respectively. Mitochondrialtransmembrane potential (ΔΨm) was measured as a function of drug treatment using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1). The role of autophagy and apoptosis in the resveratrol-induced death of U251 cells was assessed using autophagic and caspase inhibitors. Immunofluorescence, flow cytometry, and Western blot analysis were used to study the apoptotic and autophagic mechanisms. Methyl thiazolyl tetrazolium (MTT) assays indicated that resveratrol decreased the viability of U251 cells in a dose- and time-dependent manner. Flow cytometry analysis indicated that resveratrol increased cell population at sub-G1 phase, an index of apoptosis. Furthermore, resveratrol-induced cell death was associated with a collapse of the mitochondrial membrane potential. The pan-caspase inhibitor Z-VAD-fmk suppressed resveratrol-induced U251 cell death. Resveratrol stimulated autophagy was evidenced by punctuate monodansylcadaverine(MDC) staining and microtubule-associated protein light chain 3 (LC3) immunoreactivty. Resveratrol also increased protein levels of beclin 1 and membrane form LC3 (LC3-II). Autophagy inhibitors 3-methylademine (3-MA) and bafilomycin A1 sensitized the cytotoxicity of resveratrol. Together, these findings indicate that resveratrol induces autophagy in human U251 glioma cells and autophagy suppressed resveratrol-induced apoptosis. This study thus suggests that autophagy inhibitors can increase the cytotoxicity of resveratrol to glioma cells

  5. U-251 revisited: genetic drift and phenotypic consequences of long-term cultures of glioblastoma cells

    International Nuclear Information System (INIS)

    It is well known that in vitro subculture represents a selection pressure on cell lines, and over time this may result in a genetic drift in the cancer cells. In addition, long-term cultures harbor the risk of cross-contamination with other cell lines. The consequences may have major impact on experimental results obtained in various laboratories, where the cell lines no longer reflect the original tumors that they are supposed to represent. Much neglected in the scientific community is a close monitoring of cell cultures by regular phenotypic and genetic characterization. In this report, we present a thorough characterization of the commonly used glioblastoma (GBM) model U-251, which in numerous publications has been wrongly identified as U-373, due to an earlier cross-contamination. In this work, the original U-251 and three subclones of U-251, commonly referred to as U-251 or U-373, were analyzed with regard to their DNA profile, morphology, phenotypic expression, and growth pattern. By array comparative genomic hybridization (aCGH), we show that only the original low-passaged U-251 cells, established in the 1960s, maintain a DNA copy number resembling a typical GBM profile, whereas all long-term subclones lost the typical GBM profile. Also the long-term passaged subclones displayed variations in phenotypic marker expression and showed an increased growth rate in vitro and a more aggressive growth in vivo. Taken together, the variations in genotype and phenotype as well as differences in growth characteristics may explain different results reported in various laboratories related to the U-251 cell line

  6. Cytotoxic activity of allogeneic natural killer cells on U251 glioma cells in vitro.

    Science.gov (United States)

    Guo, Meng; Wu, Tingting; Wan, Lixin

    2016-07-01

    The present study aimed to observe the cytotoxic activity of allogeneic natural killer (NK) cells on U251 glioma cells and to investigate their mechanism of action to establish an effective treatment strategy for neuroglioma. Cell survival curves, colony formation assays and karyotype analysis were performed to investigate the characteristics of U251 glioma cells. The present study demonstrated that natural killer group 2, member D (NKG2D)‑major histocompatibility complex class I‑related chain A/B (MICA/B) interactions contributed to the cytotoxic effect of NK cells on K562 and U251 cells. In antibody‑blocking assays to inhibit NKG2D ligands, the cytotoxic activity was not completely attenuated, which suggested that other signaling pathways contribute to the cytotoxic activity of NK cells on tumor cells in addition to the NKG2D‑mediated activity. The present study identified that the expression levels of NKG2D ligands on the surface of target cells influenced the strength of the NK cell immune response. Furthermore, allogeneic NK cells were observed to kill glioma cells in vitro, and this anticancer activity is associated with the rate of NKG2D expression on the surface of glioma cells. PMID:27175912

  7. Role of Autophagy in Capsaicin-Induced Apoptosis in U251 Glioma Cells.

    Science.gov (United States)

    Liu, Ya-Ping; Dong, Fu-Xing; Chai, Xiang; Zhu, Shuang; Zhang, Bao-Le; Gao, Dian-Shuai

    2016-07-01

    In recent years, the role of capsaicin in cancer prevention and treatment has gained people's attention. However, the mechanism of anti-glioma cells by capsaicin has not been elucidated. Here, we discuss the mechanism of capsaicin in U251 cells. Cell viability was detected by MTT and extracellular LDH measurements, while immunofluorescence was performed to measure changes of LC3 in U251 cells. The expressions of LC3II, Puma-α, Beclin1, P62, Procaspase-3, and P53 were observed by immunoblotting. The cell viability decreased and the punctate patterns of LC3 in U251 cells were observed after Capsaicin treatment. Meanwhile, the expressions of Beclin1, P62, and Puma-α increased. After using 3-MA, the expressions of Beclin1 and Procaspase-3 were reduced while those of P53 and Puma-α increased. The expression of LC3II was increased after Pifithrin-α treatment. Therefore, we believed that capsaicin could induce apoptosis in U251 cells, and the inhibition of autophagy could contribute to apoptosis. PMID:26351174

  8. Radiosensitization and relative mechanisms of vanillin derivative BVAN08 on human glioma U-251 cells

    International Nuclear Information System (INIS)

    Objective: To provide more convincing evidences and experimental data for exploring vanillin derivative BVAN08, 6-bromine-5-hydroxy-4-methoxy-benzaldehyde, as a new anticancer drug, and to investigate the effect on the growth, radiosensitization of human glioma cell line U-251 and the relative mechanism. Methods: The effect of BVAN08 on cell proliferation of U-251 and radiosensitivity to 60Co γ-rays (irradiation dose rate 2.3 Gy/min) were analyzed with MTT and colony-forming ability assay. Change in cellular morphology was observed by using light microscope. Change in cell cycle and apoptosis was detected with flow cytometry. The autophagy was observed by using TEM (irradiation dose rate is transmission electron microscope). DNA-PKcs protein level was detected through Western blot analysis. Results: BVAN08 exhibited a dose- and time-dependent inhibition on the proliferation of U-251 cells during the concentration range of 10-100 mol/L (t=1.83-3.07, P50 at 48 h and 72 h after administration with BVAN08 were 55.3 and 52.7 mol/L, respectively. Obvious G2/M arrest was induced in U-251 cells after 4 h administration with BVAN08, and reached peck at 12 h. The G2/M population reached 63.3% in U-251 cells after 12 h administration of 60 μmol/L BVAN08 and kept increasing with the time, while both apoptosis and autophagic cell death were induced. The most effective radiosensitization time for BVAN08 treatment was 12 h before irradiation. The enhancement ratio of radiosensitivity was 3.14 for 20 μmol/L of BVAN08 12 h before 2 Gy irradiation. Conclusions: BVAN08 can induce apoptosis as radiosensitizing effect might be associated with the induction of G2/M arrest and inhibition of DNA-PKcs expression. BVAN08 seemed to be a promising radiosensitizing anticancer drug. (authors)

  9. Effect of combination of STAT3 RNAi and 60Co γ-irradiation on U251 cell proliferation

    International Nuclear Information System (INIS)

    Objective: To construct signal transduction and activators of transcription 3 (STAT3) small interference RNA (siRNA) expression vector and to study its effect on STAT3 expression and U251 cell line proliferation. Methods: STAT3 specific 19 bp oligonucleotides were designed and synthesized. These oligonucleotides were annealed to form the double strand DNA fragments and these fragments were cloned into Psilence2.1-U6-H1 vector. The recombinant of STAT3-siRNA expressing construction was confirmed by Hind III and BamH I double digestion and sequencing. The STAT3-siRNA was transfected into U251 cell. The inhibitory effect of STAT3-siRNA construction was tested by Western blot. Cellular proliferation activities were measured by tetrazolium bromide (MTT) colorimetry. Cloning efficiency and MTF were used to confirm the radiation dose. Results: STAT3-siRNA expression vector was successfully constructed, and it could effectively down-regulate the protein levels of STAT3 in transfected U251 cell line; and the radiation dose was confirmed to 2 Gy. U251 cells transfected with STAT3-siRNA expression vector showed lower cellular proliferation compared with non-transfected U251 cells (P60Co γ-irradiation showed lower cellular proliferation compared with non-irradiated U251 cells (P60Co γ irradiation can enhance the inhibitory efficiency. (authors)

  10. Study of apoptosis of glioma cells line U251 cells induced by sodium nitroprusside%硝普钠诱导胶质瘤细胞株U251细胞凋亡的研究

    Institute of Scientific and Technical Information of China (English)

    吴越; 徐国政; 杜浩; 吴长松; 黄河; 宋健

    2013-01-01

    Objective To investigate the effect of sodium nitroprusside(SNP) on glioma cell line U251 cells apoptosis and its mechanism.Methods U251 cells were cultured in the media containing SNP of the different concentrations.The rates of the inhibition of U251 cells growth induced by SNP were detected by MTT assay.Nitic oxide (NO) concentration in U251 cells was determined by Griess method.The rate of U251 cells apoptosis was detected by flow cytometry.The expression of Bcl-2 and caspase-3 were detected by western blot in U251 cells before and after the treatment with SNP.Results The significantly inhibitory effects of the different concentration SNP on U251 cells were observed (P<0.01) and they were SNP dose-dependent.The NO concentration rose with the increase in SNP concentration.There was significantly positive correlation between the inhibitory rate and NO concentration (P<0.01).The apoptotic rates of U251 cells in 0.5 mmol/L,1.0 mmol/L and 20 mmol/L SNP groups were 15.25%,20.56% and 40.73% respectively and they were significantly higher than that (5.04%) in the control group.The apoptotic effects of SNP on U251 cells were SNP dose-dependent (P<0.01).The expression level of Bcl-2 was significantly lower and the expression level of caspase-3 was significantly higher in all the experiment groups than those in the control group (P<0.05).The levels of Bcl-2 expression were negatively related and the levels of caspase-3 expression were positively related to SNP concentration (P<0.05).Conclusions SNP can inhibit the growth and induce apoptosis of U251 cells.The effect of SNP on of U251 cells growth may be related to NO released by SNP and the apoptotic effect of SNP on U251 cells may be related to the SNP-induced down-regulation of Bcl-2 and up-regulation of caspase-3 in of U251 cells.%目的 探讨一氧化氮(NO)供体药物硝普钠(SNP)对胶质瘤细胞株U251细胞凋亡诱导效应及其机制.方法 以0.2、0.5、1.5和2.0 mmol/L浓度SNP作用于U

  11. siRNA epidermal growth factor receptor silencing in U251 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Chunsheng Kang; Zhiyong Zhang; Zhifan Jia; Qiang Huang; Guangxiu Wang; Mingzhe Qiu; Peiyu Pu

    2008-01-01

    BACKGROUND: Dicer, a large multidomain ribonuclease, is responsible for processing double-stranded RNAs (dsRNAs) to 20-bp-long small interfering RNAs (siRNAs), which act as effectors during RNA interference (RNAi). OBJECTIVE: To observe the efficacy of siRNA cocktails generated by recombinant human Dicer on the down-regulation of epidermal growth factor receptor (EGFR) expression in human glioma cells. DESIGN, TIME AND SETTING: The following in vitro experiment was performed at the Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute. MATERIALS: Mini-RNA isolation kit, human placenta complimentary DNA (cDNA) was produced by Tiangen Biotech (Beijing, China), human glioblastoma U251-MG cells were produced by the Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences. METHODS: A PCR product from the human EGFR, which corresponded to the tyrosine kinase domain of the 3'-end fragment, was used as the T7-promotor for in vitro transcription, siRNA cocktails were generated by in vitro dicing of double stranded RNA. A total of 500, 250 and 125 μg siRNA cocktails were transiently transfected into U251 glioma cells through the use of the GeneSilencer. MAIN OUTCOME MEASURE: Expression of EGFR was detected by real-time PCR. RESULTS: The total PCR product of the human EGFR, corresponding to the tyrosine kinase domain, is approximately 680 bp in length. The PCR transcriptants included GCC leader sequences and a T7 promoter sequence, with a fragment of EGFR cDNA at the center. The T7 promoter was prepared for in vitro transcription of dsRNA. After dicing for 24 hours, the 21-nt siRNA cocktails were verified by 4% agarose gel. The difference between threshold cycle of a sample assay and threshold cycle of the corresponding endogenous reference (△ Ct) among parental U251 cells and cells transfected with different doses of siRNA cocktails were determined to be 3.06, 7.35, and 10

  12. Complex based on Isthmin and RGD motif against glioma U251 cells%基于Isthmin和RGD基序的复合物对胶质瘤U251的治疗作用

    Institute of Scientific and Technical Information of China (English)

    陈宏颉; 曹磊; 王守森; 郑兆聪; 王如密; 汪君

    2011-01-01

    Objective To study the effect of complex based on Isthmin and RGD motif against glioma U251 cells.Methods The complex based on Isthmin and RGD motif was prepared,and the glioma U251 cell xenografts were established to observe the antitumor and antiangiogenesis effects of the complex in vivo and in vivo.Results The complex could induce U251 cell apoptosis and attack tumor endothelium cells,which inhibited the growth of glioma U251 cells and improved the lifespan of tumor bearing mice.Conclusion The complex based on Isthmin and RGD motif could dually target tumor and endothelium cells,which provided a promising strategy for glioma gene therapy.%目的 探讨基于Isthmin和BGD基序的复合物对胶质瘤U251的治疗效应.方法 构建Isthmin和RGD基序的复合物,并建立胶质瘤U251移植瘤模型,体内外观察其对U251细胞和血管内皮细胞的影响.结果 该复合物能有效诱导U251细胞的凋亡,抑制肿瘤血管的生成,从而抑制肿瘤的生长和延长荷瘤小鼠的平均生存率.结论 该复合物能同时靶向肿瘤和血管内皮细胞,为胶质瘤的基因治疗提供了较理想的策略.

  13. 125I uptake in U251 glioma cell co-transfected with the human sodium/iodide symporter and the human thyroperoxidase

    International Nuclear Information System (INIS)

    Objective: To investigate the iodide uptake by U251 glioma cell lines which were transferred with both human sodium/iodide symporter (hNIS) and human thyroperoxidase (hTPO) genes. Methods: Recombinant adenosine virus AdTPO was constructed through cloning, recombination, packaging and amplifying. The viral titers were calculated after purification. The protein expression of AdTPO was tested by Western-Blotting and the recombinant plasmids PcDNA3. 1/hNIS were constructed. After hNIS gene was transfected into human glioma cell lines U251 through liposome, the cell lines with stable hNIS expression (hNIS-U251) selected by G418 antibiotics were defined as hNIS-U251 group. Then, hTPO was transduced into hNIS-U251 with adenosine virus (AdTPO-hNIS-U251 group). U251 cells with no plasmid were used as the control group (U251). Cultured cells from each group were studied for 125I uptake as well as 125I efflux rate. Student-Newman-Keuls in multiple range test was used. Results: AdTPO-hNIS-U251 with stable expression was successfully established by transfecting hNIS and hTPO genes into human glioma cell lines. The 125I uptake by AdTPO-hNIS-U251, hNIS-U251 and U251 cell lines was (74 647.53±3605.88), (55 769.96±4353.26) and (507.67±57.69) counts/min, respectively (F = 836. 17, P125I efflux rate was prolonged in AdTPO-hNIS-U251 group and its effective half time was 13 min. Conclusion: Enhanced 125I uptake by the human glioma cell lines can be achieved with combined transfection of hNIS and hTPO genes. (authors)

  14. The study on the mechanism of enhanced radio-sensitivity of glioma cell U251 by thalidomide

    International Nuclear Information System (INIS)

    In order to investigate the inhibition of DNA synthesis and the mechanism of thalidomide enhanced radio-sensitivity on glioma U251 cells, survival rate of the cells was assessed by MTT assay; and 3H-TdR incorporation assay was used to investigate the inhibition of DNA synthesis by thalidomide alone and combined with X-rays; VEGF mRNA expressions were evaluated using RT-PCR assay. Protein expression (VEGF) was detected by Western blot analysis. Thalidomide inhibited DNA synthesis depending on the concentration of thalidomide and radiation dose. Thalidomide markedly down-regulated VEGF mRNA combined with X-rays in which a synergistic action appeared. Low dose X-rays can induce VEGF protein expression in 24 h. Thalidomide was a low toxicity to U251 cells. Thalidomide inhibited DNA synthesis of U251 cells. (authors)

  15. Transient axonal glycoprotein-1 induces apoptosis-related gene expression without triggering apoptosis in U251 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Haigang Chang; Xiaodan Jiang; Shanshan Song; Zhongcan Chen; Yaxiao Wang; Lujun Yang; Mouxuan Du; Yiquan Ke; Ruxiang Xu; Baozhe Jin

    2014-01-01

    Previous studies show that transient axonal glycoprotein-1, a ligand of amyloid precursor pro-tein, increases the secretion of amyloid precursor protein intracellular domain and is involved in apoptosis in Alzheimer’s disease. In this study, we examined the effects of transient axonal glyco-protein-1 on U251 glioma cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that transient axonal glycoprotein-1 did not inhibit the proliferation of U251 cells, but promoted cell viability. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that transient axonal glycoprotein-1 did not induce U251 cell apoptosis. Real-time PCR revealed that transient axonal glycoprotein-1 substantially upregulated levels of amyloid precursor protein intracellular C-terminal domain, and p53 and epidermal growth factor recep-tor mRNA expression. Thus, transient axonal glycoprotein-1 increased apoptosis-related gene expression in U251 cells without inducing apoptosis. Instead, transient axonal glycoprotein-1 promoted the proliferation of these glioma cells.

  16. Adenovirus-mediated transfer of p53 augments hyperthermia-induced apoptosis in U251 glioma cells

    International Nuclear Information System (INIS)

    Purpose: Hyperthermia kills glioma cells by inducing apoptosis and is thereby an effective therapeutic modality for the treatment of malignant gliomas. However, cells harboring mutated p53 are refractory to hyperthermia-induced apoptosis. In this study, we assessed whether or not adenovirus (Adv)-mediated transduction of p53 overrides this resistant mechanism. Methods and Materials: We transduced the p53 wild-type tumor suppressor gene into U251 glioma cells harboring mutated p53 using Adv vectors in combination with hyperthermia (43, 44.5 deg. C), and evaluated the degree of cell death and apoptosis. Results: The percentage of cells that had died, as measured by trypan blue staining, among U251 cells infected with the Adv for p53 (Adv-p53) and treated with hyperthermia, was significantly higher than the percentage of cells that had died among U251 cells infected with Adv-p53 and not treated with hyperthermia, or those infected with the control Adv for dE (Adv-dE) and treated with hyperthermia. The degree of apoptosis, measured at 24 h after treatment, in hyperthermia-treated U251 cells infected with Adv-p53 (43 deg. C, 73%; 44.5 deg. C, 92%) was much higher than that infected with Adv-p53 (41%), or that infected with control Adv-dE and treated with hyperthermia (43 deg. C, 1.3%; 44.5 deg. C, 19%). Treatment with combined hyperthermia and Adv-p53 infection induced cleavage of caspase-3 in U251 cells. Conclusion: These results indicate that Adv-mediated transduction of p53 would render glioma cells highly sensitive to hyperthermia

  17. Mechanism of thalidomide to enhance cytotoxicity of temozolomide in U251-MG glioma cells in vitro

    Institute of Scientific and Technical Information of China (English)

    GAO Song; YANG Xue-jun; ZHANG Wen-gao; JI Yan-wei; PAN Qiang

    2009-01-01

    Background Glioma is the most common primary brain tumor with poor prognosis. Temozolomide has been used with thalidomide to treat gliomas. We investigated the synergistic mechanism of these two drugs in vitro.Methods Human malignant glioma cells U251-MG were cultured and assigned to four groups with different treatments for 3 days: temozolomide group (100 pmol/L), thalidomide group (100 pg/L), temozolomide (100 IJmol/L) plus thalidomide group (100 pg/L) and control group. MTT assay was applied to evaluate the cell viability. Cell cycle was analyzed by flow cytometry. The ultra-structural features of autophagosomes were observed with electron microscope. Acridine orange and monodansylcadavedne were adopted to label autophagosomes and flow cytometry was applied for quantification of autophagosomes. The expression of autophagy-associated protein was detected by Western blotting.Results Proliferation of tumor cell was obviously suppressed by temozolomide with thalidomide treatment than by either drug used alone (P=-0.000 for each day). The combination treatment induced cell cycle arrest at G0/G1 phase.Typical autophagic ultra-structural character was found after the combined treatment. Thalidomide promoted the autophagy induced by temozolomide. The autophagy-associated proteins - microtubule associated protein 1 light chain 3 (MAPILC3) and Beclinl were more significantly up-regulated by the combined treatment than temozolomide used alone (MAP1LC3, P=-0.000; Beclinl, P=-0.004). The expression level of phosphatase and tensin homolog deleted on chromosome ten (PTEN), which promoted autophagy by suppressing PI3K/Akt/mTOR signaling pathway, was elevated by thalidomide (thalidomide group: P=-0.000; combined group: P=0.002).Conclusions Thalidomide enhances the cytotoxicity of temozolomide by promoting the autophagy induced by temozolomide. Contributing to the up-regulation of PTEN by thalidomide, the expression of autophagy associated protein-MAP1LC3 and Beclinl was enhanced

  18. Adenovirus-mediated delivery of bFGF small interfering RNA increases levels of connexin 43 in the glioma cell line, U251

    Directory of Open Access Journals (Sweden)

    Liu Hongsheng

    2010-01-01

    Full Text Available Abstract Background bFGF is an important growth factor for glioma cell proliferation and invasion, while connexin 43 is implicated in the suppression of glioma growth. Correspondingly, gliomas have been shown to have reduced, or compromised, connexin 43 expression. Methods In this study, a bFGF-targeted siRNA was delivered to the glioma cell line, U251, using adenovirus (Ad-bFGF-siRNA and the expression of connexin 43 and its phosphorylation state were evaluated. U251 cells were infected with Ad-bFGF-siRNA (100, 50, or 25 MOI, and infection with adenovirus expressing green fluorescent protein (Ad-GFP at 100 MOI served as a control. Western blotting and immunofluorescence were used to detect the expression levels, phosphorylation, and localization of connexin 43 in U251 cells infected, and not infected, with Ad-bFGF-siRNA. Results Significantly higher levels of connexin 43 were detected in U251 cells infected with Ad-bFGF-siRNA at 100 and 50 MOI than in cells infected with Ad-GFP, and the same amount of connexin 43 was detected in Ad-GFP-infected and uninfected U251 cells. Connexin 43 phosphorylation did not differ between Ad-bFGF-siRNA-infected and uninfected U251 cells. However, the ratio of phosphorylated to unphosphorylated connexin 43 in Ad-bFGF-siRNA cells was lower, and connexin 43 was predominantly localized to the cytoplasm. Using a scrape loading dye transfer assay, more Lucifer Yellow was transferred to neighboring cells in the Ad-bFGF-siRNA treated group than in the control group. Conclusion To our knowledge, this is the first description of a role for connexin 43 in the inhibition of U251 growth using Ad-bFGF-siRNA.

  19. The effect of combination of ErbB2 RNAi and 60Co γ-irradiation on U251 cell apoptosis

    International Nuclear Information System (INIS)

    To construct erythroblastic leukemia viral oncogene homolog 2 (ErbB2) small interference RNA (siRNA) expression vector and to study its effect on U251 cell line proliferation and apoptosis combining with 60Co γ-irradiation. ErbB2 specific 19bp oligonucleotides were designed and synthesized. These oligonucleotides were annealed to form the double strand DNA fragments, which was cloned into pSilence2.1-U6-H1 vector. The recombinant pSilence2.1-ErbB2 expression construct was confirmed by Hind III and BamH I double digestion and sequencing. The pSilence 2.1-ErbB2 was transfected into U251 cell. Cellular proliferation activities were assayed by tetrazolium bromide (MTT) colorimetry. The apoptosis of transfected U251 cell was examined with Hoechst 33258 staining and Annexin-V kit. Psilence 2.1-ErbB2 expression vector was successfully constructed and it can effectively inhibit pro- liferation(p60Co γ-irradiation, the effect of inhibiting proliferation was more significant compared with non-irradiated U251 cells(p60Co γ-irradiation can enhance the inhibitory efficiency in U251 cell line. (authors)

  20. Localization of phosphorylated TrkA in carrier vesicles involved in its nuclear translocation in U251 cell line

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A number of transmembrane receptors are targeted to the nucleus and convincingly localized therein. However, what remains a conundrum is how these cell-surface receptors end up in the nucleus. In this study, we reported that the transmembrane receptor phosphorylated TrkA was located in a series of carrier vesicles, including ring-like vesicles near the plasma membrane, large core vesicles and small dense core vesicles around the nuclei, as well as in the nucleus in human glioma cell line U251 using immunocytochemistry and immunofluorescence staining. Meanwhile, we also showed that small dense core vesicles budded from large core vesicles, and interacted with the nuclear envelope. Accordingly, our results suggested that such a series of membrane compartments might be involved in the pathway of nuclear translocation of the transmembrane receptor TrkA.

  1. Localization of phosphorylated TrkA in carrier vesicles involved in its nuclear translocation in U251 cell line

    Institute of Scientific and Technical Information of China (English)

    GONG AiHua; ZHANG ZhiJian; XIAO DeSheng; YANG Yong; WANG YongZhong; CHEN YongChang

    2007-01-01

    A number of transmembrane receptors are targeted to the nucleus and convincingly localized therein.However, what remains a conundrum is how these cell-surface receptors end up in the nucleus. In this study, we reported that the transmembrane receptor phosphorylated TrkA was located in a series of carrier vesicles, including ring-like vesicles near the plasma membrane, large core vesicles and small dense core vesicles around the nuclei, as well as in the nucleus in human glioma cell line U251 using immunocytochemistry and immunofluorescence staining. Meanwhile, we also showed that small dense core vesicles budded from large core vesicles, and interacted with the nuclear envelope. Accordingly,our results suggested that such a series of membrane compartments might be involved in the pathway of nuclear translocation of the transmembrane receptor TrkA.

  2. 美洲商陆抗病毒蛋白对人神经胶质瘤细胞U251细胞增殖和凋亡的影响%Effects of recombinant pokeweed antiviral proteins from Phytolacca amercana on the proliferation and apoptosis of Human Gliomaous Cells U251

    Institute of Scientific and Technical Information of China (English)

    向莉; 李书剑; 张杰文

    2011-01-01

    目的:观察美洲商陆抗病毒蛋白(PAP)对入神经胶质瘤细胞U251细胞增殖和凋亡的影响.方法:采用MTT法检测0、20、40、60、80和100 mg/L PAP处理48 h以及40 mg/L PAP处理24、36、48和72 h对神经胶质瘤细胞U251细胞生长的影响;40 mg/L PAP处理U251细胞36 h后,采用荧光染色技术检测细胞凋亡,采用流式细胞仪检测U251细胞周期分布的影响;采用Northern blot和Western blot检测40 mg /L PAP处理24、48、72和96 h对U251细胞周期调控蛋白FasL和Fas的影响.结果:0、20、40、60、80和100 mg/L PAP处理48 h,U251细胞的增殖抑制率间的差异有统计学意义(F =284.560,P=0.007),40 mg/L PAP处理24、36、48和72 h,U251细胞的增殖抑制率间的差异有统计学意义(F=280.250,P=0.045).PAP促进U251细胞凋亡(t=106.350,P=0.007),PAP改变细胞周期分布,使G0+ G1期细胞比例增高,S期比例降低.PAP还可上调FasL蛋白表达,下调Fas蛋白表达.结论:PAP可改变细胞周期分布,影响细胞周期调控蛋白表达,并可诱导U251细胞凋亡,从而抑制细胞增殖.%Aim; To study the effects of pokeweed antiviral protein (PAP) on cell proliferation and apoptosis on U251 cells and to elucidate its molecular mechanism. Methods:The proportion of the periodic tumor cells were altered by 0,20, 40, 60,80, 100 mg/L PAP treated 48 h using MTT and Sub-G, curves were displayed at 40 mg/L PAP treated 36 h by flow cytometry analysis. With fluorescence staining assay to detect the U2S1 apoptosis. The mRNAs and protein expression of the FasL and Fas treated at 40 mg/L PAP was examined by Northern blot and Western blot. Results: PAP significantly suppressed U251 cell proliferation by 0,20,40,60,80,100 mg/L PAP treated 48 h(f = 284. 560,P = 0.007) or40ng/LPAP treated 24,36,48,72 h ( F = 28. 250,P =0. 045). The proportion of the periodic tumor cells were altered by PAP. PAP decreased the proportion of cells in S phase and increased the proportion of cells in Go/G, and G2/M

  3. In vitro study on siRNA integrin α_vβ_3 gene expression inhibiting glioma U251 cells proliferation%siRNA干扰整合素α_vβ_3表达抑制脑胶质瘤细胞U251增殖的实验研究

    Institute of Scientific and Technical Information of China (English)

    赵天书; 王策; 王雪峰; 董白晶; 孙庆喜; 张尧; 李利; 刘晓谦

    2010-01-01

    目的 探索特异性siRNA靶向干扰恶性胶质瘤U251细胞中INTα_vβ_3表达后对细胞生长的作用.方法 将INTα_vβ_3特异性siRNA经脂质体(LipofectamineTM~(2000))转染U251细胞.RT-PCR、免疫细胞化学和Western blot法检测INTα_vβ_3蛋白表达.MTT检测干扰后细胞增殖变化.结果 INTα_vβ_3特异siRNA对U251细胞增殖有明显抑制作用.siRNA组、脂质体组与对照组各时间点的结果 差异有统计学意义.免疫细胞化学对照组和脂质体组均见INTα_vβ_3呈绿色表达,siRNA组表达降低.Western blot法和RT-PCR结果 证实转染特异siRNA后的细胞在蛋白及mRNA水平均能抑制INTα_vβ_3的表达.结论 特异性siRNA可干扰INTα_vβ_3在脑胶质瘤U251细胞中的表达并抑制细胞增殖.%Objective Explore the specificity of siRNA interference targeting malignant glioma U251 cells, INTα_vβ_3 expression of cell growth after the role. Method U251 cells were transfected with INT α_vβ_3 specific siRNA by lipofectamine(LipefectamineTM~(2000)). RT-PCR, immune ceils staining and Western blot were used to determine the expression of INTα_vβ_3. Cell proliferation after the detection of changes in interference was tested by MTT. Results INTα_vβ_3 specific siRNA shown to inhibit U251 cell proliferation. There were statistical significance between siRNA group, liposome group and the control group at different time points. Green INTα_vβ_3 expression was found in control group and lipesome groups, and reduced in siRNA group. Western blotting and RT-PCR results shown that the expression of integrin could be inhibited by α_vβ_3 transfection in the protein and mRNA level Conclusions Integrin-specific siRNA INTα_vβ_3 can inhibit the U251 glioma cell proliferation.

  4. 慢病毒介导的 RWDD3沉默对人胶质瘤 U251细胞增殖和侵袭的影响%Effects of lentivirus-mediated RWDD3 silencing on proliferation and inva-sion of human glioma U251 cells

    Institute of Scientific and Technical Information of China (English)

    范阳华; 祝新根; 吕世刚; 吴淼经; 柴毅; 叶敏华; 肖兵; 吴雷

    2015-01-01

    AIM:To investigate the effect of RWDD3 gene silencing on the biological characteristics of human glioma U251 cells.METHODS: A lentiviral vector expressing RWDD3 shRNA was constructed and transfeeted into the U251 cells.The expression of RWDD3 at mRNA and protein levels was detected by real-time PCR and Western blot , re-spectively .The cell activity was determined by MTT assay .The colony formation ability was detected by the colony forma-tion assay .The cell proliferation ability was detected by BrdU incorporation assay .The cell invasion and migration were evaluated by Transwell assay .Flow cytometry was used to monitor the changes of cell cycle distribution and apoptosis .RE-SULTS:Recombinant lentivirus was successfully transfected into U 251 cells.Compared with the cells transfected with the scrambled shRNA and control cells, the cell activity, colony formation ability, and the invasive and migratory activities were inhibited, the cell cycle was arrested in G 0/G1 phase, and the apoptosis was increased in the U 251 cells transfected with RWDD3 shRNA ( P <0.05 ) .CONCLUSION: RWDD3 plays a vital role in proliferation and invasion of glioma cells.It may serve as a potential target of gene therapy for glioma .%目的:探讨沉默RWDD3表达对人胶质瘤U251细胞生物学特征的影响。方法:构建靶向RWDD3的shRNA重组慢病毒并转染U251细胞,通过real-time PCR和Western blot 在mRNA及蛋白水平鉴定转染结果。MTT法检测转染后细胞的细胞活力;平板克隆实验检测克隆形成能力;BrdU实验检测细胞增殖能力;Transwell 实验检测细胞迁移和侵袭能力的变化;流式细胞术检测细胞周期及细胞凋亡的改变。结果: real-time PCR和Western blot结果均表明成功建立稳定沉默RWDD3的U251细胞株。与空白对照组及阴性对照组比较,转染RWDD3-shR-NA组的细胞活力和克隆形成能力降低;侵袭及迁移能力均下降,穿膜细胞

  5. Mutp53 non-B DNA structure binding to intronic sequences modulates gene expression in U251 cells

    Czech Academy of Sciences Publication Activity Database

    Tichý, Vlastimil; Brázdová, Marie; Quante, T.; Togel, L.; Walter, K.; Loscher, C.; Navrátilová, Lucie; Lexa, M.; Deppert, W.; Tolstonog, G.V.

    Prague, 2009. s. 13. [Young Scientist Forum - FEBS: Labyrinth of cells and molecules. 02.07.2009-04.07.2009, Prague] R&D Projects: GA MŠk(CZ) 1K04119; GA MŠk(CZ) LC06035; GA ČR(CZ) GP204/06/P369; GA ČR(CZ) GA204/08/1560; GA AV ČR(CZ) IAA500040701 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : mutant p53 * gene regulation * glioblastoma cells Subject RIV: BO - Biophysics

  6. 美洲商陆抗病毒蛋白在毕赤酵母中的表达及其诱发人神经胶质瘤细胞U251凋亡的研究%Cloning and Expression of Pokeweed Antiviral Protein Gene from Phytolacca amercana in Pichia pastoris and the Study of Apoptosis of Human Neuroglioma Cells U251 Induced by Recombinant PAP

    Institute of Scientific and Technical Information of China (English)

    向莉; 胡亚梅; 张杰文

    2011-01-01

    Objective To clone the pokeweed anti-viral protein (PAP) gene, to express it in Pichia pas-troris, and to study the inhibitory effect of PAP on U251 in vitro. Methods The cDNA sequence encoding PAP was cloned by Real-time PCR from Phytolacca amercana. The recombinant PAP was subcloned into the expression vector pPICZaA and expressed in Pichia pastroris GSM 5 after methanol induction. SDS-PAGE analysis showed that the expressed PAP existed in the yeast culture supernatant. The drug cytotoxicity to U251 cells was assessed using MTT assay and the obvious apoptotic nuclei of the tumor cells detected using the method of single cell gel electrophoresis. Results The full-length PAP gene was cloned. The recombinant expression plasmid pPICZaA-PAP was constructed successfully. SDS-PAGE analysis showed that the relative molecular mass (M) of the recombinant protein was about 35 kDa. The degradation of the genome of the apoptotic cells induced by PAP was detected using the method of single cell gel electrophoresis. PAP possessed very high ability to inhibit the growth of U251. The anti-tumor activities (IC50) to U251 cells of PAP was 81. 0 pg/mL. Conclusion PAP could be a potent anti-tumor candidate for inhibiting the growth of U251 and inducing its apoptosis.%目的 研究美洲商陆抗病毒蛋白(pokeweed antiviral protein,PAP)基因的克隆表达,进而研究其诱发人神经胶质瘤细胞U251凋亡.方法 利用RT-PCR技术克隆PAP基因,构建PAP毕赤酵母表达质粒pPIC-ZaA-PAP并导入毕赤酵母Pichia pastoris CS115.SDS-PAGE检测PAP的分泌表达.采用镍离子亲合层析纯化PAP,并通过单细胞凝胶电泳和MTT检测其抑制人神经胶质瘤细胞U251的生长.结果 分泌表达的PAP融合蛋白分子量约为35/kD,纯化的PAP在体外能诱发人神经胶质瘤细胞U251凋亡.PAP对U251半数抑制浓度(IC50)为81.0μg/mL,通过单细胞凝胶电泳,能看到明显的慧星尾,表明PAP引起了神经胶质瘤细

  7. Mutp53 non-B DNA structure binding to intronic sequences modulates gene expression in U251 cells

    Czech Academy of Sciences Publication Activity Database

    Tichý, Vlastimil; Brázdová, Marie; Quante, T.; Togel, L.; Walter, K.; Loscher, C.; Navrátilová, Lucie; Lexa, M.; Deppert, W.; Tolstonog, G.V.

    Prague, 2009. s. 393. ISSN 1742-464X. [34th FEBS Congress: Life's Molecular Interactions. 04.07.2009-09.07.2009, Prague] R&D Projects: GA MŠk(CZ) 1K04119; GA MŠk(CZ) LC06035; GA ČR(CZ) GA204/08/1560; GA ČR(CZ) GP204/06/P369; GA AV ČR(CZ) IAA500040701 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : mutant p53 * gene regulation * glioblastoma cells Subject RIV: BO - Biophysics

  8. Increased radiosensitivity and radiothermosensitivity of human pancreatic MIA PaCa-2 and U251 glioblastoma cell lines treated with the novel Hsp90 inhibitor NVP-HSP990

    International Nuclear Information System (INIS)

    Heat shock Protein 90 (Hsp90) is a molecular chaperone that folds, stabilizes, and functionally regulates many cellular proteins involved in oncogenic signaling and in the regulation of radiosensitivity. It is upregulated in response to stress such a heat. Hyperthermia is a potent radiosensitizer, but induction of Hsp90 may potentially limit its efficacy. Our aim was to investigate whether the new Hsp90 inhibitor NVP-HSP990 increases radiosensitivity, thermosensitivity and radiothermosensitivity of human tumor cell lines. U251 glioblastoma and MIA PaCa-2 pancreatic carcinoma cells were used. To determine clonogenic survival, colony forming assays were performed. Cell viability and proliferation were assesed by Trypan blue staining. Cell cycle and apoptosis analyses were performed by flow cytometry. DAPI staining was used to detect mitotic catastrophe. NVP-HSP990 increased the thermosensitivity, radiosensitivity and radio-thermosensitivity of both cell lines in clonogenic assays. 72 hours after irradiation with 4 Gy, a significant reduction in cell number associated with considerable G2/M acumulation and mitotic catastrophe as well as cell death by apoptosis/necrosis was observed. Treatment with NVP-HSP990 strongly sensitized U251 and MIA PaCa-2 cells to hyperthermia and ionizing radiation or combination thereof through augmentation of G2/M arrest, mitotic catastrophe and associated apoptosis

  9. Research on biological functions of U251 astroglioma cells infected with human herpesvirus type 6(HHV-6)%人类疱疹病毒6型感染U251细胞及其生物学功能的研究

    Institute of Scientific and Technical Information of China (English)

    郭一迪; 姚堃; 周锋; 李凌云; 茌静; 刘根焰; 陈云

    2010-01-01

    目的:研究人类疱疹病毒6型(HHV-6)感染人星形胶质瘤细胞U251,及感染后对其生物学功能的影响.方法:HHV-6感染U251细胞建立HHV-6体外感染模型,倒置显微镜观察细胞病变.PCR法检测HHV-6 u22基因.间接免疫荧光(IFA)检测HHV-6即刻早期蛋白(IEI)和晚期蛋白(gB)的表达.MTT法检测U251感染HHV-6后细胞增殖的改变.流式细胞术(FCM)检测U251细胞周期改变.结果:在感染3天后U251出现典型细胞病变,细胞肿胀增大数倍,透亮,呈多形性.PCR检测到HHV-6u22基因.IFA检测到HHV-6 IE1蛋白和异B蛋白的表达.MTT法显示HHV-6能增强U251细胞的增殖能力.FCM检测表明,HHV-6感染后U251细胞周期发生改变,感染组和对照组相比,前者G1期的细胞减少,S期和G2期细胞增多.结论:HHV-6能感染U251细胞引起细胞病变.促进细胞的增殖.使细胞周期发生改变.本研究结果提示人类疱疹病毒6型可能参与人神经胶质瘤的发生、发展,对其机制尚不清楚.

  10. Binding of mutant p53 protein to non-B DNA structures in intronic and intergenic sequences modulates gene expression in U251 glioblastoma cells

    Czech Academy of Sciences Publication Activity Database

    Tichý, Vlastimil; Navrátilová, Lucie; Quante, T.; Togel, L.; Walter, K.; Lexa, M.; Tolstonog, G.V.; Deppert, W.; Paleček, Emil; Fojta, Miroslav; Brázdová, Marie

    Brno, 2009. s. 39-40. [2nd joint meeting on the role of p53 , MDM2, AGR2/3 and ubiquitin/chaperone system in tumour biology. 27.04.2009-29.04.2009, Brno] R&D Projects: GA ČR(CZ) GP204/06/P369; GA ČR(CZ) GA204/08/1560; GA MŠk(CZ) 1K04119; GA MŠk(CZ) LC06035; GA AV ČR(CZ) IAA500040701 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : mutant p53 * gene regulation * glioblastoma cells Subject RIV: BO - Biophysics

  11. Binding of mutant p53 protein to non-B DNA structures in intronic and intergenic sequences modulates gene expression in U251 glioblastoma cells

    Czech Academy of Sciences Publication Activity Database

    Tichý, Vlastimil; Navrátilová, Lucie; Quante, T.; Tögel, L.; Walter, K.; Lexa, M.; Tolstonog, G.V.; Deppert, W.; Paleček, Emil; Fojta, Miroslav; Brázdová, Marie

    Brno, 2009. s. 43-44. ISBN 978-80-210-4830-0. [Pracovní setkání biochemiků a molekulárních biologů /13./. 14.04.2009-15.04.2009, Brno] R&D Projects: GA MŠk(CZ) 1K04119; GA MŠk(CZ) LC06035; GA ČR(CZ) GP204/06/P369; GA ČR(CZ) GA204/08/1560; GA AV ČR(CZ) IAA500040701 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : mutant p53 * gene regulation * glioblastoma cells Subject RIV: BO - Biophysics

  12. Anti-glioma Effect and Mechanism of Alkali Hydrolysate of Total Saponins from Pulsatilla chinensis on Human Glioma U251 Cells%白头翁总皂苷碱水解产物的抗胶质瘤作用及机制研究

    Institute of Scientific and Technical Information of China (English)

    彭翠平; 许琼明; 张天; 李笑然; 杨世林; 周英; 刘艳丽

    2014-01-01

    To investigate antitumor effect and mechanism of alkali hydrolysate of total saponins from Pulsatilla chinensis on human glioma U251 cells. Methods MTT assay and colony formation test were used to examine the growth of human glioma cells and colony formation rate. Meanwhile, Giemsa staining was used to observe the morphology of tumor cells, flow cytometry was used to detect the apoptosis of tumor cells, Hoechst 33342 assay kits were adopted to observe the morphology of apoptotic cells, and the expression levels of Caspase-3 and Bcl-2 protein were evaluated by Western blot assay. Results Alkali hydrolysate of total saponins from Pulsatilla chinensis exhibited an inhibition effect on the proliferation and colony formation of U251 cells in dose-dependent manner. The alkali hydrolysate at the dosage of 6.25, 9.375, 12.5 μg·mL-1 could induce apoptosis of U251 cells, and the apoptotic rates were(6.00±2.05)%, (46.19±0.24)% and(78.26±2.10)%, respectively. Western blotting results showed that the alkali hydrolysate could up-regulate the expression levels of Caspase-3 and Bcl-2. Conclusions Alkali hydrolysate of total saponins from Pulsatilla chinensis exerts satisfactory anti-glioma action, and the mechanism might be related with the regulation of Bcl-2 and Caspase-3 protein expression.%目的:探讨白头翁总皂苷碱水解产物(PAHS)的抗胶质瘤作用及机制。方法采用MTT法、集落形成实验分别检测细胞存活率和集落形成率,同时采用 Giemsa 染色观察 PAHS 对肿瘤细胞形态学变化;采用hoechest33342染色观察人脑胶质母细胞瘤细胞株U251凋亡细胞形态变化;用流式细胞仪检测细胞的凋亡;用Western Blot法检测Bcl-2和Caspase-3蛋白的表达变化。结果 PAHS可以剂量依赖性的抑制U251细胞的增殖,抑制U251细胞集落的形成; PAHS(6.25,9.375,12.5μg·mL-1)可以诱导U251细胞凋亡,抑制率分别为(6.00±2.05)%、(46.19±0.24)%、(78.26±2.10

  13. Mind Bomb-2 promotes U251 proliferation by regulating nuclear factor kappa B signaling pathways%Mind Bomb-2基因通过调控核因子κB信号通路促进 U251增殖的实验研究

    Institute of Scientific and Technical Information of China (English)

    张伯阳; 许重远

    2016-01-01

    Objective To study effects of Mind Bomb -2 ( MIB2 ) gene expression ’ s promotion on proliferation of U 251.Methods The expression of MIB2 protein in astrocyte and US251 was detected by Western blot.U251, U251 transduction with FLAG ( A 20 base coded marker protein ) plasmid and U251transfection with MIB2 -FLAG plasmid were divided into blank group , control group and test group correspondingly.The relative content of MIB 2 in three groups was detected by Western blotting .The MIB2 -FLAG plasmid was transfected to U251 cells.The real -time quantitative PCR was used to detect MIB 2 mRNA expression in U251.The expression of MIB2, I kappa B ( IkB) and nuclear factor kappa B ( NF-κB) was detected by Western blotting after transfection.MTT experiment was used to detect the proliferation of U251 cells after transfection.Results The relative content of MIB 2 in U251 cells increased by ( 17.04 ±2.91 ) compared with astrocytes.MIB2 mRNA in test group increased by ( 20.02 ±2.11 ) compared with control group.The expression of MIB 2 and NF-κB proteins in test group increased by ( 6.33 ±0.32 ) and ( 5.21 ±0.21 ) compared with control group, the expression of IkB in test group was attenuated by (0.43 ±0.04 ) compared with control group .Com-pared with both blank and control group , test group grew significantly ( P<0.001 ) .Conclusion MIB2 promoted U251 proliferation by regulating NF-κB signaling pathways.%目的:研究Mind Bomb-2(MIB2)的表达对脑胶质瘤细胞U251增殖的影响。方法用蛋白质印迹法检测正常星形胶质细胞和胶质瘤细胞U251和MIB2蛋白的表达情况。将U251细胞、转染FLAG (一种20个碱基编码的标记蛋白)质粒的U251细胞和转染MIB2-FLAG质粒的U251细胞对应分为空白组、对照组和实验组。以蛋白质印迹法检测上述3组中MIB2的相对含量;采用实时定量PCR技术检测MIB2 mRNA在3组U251细胞中的表达情况;以蛋白质印迹法检测转染后U251细胞中MIB2

  14. Doxycyclin ameliorates a starvation-induced germline tumor in C. elegans daf-18/PTEN mutant background.

    Science.gov (United States)

    Wolf, Tim; Qi, Wenjing; Schindler, Verena; Runkel, Eva Diana; Baumeister, Ralf

    2014-08-01

    Managing available resources is a key necessity of each organism to cope with the environment. The nematode C. elegans responds to nutritional deprivation or harsh environmental conditions with a multitude of developmental adaptations, among them a starvation-induced quiescence at early larval development (L1). daf-18, the C. elegans homolog of the human tumor suppressor gene PTEN, is essential for the maintenance of survival and germline stem cell arrest during the L1 diapause. We show here that daf-18 mutants, independently to their failure to maintain G2 arrest of the primordial germ cells, develop a gonad phenotype after refeeding. This highly penetrant gonadal phenotype is further enhanced by a mutation in shc-1, encoding a protein homologous to the human adaptor ShcA. Features of this phenotype are a tumor-like phenotype encompassing hyper-proliferation of germ cell nuclei and disruption/invasion of the basement membrane surrounding the gonad. The penetrance of this phenotype is reduced by decreasing starvation temperature. In addition, it is also ameliorated in a dose-dependent way by exposure to the antibiotic doxycyclin either during starvation or during subsequent refeeding. Since, in eukaryotic cells, doxycyclin specifically blocks mitochondrial translation, our results suggest that daf-18 and shc-1;daf-18 mutants fail to adapt mitochondrial activity to reduced nutritional availability during early larval developing. PMID:24746511

  15. The influence of the combined treatment with Vadimezan (ASA404 and taxol on the growth of U251 glioblastoma xenografts

    Directory of Open Access Journals (Sweden)

    Milanović Dušan

    2012-06-01

    Full Text Available Abstract Background One of the most important biological characteristics of Glioblastoma multiforme (GBM is high vascular density. Vadimezan (ASA404, DMXAA belongs to the class of small molecule vascular disrupting agents (VDA that cause disruption of established tumor vessels and subsequent tumor hemorrhagic necrosis. Its selective antivascular effect is mediated by intratumoral induction of several cytokines including tumor necrosis factor-α (TNF-α, granulocyte-colony-stimulating factor (G-CSF, interleukin 6 (IL-6 and macrophage inflammatory protein 1α (MIP-1α. Preclinical studies have demonstrated that ASA404 acts synergistically with taxanes. In this study, we investigated if treatment of mice bearing U251 human glioblastoma xenografts with ASA404 and taxol may be synergistic. Therapy response was evaluated by measuring changes in tumor size and metabolic activity using 18F-FDG PET (Fluorodeoxyglucose - positron emision tomography imaging. Methods U251 cells were inoculated s.c. in the right hind limb of NMRI-Foxn1nu athymic female nude mice. Animals were randomly assigned into 4 groups (7–9 animals/group for treatment: control, taxol, ASA404, and ASA404 plus taxol. The animals received either a single dose of taxol (10 mg/kg, ASA404 (27.5 mg/kg, or taxol (10 mg/kg plus ASA404 (27.5 mg/kg administered i.p.; ASA404 was administred 24 h after the treatment with taxol. 4 and 24 h after treatment with ASA404 (28 and 48 h hours after treatment with taxol 18 F-FDG PET scans were performed. Results The treatment with taxol did not affect the tumor growth in comparison to untreated controls. The treatment of animals with single dose ASA404 alone or in combination with taxol caused a significant delay in tumor growth. The combined treatment did not decrease the growth of the xenografts significantly more than ASA404 alone, but early changes in tumor 18 F-FDG uptake preceded subsequent growth inhibition. The tumor weights

  16. The influence of the combined treatment with Vadimezan (ASA404) and taxol on the growth of U251 glioblastoma xenografts

    International Nuclear Information System (INIS)

    One of the most important biological characteristics of Glioblastoma multiforme (GBM) is high vascular density. Vadimezan (ASA404, DMXAA) belongs to the class of small molecule vascular disrupting agents (VDA) that cause disruption of established tumor vessels and subsequent tumor hemorrhagic necrosis. Its selective antivascular effect is mediated by intratumoral induction of several cytokines including tumor necrosis factor-α (TNF-α), granulocyte-colony-stimulating factor (G-CSF), interleukin 6 (IL-6) and macrophage inflammatory protein 1α (MIP-1α). Preclinical studies have demonstrated that ASA404 acts synergistically with taxanes. In this study, we investigated if treatment of mice bearing U251 human glioblastoma xenografts with ASA404 and taxol may be synergistic. Therapy response was evaluated by measuring changes in tumor size and metabolic activity using 18F-FDG PET (Fluorodeoxyglucose - positron emision tomography) imaging. U251 cells were inoculated s.c. in the right hind limb of NMRI-Foxn1nu athymic female nude mice. Animals were randomly assigned into 4 groups (7–9 animals/group) for treatment: control, taxol, ASA404, and ASA404 plus taxol. The animals received either a single dose of taxol (10 mg/kg), ASA404 (27.5 mg/kg), or taxol (10 mg/kg) plus ASA404 (27.5 mg/kg) administered i.p.; ASA404 was administred 24 h after the treatment with taxol. 4 and 24 h after treatment with ASA404 (28 and 48 h hours after treatment with taxol) 18 F-FDG PET scans were performed. The treatment with taxol did not affect the tumor growth in comparison to untreated controls. The treatment of animals with single dose ASA404 alone or in combination with taxol caused a significant delay in tumor growth. The combined treatment did not decrease the growth of the xenografts significantly more than ASA404 alone, but early changes in tumor 18 F-FDG uptake preceded subsequent growth inhibition. The tumor weights, which were determined at the end of treatment, were lower in

  17. Cell-type specific roles for PTEN in establishing a functional retinal architecture.

    Directory of Open Access Journals (Sweden)

    Robert Cantrup

    Full Text Available BACKGROUND: The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. METHODOLOGY/PRINCIPAL FINDINGS: In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. CONCLUSIONS/SIGNIFICANCE: We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected

  18. Fast Neutron Induced Autophagy Leads To Necrosis In Glioblastoma Multiforme Cells

    International Nuclear Information System (INIS)

    Fast neutrons are highly effective at killing glioblastoma multiforme (GBM), U87 and U251 cells. The mode of cell death was investigated using transmission electron microscopy (TEM) to identify the fraction of irradiated U87 or U251 cells having morphological features of autophagy and/or necrosis. U87 or U251 cells were irradiated with 2 Gy fast neturons or 10 Gy γ rays. A majority of U87 and U251 cells exhibit features of cell death with autophagy after irradiation with either 10 Gy γ rays or 2 Gy fast neutrons. Very few γ irradiated cells had features of necrosis (U87 or U251 cell samples processed for TEM 1 day after 10 Gy γ irradiation). In contrast, a significant increase was observed in necrotic U87 and U251 cells irradiated with fast neutrons. These results show a greater percentage of cells exhibit morphological evidence of necrosis induced by a lower dose of fast neutron irradiation compared to γ irradiation. Also, the evidence of necrosis in fast neutron irradiated U87 and U251 cells occurs in a background of autophagy. Since autophagy is observed before necrosis, autophagy may play a role in signaling programmed necrosis in fast neutron irradiated U87 and U251 cells.

  19. Fast Neutron Induced Autophagy Leads To Necrosis In Glioblastoma Multiforme Cells

    Science.gov (United States)

    Yasui, Linda; Gladden, Samantha; Andorf, Christine; Kroc, Thomas

    2011-06-01

    Fast neutrons are highly effective at killing glioblastoma multiforme (GBM), U87 and U251 cells. The mode of cell death was investigated using transmission electron microscopy (TEM) to identify the fraction of irradiated U87 or U251 cells having morphological features of autophagy and/or necrosis. U87 or U251 cells were irradiated with 2 Gy fast neturons or 10 Gy γ rays. A majority of U87 and U251 cells exhibit features of cell death with autophagy after irradiation with either 10 Gy γ rays or 2 Gy fast neutrons. Very few γ irradiated cells had features of necrosis (U87 or U251 cell samples processed for TEM 1 day after 10 Gy γ irradiation). In contrast, a significant increase was observed in necrotic U87 and U251 cells irradiated with fast neutrons. These results show a greater percentage of cells exhibit morphological evidence of necrosis induced by a lower dose of fast neutron irradiation compared to γ irradiation. Also, the evidence of necrosis in fast neutron irradiated U87 and U251 cells occurs in a background of autophagy. Since autophagy is observed before necrosis, autophagy may play a role in signaling programmed necrosis in fast neutron irradiated U87 and U251 cells.

  20. HSV-1感染对神经胶质瘤细胞NGF和BDNF表达变化的研究%Study of NGF and BDNF expression in HSV-1 infected human glioma cells

    Institute of Scientific and Technical Information of China (English)

    侯云; 王斌; 李玲; 胡明; 辛晓妮; 钱冬萌; 闫志勇; 赵巍; 宋旭霞

    2011-01-01

    目的:探讨单纯疱疹病毒1型(HSV-1)感染时神经胶质细胞内源性神经生长因子(NGF)和脑源性神经生长因子(BDNF)的表达变化.方法:采用RT-PCR法检测HSV-1糖蛋白D(gD)基因扩增,RT-PCR法和Western blotting法检测正常培养和感染HSV-1的神经胶质瘤(U251)细胞的NGF和BDNF.结果:HSV-1可感染U251细胞;正常U251细胞可表达NGF和BDNF;HSV-1感染U251细胞后,NGF和BDNF在感染后第6小时达高峰,之后随感染时间延长逐渐降低.结论:HSV-1可诱导U251细胞中的NGF和BDNF表达异常.%Objective To investigate endogenic nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) expression in herpes simplex type-1-virus (HSV-1) -infected neuroglia cells. Methods U251 human glioma cells were cultured in RPMI-I640 medium and infected with HSV-1 in vitro to estahlish a cell model of viral infection. Establishment of HSV-1-infected U251 cells was identified by HSV-1 gD mRNA expression. NGF and BDNF expression was detected by RT-PCR and Western blotting , respectively, in normal U251 cells and HSV-1-infected U251 cells. Results HSV-1 could efficiently infect U251 cells. NGF and BDNF was identified to he expressed in U251. NGF and BDNF expression reached a maximum at 6 hours post HSV-1 infection, then NGF and BDNF expression decreased in time-dependent manner. Conclusions HSV-1 infection could dysregulate NGF and BDNF expression in the U251 cells.

  1. Phorbol 12-myristate 13-acetate induces protein kinase ceta-specific proliferative response in astrocytic tumor cells.

    Science.gov (United States)

    Hussaini, I M; Karns, L R; Vinton, G; Carpenter, J E; Redpath, G T; Sando, J J; VandenBerg, S R

    2000-07-21

    Protein kinase C (PKC) activation has been implicated in cellular proliferation in neoplastic astrocytes. The roles for specific PKC isozymes in regulating this glial response, however, are not well understood. The aim of this study was to characterize the expression of PKC isozymes and the role of PKC-eta expression in regulating cellular proliferation in two well characterized astrocytic tumor cell lines (U-1242 MG and U-251 MG) with different properties of growth in cell culture. Both cell lines expressed an array of conventional (alpha, betaI, betaII, and gamma) and novel (theta and epsilon) PKC isozymes that can be activated by phorbol myristate acetate (PMA). Another novel PKC isozyme, PKC-eta, was only expressed by U-251 MG cells. In contrast, PKC-delta was readily detected in U-1242 MG cells but was present only at low levels in U-251 MG cells. PMA (100 nm) treatment for 24 h increased cell proliferation by over 2-fold in the U-251 MG cells, whereas it decreased the mitogenic response in the U-1242 MG cells by over 90%. When PKC-eta was stably transfected into U-1242 MG cells, PMA increased cell proliferation by 2.2-fold, similar to the response of U-251 MG cells. The cell proliferation induced by PMA in both the U-251 MG and U-1242-PKC-eta cells was blocked by the PKC inhibitor bisindolylmaleimide (0.5 micrometer) and the MEK inhibitor, PD 98059 (50 micrometer). Transient transfection of wild type U-251 with PKC-eta antisense oligonucleotide (1 micrometer) also blocked the PMA-induced increase in [(3)H]thymidine incorporation. The data demonstrate that two glioblastoma lines, with functionally distinct proliferative responses to PMA, express different novel PKC isozymes and that the differential expression of PKC-eta plays a determining role in the different proliferative capacity. PMID:10806212

  2. Modulation of gene expression in U251 glioblastoma cells by binding of mutant p53 R273H to intronic and intergenic sequences

    Czech Academy of Sciences Publication Activity Database

    Brázdová, Marie; Quante, T.; Tögel, L.; Walter, K.; Loscher, Ch.; Tichý, Vlastimil; Činčárová, Lenka; Deppert, W.; Tolstonog, G.V.

    2009-01-01

    Roč. 37, č. 5 (2009), s. 1486-1500. ISSN 0305-1048 R&D Projects: GA ČR(CZ) GP204/06/P369; GA ČR(CZ) GA204/08/1560; GA MŠk(CZ) 1K04119 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : mutant p53 * cancer * gene expression Subject RIV: BO - Biophysics Impact factor: 7.479, year: 2009

  3. Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines In Vitro

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2014-01-01

    Full Text Available Human mesenchymal stem cells (MSCs have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs and umbilical cord-derived mesenchymal stem cells (UC-MSCs. We found (1 MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2 MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3 real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4 furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy.

  4. Inhibition of Glioblastoma Cell Growth In Vitro and In Vivo by Brucine, a Component of Chinese Medicine.

    Science.gov (United States)

    Ruijun, Wang; Wenbin, Meng; Yumin, Wang; Ruijian, Zhang; Puweizhong, Huang; Yulin, Li

    2014-01-01

    Glioblastoma multiforme (GBM) is one of the most common glial cell tumors and has drawn more and more attention in the clinic in recent years. Brucine has been reported to significantly suppress gastric cancer, lung cancer, and prostate cancer growth in vivo by inducing cell apoptosis. Here, the effects of brucine on U251 human glioma cell growth were investigated in vitro by cell proliferation assay, FACs, and qPCR in a xenograft tumor model. Treatment with brucine reduced the expression of BCL-2 and cyclooxygenase-2 (COX-2), while upregulated BAX expression in U251 human glioma cells resulted in reduced glioma cell survival rate and inhibited the growth of xenograft tumors. We concluded that brucine has a suppressive effect on U251 human glioma cells in vitro and in vivo, which could help in understanding the role of brucine in glioma cells and guiding drug use in the clinic. PMID:26629939

  5. HCMV Infection Depress NGF Expression in Human Glioma Cells

    Institute of Scientific and Technical Information of China (English)

    Hai-tao WANG; Bin WANG; Zhi-jun LIU; Zhi-qiang BAI; Ling LI; Dong-meng QIAN; Zhi-yong YAN; Xu-xia SONG

    2009-01-01

    Human cytomegalovirus (HCMV) is the most common cause of congenital infection, resulting in birth defects such as microcephaly. In this study, RT-PCR and Western Blotting were performed to quantify the regulation of endogenic nerve growth factor expression in neuroglia cells by HCMV infection. The results showed that basal, endogenous NGF expression in U251 was unchanged during early HCMV infection. NGF expression is strongly down-regulated during the latent phase of infection. These results suggest that HCMV can depress the NGF expression in U251 cells.

  6. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Si-Jian [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Wu, Yue-Bing [Department of Internal Medicine Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079 (China); Cai, Shang [Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 21500 (China); Pan, Yi-Xin; Liu, Wei [Department of Stereotactic and Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Bian, Liu-Guan [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China); Sun, Bomin [Department of Stereotactic and Functional Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Sun, Qing-Fang, E-mail: sunqingfang11@163.com [Department of Neurosurgery, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025 (China)

    2015-03-13

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitro proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation.

  7. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression

    International Nuclear Information System (INIS)

    Tumor cell invasion and proliferation remain the overwhelming causes of death for malignant glioma patients. To establish effective therapeutic methods, new targets implied in these processes have to be identified. Tetraspanin 8 (Tspn8) forms complexes with a large variety of trans-membrane and/or cytosolic proteins to regulate several important cellular functions. In the current study, we found that Tspn8 was over-expressed in multiple clinical malignant glioma tissues, and its expression level correlated with the grade of tumors. Tspn8 expression in malignant glioma cells (U251MG and U87MG lines) is important for cell proliferation and migration. siRNA-mediated knockdown of Tspn8 markedly reduced in vitro proliferation and migration of U251MG and U87MG cells. Meanwhile, Tspn8 silencing also increased the sensitivity of temozolomide (TMZ), and significantly increased U251MG or U87MG cell death and apoptosis by TMZ were achieved with Tspn8 knockdown. We observed that Tspn8 formed a complex with activated focal adhesion kinase (FAK) in both human malignant glioma tissues and in above glioma cells. This complexation appeared required for FAK activation, since Tspn8 knockdown inhibited FAK activation in U251MG and U87MG cells. These results provide evidence that Tspn8 contributes to the pathogenesis of glioblastoma probably by promoting proliferation, migration and TMZ-resistance of glioma cells. Therefore, targeting Tspn8 may provide a potential therapeutic intervention for malignant glioma. - Highlights: • Tspn8 is over-expressed in multiple clinical malignant glioma tissues. • Tspn8 expression is correlated with the grade of malignant gliomas. • Tspn8 knockdown suppresses U251MG/U87MG proliferation and in vitro migration. • Tspn8 knockdown significantly increases TMZ sensitivity in U251MG/U87MG cells. • Tspn8 forms a complex with FAK, required for FAK activation

  8. Optimization, Application, and Interpretation of Lactate Dehydrogenase Measurements in Microwell Determination of Cell Number and Toxicity

    NARCIS (Netherlands)

    Wolterbeek, H.T.; Van der Meer, A.J.G.M.

    2005-01-01

    The lactate dehydrogenase (LDH) assay was addressed for its sensitivity, disturbances by foaming, and cell number and size. Cells were from a U-251 MG grade IV human glioblastoma brain tumor cell line used in 100-µl well volumes. Cells were counted by microscopy and Coulter counting; assays were LDH

  9. Mechanism of heavy ion radiation-induced cancer cell death

    International Nuclear Information System (INIS)

    We previously reported that the carbon beam triggers apoptosis in radio-resistant cancer cell lines via extracellular signal-regulated kinase (ERK)- and mitochondrial Bcl-2 family protein-dependant mechanism. Here, we further examined the further apoptosis-inducing mechanism of carbon beam in two glioma cell lines (T98G, U251). ERK1/2 knockdown experiments revealed that ERK regulates this apoptosis-inducing machinery upstream of mitochondria. Furthermore, we also found that both T98G cell and U251 cell stably expressing dominant-negative ERK2 suppress cell death induced by carbon beam irradiation. We also found proapoptotic PUMA and antiapoptotic Bcl-2 dynamically chang their expression levels corresponding to ERK activation after CB irradiation in U251 cell, and knockdown of PUMA decreased CB-induced U251 cell death. These data suggest that kinase action of ERK is essential for CB-induced glioma cell death, and proapoptotic PUMA and antiapoptotic Bcl-2 might be downstream targets of ERK in CB-induced glioma cell death mechanism. (author)

  10. The Effect of Chemoradiotherapy with SRC Tyrosine Kinase Inhibitor, PP2 and Temozolomide on Malignant Glioma Cells In Vitro and In Vivo

    Science.gov (United States)

    Eom, Keun-Yong; Cho, Bong Jun; Choi, Eun Jung; Kim, Jin-Ho; Chie, Eui Kyu; Wu, Hong-Gyun; Kim, Il Han; Paek, Sun Ha; Kim, Jae-Sung; Kim, In Ah

    2016-01-01

    Purpose We investigated the effect of chemoradiotherapy with PP2 and temozolomide (TMZ) on malignant glioma cells using clonogenic assays and in vivo brain tumor model. Materials and Methods The effect of PP2 on radiosensitivity of U251 and T98G cells was investigated using clonogenic assays. The expression of E-cadherin, matrix metalloproteinases 2 (MMP2), Ephrin type-A receptor 2 (EphA2), and vascular endothelial growth factor (VEGF) was measured by Western blotting and an accumulation of γH2AX foci 6 hours after radiotherapy was measured after PP2 treatment. The effect of PP2 on migration, invasion, and vasculogenic mimicry formation (VMF) of U251 cells was evaluated. In an orthotopical brain tumor model with U251 cells, PP2 was injected intraperitoneally with or without oral TMZ before, during and after whole brain radiotherapy. Bioluminescence images were taken to visualize in vivo tumors and immunohistochemical staining of VEGF, CD31, EphA2, and hypoxia-inducible factor 1a was performed. Results PP2 increased radiosensitivity of U251 and T98G cells without decreasing survival of normal human astrocytes. Chemoradiotherapy with PP2 and TMZ resulted in increased accumulation of γH2AX foci. PP2 induced overexpression of E-cadherin and suppression of MMP2, VEGF, and EphA2. PP2 also compromised invasion, migration, and VMF of U251 cells. In brain tumors, chemoradiotherapy with PP2 and TMZ decreased tumor volume best, but not statistically significantly compared with chemoradiotherapy with TMZ. The expression of VEGF and CD31 was suppressed in PP2-treated tumors. Conclusion PP2 enhances radiosensitivity of malignant glioma cells and suppresses invasion and migration of U251 cells. Chemoradiotherapy with PP2 and TMZ resulted in non-significant tumor volume decrease. PMID:26044161

  11. Silencing of Long Non-Coding RNA MALAT1 Promotes Apoptosis of Glioma Cells.

    Science.gov (United States)

    Xiang, Jianping; Guo, Shifeng; Jiang, Shuling; Xu, Yuelong; Li, Jiwei; Li, Li; Xiang, Jinyu

    2016-05-01

    The metastasis-associated lung adenocarcinoma transcription 1 (MALAT1) is a highly conserved long non-coding RNA (lncRNA) gene. However, little is known about the pathological role of lncRNA MALAT1 in glioma. In the present study, we explored the expression level of lncRNA MALAT1 in primary glioma tissues as well as in U87 and U251 glioma cell lines. Using qRT-PCR, we found that the expression of lncRNA MALAT1 was significantly increased in glioma tissues compared with that of paracancerous tissues. Meanwhile, the expression of MALAT1 was highly expressed in U98 and U251 cells. In order to explore the function of MALAT1, the expression of MALAT1 was greatly reduced in U87 and U251 cells transfected with siRNA specifically targeting MALAT1. Consequently, cell viability of U87 and U251 cells were drastically decreased after the knockdown of MALAT1. Concomitantly, the apoptosis rate of the two cell lines was dramatically increased. Furthermore, the expression levels of some tumor markers were reduced after the knockdown of MALAT1, such as CCND1 and MYC. In summary, the current study indicated a promoting role of MALAT1 in the development of glioma cell. PMID:27134488

  12. Semaphorin3B modulates radiosensitivity of human glioma U-87MG cells

    International Nuclear Information System (INIS)

    This study was to determine the Semaphorin3B (SEMA3B) role in glioma cells responding to irradiation. Two glioma cell lines, which were used here was wild-type p53 (U-87MG), and the other was harboring mutated p53 (U-251). The SEMA3B mRNA could be detected in the two cell lines. The expression level of SEMA3B mRNA was higher in U-87MG cells than in U-251 cells, and increased with time in U-87MG cells after irradiation. Knockdown of SEMA3B expression by shRNA decreased the radiosensitivity of U-87MG cells, this may be associated with the increased G2 accumulation after irradiation. In addition, G2 accumulation after irradiation was enhanced in SEMA3B low-expressing U-87MG cells. These results showed that the SEMA3B was implicated in glioma cells responding to irradiation. (authors)

  13. Bioactive form of resveratrol in glioblastoma cells and its safety for normal brain cells

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Shu

    2013-05-01

    Full Text Available ABSTRACTBackground: Resveratrol, a plant polyphenol existing in grapes and many other natural foods, possesses a wide range of biological activities including cancer prevention. It has been recognized that resveratrol is intracellularly biotransformed to different metabolites, but no direct evidence has been available to ascertain its bioactive form because of the difficulty to maintain resveratrol unmetabolized in vivo or in vitro. It would be therefore worthwhile to elucidate the potential therapeutic implications of resveratrol metabolism using a reliable resveratrol-sensitive cancer cells.Objective: To identify the real biological form of trans-resveratrol and to evaluate the safety of the effective anticancer dose of resveratrol for the normal brain cells.Methods: The samples were prepared from the condition media and cell lysates of human glioblastoma U251 cells, and were purified by solid phase extraction (SPE. The samples were subjected to high performance liquid chromatography (HPLC and liquid chromatography/tandem mass spectrometry (LC/MS analysis. According to the metabolite(s, trans-resveratrol was biotransformed in vitro by the method described elsewhere, and the resulting solution was used to treat U251 cells. Meanwhile, the responses of U251 and primarily cultured rat normal brain cells (glial cells and neurons to 100μM trans-resveratrol were evaluated by multiple experimental methods.Results: The results revealed that resveratrol monosulfate was the major metabolite in U251 cells. About half fraction of resveratrol monosulfate was prepared in vitro and this trans-resveratrol and resveratrol monosulfate mixture showed little inhibitory effect on U251 cells. It is also found that rat primary brain cells (PBCs not only resist 100μM but also tolerate as high as 200μM resveratrol treatment.Conclusions: Our study thus demonstrated that trans-resveratrol was the bioactive form in glioblastoma cells and, therefore, the biotransforming

  14. Sorafenib induces growth arrest and apoptosis of human glioblastoma cells via dephosphorylation of STAT3

    OpenAIRE

    Yang, Fan; Brown, Christine; Buettner, Ralf; HEDVAT, MICHAEL; Starr, Renate; Scuto, Anna; Schroeder, Anne; Jensen, Michael; Jove, Richard

    2010-01-01

    Glioblastoma is the most common type of primary brain tumor and is rapidly progressive with few treatment options. Here, we report that sorafenib (≤ 10 μM) inhibited cell proliferation and induced apoptosis in two established cell lines (U87, U251) and two primary cultures (PBT015, PBT022) from human glioblastomas. Effects of sorafenib on these tumor cells were associated with inhibiting phosphorylated STAT3 (Tyr705). Expression of a constitutively activated STAT3 mutant partially blocked the...

  15. XuefuZhuyu Tang exerts antitumor effects by inhibiting glioma cell metastasis and invasion via regulating tumor microenvironment

    Science.gov (United States)

    Liu, Jianmin; Zhang, Ji; Huang, Liangwen; Zhu, Xuhong; Chen, Wei; Hu, Peng

    2016-01-01

    Background XuefuZhuyu Tang (XZT) is a traditional Chinese herb used for destagnation and is currently being used for oncotherapy. This study was intended to assess the effects of XZT on glioma along with its anticancer mechanism. Materials and methods U251 cells were divided into five groups: CNC (cells were cultured with normal saline), TSC (cells were treated with TaohongSiwu Tang [TST]), XSC (cells were treated with XZT), THC (cells were treated with homogenate of TST), and XHC (cells were treated with homogenate of XZT). The mRNA and protein expression of VEGF/VEGFR, CXCR4/CXCL12, and TIMP1/MMP9/MMP2 were measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. Moreover, MTT assay, transwell assay, wound-healing assay, and flow cytometry were conducted to assess the cell viability, cell migration and invasion, cell motility, and cell apoptosis of U251 cells, respectively. In vivo, three mice models (group CNM, gavaging saline; group TSM, gavaging TST; group XZM, gavaging XZT) were constructed after establishing xenograft mice models. Then, models were examined using hematoxylin and eosin staining, RT-PCR, and Western blotting. Results In vitro, XZT significantly upregulated TIMP1 expression and downregulated the expression of VEGF, VEGFR, CXCR4, CXCL12, MMP9, and MMP2 in U251 cells (all Pherb for curing glioma. PMID:27382298

  16. Inhibition of STAT3 Reduces Astrocytoma Cell Invasion and Constitutive Activation of STAT3 Predicts Poor Prognosis in Human Astrocytoma

    OpenAIRE

    Qinchuan Liang; Chenkai Ma; Yang Zhao; Guodong Gao; Jie Ma

    2013-01-01

    Astrocytoma cells characteristically possess high invasion potentials. Recent studies have revealed that knockdown of signal transducers and activators of transcription 3 (STAT3) expression by RNAi induces apoptosis in astrocytoma cell. Nevertheless, the distinct roles of STAT3 in astrocytoma's invasion and recurrence have not been elucidated. In this study, we silenced STAT3 using Small interfering RNAs in two human glioblastoma multiforme (GBM) cell lines (U251 and U87), and investigated th...

  17. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions

    Directory of Open Access Journals (Sweden)

    Paschke Reinhard

    2011-09-01

    Full Text Available Abstract Background Betulinic acid (BA is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas, the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. Methods In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays and protein expression was examined with Western blot analyses. Results Under normoxic conditions, a half maximal inhibitory concentration (IC50 of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively and U343MG cells (p Conclusion Our results suggest that BA is capable of improving the effects of tumor therapy in human malignant glioma cells, particularly under hypoxic conditions. Further investigations are necessary to characterize its potential as a radiosensitizer.

  18. Exposure to 3G mobile phone signals does not affect the biological features of brain tumor cells

    OpenAIRE

    Liu, Yu-Xiao; Li, Guo-Qing; Fu, Xiang-ping; Xue, Jing-hui; Ji, Shou-ping; Zhang, Zhi-Wen; Zhang, Yi; Li, An-Ming

    2015-01-01

    Background The increase in mobile phone use has generated concerns about possible risks to human health, especially the development of brain tumors. Whether tumor patients should continue to use mobile telephones has remained unclear because of a paucity of information. Herein, we investigated whether electromagnetic fields from mobile phones could alter the biological features of human tumor cells and act as a tumor-promoting agent. Methods Human glioblastoma cell lines, U251-MG and U87-MG, ...

  19. In vitro cytotoxicity of transparent yellow iron oxide nanoparticles on human glioma cells.

    Science.gov (United States)

    Wang, Yun; Zhu, Mo-Tao; Wang, Bing; Wang, Meng; Wang, Hua-Jian; OuYang, Hong; Feng, Wei-Yue

    2010-12-01

    With rapid development of nanotechnology, concerns about the possible adverse health effects on human beings by using nanomaterials have been raised. Transparent yellow iron oxide (alpha-FeOOH) nanoparticles have been widely used in paints, plastic, rubber, building materials, papermaking, food products and pharmaceutical industry, thus the potential health implications by the exposure should be considered. The purpose of this study is to assess the cytotoxicity of transparent yellow iron oxide nanoparticles on U251 human glioma cells. The alpha-FeOOH nanoparticles are in clubbed shapes with 9 nm in diameter and 43 nm long. The specific surface area is 115.3 m2/g. After physicochemical characterization of the nanoparticles, U251 cells were exposed to a-FeOOH at the doses of 0, 3.75, 15, 60 and 120 microg/mL. The results showed that the alpha-FeOOH nanoparticles reduced the cell viability and induced necrosis and apoptosis in U251 cells. In addition, nanoparticle exposure significantly increased the levels of superoxide anion and nitric oxide in a dose-dependent fashion in the cells. Our results suggest that exposure to alpha-FeOOH nanoparticles induce significant free radical formation and cytotoxic effects. The large surface area that induced high surface reactivity may play an important role in the cytotoxic effect of alpha-FeOOH nanoparticles. PMID:21121365

  20. Effect of microenviroment hypoxia on glioma cells radiosensitivity through cancer stem cell pathway

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of microenviroment hypoxia on glioma cells radiosensitivity through cancer stem pathway, and to explore the related mechanism. Methods: Glioma cell lines SHG44 and U251 were cultured in normoxia (20% O2) or continuous hypoxia (1% O2) for 12 and 24 h. The fraction of glioma cells with positive expression of CD133 was assayed by flow cytometry. The radiosensitivity of glioma cells was determined by clonogenic cell assay. Western blotting was used to investigate the expressions of HIF-1 α and its downstream gene Notch 1. Results: The fraction of glioma cells with positive expression of CD133 was higher after hypoxic culture for 12 and 24 h than that of the corresponding cells cultured in normoxia. Compared to the cells cultured in normoxia, SF2 (survival fraction at 2 Gy) were enhanced significantly in SHG44 and U251 cells cultured in hypoxia for 12 and 24 h. The OER (oxygen-enhancement ratio) of SHG44 cells in hypoxia for 12 and 24 h was 1.54 and 1.38, respectively. The OER of U251 cells was 1.44 and 1.23, respectively. The radiosensitivity of these two cell line was decreased in hypoxia. The protein expressions of HIF-1 α and Notch 1 genes were elevated more significantly for cells cultured in hypoxia for 12 and 24 h than for those in normoxia. Conclusions: Microenviroment hypoxia could increase the radioresistance of glioma cells through enrichment of cancer stem cells, and HIF-1 α-Notch 1 signal pathway may play an important role in this process. (authors)

  1. Enhanced cytotoxic effect of radiation and temozolomide in malignant glioma cells: targeting PI3K-AKT-mTOR signaling, HSP90 and histone deacetylases

    International Nuclear Information System (INIS)

    Despite aggressive treatment with radiation therapy and concurrent adjuvant temozolomide (TMZ), glioblastoma multiform (GBM) still has a dismal prognosis. We aimed to identify strategies to improve the therapeutic outcome of combined radiotherapy and TMZ in GBM by targeting pro-survival signaling from the epidermal growth factor receptor (EGFR). Glioma cell lines U251, T98G were used. Colony formation, DNA damage repair, mode of cell death, invasion, migration and vasculogenic mimicry as well as protein expression were determined. U251 cells showing a low level of methyl guanine transferase (MGMT) were highly responsive to the radiosensitizing effect of TMZ compared to T98G cells having a high level of MGMT. Treatment with a dual inhibitor of Class I PI3K/mTOR, PI103; a HSP90 inhibitor, 17-DMAG; or a HDAC inhibitor, LBH589, further increased the cytotoxic effect of radiation therapy plus TMZ in U251 cells than in T98G cells. However, treatment with a mTOR inhibitor, rapamycin, did not discernibly potentiate the radiosensitizing effect of TMZ in either cell line. The mechanism of enhanced radiosensitizing effects of TMZ was multifactorial, involving impaired DNA damage repair, induction of autophagy or apoptosis, and reversion of EMT (epithelial-mesenchymal transition). Our results suggest possible strategies for counteracting the pro-survival signaling from EGFR to improve the therapeutic outcome of combined radiotherapy and TMZ for high-grade gliomas

  2. In vitro effect of p21WAF-1/CIP1 gene on growth of human glioma cells mediated by EGFR targeted non-viral vector GE7 system

    Institute of Scientific and Technical Information of China (English)

    陈永新; 许秀兰; 张光霁; 王韦; 金海英; 卢亦成; 朱诚; 顾健人

    2003-01-01

    Objective: To construct the EGFR targeted non-viral vector GE7 system and explore the in vitro effect of p21WAF-1/CIP1 gene on growth of human glioma cells mediated by the GE7 system. Methods: The EGFR targeted non-viral vector GE7 gene delivery system was constructed. The malignant human glioma cell line U251MG was transfected in vitro with β-galactosidase gene(reporter gene) and p21WAF-1/CIP1 gene (therapeutic gene) using the GE7 system. By means of X-gal staining, MTS and FACS, the transfection efficiency of exogenous gene and apoptosis rate of tumor cells were examined. The expression of p21WAF-1/CIP1 gene in transfected U251MG cell was examined by immunohistochemistry staining. Results: The highest transfer rate of exogenous gene was 70%. After transfection with p21WAF-1/CIP1 gene, the expression of WAF-1 increased remarkably and steadily; the growth of U251MG cells were inhibited evidently. FACS examination showed G1 arrest. The average apoptosis rate was 25.2%. Conclusion: GE7 system has the ability to transfer exogenous gene to targeted cells efficiently, and expression of p21WAF-1/CIP1 gene can induce apoptosis of glioma cell and inhibit its growth.

  3. Inhibitory effects of a polysaccharide extract from the Chaga medicinal mushroom, Inonotus obliquus (higher Basidiomycetes), on the proliferation of human neurogliocytoma cells.

    Science.gov (United States)

    Ning, Xianbin; Luo, Qi; Li, Chuang; Ding, Zhaoyi; Pang, Jinfeng; Zhao, Changfu

    2014-01-01

    This study aimed to investigate the inhibitory roles of a polysaccharide extract from Inonotus obliquus on U251 human neurogliocytoma cells cultured in vitro. After administering the polysaccharide extract from I. obliquus to U251 cells cultivated in vitro, methyl thiazolyl tetrazoliym assay was performed to measure the inhibitory effects of the extract on tumor cell proliferation. The expression of the apoptosis-related proteins Bcl-2 and caspase-3 were determined by Western blotting. Different concentrations of I. obliquus extract (25, 50, 100, 200, and 500 µg/mL) were added to U251 cells at 24, 48, and 72 hours. Methyl thiazolyl tetrazoliym assay showed that the inhibition ratio increased with increased extract concentration and prolonged treatment duration. The I. obliquus extract sharply decreased the expression of Bcl-2 but dramatically increased the expression of caspase-3. This function was gradually enhanced with increased drug concentration and prolonged treatment duration. The I. obliquus extract can inhibit the proliferation of tumor cells. This inhibition function is closely related to the downregulation of Bcl-2 and the upregulation of caspase-3. PMID:24940902

  4. Preliminary mechanistic research on STAT3 and ErbB2 RNAi as targets for radiation sensitization in astrocytoma cell

    International Nuclear Information System (INIS)

    Constitutively activated STAT3 and ErbB2 are involved in pathogenesis of many tumors including astrocytoma. The effects of plasmid vector mediated STAT3 and ErbB2 RNAi on growth of U251 astrocytoma cell line were examined. Increased apoptosis and decreased proliferation were induced by STAT3 and ErbB2 RNAi in U251 cell. STAT3 and ErbB2 RNAi showed synergetic effect. Combination of RNAi and irradiation showed synergetic effect. However, STAT3 and ErbB2 RNAi showed no obvious effects on NA cell. At the same time, an U251 xenograft model was used to determine the in vivo effect of combined therapy of RNAi and irradiation. The result suggested that both STAT3 RNAi and ErbB2 RNAi could inhibit the tumor growth. The effect was more pronounced when the two genes were both down regulated. Comparing STAT3 RNAi or ErbB2 RNAi alone respectively, STAT3 RNAi plus 2 Gy radiotherapy or ErbB2 RNAi plus 2 Gy radiotherapy further inhibited the tumor growth. Among the different treatment, combining STAT3 and ErbB2 RNAi with 2 Gy radiotherapy lead to the most significant inhibition of tumor growth. (author)

  5. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    International Nuclear Information System (INIS)

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin

  6. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yichen, E-mail: jeff200064017@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Wang, Ping, E-mail: pingwang8000@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Zhao, Wei, E-mail: 15669746@qq.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Yao, Yilong, E-mail: yaoyilong_322@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Liu, Xiaobai, E-mail: paganizonda1991@qq.com [The 96th Class, 7-year Program, China Medical University, Shenyang, Liaoning Province 110001 (China); Ma, Jun, E-mail: majun_724@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Xue, Yixue, E-mail: xueyixue888@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Liu, Yunhui, E-mail: liuyh@sj-hospital.org [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China)

    2014-05-15

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin.

  7. Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance.

    Science.gov (United States)

    Motaln, Helena; Koren, Ana; Gruden, Kristina; Ramšak, Živa; Schichor, Christian; Lah, Tamara T

    2015-12-01

    Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level, to define the mechanisms of their observed mutually affected genomic stability, proliferation, invasion and resistance to temozolomide. This is the first direct demonstration of the neural and mesenchymal molecular fingerprints of U87 and U373 cells, respectively. U87-cell conditioned medium lowered the genomic stability of U373 (U251) cells, without affecting cell proliferation. In contrast, upon exposure of U87 cells to U373 (U251) conditioned medium, U87 cells showed increased genomic stability, decreased proliferation rates and increased invasion, due to a plethora of produced cytokines identified in the co-culture media. This cross talk altered the expression 264 genes in U87 cells that are associated with proliferation, inflammation, migration, and adhesion, and 221 genes in U373 cells that are associated with apoptosis, the cell cycle, cell differentiation and migration. Indirect and direct co-culturing of U87 and U373 cells showed mutually opposite effects on temozolomide resistance. In conclusion, definition of transcriptional alterations of distinct glioblastoma cells upon co-culturing provides better understanding of the mechanisms of glioblastoma heterogeneity, which will provide the basis for more informed glioma treatment in the future. PMID:26517510

  8. The radiosensitivity of glioblastoma cell lines after hypoxia-induced Bax expression

    International Nuclear Information System (INIS)

    Full text: Radiation therapy is the most effective treatment after surgery for patients with malignant gliomas. However, the hypoxic cells exclusive to tumor tissue have proven resistant to both radiotherapy and many forms of chemotherapy. In order to specifically target these hypoxic cells, U-251 MG and U-87 MG human glioblastoma cells were stably transfected with constructs containing the suicide gene Bax under the regulation of nine copies of hypoxia-responsive elements (HREs). During hypoxia, the transcriptional complex hypoxia-inducible-factor 1 (HIF-1) binds to HRE and facilitates the transcription of downstream genes. Previously, hypoxia-induced Bax expression in transfected U-251 and U-87 clone cells has been shown to increase cell killing. The benefits of the gene therapy could be further expanded if Bax also acted to increase the sensitivity of these clone cells to radiation. To determine whether this was the case, parent and clone cells were irradiated with graded doses of X-rays under hypoxic conditions. These cells were then left hypoxic for varying durations of time, after which they were incubated for two weeks under aerated conditions to assay for clonogenic cell survival. After less than an hour under hypoxia, both U-251 and U-87 clone cells appeared significantly more sensitive to radiation than their respective parent cells. However, after longer amounts of time under anoxia, higher surviving fractions were found in each clone that were consistent with those of their respective parent cell line, showing that potentially lethal damage repair (PLDR) had occurred in the clone cells. Parent cells did not exhibit PLDR. Results are inconclusive at this point in time. Western blot analyses detailing the amount of Bax expression at each time point as well as further research exploring different durations of hypoxia will be necessary to reveal the nature of the correlation between Bax expression and radiosensitivity. Supported by NS-42927 and CA-85356

  9. Downregulation of Focal Adhesion Kinase (FAK) by cord blood stem cells inhibits angiogenesis in glioblastoma

    OpenAIRE

    Dasari, Venkata Ramesh; Kaur, Kiranpreet; Velpula, Kiran Kumar; Dinh, Dzung H.; Andrew J Tsung; Mohanam, Sanjeeva; Rao, Jasti S.

    2010-01-01

    Angiogenesis involves the formation of new blood vessels by rerouting or remodeling existing ones and is believed to be the primary method of vessel formation in gliomas. To study the mechanisms by which angiogenesis of glioma cells can be inhibited by human umbilical cord blood stem cells (hUCBSC), we studied two glioma cell lines (SNB19, U251) and a glioma xenograft cell line (5310) alone and in co-culture with hUCBSC. Conditioned media from co-cultures of glioma cells with hUCBSC showed re...

  10. Capacity of ultraviolet-induced DNA repair in human glioma cells

    International Nuclear Information System (INIS)

    A DNA repair abnormality is likely related to an increased incidence of neoplasms in several autosomal recessive diseases such as xeroderma pigmentosum, Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. In human glioma cells, however, there are only a few reports on DNA repair. In this study, an ultraviolet (UV)-induced DNA repair was examined systematically in many human glioma cells. Two human malignant glioma cell lines (MMG-851, U-251-MG) and 7 human glioma cell strains (4, benign; 3, malignant) of short term culture, in which glial fibrillary acidic protein (GFAP) staining were positive, were used. To investigate the capacity of DNA repair, UV sensitivity was determined by colony formation; excision repair by autoradiography and Cytosine Arabinoside (Ara-C) assay; and post-replication repair by the joining rate of newly synthesized DNA. As a result, the colony-forming abilities of malignant glioma cell lines were lower than those of normal human fibroblasts, but no difference was found between two malignant glioma cell lines. The excision repair of the malignant group (2 cell lines and 3 cell strains) was apparently lower than that of the benign group (4 cell strains). In two malignant glioma cell lines, the excision repair of MMG-851 was lower than that of U-251-MG, and the post-replication repair of MMG-851 was higher than that of U-251-MG. These results were considered to correspond well with colony-forming ability. The results indicate that there are some differences in each human malignant glioma cell in its UV-induced DNA repair mechanism, and that the excision repair of the malignant glioma cells is apparently lower than that of the benign glioma cells. These findings may be useful for diagnosis and treatment. (author)

  11. Dual regulatory role for phosphatase and tensin homolog in specification of intestinal endocrine cell subtypes

    Institute of Scientific and Technical Information of China (English)

    Sébastien AB Roy; Marie-Josée Langlois; Julie C Carrier; Fran(c)ois Boudreau; Nathalie Rivard; Nathalie Perreault

    2012-01-01

    AIM:To investigate the impact of phosphatase and tensin homolog (Pten) in the specification of intestinal enteroendocrine subpopulations.METHODS:Using the Cre/IoxP system,a mouse with conditional intestinal epithelial Pten deficiency was generated.Pten mutant mice and controls were sacrificed and small intestines collected for immunofluorescence and quantitative real-time polymerase chain reaction.Blood was collected on 16 h fasted mice by cardiac puncture.Enzyme-linked immunosorbent assay was used to measure blood circulating ghrelin,somatostatin (SST) and glucose-dependent insulinotropic peptide (GIP) levels.RESULTS:Results show an unexpected dual regulatory role for epithelial Pten signalling in the specification/differentiation of enteroendocrine cell subpopulations in the small intestine.Our data indicate that Pten positively regulates chromogranin A (CgA) expressing subpopulations,including cells expressing secretin,ghrelin,gastrin and cholecystokinin (CCK).In contrast,Pten negatively regulates the enteroendocrine subtype specification of non-expressing CgA cells such as GIP and SST expressing cells.CONCLUSION:The present results demonstrate that Pten signalling favours the enteroendocrine progenitor to specify into cells expressing CgA including those producing CCK,gastrin and ghrelin.

  12. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions

    International Nuclear Information System (INIS)

    Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses. Under normoxic conditions, a half maximal inhibitory concentration (IC50) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions. Our results suggest that BA is capable of

  13. Wnt inhibitory factor-1 regulates glioblastoma cell cycle and proliferation.

    Science.gov (United States)

    Wu, Jun; Fang, Jiasheng; Yang, Zhuanyi; Chen, Fenghua; Liu, Jingfang; Wang, Yanjin

    2012-10-01

    Wnt proteins are powerful regulators of cell proliferation and differentiation, and activation of the Wnt signalling pathway is involved in the pathogenesis of several types of human tumours. Wnt inhibitory factor-1 (WIF-1) acts as a Wnt antagonist and tumour suppressor. Previous studies have shown that reducing expression of the WIF-1 gene aberrantly activates Wnt signalling and induces the development of certain types of cancers. In the present study, we examined the expression of WIF-1 in human primary glioblastoma multiforme (GBM) tumours. Studies using semiquantitative reverse transcription-polymerase chain reaction and immunohistochemical analysis revealed that WIF-1 expression is lower in human GBM than in normal brain tissue. To clarify the role of WIF-1, we transfected U251 human glioblastoma-derived cells, which do not express WIF-1, with the pcDNA3.1-WIF1 vector to restore WIF-1 expression. The results of cell proliferation, colony formation and apoptosis assays, as well as flow cytometry, indicate that exogenous WIF-1 has no effect on U251 cell apoptosis, but does arrest cells at the G(0)/G(1) phase and inhibit cell growth. Collectively, our data suggest that WIF-1 is a potent inhibitor of GBM growth. PMID:22901505

  14. Killing of Brain Tumor Cells by Hypoxia-Responsive Element Mediated Expression of BAX1

    Science.gov (United States)

    Ruan, Hangjun; Wang, Jingli; Hu, Lily; Lin, Ching-Shwun; Lamborn, Kathleen R; Deen, Dennis F

    1999-01-01

    Abstract The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE), which can be activated through hypoxia-inducible factor-1 (HIF-1). We transfected plasmids containing multiple copies of HRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HRE copy number, and the degree of hypoxia. PMID:10933058

  15. Killing of Brain Tumor Cells by Hypoxia-Responsive Element Mediated Expression of BAX

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    1999-11-01

    Full Text Available The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE, which can be activated through hypoxia-inducible factor-1 (HIF-1. We transfected plasmids containing multiple copies of HIRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HIRE copy number, and the degree of hypoxia.

  16. Autistic-Like Traits and Cerebellar Dysfunction in Purkinje Cell PTEN Knock-Out Mice.

    Science.gov (United States)

    Cupolillo, Dario; Hoxha, Eriola; Faralli, Alessio; De Luca, Annarita; Rossi, Ferdinando; Tempia, Filippo; Carulli, Daniela

    2016-05-01

    Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impaired social interaction, isolated areas of interest, and insistence on sameness. Mutations in Phosphatase and tensin homolog missing on chromosome 10 (PTEN) have been reported in individuals with ASDs. Recent evidence highlights a crucial role of the cerebellum in the etiopathogenesis of ASDs. In the present study we analyzed the specific contribution of cerebellar Purkinje cell (PC) PTEN loss to these disorders. Using the Cre-loxP recombination system, we generated conditional knockout mice in which PTEN inactivation was induced specifically in PCs. We investigated PC morphology and physiology as well as sociability, repetitive behavior, motor learning, and cognitive inflexibility of adult PC PTEN-mutant mice. Loss of PTEN in PCs results in autistic-like traits, including impaired sociability, repetitive behavior and deficits in motor learning. Mutant PCs appear hypertrophic and show structural abnormalities in dendrites and axons, decreased excitability, disrupted parallel fiber and climbing fiber synapses and late-onset cell death. Our results unveil new roles of PTEN in PC function and provide the first evidence of a link between the loss of PTEN in PCs and the genesis of ASD-like traits. PMID:26538449

  17. Omega-3 fatty acid supplementation in cancer therapy. Does eicosapentanoic acid influence the radiosensitivity of tumor cells?

    Energy Technology Data Exchange (ETDEWEB)

    Manda, Katrin; Kriesen, Stephan; Hildebrandt, Guido [Rostock Univ. (Germany). Dept. of Radiotherapy; Fietkau, Rainer; Klautke, Gunther [Univ. Hospital Erlangen, Erlangen (Germany). Dept. of Radiation Oncology

    2011-02-15

    Purpose: The aim of this study was to evaluate whether the omega-3 polyunsaturated fatty acid cis-5,8,11,14,17-eicosapentanoic acid (EPA) can enhance the radiosensitivity of different human tumor cell lines. Materials and Methods: Colon adenocarcinoma cells HT-29, and two glioblastoma multiforme tumor cells T98G and U251 were cultured under standard conditions. Cell growth was observed during administration with different concentrations of EPA, using it as the free fatty acid dissolved in ethanol or bound to bovine serum albumin. To investigate the influence of EPA (free and bound) on radiosensitivity, tumor cells were pretreated 30 minutes or 24 hours prior to irradiation with the fatty acid. Cell survival was measured by colony-forming assays. Results: When combined with irradiation, incubation with EPA was found to result in enhanced radiosensitivity with substantial variation: while there was strong radiosensitization for HT-29 and U251 cells, almost no effect for T98G cells was observed. A marked radiosensitization was clearly dependent on the treatment schedule. Conclusion: The observations suggest that EPA is not only a nutritional adjuvant but also may be a potential candidate to enhance the efficacy of irradiation on human cancer cells. (orig.)

  18. HIF-1α inhibition by siRNA or chetomin in human malignant glioma cells: effects on hypoxic radioresistance and monitoring via CA9 expression

    Directory of Open Access Journals (Sweden)

    Bache Matthias

    2010-11-01

    Full Text Available Abstract Background Hypoxia induces activation of the HIF-1 pathway and is an essential characteristic of malignant gliomas. Hypoxia has been linked to tumor progression, therapy resistance and poor prognosis. However, little is known about the impact of HIF-1α inhibition on radioresistance of malignant glioma. Methods In this study, we investigated the effects of the inhibition of HIF-1α on cell survival and radiosensitivity in U251MG and U343MG glioma cells, using two different strategies. HIF-1α inhibition was achieved by siRNA targeting of HIF-1α or via chetomin, a disruptor of interactions between HIF-1α and p300. The inhibition of the HIF-1 pathway was monitored by quantitative real-time PCR and Western blot analyses of the expression levels of HIF-1α and CA9. CA9 expression was investigated as a potential indicator of the efficacy of HIF-1 inhibition and the resulting radiosensitivity of malignant glioma cell lines was determined by clonogenic assay after irradiation under normoxic (2-10 Gy or hypoxic (2-15 Gy conditions. Results Although siRNA and chetomin show distinct modes of action, both attenuated the hypoxia-induced radioresistance of malignant glioma cell lines U251MG (DMF10: 1.35 and 1.18 and U343MG (DMF10: 1.78 and 1.48. However, siRNA and chetomin showed diverse effects on radiosensitivity under normoxic conditions in U251MG (DMF10: 0.86 and 1.35 and U343MG (DMF10: 1.33 and 1.02 cells. Conclusions Results from this in vitro study suggest that inhibition of HIF-1α is a promising strategy to sensitize human malignant gliomas to radiotherapy and that CA9 could serve as an indicator of effective HIF-1-related radiosensitization.

  19. Antiproliferative activity of Eremanthus crotonoides extracts and centratherin demonstrated in brain tumor cell lines

    Directory of Open Access Journals (Sweden)

    Jonathas F. R. Lobo

    2012-12-01

    Full Text Available The genus Eremanthus is recognized by the predominance of sesquiterpene lactones from the furanoheliangolide type, a class of substances extensively tested against cancer cell lines. Thus, the species E. crotonoides (DC. Sch. Bip., Asteraceae, obtained on "restinga" vegetation was evaluated against U251 and U87-MG glioma cell lines using the MTT colorimetric assay. Dichloromethane fraction was cytotoxic to both glioblastoma multiforme cell lines. We then conducted UPLC-PDA-ESI-MS/MS analysis of the dichloromethane fraction, which allowed the identification of the sesquiterpene lactones centratherin and goyazensolide. The isolation of centratherin was performed using chromatographic techniques and the identification of this substance was confirmed according to NMR data. Cytotoxic activity of centratherin alone was also evaluated against both U251 and U87-MG cells, which showed IC50 values comparable with those obtained for the commercial anticancer drug doxorubicin. All the tested samples showed cytotoxic activity against glioblastoma multiforme cells which suggests that E. crotonoides extracts may be important sources of antiproliferative substances and that the centratherin may serve as prototype for developing new antiglioblastoma drugs.

  20. AKT2-knockdown suppressed viability with enhanced apoptosis, and attenuated chemoresistance to temozolomide of human glioblastoma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Cui Y

    2015-07-01

    Full Text Available Yong Cui,1,* Jing Lin,1,* Jianling Zuo,2 Lei Zhang,1 Yan Dong,1 Guohan Hu,1 Chun Luo,1 Juxiang Chen,1 Yicheng Lu1 1Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China; 2Department of Neurosurgery, First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China *These authors contributed equally to this work Abstract: The AKT2 kinase (protein kinase Bβ is overexpressed in high-grade gliomas. Upregulation of the AKT2 gene has been previously observed in glioblastoma patients suffering from chemotherapy failure and tumor progress. In this study, we aimed to evaluate the effect of AKT2 on viability and chemoresistance in the human glioblastoma cell line U251. The U251 cell line was stably transfected with short hairpin RNA (shRNA targeting AKT2. U251 cells underexpressing AKT2 were then examined for viability with temozolomide (TMZ treatment, and tested for cell apoptosis both in vitro and in tumor-implanted mice. Next, expressions of several chemoresistance-related molecules were measured by quantitative reverse-transcription polymerase chain reaction (qRT-PCR and western blot analysis. The results showed that the 50% inhibitory concentration (IC50 of AKT2 shRNA-transfected cells was significantly lower compared with Lenti-GFP-transfected and nontransfected controls and that the tumor growth of the AKT2-shRNA and TMZ combined-treated mice was obviously suppressed in either mass or volume. Concomitantly, the apoptosis of TMZ-treated tumor cells was significantly enhanced after knockdown of AKT2, as measured by flow cytometry and in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL analysis. Furthermore, AKT2-inhibition in TMZ-treated glioblastoma U251 cells upregulated apoptotic effector caspase-3, whereas it downregulated antiapoptotic protein Bcl-2, DNA repairing protein MGMT, and drug efflux pump protein MRP1. Our study

  1. Targeting and killing of glioblastoma with activated T cells armed with bispecific antibodies

    International Nuclear Information System (INIS)

    Since most glioblastomas express both wild-type EGFR and EGFRvIII as well as HER2/neu, they are excellent targets for activated T cells (ATC) armed with bispecific antibodies (BiAbs) that target EGFR and HER2. ATC were generated from PBMC activated for 14 days with anti-CD3 monoclonal antibody in the presence of interleukin-2 and armed with chemically heteroconjugated anti-CD3×anti-HER2/neu (HER2Bi) and/or anti-CD3×anti-EGFR (EGFRBi). HER2Bi- and/or EGFRBi-armed ATC were examined for in vitro cytotoxicity using MTT and 51Cr-release assays against malignant glioma lines (U87MG, U118MG, and U251MG) and primary glioblastoma lines. EGFRBi-armed ATC killed up to 85% of U87, U118, and U251 targets at effector:target ratios (E:T) ranging from 1:1 to 25:1. Engagement of tumor by EGFRBi-armed ATC induced Th1 and Th2 cytokine secretion by armed ATC. HER2Bi-armed ATC exhibited comparable cytotoxicity against U118 and U251, but did not kill HER2-negative U87 cells. HER2Bi- or EGFRBi-armed ATC exhibited 50—80% cytotoxicity against four primary glioblastoma lines as well as a temozolomide (TMZ)-resistant variant of U251. Both CD133– and CD133+ subpopulations were killed by armed ATC. Targeting both HER2Bi and EGFRBi simultaneously showed enhanced efficacy than arming with a single BiAb. Armed ATC maintained effectiveness after irradiation and in the presence of TMZ at a therapeutic concentration and were capable of killing multiple targets. High-grade gliomas are suitable for specific targeting by armed ATC. These data, together with additional animal studies, may provide the preclinical support for the use of armed ATC as a valuable addition to current treatment regimens

  2. Efficient inhibition of human telomerase activity by antisense oligonucleotides sensitizes cancer cells to radiotherapy

    Institute of Scientific and Technical Information of China (English)

    Xue-mei JI; Cong-hua XIE; Ming-hao FANG; Fu-xiang ZHOU; Wen-jie ZHANG; Ming-sheng ZHANG; Yun-feng ZHOU

    2006-01-01

    Aim: To investigate the effect of the antisense oligonucleotides (ASODN) specific for human telomerase RNA (hTR) on radio sensitization and proliferation inhibition in human neurogliocytoma cells (U251). Methods: U251 cells were transfected with hTR ASODN or nonspecific oligonucleotides (NSODN). Before and after irradiation of 60Co-γray, telomerase activity was assayed by telomeric repeat amplification protocol (TRAP-PCR-ELISA), and DNA damage and repair were examined by the comet assay. The classical colony assay was used to plot the cell-survival curve, to detect the D0 value. Results: hTR antisense oligonucleotides could downregulate the telomerase activity, increase radiation induced DNA damage and reduce the subsequent repair. Furthermore, it could inhibit the proliferation and decrease the D0 value which demonstrates rising radiosensitivity. However, telomere length was unchanged over a short period of time. Conclusion: These findings suggest that an ASODN-based strategy may be used to develop telomerase inhibitors, which can efficiently sensitize radiotherapy.

  3. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells

    Directory of Open Access Journals (Sweden)

    AshaRani PV

    2012-02-01

    Full Text Available Abstract Background Investigating the cellular and molecular signatures in eukaryotic cells following exposure to nanoparticles will further our understanding on the mechanisms mediating nanoparticle induced effects. This study illustrates the molecular effects of silver nanoparticles (Ag-np in normal human lung cells, IMR-90 and human brain cancer cells, U251 with emphasis on gene expression, induction of inflammatory mediators and the interaction of Ag-np with cytosolic proteins. Results We report that silver nanoparticles are capable of adsorbing cytosolic proteins on their surface that may influence the function of intracellular factors. Gene and protein expression profiles of Ag-np exposed cells revealed up regulation of many DNA damage response genes such as Gadd 45 in both the cell types and ATR in cancer cells. Moreover, down regulation of genes necessary for cell cycle progression (cyclin B and cyclin E and DNA damage response/repair (XRCC1 and 3, FEN1, RAD51C, RPA1 was observed in both the cell lines. Double strand DNA damage was observed in a dose dependant manner as evidenced in γH2AX foci assay. There was a down regulation of p53 and PCNA in treated cells. Cancer cells in particular showed a concentration dependant increase in phosphorylated p53 accompanied by the cleavage of caspase 3 and PARP. Our results demonstrate the involvement of NFκB and MAP kinase pathway in response to Ag-np exposure. Up regulation of pro-inflammatory cytokines such as interleukins (IL-8, IL-6, macrophage colony stimulating factor, macrophage inflammatory protein in fibroblasts following Ag-np exposure were also observed. Conclusion In summary, Ag-np can modulate gene expression and protein functions in IMR-90 cells and U251 cells, leading to defective DNA repair, proliferation arrest and inflammatory response. The observed changes could also be due to its capability to adsorb cytosolic proteins on its surface.

  4. Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells.

    Directory of Open Access Journals (Sweden)

    Feng-Lei Zhang

    Full Text Available Gliomas, the most malignant form of brain tumors, contain a small subpopulation of glioma stem cells (GSCs that are implicated in therapeutic resistance and tumor recurrence. Topoisomerase I inhibitors, shikonin and topotecan, play a crucial role in anti-cancer therapies. After isolated and identified the GSCs from glioma cells successfully, U251, U87, GSCs-U251 and GSCs-U87 cells were administrated with various concentrations of shikonin or topotecan at different time points to seek for the optimal administration concentration and time point. The cell viability, cell cycle and apoptosis were detected using cell counting kit-8 and flow cytometer to observe the inhibitory effects on glioma cells and GSCs. We demonstrated that shikonin and topotecan obviously inhibited proliferation of not only human glioma cells but also GSCs in a dose- and time-dependent manner. According to the IC50 values at 24 h, 2 μmol/L of shikonin and 3 μmol/L of topotecan were selected as the optimal administration concentration. In addition, shikonin and topotecan induced cell cycle arrest in G0/G1 and S phases and promoted apoptosis. The down-regulation of Bcl-2 expression with the activation of caspase 9/3-dependent pathway was involved in the apoptosis process. Therefore, the above results showed that topoisomerase I inhibitors, shikonin and topotecan, inhibited growth and induced apoptosis of GSCs as well as glioma cells, which suggested that they might be the potential anticancer agents targeting gliomas to provide a novel therapeutic strategy.

  5. Studies on the relationship between the radiation resistance and glutathione content of human and rodent cells after treatment with dexamethasone in vitro

    International Nuclear Information System (INIS)

    a 20 pre-treatment of human cells from normal (foetal lung) or malignant origin (glioma, lines U118 MG and U251 MG and bladder carcinoma, line EJ) with dexamethasone failed to increase their radiation resistance in vitro despite a 2-fold increase in the GSH content of a glioma cell line, U251 MG, and a small but significant increase in the GSH content of EJ bladder carcinoma cells. In contrast, there was a correlation between an increase in radiation resistance and an elevated GSH content of rodent cells (Chinese hamster lung, line V-79-379A; ovary, line CHO; rat hepatoma line HTC, and mouse neuroblastoma, line NB413A) after a similar pre-treatment. The results suggest that enhancement of radiation resistance cannot be directly ascribed to an elevated GSH content in steroid-treated cells. On the bases of these data it is unlikely that the efficacy of radiotherapy will be diminished amongst patients receiving concomitant treatment with dexamethasone. However, in vivo testing is required to confirm these findings. (author)

  6. Radiation related basic cancer research : research for radiation induced tumor cell killing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon; Hong, Seok Il; Cho, Kyung Ja; Kim, Byung Gi; Lee, Kee Ho; Nam, Myung Jin

    1999-04-01

    The radioresistant clones was established from human U251 glioblastoma cell line through intermittently exposed to 3 Gy gamma-radiation for six months. Treatment of SNU-16 cells with various doses of radiation, TNF alpha and PMA resulted in a decrease in cell viability. The results prove that cell death of SNU16 is a apoptosis mediated by caspase-3. We have examined the expression of bcl-2 and c-myc in cervical cancer specimens and cervical intraepithelial neoplasia (CIN) to determine the role of coexpression of bcl-3 and c-myc during progression into cervical cancer. The frequent alterations in FHIT expression in many cervical carcinomas and their cell lines suggest that FHIT gene alterations are pla a role in cervical tumorigenesis. According to these correlation between the viability and apoptosis of RD cells, the proper range of the dosage for the investigation of differentiation potency in RD cells was assessed as 1 to 3Gy.

  7. Radiation related basic cancer research : research for radiation induced tumor cell killing

    International Nuclear Information System (INIS)

    The radioresistant clones was established from human U251 glioblastoma cell line through intermittently exposed to 3 Gy gamma-radiation for six months. Treatment of SNU-16 cells with various doses of radiation, TNF alpha and PMA resulted in a decrease in cell viability. The results prove that cell death of SNU16 is a apoptosis mediated by caspase-3. We have examined the expression of bcl-2 and c-myc in cervical cancer specimens and cervical intraepithelial neoplasia (CIN) to determine the role of coexpression of bcl-3 and c-myc during progression into cervical cancer. The frequent alterations in FHIT expression in many cervical carcinomas and their cell lines suggest that FHIT gene alterations are pla a role in cervical tumorigenesis. According to these correlation between the viability and apoptosis of RD cells, the proper range of the dosage for the investigation of differentiation potency in RD cells was assessed as 1 to 3Gy

  8. Naringin inhibits the invasion and migration of human glioblastoma cell via downregulation of MMP-2 and MMP-9 expression and inactivation of p38 signaling pathway.

    Science.gov (United States)

    Aroui, Sonia; Najlaoui, Feten; Chtourou, Yassine; Meunier, Annie-Claire; Laajimi, Amel; Kenani, Abderraouf; Fetoui, Hamadi

    2016-03-01

    Gliomas are the most common and malignant primary brain tumors. They are associated with a poor prognosis despite the availability of multiple therapeutic options. Naringin, a common dietary flavonoid abundantly present in fruits and vegetables, is believed to possess strong anti-proliferative and anti-cancer properties. However, there are no reports describing its effects on the invasion and migration of glioblastoma cell lines. Our results showed that the treatment of U251 glioma cell lines with different concentrations of naringin inhibited the invasion and migration of these cells. In addition, we revealed a decrease in the levels of matrix metalloproteinases (MMP-2) and (MMP-9) expression as well as proteinase activity in U251 glioma cells. In contrast, the expression of tissue inhibitor of metalloproteinases (TIMP-1) and (TIMP-2) was increased. Furthermore, naringin treatment decreased significantly the phosphorylated level of p38. Combined treatment with a p38 inhibitor (SB203580) resulted in the synergistic reduction of MMP-2 and MMP-9 expressions correlated with an increase of TIMP-1 and TIMP-2 expressions and the anti-invasive properties. However, p38 chemical activator (anisomycin) could block these effects produced by naringin, suggesting a direct downregulation of the p38 signaling pathway. These data suggest that naringin may have therapeutic potential for controlling invasiveness of malignant gliomas by inhibiting of p38 signal transduction pathways. PMID:26474590

  9. Vazba mutantní formy proteinu p53 k intronovým a intergenním sekvencím tvořícím triplex DNA reguluje expresi genů u buněk U251

    Czech Academy of Sciences Publication Activity Database

    Tichý, Vlastimil; Quante, T.; Tögel, L.; Walter, K.; Navrátilová, Lucie; Lexa, M.; Deppert, W.; Tolstonog, G.V.; Paleček, Emil; Brázdová, Marie

    Praha, 2009. s. 452. ISSN 0009-2770. [Mezioborové setkání mladých biologů, biochemiků a chemiků. Konference Sigma-Aldrich /9./. 26.05.2009-29.05.2009, Devět skal - Žďárské vrchy] R&D Projects: GA MŠk(CZ) 1K04119; GA MŠk(CZ) LC06035; GA ČR(CZ) GP204/06/P369; GA ČR(CZ) GA204/08/1560; GA AV ČR(CZ) IAA500040701 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : mutant p53 * gene regulation * glioblastoma cells Subject RIV: BO - Biophysics

  10. Induction of Apoptosis in Human Cancer Cells by Candidaspongiolide, a Novel Sponge Polyketide

    Science.gov (United States)

    Trisciuoglio, Daniela; Uranchimeg, Badarch; Cardellina, John H.; Meragelman, Tamara L.; Matsunaga, Shigeki; Fusetani, Nobuhiru; Del Bufalo, Donatella; Shoemaker, Robert H.

    2008-01-01

    Background Candidaspongiolide (CAN), a novel polyketide from a marine sponge, is the active component of a mixture that was found to be potently cytotoxic in the National Cancer Institute’s 60-cell-line screen. Methods Effects of CAN on U251 glioma and HCT116 colorectal cancer cells and on normal fibroblasts were assessed using radiolabeling studies to measure protein synthesis, clonogenic assays to measure cell survival, flow cytometry of annexin V– and propidium iodide–stained cells to measure apoptosis, and western blots in the presence or absence of specific inhibitors to assess accumulation and phosphorylation of potential downstream target proteins. Results CAN inhibited protein synthesis and potently induced apoptosis in both U251 and HCT116 cells, the latter in part by a caspase 12–dependent pathway. For example, 25%–30% of U251 or HCT116 cells became apoptotic after 24 hours of treatment with 100 nM CAN. CAN also rapidly induced sustained phosphorylation of eukaryotic translation initiation factor-2 (eIF2)-α at Ser51 and of the translation elongation factor eEF2 at Thr56, which could contribute to its dose-dependent inhibition of protein synthesis. Stable expression of dominant-negative eIF2α was sufficient to prevent CAN-induced eIF2α phosphorylation and induction of apoptosis but insufficient to prevent inhibition of protein synthesis. CAN induction of eIF2α phosphorylation did not occur by a classic endoplasmic reticulum stress pathway. However, an inhibitor of and small-interfering RNAs to the double-stranded RNA–dependent protein kinase PKR prevented CAN-mediated eIF2α phosphorylation and apoptosis, respectively. Although CAN inhibited protein synthesis in both cancer cells and normal human fibroblasts, it induced eIF2α phosphorylation and apoptosis only in cancer cells. Conclusions CAN triggers PKR/eIF2α/caspase 12–dependent apoptosis and inhibits protein synthesis in cancer cells but only inhibits protein synthesis in normal

  11. The microtubule stabilizer patupilone counteracts ionizing radiation-induced matrix metalloproteinase activity and tumor cell invasion

    International Nuclear Information System (INIS)

    Ionizing radiation (IR) in combination with microtubule stabilizing agents (MSA) is a promising combined treatment modality. Supra-additive treatment responses might result from direct tumor cell killing and cooperative indirect, tumor cell-mediated effects on the tumor microenvironment. Here we investigated deregulation of matrix metalloproteinase (MMP) activity, as an important component of the tumor microenvironment, by the combined treatment modality of IR with the clinically relevant MSA patupilone. Expression, secretion and activity of MMPs and related tissue inhibitors of metalloproteinases (TIMPs) were determined in cell extracts and conditioned media derived from human fibrosarcoma HT1080 and human glioblastoma U251 tumor cells in response to treatment with IR and the MSA patupilone. Treatment-dependent changes of the invasive capacities of these tumor cell lines were analysed using a Transwell invasion assay. Control experiments were performed using TIMP-directed siRNA and TIMP-directed inhibitory antibodies. Enzymatic activity of secreted MMPs was determined after treatment with patupilone and irradiation in the human fibrosarcoma HT1080 and the human glioblastoma U251 tumor cell line. IR enhanced the activity of secreted MMPs up to 2-fold and cellular pretreatment with low dose patupilone (0.05-0.2 nM) counteracted specifically the IR-induced MMP activity. The cell invasive capacity of HT1080 and U251 cells was increased after irradiation with 2 Gy by 30% and 50%, respectively, and patupilone treatment completely abrogated IR-induced cell invasion. Patupilone did not alter the level of MMP expression, but interestingly, the protein level of secreted TIMP-1 and TIMP-2 was lower after combined treatment than after irradiation treatment alone. Furthermore, siRNA depletion of TIMP-1 or TIMP-2 prevented IR-mediated induction of MMP activity and cell invasion. These results indicate that patupilone counteracts an IR-induced MMP activation process by the

  12. Influence of hypoxia and irradiation on osteopontin expression in head and neck cancer and glioblastoma cell lines

    International Nuclear Information System (INIS)

    Tumor hypoxia is a known risk factor for reduced response to radiotherapy. The evaluation of noninvasive methods for the detection of hypoxia is therefore of interest. Osteopontin (OPN) has been discussed as an endogenous hypoxia biomarker. It is overexpressed in many cancers and is involved in tumor progression and metastasis. To examine the influence of hypoxia and irradiation on osteopontin expression we used different cell lines (head and neck cancer (Cal27 and FaDu) and glioblastoma multiforme (U251 and U87)). Cells were treated with hypoxia for 24 h and were then irradiated with doses of 2 and 8 Gy. Osteopontin expression was analyzed on mRNA level by quantitative real-time RT-PCR (qPCR) and on protein level by western blot. Cell culture supernatants were evaluated for secreted OPN by ELISA. Hypoxia caused an increase in osteopontin protein expression in all cell lines. In Cal27 a corresponding increase in OPN mRNA expression was observed. In contrast the other cell lines showed a reduced mRNA expression under hypoxic conditions. After irradiation OPN mRNA expression raised slightly in FaDu and U87 cells while it was reduced in U251 and stable in Cal27 cells under normoxia. The combined treatment (hypoxia and irradiation) led to a slight increase of OPN mRNA after 2 Gy in U251 (24 h) and in U87 (24 and 48 h) cell lines falling back to base line after 8 Gy. This effect was not seen in Cal27 or in FaDu cells. Secreted OPN was detected only in the two glioblastoma cell lines with reduced protein levels under hypoxic conditions. Again the combined treatment resulted in a minor increase in OPN secretion 48 hours after irradiation with 8 Gy. Osteopontin expression is strongly modulated by hypoxia and only to a minor extent by irradiation. Intracellular OPN homeostasis seems to vary considerably between cell lines. This may explain the partly conflicting results concerning response prediction and prognosis in the clinical setting

  13. PROTECTIVE EFFECT OF MELATONIN ON NEURAL CELLS AGAINST THE CYTOTOXICITY OF OXYRADICALS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective. To investigate the exact mechanism of melatonin to prohibit the apoptosis of neural cells induced by various kinds of cytotoxic agents.Methods. We used the methods of phase contrast microscopy, MTT assay and hoechst dye staining to check this mechanism in SKNSH and U251 cell lines.Results. Both 2mmol/L H2O2 and 0.5 μ mol/L amyloid β- protein (Aβ) induce these two cell lines die via apoptosis. Either melatonin or glutathione can significantly protect both cell lines. The protective effect of 10 μ mol/L melatonin is as same as that of 60 μ mol/L glutathione.Conclusion. Melatonin can partly inhibit the cytotoxicity of H2O2 and Aβ through its role as a free radical scavenger.

  14. Antisense MMP-9 RNA inhibits malignant glioma cell growth in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Cuiyun Sun; Qian Wang; Hongxu Zhou; Shizhu Yu; Alain R.Simard; Chunsheng Kang; Yanyan Li

    2013-01-01

    The matrix-degrading metalloproteinases (MMPs),particularly MMP-9,play important roles in the pathogenesis and development of malignant gliomas.In the present study,the oncogenic role of MMP-9 in malignant glioma cells was investigated via antisense RNA blockade in vitro and in vivo.TJ905 malignant glioma cells were transfected with pcDNA3.0 vector expressing antisense MMP-9 RNA (pcDNA-ASMMP9),which significantly decreased MMP-9 expression,and cell proliferation was assessed.For in vivo studies,U251 cells,a human malignant glioma cell line,were implanted subcutaneously into 4-to 6-week-old BALB/c nude mice.The mice bearing well-established U251 gliomas were treated with intratumoral pcDNA-AS-MMP9-Lipofectamine complex (AS-MMP-9-treated group),subcutaneous injection of endostatin (endostatin-treated group),or both (combined therapy group).Mice treated with pcDNA (empty vector)-Lipofectamine served as the control group.Four or eight weeks later,the volume and weight of tumor,MMP-9 expression,microvessel density and proliferative activity were assayed.We demonstrate that pcDNA-AS-MMP9 significantly decreased MMP-9 expression and inhibited glioma cell proliferation.Volume and weight of tumor,MMP-9 expression,microvessel density and proliferative activity in the antisense-MMP-9-treated and therapeutic alliance groups were significantly lower than those in the control group.The results suggest that MMP-9 not only promotes malignant glioma cell invasiveness,but also affects tumor cell proliferation.Blocking the expression of MMP-9 with antisense RNA substantially suppresses the malignant phenotype of glioma cells,and thus can be used as an effective therapeutic strategy for malignant gliomas.

  15. Effects of signal transducer and activator of transcription 3 RNAi on content of reactive oxygen species and DNA damage in glioma cell

    International Nuclear Information System (INIS)

    Objective: To investigate the effects of signal transducer and activator of transcription 3 (STAT3) RNAi on the content of reactive oxygen species (ROS) and the DNA damage in glioma cells. Methods: Glioma cells of the line U251 cells were cultured and transfected with STAT3 RNAi plasmid (pSilencer2.1-STAT3, STAT3 group) and pSilencer2.1-GFP (GFP control group) respectively. Part of the U251 cells were irradiated with γ-rays of 60Co as positive control group of smear phenomenon. The levels of ROS and malondialdehyde (MDA) in the cells were detected 24, 48, and 72 h later by flow cytometry and fluorescence chamoluminescence analyzer, respectively. The DNA damage in the transfected U251 cells was examined by using single cell gel electrophoresis assay, and the cell cycle distribution was examined using FACS PI staining 12, 24, and 36 h later. Results: At 24 h after the transfection, the ROS level of the siSTAT3-transfected cells was 8.91 times that of the control group (F=89.296, P<0.05), and returned to the normal level 48 h later. There were not significant differences in the MDA level of the cells 24, 48, and 72 h later between the siSTAT3 group and siGFP group. Compared with the 8 Gy irradiation positive group with obvious smear phenomenon, smear phenomenon was shown in part of the cells in the siSTAT3 group 6 h later, became less 12 h later, and disappeared completely 24 h later. Compared with the control group,lag of S stage rate was 17.22% and the lag of G2/M stage rate was 6.4% 12 h later in the siSTAT-transfected group,and the G0/G1 stage lag rate was 18.44% 24 h later, and the lag of S stage rate was 17.99% 36 h later. Conclusions: Inhibition of STAT3 results in the change of oxido reduction status in glioma cells, as well as damage and reparation of DNA. (authors)

  16. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

    Science.gov (United States)

    Qiu, Zhi-Kun; Shen, Dong; Chen, Yin-Sheng; Yang, Qun-Ying; Guo, Cheng-Cheng; Feng, Bing-Hong; Chen, Zhong-Ping

    2014-01-01

    O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSCs were enriched from one MGMT-positive cell line (SF-767) and 7 MGMT-negative cell lines (U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, all the GSCs and their parental glioma cell lines were positive for nuclear factor-κB (NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines (P 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132 (an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone (P < 0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs. PMID:23958055

  17. Overexpression of miR-100 inhibits cell proliferation, migration, and chemosensitivity in human glioblastoma through FGFR3

    Directory of Open Access Journals (Sweden)

    Luan YX

    2015-11-01

    Full Text Available Yongxin Luan,1 Shuyan Zhang,1 Ling Zuo,2 Lixiang Zhou1 1Department of Neurosurgery, First Bethune Hospital of Jilin University, 2Department of Ophthalmology, Second Bethune Hospital of Jilin University, Changchun, People’s Republic of China Background: Glioblastoma multiforme is one of the most deadly forms of brain cancer. We investigated the regulatory effects of microRNA-100 (miR-100 on cell proliferation, migration, and chemosensitivity in human glioblastoma. Methods: miR-100 expression was assessed by quantitative real-time polymerase chain reaction in both glioblastoma cells and human tumors. Lentiviruses of miR-100 mimics and inhibitors were transfected into U251 and T98G cells. The regulatory effects of either overexpressing or downregulating miR-100 on glioblastoma were evaluated by a viability assay, growth assay, migration assay, chemosensitivity assay, and an in vivo tumor transplantation assay. Expression of fibroblast growth factor receptor 3 (FGFR3, the bioinformatically predicted target of miR-100, was examined by Western blot in glioblastoma. FGFR3 was then ectopically overexpressed in U251 and T98G cells, and its effects on miR-100-mediated cancer regulation were evaluated by growth, migration, and chemosensitivity assays. Results: MiR-100 was markedly downregulated in both glioblastoma cell lines and human tumors. Overexpressing miR-100 through lentiviral transfection in U251 and T98G cells significantly inhibited cancer growth (both in vitro and in vivo and migration and increased chemosensitivity to cisplatin and 1, 3-bis (2-chloroethyl-l-nitrosourea, whereas downregulation of miR-100 had no effects on development of cancer. FGFR3 was directly regulated by miR-100 in glioblastoma. Ectopically overexpressing FGFR3 was able to ameliorate the anticancer effects of upregulation of miR-100 on glioblastoma growth, migration, and chemosensitivity. Conclusion: MiR-100 was generally downregulated in glioblastoma. Overexpressing mi

  18. Wogonin Induces Reactive Oxygen Species Production and Cell Apoptosis in Human Glioma Cancer Cells

    Directory of Open Access Journals (Sweden)

    Dah-Yuu Lu

    2012-08-01

    Full Text Available Glioma is the most common primary adult brain tumor with poor prognosis because of the ease of spreading tumor cells to other regions of the brain. Cell apoptosis is frequently targeted for developing anti-cancer drugs. In the present study, we have assessed wogonin, a flavonoid compound isolated from Scutellaria baicalensis Georgi, induced ROS generation, endoplasmic reticulum (ER stress and cell apoptosis. Wogonin induced cell death in two different human glioma cells, such as U251 and U87 cells but not in human primary astrocytes (IC 50 > 100 μM. Wogonin-induced apoptotic cell death in glioma cells was measured by propidine iodine (PI analysis, Tunnel assay and Annexin V staining methods. Furthermore, wogonin also induced caspase-9 and caspase-3 activation as well as up-regulation of cleaved PARP expression. Moreover, treatment of wogonin also increased a number of signature ER stress markers glucose-regulated protein (GRP-78, GRP-94, Calpain I, and phosphorylation of eukaryotic initiation factor-2α (eIF2α. Treatment of human glioma cells with wogonin was found to induce reactive oxygen species (ROS generation. Wogonin induced ER stress-related protein expression and cell apoptosis was reduced by the ROS inhibitors apocynin and NAC (N-acetylcysteine. The present study provides evidence to support the fact that wogonin induces human glioma cell apoptosis mediated ROS generation, ER stress activation and cell apoptosis.

  19. Hydroxyapatite nanoparticles inhibit the growth of human glioma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Chu SH

    2012-07-01

    Full Text Available Sheng-Hua Chu,1 Dong-Fu Feng,1 Yan-Bin Ma,1 Zhi-Qiang Li21Department of Neurosurgery, No 3 People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; 2Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, ChinaAbstract: Hydroxyapatite nanoparticles (nano-HAPs have been reported to exhibit antitumor effects on various human cancers, but the effects of nano-HAPs on human glioma cells remain unclear. The aim of this study was to explore the inhibitory effect of nano-HAPs on the growth of human glioma U251 and SHG44 cells in vitro and in vivo. Nano-HAPs could inhibit the growth of U251 and SHG44 cells in a dose- and time-dependent manner, according to methyl thiazoletetrazolium assay and flow cytometry. Treated with 120 mg/L and 240 mg/L nano-HAPs for 48 hours, typical apoptotic morphological changes were noted under Hoechst staining and transmission electron microscopy. The tumor growth of cells was inhibited after the injection in vivo, and the related side effects significantly decreased in the nano-HAP-and-drug combination group. Because of the function of nano-HAPs, the expression of c-Met, SATB1, Ki-67, and bcl-2 protein decreased, and the expression of SLC22A18 and caspase-3 protein decreased noticeably. The findings indicate that nano-HAPs have an evident inhibitory action and induce apoptosis of human glioma cells in vitro and in vivo. In a drug combination, they can significantly reduce the adverse reaction related to the chemotherapeutic drug 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU.Keywords: glioma, hydroxyapatite nanoparticles, growth mechanism

  20. Aptamer-conjugated dendrimer-modified quantum dots for glioblastoma cells imaging

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhiming; Huang Peng; He Rong; Bao Chenchen; Cui Daxiang [National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang Xiaomin; Ren Qiushi [Institute for Laser Medicine and Biophotonics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240 (China)], E-mail: qsren@sjtu.edu.cn, E-mail: dxcui@sjtu.edu.cn

    2009-09-01

    Targeted quantum dots have shown potential as a platform for development of cancer imaging. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In present work, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified quantum dots were conjugated with DNA aptamer, GBI-10, can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. Aptamer-conjugated quantum dots can specifically target U251 human glioblastoma cells. High-performance aptamer-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as cancer imaging.

  1. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-Kun Qiu; Dong Shen; Yin-Sheng Chen; Qun-Ying Yang; Cheng-Cheng Guo; Bing-Hong Feng; Zhong-Ping Chen

    2014-01-01

    O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSCs were enriched from one MGMT-positive cellline (SF-767) and 7 MGMT-negative celllines (U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, al the GSCs and their parental glioma celllines were positive for nuclear factor-κB (NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines (P 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132 (an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone (P < 0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs.

  2. A tenascin-C aptamer identified by tumor cell SELEX: Systematic evolution of ligands by exponential enrichment

    Science.gov (United States)

    Daniels, Dion A.; Chen, Hang; Hicke, Brian J.; Swiderek, Kristine M.; Gold, Larry

    2003-01-01

    The targeting of molecular repertoires to complex systems rather than biochemically pure entities is an accessible approach that can identify proteins of biological interest. We have probed antigens presented by a monolayer of tumor cells for their ability to interact with a pool of aptamers. A glioblastoma-derived cell line, U251, was used as the target for systematic evolution of ligands by exponential enrichment by using a single-stranded DNA library. We isolated specifically interacting oligonucleotides, and biochemical strategies were used to identify the protein target for one of the aptamers. Here we characterize the interaction of the DNA aptamer, GBI-10, with tenascin-C, an extracellular protein found in the tumor matrix. Tenascin-C is believed to be involved in both embryogenesis and oncogenesis pathways. Systematic evolution of ligands by exponential enrichment appears to be a successful strategy for the a priori identification of targets of biological interest within complex systems. PMID:14676325

  3. Fractionated radiotherapy is the main stimulus for the induction of cell death and of Hsp70 release of p53 mutated glioblastoma cell lines

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. Despite a multimodal therapy consisting of resection followed by fractionated radiotherapy (RT) combined with the chemotherapeutic agent (CT) temozolomide (TMZ), its recurrence is almost inevitable. Since the immune system is capable of eliminating small tumor masses, a therapy should also aim to stimulate anti-tumor immune responses by induction of immunogenic cell death forms. The histone deacetylase inhibitor valproic acid (VPA) might foster this. Reflecting therapy standards, we applied in our in vitro model fractionated RT with a single dose of 2Gy and clinically relevant concentrations of CT. Not only the impact of RT and/or CT with TMZ and/or VPA on the clonogenic potential and cell cycle of the glioblastoma cell lines T98G, U251MG, and U87MG was analyzed, but also the resulting cell death forms and release of danger signals such as heat-shock protein70 (Hsp70) and high-mobility group protein B1 (HMGB1). The clonogenic assays revealed that T98G and U251MG, having mutated tumor suppressor protein p53, are more resistant to RT and CT than U87MG with wild type (WT) p53. In all glioblastoma cells lines, fractionated RT induced a G2 cell cycle arrest, but only in the case of U87MG, TMZ and/or VPA alone resulted in this cell cycle block. Further, fractionated RT significantly increased the number of apoptotic and necrotic tumor cells in all three cell lines. However, only in U87MG, the treatment with TMZ and/or VPA alone, or in combination with fractionated RT, induced significantly more cell death compared to untreated or irradiated controls. While necrotic glioblastoma cells were present after VPA, TMZ especially led to significantly increased amounts of U87MG cells in the radiosensitive G2 cell cycle phase. While CT did not impact on the release of Hsp70, fractionated RT resulted in significantly increased extracellular concentrations of Hsp70 in p53 mutated and WT glioblastoma

  4. 染料木黄酮抑制由单纯疱疹病毒1型感染导致的人胶质瘤细胞增殖和凋亡异常%Inhibitory effects of Genistein on abnormal changes of proliferation and apoptosis caused by herpes simplex virus-1 infectiom in human glioma cell

    Institute of Scientific and Technical Information of China (English)

    王倩; 李玲; 王斌; 于向民; 宋旭霞; 钱冬萌; 侯云; 姜光域; 胡明

    2011-01-01

    目的 染料木黄酮(Genistein,GST)已被证实具有抗广谱病毒的作用,但有关其抑制单纯疱疹病毒Ⅰ型(herpes simplex virus-1,HSV-1)感染人星形胶质细胞的研究鲜有报道.研究GST对由HSV感染所致人胶质瘤细胞(U251)增殖和凋亡异常的抑制作用.方法 设立GST组、GST+HSV-1组、HSV-1组和对照组,以感染复数(multiplicity of infection,MOI)为5的HSV-1感染U251细胞,通过噻唑蓝(MTT)法、流式细胞术和RT-PCR检测GST对HSV-1感染致U251细胞增殖和凋亡异常的抑制作用.结果 ①MTT法显示不同处理组之间的差别具有高度统计学意义(P<0.05),并有非常明显的时间效应(P<0.05).其中30μg/ml GST组和HSV-1组MTT值低于对照组(P<0.05) ;15μg/ml GST+HSV-1组MTT均值高于HSV-1组均值(P<0.05),3.75和30μg/ml GST+HSV-1组MTT值均低于HSV-1组(P<0.05).②形态学观察HSV-1组细胞感染12h后出现融合,36h后出现细胞病变效应,15μg/ml GST+HSV-1组细胞感染24h后开始出现少量融合,36h后融合增多,但大部分细胞为正常形态;流式细胞术显示,15μg/ml GST+HSV-1组凋亡率低于HSV-1组(P<0.05 ).③RT-PCR检测显示HSV-1组感染6h后开始检测到gD基因的表达;15μg/ml GST+HSV-1组在感染12h内gD基因表达受到抑制,24h后gD基因才开始表达.结论 15μg/ml浓度的GST能抑制HSV-1感染所致细胞增殖和凋亡的异常,同时抑制病毒gD基因的表达.%Objective Though Genestein exerts antiviral properties against a wide range of viruses , its inhibitory effects on HSV-1 infected human astrocytes has received little attention. We aimed to investigate the inhibitorv effects of Genistein( GST) on abnormal changes of proliferation and apoptosis caused by H5V-1 infection in Human Glioma Cell ( U251 ) . Methods U251 cells were infected by HSV-1 at a multiplicity of infection of 5 while GST group,CST + HSV-1 group, HSV-1 group and control group were set up. MTT assay, cell apoptosis and RT-PCR were chosen

  5. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  6. Post-radiation increase in VEGF enhances glioma cell motility in vitro

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM) is among the most lethal of all human tumors, with frequent local recurrences after radiation therapy (RT). The mechanism accounting for such a recurrence pattern is unclear. It has classically been attributed to local recurrence of treatment-resistant cells. However, accumulating evidence suggests that additional mechanisms exist that involve the migration of tumor or tumor stem cells from other brain regions to tumor bed. VEGFs are well-known mitogens and can be up-regulated after RT. Here, we examine the effect of irradiation-induced VEGF on glioma cell motility. U251 and LN18 cell lines were used to generate irradiated-conditioned medium (IR-CM). At 72 h after irradiation, the supernatants were harvested. VEGF level in IR-CM was quantified by ELISA, and expression levels for VEGF mRNA were detected by RT-PCR. In vitro cancer cell motility was measured in chambers coated with/without Matrigel and IR-CM as a cell motility enhancer and a VEGF antibody as a neutralizer of VEGF bioactivity. Immunoblots were performed to evaluate the activity of cell motility-related kinases. Proliferation of GBM cells after treatment was measured by flow cytometry. Irradiation increased the level of VEGF mRNA that was mitigated by pre-RT exposure to Actinomycin D. U251 glioma cell motility (migration and invasion) was enhanced by adding IR-CM to un-irradiated cells (174.9 ± 11.4% and 334.2 ± 46% of control, respectively). When we added VEGF antibody to IR-CM, this enhanced cell motility was negated (110.3 ± 12.0% and 105.7 ± 14.0% of control, respectively). Immunoblot analysis revealed that IR-CM increased phosphorylation of VEGF receptor-2 (VEGFR2) secondary to an increase in VEGF, with a concomitant increase of phosphorylation of the downstream targets (Src and FAK). Increased phosphorylation was mitigated by adding VEGF antibody to IR-CM. There was no difference in the mitotic index of GBM cells treated with and without IR-CM and VEGF. These

  7. Establishment of Drug-resistance Cell Line of Human Glioma Mediated by MGMT%MGMT介导的人脑胶质瘤耐药细胞系的建立

    Institute of Scientific and Technical Information of China (English)

    金澎; 张庆林; 刘福生; 王保安; 魏麟; 王成伟; 孔建新

    2002-01-01

    目的建立由O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)介导的人脑胶质瘤耐药细胞株U251/BCNU.方法模拟卡氮芥(BCNU)的临床用药程序,采取恒定药物浓度、周期性作用的方式诱导U251的抗药性.检测U251/BCNU的耐药指数及MGMT mRNA的表达;比较U251U251/BCNU细胞的体外增殖变化.结果经过反复总共5次的用药过程,历时4个月,成功地建立了对BCNU具有稳定抗药性的U251/BCNU,其对BCNU的耐受程度约为U251的17倍.RT-PCR显示,U251/BCNU细胞有MGMTmRNA的表达.U251U251/BCNU细胞的体外群体倍增时间差异无显著性.结论在体外成功地建立了一株由MGMT介导的人脑胶质瘤耐药细胞系,为进一步探讨胶质瘤的耐药机制及逆转方式奠定了基础.

  8. Role of novel anticancer drug Roscovitine on enhancing radiosensitivity in carcinoma cell lines

    International Nuclear Information System (INIS)

    The present study was conducted to evaluate the radiosensitization effect of Roscovitine (cyclin dependent kinase inhibitor) in carcinoma cell lines. Three cell lines are used liver carcinoma cell line (HepG2), brain carcinoma cell line (U251), Lung carcinoma cell line (H460) in this study cells were treated with Roscovitine in different concentrations ranging from 0.1 ?M to 100 ?M before exposure to radiation doses ranging from 0.5 Gy to 20 Gy according to each experiment. The cell viability by MTT assay, the cell cycle analysis by flow cytometry and DNA fragmentation repair mechanism by diphenylamine were measured after Roscovitine treatment with or without radiation exposure to explore the sensitization effect of Roscovitine. The present study conclude that Roscovitine a good candidate as radiosensitizer for modifying the ionizing radiation (IR) response in cancer cells, beside its cyclin dependent kinase inhibitor function, Roscovitine can generate DNA Double strand Breaks and cooperate to enhance IR induce DNA damages. Roscovitine is currently in clinical trials, although our findings suggest that the combination of Roscovitine with IR appears to be a very promising especially for liver, brain and lung cancer treatment, further investigation is needed to evaluate the therapeutic index before tested in clinical trials

  9. Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis

    International Nuclear Information System (INIS)

    Although single-wall carbon nanohorns (SWNHs) have been demonstrated to accumulate to cytotoxic levels within organs of various animal models and cell types, they have been exploited for cancer therapies. The role of SWNHs in human glioma cell lines was unclear. To address this question, the research about direct role of SWNHs on the growth, proliferation, and apoptosis of human glioma cell lines (U87, U251, and U373) had been performed. Our results indicate that particle size of SWNHs in water is between 342 and 712 nm, the films of SEM show that SWNHs on PS surface are individual particles. SWNHs significantly delayed mitotic entry of human glioma cell lines cells, and inhibited its proliferation in a time- and dose-dependent manner. SWNHs induced a significant increase in G1 phase and inhibition of S phase followed the gradually increasing concentrations. SWNHs in human glioma cell lines cells significantly induced apoptosis followed by their gradually increasing concentrations. The TEM images showed that individual spherical SWNHs particles smaller than 100 nm in diameters were localized inside lysosomes of human glioma cell lines. SWNHs inhibited mitotic entry, growth, and proliferation of human glioma cell lines, and promoted its apoptosis. SWNHs may be a novel opportunity or method for the research on treatment of human glioma

  10. Role of novel anticancer drug Roscovitine on enhancing radiosensitivity in carcinoma cell lines

    International Nuclear Information System (INIS)

    The present study was conducted to evaluate the radiosensitization effect of Roscovitine (cyclin dependent kinase inhibitor) in carcinoma cell lines. Three cell lines are used (HepG2 liver carcinoma cell line, U251 brain carcinoma cell line, H460 Lung carcinoma cell line) in this study .cells were treated with Roscovitine in different concentrations ranging from 0.1μM to 100 μM before exposure to radiation doses ranging from 0.5 Gy to 20 Gy according to each experiment. The cell viability by MTT assay, The cell cycle analysis by flow cytometry and DNA fragmentation repair mechanism by diphenylamine were measured after Roscovitine treatment with or without radiation to explore the sensitization effect of Roscovitine. The present study conclude that Roscovitine a good candidate as radiosensitizer for modifying the ionizing radiation (IR) response in cancer cells, beside its cyclin dependent kinase inhibitor function, roscovitine can generate DNA Double strand Breaks and cooperate to enhance IR induce DNA damages . Roscovitine is currently in clinical trials, although our findings suggest that the combination of Roscovitine with IR appears to be a very promising especially for liver, brain and lung cancer treatment, further investigation is needed to evaluate the therapeutic index before tested in clinical trial

  11. New technique to register proliferation of clonogenic cells from brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Unsgaard, G.; Larsen, B.; Dalen, A.; Vik, R.; Ringkjob, R.

    1985-01-01

    The soft agar technique for culturing human clonogenic tumor cells has been usefully applied for predicting individual clinical responses to chemotherapy, for screening of new antineoplastic drugs, and in basic biological research. The counting of colonies formed by clonogenic cells is, however, a rather time consuming and inaccurate procedure. The authors report a method to combine the easy and precise registration of DNA-synthesis by TH-thymidine incorporation with the ability of soft agar to permit proliferation of clonogenic cells and inhibit proliferation of non-neoplastic cells. The glioma cell lines U 251 MG and T-MG 1, the benignant glia cells T-BG 1, T-BG 2, T-BG 3 and fibroblasts were cultured in Furcellaran gel. Twenty hours before harvesting TH-thymidine was added. TH-thymidine incorporation in malignant cells increased exponentially with time, while TH-thymidine incorporation in the benignant glia cells and fibroblasts was inhibited. The correlation between number of colonies counted after 16 days and TH-thymidine incorporation registered after different culture times was very good. The correlation was best when the cultures were harvested after 8 days. The most intense proliferation seemed to take place during the first week in culture. The good correlation between TH-thymidine incorporation on day 7 and colony number on day 14, indicate that reduction of assay time is possible also for the glioma biopsies.

  12. Involvement of nitric oxide synthase in matrix metalloproteinase-9- and/or urokinase plasminogen activator receptor-mediated glioma cell migration

    International Nuclear Information System (INIS)

    Src tyrosine kinase activates inducible nitric oxide synthase (iNOS) and, in turn, nitric oxide production as a means to transduce cell migration. Src tyrosine kinase plays a key proximal role to control α9β1 signaling. Our recent studies have clearly demonstrated the role of α9β1 integrin in matrix metalloproteinase-9 (MMP-9) and/or urokinase plasminogen activator receptor (uPAR)-mediated glioma cell migration. In the present study, we evaluated the involvement of α9β1 integrin-iNOS pathway in MMP-9- and/or uPAR-mediated glioma cell migration. MMP-9 and uPAR shRNAs and overexpressing plasmids were used to downregulate and upregulate these molecules, respectively in U251 glioma cells and 5310 glioma xenograft cells. The effect of treatments on migration and invasion potential of these glioma cells were assessed by spheroid migration, wound healing, and Matrigel invasion assays. In order to attain the other objectives we also performed immunocytochemical, immunohistochemical, RT-PCR, Western blot and fluorescence-activated cell sorting (FACS) analysis. Immunohistochemical analysis revealed the prominent association of iNOS with glioblastoma multiforme (GBM). Immunofluorescence analysis showed prominent expression of iNOS in glioma cells. MMP-9 and/or uPAR knockdown by respective shRNAs reduced iNOS expression in these glioma cells. RT-PCR analysis revealed elevated iNOS mRNA expression in either MMP-9 or uPAR overexpressed glioma cells. The migration potential of MMP-9- and/or uPAR-overexpressed U251 glioma cells was significantly inhibited after treatment with L-NAME, an inhibitor of iNOS. Similarly, a significant inhibition of the invasion potential of the control or MMP-9/uPAR-overexpressed glioma cells was noticed after L-NAME treatment. A prominent reduction of iNOS expression was observed in the tumor regions of nude mice brains, which were injected with 5310 glioma cells, after MMP-9 and/or uPAR knockdown. Protein expressions of cSrc, phosphoSrc and p

  13. Radiopotentiation of human brain tumor cells by the spermine analog N{sub 1},N{sup 14}-bis(ethyl)homospermine

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Zhang; Hu, L.J.; Marton, L.J.; Deen, D.F. [Univ. of California, San Francisco, CA (United States); Bergeron, R.J. [Univ. of Florida, Gainesville, FL (United States)

    1994-07-30

    The purpose was to determine whether the cytotoxicity produced by radiation can be increased by the spermine analog N{sup 1},N{sup 14}-bis(ethyl)homospermine (BE-4-4-4). Two human tumor cell lines, SF-126 and U-251 MG, were either treated with 0.1 or 0.4 {mu}M BE-4-4-4 for 3 or 4 days, or with 0.2 {mu}M BE-4-4-4 for 4 days. At the end of BE-4-4-4 treatment, cells were irradiated and assayed immediately. Polyamine levels, cell survival, and cell number were determined. In SF-126 cells, treatment with 0.2 {mu}M BE-4-4-4 for 4 days killed about 50% of the cells and also increased the cytotoxicity of radiation. The dose enhancement ratio was {approximately}1.3:1.5, which is similar to that reported for {alpha}-difluoromethylornithine. Polyamine levels were partially depleted, and growth was inhibited to about 60% of control levels. Pretreatment of cells with either 0.1 or 0.4 {mu}M BE-4-4-4 for 3 or 4 days produced less of an increase in radiation-induced cytotoxicity, even though these exposures killed 30-40% or 60-90% of the cells, respectively. Similar treatment with 0.1-0.4 {mu}M BE-4-4-4 in U-251 MG cells had minimal effects on cytotoxicity and growth inhibition, while treatment with 1.0 {mu}M and 2.0 {mu}M BE-4-4-4 for 4 days produced more than a 50% depletion in polyamine levels and partial inhibition in growth, but failed to demonstrate radiopotentiation. The cytotoxic polyamine analog BE-4-4-4 can increase the cytotoxicity caused by radiation in at least one cell line. The amount of potentiation depends on the concentration of the analog, with the most occurring at the intermediate concentration. Because the authors did not observe potentiation in both cell lines, and because of the dose dependence seen in SF-126 cells, the clinical efficacy produced by combined BE-4-4-4 and radiation protocols may be limited. 26 refs., 6 figs.

  14. Caffeine-induced nuclear translocation of FoxO1 triggers Bim-mediated apoptosis in human glioblastoma cells.

    Science.gov (United States)

    Sun, Fei; Han, Dong-Feng; Cao, Bo-Qiang; Wang, Bo; Dong, Nan; Jiang, De-Hua

    2016-03-01

    Caffeine is one of the most commonly ingested neuroactive compounds and exhibits anticancer effects through induction of apoptosis and suppression of cell proliferation. However, the mechanisms underlying these effects are currently unknown. In this study, we investigated the mechanisms of caffeine-induced apoptosis in U251 cells (human glioma cell line). We analyzed the inhibitory effects of caffeine on cell proliferation by performing WST-8 and colony formation assays; in addition, cell survival was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and flow cytometric analysis. Western blotting was used to investigate the role played by FoxO1 in the proapoptotic effects of caffeine on glioma cells. Results showed that caffeine inhibited proliferation and survival of human glioma cells, induced apoptosis, and increased the expression of FoxO1 and its proapoptotic target Bim. In addition, we found that FoxO1 enhanced the transcription of its proapoptotic target Bim. In summary, our data indicates that FoxO1-Bim mediates caffeine-induced regression of glioma growth by activating cell apoptosis, thereby providing new mechanistic insight into the possible use of caffeine in treating human cancer. PMID:26449824

  15. Influence of all-trans retinoic acid(ATRA) on the expression of NANOG in Glioma cell lines

    Institute of Scientific and Technical Information of China (English)

    Liu Weixian; Yi Fuxin

    2012-01-01

    Objective To investigate the effects of all-trans retinoic acid(ATRA) on the expression of NANOG in glioma cell lines.Methods Each cell line was divided into the experimental group which was treated with ATRA for 5 days,and the control group which was cultured normally without ATRA treatment. Immunocytochemistry and RT-PCR were adopted to detect the expression of NANOG at protein and mRNA level among the three kinds of cell lines. Results Positive rates of NANOG protein in glioma cell lines SHG-44,U87 MG and U251 in control groups were (65.5±3.0)%,(64.8±8.0)% and (64.5±1.2)%, respectively, and the difference was not statistically significant(F=0.190,P=0.829). NANOG mRNA of the three cell lines in the relative content were 0.636 8±0.039 9, 0.642 1±0.063 7, 0.651 6±0.044 4,and the difference was not statistically significant(F=0.427,P=0.662).However,5 days after application of ATRA-induced NANOG protein in the three cell lines,the positive rates of NANOG protein of experimental groups were (36.5±7.3)%,(35.5±7.9)%,(35.2±6.1)%,respectively,compared with the control groups,the differences were statistically significant (FSHG-44=259.1,FU87=129.5,FU251= 431.8,PSHG-44=0.0,PU87=0.0,PU251=0.0),and the relative level of NANOG mRNA in these groups were 0.458 3±0.079 1,0.255 1±0.079 3 and 0.333 1±0.054 0,respectively,compared with the control groups,the difference was significant(FSHG-44=77.8,FU87=277.9,FU251=398.1,PSHG-44=0.0,PU87=0.0,PU251=0.0).Conclusion NANOG which highly expressed in glioma cell line SHG-44,U87 MG and U251 can be reduced by ATRA.

  16. CacyBP/SIP inhibits Doxourbicin-induced apoptosis of glioma cells due to activation of ERK1/2.

    Science.gov (United States)

    Tang, Yuan; Zhan, Wenjian; Cao, Tong; Tang, Tianjin; Gao, Yong; Qiu, Zhichao; Fu, Chunling; Qian, Fengyuan; Yu, Rutong; Shi, Hengliang

    2016-03-01

    Calcyclin-binding protein or Siah-1-interacting protein (CacyBP/SIP) was previously reported to promote the proliferation of glioma cells. However, the effect of CacyBP/SIP on apoptosis of glioma is poorly understood. Here, our study shows that CacyBP/SIP plays a role in inhibiting doxorubicin (DOX) induced apoptosis of glioma cells U251 and U87. Overexpression of CacyBP/SIP obviously suppressed the DOX-induced cell apoptosis. On the contrary, silencing of CacyBP/SIP significantly promoted it. Further investigation indicated that inhibition of apoptosis by CacyBP/SIP was relevant to its nuclear translocation in response to the DOX treatment. Importantly, we found that the level of p-ERK1/2 in nuclei was related to the nuclear accumulation of CacyBP/SIP. Finally, the role of CacyBP/SIP was confirmed in vivo in a mouse model with the cell line stably silencing CacyBP/SIP. Taken together, our results suggest that CacyBP/SIP plays an important role in inhibiting apoptosis of glioma cells which might be mediated by ERK1/2 signaling pathway, which will provide some guidance for the treatment of glioma. PMID:26825673

  17. The Cytotoxic Effect of Small and Large Molecules of PMF Fraction Extracted from Camel Urine on Cancer Cells

    KAUST Repository

    Khorshid, Faten

    2015-01-10

    Aim of the work: Animal urine, including that of camels, has long been used for the therapeutic management of human ailments. In this study, we sought to characterize the cytotoxic properties of newly derived purified fractions from previously described camel urine extract (PMF) on various cancer cell lines. Methodology: Two new size dissimilar fractions of PMF (large and small) were obtained by fractionalizing PMF using 3kD and 50kD membrane filters. A SRB cytotoxicity assay of the PMF fractions was performed on cancer cell lines (A549, HCT116, HepG2, MCF-7, U251 and Hela) as well as normal cell lines (human fibroblast cell line and Vero). Results: This study showed that the newly derived and more purified fraction of PMF (new PMF) possesses effective and selective anti-cancer properties against several types of cancer cell lines. Conclusion: This study, as well as previous ones, suggests that camel urine extracts (old and new PMF) may provide newer therapeutic alternatives to clinically manage cancer patients. However, further studies are needed to verify these positive preliminary results.

  18. Inhibition of STAT3 reduces astrocytoma cell invasion and constitutive activation of STAT3 predicts poor prognosis in human astrocytoma.

    Directory of Open Access Journals (Sweden)

    Qinchuan Liang

    Full Text Available Astrocytoma cells characteristically possess high invasion potentials. Recent studies have revealed that knockdown of signal transducers and activators of transcription 3 (STAT3 expression by RNAi induces apoptosis in astrocytoma cell. Nevertheless, the distinct roles of STAT3 in astrocytoma's invasion and recurrence have not been elucidated. In this study, we silenced STAT3 using Small interfering RNAs in two human glioblastoma multiforme (GBM cell lines (U251 and U87, and investigated the effect on GBM cell adhesion and invasion. Our results demonstrate that disruption of STAT3 inhibits GBM cell's adhesion and invasion. Knockdown of STAT3 significantly increased E-cadherin but decreased N-cadherin, vascular endothelial growth factor, matrix metalloproteinase 2 and matrix metalloproteinase 9. Additionally, expression of pSTAT3(Tyr705 correlates with astrocytoma WHO classification, Karnofsky performance status scale score, tumor recurrence and survival. Furthermore, pSTAT3(Tyr705 is a significant prognostic factor in astrocytoma. In conclusion, STAT3 may affect astrocytoma invasion, expression of pSTAT3(Tyr705 is a significant prognostic factor in tumor recurrence and overall survival in astrocytoma patients. Therefore, STAT3 may provide a potential target for molecular therapy in human astrocytoma, and pSTAT3(Tyr705could be an important biomarker for astrocytoma prognosis.

  19. The Study of Saw Palmetto Extract on the Effect of Glioma Cell Apoptosis and Expression of PI3K Protein%锯叶棕提取物对人脑胶质瘤细胞凋亡和PI3K蛋白表达影响的研究

    Institute of Scientific and Technical Information of China (English)

    侯率; 杨姝; 王元元; 吕回; 车玉琴

    2014-01-01

    Objective To observe the effect of saw palmetto extract on glioma cell apoptosis and the influence of PI3K in glioma cells through the intervention of saw palmetto on glioma cell. Methods U251 cells are cultured in vitro, pre-treatment with saw palmetto extract, to detect the cell apoptosis by TUNEL method, to detect the changes of the expression of PI3K by Western blot. Results 1.TUNEL method staining to detect the effect of saw palmetto extract on glioma cell apoptosis. (1)Both 24 h and 48 h time point see TUNEL positive cells (apoptotic cells), cell body narrow, irregular, nucleus condensation stain, showed brown yellow or brown, 48 h and 24 h compare, the number of apoptotic cells significantly increased in 1.5μL/mL group (P<0.01);(2)24 h and 48 h time point occasionally see apoptotic cells in the control group, the same time 1.5μL/mL and 2.0μL/mL group, number of apoptotic cells significantly increased (P<0.01). 2.The effect of saw palmetto extract on glioma cell of expression of PI3K protein by Wersten Blot method. Saw palmetto preconditioning, compared with control group, expression of PI3K protein levels were significantly decreased (P<0.01). Conclusion Saw palmetto extract induced apoptosis in glioma cells. Saw Palmetto by blocking PI3K/Akt Signal Transduction Pathways can induce the glioma cell apoptosis.%目的:通过锯叶棕提取物对人脑胶质瘤细胞的干预,观察人脑胶质瘤细胞中细胞凋亡和PI3K蛋白表达的变化。方法体外培养U251细胞,应用锯叶棕提取物进行预处理,应用TUNEL法检测细胞凋亡,应用Western Blot法检测PI3K蛋白表达水平的变化。结果TUNEL法染色检测锯叶棕提取物对人脑胶质瘤细胞凋亡的影响,24 h与48 h均可见TUNEL阳性反应细胞即凋亡细胞,胞体缩小,形态不规则,胞核固缩浓染,呈棕黄色或棕褐色;1.5μL/mL组48 h与24 h比较,凋亡数量显著增多(P<0.01);对照组24 h与48 h偶见凋亡细胞,2.0

  20. Peripheral blood-derived, γ9δ2 t cell-enriched cell lines from glioblastoma multiforme patients exert anti-tumoral effects in vitro.

    Science.gov (United States)

    Marcu-Malina, V; Garelick, D; Peshes-Yeloz, N; Wohl, A; Zach, L; Nagar, M; Amariglio, N; Besser, M J; Cohen, Z R; Bank, I

    2016-01-01

    The goal of this work was to assess the potential of T cells expressing Vγ9Vδ2+ T cell receptors (TCR, γ9δ2T cells) present in peripheral blood (PB) m ononuclear cells (MC, PBMC) of glioblastoma multiforme (GBM) patients to act as anti-tumoral agents. We found that γ9δ2T cell levels were decreased in patients' PB relative to a cohort of healthy donors (HD) (respectively 0.52±0.55%, n=16, vs 1.12±0.6%, n=14, p=0.008) but did not significantly correlate with postoperative survival (R=0.6, p=0.063). Importantly, however, the γ9δ2T cells could be expanded in vitro to consist 51±23% of the cultured lymphocytes (98% CD3+). This was achieved after 14 days of culture in medium containing the amino-bisphosphonate (ABP) Zoledronate (Zol) and interleukin (IL)-2, resulting in γ9δ2T cell-enriched lines (gdTCEL) similar to those of HD derived gdTCEL (54±19%). Moreover, gdTCEL from patients and HD mediated cytotoxicity to GBM-derived cell lines (GBMDCL), which was abrogated by immune-magnetic removal of the γ9δ2T cells. Furthermore, low level interferon (IFN) γ secretion was induced by gdTCEL briefly co-cultured with GBMDCL or autologous - tumor-derived cells, which was greatly amplified in the presence of Zol. Importantly, IFNγ secretion was inhibited by mevastatin but enhanced by cross-linking of butyrophilin 3A1 (CD277) on a CD277+ GBMDCL (U251MG) or by pretreatment of GBMDCL with temozolomide (TMZ). Taken together, these data suggest that γ9δ2T cells in PB of GBM patients can give rise to gdTCEL that mediate anti-tumoral activities. PMID:27049073

  1. Infrasound sensitizes human glioblastoma cells to cisplatin-induced apoptosis.

    Science.gov (United States)

    Rachlin, Kenneth; Moore, Dan H; Yount, Garret

    2013-11-01

    The development of nontoxic agents that can selectively enhance the cytotoxicity of chemotherapy is an important aim in oncology. This study evaluates the ability of infrasound exposure to sensitize glioblastoma cells to cisplatin-induced apoptosis. The infrasound was delivered using a device designed to replicate the unique infrasound emissions measured during external Qigong treatments. Human glioblastoma cell lines harboring wild-type p53 (U87) or mutant p53 (U251, SF210, and SF188) were treated in culture with cisplatin, infrasound emissions, or the combination of the 2 agents. Induction of apoptosis was quantified after 24 hours by flow cytometry following annexin V/propidium iodide staining. Infrasound emissions alone, delivered at moderate levels (~10 mPa) with dynamic frequency content (7-13 Hz), did not induce apoptosis, yet combining infrasound with cisplatin augmented the induction of apoptosis by cisplatin in all the 4 cell lines (P infrasound exposure was quantified by fluorescence microscopy as well as flow cytometry, demonstrating increased cell membrane permeability. The 4 cell lines differed in the degree to which infrasound exposure increased calcein uptake, and these differences were predictive of the extent to which infrasound enhanced cisplatin-induced apoptosis. When exposed to specific frequencies, membrane permeabilization also appeared to be differentially responsive for each cell line, suggesting the potential for selective targeting of tissue types using isolated infrasonic frequencies. Additionally, the pressure amplitudes used in this study were several orders of magnitude less than those used in similar studies involving ultrasound and shock waves. The results of this study provide support for using infrasound to enhance the chemotherapeutic effects of cisplatin in a clinical setting. PMID:23165942

  2. 脑胶质瘤细胞体外促进人骨髓间充质干细胞肿瘤相关基因表达%Glioma cells promote expression of cancer-related genes in human bone marrow-derived mesenchymal stromal cells in vitro

    Institute of Scientific and Technical Information of China (English)

    朱汝森; 许成杰; 兰柳波; 陈兴贵; 梁远生; 尹延庆

    2016-01-01

    Objective We investigated the expression profile of cancer related genes in hMSCs co-cultured with U251 glioma cells, to evaluate the risk of malignant transformation of hMSCs in glioma environment. Methods hMSCs were co-cultured with U251 glioma cells for 5 days and the expression profile of cancer-related genes were investigated by using microarray assay, followed by Real-time quantitative RT-PCR and Western blot. Results Of the 440 cancer-re⁃lated genes covered by Oligo GEArray Human Cancer Microarray OHS-802, SPINT2, TK1, STC1, MMP1, CCND1, SORT1, SEPT6, CDC20, SHB, CDK5, RELA, XRCC4, KIT, CTPS, CAPNS1 and ETV6 were significantly upregulated (>3-fold) whereas none was downregulated in hMSCs co-cultured with U251 glioma cells. The upregulation of oncogenes KIT, CAPNS1, TK1, MMP1, CCND1, CDC20, RELA and STC1 in co-cultured hMSCs were confirmed by Real-time quan⁃ titative RT-PCR. The upregulation of protein expression of oncogenes KIT, MMP1, CCND1 and RELA were detected by Western blot. Conclusion The present study demonstrates that co-culture of hMSCs with human glioma cells leads to up⁃regulation of some important oncogenes in hMSCs, indicating the tumorigenic potential of hMSCs in glioma environment.%目的:观察与人脑胶质瘤细胞共培养后的人骨髓间充质干细胞(human bone marrow-derived mesen⁃chymal stromal cells,hMSCs)中肿瘤相关基因表达的变化,初步评估hMSCs在人脑胶质瘤环境中的生物安全性在致瘤性方面的风险。方法将hMSCs与人脑胶质瘤细胞U251于体外共同培养5d后,通过肿瘤基因芯片、实时定量RT-PCR及Western-blot实验检测hMSCs中肿瘤相关基因表达水平的变化。结果基因芯片结果显示,与单独培养的 hMSCs 对比,与人脑胶质瘤细胞 U251共同培养后的 hMSCs 中存在 SPINT2、TK1、STC1、MMP1、CCND1、SORT1、SEPT6、CDC20、SHB、CDK5、RELA、XRCC4、KIT、CTPS、CAPNS1及ETV6等16个肿瘤相关

  3. Segetoside I, a plant-derived bisdesmosidic saponin, induces apoptosis in human hepatoma cells in vitro and inhibits tumor growth in vivo.

    Science.gov (United States)

    Firempong, Caleb Kesse; Zhang, Hui Yun; Wang, Yan; Chen, Jingjing; Cao, Xia; Deng, Wenwen; Zhou, Jie; Wang, Qiang; Tong, Shan-Shan; Yu, Jiangnan; Xu, Ximing

    2016-08-01

    Segetoside I is a plant-derived bisdesmosidic saponin from Vaccaria segetalis (Neck) with reported anticancer activities. This development has raised an interest in the therapeutic potential of segetoside I. Here, we report the in vitro and in vivo antitumor activities of segetoside I against some selected cancer cell lines (HepG2, human hepatoma; H22, mouse hepatoma; MCF-7, breast cancer; U251, gliocoma; BGC, HGC & SGC, gastric cancinoma; Lovo-1,colon cancer). MTT bioassay analysis showed that HepG2 cells were the most sensitive to segetoside I compared with other cancer cell lines, with lower toxicity in healthy mouse embryonic fibroblast cells. Segetoside I pretreatment of HepG2 resulted in apoptotic induction, dose-dependent DNA fragmentation, inhibition of cell migration, up-regulation of Bax and down-regulation of Bcl-2, which indicated that an apoptotic signaling event could have been initiated. The segetoside I also suppressed hepato-tumour growth in mice with virtually no cytotoxicity and prolonged animal survival, making it a strong oncology drug agent. These findings showed that segetoside I exhibited its antitumor activity via apoptotic induction and significantly support the possible application of the antitumor agent as a potential chemotherapeutic candidate worthy of further investigations. PMID:27180010

  4. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    International Nuclear Information System (INIS)

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation

  5. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaopeng; Du, Jie; Hua, Song; Zhang, Haowen; Gu, Cheng; Wang, Jie; Yang, Lei; Huang, Jianfeng; Yu, Jiahua, E-mail: yujiahua@suda.edu.cn; Liu, Fenju, E-mail: fangsh@suda.edu.cn

    2015-01-15

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.

  6. Chimeric Mouse model to track the migration of bone marrow derived cells in glioblastoma following anti-angiogenic treatments.

    Science.gov (United States)

    Achyut, B R; Shankar, Adarsh; Iskander, A S M; Ara, Roxan; Knight, Robert A; Scicli, Alfonso G; Arbab, Ali S

    2016-03-01

    Bone marrow derived cells (BMDCs) have been shown to contribute in the tumor development. In vivo animal models to investigate the role of BMDCs in tumor development are poorly explored. We established a novel chimeric mouse model using as low as 5 × 10(6) GFP+ BM cells in athymic nude mice, which resulted in >70% engraftment within 14 d. In addition, chimera was established in NOD-SCID mice, which displayed >70% with in 28 d. Since anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in glioblastoma (GBM), which resulted into marked hypoxia and recruited BMDCs to the tumor microenvironment (TME). We exploited chimeric mice in athymic nude background to develop orthotopic U251 tumor and tested receptor tyrosine kinase inhibitors and CXCR4 antagonist against GBM. We were able to track GFP+ BMDCs in the tumor brain using highly sensitive multispectral optical imaging instrument. Increased tumor growth associated with the infiltration of GFP+ BMDCs acquiring suppressive myeloid and endothelial phenotypes was seen in TME following treatments. Immunofluorescence study showed GFP+ cells accumulated at the site of VEGF, SDF1 and PDGF expression, and at the periphery of the tumors following treatments. In conclusion, we developed a preclinical chimeric model of GBM and phenotypes of tumor infiltrated BMDCs were investigated in context of AATs. Chimeric mouse model could be used to study detailed cellular and molecular mechanisms of interaction of BMDCs and TME in cancer. PMID:26797476

  7. A preliminary investigation into the impact of a pesticide combination on human neuronal and glial cell lines in vitro.

    Directory of Open Access Journals (Sweden)

    Michael D Coleman

    Full Text Available Many pesticides are used increasingly in combinations during crop protection and their stability ensures the presence of such combinations in foodstuffs. The effects of three fungicides, pyrimethanil, cyprodinil and fludioxonil, were investigated together and separately on U251 and SH-SY5Y cells, which can be representative of human CNS glial and neuronal cells respectively. Over 48h, all three agents showed significant reductions in cellular ATP, at concentrations that were more than tenfold lower than those which significantly impaired cellular viability. The effects on energy metabolism were reflected in their marked toxic effects on mitochondrial membrane potential. In addition, evidence of oxidative stress was seen in terms of a fall in cellular thiols coupled with increases in the expression of enzymes associated with reactive species formation, such as GSH peroxidase and superoxide dismutase. The glial cell line showed significant responsiveness to the toxin challenge in terms of changes in antioxidant gene expression, although the neuronal SH-SY5Y line exhibited greater vulnerability to toxicity, which was reflected in significant increases in caspase-3 expression, which is indicative of the initiation of apoptosis. Cyprodinil was the most toxic agent individually, although oxidative stress-related enzyme gene expression increases appeared to demonstrate some degree of synergy in the presence of the combination of agents. This report suggests that the impact of some pesticides, both individually and in combinations, merits further study in terms of their impact on human cellular health.

  8. Induction of S-Phase Arrest in Human Glioma Cells by Selenocysteine, a Natural Selenium-Containing Agent Via Triggering Reactive Oxygen Species-Mediated DNA Damage and Modulating MAPKs and AKT Pathways.

    Science.gov (United States)

    Wang, Kun; Fu, Xiao-Ting; Li, Yuan; Hou, Ya-Jun; Yang, Ming-Feng; Sun, Jing-Yi; Yi, Shu-Ying; Fan, Cun-Dong; Fu, Xiao-Yan; Zhai, Jing; Sun, Bao-Liang

    2016-06-01

    Selenocysteine (SeC) a natural available selenoamino acid exhibits novel anticancer activities against human cancer cell lines. However, the growth inhibitory effect and mechanism of SeC in human glioma cells remain unclear. The present study reveals that SeC time- and dose-dependently inhibited U251 and U87 human glioma cells growth by induction of S-phase cell cycle arrest, followed by the marked decrease of cyclin A. SeC-induced S-phase arrest was achieved by inducing DNA damage through triggering generation of reactive oxygen species (ROS) and superoxide anion, with concomitant increase of TUNEL-positive cells and induction of p21waf1/Cip1 and p53. SeC treatment also caused the activation of p38MAPK, JNK and ERK, and inactivation of AKT. Four inhibitors of MAPKs and AKT pathways further confirmed their roles in SeC-induced S-phase arrest in human glioma cells. Our findings advance the understanding on the molecular mechanisms of SeC in human glioma management. PMID:26846141

  9. Bone marrow derived myeloid cells orchestrate antiangiogenic resistance in glioblastoma through coordinated molecular networks.

    Science.gov (United States)

    Achyut, B R; Shankar, Adarsh; Iskander, A S M; Ara, Roxan; Angara, Kartik; Zeng, Peng; Knight, Robert A; Scicli, Alfonso G; Arbab, Ali S

    2015-12-28

    Glioblastoma (GBM) is a hypervascular and malignant form of brain tumors. Anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in clinical and preclinical studies, which resulted into marked hypoxia and recruited bone marrow derived cells (BMDCs) to the tumor microenvironment (TME). In vivo animal models to track BMDCs and investigate molecular mechanisms in AAT resistance are rare. We exploited recently established chimeric mouse to develop orthotopic U251 tumor, which uses as low as 5 × 10(6) GFP+ BM cells in athymic nude mice and engrafted >70% GFP+ cells within 14 days. Our unpublished data and published studies have indicated the involvement of immunosuppressive myeloid cells in therapeutic resistance in glioma. Similarly, in the present study, vatalanib significantly increased CD68+ myeloid cells, and CD133+, CD34+ and Tie2+ endothelial cell signatures. Therefore, we tested inhibition of CSF1R+ myeloid cells using GW2580 that reduced tumor growth by decreasing myeloid (Gr1+ CD11b+ and F4/80+) and angiogenic (CD202b+ and VEGFR2+) cell signatures in TME. CSF1R blockade significantly decreased inflammatory, proangiogenic and immunosuppressive molecular signatures compared to vehicle, vatalanib or combination. TCK1 or CXCL7, a potent chemoattractant and activator of neutrophils, was observed as most significantly decreased cytokine in CSF1R blockade. ERK MAPK pathway was involved in cytokine network regulation. In conclusion, present study confirmed the contribution of myeloid cells in GBM development and therapeutic resistance using chimeric mouse model. We identified novel molecular networks including CXCL7 chemokine as a promising target for future studies. Nonetheless, survival studies are required to assess the beneficial effect of CSF1R blockade. PMID:26404753

  10. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Bhanot Haymanti

    2011-06-01

    Full Text Available Abstract Background Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Results Here we describe a novel chalcone-like molecule, 3-(2-methyl-1H- indol-3-yl-1-(4-pyridinyl-2-propen-1-one (MIPP that induces cell death with the hallmarks of methuosis. MIPP causes rapid accumulation of vacuoles derived from macropinosomes, based on time-lapse microscopy and labeling with extracellular fluid phase tracers. Vacuolization can be blocked by the cholesterol-interacting compound, filipin, consistent with the origin of the vacuoles from non-clathrin endocytic compartments. Although the vacuoles rapidly acquire some characteristics of late endosomes (Rab7, LAMP1, they remain distinct from lysosomal and autophagosomal compartments, suggestive of a block at the late endosome/lysosome boundary. MIPP appears to target steps in the endosomal trafficking pathway involving Rab5 and Rab7, as evidenced by changes in the activation states of these GTPases. These effects are specific, as other GTPases (Rac1, Arf6 are unaffected by the compound. Cells treated with MIPP lose viability within 2-3 days, but their nuclei show no evidence of apoptotic changes. Inhibition of caspase activity does not protect the cells, consistent with a non-apoptotic death mechanism. U251 glioblastoma cells selected for temozolomide resistance showed sensitivity to MIPP-induced methuosis that was comparable to the parental cell line. Conclusions MIPP might serve as a prototype for new drugs that could be used to induce non-apoptotic death in cancers that have become refractory to agents that work through DNA damage and apoptotic mechanisms.

  11. ZEB2 mediates multiple pathways regulating cell proliferation, migration, invasion, and apoptosis in glioma.

    Directory of Open Access Journals (Sweden)

    Songtao Qi

    Full Text Available BACKGROUND: The aim of the present study was to analyze the expression of Zinc finger E-box Binding homeobox 2 (ZEB2 in glioma and to explore the molecular mechanisms of ZEB2 that regulate cell proliferation, migration, invasion, and apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: Expression of ZEB2 in 90 clinicopathologically characterized glioma patients was analyzed by immunohistochemistry. Furthermore, siRNA targeting ZEB2 was transfected into U251 and U87 glioma cell lines in vitro and proliferation, migration, invasion, and apoptosis were examined separately by MTT assay, Transwell chamber assay, flow cytometry, and western blot. RESULTS: The expression level of ZEB2 protein was significantly increased in glioma tissues compared to normal brain tissues (P<0.001. In addition, high levels of ZEB2 protein were positively correlated with pathology grade classification (P = 0.024 of glioma patients. Knockdown of ZEB2 by siRNA suppressed cell proliferation, migration and invasion, as well as induced cell apoptosis in glioma cells. Furthermore, ZEB2 downregulation was accompanied by decreased expression of CDK4/6, Cyclin D1, Cyclin E, E2F1, and c-myc, while p15 and p21 were upregulated. Lowered expression of ZEB2 enhanced E-cadherin levels but also inhibited β-Catenin, Vimentin, N-cadherin, and Snail expression. Several apoptosis-related regulators such as Caspase-3, Caspase-6, Caspase-9, and Cleaved-PARP were activated while PARP was inhibited after ZEB2 siRNA treatment. CONCLUSION: Overexpression of ZEB2 is an unfavorable factor that may facilitate glioma progression. Knockdown ZEB2 expression by siRNA suppressed cell proliferation, migration, invasion and promoted cell apoptosis in glioma cells.

  12. Impact of flattening-filter-free radiation on the clonogenic survival of astrocytic cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Steenken, Caroline; Fleckenstein, Jens; Kegel, Stefan; Jahnke, Lennart; Simeonova, Anna; Hartmann, Linda; Kuebler, Jens; Veldwijk, Marlon R.; Wenz, Frederik; Herskind, Carsten; Giordano, Frank Anton [Universitaetsmedizin Mannheim (UMM), Medical Faculty Mannheim, Heidelberg University, Department of Radiation Oncology, Mannheim (Germany)

    2015-07-15

    Flattening-filter-free (FFF) beams are increasingly used in radiotherapy as delivery times can be substantially reduced. However, the relative biologic effectiveness (RBE) of FFF may be increased relative to conventional flattened (FLAT) beams due to differences in energy spectra. Therefore, we investigated the effects of FFF and FLAT beams on the clonogenic survival of astrocytoma cells. Three cell lines (U251, U251-MGMT, and U87) were irradiated with 6-MV and 10-MV X-rays from a linear accelerator in FFF- or FLAT-beam modes at dose rates in the range of 0.5-24 Gy/min. The surviving fraction (SF) as function of dose (2-12 Gy) was determined by the colony formation assay and fitted by the linear-quadratic model. For both beams (FFF or FLAT), the cells were pelleted in conical 15-ml centrifuge tubes and irradiated at 2-cm depth in a 1 x 1-cm{sup 2} area on the central axis of a 30 x 30-cm{sup 2} field. Dosimetry was performed with a 0.3-cm{sup 3} rigid ionization chamber. RBE was determined for FFF versus FLAT irradiation. The RBE of FFF at 7.3-11.3 Gy was 1.027 ± 0.013 and 1.063 ± 0.018 relative to FLAT beams for 6- and 10-MV beams, respectively, and was only significantly higher than 1 for 10 MV. Significantly increased survival rates were seen for lower dose rates (0.5 Gy/min FLAT vs. 5 Gy/min FLAT) at higher doses (11.9 Gy), while no differences were seen at dose rates ≥ 1.4 Gy/min (1.4 Gy/min FFF vs. 14 Gy/min FFF and 2.4 Gy/min FFF vs. 24 Gy/min FFF). FFF beams showed only a slightly increased RBE relative to FLAT beams in this experimental set-up, which is unlikely to result in clinically relevant differences in outcome. (orig.) [German] Die Flattening-Filter-freie (FFF) Bestrahlungstechnik findet zunehmend Verwendung, da sich die Applikationsdauer der einzelnen Fraktionen deutlich verkuerzen laesst. Aufgrund der Unterschiede im Spektrum koennte die relative biologische Wirksamkeit (RBW) von FFF jedoch hoeher sein als bei konventioneller Technik (d.h. bei

  13. MiR-218 Inhibited Growth and Metabolism of Human Glioblastoma Cells by Directly Targeting E2F2.

    Science.gov (United States)

    Zhang, Yaxuan; Han, Dongfeng; Wei, Wenjin; Cao, Wenping; Zhang, Rui; Dong, Qingsheng; Zhang, Junxia; Wang, Yingyi; Liu, Ning

    2015-11-01

    In recent years, microRNA has become a hotspot in research on diseases, especially in the initiation and progression of different types of cancer. In this study, we found that miR-218 could inhibit growth and metabolism in gliomas by directly targeting E2F2. First, we obtained data from the Chinese Glioma Genome Atlas (CGGA) database to analyze miR-218 expression in different grades of gliomas. The effects of miR-218 on cell cycle progression and cell proliferation in U87 and U251 cell lines were investigated by flow cytometry, specifically CCK8 assay and tablet cloning, respectively. Glucose consumption and lactate production of glioma cell lines were measured by correlative test kits. Furthermore, we used Western blot analysis and luciferase reporter assay to identify the direct and functional target of miR-218. Data from the CGGA database and real-time quantitative reverse transcription-PCR demonstrated that miR-218 was obviously reduced in human glioblastoma tissues, as well as in the cell lines. When miR-218 level was elevated in vitro, cell cycle progression was arrested in the G1 phase, and cell proliferation was dramatically inhibited. Both glucose consumption and lactate production of glioma cells were significantly reduced. Western blot analysis and luciferase reporter assay revealed that E2F2 was a direct target of miR-218 in glioma cells. This investigation demonstrated that elevated E2F2 expression could partly weaken the effect of miR-218 in vitro. This study also showed that miR-218 may be a repressor in glioma by directly targeting E2F2, as well as a potential therapeutic target in gliomas. PMID:26012781

  14. Disruption of Parallel and Converging Signaling Pathways Contributes to the Synergistic Antitumor Effects of Simultaneous mTOR and EGFR Inhibition in GBM Cells

    Directory of Open Access Journals (Sweden)

    Ravi D. Rao

    2005-10-01

    Full Text Available Elevated epidermal growth factor receptor (EGFR and mammalian target of rapamycin (mTOR signaling are known to contribute to the malignant properties of glioblastoma multiforme (GBM, which include uncontrolled cell proliferation and evasion of apoptosis. Small molecule inhibitors that target these protein kinases have been evaluated in multiple clinical trials for cancer patients, including those with GBM. Here we have examined the cellular and molecular effects of a combined kinase inhibition of mTOR (rapamycin and EGFR (EKI-785 in U87 and U251 GBM cells. Simultaneous treatment with rapamycin and EKI-785 results in synergistic antiproliferative as well as proapoptotic effects. At a molecular level, rapamycin alone significantly decreases S6 phosphorylation, whereas EKI-785 alone promotes substantially reduced signal transducer and activator of transcription (STAT3 phosphorylation. Treatment with rapamycin alone also increases Akt phosphorylation on Ser-473, but this effect is blocked by a simultaneous administration of EKI-785. Individually, EKI-785 diminishes while rapamycin promotes the binding of the translation inhibitor eukaryotic initiation factor 4E binding protein (4EBP1 to the eukaryotic translation initiation factor 4E (eIF4E. In spite of these opposing effects, the highest level of 4EBP1-eIF4E binding occurs with the combination of the two inhibitors. These results indicate that the inhibition of EGFR and mTOR has distinct as well as common signaling consequences and provides a molecular rationale forthe synergistic antitumor effects of EKI-785 and rapamycin administration.

  15. Efectos citotoxicos in vitro de extractos y fracciones de Espeletia killipii Cuatr. frente a lineas celulares tumorales humanos Efeitos citotóxicos in vitro de extratos e frações de Espeletia killipii Cuatr. frente a linhas celulares tumorais humanas In vitro cytotoxic effects of extract and fractions of Espeletia killipii Cuatr. against human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Alba N. Téllez Alfonso

    2006-03-01

    Full Text Available O extrato etanólico e as frações de Espeletia killipii (espécie endêmica da vegetação dos páramos do altiplano Cundiboyacense; mostraram atividade citotóxica significativa in vitro nas linhagens celulares tumorais humanas de câncer de mama MCF-7, CSC-1170, CSC-1595, CSC-3322, CSC-3325 e na linhagem Hep-2 de laringe. A fração CH2Cl2 e suas sub-frações foram ativas contra as linhagens celulares cancerígenas de mama na concentração de 50 µg/mL, obtendo-se percentagens de viabilidade entre 13 e 20%. O principio ativo ainda não identificado foi obtido por ensaios bioguiados sucessivos e apresentou valores de Concentração Citotóxica media (CC50 menores que 1 µg/mL para as linhagens celulares colombianas CSC-1170, CSC-1595, CSC-3322 e CSC-3325; CC50 = 1 µg/mL contra MDA MB 435 e NCl-H23; contra MCF-7 uma CC50 = 2 µg/mL e uma CC50 superior a 16 µg/mL contra PC-3 e U-251.It was found that the ethanol extracts and fractions of Espeletia killipii (an endemic species of the páramo vegetation of the Cundiboyacense plateau exhibited cytotoxic activity against several human tumor cell lines. Thus, the extracts and fractions exhibited significant cytotoxic activity against both the human tumor cell lines of breast cancer MCF-7, CSC-1170, CSC-1595, CSC-3322, CSC-3325 and the Hep-2 cell lines of laryns. The CH2Cl2 fraction and its sub-fractions were active against the breast lines at concentration of 50 µg/mL, with a viability percentage between 13 and 20%. The active principle, not identified yet, was obtained by successive bio-directed assays. It showed activity against the Colombian cell lines CSC-1170, CSC-1595, CSC-3322 and CSC-3325 at a half Cytotoxic Concentration (CC50 less than 1 µg/mL, against MDA MB-435 and NCI-H23 at CC50= 1 µg/mL against MCF-7 at CC50= 2 µg/mL, and against PC-3 and U-251 at CC50 greater than 16 µg/mL.

  16. OP33GLYCOGEN SYNTHASE KINASE INHIBITORS REDUCE 3D MIGRATION OF PATIENT DERIVED GLIOBLASTOMA MULTIFORME STEM CELLS

    Science.gov (United States)

    Tams, Daniel M.; Murray, Clare; Barry, Simon T.; Lawler, Sean; Bruning-Richardson, Anke; Short, Susan

    2014-01-01

    INTRODUCTION: Glioblastoma multiforme (GBM) is a fast growing, highly invasive malignant brain tumour. Inhibition of tumour cell migration into normal brain tissue represents a major target for treatment. Glycogen synthase kinase (GSK-3) inhibition has been associated with reduced GBM invasion in in vitro and in vivo models. Targeting this pathway with established and/or novel drugs may elucidate more effective treatment combinations. METHOD: The effect of GSK-3 inhibitors BIO, AZD2858, AZ1293 and AZ1080 on GBM migration was assessed in patient derived GBM stem cells (GBM-1) and two established cell lines (U251 and U87) using a 3D collagen based assay. Multiple drug concentrations were investigated with up to 72 hours exposure. A migration index was determined using aggregate core size and cell migration area. Immunohistochemistry and immunocytochemistry were used to assess cell morphology and cytoskeletal changes. RESULTS: All compounds inhibit migration in this model. AZD2858 was the most potent, causing significant effects at 1 micro molar. All compounds were cytotoxic at between 10 and 20 micro molar. Cytoskeletal and nuclear abnormalities were noted following drug exposure in all cell lines. These data suggest that possible mechanisms for the anti-migratory effect of these compounds include effects on F-actin localization and microtubule polarity. Inhibition of migration and cell architecture changes occurred at non-toxic doses. CONCLUSION: Inhibition of GSK3 significantly reduced migration of this highly invasive tumour. It is evident from these data that inhibiting the complex biological mechanisms driven by GSK3 may aid treatment of GBM through a number of different mechanisms.

  17. Differential biodistribution of intravenously administered endothelial progenitor and cytotoxic T-cells in rat bearing orthotopic human glioma

    International Nuclear Information System (INIS)

    A major challenge in the development of cell based therapies for glioma is to deliver optimal number of cells (therapeutic dose) to the tumor. Imaging tools such as magnetic resonance imaging (MRI), optical imaging, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) has been used in cell tracking and/or biodistribution studies. In this study, we evaluate the dynamic biodistribution of systemic injected labeled cells [human cord blood derived endothelial progenitor cells (EPCs) and cytotoxic T-cells (CTLs)] in rat glioma model with in vivo SPECT imaging. Human cord blood EPCs, T-cells and CD14+ cells (monocytes/dendritic cells) were isolated using the MidiMACS system. CD14+ cells were converted to dendritic cells (DC) and also primed with U251 tumor cell line lysate. T-cells were co-cultured with irradiated primed DCs at 10:1 ratio to make CTLs. Both EPCs and CTLs were labeled with In-111-oxine at 37°C in serum free DMEM media. Glioma bearing animals were randomly assigned into three groups. In-111 labeled cells or In-111 oxine alone were injected through tail vein and SPECT imaging was performed on day 0, 1, and 3. In-111 oxine activity in various organs and tumor area was determined. Histochemical analysis was performed to further confirm the migration and homing of injected cells at the tumor site. EPCs and CTLs showed an In-111 labeling efficiency of 87.06 ± 7.75% and 70.8 ± 12.9% respectively. Initially cell migration was observed in lung following inravenous administration of In-111 labeled cells and decreased on day 1 and 3, which indicate re-distribution of labeled cells from lung to other organs. Relatively higher In-111 oxine activity was observed in tumor areas at 24 hours in animals received In-111 labeled cells (EPCs or CTLs). Histiological analysis revealed iron positive cells in and around the tumor area in animals that received labeled cells (CTLs and EPCs). We observed differential biodistribution of In-111

  18. Quantification of cell surface receptor expression in live tissue culture media using a dual-tracer stain and rinse approach

    Science.gov (United States)

    Xu, Xiaochun; Sinha, Lagnojita; Singh, Aparna; Yang, Cynthia; Xiang, Jialing; Tichauer, Kenneth M.

    2015-03-01

    Immunofluorescence staining is a robust way to visualize the distribution of targeted biomolecules invasively in in fixed tissues and tissue culture. Despite the fact that these methods has been a well-established method in fixed tissue imaging for over 70 years, quantification of receptor concentration still simply assumes that the signal from the targeted fluorescent marker after incubation and sufficient rinsing is directly proportional to the concentration of targeted biomolecules, thus neglecting the experimental inconsistencies in incubation and rinsing procedures and assuming no, nonspecific binding of the fluorescent markers. This work presents the first imaging approach capable of quantifying the concentration of cell surface receptor on cancer cells grown in vitro based on compartment modeling in a nondestructive way. The approach utilizes a dual-tracer protocol where any non-specific retention or variability in incubation and rinsing of a receptor-targeted imaging agent is corrected by simultaneously imaging the retention of a chemically similar, "untargeted" imaging agent. Various different compartment models were used to analyze the data in order to find the optimal procedure for extracting estimates of epidermal growth factor receptor (EGFR) concentration (a receptor overexpressed in many cancers and a key target for emerging molecular therapies) in tissue cultures with varying concentrations of human glioma cells (U251). Preliminary results demonstrated a need to model nonspecific binding of both the targeted and untargeted imaging agents used. The approach could be used to carry out the first repeated measures of cell surface receptor dynamics during 3D tumor mass development, in addition to the receptor response to therapies.

  19. miR-150-5p and miR-133a suppress glioma cell proliferation and migration through targeting membrane-type-1 matrix metalloproteinase.

    Science.gov (United States)

    Sakr, Moustafa; Takino, Takahisa; Sabit, Hemragul; Nakada, Mitsutoshi; Li, Zichen; Sato, Hiroshi

    2016-08-10

    Gliomas are the most frequent primary tumors of the brain, and there is no successful treatment for highly malignant gliomas. MicroRNAs (miRNAs) are involved in a variety of biological processes. Recent studies showed that miR-150-5p and miR-133a are downregulated in various human malignancies, and one of target mRNAs was shown to be membrane-type 1 matrix metalloproteinase (MT1-MMP) mRNA. However, their detailed role in the processes of cancer remains to be determined. Here we found that miR-150-5p and miR-133a expression was significantly downregulated in glioma tissues compared with normal tissues, and that MT1-MMP expression was inversely upregulated in glioma tissues. Knockdown of MT1-MMP by specific siRNAs in U87 and U251 glioma cells induced suppression of cell proliferation and invasion/migration. Transfection of miR-150-5p or miR-133a mimics into glioma cell lines reduced MT1-MMP expression and MMP-2 activation by these cells, and cell proliferation and invasion/migration were also suppressed by it. Co-transfection of specific inhibitor oligo DNA for miR-150-5p or miR-133a abrogated miR-150-5p or miR-133a mimic's actions, respectively. These results suggest that miR-150-5p and miR-133a may suppress malignancy of gliomas by targeting MT1-MMP, and could be used as an anti-metastatic therapy for glioma patients. PMID:27154818

  20. A novel bispecific immunotoxin delivered by human bone marrow-derived mesenchymal stem cells to target blood vessels and vasculogenic mimicry of malignant gliomas

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2015-06-01

    Full Text Available Yonghong Zhang,1,2 Xinlin Sun,1 Min Huang,1 Yiquan Ke,1 Jihui Wang,1 Xiao Liu1 1National Key Clinic Specialty, Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 2Department of Neurosurgery, First Hospital of Lanzhou University, Lanzhou, People’s Republic of China Background: In previous years, immunotoxins have been shown to be a greatly promising therapeutic tool for brain malignancies, such as gliomas. Human mesenchymal stem cells (hMSCs exhibit tropism to tumor tissue. However, the effect of bispecific immunotoxins in malignant gliomas is still unknown. The aim of this study was to investigate the function of bispecific immunotoxins in human malignant gliomas.Materials and methods: In the present study, the bispecific immunotoxin VEGF165-ephrin A1-PE38KDEL was established using deoxyribonucleic acid shuffling and cloning techniques. The VEGF165-ephrin A1-PE38KDEL was delivered by hMSCs to mouse malignant gliomas. The effects of the bispecific immunotoxins on glioma-derived blood vessels and vasculogenic mimicry to elucidate the molecular mechanisms underlying the antitumorigenic effects of immunotoxins were examined in vivo.Results: In vitro, transfected hMSCs significantly inhibited the cell viability of gliomas cell lines U87 and U251 in a dose-dependent manner compared with untransfected hMSCs (P<0.01. In vivo, the intratumoral injection of engineered hMSCs was effective at inhibiting tumor growth in a malignant glioma tumor model.Conclusion: The bispecific immunotoxin secreted from hMSCs acts as a novel strategy for improving treatment options for malignant gliomas in the clinic. Keywords: bispecific immunotoxin, human mesenchymal stem cells, ephrin A1, VEGF165, malignant glioma

  1. Enhancement of radiosensitivity in human glioblastoma cells by the DNA N-mustard alkylating agent BO-1051 through augmented and sustained DNA damage response

    Science.gov (United States)

    2011-01-01

    Background 1-{4-[Bis(2-chloroethyl)amino]phenyl}-3-[2-methyl-5-(4-methylacridin-9-ylamino)phenyl]urea (BO-1051) is an N-mustard DNA alkylating agent reported to exhibit antitumor activity. Here we further investigate the effects of this compound on radiation responses of human gliomas, which are notorious for the high resistance to radiotherapy. Methods The clonogenic assay was used to determine the IC50 and radiosensitivity of human glioma cell lines (U87MG, U251MG and GBM-3) following BO-1051. DNA histogram and propidium iodide-Annexin V staining were used to determine the cell cycle distribution and the apoptosis, respectively. DNA damage and repair state were determined by γ-H2AX foci, and mitotic catastrophe was measure using nuclear fragmentation. Xenograft tumors were measured with a caliper, and the survival rate was determined using Kaplan-Meier method. Results BO-1051 inhibited growth of human gliomas in a dose- and time-dependent manner. Using the dosage at IC50, BO-1051 significantly enhanced radiosensitivity to different extents [The sensitizer enhancement ratio was between 1.24 and 1.50 at 10% of survival fraction]. The radiosensitive G2/M population was raised by BO-1051, whereas apoptosis and mitotic catastrophe were not affected. γ-H2AX foci was greatly increased and sustained by combined BO-1051 and γ-rays, suggested that DNA damage or repair capacity was impaired during treatment. In vivo studies further demonstrated that BO-1051 enhanced the radiotherapeutic effects on GBM-3-beared xenograft tumors, by which the sensitizer enhancement ratio was 1.97. The survival rate of treated mice was also increased accordingly. Conclusions These results indicate that BO-1051 can effectively enhance glioma cell radiosensitivity in vitro and in vivo. It suggests that BO-1051 is a potent radiosensitizer for treating human glioma cells. PMID:21244709

  2. Enhancement of radiosensitivity in human glioblastoma cells by the DNA N-mustard alkylating agent BO-1051 through augmented and sustained DNA damage response

    Directory of Open Access Journals (Sweden)

    Chen Ming-Teh

    2011-01-01

    Full Text Available Abstract Background 1-{4-[Bis(2-chloroethylamino]phenyl}-3-[2-methyl-5-(4-methylacridin-9-ylaminophenyl]urea (BO-1051 is an N-mustard DNA alkylating agent reported to exhibit antitumor activity. Here we further investigate the effects of this compound on radiation responses of human gliomas, which are notorious for the high resistance to radiotherapy. Methods The clonogenic assay was used to determine the IC50 and radiosensitivity of human glioma cell lines (U87MG, U251MG and GBM-3 following BO-1051. DNA histogram and propidium iodide-Annexin V staining were used to determine the cell cycle distribution and the apoptosis, respectively. DNA damage and repair state were determined by γ-H2AX foci, and mitotic catastrophe was measure using nuclear fragmentation. Xenograft tumors were measured with a caliper, and the survival rate was determined using Kaplan-Meier method. Results BO-1051 inhibited growth of human gliomas in a dose- and time-dependent manner. Using the dosage at IC50, BO-1051 significantly enhanced radiosensitivity to different extents [The sensitizer enhancement ratio was between 1.24 and 1.50 at 10% of survival fraction]. The radiosensitive G2/M population was raised by BO-1051, whereas apoptosis and mitotic catastrophe were not affected. γ-H2AX foci was greatly increased and sustained by combined BO-1051 and γ-rays, suggested that DNA damage or repair capacity was impaired during treatment. In vivo studies further demonstrated that BO-1051 enhanced the radiotherapeutic effects on GBM-3-beared xenograft tumors, by which the sensitizer enhancement ratio was 1.97. The survival rate of treated mice was also increased accordingly. Conclusions These results indicate that BO-1051 can effectively enhance glioma cell radiosensitivity in vitro and in vivo. It suggests that BO-1051 is a potent radiosensitizer for treating human glioma cells.

  3. Enhancement of radiosensitivity in human glioblastoma cells by the DNA N-mustard alkylating agent BO-1051 through augmented and sustained DNA damage response

    International Nuclear Information System (INIS)

    1-{4-[Bis(2-chloroethyl)amino]phenyl}-3-[2-methyl-5- (4-methylacridin-9-ylamino)phenyl]urea (BO-1051) is an N-mustard DNA alkylating agent reported to exhibit antitumor activity. Here we further investigate the effects of this compound on radiation responses of human gliomas, which are notorious for the high resistance to radiotherapy. The clonogenic assay was used to determine the IC50 and radiosensitivity of human glioma cell lines (U87MG, U251MG and GBM-3) following BO-1051. DNA histogram and propidium iodide-Annexin V staining were used to determine the cell cycle distribution and the apoptosis, respectively. DNA damage and repair state were determined by γ-H2AX foci, and mitotic catastrophe was measure using nuclear fragmentation. Xenograft tumors were measured with a caliper, and the survival rate was determined using Kaplan-Meier method. BO-1051 inhibited growth of human gliomas in a dose- and time-dependent manner. Using the dosage at IC50, BO-1051 significantly enhanced radiosensitivity to different extents [The sensitizer enhancement ratio was between 1.24 and 1.50 at 10% of survival fraction]. The radiosensitive G2/M population was raised by BO-1051, whereas apoptosis and mitotic catastrophe were not affected. γ-H2AX foci was greatly increased and sustained by combined BO-1051 and γ-rays, suggested that DNA damage or repair capacity was impaired during treatment. In vivo studies further demonstrated that BO-1051 enhanced the radiotherapeutic effects on GBM-3-beared xenograft tumors, by which the sensitizer enhancement ratio was 1.97. The survival rate of treated mice was also increased accordingly. These results indicate that BO-1051 can effectively enhance glioma cell radiosensitivity in vitro and in vivo. It suggests that BO-1051 is a potent radiosensitizer for treating human glioma cells

  4. Interaction of celecoxib with different anti-cancer drugs is antagonistic in breast but not in other cancer cells

    International Nuclear Information System (INIS)

    Celecoxib, an inhibitor of cyclooxygenase-2, is being investigated for enhancement of chemotherapy efficacy in cancer clinical trials. This study investigates the ability of cyclooxygenase-2 inhibitors to sensitize cells from different origins to several chemotherapeutic agents. The effect of the drug's mechanism of action and sequence of administration are also investigated. The sensitivity, cell cycle, apoptosis and DNA damage of five different cancer cell lines (HeLa, HCT116, HepG2, MCF7 and U251) to 5-FU, cisplatin, doxorubicin and etoposide ± celecoxib following different incubation schedules were analyzed. We found antagonism between celecoxib and the four drugs in the breast cancer cells MCF7 following all incubation schedules and between celecoxib and doxorubicin in all cell lines except for two combinations in HCT116 cells. Celecoxib with the other three drugs in the remaining four cell lines resulted in variable interactions. Mechanistic investigations revealed that celecoxib exerts different molecular effects in different cells. In some lines, it abrogates the drug-induced G2/M arrest enhancing pre-mature entry into mitosis with damaged DNA thus increasing apoptosis and resulting in synergism. In other cells, it enhances drug-induced G2/M arrest allowing time to repair drug-induced DNA damage before entry into mitosis and decreasing cell death resulting in antagonism. In some synergistic combinations, celecoxib-induced abrogation of G2/M arrest was not associated with apoptosis but permanent arrest in G1 phase. These results, if confirmed in-vivo, indicate that celecoxib is not a suitable chemosensitizer for breast cancer or with doxorubicin for other cancers. Moreover, combination of celecoxib with other drugs should be tailored to the tumor type, drug and administration schedule. - Graphical abstract: Display Omitted Highlights: → Celecoxib may enhance effects of anticancer drugs. → Its combination with four drugs was tested in five cancer cell

  5. An Epigenetic Mechanism of High Gdnf Transcription in Glioma Cells Revealed by Specific Sequence Methylation.

    Science.gov (United States)

    Zhang, Bao-Le; Liu, Jie; Lei, Yu; Xiong, Ye; Li, Heng; Lin, Xiaoqian; Yao, Rui-Qin; Gao, Dian-Shuai

    2016-09-01

    Glioma cells express high levels of GDNF. When investigating its transcriptional regulation mechanism, we observed increased or decreased methylation of different cis-acting elements in the gdnf promoter II. However, it is difficult to determine the contributions of methylation changes of each cis-acting element to the abnormally high transcription of gdnf gene. To elucidate the contributions of methylation changes of specific cis-acting elements to the regulation of gdnf transcription, we combined gene site-directed mutation, molecular cloning, and dual luciferase assay to develop the "specific sequence methylation followed by plasmid recircularization" method to alter methylation levels of specific cis-acting elements in the gdnf promoter in living cells and assess gene transcriptional activity. This method successfully introduced artificial changes in the methylation of different cis-acting elements in the gdnf promoter II. Moreover, compared with unmethylated gdnf promoter II, both silencer II hypermethylation plus enhancer II unmethylation and hypermethylation of the entire promoter II (containing enhancer II and silencer II) significantly enhanced gdnf transcriptional activity (P  0.05). Enhancer II hypermethylation plus silencer II unmethylation did not significantly affect gene transcription (P > 0.05). Furthermore, we found significantly increased DNA methylation in the silencer II of the gdnf gene in high-grade astroglioma cells with abnormally high gdnf gene expression (P < 0.01). The absence of silencer II significantly increased gdnf promoter II activity in U251 cells (P < 0.01). In conclusion, our specific sequence methylation followed by plasmid recircularization method successfully altered the methylation levels of a specific cis-acting element in a gene promoter in living cells. This method allows in-depth investigation of the impact of methylation changes of different cis-acting elements in the same promoter on gene transcriptional

  6. Influences of surface coatings and components of FePt nanoparticles on the suppression of glioma cell proliferation

    Directory of Open Access Journals (Sweden)

    Sun H

    2012-07-01

    Full Text Available Haiming Sun,1,* Xiaohui Chen,2,* Dan Chen,1 Mingyan Dong,1 Xinning Fu,1 Qian Li,1 Xi Liu,1 Qingzhi Wu,1 Tong Qiu,1 Tao Wan,1 Shipu Li11State Key Laboratory of Advanced Technology for Materials Synthesis and Processing and Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, China; 2Department of Prosthetics, School of Stomatology, Wuhan University, Wuhan, China*Both authors contributed equally to this workAbstract: Malignant gliomas are primary brain tumors with high rates of morbidity and mortality; they are the fourth most common cause of cancer death. Novel diagnostic and therapeutic techniques based on nanomaterials provide promising options in the treatment of malignant gliomas. In order to evaluate the potential of FePt nanoparticles (NPs for malignant glioma therapy, FePt NPs with different surface coatings and components were tunably synthesized using oleic acid/oleylamine (OA/OA and cysteines (Cys as the capping agents, respectively. The samples were characterized using X-ray diffraction, transmission electron microscopy (TEM, X-ray photon spectroscopy, Fourier transform infrared spectroscopy, atomic absorption spectrum, and zeta potential. The influence of the surface coatings and components of the FePt NPs on the proliferation of glioma cells was assessed through MTT assay and TEM observation using three typical glioma cell lines (glioma U251 cells, astrocytoma U87 cells, and neuroglioma H4 cells as in vitro models. The results showed that the proliferation of glioma cells was significantly suppressed by lipophilic FePt-OA/OA NPs in a time- and/or dose-dependent manner, while no or low cytotoxic effects were detected in the case of hydrophilic FePt-Cys NPs. The IC50 value of FePt-OA/OA NPs on the three glioma cell lines was approximately 5–10 µg mL-1 after 24 hours’ incubation. Although the cellular uptake of FePt NPs was confirmed regardless of the surface coatings and components of the FePt NPs

  7. Sublethal dose of irradiation enhances invasion of malignant glioma cells through p53-MMP 2 pathway in U87MG mouse brain tumor model

    International Nuclear Information System (INIS)

    Glioblastoma is a highly lethal neoplasm that frequently recurs locally after radiotherapy, and most of these recurrences originate from near the irradiated target field. In the present study, we identified the effects of radiation on glioma invasion and p53, TIMP-2, and MMP-2 expression through in vitro and in vivo experiments. The U87MG (wt p53) and U251 (mt p53) human malignant glioma cell lines were prepared, and the U2OS (wt 53) and Saos2 (del p53) osteosarcoma cell lines were used as p53 positive and negative controls. The four cell lines and p53 knock-downed U87MG cells received radiation (2–6 Gy) and were analyzed for expression of p53 and TIMP-2 by Western blot, and MMP-2 activity was detected by zymography. In addition, the effects of irradiation on directional invasion of malignant glioma were evaluated by implanting nude mice with bioluminescent u87-Fluc in vivo followed by MMP-2, p53, and TIMP-2 immunohisto-chemistry and in situ zymography. MMP-2 activity and p53 expression increased in proportional to the radiation dose in cell lines with wt p53, but not in the cell lines with del or mt p53. TIMP-2 expression did not increase in U87MG cells. MMP-2 activity decreased in p53 knock-downed U87MG cells but increased in the control group. Furthermore, radiation enhanced MMP-2 activity and increased tumor margin invasiveness in vivo. Tumor cells invaded by radiation overexpressed MMP-2 and p53 and revealed high gelatinolytic activity compared with those of non-radiated tumor cells. Radiation-induced upregulation of p53 modulated MMP-2 activity, and the imbalance between MMP-2 and TIMP-2 may have an important role in glioblastoma invasion by degrading the extracellular matrix. Bioluminescent “U87-Fluc”was useful for observing tumor formation without sacrifice after implanting tumor cells in the mouse brain. These findings suggest that the radiotherapy involved field for malignant glioma needs to be reconsidered, and that future trials should investigate

  8. Overexpression of CDC2/CyclinB1 in gliomas, and CDC2 depletion inhibits proliferation of human glioma cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Gliomas are the most common and aggressive primary brain tumors for which unfortunately no effective treatment modalities exist despite advances in molecular biology as the knowledge base to unravel the extremely complex molecular mechanisms of tumorigenesis is limited. In this study an attempt has been made to understand the molecular pathological basis of tumorigenesis which led to an identification of an oncogene, CDC2, and an epigenetic strategy has been evaluated to control the tumorigensis by downregulating this oncogene. Tissue microarrays were utilized to investigate the expression of genes in a large number of tumor samples and to identify overexpressed genes which could be potentially causing tumorigenesis. Retroviral vectors expressing short hairpin RNAs (shRNAs) targeted against CDC2 were designed and transducted into human glioma cell line ex vivo in order to downregulate the expression of CDC2. Real-Time PCR was used to determine the level of CDC2 mRNA. Western Blotting was used to determine the level of expression of CDC2 protein as measure to quantify down regulation of CDC2 expression along with use of flow cytometry to investigate effect of shRNAs on cell cycles and detection of apoptosis. Following ex vivo study, viral particles containing small interfering RNA for CDC2 were subsequently injected into xenogeneic graft tumor of nude mice and the weight of human glioma xenografts, survival and resulting phenotypic changes of target gene were investigated. Human glioma tissue microarrays indicated the positive expression rates of CDC2/CyclinB1 with a positive correlation with pathologic grades (r = 0.982, r = 0.959, respectively). Retroviral vectors expressing short hairpin RNAs (shRNAs) against CDC2 caused efficient deletion of CDC2, cellular G2/M arrest concluding in apoptosis and inhibition of proliferation in human glioma cells U251 and SHG-44 cell lines ex vivo. And the viral particles containing small interfering RNA for CDC2 were subsequently

  9. Overexpression of CDC2/CyclinB1 in gliomas, and CDC2 depletion inhibits proliferation of human glioma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Wang Ai-Dong

    2008-01-01

    Full Text Available Abstract Background Gliomas are the most common and aggressive primary brain tumors for which unfortunately no effective treatment modalities exist despite advances in molecular biology as the knowledge base to unravel the extremely complex molecular mechanisms of tumorigenesis is limited. In this study an attempt has been made to understand the molecular pathological basis of tumorigenesis which led to an identification of an oncogene, CDC2, and an epigenetic strategy has been evaluated to control the tumorigensis by downregulating this oncogene. Methods Tissue microarrays were utilized to investigate the expression of genes in a large number of tumor samples and to identify overexpressed genes which could be potentially causing tumorigenesis. Retroviral vectors expressing short hairpin RNAs (shRNAs targeted against CDC2 were designed and transducted into human glioma cell line ex vivo in order to downregulate the expression of CDC2. Real-Time PCR was used to determine the level of CDC2 mRNA. Western Blotting was used to determine the level of expression of CDC2 protein as measure to quantify down regulation of CDC2 expression along with use of flow cytometry to investigate effect of shRNAs on cell cycles and detection of apoptosis. Following ex vivo study, viral particles containing small interfering RNA for CDC2 were subsequently injected into xenogeneic graft tumor of nude mice and the weight of human glioma xenografts, survival and resulting phenotypic changes of target gene were investigated. Results Human glioma tissue microarrays indicated the positive expression rates of CDC2/CyclinB1 with a positive correlation with pathologic grades (r = 0.982, r = 0.959, respectively. Retroviral vectors expressing short hairpin RNAs (shRNAs against CDC2 caused efficient deletion of CDC2, cellular G2/M arrest concluding in apoptosis and inhibition of proliferation in human glioma cells U251 and SHG-44 cell lines ex vivo. And the viral particles

  10. Upregulation of SATB1 is associated with the development and progression of glioma

    Directory of Open Access Journals (Sweden)

    Chu Sheng-Hua

    2012-07-01

    Full Text Available Abstract Background Special AT-rich sequence-binding protein-1 (SATB1 has been reported to be expressed in several human cancers and may have malignant potential. This study was aimed at investigating the expression and potential role of SATB1 in human glioma. Method The relationship between SATB1 expression, clinicopathological parameters, Ki67 expression and MGMT promoter methylation status was evaluated, and the prognostic value of SATB1 expression in patients with gliomas was analyzed. SATB1-specific shRNA sequences were synthesized, and U251 cells were transfected with SATB1 RNAi plasmids. Expression of SATB1 mRNA and protein was investigated by RT-PCR and immunofluoresence staining and western blotting. The expression of c-Met, SLC22A18, caspase-3 and bcl-2 protein was determined by western blotting. U251 cell growth and adherence was detected by methyl thiazole tetrazolium assay. The apoptosis of U251 cells was examined with a flow cytometer. The adherence, invasion, and in vitro angiogenesis assays of U251 cells were done. The growth and angiogenesis of SATB1 low expressing U251 cells was measured in an in vivo xenograft model. Results Of 70 tumors, 44 (62.9% were positive for SATB1 expression. SATB1 expression was significantly associated with a high histological grade and with poor survival in univariate and multivariate analyses. SATB1 expression was also positively correlated with Ki67 expression but negatively with MGMT promoter methylation in glioma tissues. SATB1 shRNA expression vectors could efficiently induce the expression of SLC22A18 protein, increase the caspase-3 protein, inhibit the expression of SATB1, c-Met and bcl-2 protein, the growth, invasion, metastasis and angiogenesis of U251 cells, and induce apoptosis in vitro. Furthermore, the tumor growth of U251 cells expressing SATB1 shRNA were inhibited in vivo, and immunohistochemical analyses of tumor sections revealed a decreased vessel density in the animals where sh

  11. Response of intracerebral human glioblastoma xenografts to multifraction radiation exposures

    International Nuclear Information System (INIS)

    Purpose: We investigated the effects of fractionated radiation treatments on the life spans of athymic rats bearing intracerebral brain tumors. Methods and Materials: U-251 MG or U-87 MG human glioblastoma cells were implanted into the brains of athymic rats, and the resulting tumors were irradiated once daily with various doses of ionizing radiation for 5 consecutive days or for 10 days with a 2-day break after Day 5. Results: Five daily doses of 1 and 1.5 Gy, and 10 doses of 0.75 and 1 Gy, cured some U-251 MG tumors. However, five daily doses of 0.5 Gy increased the survival time of animals bearing U-251 MG tumors 5 days without curing any animals of their tumors. Ten doses of 0.3 Gy given over 2 weeks extended the lifespan of the host animals 9 days without curing any animals. For U-87 MG tumors, 5 daily doses of 3 Gy produced an increased lifespan of 8 days without curing any animals, and 10 doses of 1 Gy prolonged lifespan 5.5 days without curing any animals. The differences in extension of life span between the 5- and 10-fraction protocols were minor for either tumor type. Conclusion: The finding that the U-251 MG tumors are more sensitive than U-87 MG tumors, despite the fact that U-251 MG tumors contain many more hypoxic cells than U-87 MG tumors, suggests the intrinsic cellular radiosensitivities of these cell lines are more important than hypoxia in determining their in vivo radiosensitivities

  12. Saponin 1 Induces Apoptosis and Suppresses NF-κB-Mediated Survival Signaling in Glioblastoma Multiforme (GBM)

    OpenAIRE

    Li, Juan; Tang, Haifeng; Zhang, Yun; Tang, Chi; Li, Bo; Wang, Yuangang; Gao, Zhenhui; Luo, Peng; Yin, Anan; Wang, Xiaoyang; Cheng, Guang; Fei, Zhou

    2013-01-01

    Saponin 1 is a triterpeniod saponin extracted from Anemone taipaiensis, a traditional Chinese medicine against rheumatism and phlebitis. It has also been shown to exhibit significant anti-tumor activity against human leukemia (HL-60 cells) and human hepatocellular carcinoma (Hep-G2 cells). Herein we investigated the effect of saponin 1 in human glioblastoma multiforme (GBM) U251MG and U87MG cells. Saponin 1 induced significant growth inhibition in both glioblastoma cell lines, with a 50% inhi...

  13. Chemical study of Sinningia allagophylla guided by antiproliferative activity assays

    International Nuclear Information System (INIS)

    Activity guided fractionation of Sinningia allagophylla (Mart.) Wiehler ethanolic extract yielded a new benzochromene 8-methoxylapachenol, besides seven known compounds: lapachenol, sitosteryl oleate, sitosteryl linoleate, stigmasteryl oleate, stigmasteryl linoleate, dunniol and tectoquinone. Extract, fractions, and compounds lapachenol, 8-methoxylapachenol, and dunniol were tested in vitro against human cancer cell lines U251 (glioma, CNS), MCF-7 (breast), NCI-ADR/RES (drug-resistant ovarian), 786-0 (kidney), NCI-H460 (lung, no small cells), PC-3 (prostate), OVCAR-3 (ovarian), HT-29 (colon), K562 (leukemia) and against VERO, a normal cell line. The most active compound was dunniol, which inhibited the growth of U251, MCF-7, NCI-ADR/RES, OVCAR-3 and K562 cell lines. (author)

  14. Downregulation of uPAR and cathepsin B induces apoptosis via regulation of Bcl-2 and Bax and inhibition of the PI3K/Akt pathway in gliomas.

    Directory of Open Access Journals (Sweden)

    Ramarao Malla

    Full Text Available BACKGROUND: Glioma is the most commonly diagnosed primary brain tumor and is characterized by invasive and infiltrative behavior. uPAR and cathepsin B are known to be overexpressed in high-grade gliomas and are strongly correlated with invasive cancer phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we observed that simultaneous downregulation of uPAR and cathepsin B induces upregulation of some pro-apoptotic genes and suppression of anti-apoptotic genes in human glioma cells. uPAR and cathepsin B (pCU-downregulated cells exhibited decreases in the Bcl-2/Bax ratio and initiated the collapse of mitochondrial membrane potential. We also observed that the broad caspase inhibitor, Z-Asp-2, 6-dichlorobenzoylmethylketone rescued pCU-induced apoptosis in U251 cells but not in 5310 cells. Immunoblot analysis of caspase-9 immunoprecipitates for Apaf-1 showed that uPAR and cathepsin B knockdown activated apoptosome complex formation in U251 cells. Downregulation of uPAR and cathepsin B also retarded nuclear translocation and interfered with DNA binding activity of CREB in both U251 and 5310 cells. Further western blotting analysis demonstrated that downregulation of uPAR and cathepsin B significantly decreased expression of the signaling molecules p-PDGFR-β, p-PI3K and p-Akt. An increase in the number of TUNEL-positive cells, increased Bax expression, and decreased Bcl-2 expression in nude mice brain tumor sections and brain tissue lysates confirm our in vitro results. CONCLUSIONS/SIGNIFICANCE: In conclusion, RNAi-mediated downregulation of uPAR and cathepsin B initiates caspase-dependent mitochondrial apoptosis in U251 cells and caspase-independent mitochondrial apoptosis in 5310 cells. Thus, targeting uPAR and cathepsin B-mediated signaling using siRNA may serve as a novel therapeutic strategy for the treatment of gliomas.

  15. Glioma Invasiveness Responds Variably to Irradiation in a Co-Culture Model

    International Nuclear Information System (INIS)

    Purpose: We developed a co-culture system to quantitate the growth and invasion of human malignant gliomas into a background of confluent normal human astrocytes, then used this assay to assess independently the effects of irradiating both cell types on glioma invasion. Methods and Materials: Enhanced green fluorescent protein (EGFP)-labeled immortalized human astrocytes, human malignant glioma cells, or transformed human astrocytes were focally plated onto a confluent layer of normal human astrocytes, and the invasiveness of EGFP-labeled cells was scored after 96 h. To address the consequences of irradiation on glioma invasion, the invasiveness of irradiated glioma cell lines and irradiated astrocytic backgrounds was assessed. Fluorescence-activated cell sorting was used to quantitate the total number of EGFP-labeled cells. Results: Growth in the co-culture assay consistently reflected transformation states of the plated cells. Immortalized, but untransformed human astrocytes failed even to establish growth on confluent normal human astrocytes. In contrast, all malignant human glioma cell lines and transformed human astrocytes demonstrated various degrees of infiltration into the astrocytic bed. Irradiation failed to alter the invasiveness of U87, A172, and U373. A 1-Gy dose slightly reduced the invasiveness of U251 MG by 75% (p < 0.05 by one-way analysis of variance and post hoc Neuman-Keuls), without reducing total cell numbers. Independently irradiating the human astrocytic bed did not alter the invasiveness of nonirradiated U251, whereas the matrix metalloproteinase (MMP) inhibitor GM6001 reduced U251 invasiveness in the co-culture assay. Conclusions: Growth in the co-culture assay reflects the transformation status and provides a useful in vitro model for assessing invasiveness. Human glioma invasiveness in the co-culture model responds variably to single low-dose fractions. MMP activity promotes invasiveness in the co-culture model. Reduced invasiveness in

  16. Aurantiamide acetate suppresses the growth of malignant gliomas in vitro and in vivo by inhibiting autophagic flux

    OpenAIRE

    Yi YANG; Zhang, Li-hui; Yang, Bing-xian; Tian, Jin-kui; Zhang, Lin

    2015-01-01

    We aim to investigate the effect of aurantiamide acetate isolated from the aerial parts of Clematis terniflora DC against gliomas. Human malignant glioma U87 and U251 cells were incubated with different concentrations (0–100 μM) of aurantiamide acetate. Aurantiamide acetate greatly decreased the cell viability in a dose- and time-dependent manner. It induced moderate mitochondrial fragmentation and the loss of mitochondrial membrane potential. No significant difference was found in the altern...

  17. Experimental research of IKKε through E-cadherin regulation of the human brain glioma migration and invasion ability%IKKε通过E-cadherin调控人脑胶质瘤迁移和侵袭能力的实验研究

    Institute of Scientific and Technical Information of China (English)

    周西广; 杨毅; 路捷; 南阳; 甄英伟; 俞凯; 王广秀; 贾志凡; 康春生

    2016-01-01

    目的 探讨胶质瘤细胞中IKKε对E-cadherin表达的调控作用及其对胶质瘤细胞迁移和侵袭能力的影响.方法 构建IKKε过表达载体及IKKε shRNA慢病毒,以IKKε过表达质粒转染TP483胶质瘤细胞株,上调胶质瘤细胞中IKKε的表达水平;以IKKε shRNA慢病毒转染U251、U138胶质瘤细胞株,下调胶质瘤细胞中IKKε的表达水平.采用RT-PCR和Western blot检测细胞中IKKε及E-cadhenn的表达;应用免疫荧光法观察转染后IKKε及E-cadherin表达的变化.通过划痕实验和Transwell法分别检测细胞的迁移和侵袭能力.结果 与未转染组(TP483对照组)相比,转染IKKε的过表达质粒组(TP483处理组)的IKKε蛋白的表达水平升高(P =0.000),而E-cadherin蛋白的表达水平降低(P=0.000).转染IKKε shRNA的胶质瘤细胞(U251处理组和U138处理组)中IKKε蛋白的表达水平较未转染组(U251对照组和U138对照组)明显降低(均P<0.05),同时各处理组E-cadherin蛋白的表达水平均较其对照组升高(均P <0.05).TP483处理组划痕修复率较对照组高[(56.39±0.93)%对比(46.43±1.68)%,P=0.035)].过表达质粒转染24h后,TP483处理组穿过滤膜的细胞数目较对照组增加[(55.8±6.0)个对比(24.6±2.3)个,P =0.000].U251、U138处理组划痕修复率较其各自的对照组降低[U251处理组:(50.40±1.09)%,U251对照组:(87.29±11.11)%,P=0.043;U138处理组:(48.20±1.34)%,U138对照组:(73.15±6.62)%,P=0.035)].IKKε shRNA转染24h后,U251、U138处理组穿过滤膜的细胞数目较对照组少([U251处理组:(77.8±6.4)个,U251对照组:(124.0±13.4)个,P=0.000;U138处理组:(25.8±4.2)个,U138对照组:(54.8±7.1)个,P=0.000].结论 IKKε低表达可有效抑制胶质瘤细胞的侵袭和迁移,而IKKε高表达可增强其侵袭和迁移能力.其可能的机制是通过调节E-cadherin的表达水平从而影响胶质瘤细胞的侵袭和迁移能力.%Objective To investigate the effect of IKKε in glioma cells on

  18. Frequent Nek1 overexpression in human gliomas.

    Science.gov (United States)

    Zhu, Jun; Cai, Yu; Liu, Pin; Zhao, Weiguo

    2016-08-01

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients' poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. PMID:27251576

  19. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  20. Detection of Hypoxia in Human Brain Tumor Xenografts Using a Modified Comet Assay

    Directory of Open Access Journals (Sweden)

    Jingli Wang

    2003-07-01

    Full Text Available We used the standard comet assay successfully to generate in vitro dose-response curves under oxic and hypoxic conditions. We then made mixtures of cells that had been irradiated with 3 and 9 Gy of X-rays to simulate two subpopulations in a tumor, but efforts to accurately detect and quantify the subpopulations using the standard comet assay were unsuccessful. Therefore, we investigated a modified comet assay to determine whether it could be used for measuring hypoxia in our model systems. U251 MG cells were grown as subcutaneous tumors in athymic mice; U251 MG and U87 MG cells were grown as intracerebral (i.c. tumors in athymic rats. Animals were injected with RSU 1069, irradiated, and euthanized. Tumors and normal brains were removed, and the cells were analyzed using a modified comet assay. Differences in comet tail moment distributions between tumor and contralateral normal brain, using tail moments at either the 25th or 50th percentile in each distribution, were taken as measures of the degree of tumor hypoxia. For U251 MG tumors, there was a positive relationship between tumor size and the degree of hypoxia, whereas preliminary data from U87 MG i.c. tumors showed less hypoxia and no apparent relationship between tumor size and hypoxia.

  1. Osteopontin and splice variant expression level in human malignant glioma: Radiobiologic effects and prognosis after radiotherapy

    International Nuclear Information System (INIS)

    Background and purpose: We investigated the role of the hypoxia-associated secreted glycoprotein osteopontin (OPN) in the response of malignant glioma to radiotherapy by characterizing OPN and its splice variants in vitro and in patient material. Material and methods: The effect of siRNA knockdown of OPN splice variants on cellular and radiobiologic behavior was analyzed in U251MG cells using OpnS siRNA (inhibition of all OPN splice variants) and OpnAC siRNA (knockdown only of OPNa and OPNc). OPN and splice variant mRNA levels were quantified in archival material of 41 glioblastoma tumor samples. Plasma OPN was prospectively measured in 33 malignant glioma patients. Results: Inhibition of OPNa and OPNc (OpnAC) reduced clonogenic survival in U251MG cells but did not affect proliferation, migration or apoptosis. Knockdown of all OPN splice variants (OpnS) resulted in an even stronger inhibition of clonogenic survival, while cell proliferation and migration were reduced and rate of apoptosis was increased. Additional irradiation had additive effects with both siRNAs. Plasma OPN increased continuously in malignant glioma patients and was associated with poor survival. Conclusions: OPNb is partially able to compensate the effects of OPNa and OPNc knockdown in U251MG cells. High OPN plasma levels at the end of radiotherapy are associated with poor survival

  2. Detection of Hypoxia in Human Brain Tumor Xenografts Using a Modified Comet Assay1

    Science.gov (United States)

    Wang, Jingli; Klem, Jack; Wyrick, Jan B; Ozawa, Tomoko; Cunningham, Erin; Golinveaux, Jay; Allen, Max J; Lamborn, Kathleen R; Deen, Dennis F

    2003-01-01

    Abstract We used the standard comet assay successfully to generate in vitro dose-response curves under oxic and hypoxic conditions. We then made mixtures of cells that had been irradiated with 3 and 9 Gy of X-rays to simulate two subpopulations in a tumor, but efforts to accurately detect and quantify the subpopulations using the standard comet assay were unsuccessful. Therefore, we investigated a modified comet assay to determine whether it could be used for measuring hypoxia in our model systems. U251 MG cells were grown as subcutaneous tumors in athymic mice; U251 MG and U87 MG cells were grown as intracerebral (i.c.) tumors in athymic rats. Animals were injected with RSU 1069, irradiated, and euthanized. Tumors and normal brains were removed, and the cells were analyzed using a modified comet assay. Differences in comet tail moment distributions between tumor and contralateral normal brain, using tail moments at either the 25th or 50th percentile in each distribution, were taken as measures of the degree of tumor hypoxia. For U251 MG tumors, there was a positive relationship between tumor size and the degree of hypoxia, whereas preliminary data from U87 MG i.c. tumors showed less hypoxia and no apparent relationship between tumor size and hypoxia. PMID:14511400

  3. An Axis Involving SNAI1, microRNA-128 and SP1 Modulates Glioma Progression

    OpenAIRE

    Qingsheng Dong; Ning Cai; Tao Tao; Rui Zhang; Wei Yan; Rui Li; Junxia Zhang; Hui Luo; Yan Shi; Wenkang Luan; Yaxuan Zhang; Yongping You; Yingyi Wang; Ning Liu

    2014-01-01

    Background Glioblastoma is an extraordinarily aggressive disease that requires more effective therapeutic options. Snail family zinc finger 1, dysregulated in many neoplasms, has been reported to be involved in gliomas. However, the biological mechanisms underlying SNAI1 function in gliomas need further investigation. Methods Quantitative real-time PCR was used to measure microRNA-128 (miR-128) expression level and western blot was performed to detect protein expression in U87 and U251 cells ...

  4. Two new triterpenoid saponins from the aerial parts of Anemone taipaiensis.

    Science.gov (United States)

    Li, Hui; Wang, Xiao-Yang; Wang, Xia-Yin; Hua, Dong; Liu, Yang; Tang, Hai-Feng

    2015-05-01

    Phytochemical study on the aerial parts of Anemone taipaiensis for the first time led to the isolation of two new oleanane-type triterpenoid saponins 1 and 2, together with four known saponins (3-6). Their structures were elucidated by extensive spectroscopic analysis and chemical evidences. Saponins 2-4 exhibited cytotoxicity against human glioblastoma U251MG cell line with IC50 values ranging from 1.56 to 80.62 μM. PMID:26021881

  5. Increased leucine-rich repeats and immunoglobulin- like domains 1 expression enhances chemosensitivity in glioma

    Institute of Scientific and Technical Information of China (English)

    Baohui Liu; Shenqi Zhang; Dong Ruan; Xiaonan Zhu; Zhentao Guo; Huimin Dong; Mingmin Yan; Qianxue Chen; Daofeng Tian; Liquan Wu; Junmin Wang; Qiang Cai; Heng Shen; Baowei Ji; Long Wang

    2011-01-01

    Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is an anti-oncogene.LRIG1 is correlated with Bcl-2 in ependymomas.Decreased Bcl-2 and manganese superoxide dismutase expression can improve the chemosensitivity of glioma.In the present study, a tissue microarray of human brain astrocytomas was constructed.To investigate the relationship of LRIG1 with Bcl-2 and manganese superoxide dismutase, LRIG1, Bcl-2 and manganese superoxide dismutase expression in our tissue microarray was determined using immunohistochemistry.In addition, we constructed the LRIG1-U251 cell line, and its responses to doxorubicin and temozolomide were detected using the MTT assay.Results showed that LRIG1 expression was significantly negatively correlated with Bcl-2 and manganese superoxide dismutase expression in glioma.Also, proliferation of LRIG1-U251 cells exposed to doxorubicin or temozolomide was significantly inhibited, i.e.in the LRIG1-U251 cell line, the chemosensitivity to doxorubicin and temozolomide was increased.This indicates that increased LRIG1 expression produces a chemosensitivity in glioma.

  6. Extraction and morphology observation of exosome from glioma cell%胶质瘤源性exosome的提取及形态学观察

    Institute of Scientific and Technical Information of China (English)

    李超; 于金录; 杨偲; 黄海燕

    2010-01-01

    目的 证实体内和体外培养的胶质瘤细胞是否均可分泌exosome,为测定其蛋白质组成提供实验基础,为进一步利用exosome对胶质瘤进行免疫治疗提供理论依据.方法 收集U251胶质瘤培养上清液和Ⅲ级星形胶质瘤囊液,利用差速离心法提取exosome,并用液相载网法在电镜下观察胶质瘤源性exosome的形态.结果 U251胶质瘤和Ⅲ级星形胶质瘤细胞均可以产生exosome,其平均直径约100 nm.结论 证实了胶质瘤细胞像其他多数细胞一样,体内和体外培养均可分泌exosome.

  7. T Cells

    Science.gov (United States)

    T Cells - National Multiple Sclerosis Society Skip to navigation Skip to content Menu Navigation National Multiple Sclerosis Society Sign ... Is MS? Definition of MS T Cells T Cells Share Smaller Text Larger Text Print In this ...

  8. Cell counting.

    Science.gov (United States)

    Phelan, M C; Lawler, G

    2001-05-01

    This unit presents protocols for counting cells using either a hemacytometer or electronically using a Coulter counter. Cell counting with a hemacytometer permits effective discrimination of live from dead cells using trypan blue exclusion. In addition, the procedure is less subject to errors arising from cell clumping or size heterogeneity. Counting cells is more quickly and easily performed using an electronic counter, but live-dead discrimination is unreliable. Cell populations containing large numbers of dead cells and/or cell clumps are difficult to count accurately. In addition, electronic counting requires resetting of the instrument for cell populations of different sizes; heterogeneous populations can give rise to inaccurate counts, and resting and activated cells may require counting at separate settings. In general, electronic cell counting is best performed on fresh peripheral blood cells. PMID:18770655

  9. Galvanic Cells

    Science.gov (United States)

    Young, I. G.

    1973-01-01

    Many standard physical chemistry textbooks contain ambiguities which lead to confusion about standard electrode potentials, calculating cell voltages, and writing reactions for galvanic cells. This article shows how standard electrode potentials can be used to calculate cell voltages and deduce cell reactions. (Author/RH)

  10. Stem Cells

    OpenAIRE

    Madhukar Thakur

    2009-01-01

    Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in ...

  11. Cell Wall

    OpenAIRE

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Albenne, Cécile; Pont-Lezica, Rafael F

    2008-01-01

    This chapter covers our present knowledge of cell wall proteomics highlighting the distinctive features of cell walls and cell wall proteins in relation to problems encountered for protein extraction, separation and identification. It provides clues to design strategies for efficient cell wall proteomic studies. It gives an overview of the kinds of proteins that have yet been identified: the expected proteins vs the identified proteins. Finally, the new vision of the cell wall proteome, and t...

  12. Conditionally replicative adenovirus under the control of glial fibrillary acidic protein and human telomerase reverse transcriptase dual-promoters direct sodium iodide symporter expression for malignant glioma radioiodine therapy

    International Nuclear Information System (INIS)

    Objective: To explore the possibility of using 131I as a targeted therapy method for malignant glioma by infecting U87 and U251 cells with conditionally replicative adenovirus Ad-Tp-E1a-Gp-NIS. Methods: Human telomerase reverse transcriptase (hTERT) promoter and glial fibrillary acidic protein (GFAP) promoter were cloned and their transcriptional activities were detected by luciferase assay. The conditionally replicative adenovirus Ad-Tp-E1 a-Gp-NIS was constructed,purified,and transfected into U87 and U251 glioma cells. For these transfected cells, the selective replication ability was evaluated by plaque forming assay, and protein expression was detected by Western blot assay. 125I-iodide uptake and exflux, the clone formation of 131I-iodide treated cells were also measured. Results: Transcriptions activity of the GFAP and hTERT promoters was 59.75%-62.10% (F = 11.89, P < 0.01) in U87 cells and 37.31%-49.00% (F = 5.87, P < 0.05) in U251 cells. The Ad-Tp-E1a-Gp-NIS could be selectively replicated and the hNIS gene was successfully expressed in the hTERT-positive and GFAP-positive glioma cells which showed two protein bands with relative molecular mass of 120 × 103 and 49 × 103 in Western blot assay. After infection with Ad-Tp-E1a-Gp-NIS, the cell ability of 125I uptake was increased by 78.80 (F = 2 914.58, P <0.01) and 92.48 (F = 2 275.91, P <0.01) times in U87 and U251 cells, respectively. The GFAP-negative MRC-5 cells could not take in 125I. The in vitro clonogenic assay indicated that, after 131I treatment, more than 90% of the transfected cells were killed, while only about 65% (t = 11.73-78.33, P < 0.01) of control cells were killed. Conclusions: The Ad-Tp-E1a-Gp-NIS has a good ability in selective replication and the enhancement of antitumor therapy effect by increasing tumor-specific iodide uptake in malignant glioma cells. (authors)

  13. [Relationship between PTEN mutations and protein kinase B phosphorylation caused by insulin or recombinant human epidermal growth factor stimulation].

    Science.gov (United States)

    Zhong, Hailan; Hu, Xianfu; Lin, Jianhua

    2016-08-01

    Objective To study the effect of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) mutations on protein kinase B (Akt) phosphorylation of CNE-1 nasopharyngeal carcinoma cell line. Methods CNE-1 cells were cultured in RPMI1640 medium containing 100 mL/L fetal calf serum, and then transfected with wild-type PTEN (wtPTEN), mutant PTEN C124S and mutant PTEN G129E plasmid separately. After overnight serum starvation, the cells were stimulated with 0.15 IU/mL insulin or 0.3 μg/mL recombinant human epidermal growth factor (rhEGF). At last, Akt phosphorylation was evaluated by Western blotting. Results Insulin or rhEGF stimulation led to Akt activation in CNE-1 cells. The wtPTEN inhibited insulin- or rhEGF-stimulated phosphorylation of Akt. PTEN C124S mutant activated insulin-stimulated phosphorylation of Akt, but not rhEGF-stimulated phosphorylation of Akt. PTEN G129E mutant inhibited insulin-stimulated phosphorylation of Akt. Conclusion The wtPTEN inhibited insulin- or rhEGF-stimulated phosphorylation of Akt, while PTEN C124S and G129E mutants failed to activate the phosphorylation of Akt consistently. This suggested PTEN mutations might not be correlated with activated Akt. PMID:27412938

  14. Cell Motility

    CERN Document Server

    Lenz, Peter

    2008-01-01

    Cell motility is a fascinating example of cell behavior which is fundamentally important to a number of biological and pathological processes. It is based on a complex self-organized mechano-chemical machine consisting of cytoskeletal filaments and molecular motors. In general, the cytoskeleton is responsible for the movement of the entire cell and for movements within the cell. The main challenge in the field of cell motility is to develop a complete physical description on how and why cells move. For this purpose new ways of modeling the properties of biological cells have to be found. This long term goal can only be achieved if new experimental techniques are developed to extract physical information from these living systems and if theoretical models are found which bridge the gap between molecular and mesoscopic length scales. Cell Motility gives an authoritative overview of the fundamental biological facts, theoretical models, and current experimental developments in this fascinating area.

  15. Solar cells

    Science.gov (United States)

    Cuquel, A.; Roussel, M.

    The physical and electronic characteristics of solar cells are discussed in terms of space applications. The principles underlying the photovoltaic effect are reviewed, including an analytic model for predicting the performance of individual cells and arrays of cells. Attention is given to the effects of electromagnetic and ionizing radiation, micrometeors, thermal and mechanical stresses, pollution and degassing encountered in space. The responses of different types of solar cells to the various performance-degrading agents are examined, with emphasis on techniques for quality assurance in the manufacture and mounting of Si cells.

  16. Cytotoxic essential oil from Annona sengalensis Pers. leaves

    OpenAIRE

    Ahmed, A. L.; Bassem, S. E. M.; Mohamed, Y. H.; M W Gamila

    2010-01-01

    The cytotoxicity against brine shrimp of the essential oil obtained from the leaves of Annona senegalensis Pers. (Annonaceae) was studied. The confirmation of this toxicity has been done by using selected tumor cell lines (A549, HT29, MCF 7, RPMI, and U251). The results showed that the total oil and its fractions have showed mild to moderate cytotoxicity in brine shrimp lethality bioassay with LC50 = 27.3 μg/ml, and against some human tumor cell lines. The total oil and its fractions were ana...

  17. Stem Cells

    Directory of Open Access Journals (Sweden)

    Madhukar Thakur

    2015-02-01

    Full Text Available Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in the body. Often called as Magic Seeds, stem cells are produced in bone marrow and circulate in blood, albeit at a relatively low concentration. These virtues together with the ability of stem cells to grow in tissue culture have paved the way for their applications to generate new and healthy tissues and to replace diseased or injured human organs. Although possibilities of stem cell applications are many, much remains yet to be understood of these remarkable magic seeds. Conclusion: This presentation shall briefly cover the origin of stem cells, the pros and cons of their growth and division, their potential application, and shall outline some examples of the contributions of radiolabeled stem cells, in this rapidly growing branch of biomedical science

  18. Types of Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... stem cells blog from the International Society for Stem Cell Research. Learn About Stem Cells From Lab to You ...

  19. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0 cells and lithium-alloy cells....

  20. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  1. Inhibition of heat shock factor1 response enhances PS-341-mediated glioma cell apoptosis%抑制 HSF-1增强 PS-341诱导胶质瘤细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    王宏瑜; 毕云科; 刘耀华; 徐龙庆; 王瑞恒; 赵世光

    2014-01-01

    Organization (WHO) criteria.The collected tissues were immediately snap-frozen in liquid nitrogen and stored at -80℃for Western blot analysis .Human U251MG and A172 glioblastoma cell lines were obtained from the Japanese Cancer Research Resources Bank .Western was used to detect the expression of HSPs , HSF1 and the activation of JNK .HSF1 was knocked down by siRNA ,then PS-341-induced cell damage was examined by Trypan blue exclusion assay and sub-G1 detection .Results HSP70 and HSF1 level were markedly higher in glioma tissues than in normal brain tissues .HSF1 knockdown significantly enhanced and prolonged JNK activation with strong inhibition of HSP 70.HSP70 was strongly induced by PS-341 in HSF1 +/+cells, while PS-341 induced enhancement and prolongation of JNK activation in HSF1-/-cells.Pretreatment by heat shock had no effect on cell viability of both cells and significantly antagonized PS-341-induced cell death in HSF 1 +/+cells.Conclutions Our results demonstrated that HSF 1 could induce expression of HSPs and inhibition of HSF 1 could enhance cell damage induced by PS-341 in glioma cells.Administration of PS-341 in combination with either HSF1 inhibitor may act as a new approach to treatment of glioma .

  2. Cell suicide

    International Nuclear Information System (INIS)

    In the fight of the cell against the damages caused to its DNA by genotoxic agents and specially by ionizing radiations, the p53 protein plays a central part. It intervenes in the proliferation control and the differentiation but also in the keeping of genome integrity. It can direct the damages cells toward suicide, or apoptosis, to avoid the risk of tumor appearance that would be fatal to the whole organism. That is by the disordered state of cells suicide programs that the tumor cells are going to develop. The knowledge of apoptosis mechanisms, to eventually start them on demand, rises up broad hopes in the cancer therapy. (N.C.)

  3. Reprogrammed Pluripotent Stem Cells from Somatic Cells

    OpenAIRE

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-01-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-li...

  4. Construction and in vitro Study of an E1B-Defective Adenovirus

    Institute of Scientific and Technical Information of China (English)

    Xue Feng; Joshua Mallam Nock; Zhu Hua-bin; Dong Chang-yuan; Qi Yi-peng

    2004-01-01

    An E1B-defective adenovirus named r1/Ad was constructed by homologous recombination. The construction, selection and propagation of recombinant virus was done in the human embryonic kidney 293 cells (HEK293). The in vitro study demonstrated that the recombinant virus has the ability to replicate in and lyse some p53-deficient human tumor cells such as the human glioblastoma tumor cells (U251) and human bladder tumer cells (EJ) but not in the normal cells with functional p53 such as the human fibroblast cells (MRC-5). Also, based on the cytopathic effect (CPE), it was demonstrated that the U251 cells were more sensitive to the infection of r1/Ad than that of EJ cells under identical conditions. In this paper, it was found that r1/Ad could be very useful in studying the in vitro selective replication of E1B-defective adenovirus. This may help to determine the safety of using any E1B-defective adenoviruses in cancer gene therapy.

  5. Clear Cell Basal Cell Carcinoma

    OpenAIRE

    Bo Wang; Tracey Harbert; Jennifer Olivella; Daniel Olson; Sarma, Deba P; Stephanie Ortman

    2011-01-01

    Introduction. Clear cell basal cell carcinoma (BCC) is an uncommon and unusual variant of BCC, which is characterized by a variable component of clear cells. The pathogenesis of this histological variant and its clinical significance has not been clarified. Differentiation of this uncommon variant of BCC from other clear cell tumors is important for the treatment. Case Presentation. A 65-year-old male presented with a 0.9 cm dome-shaped lesion on his upper chest. A shave biopsy revealed a der...

  6. Cytotoxic acetogenins from Annona glabra cultivated in Egypt

    OpenAIRE

    Ahmed Abdel-lateff; Bassem S El-Menshawi; Mohamed Y Haggag; Nawwar, Mahmoud A.

    2009-01-01

    Bio-assay guided fraction of the methanolic extract of Annona glabra seeds (Annonaceae), cultivated in Egypt, revealed to the isolation of three bis-tetrahydrofuran acetogenins; squamocin-C (1) , squamocin-D (2) , and annonin I (3) . Compounds 1 and 2 were obtained as stereoisomeric mixture. All isolates were assayed for their cytotoxicity twards brine shrimp and five in vitro cancer cell lines (A549, HT29, MCF 7, RPMI, and U251), and showed significant activity The structures of all compound...

  7. New spiral γ-lactone enantiomers from the plant endophytic fungus Pestalotiopsis foedan.

    Science.gov (United States)

    Yang, Xiao-Long; Li, Zhuang-Zhuang

    2013-01-01

    (-)-(4S, 8S)-Foedanolide (1a) and (+)-(4R, 8R)-foedanolide (1b), a pair of new spiro-γ-lactone enantiomers, were isolated from the fermentation broth of the plant endophytic fungus Pestalotiopsis foedan by HPLC using a chiral column, achieving over 7% ee. Their structures and absolute configurations were determined on the basis of extensive analysis of NMR spectra combined with computational methods via calculation of the electronic circular dichroism (ECD) and optical rotation (OR). Compounds 1a and 1b showed moderate activities against HeLa, A-549, U-251, HepG2 and MCF-7 tumor cell lines. PMID:23434873

  8. Cytotoxic acetogenins from Annona glabra cultivated in Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed Abdel-lateff

    2009-01-01

    Full Text Available Bio-assay guided fraction of the methanolic extract of Annona glabra seeds (Annonaceae, cultivated in Egypt, revealed to the isolation of three bis-tetrahydrofuran acetogenins; squamocin-C (1 , squamocin-D (2 , and annonin I (3 . Compounds 1 and 2 were obtained as stereoisomeric mixture. All isolates were assayed for their cytotoxicity twards brine shrimp and five in vitro cancer cell lines (A549, HT29, MCF 7, RPMI, and U251, and showed significant activity The structures of all compounds were determined by interpretation of their NMR and MS analyses.

  9. Fuel cells

    Directory of Open Access Journals (Sweden)

    D. N. Srivastava

    1962-05-01

    Full Text Available The current state of development of fuel cells as potential power sources is reviewed. Applications in special fields with particular reference to military requirements are pointed out.

  10. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  11. Targeting MT1-MMP as an ImmunoPET-Based Strategy for Imaging Gliomas.

    Directory of Open Access Journals (Sweden)

    A G de Lucas

    Full Text Available A critical challenge in the management of Glioblastoma Multiforme (GBM tumors is the accurate diagnosis and assessment of tumor progression in a noninvasive manner. We have identified Membrane-type 1 matrix metalloproteinase (MT1-MMP as an attractive biomarker for GBM imaging since this protein is actively involved in tumor growth and progression, correlates with tumor grade and is closely associated with poor prognosis in GBM patients. Here, we report the development of an immunoPET tracer for effective detection of MT1-MMP in GBM models.An anti-human MT1-MMP monoclonal antibody (mAb, LEM2/15, was conjugated to p-isothiocyanatobenzyl-desferrioxamine (DFO-NCS for 89Zr labeling. Biodistribution and PET imaging studies were performed in xenograft mice bearing human GBM cells (U251 expressing MT1-MMP and non-expressing breast carcinoma cells (MCF-7 as negative control. Two orthotopic brain GBM models, patient-derived neurospheres (TS543 and U251 cells, with different degrees of blood-brain barrier (BBB disruption were also used for PET imaging experiments.89Zr labeling of DFO-LEM2/15 was achieved with high yield (>90% and specific activity (78.5 MBq/mg. Biodistribution experiments indicated that 89Zr-DFO-LEM2/15 showed excellent potential as a radiotracer for detection of MT1-MMP positive GBM tumors. PET imaging also indicated a specific and prominent 89Zr-DFO-LEM2/15 uptake in MT1-MMP+ U251 GBM tumors compared to MT1-MMP- MCF-7 breast tumors. Results obtained in orthotopic brain GBM models revealed a high dependence of a disrupted BBB for tracer penetrance into tumors. 89Zr-DFO-LEM2/15 showed much higher accumulation in TS543 tumors with a highly disrupted BBB than in U251 orthotopic model in which the BBB permeability was only partially increased. Histological analysis confirmed the specificity of the immunoconjugate in all GBM models.A new anti MT1-MMP-mAb tracer, 89Zr-DFO-LEM2/15, was synthesized efficiently. In vivo validation showed high

  12. Cell sorting by deterministic cell rolling

    OpenAIRE

    Choi, Sungyoung; Karp, Jeffrey M.; Karnik, Rohit

    2011-01-01

    This communication presents the concept of “deterministic cell rolling”, which leverages transient cell-surface molecular interactions that mediate cell rolling to sort cells with high purity and efficiency in a single step.

  13. Enhanced gene transfection by photochemical internalization of protomine sulfate/DNA complexes

    Science.gov (United States)

    Hirschberg, Henry; Mathews, Marlon B.; Shih, En-Chung; Madsen, Steen J.; Kwon, Young Jik

    2012-02-01

    Introduction: One of many limitations for cancer gene therapy is the inability of the therapeutic gene to transfect a sufficient number of tumor cells. Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. The utility of PCI for the delivery of the GFP indicator gene on the same plasmid as a tumor suppressor gene (PTEN) was investigated in monolayers of U251 human glioma cells. Materials and Methods: U251 monolayers were incubated in AlPcS2a for 18 h. The monolayers were incubated with non-viral vectors for either 4 or 18 hrs. In all cases, light treatment was performed with a diode laser at a wavelength of 670 nm. The non-viral transfection agents, branched PEI or protomine sulfate (PS), were used with the plasmid construct (GFP-PTEN). Results: PS was much less toxic to the gliomas cells compared to BPEI but was highly inefficient at gene transfection. PCI resulted in a 5-10 fold increase in GFP protein expression compared to controls. Conclusions: Collectively, the results suggest that AlPcS2a-mediated PCI can be used to enhance transfection of tumor suppressor genes in glioma cells.

  14. Entrapping quercetin in silica/polyethylene glycol hybrid materials: Chemical characterization and biocompatibility.

    Science.gov (United States)

    Catauro, Michelina; Bollino, Flavia; Nocera, Paola; Piccolella, Simona; Pacifico, Severina

    2016-11-01

    Sol-gel synthesis was exploited to entrap quercetin, a natural occurring antioxidant polyphenol, in silica-based hybrid materials, which differed in their polyethylene glycol (PEG) content (6, 12, 24 and 50wt%). The materials obtained, whose nano-composite nature was ascertained by Scanning Electron Microscopy (SEM), were chemically characterized by Fourier Transform InfraRed (FT-IR) and UV-Vis spectroscopies. The results prove that a reaction between the polymer and the drug occurred. Bioactivity tests showed their ability to induce hydroxyapatite nucleation on the sample surfaces. The direct contact method was applied to screen the cytotoxicity of the synthetized materials towards fibroblast NIH 3T3 cells, commonly used for in vitro biocompatibility studies, and three nervous system cell lines (neuroblastoma SH-SY5Y, glioma U251, and pheochromocytoma PC12 cell lines), adopted as models in oxidative stress related studies. Using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay NIH 3T3 proliferation was assessed and the morphology was not compromised by direct exposure to the materials. Analogously, PC-12, and U-251 cell lines were not affected by new materials. SH-SY5Y appeared to be the most sensitive cell line with cytotoxic effects of 20-35%. PMID:27524014

  15. MicroRNA-16 suppresses epithelial-mesenchymal transition‑related gene expression in human glioma.

    Science.gov (United States)

    Wang, Qin; Li, Xu; Zhu, Yu; Yang, Ping

    2014-12-01

    Glioma is one of the most prevalent types of brain tumor and is associated with the highest mortality rate of all CNS cancers. Epithelial‑mesenchymal transition (EMT) has been recognized as an important factor in tumor metastasis. Previously, it has been demonstrated that microRNA-16 (miR-16) has an important role in tumor metastasis in human cancer cell lines. However, the role of miR-16 in epithelial‑mesenchymal transition of human glioma cells remains unclear. In the present study, U87 and U251 glioma cell lines overexpressing miR-16 were established and it was identified that miR-16 suppressed invasion, adhesion, cell cycle, production of interleukin (IL)-6, IL-8 and transforming growth factor-β, and EMT-related gene expression, including vimentin, β-catenin and E-cadherin in miR-16 overexpressing U87 and U251 glioma cells. Furthermore, miR-16 suppressed EMT mainly through the downregulation of p-FAK and p-Akt expression, and nuclear factor-κB and Slug transcriptional activity. Therefore, miR-16 may be an important therapeutic target and predictor for glioma therapy. PMID:25242314

  16. Solar cells

    Science.gov (United States)

    Treble, F. C.

    1980-11-01

    The history, state of the art, and future prospects of solar cells are reviewed. Solar cells are already competitive in a wide range of low-power applications, and during the 1980's they are expected to become cheaper to run than diesel or gasoline generators, the present mainstay of isolated communities. At this stage they will become attractive for water pumping, irrigation, and rural electrification, particularly in developing countries. With further cost reduction, they may be used to augment grid supplies in domestic, commercial, institutional, and industrial premises. Cost reduction to the stage where photovoltaics becomes economic for large-scale power generation in central stations depends on a technological breakthrough in the development of thin-film cells. DOE aims to reach this goal by 1990, so that by the end of the century about 20% of the estimated annual additions to their electrical generating capacity will be photovoltaic.

  17. Antitumor effects of specific telomerase inhibitor GRN163 in human glioblastoma xenografts1

    Science.gov (United States)

    Ozawa, Tomoko; Gryaznov, Sergei M.; Hu, Lily J.; Pongracz, Krisztina; Santos, Raquel A.; Bollen, Andrew W.; Lamborn, Kathleen R.; Deen, Dennis F.

    2004-01-01

    Telomerase is a ribonucleoprotein complex that elongates telomeric DNA and appears to play an important role in cellular immortalization of cancers. Because telomerase is expressed in the vast majority of malignant gliomas but not in normal brain tissues, it is a logical target for glioma-specific therapy. The telomerase inhibitor GRN163, a 13-mer oligonucleotide N3′→P5′ thio-phosphoramidate (Geron Corporation, Menlo Park, Calif.), is complementary to the template region of the human telomerase RNA subunit hTR. When athymic mice bearing U-251 MG human brain tumor xenografts in their flanks were treated intratumorally with GRN163, a significant growth delay in tumor size was observed (P < 0.01 in all groups) as compared to the tumor size in mice receiving a mismatched oligonucleotide or the carrier alone. We also investigated biodistribution of the drug in vivo in an intracerebral rat brain-tumor model. Fluorescein-labeled GRN163 was loaded into an osmotic minipump and infused directly into U-251 MG brain tumors over 7 days. Examination of the brains revealed that GRN163 was present in tumor cells at all time points studied. When GRN163 was infused into intracerebral U-251 MG tumors shortly after their implantation, it prevented their establishment and growth. Lastly, when rats with larger intracerebral tumors were treated with the inhibitor, GRN163 increased animal survival times. Our results demonstrate that the antitelomerase agent GRN163 inhibits growth of glioblastoma in vivo, exhibits favorable intracerebral tumor uptake properties, and prevents the growth of intracerebral tumors. These findings support further development of this compound as a potential anticancer agent. PMID:15279714

  18. Cell Libraries

    Science.gov (United States)

    1994-01-01

    A NASA contract led to the development of faster and more energy efficient semiconductor materials for digital integrated circuits. Gallium arsenide (GaAs) conducts electrons 4-6 times faster than silicon and uses less power at frequencies above 100-150 megahertz. However, the material is expensive, brittle, fragile and has lacked computer automated engineering tools to solve this problem. Systems & Processes Engineering Corporation (SPEC) developed a series of GaAs cell libraries for cell layout, design rule checking, logic synthesis, placement and routing, simulation and chip assembly. The system is marketed by Compare Design Automation.

  19. Solar cells

    International Nuclear Information System (INIS)

    A method of producing solar cells is described which consists of producing a substantially monocrystalline tubular body of silicon or other suitable semiconductor material, treating this body to form an annular rectifying junction and then cutting it longitudinally to form a number of nearly flat ribbons from which the solar cells are fabricated. The P=N rectifying junction produced by the formation of silicon dioxide on the layers at the inner and outer surfaces of the body can be formed by ion-implantation or diffusion. (U.K.)

  20. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    In his influential essay on markets, An essay on framing and overflowing (1998), Michel Callon writes that `the growing complexity of industrialized societies [is] due in large part to the movements of the technosciences, which are causing connections and interdependencies to proliferate'. This p...... and tantalizing than stem cells, in research, in medicine, or as products.......'. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...

  1. Sickle Cell Anemia

    Science.gov (United States)

    Sickle cell anemia is a disease in which your body produces abnormally shaped red blood cells. The cells are shaped like ... normal, round red blood cells. This leads to anemia. The sickle cells also get stuck in blood ...

  2. Stem Cell Basics

    Science.gov (United States)

    ... Information Stem Cell Basics Stem Cell Basics: Introduction Stem Cell Information General Information Clinical Trials Funding Information Current Research Policy Glossary Site Map Stem Cell Basics Introduction: What are stem cells, and why ...

  3. Stem Cell Information: Glossary

    Science.gov (United States)

    ... Neurons Oligodendrocyte Parthenogenesis Passage Pluripotent Polar body Preimplantation Proliferation Regenerative medicine Reproductive cloning Signals Somatic cell Somatic cell nuclear transfer (SCNT) Somatic (adult) stem cell Stem cells Stromal cells Subculturing Surface markers ...

  4. Learn About Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... ISSCR Get Involved Media © 2015 International Society for Stem Cell Research Terms of Use Disclaimer Privacy Policy

  5. Betulinic Acid Derivatives NVX-207 and B10 for Treatment of Glioblastoma—An in Vitro Study of Cytotoxicity and Radiosensitization

    Directory of Open Access Journals (Sweden)

    Matthias Bache

    2014-10-01

    Full Text Available Betulinic acid (BA, a pentacyclic triterpene, represents a new therapeutic substance that has potential benefits for treating glioblastoma. Recently, new strategies for producing BA derivatives with improved properties have evolved. However, few studies have examined the combination of BA or BA derivatives using radiotherapy. The effects of two BA derivatives, NVX-207 and B10, on cellular and radiobiological behavior were analyzed using glioblastoma cell lines (U251MG, U343MG and LN229. Based on IC50 values under normoxic conditions, we detected a 1.3–2.9-fold higher cytotoxicity of the BA derivatives B10 and NVX-207, respectively, compared to BA. Incubation using both BA derivatives led to decreased cell migration, cleavage of PARP and decreased protein expression levels of Survivin. Weak radiation sensitivity enhancement was observed in U251MG cells after treatment with both BA derivatives. The enhancement factors at an irradiation dose of 6 Gy after treatment with 5 µM NVX-207 and 5 µM B10 were 1.32 (p = 0.029 and 1.55 (p = 0.002, respectively. In contrast to BA, neither NVX-207 nor B10 had additional effects under hypoxic conditions. Our results suggest that the BA derivatives NVX-207 and B10 improve the effects of radiotherapy on human malignant glioma cells, particularly under normoxic conditions.

  6. Betulinic acid derivatives NVX-207 and B10 for treatment of glioblastoma--an in vitro study of cytotoxicity and radiosensitization.

    Science.gov (United States)

    Bache, Matthias; Bernhardt, Stephan; Passin, Sarina; Wichmann, Henri; Hein, Anja; Zschornak, Martin; Kappler, Matthias; Taubert, Helge; Paschke, Reinhard; Vordermark, Dirk

    2014-01-01

    Betulinic acid (BA), a pentacyclic triterpene, represents a new therapeutic substance that has potential benefits for treating glioblastoma. Recently, new strategies for producing BA derivatives with improved properties have evolved. However, few studies have examined the combination of BA or BA derivatives using radiotherapy. The effects of two BA derivatives, NVX-207 and B10, on cellular and radiobiological behavior were analyzed using glioblastoma cell lines (U251MG, U343MG and LN229). Based on IC50 values under normoxic conditions, we detected a 1.3-2.9-fold higher cytotoxicity of the BA derivatives B10 and NVX-207, respectively, compared to BA. Incubation using both BA derivatives led to decreased cell migration, cleavage of PARP and decreased protein expression levels of Survivin. Weak radiation sensitivity enhancement was observed in U251MG cells after treatment with both BA derivatives. The enhancement factors at an irradiation dose of 6 Gy after treatment with 5 µM NVX-207 and 5 µM B10 were 1.32 (p=0.029) and 1.55 (p=0.002), respectively. In contrast to BA, neither NVX-207 nor B10 had additional effects under hypoxic conditions. Our results suggest that the BA derivatives NVX-207 and B10 improve the effects of radiotherapy on human malignant glioma cells, particularly under normoxic conditions. PMID:25361208

  7. Betulinic Acid Derivatives NVX-207 and B10 for Treatment of Glioblastoma—An in Vitro Study of Cytotoxicity and Radiosensitization

    Science.gov (United States)

    Bache, Matthias; Bernhardt, Stephan; Passin, Sarina; Wichmann, Henri; Hein, Anja; Zschornak, Martin; Kappler, Matthias; Taubert, Helge; Paschke, Reinhard; Vordermark, Dirk

    2014-01-01

    Betulinic acid (BA), a pentacyclic triterpene, represents a new therapeutic substance that has potential benefits for treating glioblastoma. Recently, new strategies for producing BA derivatives with improved properties have evolved. However, few studies have examined the combination of BA or BA derivatives using radiotherapy. The effects of two BA derivatives, NVX-207 and B10, on cellular and radiobiological behavior were analyzed using glioblastoma cell lines (U251MG, U343MG and LN229). Based on IC50 values under normoxic conditions, we detected a 1.3–2.9-fold higher cytotoxicity of the BA derivatives B10 and NVX-207, respectively, compared to BA. Incubation using both BA derivatives led to decreased cell migration, cleavage of PARP and decreased protein expression levels of Survivin. Weak radiation sensitivity enhancement was observed in U251MG cells after treatment with both BA derivatives. The enhancement factors at an irradiation dose of 6 Gy after treatment with 5 µM NVX-207 and 5 µM B10 were 1.32 (p = 0.029) and 1.55 (p = 0.002), respectively. In contrast to BA, neither NVX-207 nor B10 had additional effects under hypoxic conditions. Our results suggest that the BA derivatives NVX-207 and B10 improve the effects of radiotherapy on human malignant glioma cells, particularly under normoxic conditions. PMID:25361208

  8. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  9. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and...... nuclear fuel-based energy technologies....

  10. Cell Docking, Movement and Cell-Cell Interactions of Heterogeneous Cell Suspensions in a Cell Manipulation Microdevice

    OpenAIRE

    Long-Sun Huang; Yu-Hung Wang; Yu-Wei Chung; Fei-Lung Lai; Shiaw-Min Hwang

    2011-01-01

    This study demonstrates a novel cell manipulation microdevice for cell docking, culturing, cell-cell contact and interaction by microfluidic manipulation of heterogeneous cell suspensions. Heterogeneous cell suspensions include disparate blood cells of natural killer cells and leukemia cancer cells for immune cell transplantation therapy. However, NK cell alloreactivity from different healthy donors present various recovery response levels. Little is still known about the interactions and cyt...

  11. Reprogrammed pluripotent stem cells from somatic cells.

    Science.gov (United States)

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-06-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-like pluripotency by transferring somatic cell nuclei into oocytes, by cell fusion with pluripotent cells. Retroviral-mediated introduction of four factors, Oct4, Sox2, Klf4 and c-Myc can successfully reprogram somatic cells into ES cell-like pluripotent stem cells, known as induced pluripotent stem (iPS) cells. These cells closely resemble ES cells in gene expression pattern, cell biologic and phenotypic characteristics. However, to reach the eventual goal of clinical application, it is necessary to overcome the major drawbacks such as low reprogramming efficiency and genomic alterations due to viral integration. In this review, we discuss the current reprogramming techniques and mechanisms of nuclear reprogramming induced by transcription factor transduction. PMID:24298328

  12. Functionalized magnetic nanochains with enhanced MR imaging: A novel nanosystem for targeting and inhibition of early glioma.

    Science.gov (United States)

    Zhang, Yi; Huang, Zhongbing; Wu, Zhi; Yin, Guangfu; Wang, Lei; Gao, Fabao

    2016-04-01

    Absence of efficient targeting limits the application of magnetic nanochains (NCs) in the diagnosis of early brain cancer. Herein, dextran-coated NCs (more than 100nm length and ∼10nm cores diameter), which were modified by cyclic pentapeptide c(RGDyC) or chlorotoxin (CTX) as the targeting molecules, were fabricated via carbodiimide chemistry and thiol technique. The analysis results revealed that the obtained slender NCs exhibited good biocompatibility, superparamagnetic property, high transverse relaxivity (R2) and longer blood circulation time. The test results of human umbilical vein endothelial cells and U251 human glioma cells indicated that the conjugation of c(RGDyC) could obviously increase the cyto-internalization of c(RGDyC)-NCs, however, CTX modification could significantly enhance accumulation of CTX-NCs in U251 cells, leading to cellular apoptosis. The results of in vivo biodistribution tests and in vivo magnetic resonance (MR) imaging indicated that, although the c(RGDyC)-NCs could target early glioma to some extent and obviously enhance the contrast of MR imaging, CTX-NCs possessed higher tumor-targeting ability and good inhibition effect than the c(RGDyC)-NCs, suggesting that CTX-NCs are promising candidates for the diagnosis and therapy of early glioma. PMID:26803007

  13. Red blood cells, sickle cell (image)

    Science.gov (United States)

    Sickle cell anemia is an inherited blood disease in which the red blood cells produce abnormal pigment (hemoglobin). ... abnormal hemoglobin causes deformity of the red blood cells into crescent or sickle-shapes, as seen in this photomicrograph.

  14. Stem cell glycolipids.

    Science.gov (United States)

    Yanagisawa, Makoto

    2011-09-01

    Glycolipids are compounds containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety. Because of their expression patterns and the intracellular localization patterns, glycolipids, including stage-specific embryonic antigens (SSEA-3, SSEA-4, and possibly SSEA-1) and gangliosides (e.g., GD3, GD2, and A2B5 antigens), have been used as marker molecules of stem cells. In this review, I will introduce glycolipids expressed in pluripotent stem cells (embryonic stem cells, induced pluripotent stem cells, very small embryonic-like stem cells, amniotic stem cells, and multilineage-differentiating stress enduring cells), multipotent stem cells (neural stem cells, mesenchymal stem cells, fetal liver multipotent progenitor cells, and hematopoietic stem cells), and cancer stem cells (brain cancer stem cells and breast cancer stem cells), and discuss their availability as biomarkers for identifying and isolating stem cells. PMID:21161592

  15. Murine Mueller cells are progenitor cells for neuronal cells and fibrous tissue cells

    International Nuclear Information System (INIS)

    Mammalian Mueller cells have been reported to possess retinal progenitor cell properties and generate new neurons after injury. This study investigates murine Mueller cells under in vitro conditions for their capability of dedifferentiation into retinal progenitor cells. Mueller cells were isolated from mouse retina, and proliferating cells were expanded in serum-containing medium. For dedifferentiation, the cultured cells were transferred to serum-replacement medium (SRM) at different points in time after their isolation. Interestingly, early cell passages produced fibrous tissue in which extracellular matrix proteins and connective tissue markers were differentially expressed. In contrast, aged Mueller cell cultures formed neurospheres in SRM that are characteristic for neuronal progenitor cells. These neurospheres differentiated into neuron-like cells after cultivation on laminin/ornithine cell culture substrate. Here, we report for the first time that murine Mueller cells can be progenitors for both, fibrous tissue cells and neuronal cells, depending on the age of the cell culture

  16. Sickle Cell Anemia

    Science.gov (United States)

    Sickle cell anemia is a disease in which your body produces abnormally shaped red blood cells. The cells are ... pain and organ damage. A genetic problem causes sickle cell anemia. People with the disease are born with two ...

  17. Sickle cell test

    Science.gov (United States)

    The sickle cell test looks for the abnormal hemoglobin in the blood that causes the disease sickle cell anemia . ... if a person has abnormal hemoglobin that causes sickle cell disease and sickle cell trait. Hemoglobin is a ...

  18. What are Stem Cells?

    OpenAIRE

    Ahmadshah Farhat; Ashraf Mohammadzadeh; Rezaie, M.

    2014-01-01

      Stem cells are undifferentiated self regenerating multi potential cells. There are three types of stem cells categories by the ability to form after cells and correlated with the body’s development process. Totipotent: these stem cells can form an entire organism such as fertilized egg. Ploripotent: ploripotent cells are those that can form any cell in the body but cannot form an entire organism such as developing embryo’s totipotent cells become ploripotent  Multipotent: Multi potent stem ...

  19. Pluripotent stem cell lines

    OpenAIRE

    Yu, Junying; Thomson, James A.

    2008-01-01

    The derivation of human embryonic stem cells 10 years ago ignited an explosion of public interest in stem cells, yet this achievement depended on prior decades of research on mouse embryonic carcinoma cells and embryonic stem cells. In turn, the recent derivation of mouse and human induced pluripotent stem cells depended on the prior studies on mouse and human embryonic stem cells. Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in vitro while ma...

  20. DNA-cell conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  1. Molecular Mechanisms of Cell-cell Recognition

    Institute of Scientific and Technical Information of China (English)

    WANG Jia-Huai

    2004-01-01

    Cell-cell recognition is the key for multicellular organisms to survive. This recognition critically depends on protein-protein interactions from opposing cell surfaces. Recent structural investigations reveal unique features of these cell surface receptors and how they interact. These interactions are specific, but usually relatively weak, with more hydrophilic forces involved in binding. The receptors appear to have specialized ways to present their key interacting elements for ligand-binding from the cell surface. Cell-cell contacts are multivalent. A large group of cell surface molecules are engaged in interactions. Characteristic weak interactions make possible for each individual molecule pair within the group to constantly associate-dissociate-reassociate, such that the cell-cell recognition becomes a dynamic process. The immunological synapse is a good example for immune receptors to be orchestrated in performing immunological function in a collective fashion.

  2. Radiosensitization by the novel DNA intercalating agent vosaroxin

    International Nuclear Information System (INIS)

    Vosaroxin is a first in class naphthyridine analog structurally related to quinolone antibacterials, that intercalates DNA and inhibits topoisomerase II. Vosaroxin is not a P-glycoprotein receptor substrate and its activity is independent of p53, thus evading common drug resistance mechanisms. To evaluate vosaroxin as a clinically applicable radiation sensitizer, we investigated its effects on tumor cell radiosensitivity in vitro and in vivo. Vosaroxin's effect on post-irradiation sensitivity of U251, DU145, and MiaPaca-2 cells was assessed by clonogenic assay. Subsequent mechanistic and in vivo studies were performed with U251 cells. Cell cycle distribution and G2 checkpoint integrity was analyzed by flow cytometry. DNA damage and repair was evaluated by a high throughput gamma-H2AX assay. Apoptosis was assessed by flow cytometry. Mitotic catastrophe was assessed by microscopic evidence of fragmented nuclei by immunofluorescence. In vivo radiosensitization was measured by subcutaneous tumor growth delay. 50-100 nmol/L treatment with vosaroxin resulted in radiosensitization of all 3 cell lines tested with a dose enhancement factor of 1.20 to 1.51 measured at a surviving fraction of 0.1. The maximal dose enhancement was seen in U251 cells treated with 75 nmol/L vosaroxin (DEF 1.51). Vosaroxin exposure did not change cell cycle distribution prior to irradiation nor alter G2 checkpoint integrity after irradiation. No difference was seen in the apoptotic fraction regardless of drug or radiation treatment. The number of cells in mitotic catastrophe was significantly greater in irradiated cells treated with vosaroxin than cells receiving radiation only at 72 hr (p = 0.009). Vosaroxin alone did not significantly increase mitotic catastrophe over control (p = 0.53). Cells treated with vosaroxin and radiation maintained significantly higher gamma-H2AX levels than cells treated with vehicle control (p = 0.014), vosaroxin (p = 0.042), or radiation alone (p = 0.039) after

  3. Integrated circuit cell library

    Science.gov (United States)

    Whitaker, Sterling R. (Inventor); Miles, Lowell H. (Inventor)

    2005-01-01

    According to the invention, an ASIC cell library for use in creation of custom integrated circuits is disclosed. The ASIC cell library includes some first cells and some second cells. Each of the second cells includes two or more kernel cells. The ASIC cell library is at least 5% comprised of second cells. In various embodiments, the ASIC cell library could be 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 95% or more comprised of second cells.

  4. Modeling cell-in-cell structure into its biological significance

    OpenAIRE

    He, M-f; Wang, S.; Y Wang; Wang, X-n

    2013-01-01

    Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ‘entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintainin...

  5. GFAP启动子介导放射性131Ⅰ靶向性治疗胶质瘤的实验研究%Glial fibrillary acidic protein promoters directed sodium iodide symporter expression in malignant gioma radioiodine therapy

    Institute of Scientific and Technical Information of China (English)

    李玮; 谭建; 王澎

    2013-01-01

    possibility that the glial fibrillary acidic protein (GFAP) promoters modulate the human sodium iodide symporter (hNIS) expression in glioma and lead transecting hNIS gene into glioma cells for radioactive iodide treatment.Methods PGL3-Basic,PGL3-Control and PGL3-GFAP plasmids were transfected into U251,U87 and MRC-5 cells,respectively,with the help of liposome Lipofectamine 2000; 24 h after that,the reactivity of these cells was detected and the efficiency of GFAP promoter was tested under chemiluminescence apparatus.Recombinant adenovirus vector Ad-GFAP-hNIS in which GFA P promoter could modulate the hNIS gene expression was constructed,and then,the vector was transfected into the U251,U87 and MRC-5 cells; Western blotting was employed to detect the protein expressions of GFAP and hNIS.Ad-CMV-EGFP group (blank control) and Ad-CMV-hNIS group (negative control) and Ad-GFAP-hNIS group were employed; the 125I uptake and effiux abilities and the cell amount after gentian violet staining in the three groups were measured by γ counter; the clonogenecity rate of them was calculated.BALB/c female nude mice (n=20) was divided into four groups:group of injecting Ad-GFAP-hNIS without 131I,group of injecting Ad-GFAP-hNIS with 131I,group of injecting Ad-CMV-EGFP without 131I and group of injecting Ad-CMV-EGFP with 131I (n=5);U87 cells were transfected into the nude mice,and then,the tumor growth was observed and the life cycle of the mice was noted.Nude mice bearing the U87 tumors were injected Ad-GFAP-hNIS and Ad-CMV-EGFP,followed by 1 mCi 99mTcO4 via intraperitoneal injection; single photon emission computed tomography (SPECT) was performed.Results As compared with that of cells being transfected with PGL3-blank plasmid,the relative reactivity of U251 and U87 cells being transfected with PGL3-GFAP plasmid was decreased with significant difference (P<0.05).Western blotting revealed GFAP and hNIS proteins in U87 and U251 cells.125I uptake of U87 and U251 cells after Ad

  6. nduced pluripotent stem cells and cell therapy

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2013-12-01

    Full Text Available Human embryonic stem cells are derived from the inner cell mass of a blastocyst-stage embryo. They hold a huge promise for cell therapy with their self-renewing ability and pluripotency, which is known as the potential to differentiate into all cell types originating from three embryonic germ layers. However, their unique pluripotent feature could not be utilised for therapeutic purposes due to the ethical and legal problems during derivation. Recently, it was shown that the cells from adult tissues could be reverted into embryonic state, thereby restoring their pluripotent feature. This has strenghtened the possiblity of directed differentition of the reprogrammed somatic cells into the desired cell types in vitro and their use in regenerative medicine. Although these cells were termed as induced pluripotent cells, the mechanism of pluripotency has yet to be understood. Still, induced pluripotent stem cell technology is considered to be significant by proposing novel approaches in disease modelling, drug screening and cell therapy. Besides their self-renewing ability and their potential to differentiate into all cell types in a human body, they arouse a great interest in scientific world by being far from the ethical concerns regarding their embryonic counterparts and their unique feature of being patient-specific in prospective cell therapies. In this review, induced pluripotent stem cell technology and its role in cell-based therapies from past to present will be discussed. J Clin Exp Invest 2013; 4 (4: 550-561

  7. Monitoring cell growth.

    Science.gov (United States)

    Strober, W

    2001-05-01

    This appendix provides two protocols for monitoring cell growth. Counting cells using a hemacytometer is tedious but it allows one to effectively distinguish live cells from dead cells (using Trypan Blue exclusion). In addition, this procedure is less subject to errors due to cell clumping or heterogeneity of cell size. The use of an electronic cell counter is quicker and easier than counting cells using a hemacytometer. However, an electronic cell counter as currently constructed does not distinguish live from dead cells in a reliable fashion and is subject to error due to the presence of cell clumps. Overall, the electronic cell counter is best reserved for repetitive and rapid counting of fresh peripheral blood cells and should be used with caution when counting cell populations derived from tissues. PMID:18432653

  8. Chromophobe Renal Cell Carcinoma

    OpenAIRE

    Jyotsna Vijaykumar Wader; Sujata S Kumbhar; Huddedar AD; Wasim GM Khatib

    2013-01-01

    Renal cell carcinoma is the most common neoplasm of the kidney comprised of different histological variants. Chromophobe renal cell carcinoma (ChRCC) is a rare subtype of renal cell carcinoma (RCC) mainly diagnosed in the sixth decade of life. It is important to identify this entity because it has significantly better prognosis than the clear cell (conventional) and papillary renal cell carcinomas. The chromophobe renal cell carcinoma should be differentiated from oncocytoma and clear cell ca...

  9. Automated Cell-Cutting for Cell Cloning

    Science.gov (United States)

    Ichikawa, Akihiko; Tanikawa, Tamio; Matsukawa, Kazutsugu; Takahashi, Seiya; Ohba, Kohtaro

    We develop an automated cell-cutting technique for cell cloning. Animal cells softened by the cytochalasin treatment are injected into a microfluidic chip. The microfluidic chip contains two orthogonal channels: one microchannel is wide, used to transport cells, and generates the cutting flow; the other is thin and used for aspiration, fixing, and stretching of the cell. The injected cell is aspirated and stretched in the thin microchannel. Simultaneously, the volumes of the cell before and after aspiration are calculated; the volumes are used to calculate the fluid flow required to aspirate half the volume of the cell into the thin microchannel. Finally, we apply a high-speed flow in the orthogonal microchannel to bisect the cell. This paper reports the cutting process, the cutting system, and the results of the experiment.

  10. Biotransformation of sclareolide by filamentous fungi: cytotoxic evaluations of the derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Cano, Arturo [Universidad Nacional Autonoma de Mexico, D.F. (Mexico). Facultad de Estudios Superiores Zaragoza; Ramirez-Apan, Maria Teresa; Delgado, Guillermo, E-mail: delgado@unam.m [Universidad Nacional Autonoma de Mexico, D.F. (Mexico)

    2011-07-01

    Sclareolide (1) was incubated with eight different species of filamentous fungi conventionally used for bio-oxidations. Compound 1 was metabolized with Aspergillus niger in medium A to yield 3-ketosclareolide (2) and 3b-hydroxysclareolide (4), while in medium B (containing major number of nutrients with respect to medium A), compounds 2, 4, 3{alpha},6{beta}-dihydroxysclareolide (16), 1-ketosclareolide (17), 3-keto-15-hydroxysclareolide (18) and 3{beta},15-dihydroxysclareolide (19) were obtained. The biotransformation products 16-19 were found to be new substances. Fermentation of 1 with Cunninghamella blackesleeana using medium A afforded 2 and 4, while using medium B yielded 2, 4, 16 and 17. Compounds 2, 4 and 17 were also obtained with Curvularia lunata. Biotransformation of 1 with Beauveria bassiana yielded 4 in satisfactory yield, with Rhizopus oligosporus and Mucor miehei afforded 2 and 4, while with R. nigricans and Fusarium moliniforme yielded 2, 4 and 16. Cytotoxic evaluation of 1 and the obtained products against selected human cancer cell lines (U251, PC-3, K562, HCT-15, MCF-7 and SKUL-1) indicated that 16 (3{alpha},6{beta}-dihydroxysclareolide) displayed moderate cytotoxic (IC{sub 50} < 100 {mu}M) against U251, PC-3, HCT-15 and MCF-7. (author)

  11. Mantle Cell Lymphoma

    Science.gov (United States)

    Getting the Facts Mantle Cell Lymphoma Overview Lymphoma is the most common blood cancer. The two main forms of lymphoma are Hodgkin lymphoma ... lymphocytes (B-cells) and T-lymphocytes (T-cells). Mantle cell lymphoma (MCL) is a rare, B-cell ...

  12. Host cell reactivation in mammalian cells

    International Nuclear Information System (INIS)

    The survival of UV-irradiated herpes simplex virus was determined in cultured Potoroo (a marsupial) and human cells under lighting conditions which promoted photereactivation. Photoreactivation was readily demonstrated for herpes virus in two lines of Potoroo cells with dose reduction factors of 0.7 to 0.8 for ovary cells and 0.5 to 0.7 for kidney cells. Light from Blacklite (near UV) lamps was more effective than from Daylight (mostly visible) lamps, suggesting that near UV radiation was more effecient for photoreactivation in Potoroo cells. The quantitative and qualitative aspects of this photoreactivation were similar to those reported for a similar virus infecting chick embryo cells. UV-survival curves of herpes virus in Potoroo cells indicated a high level of 'dark' host cell reactivation. No photoreactivation was found for UV-irradiated vaccinia virus in Potoroo cells. A similar photoreactivation study was done using special control lighting (lambda>600 nm) and human cells with normal repair and with cells deficient in excision repair (XP). No photoreactivation was found for UV-irradiated herpes virus in either human cell with either Blacklite or Daylight lamps as the sources of photoreactivating light. This result contrasts with a report of photoreactivation for a herpes virus in the same XP cells using incandescent lamps. (author)

  13. Cell culture purity issues and DFAT cells

    International Nuclear Information System (INIS)

    Highlights: •DFAT cells are progeny cells derived from dedifferentiated mature adipocytes. •Common problems in this research is potential cell contamination of initial cultures. •The initial cell culture purity is crucial in DFAT cell research field. -- Abstract: Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture

  14. CELL RESEARCH

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    REVIEWSInducible resistance to Fas-mediated apoptosis in B cells…………………………………ROTHSTEIN Thomas L (245)Executionary pathway for apoptosis: lessons from mutant mice………………………………………WOO Minna, Razqallah Hakem, Tak W Mak (267)The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions…………………………………QU Cheng Kui (279)REGULAR ARTICLESTemperature dependent expression of cdc2 and cyclin B1 in spermatogenic cells during spermatogenesis…………………………KONG Wei Hua, Zheng GU, Jining LU, Jiake TSO (289)Transgenic mice overexpressing γ-aminobutyric acid transporter subtype I develop obesity…………………………………MA Ying Hua, Jia Hua HU, Xiao Gang ZHOU, Ruo Wang ZENG, Zhen Tong MEI, Jian FEI, Li He GUO (303)Genetic aberration in primary hepatocellular carcinoma: correlation between p53 gene mutation and loss-of-heterozygosity on chromosome 16q21-q23 and 9p21-p23………………………………………WANG Gang, Chang Hui HUANG, Yan ZHAO, Ling CAI, Ying WANG, Shi Jin XIU, Zheng Wen JIANG, Shuang YANG, Xin Tai ZHAO, Wei HUANG, Jian Ren GU (311)Identification and genetic mapping of four novel genes that regulate leaf deve- lopment in Arabidopsis………………………………………………SUN Yue, Wei ZHANG, Feng Ling LI, Ying Li GUO, Tian Lei LIU, Hai HUANG (325)NOTICE FOR CONTRIBUTORS…………………………………(337)CONTENTS of Vol. 10, 2000…………………………………………………(338)

  15. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  16. Mammary stem cells have myoepithelial cell properties.

    Science.gov (United States)

    Prater, Michael D; Petit, Valérie; Alasdair Russell, I; Giraddi, Rajshekhar R; Shehata, Mona; Menon, Suraj; Schulte, Reiner; Kalajzic, Ivo; Rath, Nicola; Olson, Michael F; Metzger, Daniel; Faraldo, Marisa M; Deugnier, Marie-Ange; Glukhova, Marina A; Stingl, John

    2014-10-01

    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt actin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using two independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage-tracing approach we follow the progeny of myoepithelial cells that express α-smooth muscle actin and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy. PMID:25173976

  17. Galvanic cells: setting up the Daniell cell.

    OpenAIRE

    2008-01-01

    With the reagents (0.05M copper nitrate solution, 0.05M zinc nitrate solution) and material (glassware, potentiometer, electric wire) availabe in the laboratory, the user must set up the Daniell cell. Different configurations can be possible if the half cells are filled with either electrolyte solution. The cell connections to the measuring device can also be changed. In all instances, an explanation of the set up cell is obtained as well as of the measured potential difference.

  18. Mammary stem cells have myoepithelial cell properties

    OpenAIRE

    Prater, Michael D.; Petit, Val?rie; Russell, I Alasdair; Giraddi, Rajshekhar; Shehata, Mona; Menon, Suraj; Schulte, Reiner; Kalajzic, Ivo; Rath, Nicola; Olson, Michael F.; Metzger, Daniel; Faraldo, Marisa M.; Deugnier, Marie-Ange; Glukhova, Marina A.; Stingl, John

    2014-01-01

    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt acin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepi...

  19. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC ...

  20. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL) Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  1. Squamous cell skin cancer

    Science.gov (United States)

    ... earliest form of squamous cell cancer is called Bowen disease (or squamous cell carcinoma in situ). This type ... cancer; Squamous cell carcinoma of the skin Images Bowen's disease on the hand Keratoacanthoma Keratoacanthoma Skin cancer, squamous ...

  2. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  3. Cell sheet engineering

    Directory of Open Access Journals (Sweden)

    Masayuki Yamato

    2004-05-01

    Full Text Available We have developed ‘cell sheet engineering’ in order to avoid the limitations of tissue reconstruction using biodegradable scaffolds or single cell suspension injection. Our concept is tissue reconstruction, not from single cells, but from cell sheets. Cell sheets are prepared using temperature-responsive culture dishes. Temperature-responsive polymers are covalently grafted onto the dishes, allowing various types of cells to adhere and proliferate at 37°C. The cells spontaneously detach when the temperature is reduced below 32°C without the need for proteolytic enzymes. The confluent cells are noninvasively harvested as single, contiguous cell sheets with intact cell-cell junctions and deposited extracellular matrix (ECM. We have used these harvested cell sheets for various tissue reconstructions, including ocular surfaces, periodontal ligaments, cardiac patches, and bladder augmentation.

  4. Sickle Cell Disease (SCD)

    Science.gov (United States)

    ... disease (SCD) Email this page Print this page Sickle cell disease (SCD) Sickle cell disease (SCD) is a disease of the hemoglobin. ... and form a sickle or a cresent. Tweet Sickle cell disease (SCD) Symptoms of SCD How transplant can ...

  5. Sickle Cell Disease

    Science.gov (United States)

    ... in Sickle Cell Disease New supplement from the American Journal of Preventive Medicine describes the state of sickle cell disease related care in the United States. Read Supplement » ... are affected by sickle cell disease. More WEBINAR ...

  6. Sickle Cell Disease

    Science.gov (United States)

    ... from the NHLBI on Twitter. What Is Sickle Cell Disease? Español The term sickle cell disease (SCD) ... common forms of SCD. Some Forms of Sickle Cell Disease Hemoglobin SS Hemoglobin SC Hemoglobin Sβ 0 thalassemia ...

  7. Basal Cell Carcinoma (BCC)

    Science.gov (United States)

    ... epithelioma, is the most common form of skin cancer. Basal cell carcinoma usually occurs on sun-damaged skin, especially ... other health issues. Infiltrating or morpheaform basal cell carcinomas: Infiltrating basal cell carcinomas can be more aggressive and locally destructive ...

  8. Snail modulates cell metabolism in MDCK cells

    International Nuclear Information System (INIS)

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O2 consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of key enzymes

  9. Snail modulates cell metabolism in MDCK cells

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Misako, E-mail: haraguci@m3.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Indo, Hiroko P. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Iwasaki, Yasumasa [Health Care Center, Kochi University, Kochi 780-8520 (Japan); Iwashita, Yoichiro [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Fukushige, Tomoko [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Majima, Hideyuki J. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Izumo, Kimiko; Horiuchi, Masahisa [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Kanekura, Takuro [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Furukawa, Tatsuhiko [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Ozawa, Masayuki [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  10. Artificial Stem Cell Niches

    OpenAIRE

    Lutolf, Matthias P.; Blau, Helen M.

    2009-01-01

    Stem cells are characterized by their dual ability to reproduce themselves (self-renew) and specialize (differentiate), yielding a plethora of daughter cells that maintain and regenerate tissues. In contrast to their embryonic counterparts, adult stem cells retain their unique functions only if they are in intimate contact with an instructive microenvironment, termed stem cell niche. In these niches, stem cells integrate a complex array of molecular signals that, in concert with induced cell-...

  11. Fish Stem Cell Cultures

    OpenAIRE

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is th...

  12. Stem Cell Separation Technologies

    OpenAIRE

    Zhu, Beili; Murthy, Shashi K

    2013-01-01

    Stem cell therapy and translational stem cell research require large-scale supply of stem cells at high purity and viability, thus leading to the development of stem cell separation technologies. This review covers key technologies being applied to stem cell separation, and also highlights exciting new approaches in this field. First, we will cover conventional separation methods that are commercially available and have been widely adapted. These methods include Fluorescence-activated cell so...

  13. Cell control report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This extensive report provides an essential overview of cells and their use as factory automation building blocks. The following issues are discussed in depth: Cell integration Cell software and standards Future technologies applied to cells Plus Cell control applications including: - rotary parts manufacturing - diesel engine component development - general cell control development at the General Electric Corporation - a vendor list.

  14. Dental mesenchymal stem cells

    OpenAIRE

    Kaukua, Nina

    2014-01-01

    Mesenchymal stem cells have been found in various tissues and act as source for renewal and repair. The mouse incisor tooth continuously grows throughout life, implicating that there are stem cell niches constantly contributing with cells. The composition of these stem cell niches is not fully understood. Here, we show that Schwann cells on the peripheral nerves in the close proximity to the incisor tooth constitute a stem cell niche. Transgenic mouse models were used to label ...

  15. Sickle Cell Information Center

    Science.gov (United States)

    ... Word Visual Art Historical Perspectives General Information Research Articles Books Primary Documents Images Sickle Cell on Instagram Sickle Cell Organizations State National International Newsletter NIH Report on Evidence- ...

  16. Cell-cell interactions promote mammary epithelial cell differentiation

    OpenAIRE

    1985-01-01

    Mammary epithelium differentiates in a stromal milieu of adipocytes and fibroblasts. To investigate cell-cell interactions that may influence mammary epithelial cell differentiation, we developed a co-culture system of murine mammary epithelium and adipocytes and other fibroblasts. Insofar as caseins are specific molecular markers of mammary epithelial differentiation, rat anti-mouse casein monoclonal antibodies were raised against the three major mouse casein components to study this interac...

  17. Fusion with stem cell makes the hepatocellular carcinoma cells similar to liver tumor-initiating cells

    OpenAIRE

    Wang, Ran; Chen, Shuxun; Li, Changxian; Ng, Kevin Tak Pan; Kong, Chi-Wing; Cheng, Jinping; Cheng, Shuk Han; Li, Ronald A.; Lo, Chung Mau; Man, Kwan; Sun, Dong

    2016-01-01

    Background Cell fusion is a fast and highly efficient technique for cells to acquire new properties. The fusion of somatic cells with stem cells can reprogram somatic cells to a pluripotent state. Our research on the fusion of stem cells and cancer cells demonstrates that the fused cells can exhibit stemness and cancer cell-like characteristics. Thus, tumor-initiating cell-like cells are generated. Methods We employed laser-induced single-cell fusion technique to fuse the hepatocellular carci...

  18. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Felthaus, O. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Ettl, T.; Gosau, M.; Driemel, O. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Brockhoff, G. [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reck, A. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Zeitler, K. [Institute of Pathology, University of Regensburg (Germany); Hautmann, M. [Department of Radiotherapy, University of Regensburg (Germany); Reichert, T.E. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Schmalz, G. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Morsczeck, C., E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  19. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    International Nuclear Information System (INIS)

    Research highlights: → Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). → Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. → Monoclonal cell lines showed reduced sensitivity for Paclitaxel. → In situ CD133+ cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. → CD133+ and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133+ cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  20. Effects of fractionated radiation therapy on human brain tumor multicellular spheriods

    International Nuclear Information System (INIS)

    We investigated the cytotoxic effects of fractionated radiation therapy on multicellular spheriods of human malignant glioma cell lines U-87 MG, U-251 MG, and U-373 MG. Graded doses of x-rays were administered in 1, 3, 8, 15, and 30 fractions over 15 days. The isoeffect dose for a 1 log cell kill ranged from 4-4.5 Gy for a single fraction to 7-8 Gy for an 8-fraction protocol; no additional dose-sparing was achieved with more fractions. Therefore, the effects of individual doses (1.56 Gy) of the 8-fraction protocol were studied in U-251 MG spheroids. A cell survival assay showed that the first dose of radiation killed 30-50% of the cells; subsequent doses usually killed fewer cells. The cell kill after all 8 doses was about 1.0 log. No consistent relationship between the intracellular glutathione level and fraction number was observed. The 24-hour labeling index of the spheroids did not decrease until after the second fraction. Thus, the higher cell kill of the first dose does not seem to be related to cell cycle synchrony. Multinuclear and mononuclear giant cells were limited almost entirely to the periphery of the spheriods and increased with the number of radiation fractions. We conclude that multicellular spheroids can be used to study the biological effects of fractionated radiation therapy on human brain tumor cells. Although this model cannot be used to evaluate the effect of radiation on normal tissue, it may be useful in developing more effective radiation therapy protocols for human brain tumors. 36 refs., 8 figs

  1. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    International Nuclear Information System (INIS)

    Highlights: ► MSC like cells were derived from hESC by a simple and reproducible method. ► Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. ► MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  2. SMOOTH MUSCLE STEM CELLS

    Science.gov (United States)

    Vascular smooth muscle cells (SMCs) originate from multiple types of progenitor cells. In the embryo, the most well-studied SMC progenitor is the cardiac neural crest stem cell. Smooth muscle differentiation in the neural crest lineage is controlled by a combination of cell intrinsic factors, includ...

  3. CELL VOLUME CONFERENCES

    OpenAIRE

    V. Štrbák

    2016-01-01

    This mini-review describes the history of cell volume conferences with the emphasis on the research of cell volume sensitive peptide exocytosis initiated by Prof. Monte A. Greer as well as the recent achievements on the study of the mechanisms of cell volume adjustment and their implications in the regulation of metabolism, gene expression, cell proliferation and death.

  4. Sickle Cell Disease

    Science.gov (United States)

    ... sickle cell disease? Sickle cell disease, also called sickle cell anemia, is a hereditary condition (which means it runs ... or blocks blood and oxygen reaching nearby tissues. Sickle cell disease ... the whites of the eyes) Anemia (the decreased ability of the blood to carry ...

  5. Fluorescence activated cell sorting.

    Science.gov (United States)

    Bonner, W. A.; Hulett, H. R.; Sweet, R. G.; Herzenberg, L. A.

    1972-01-01

    An instrument has been developed for sorting biological cells. The cells are rendered differentially fluorescent and incorporated into a small liquid stream illuminated by a laser beam. The cells pass sequentially through the beam, and fluorescent light from the cells gives rise to electrical signals. The stream is broken into a series of uniform size drops downstream of the laser. The cell signals are used to give appropriate electrostatic charges to drops containing the cells. The drops then pass between two charged plates and are deflected to appropriate containers. The system has proved capable of providing fractions containing large numbers of viable cells highly enriched in a particular functional type.

  6. When Blood Cells Bend: Understanding Sickle Cell Disease

    Science.gov (United States)

    ... please review our exit disclaimer . Subscribe When Blood Cells Bend Understanding Sickle Cell Disease For people who don’t suspect they ... Cells Bend Wise Choices Links Living with Sickle Cell Disease See a sickle cell disease expert regularly. ...

  7. The cell cycle as a brake for β-cell regeneration from embryonic stem cells

    OpenAIRE

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-01

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle ...

  8. Cancer Stem Cells

    OpenAIRE

    Katarzyna Wieczorek; Jolanta Niewiarowska

    2008-01-01

    Cancer stem cell theory gains increasingly greater significance in the world of medicine. Numerous findings of scientific research in vivo and in vitro indicate that it is the population of undifferentiated, self-renewing cells which is responsible for recurrence of cancer and metastasis. Similarly to normal stem cells, cancer stem cells (CSC) function in the environment of the other cells of the organism, called the niche, where they receive signals for differentiation and proliferation proc...

  9. Cell fusion of bone marrow cells and somatic cell reprogramming by embryonic stem cells

    OpenAIRE

    Bonde, Sabrina; Pedram, Mehrdad; Stultz, Ryan; Zavazava, Nicholas

    2010-01-01

    Bone marrow transplantation is a curative treatment for many diseases, including leukemia, autoimmune diseases, and a number of immunodeficiencies. Recently, it was claimed that bone marrow cells transdifferentiate, a much desired property as bone marrow cells are abundant and therefore could be used in regenerative medicine to treat incurable chronic diseases. Using a Cre/loxP system, we studied cell fusion after bone marrow transplantation. Fused cells were chiefly Gr-1+, a myeloid cell mar...

  10. Hepatic stem cell niches

    OpenAIRE

    Kordes, Claus; Häussinger, Dieter

    2013-01-01

    Stem cell niches are special microenvironments that maintain stem cells and control their behavior to ensure tissue homeostasis and regeneration throughout life. The liver has a high regenerative capacity that involves stem/progenitor cells when the proliferation of hepatocytes is impaired. In recent years progress has been made in the identification of potential hepatic stem cell niches. There is evidence that hepatic progenitor cells can originate from niches in the canals...

  11. Stem Cell Networks

    OpenAIRE

    Werner, Eric

    2016-01-01

    We present a general computational theory of stem cell networks and their developmental dynamics. Stem cell networks are special cases of developmental control networks. Our theory generates a natural classification of all possible stem cell networks based on their network architecture. Each stem cell network has a unique topology and semantics and developmental dynamics that result in distinct phenotypes. We show that the ideal growth dynamics of multicellular systems generated by stem cell ...

  12. Stem cell mechanobiology

    OpenAIRE

    David A. Lee; Knight, Martin M.; Jonathan J Campbell; Bader, Dan L.

    2010-01-01

    Stem cells are undifferentiated cells that are capable of proliferation, self-maintenance and differentiation towards specific cell phenotypes. These processes are controlled by a variety of cues including physicochemical factors associated with the specific mechanical environment in which the cells reside. The control of stem cell biology through mechanical factors remains poorly understood and is the focus of the developing field of mechanobiology. This review provides an insight into the c...

  13. Embryonic Stem Cell Markers

    OpenAIRE

    Lan Ma; Liang Li; Wenxiu Zhao; Xiang Ji; Fangfang Zhang

    2012-01-01

    Embryonic stem cell (ESC) markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other type...

  14. Limbal stem cell transplantation

    OpenAIRE

    Fernandes Merle; Sangwan Virender; Rao Srinivas; Basti Surendra; Sridhar Mittanamalli; Bansal Aashish; Dua Harminder

    2004-01-01

    The past two decades have witnessed remarkable progress in limbal stem cell transplantation. In addition to harvesting stem cells from a cadaver or a live related donor, it is now possible to cultivate limbal stem cells in vitro and then transplant them onto the recipient bed. A clear understanding of the basic disease pathology and a correct assessment of the extent of stem cell deficiency are essential. A holistic approach towards management of limbal stem cell deficiency is needed. This ...

  15. Intraoperative Stem Cell Therapy

    OpenAIRE

    Coelho, Mónica Beato; Cabral, Joaquim M. S.; Karp, Jeffrey M.

    2012-01-01

    Stem cells hold significant promise for regeneration of tissue defects and disease-modifying therapies. Although numerous promising stem cell approaches are advancing in clinical trials, intraoperative stem cell therapies offer more immediate hope by integrating an autologous cell source with a well-established surgical intervention in a single procedure. Herein, the major developments in intraoperative stem cell approaches, from in vivo models to clinical studies, are reviewed, and the poten...

  16. The leukemic stem cell

    OpenAIRE

    Jordan, Craig T.

    2007-01-01

    Malignant stem cells have recently been described as the source of several types of human cancer. These unique cell types are typically rare and possess properties that are distinct from most other tumor cells. The properties of leukemic stem cells indicate that current chemotherapy drugs will not be effective. The use of current cytotoxic agents is not effective in leukemia because the agents target both the leukemic and normal stem cell populations. Consequently, new strategies are required...

  17. Stem cell biobanks.

    Science.gov (United States)

    Bardelli, Silvana

    2010-04-01

    Stem cells contribute to innate healing and harbor a promising role for regenerative medicine. Stem cell banking through long-term storage of different stem cell platforms represents a fundamental source to preserve original features of stem cells for patient-specific clinical applications. Stem cell research and clinical translation constitute fundamental and indivisible modules catalyzed through biobanking activity, generating a return of investment. PMID:20560026

  18. Mechanically facilitated cell-cell electrofusion.

    OpenAIRE

    Jaroszeski, M. J.; Gilbert, R.; Fallon, P.G.; Heller, R

    1994-01-01

    Apparatus and methods were developed to enable mechanically facilitated cell-cell electrofusion to be performed. The apparatus and methods mechanically place cells in contact before fusion. The key component of this fusion system was a newly developed fusion chamber. The chamber was composed of two functionally identical electrodes that were housed in a multi-layer structure. The layers functioned as support for the electrodes. They also allowed adjustment of the distance between opposing ele...

  19. Optimizing stem cell culture.

    Science.gov (United States)

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-11-01

    Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such as serum or feeder cell layers by recombinant cytokines or growth factors. Another example is the control of the oxygen pressure. For many years cell cultures have been done under atmospheric oxygen pressure which is much higher than the one experienced by stem cells in vivo. A consequence of cell metabolism is that cell culture conditions are constantly changing. Therefore, the development of high sensitive monitoring processes and control algorithms is required for ensuring cell culture medium homeostasis. Stem cells also sense the physical constraints of their microenvironment. Rigidity, stiffness, and geometry of the culture substrate influence stem cell fate. Hence, nanotopography is probably as important as medium formulation in the optimization of stem cell culture conditions. Recent advances include the development of synthetic bioinformative substrates designed at the micro- and nanoscale level. On going research in many different fields including stem cell biology, nanotechnology, and bioengineering suggest that our current way to culture cells in Petri dish or flasks will soon be outdated as flying across the Atlantic Ocean in the Lindbergh's plane. PMID:20803548

  20. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    Science.gov (United States)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  1. Living with Sickle Cell Disease

    Science.gov (United States)

    ... sickle cell disease, go to the Health Topics Sickle Cell Anemia article. Living With and Managing Sickle Cell Disease ( ... the most severe form of sickle cell disease, sickle cell anemia, Tiffany has lived with the symptoms and complications ...

  2. What Causes Sickle Cell Disease?

    Science.gov (United States)

    ... sickle cell disease, go to the Health Topics Sickle Cell Anemia article. Living With and Managing Sickle Cell Disease ( ... the most severe form of sickle cell disease, sickle cell anemia, Tiffany has lived with the symptoms and complications ...

  3. Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  4. What are Stem Cells?

    Directory of Open Access Journals (Sweden)

    Ahmadshah Farhat

    2014-05-01

    Full Text Available   Stem cells are undifferentiated self regenerating multi potential cells. There are three types of stem cells categories by the ability to form after cells and correlated with the body’s development process. Totipotent: these stem cells can form an entire organism such as fertilized egg. Ploripotent: ploripotent cells are those that can form any cell in the body but cannot form an entire organism such as developing embryo’s totipotent cells become ploripotent  Multipotent: Multi potent stem cells are those that can only form specific cells in the body such as blood cells based. Based on the sources of stem cells we have three types of these cells: Autologous: Sources of the patient own cells are (Autologous either the cells from patient own body or his or her cord blood. For this type of transplant the physician now usually collects the periphery rather than morrow because the procedure is easier on like a bane morrow harvest it take place outside of an operating room, and the patient does not to be under general unsetting . Allogenic: Sources of stem cells from another donore are primarily relatives (familial allogenic or completely unrelated donors. Xenogenic: In these stem cells from different species are transplanted e .g striatal porcine fetal mesan cephalic (FVM xenotransplants for Parkinson’s disease. On sites of isolation such as embryo, umbilical cord and other body tissues stem cells are named embnyonic, cord blood, and adult stem cells. The scope of results and clinical application of stem cells are such as: Neurodegenerative conditions (MS,ALS, Parkinson’s, Stroke, Ocular disorders- Glaucoma, retinitis Pigmentosa (RP, Auto Immune Conditions (Lupus, MS,R. arthritis, Diabetes, etc, Viral Conditions (Hepatitis C and AIDS, Heart Disease, Adrenal Disorders, Injury(Nerve, Brain, etc, Anti aging (hair, skin, weight control, overall well being/preventive, Emotional disorders, Organ / Tissue Cancers, Blood cancers, Blood diseases

  5. Pluripotent Stem Cells for Schwann Cell Engineering

    NARCIS (Netherlands)

    Ma, Ming-San; Boddeke, Erik; Copray, Sjef

    2015-01-01

    Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by recapitu

  6. Assessment of pancreas cells

    Science.gov (United States)

    Vanoss, C. J.

    1978-01-01

    Pancreatic islets were obtained from guinea pig pancreas by the collagenase method and kept alive in tissue culture prior to further studies. Pancreas cell morphology was studied by standard histochemical techniques using light microscopy. Preparative vertical electrophoresis-levitation of dispersed fetal guinea pig pancreas cells was conducted in phosphate buffer containing a heavy water (D20) gradient which does not cause clumping of cells or alter the osmolarity of the buffers. The faster migrating fractions tended to be enriched in beta-cell content. Alpha and delta cells were found to some degree in most fractions. A histogram showing the cell count distribution is included.

  7. Resident Peritoneal NK cells

    OpenAIRE

    Gonzaga, Rosemary; Matzinger, Polly; Perez-Diez, Ainhoa

    2011-01-01

    Here we describe a new population of NK cells that reside in the normal, un-inflamed peritoneal cavity. Phenotypically, they share some similarities with the small population of CD49b negative, CD27 positive immature splenic NK cells, and liver NK cells but differ in their expression of CD62L, TRAIL and EOMES. Functionally, the peritoneal NK cells resemble the immature splenic NK cells in their production of IFN-γ, GM-CSF and TNF-α and in the killing of YAC-1 target cells. We also found that ...

  8. Load Cell Optimization

    OpenAIRE

    Garðar Páll Gíslason 1979

    2011-01-01

    A load cell is a small object which has only one goal and that is to measure load. This is an old invention from the mid-eighteenth century and remains very popular today. Load cells are only one portion of a bigger totality. That is why the shape of the load cell changes between objects. Optimization of a load cell is an effective way to get the highest signal from the cell. The main object of this thesis is optimization of a load cell which is a part of the Rheo Knee® from Össur. This kn...

  9. The essential oil of Populus balsamifera buds: its chemical composition and cytotoxic activity.

    Science.gov (United States)

    Piochon-Gauthier, Marianne; Legault, Jean; Sylvestre, Muriel; Pichette, André

    2014-02-01

    The chemical composition of Populus balsamifera essential oils obtained from spring buds, fall buds, and young leaves were determined by GC and GC-MS analyses. The major constituent, (+)-alpha-bisabolol, a rare sesquiterpene, was isolated from spring oil using reverse-phase preparative HPLC. The cytotoxic activity of balsam poplar oils and isolated (+)-alpha-bisabolol was assessed in vitro against human lung carcinoma (A549) and colorectal adenocarcinoma (DLD-1) cell lines. Essential oils were cytotoxic with IC50 ranging from 35 to 50 microg/mL. (+)-alpha-Bisabolol exhibited pronounced activity (IC50 14 microg/mL) against both cancer cell lines. It also exhibited interesting cytotoxic activity (IC50 23 microg/mL) against human glioma (U251), higher than the one observed for (-)-alpha-bisabolol (IC50 34 microg/mL), which is known for its apoptosis-inducing effect against glioma cells. PMID:24689304

  10. Opposite Roles of Furin and PC5A in N-Cadherin Processing

    Directory of Open Access Journals (Sweden)

    Deborah Maret

    2012-10-01

    Full Text Available We recently demonstrated that lack of Furin-processing of the N-cadherin precursor (proNCAD in highly invasive melanoma and brain tumor cells results in the cell-surface expression of a nonadhesive protein favoring cell migration and invasion in vitro. Quantitative polymerase chain reaction analysis of malignant human brain tumor cells revealed that of all proprotein convertases (PCs only the levels of Furin and PC5A are modulated, being inversely (Furin or directly (PC5A correlated with brain tumor invasive capacity. Intriguingly, the N-terminal sequence following the Furin-activated NCAD site (RQKR↓DW161, mouse nomenclature reveals a second putative PC-processing site (RIRSDR↓DK189 located in the first extracellular domain. Cleavage at this site would abolish the adhesive functions of NCAD because of the loss of the critical Trp161. This was confirmed upon analysis of the fate of the endogenous prosegment of proNCAD in human malignant glioma cells expressing high levels of Furin and low levels of PC5A (U343 or high levels of PC5A and negligible Furin levels (U251. Cellular analyses revealed that Furin is the best activating convertase releasing an ∼17-kDa prosegment, whereas PC5A is the major inactivating enzyme resulting in the secretion of an ∼20-kDa product. Like expression of proNCAD at the cell surface, cleavage of the NCAD molecule at RIRSDR↓DK189 renders the U251 cancer cells less adhesive to one another and more migratory. Our work modifies the present view on posttranslational processing and surface expression of classic cadherins and clarifies how NCAD possesses a range of adhesive potentials and plays a critical role in tumor progression.

  11. Multipotent adult progenitor cell and stem cell plasticity

    OpenAIRE

    Jahagirdar, Balkrishna N; Verfaillie, Catherine

    2005-01-01

    Stem cells are defined by their biological function. A stem cell is an undifferentiated cell that self-renews to maintain the stem cell pool and at the single-cell level differentiates into more than one mature, functional cell. In addition, when transplanted, a stem cell should be capable of replacing a damaged organ or tissue for the lifetime of the recipient. Some would argue that stem cells should also be capable of functionally integrating into nondamaged tissues. Stem cells are critical...

  12. Epidermal Stem Cells

    Directory of Open Access Journals (Sweden)

    Osman Köse

    2015-03-01

    Full Text Available The epidermis is the outermost layer of the human skin and comprises a multilayered epithelium, the interfollicular epidermis, with associated hair follicles, sebaceous glands, and eccrine sweat glands. There are many origins of stem cells in the skin and skin appendages. These stem cells are localized in different part of the pilosebaseous units and also express many different genes. Epidermal stem cells in the pilosebaseous units not only ensure the maintenance of epidermal homeostasis and hair regeneration, but also contribute to repair of the epidermis after injury. In recent years, human induced pluripotent skin stem cells are produced from the epidermal cells such as keratinocytes, fibroblasts and melanocytes. These cells can be transdifferentiated to embriyonic stem cells. Human induced pluripotent stem cells have potential applications in cell replacement therapy and regenerative medicine. These cells provide a means to create valuable tools for basic research and may also produce a source of patient-matched cells for regenerative therapies. In this review, we aimed an overview of epidermal stem cells for better understanding their functions in the skin. Skin will be main organ for using the epidermal cells for regenerative medicine in near future.

  13. Regulatory T cells and B cells: implication on autoimmune diseases

    OpenAIRE

    Wang, Ping; Zheng, Song Guo

    2013-01-01

    The regulatory T (Treg) cells play an important role in the maintenance of homeostasis and the prevention of autoimmune diseases. Although most studies are focusing on the role of Treg cells in T cells and T cells-mediated diseases, these cells also directly affect B cells and other non-T cells. This manuscript updates the role of Treg cells on the B cells and B cell-mediated diseases. In addition, the mechanisms whereby Treg cells suppress B cell responses have been discussed.

  14. Giant Cell Arteritis

    Science.gov (United States)

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  15. Sickle Cell Trait

    Science.gov (United States)

    ... About Us Information For... Media Policy Makers Sickle Cell Trait Language: English Español (Spanish) Recommend on Facebook ... the trait on to their children. How Sickle Cell Trait is Inherited If both parents have SCT, ...

  16. Sickle Cell Disease Quiz

    Science.gov (United States)

    ... About Us Information For... Media Policy Makers Sickle Cell Disease Quiz Language: English Español (Spanish) Recommend on ... True or False: Only African Americans get sickle cell disease. A True B False 2. True or ...

  17. Toward 'SMART' stem cells.

    Science.gov (United States)

    Cheng, T

    2008-01-01

    Stem cell research is at the heart of regenerative medicine, which holds great promise for the treatment of many devastating disorders. However, in addition to hurdles posed by well-publicized ethical issues, this emerging field presents many biological challenges. What is a stem cell? How are embryonic stem cells different from adult stem cells? What are the physiological bases for therapeutically acceptable stem cells? In this editorial review, I will briefly discuss these superficially simple but actually rather complex issues that surround this fascinating cell type. The goal of this special issue on stem cells in Gene Therapy is to review some fundamental and critical aspects of current stem cell research that have translational potential. PMID:18046429

  18. Anaplastic Large Cell Lymphoma

    Science.gov (United States)

    Anaplastic Large Cell Lymphoma Overview Lymphoma is the most common blood cancer. The two main forms of lymphoma are ... organs, and can accumulate to form tumors. Anaplastic large cell lymphoma (ALCL) is arare type of NHL, ...

  19. NIA Aging Cell Repository

    Data.gov (United States)

    Federal Laboratory Consortium — To facilitate aging research on cells in culture, the NIA provides support for the NIA Aging Cell Repository, located at the Coriell Institute for Medical Research...

  20. Mammalian cell biology

    International Nuclear Information System (INIS)

    This section contains summaries of research on mechanisms of lethality and radioinduced changes in mammalian cell properties, new cell systems for the study of the biology of mutation and neoplastic transformation, and comparative properties of ionizing radiations

  1. What Are Islet Cells?

    Science.gov (United States)

    ... Video Be Part of the Cure Commitment to Stem Cell Research Exercise + Drug Therapy Tibi Creates Garment to Benefit ... Video Be Part of the Cure Commitment to Stem Cell Research Exercise + Drug Therapy Tibi Creates Garment to Benefit ...

  2. Sickle cell anemia.

    OpenAIRE

    ŘÍHOVÁ, Tereza

    2013-01-01

    This thesis is about the disease called sickle cell anemia, or drepanocytosis. In this thesis is described the history of the disease, pathophysiology, laboratory features, various clinical features, diferencial diagnosis, quality of life in sickle cell anemia and therapy.

  3. Cell signaling review series

    Institute of Scientific and Technical Information of China (English)

    Aiming Lin; Zhenggang Liu

    2008-01-01

    @@ Signal transduction is pivotal for many, if not all, fundamental cellular functions including proliferation, differentiation, transformation and programmed cell death. Deregulation of cell signaling may result in certain types of cancers and other human diseases.

  4. Renal cell carcinoma

    Science.gov (United States)

    Renal cell carcinoma is a type of kidney cancer that starts in the lining of very small tubes (tubules) in the kidney. ... cancer; Kidney cancer; Hypernephroma; Adenocarcinoma of renal cells; Cancer - kidney

  5. Sickle Cell Tests

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Sickle Cell Tests Share this page: Was this page helpful? ... else I should know? How is it used? Sickle cell tests are used to identify the presence of ...

  6. Sickle cell anemia

    Science.gov (United States)

    ... for avascular necrosis of the hip Surgery for eye problems Treatment for overuse or abuse of narcotic pain medicines Wound care for leg ulcers Bone marrow or stem cell transplants can cure sickle cell anemia, but this treatment ...

  7. 胶质瘤来源exosome的鉴定及其蛋白质组成研究%Identification and research of protein composition of exosome from glioma cell

    Institute of Scientific and Technical Information of China (English)

    金铮; 于金录; 杨皊; 李超; 黄海燕

    2010-01-01

    目的 初步分析胶质瘤细胞分泌的exosome蛋白组成,探讨胶质瘤来源exosome 的潜在免疫调节功能,从而为进一步利用exosome 对胶质瘤进行免疫治疗提供理论依据.方法 采用差速离心法从U251胶质瘤细胞培养上清液和Ⅲ级星形胶质瘤囊液中分别提纯exosome,用透射电镜鉴定;利用二维电泳分离、分析exosome 内蛋白质,并用质谱技术鉴定了部分蛋白质.结果 胶质瘤细胞可以产生exosome,其平均直径约100 nm.二维电泳图显示U251细胞分泌的exosome含有270个蛋白点,与数据库相符的有66个;而来自Ⅲ级星形胶质瘤囊液的exosome含有242个蛋白点,与数据库相符的有60个;两者有130个蛋白点在等电点和表观分子量方面相同,其中包含HSP70、RNA结合蛋白、核酸外切酶、MHCI及MHCII类分子等.部分蛋白质点质谱鉴定结果为hCG、低密度脂蛋白、T细胞受体等.结论 胶质瘤细胞可分泌exosome,其一般特性与已报道的exosome一致,其蛋白组成与其他细胞来源的exosome 具有共性,体内和体外培养的胶质瘤细胞分泌的exosome的蛋白质组成具有同源性与差异性.胶质瘤细胞源的exosome具有一定的免疫调节功能,可以为胶质瘤免疫治疗提供理论基础.

  8. Prostate cancer stem cells

    OpenAIRE

    Tu, Shi-Ming; Lin, Sue-Hwa

    2011-01-01

    Stem cells have long been implicated in prostate glandular formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative AR− status of prostate stem cells renders them inherently insensitive to androgen blockade ther...

  9. Lung Cancer Stem Cells

    OpenAIRE

    Pine, Sharon R.; Blair Marshall; Lyuba Varticovski

    2008-01-01

    Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation p...

  10. Nanoelectrochemistry of mammalian cells

    OpenAIRE

    Sun, Peng; Laforge, François O.; Abeyweera, Thushara P.; Rotenberg, Susan A.; Carpino, James; Mirkin, Michael V.

    2008-01-01

    There is a significant current interest in development of new techniques for direct characterization of the intracellular redox state and high-resolution imaging of living cells. We used nanometer-sized amperometric probes in combination with the scanning electrochemical microscope (SECM) to carry out spatially resolved electrochemical experiments in cultured human breast cells. With the tip radius ≈1,000 times smaller than that of a cell, an electrochemical probe can penetrate a cell and tra...

  11. Optimizing stem cell culture.

    OpenAIRE

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-01-01

    International audience Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such a...

  12. STEM CELLS AND PROTEOMICS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-ming; GUO Tian-nan; HUANG Shi-ang

    2006-01-01

    The distinctive features of proteomics are large-scale and high throughput. The key techniques of proteomics are two-dimensional gel electrophoresis, mass spectrometry and bioinformatics. Stem cell can differentiate into all kinds of cells, tissues and organs. There are many proteins and cytokines involved in the process of differentiation. Applying proteomics techniques to the research of the complex process of stem cell differentiation is of great importance to study the mechanism and applications of stem cell differentiation.

  13. Fish Stem Cell Cultures

    Directory of Open Access Journals (Sweden)

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Full Text Available Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  14. Editorial: Stem Cell Engineering.

    Science.gov (United States)

    Cabral, Joaquim M S; Palecek, Sean P

    2015-10-01

    In recent years, the promise of stem cells as tools for basic research, in vitro diagnostics, and in vivo therapeutics is increasingly being realized. This Special issue of Biotechnology Journal explores recent advances in the emerging field of stem cell engineering, with a focus on applying engineering approaches to understanding stem cell biology and enabling translation of stem cells to commercial and clinical products. PMID:26447639

  15. Aneuploidy in stem cells

    OpenAIRE

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to reality. However, as somatic cells might have accumulated various chromosomal abnormalities, including aneuploidies throughout their lives, the resulting IPSCs might no longer carry the perfect bluepri...

  16. Blood cell labelling

    International Nuclear Information System (INIS)

    The labelling of blood cells in vitro for subsequent in vivo studies was one of the earliest applications of radioactive tracers in clinical medicine and laid the foundations for many important contributions to the advancement of knowledge of human blood cell pathophysiology. The characteristics required for satisfactory clinical studies, the mechanisms of cell labelling, the problems of radiation or chemical damage to the labelled cells and some examples of modern clinical applications are described and discussed. (Author)

  17. Skeletal (stromal) stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid;

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy for....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  18. Diagram of Cell to Cell Communication

    Science.gov (United States)

    2002-01-01

    Diagram depicts the importance of cell-cell communication as central to the understanding of cancer growth and progression, the focus of the NASA bioreactor demonstration system (BDS-05) investigation. Microgravity studies will allow us to unravel the signaling and communication between these cells with the host and potential development of therapies for the treatment of cancer metastasis. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  19. Antitumor Immunity Produced by the Liver Kupffer Cells, NK Cells, NKT Cells, and CD8+ CD122+ T Cells

    OpenAIRE

    Shuhji Seki; Hiroyuki Nakashima; Masahiro Nakashima; Manabu Kinoshita

    2011-01-01

    Mouse and human livers contain innate immune leukocytes, NK cells, NKT cells, and macrophage-lineage Kupffer cells. Various bacterial components, including Toll-like receptor (TLR) ligands and an NKT cell ligand ( α -galactocylceramide), activate liver Kupffer cells, which produce IL-1, IL-6, IL-12, and TNF. IL-12 activates hepatic NK cells and NKT cells to produce IFN- γ , which further activates hepatic T cells, in turn activating phagocytosis and cytokine production by Kupffer cells in a p...

  20. Potential Anti-cancer Activity of Furanodiene

    Institute of Scientific and Technical Information of China (English)

    Zhen-zhen Ba; Yan-ping Zheng; Hui Zhang; Xiu-yan Sun; Dong-hai Lin

    2009-01-01

    Objective: To study the anti-tumor activities of furanodiene (C15H20O), a primary sesquiterpene compound isolated from the essential oil of the rhizome of Curcuma wenyujin YH Chen et C. Ling(Wen Ezhu), in vitro and in vivo.Methods: In vitro MTT assay was used to further study the effects of time and dosage on anti-proliferation of furanodiene against the sensitive Hela, Hep-2,HL-60, U251 cells, based on the cytotoxic effects of furanodiene on 12 human malignant tumor cell lines with the essential oil of Wen Ezhu as control., and the half-inhibitory concentration (IC50) was observed. In vivo uterine cervix (U14) tumor cell was selected and the conventional assay method of anti-tumor activity was employed. Furanodiene liposome was administered intraperitoneally, and tumor-inhibitory rate, thymus and spleen indexes were observed.Results: The inhibitive effects on cell proliferation were shown in all of the twelve cell lines and the cytotoxic effects of furanodiene against Hela, Hep-2, HL-60, U251 cells were observed after 12 h of administration, the effect could last for at least 48 h in a dose dependent manner, and the IC50 values were 0.6, 1.7, 1.8, 7.0 μg/ml, respectively. Furanodiene was also found to show inhibitive effects on the proliferation of uterine cervix (U14) tumor induced in mice. The tumor inhibition rates were 36.09% (40 mg/kg), 41.55% (60 mg/kg), 58.29% (80 mg/kg), respectively.Conclusion: Furanodiene is one of primary anti-cancer active components in the essential oil of Wen Ezhu, and also a very effective agent against uterine cervix cancer, and has protection effect on the immune function.

  1. Identification of imaging biomarkers for the assessment of tumour response to different treatments in a preclinical glioma model

    International Nuclear Information System (INIS)

    Hypoxia-inducible factor 1α (HIF-1α) activity is one of the major players in hypoxia-mediated glioma progression and resistance to therapies, and therefore the focus of this study was the evaluation of HIF-1α modulation in relation to tumour response with the purpose of identifying imaging biomarkers able to document tumour response to treatment in a murine glioma model. U251-HRE-mCherry cells expressing Luciferase under the control of a hypoxia responsive element (HRE) and mCherry under the control of a constitutive promoter were used to assess HIF-1α activity and cell survival after treatment, both in vitro and in vivo, by optical, MRI and positron emission tomography imaging. This cell model can be used to monitor HIF-1α activity after treatment with different drugs modulating transduction pathways involved in its regulation. After temozolomide (TMZ) treatment, HIF-1α activity is early reduced, preceding cell cytotoxicity. Optical imaging allowed monitoring of this process in vivo, and carbonic anhydrase IX (CAIX) expression was identified as a translatable non-invasive biomarker with potential clinical significance. A preliminary in vitro evaluation showed that reduction of HIF-1α activity after TMZ treatment was comparable to the effect of an Hsp90 inhibitor, opening the way for further elucidation of its mechanism of action. The results of this study suggest that the U251-HRE-mCherry cell model can be used for the monitoring of HIF-1α activity through luciferase and CAIX expression. These cells can become a useful tool for the assessment and improvement of new targeted tracers for potential theranostic procedures. (orig.)

  2. Identification of imaging biomarkers for the assessment of tumour response to different treatments in a preclinical glioma model

    Energy Technology Data Exchange (ETDEWEB)

    Lo Dico, A.; Martelli, C. [University of Milan, Department of Pathophysiology and Transplantation, Milan (Italy); University of Milan, Centre of Molecular and Cellular Imaging-IMAGO, Milan (Italy); Valtorta, S.; Belloli, S. [National Researches Council (CNR), Institute of Molecular Bioimaging and Physiology (IBFM), Segrate, MI (Italy); IRCCS San Raffaele Scientific Institute, Experimental Imaging Center, Milan (Italy); Raccagni, I.; Moresco, R.M. [IRCCS San Raffaele Scientific Institute, Experimental Imaging Center, Milan (Italy); University of Milano-Bicocca, Department of Health Sciences, Monza (Italy); Diceglie, C. [University of Milan, Department of Pathophysiology and Transplantation, Milan (Italy); University of Milan, Doctorate School of Molecular Medicine, Milan (Italy); Gianelli, U.; Bosari, S. [University of Milan, Department of Pathophysiology and Transplantation, Milan (Italy); Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Division of Pathology, Milan (Italy); Vaira, V. [Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Division of Pathology, Milan (Italy); Istituto Nazionale Genetica Molecolare ' ' Romeo ed Enrica Invernizzi' ' (INGM), Milan (Italy); Politi, L.S. [IRCCS San Raffaele Scientific Institute, Neuroradiology Department and Neuroradiology Research Group, Milan (Italy); Lucignani, G. [University of Milan, Centre of Molecular and Cellular Imaging-IMAGO, Milan (Italy); University of Milan, Department of Health Sciences, Milan (Italy); San Paolo Hospital, Department of Diagnostic Services, Unit of Nuclear Medicine, Milan (Italy); Ottobrini, L. [University of Milan, Department of Pathophysiology and Transplantation, Milan (Italy); University of Milan, Centre of Molecular and Cellular Imaging-IMAGO, Milan (Italy); National Researches Council (CNR), Institute of Molecular Bioimaging and Physiology (IBFM), Segrate, MI (Italy)

    2015-03-27

    Hypoxia-inducible factor 1α (HIF-1α) activity is one of the major players in hypoxia-mediated glioma progression and resistance to therapies, and therefore the focus of this study was the evaluation of HIF-1α modulation in relation to tumour response with the purpose of identifying imaging biomarkers able to document tumour response to treatment in a murine glioma model. U251-HRE-mCherry cells expressing Luciferase under the control of a hypoxia responsive element (HRE) and mCherry under the control of a constitutive promoter were used to assess HIF-1α activity and cell survival after treatment, both in vitro and in vivo, by optical, MRI and positron emission tomography imaging. This cell model can be used to monitor HIF-1α activity after treatment with different drugs modulating transduction pathways involved in its regulation. After temozolomide (TMZ) treatment, HIF-1α activity is early reduced, preceding cell cytotoxicity. Optical imaging allowed monitoring of this process in vivo, and carbonic anhydrase IX (CAIX) expression was identified as a translatable non-invasive biomarker with potential clinical significance. A preliminary in vitro evaluation showed that reduction of HIF-1α activity after TMZ treatment was comparable to the effect of an Hsp90 inhibitor, opening the way for further elucidation of its mechanism of action. The results of this study suggest that the U251-HRE-mCherry cell model can be used for the monitoring of HIF-1α activity through luciferase and CAIX expression. These cells can become a useful tool for the assessment and improvement of new targeted tracers for potential theranostic procedures. (orig.)

  3. Molecular Mechanisms of HTLV-1 Cell-to-Cell Transmission

    Directory of Open Access Journals (Sweden)

    Christine Gross

    2016-03-01

    Full Text Available The tumorvirus human T-cell lymphotropic virus type 1 (HTLV-1, a member of the delta-retrovirus family, is transmitted via cell-containing body fluids such as blood products, semen, and breast milk. In vivo, HTLV-1 preferentially infects CD4+ T-cells, and to a lesser extent, CD8+ T-cells, dendritic cells, and monocytes. Efficient infection of CD4+ T-cells requires cell-cell contacts while cell-free virus transmission is inefficient. Two types of cell-cell contacts have been described to be critical for HTLV-1 transmission, tight junctions and cellular conduits. Further, two non-exclusive mechanisms of virus transmission at cell-cell contacts have been proposed: (1 polarized budding of HTLV-1 into synaptic clefts; and (2 cell surface transfer of viral biofilms at virological synapses. In contrast to CD4+ T-cells, dendritic cells can be infected cell-free and, to a greater extent, via viral biofilms in vitro. Cell-to-cell transmission of HTLV-1 requires a coordinated action of steps in the virus infectious cycle with events in the cell-cell adhesion process; therefore, virus propagation from cell-to-cell depends on specific interactions between cellular and viral proteins. Here, we review the molecular mechanisms of HTLV-1 transmission with a focus on the HTLV-1-encoded proteins Tax and p8, their impact on host cell factors mediating cell-cell contacts, cytoskeletal remodeling, and thus, virus propagation.

  4. Cell Culture Made Easy.

    Science.gov (United States)

    Dye, Frank J.

    1985-01-01

    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are…

  5. Mammalian Cell Culture Simplified.

    Science.gov (United States)

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A tissue culture experiment that does not require elaborate equipment and that can be used to teach sterile technique, the principles of animal cell line maintenance, and the concept of cell growth curves is described. The differences between cancerous and normal cells can be highlighted. The procedure is included. (KR)

  6. SYNOVIAL CELL SARCOMA

    OpenAIRE

    Farzan, M

    1997-01-01

    Ten cases of synovial cell sarcoma are reported. The youngest patient was a 2'A years old boy with synovial cell sarcoma of the knee and the oldest one was a man with synovial cell sarcoma of the elbow.

  7. SYNOVIAL CELL SARCOMA

    Directory of Open Access Journals (Sweden)

    M. Farzan

    1997-06-01

    Full Text Available Ten cases of synovial cell sarcoma are reported. The youngest patient was a 2'A years old boy with synovial cell sarcoma of the knee and the oldest one was a man with synovial cell sarcoma of the elbow.

  8. Mast cells and inflammation.

    Science.gov (United States)

    Theoharides, Theoharis C; Alysandratos, Konstantinos-Dionysios; Angelidou, Asimenia; Delivanis, Danae-Anastasia; Sismanopoulos, Nikolaos; Zhang, Bodi; Asadi, Shahrzad; Vasiadi, Magdalini; Weng, Zuyi; Miniati, Alexandra; Kalogeromitros, Dimitrios

    2012-01-01

    Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation. PMID:21185371

  9. Mouse Leydig Tumor Cells

    Directory of Open Access Journals (Sweden)

    Bo-Syong Pan

    2011-01-01

    Full Text Available Cordycepin is a natural pure compound extracted from Cordyceps sinensis (CS. We have demonstrated that CS stimulates steroidogenesis in primary mouse Leydig cell and activates apoptosis in MA-10 mouse Leydig tumor cells. It is highly possible that cordycepin is the main component in CS modulating Leydig cell functions. Thus, our aim was to investigate the steroidogenic and apoptotic effects with potential mechanism of cordycepin on MA-10 mouse Leydig tumor cells. Results showed that cordycepin significantly stimulated progesterone production in dose- and time-dependent manners. Adenosine receptor (AR subtype agonists were further used to treat MA-10 cells, showing that A1, A 2A , A 2B , and A3, AR agonists could stimulate progesterone production. However, StAR promoter activity and protein expression remained of no difference among all cordycepin treatments, suggesting that cordycepin might activate AR, but not stimulated StAR protein to regulate MA-10 cell steroidogenesis. Meanwhile, cordycepin could also induce apoptotic cell death in MA-10 cells. Moreover, four AR subtype agonists induced cell death in a dose-dependent manner, and four AR subtype antagonists could all rescue cell death under cordycepin treatment in MA-10 cells. In conclusion, cordycepin could activate adenosine subtype receptors and simultaneously induce steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells.

  10. Embryonic Stem Cell Markers

    Directory of Open Access Journals (Sweden)

    Lan Ma

    2012-05-01

    Full Text Available Embryonic stem cell (ESC markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells, especially tumor cells. Currently, the marker-based flow cytometry (FCM technique and magnetic cell sorting (MACS are the most effective cell isolating methods, and a detailed maker list will help to initially identify, as well as isolate ESCs using these methods. In the current review, we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules, such as lectins and peptides, which bind to ESC via affinity and specificity, are also summarized. In addition, we review several markers that overlap with tumor stem cells (TSCs, which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.

  11. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  12. Aneuploidy in stem cells

    NARCIS (Netherlands)

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to real

  13. Nanostructured Organic Solar Cells

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Rubahn, Horst-Günter; Madsen, Morten

    Recent forecasts for alternative energy generation predict emerging importance of supporting state of art photovoltaic solar cells with their organic equivalents. Despite their significantly lower efficiency, number of application niches are suitable for organic solar cells. This work reveals...... the principles of bulk heterojunction organic solar cells fabrication as well as summarises major differences in physics of their operation....

  14. astrocyte and astrocytoma cells

    DEFF Research Database (Denmark)

    Tfelt-Hansen, J.

    2008-01-01

    -transforming gene (PTTG), was found to be upregulated by the CaR in the H-500 cells, whereas calcium had no effect on PTTG expression in the U-87 astrocytoma cell line, but other proproliferative agents did upregulate PTTG in the U-87 cells. This makes PTTG a potential marker of malignancy and a therapeutic target...

  15. Adventures with Cell Phones

    Science.gov (United States)

    Kolb, Liz

    2011-01-01

    Teachers are finding creative ways to turn the basic cell phone from a digital distraction into a versatile learning tool. In this article, the author explains why cell phones are important in learning and suggests rather than banning them that they be integrated into learning. She presents activities that can be done on a basic cell phone with a…

  16. Introduction to solar cell production

    International Nuclear Information System (INIS)

    This book introduces solar cell production. It is made up eight chapters, which are summary of solar cell with structure and prospect of the business, special variable of solar cell on light of the sun and factor causing variable of solar cell, production of solar cell with surface texturing, diffusion, metal printing dry and firing and edge isolation, process of solar cell on silicone wafer for solar cell, forming of electrodes, introduction of thin film solar cell on operating of solar cell, process of production and high efficiency of thin film solar cell, sorting of solar cell and production with background of silicone solar cell and thin film solar cell, structure and production of thin film solar cell and compound solar cell, introduction of solar cell module and the Industrial condition and prospect of solar cell.

  17. STEM CELLS: Differentiated cells in a back-up role

    OpenAIRE

    Desai, Tushar J.; Krasnow, Mark A.

    2013-01-01

    Two independent studies show that, if push comes to shove, differentiated cells of the stomach and lung can act as adult stem cells generating various cell types of the tissue, including a pool of stem cells.

  18. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    OpenAIRE

    Quanwen Liu; Yi Shen; Jiarong Chen; Jie Ding; Zihua Tang; Cui Zhang; Jianling Chen; Liang Li; Ping Chen; Jinfu Wang

    2016-01-01

    In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bund...

  19. Mimicking the inflammatory cell adhesion cascade by nucleic acid aptamer programmed cell-cell interactions

    OpenAIRE

    Zhao, Weian; Loh, Weili; Droujinine, Ilia A.; Teo, Weisuong; Kumar, Namit; Schafer, Sebastian; Cui, Cheryl H.; Zhang, Liang; Sarkar, Debanjan; Karnik, Rohit; Karp, Jeffrey M.

    2011-01-01

    Nature has evolved effective cell adhesion mechanisms to deliver inflammatory cells to inflamed tissue; however, many culture-expanded therapeutic cells are incapable of targeting diseased tissues following systemic infusion, which represents a great challenge in cell therapy. Our aim was to develop simple approaches to program cell-cell interactions that would otherwise not exist toward cell targeting and understanding the complex biology of cell-cell interactions. We employed a chemistry ap...

  20. MAPK uncouples cell cycle progression from cell spreading and cytoskeletal organization in cycling cells

    OpenAIRE

    Margadant, Coert; Cremers, Lobke; Sonnenberg, Arnoud; Boonstra, Johannes

    2012-01-01

    Integrin-mediated cytoskeletal tension supports growth-factor-induced proliferation, and disruption of the actin cytoskeleton in growth factor-stimulated cells prevents the re-expression of cyclin D and cell cycle re-entry from quiescence. In contrast to cells that enter the cell cycle from G0, cycling cells continuously express cyclin D, and are subject to major cell shape changes during the cell cycle. Here, we investigated the cell cycle requirements for cytoskeletal tension and cell sprea...

  1. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future. PMID:26872163

  2. Fuel Cell/Electrochemical Cell Voltage Monitor

    Science.gov (United States)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  3. Cell adhesion in regulation of asymmetric stem cell division

    OpenAIRE

    Yamashita, Yukiko M

    2010-01-01

    Adult stem cells inevitably communicate with their cellular neighbors within the tissues they sustain. Indeed, such communication, particularly with components of the stem cell niche, is essential for many aspects of stem cell behavior, including the maintenance of stem cell identity and asymmetric cell division. Cell adhesion mediates this communication by placing stem cells in close proximity to the signaling source and by providing a polarity cue that orients stem cells. Here, I review the...

  4. T cell subpopulations.

    Science.gov (United States)

    Romagnani, Sergio

    2014-01-01

    The role of allergen-specific CD4+ effector type 2 helper (Th2) cells in the pathogenesis of allergic disorders is an established fact. Th2 cells produce interleukin (IL)-4 and IL-13, which induce immunoglobulin E production by B cells, and IL-5 that allows recruitment of eosinophils. Two main mechanisms control the Th2-mediated allergic inflammation: immune deviation (or Th1 redirection) and immune regulation. Regulatory T (Treg) cells exhibit a CD4+ phenotype and include Foxp3-positive thymic and induced Tregs, as well as Foxp3-negative IL-10-producing cells. Both immune deviation and immune regulation evoked by the maternal and newborn microbial environment probably operate in preventing allergen-specific Th2 responses. However, microbe-related protection from allergy seems to mainly depend on epigenetically controlled acetylation of the IFNG promoter of CD4+ T cells. Even Th17 and Th9 cells, as well as invariant NKT cells, have been implicated in the pathogenesis of allergic disorders, but their role is certainly more limited. Recently, innate lymphoid type 2 cells (ILC2) have been found to be able to produce high amounts of IL-5 and IL-13 in response to stimulation with IL-25 and IL-33 produced by non-immune cells. Together with Th2 cells, ILC2 may contribute to the induction and maintenance of allergic inflammation. PMID:24925396

  5. Follicular Helper T Cells.

    Science.gov (United States)

    Vinuesa, Carola G; Linterman, Michelle A; Yu, Di; MacLennan, Ian C M

    2016-05-20

    Although T cell help for B cells was described several decades ago, it was the identification of CXCR5 expression by B follicular helper T (Tfh) cells and the subsequent discovery of their dependence on BCL6 that led to the recognition of Tfh cells as an independent helper subset and accelerated the pace of discovery. More than 20 transcription factors, together with RNA-binding proteins and microRNAs, control the expression of chemotactic receptors and molecules important for the function and homeostasis of Tfh cells. Tfh cells prime B cells to initiate extrafollicular and germinal center antibody responses and are crucial for affinity maturation and maintenance of humoral memory. In addition to the roles that Tfh cells have in antimicrobial defense, in cancer, and as HIV reservoirs, regulation of these cells is critical to prevent autoimmunity. The realization that follicular T cells are heterogeneous, comprising helper and regulatory subsets, has raised questions regarding a possible division of labor in germinal center B cell selection and elimination. PMID:26907215

  6. Parameterization of solar cells

    Science.gov (United States)

    Appelbaum, J.; Chait, A.; Thompson, D.

    1992-10-01

    The aggregation (sorting) of the individual solar cells into an array is commonly based on a single operating point on the current-voltage (I-V) characteristic curve. An alternative approach for cell performance prediction and cell screening is provided by modeling the cell using an equivalent electrical circuit, in which the parameters involved are related to the physical phenomena in the device. These analytical models may be represented by a double exponential I-V characteristic with seven parameters, by a double exponential model with five parameters, or by a single exponential equation with four or five parameters. In this article we address issues concerning methodologies for the determination of solar cell parameters based on measured data points of the I-V characteristic, and introduce a procedure for screening of solar cells for arrays. We show that common curve fitting techniques, e.g., least squares, may produce many combinations of parameter values while maintaining a good fit between the fitted and measured I-V characteristics of the cell. Therefore, techniques relying on curve fitting criteria alone cannot be directly used for cell parameterization. We propose a consistent procedure which takes into account the entire set of parameter values for a batch of cells. This procedure is based on a definition of a mean cell representing the batch, and takes into account the relative contribution of each parameter to the overall goodness of fit. The procedure is demonstrated on a batch of 50 silicon cells for Space Station Freedom.

  7. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  8. T Cells Going Innate.

    Science.gov (United States)

    Seyda, Midas; Elkhal, Abdallah; Quante, Markus; Falk, Christine S; Tullius, Stefan G

    2016-08-01

    Natural killer (NK) cell receptors (NKRs) play a crucial role in the homeostasis of antigen-experienced T cells. Indeed, prolonged antigen stimulation may induce changes in the receptor repertoire of T cells to a profile that features NKRs. Chronic antigen exposure, at the same time, has been shown to trigger the loss of costimulatory CD28 molecules with recently reported intensified antigen thresholds of antigen-experienced CD8(+) T cells. In transplantation, NKRs have been shown to assist allograft rejection in a CD28-independent fashion. We discuss here a role for CD28-negative T cells that have acquired the competency of the NKR machinery, potentially promoting allorecognition either through T cell receptor (TCR) crossreactivity or independently from TCR recognition. Collectively, NKRs can bring about innate-like T cells by providing alternative costimulatory pathways that gain relevance in chronic inflammation, potentially leading to resistance to CD28-targeting immunosuppressants. PMID:27402226

  9. Cell sorting apparatus

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1980-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  10. Enteroendocrine cell types revisited

    DEFF Research Database (Denmark)

    Engelstoft, Maja S; Egerod, Kristoffer Lihme; Lund, Mari L;

    2013-01-01

    The GI-tract is profoundly involved in the control of metabolism through peptide hormones secreted from enteroendocrine cells scattered throughout the gut mucosa. A large number of recently generated transgenic reporter mice have allowed for direct characterization of biochemical and cell...... biological properties of these previously highly elusive enteroendocrine cells. In particular the surprisingly broad co-expression of six functionally related hormones in the intestinal enteroendocrine cells indicates that it should be possible to control not only the hormone secretion but also the type and...... number of enteroendocrine cells. However, this will require a more deep understanding of the factors controlling differentiation, gene expression and specification of the enteroendocrine cells during their weekly renewal from progenitor cells in the crypts of the mucosa....

  11. Incorporation of magnetite nanoparticle clusters in fluorescent silica nanoparticles for high-performance brain tumor delineation

    Energy Technology Data Exchange (ETDEWEB)

    Wan Jiaqi; Chen Kezheng [School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Meng Xiangxi; Liu Enzhong, E-mail: kchen@qust.edu.cn [Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2010-06-11

    Bifunctional nanoprobes with both magnetic and optical contrast have been developed for ultra-sensitive brain tumor imaging at the cellular level. The nanoprobes were synthesized by simultaneously incorporating a magnetite nanoparticle cluster and fluorescence dyes into silica encapsulation by a sol-gel approach under ultrasonic treatment. The nanoprobes maintain superparamagnetic behavior at room temperature and possess enhanced transverse relaxivity and good photostability. As a glioma targeting ligand, chlorotoxin was covalently bonded to the surface of the nanoprobes. In vitro cellular uptake assays demonstrated that the nanoprobes were highly specific, taken up by human U251-MG glioma cells via receptor-mediated endocytosis. The labeled glioma cells were readily detectable by both MR imager and confocal laser scanning microscopy.

  12. Triterpenoid saponins from the roots of Clematis argentilucida.

    Science.gov (United States)

    Zhao, Mei; Ma, Ning; Qiu, Feng; Tian, Xiangrong; Zhang, Yan; Tang, Haifeng; Liu, Xinyou

    2014-09-01

    Reinvestigation of the n-BuOH extract of the roots of Clematis argentilucida led to the isolation of a new ursane-type triterpenoid saponin 1 and a new taraxerane-type saponin 2, four known saponins 3-6 first isolated from the species, together with seven saponins 7-13 reported in the previous papers. The structures of saponins 1-6 were elucidated by extensive spectroscopic analysis and chemical evidences. The ursane-type and taraxerane-type triterpenoid saponins were obtained from genus Clematis for the first time, and the aglycone of saponin 1, 3β,28-dihydroxy-18αH-ursan-20-en was first encountered. The cytotoxicity of all the saponins was evaluated against human glioblastoma U251MG cell lines. The monodesmosidic saponins 1, 2 and 4-8 exhibited cytotoxic activity against the cells with IC50 values ranging from 6.95 to 38.51 μM. PMID:24979221

  13. Information on Stem Cell Research

    Science.gov (United States)

    ... Enhancing Diversity Find People About NINDS Information on Stem Cell Research Research @ NINDS Stem Cell Highlights Submit a hESC ... found here: Human Induced Pluripotent Stem Cells NINDS Stem Cell Research on Campus The Intramural Research Program of NINDS ...

  14. What Is Giant Cell Arteritis?

    Science.gov (United States)

    ... Uveitis Focus On Pediatric Ophthalmology Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics ... What Is Giant Cell Arteritis? Giant Cell Arteritis Symptoms Who Is At Risk for Giant Cell Arteritis? Giant Cell Arteritis Diagnosis ...

  15. Stages of Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  16. Sickle Cell Crisis (Pain Crisis)

    Science.gov (United States)

    ... How Can I Help a Friend Who Cuts? Sickle Cell Crisis (Pain Crisis) KidsHealth > For Teens > Sickle Cell ... A A A Text Size What Is a Sickle Cell Crisis? Sickle cell disease changes the shape of ...

  17. Nevoid Basal Cell Carcinoma Syndrome

    Science.gov (United States)

    ... Nevoid Basal Cell Carcinoma Syndrome Request Permissions Nevoid Basal Cell Carcinoma Syndrome Approved by the Cancer.Net Editorial Board , 04/2016 What is Nevoid Basal Cell Carcinoma Syndrome? Nevoid Basal Cell Carcinoma Syndrome (NBCCS) is ...

  18. Nestin(+) cells direct inflammatory cell migration in atherosclerosis.

    Science.gov (United States)

    Del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-01-01

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin(+) cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin(+) cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin(+) cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin(+) cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin(+) stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin(+) cells-but not in endothelial cells only- increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis. PMID:27586429

  19. Introduction to Stem Cell Therapy

    OpenAIRE

    Biehl, Jesse K.; Russell, Brenda

    2009-01-01

    Stem cells have the ability to differentiate into specific cell types. The two defining characteristics of a stem cell are perpetual self-renewal and the ability to differentiate into a specialized adult cell type. There are two major classes of stem cells: pluripotent that can become any cell in the adult body, and multipotent that are restricted to becoming a more limited population of cells. Cell sources, characteristics, differentiation and therapeutic applications are discussed. Stem cel...

  20. PEROVSKITE SOLAR CELLS (REVIEW ARTICLE)

    OpenAIRE

    Benli, Deniz Ahmet

    2015-01-01

    A solar cell is a device that converts sunlight into electricity. There are different types of solar cells but this report mainly focuses on a type of new generation solar cell that has the name organo-metal halide perovskite, shortly perovskite solar cells. In this respect, the efficiency of power conversion is taken into account to replace the dominancy of traditional and second generation solar cell fields by perovskite solar cells. Perovskite solar cell is a type of solar cell including a...

  1. Adult retinal stem cells revisited.

    OpenAIRE

    Bhatia, B; Singhal, S; Jayaram, H.; Khaw, P T; Limb, G A

    2010-01-01

    Recent advances in retinal stem cell research have raised the possibility that these cells have the potential to be used to repair or regenerate diseased retina. Various cell sources for replacement of retinal neurons have been identified, including embryonic stem cells, the adult ciliary epithelium, adult Müller stem cells and induced pluripotent stem cells (iPS). However, the true stem cell nature of the ciliary epithelium and its possible application in cell therapies has now been question...

  2. Simple Cell Balance Circuit

    Science.gov (United States)

    Johnson, Steven D.; Byers, Jerry W.; Martin, James A.

    2012-01-01

    A method has been developed for continuous cell voltage balancing for rechargeable batteries (e.g. lithium ion batteries). A resistor divider chain is provided that generates a set of voltages representing the ideal cell voltage (the voltage of each cell should be as if the cells were perfectly balanced). An operational amplifier circuit with an added current buffer stage generates the ideal voltage with a very high degree of accuracy, using the concept of negative feedback. The ideal voltages are each connected to the corresponding cell through a current- limiting resistance. Over time, having the cell connected to the ideal voltage provides a balancing current that moves the cell voltage very close to that ideal level. In effect, it adjusts the current of each cell during charging, discharging, and standby periods to force the cell voltages to be equal to the ideal voltages generated by the resistor divider. The device also includes solid-state switches that disconnect the circuit from the battery so that it will not discharge the battery during storage. This solution requires relatively few parts and is, therefore, of lower cost and of increased reliability due to the fewer failure modes. Additionally, this design uses very little power. A preliminary model predicts a power usage of 0.18 W for an 8-cell battery. This approach is applicable to a wide range of battery capacities and voltages.

  3. T follicular regulatory cells.

    Science.gov (United States)

    Sage, Peter T; Sharpe, Arlene H

    2016-05-01

    Pathogen exposure elicits production of high-affinity antibodies stimulated by T follicular helper (Tfh) cells in the germinal center reaction. Tfh cells provide both costimulation and stimulatory cytokines to B cells to facilitate affinity maturation, class switch recombination, and plasma cell differentiation within the germinal center. Under normal circumstances, the germinal center reaction results in antibodies that precisely target foreign pathogens while limiting autoimmunity and excessive inflammation. In order to have this degree of control, the immune system ensures Tfh-mediated B-cell help is regulated locally in the germinal center. The recently identified T follicular regulatory (Tfr) cell subset can migrate to the germinal center and inhibit Tfh-mediated B-cell activation and antibody production. Although many aspects of Tfr cell biology are still unclear, recent data have begun to delineate the specialized roles of Tfr cells in controlling the germinal center reaction. Here we discuss the current understanding of Tfr-cell differentiation and function and how this knowledge is providing new insights into the dynamic regulation of germinal centers, and suggesting more efficacious vaccine strategies and ways to treat antibody-mediated diseases. PMID:27088919

  4. Brain tumor stem cells.

    Science.gov (United States)

    Palm, Thomas; Schwamborn, Jens C

    2010-06-01

    Since the end of the 'no-new-neuron' theory, emerging evidence from multiple studies has supported the existence of stem cells in neurogenic areas of the adult brain. Along with this discovery, neural stem cells became candidate cells being at the origin of brain tumors. In fact, it has been demonstrated that molecular mechanisms controlling self-renewal and differentiation are shared between brain tumor stem cells and neural stem cells and that corruption of genes implicated in these pathways can direct tumor growth. In this regard, future anticancer approaches could be inspired by uncovering such redundancies and setting up treatments leading to exhaustion of the cancer stem cell pool. However, deleterious effects on (normal) neural stem cells should be minimized. Such therapeutic models underline the importance to study the cellular mechanisms implicated in fate decisions of neural stem cells and the oncogenic derivation of adult brain cells. In this review, we discuss the putative origins of brain tumor stem cells and their possible implications on future therapies. PMID:20370314

  5. B cells help alloreactive T cells differentiate into memory T cells1

    OpenAIRE

    Ng, Yue-Harn; Oberbarnscheidt, Martin H.; Chandramoorthy, Harish Chinna Konda; Hoffman, Rosemary; Chalasani, Geetha

    2010-01-01

    B cells are recognized as effector cells in allograft rejection that are dependent upon T cell help to produce alloantibodies causing graft injury. It is not known if B cells can also help T cells differentiate into memory cells in the alloimmune response. We found that in B cell-deficient hosts, differentiation of alloreactive T cells into effectors was intact whereas their development into memory T cells was impaired. To test if B cell help for T cells was required for their continued diffe...

  6. Development of a blood-brain barrier model in a membrane-based microchip for characterization of drug permeability and cytotoxicity for drug screening.

    Science.gov (United States)

    Shao, Xiaojian; Gao, Dan; Chen, Yongli; Jin, Feng; Hu, Guangnan; Jiang, Yuyang; Liu, Hongxia

    2016-08-31

    Since most of the central nervous system (CNS) drug candidates show poor permeability across the blood-brain barrier (BBB), development of a reliable platform for permeability assay will greatly accelerate drug discovery. Herein, we constructed a microfluidic BBB model to mimic drug delivery into the brain to induce cytotoxicity at target cells. To reconstitute the in vivo BBB properties, human cerebral microvessel endothelial cells (hCMEC/D3) were dynamically cultured in a membrane-based microchannel. Sunitinib, a model drug, was then delivered into the microchannel and forced to permeate through the BBB model. The permeated amount was directly quantified by an electrospray ionization quadrupole time-of-flight mass spectrometer (ESI-Q-TOF MS) after on-chip SPE (μSPE) pretreatment. Moreover, the permeated drug was incubated with glioma cells (U251) cultured inside agarose gel in the downstream to investigate drug-induced cytotoxicity. The resultant permeability of sunitinib was highly correlated with literature reported value, and it only required 30 min and 5 μL of sample solution for each permeation experiment. Moreover, after 48 h of treatment, the survival rate of U251 cells cultured in 3D scaffolds was nearly 6% higher than that in 2D, which was in accordance with the previously reported results. These results demonstrate that this platform provides a valid tool for drug permeability and cytotoxicity assays which have great value for the research and development of CNS drugs. PMID:27506359

  7. Radiation-Inducible Caspase-8 Gene Therapy for Malignant Brain Tumors

    International Nuclear Information System (INIS)

    Purpose: Patients with malignant gliomas have a poor prognosis. To explore a novel and more effective approach for the treatment of patients with malignant gliomas, we designed a strategy that combines caspase-8 (CSP8) gene therapy and radiation treatment (RT). In addition, the specificity of the combined therapy was investigated to decrease the unpleasant effects experienced by the surrounding normal tissue. Methods and Materials: We constructed the plasmid pEGR-green fluorescence protein that included the radiation-inducible early growth response gene-1 (Egr-1) promoter and evaluated its characteristics. The pEGR-CSP8 was constructed and included the Egr-1 promoter and CSP8 complementary DNA. Assays that evaluated the apoptosis inducibility and cytotoxicity caused by CSP8 gene therapy combined with RT were performed using U251 and U87 glioma cells. The pEGR-CSP8 was transfected into the subcutaneous U251 glioma cells of nude mice by means of in vivo electroporation. The in vivo effects of CSP8 gene therapy combined with RT were evaluated. Results: The Egr-1 promoter yielded a better response with fractionated RT than with single-dose RT. In the assay of apoptosis inducibility and cytotoxicity, pEGR-CSP8 showed response for RT. The pEGR-CSP8 combined with RT is capable of inducing cell death effectively. In mice treated with pEGR-CSP8 and RT, apoptotic cells were detected in pathologic sections, and a significant difference was observed in tumor volumes. Conclusions: Our results indicate that radiation-inducible gene therapy may have great potential because this can be spatially or temporally controlled by exogenous RT and is safe and specific

  8. Determining Cell Number During Cell Culture using the Scepter Cell Counter

    OpenAIRE

    Ongena, Kathleen; Das, Chandreyee; Smith, Janet L.; Gil, Sónia; Johnston, Grace

    2010-01-01

    Counting cells is often a necessary but tedious step for in vitro cell culture. Consistent cell concentrations ensure experimental reproducibility and accuracy. Cell counts are important for monitoring cell health and proliferation rate, assessing immortalization or transformation, seeding cells for subsequent experiments, transfection or infection, and preparing for cell-based assays. It is important that cell counts be accurate, consistent, and fast, particularly for quantitative measuremen...

  9. Basal cell carcinoma of the skin with areas of squamous cell carcinoma: a basosquamous cell carcinoma?

    OpenAIRE

    Faria, J.

    1985-01-01

    The diagnosis of basosquamous cell carcinoma is controversial. A review of cases of basal cell carcinoma showed 23 cases that had conspicuous areas of squamous cell carcinoma. This was distinguished from squamous differentiation and keratotic basal cell carcinoma by a comparative study of 40 cases of compact lobular and 40 cases of keratotic basal cell carcinoma. Areas of intermediate tumour differentiation between basal cell and squamous cell carcinoma were found. Basal cell carcinomas with ...

  10. Induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Siddhartha Bhowmik; LI Yong

    2011-01-01

    Induced pluripotent stem (iPS) cells are a recent development which has brought a promise of great therapeutic values. The previous technique of somatic cell nuclear transfer (SCNT) has been ineffective in humans. Recent discoveries show that human fibroblasts can be reprogrammed by a transient over expression of a small number of genes; they can undergo induced pluripotency. iPS were first produced in 2006. By 2008, work was underway to remove the potential oncogenes from their structure. In 2009, protein iPS (piPS) cells were discovered. Surface markers and reporter genes play an important role in stem cell research. Clinical applications include generation of self renewing stem cells, tissue replacement and many more. Stem cell therapy has the ability to dramatically change the treatment of human diseases.

  11. Cytoskeleton and Cell Motility

    CERN Document Server

    Risler, Thomas

    2011-01-01

    The present article is an invited contribution to the Encyclopedia of Complexity and System Science, Robert A. Meyers Ed., Springer New York (2009). It is a review of the biophysical mechanisms that underly cell motility. It mainly focuses on the eukaryotic cytoskeleton and cell-motility mechanisms. Bacterial motility as well as the composition of the prokaryotic cytoskeleton is only briefly mentioned. The article is organized as follows. In Section III, I first present an overview of the diversity of cellular motility mechanisms, which might at first glance be categorized into two different types of behaviors, namely "swimming" and "crawling". Intracellular transport, mitosis - or cell division - as well as other extensions of cell motility that rely on the same essential machinery are briefly sketched. In Section IV, I introduce the molecular machinery that underlies cell motility - the cytoskeleton - as well as its interactions with the external environment of the cell and its main regulatory pathways. Sec...

  12. Cell transformation and mutagenesis

    International Nuclear Information System (INIS)

    This chapter summarizes the studies of the dose-effect relationships of cell transformation and of mutation for heavy ions with various charges, velocities and LET values. In cell transformation studies, carbon particles consistently gave a higher frequency of transformation per viable cell than x rays. For the same cell line, the RBE is about the same for both cell killings and oncogenic transformation for a given quality of ionizing radiation. In cocarcinogenesis studies, neon irradiation showed an enhancement effect on the viral transformation of cells. To explain the enhanced transformation, it has been suggested that radiation produces strand breaks in cellular DNA that promote the attachment of viral genomes during DNA repair synthesis. In mutagenesis studies, high-LET heavy ions could not effectively induce ouabain resistant mutations

  13. Mammalian cell biology

    International Nuclear Information System (INIS)

    Studies of the action of N-ethylmaleimide (NEM), as an inhibitor of repair of x radioinduced injuries were extended from synchronous Chinese hamster cells to synchronous human HeLa cells. These studies showed a similar mode of action in both cell types lending support to the notion that conclusions may be extracted from such observations that are of fairly general applicability to mammalian cells. Radiation studies with NEM are being extended to hypoxic cells to inquire if NEM is effective relative to oxygen-independent damage. Observations relative to survival, DNA synthesis, and DNA strand elongation resulting from the addition products to DNA when cells were exposed to near uv in the presence of psoralen were extended. (U.S.)

  14. Concentrator silicon cell research

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A.; Wenham, S.R.; Zhang, F.; Zhao, J.; Wang, A. [New South Wales Univ., Kensington (Australia). Solar Photovoltaic Lab.

    1992-04-01

    This project continued the developments of high-efficiency silicon concentrator solar cells with the goal of achieving a cell efficiency in the 26 to 27 percent range at a concentration level of 150 suns of greater. The target efficiency was achieved with the new PERL (passivated emitter, rear locally diffused) cell structure, but only at low concentration levels around 20 suns. The PERL structure combines oxide passivation of both top and rear surfaces of the cells with small area contact to heavily doped regions on the top and rear surfaces. Efficiency in the 22 to 23 percent range was also demonstrated for large-area concentrator cells fabricated with the buried contact solar cell processing sequence, either when combined with prismatic covers or with other innovative approaches to reduce top contact shadowing. 19 refs.

  15. Fish germ cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Fish, like many other animals, have two major cell lineages, namely the germline and soma. The germ-soma separation is one of the earliest events of embryonic development. Germ cells can be specifically labeled and isolated for culture and transplan-tation, providing tools for reproduction of endangered species in close relatives, such as surrogate production of trout in salmon. Haploid cell cultures, such as medaka haploid embryonic stem cells have recently been obtained, which are capable of mimicking sperm to produce fertile offspring, upon nuclear being directly transferred into normal eggs. Such fish originated from a mosaic oocyte that had a haploid meiotic nucleus and a transplanted haploid mitotic cell culture nucleus. The first semi-cloned fish is Holly. Here we review the current status and future directions of understanding and manipulating fish germ cells in basic research and reproductive technology.

  16. NCAM regulates cell motility

    DEFF Research Database (Denmark)

    Prag, Søren; Lepekhin, Eugene A; Kolkova, Kateryna;

    2002-01-01

    Cell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells...... independently of homophilic NCAM interactions. Expression of the transmembrane 140 kDa isoform of NCAM (NCAM-140) caused a significant reduction in cellular motility, probably through interference with factors regulating cellular attachment, as NCAM-140-expressing cells exhibited a decreased attachment to a...... fibronectin substratum compared with NCAM-negative cells. Ectopic expression of the cytoplasmic part of NCAM-140 also inhibited cell motility, presumably via the non-receptor tyrosine kinase p59(fyn) with which NCAM-140 interacts. Furthermore, we showed that the extracellular part of NCAM acted as a paracrine...

  17. Traction in smooth muscle cells varies with cell spreading

    Science.gov (United States)

    Tolic-Norrelykke, Iva Marija; Wang, Ning

    2005-01-01

    Changes in cell shape regulate cell growth, differentiation, and apoptosis. It has been suggested that the regulation of cell function by the cell shape is a result of the tension in the cytoskeleton and the distortion of the cell. Here we explore the association between cell-generated mechanical forces and the cell morphology. We hypothesized that the cell contractile force is associated with the degree of cell spreading, in particular with the cell length. We measured traction fields of single human airway smooth muscle cells plated on a polyacrylamide gel, in which fluorescent microbeads were embedded to serve as markers of gel deformation. The traction exerted by the cells at the cell-substrate interface was determined from the measured deformation of the gel. The traction was measured before and after treatment with the contractile agonist histamine, or the relaxing agonist isoproterenol. The relative increase in traction induced by histamine was negatively correlated with the baseline traction. On the contrary, the relative decrease in traction due to isoproterenol was independent of the baseline traction, but it was associated with cell shape: traction decreased more in elongated than in round cells. Maximum cell width, mean cell width, and projected area of the cell were the parameters most tightly coupled to both baseline and histamine-induced traction in this study. Wide and well-spread cells exerted larger traction than slim cells. These results suggest that cell contractility is controlled by cell spreading.

  18. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  19. Microbial fuel cells

    International Nuclear Information System (INIS)

    Microbial fuel cells (MFC) are a promising technology for sustainable production of alternative energy and waste treatment. A microbial fuel cell transformation chemical energy in the chemical bonds in organic compounds to electrical energy through catalytic reactions of microorganisms under anaerobic conditions. It has been known for many years that it is possible to generate electricity directly by using bacteria to break down organic substrates. Key words: microbial fuel cells (MFC), biosensor, wastewater treatment

  20. Cancer Stem Cells

    OpenAIRE

    Aurelio Lorico; Eric Deutsch; Bo Lu; Shih-Hwa Chiou

    2011-01-01

    Cancer Stem Cells (CSCs) are a small subpopulation of cells within tumors with capabilities of self-renewal, differentiation, and tumorigenicity when transplanted into an animal host. A number of cell surface markers such as CD44, CD24, and CD133 are often used to identify and enrich CSCs. A regulatory network consisting of microRNAs and Wnt/β-catenin, Notch, and Hedgehog signaling pathways controls the CSC properties. The clinical relevance of CSCs has been strengthened by emerging evidence,...

  1. Gastric Cancer Stem Cells

    OpenAIRE

    Takaishi, Shigeo; Okumura, Tomoyuki; Timothy C Wang

    2008-01-01

    Cancer stem cells are defined as the unique subpopulation in the tumors that possess the ability to initiate tumor growth and sustain self-renewal as well as metastatic potential. Accumulating evidence in recent years strongly indicate the existence of cancer stem cells in solid tumors of a wide variety of organs. In this review, we will discuss the possible existence of a gastric cancer stem cell. Our recent data suggest that a subpopulation with a defined marker shows spheroid colony format...

  2. Turing Patterns Inside Cells

    OpenAIRE

    Strier, Damián E.; Ponce Dawson, Silvina

    2007-01-01

    Concentration gradients inside cells are involved in key processes such as cell division and morphogenesis. Here we show that a model of the enzymatic step catalized by phosphofructokinase (PFK), a step which is responsible for the appearance of homogeneous oscillations in the glycolytic pathway, displays Turing patterns with an intrinsic length-scale that is smaller than a typical cell size. All the parameter values are fully consistent with classic experiments on glycolytic oscillations and...

  3. Mammary epithelial cell

    DEFF Research Database (Denmark)

    Kass, Laura; Erler, Janine Terra; Dembo, Micah;

    2007-01-01

    mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal...... organization, and promote cell invasion and survival. In this review, we discuss the role of stromal-epithelial interactions in normal and malignant mammary epithelial cell behavior. We specifically focus on how dynamic modulation of the biochemical and biophysical properties of the extracellular matrix elicit...

  4. Chiaroscuro hematopoietic stem cell.

    OpenAIRE

    Quesenberry, P.; Habibian, M. (PhD); Dooner, M; Zhong, S.; Reilly, J; Peters, S.; De Becker, P; Grimaldi, C.; Carlson, J; REDDY, P; Nilsson, S.; Stewart, F. M.

    1998-01-01

    These observations suggest several immediate clinical strategies. In gene therapy, approaches could be targeted to obtain cycling of hematopoietic stem cells and gene-carrying retrovirus vector integration followed by engraftment at an appropriate time interval which favors engraftment. The same type of approach can be utilized for stem cell expansion approaches. Alternatively marrow or peripheral stem cell engraftment can be obtained with minimal to no toxicity in allochimeric strategies in ...

  5. Stem cell myths

    OpenAIRE

    Magnus, Tim; Liu, Ying; Parker, Graham C.; Rao, Mahendra S.

    2007-01-01

    Stem cells, although difficult to define, hold great promise as tools for understanding development and as therapeutic agents. However, as with any new field, uncritical enthusiasm can outstrip reality. In this review, we have listed nine common myths that we believe affect our approach to evaluating stem cells for therapy. We suggest that careful consideration needs to be given to each of these issues when evaluating a particular cell for its use in therapy. Data need to be collected and rep...

  6. Cancer stem cell metabolism

    OpenAIRE

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Sotgia, Federica; Lisanti, Michael P

    2016-01-01

    Cancer is now viewed as a stem cell disease. There is still no consensus on the metabolic characteristics of cancer stem cells, with several studies indicating that they are mainly glycolytic and others pointing instead to mitochondrial metabolism as their principal source of energy. Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes. Deter...

  7. Lung Stem cell biology

    OpenAIRE

    Ardhanareeswaran, Karthikeyan; Mirotsou, Maria

    2013-01-01

    Over the past few years new insights have been added to the study of stem cells in the adult lung. The exploration of the endogenous lung progenitors as well as the study of exogenously delivered stem cell populations holds promise for advancing our understanding of the biology of lung repair mechanisms. Moreover, it opens new possibilities for the use of stem cell therapy for the development of regenerative medicine approaches for the treatment of lung disease. Here, we discuss the main type...

  8. Control of Fuel Cells

    OpenAIRE

    ZENITH, Federico

    2007-01-01

    This thesis deals with control of fuel cells, focusing on high-temperature proton-exchange-membrane fuel cells. Fuel cells are devices that convert the chemical energy of hydrogen, methanol or other chemical compounds directly into electricity, without combustion or thermal cycles. They are efficient, scalable and silent devices that can provide power to a wide variety of utilities, from portable electronics to vehicles, to nation-wide electric grids. Whereas studies about the design of fuel ...

  9. Control of Fuel Cells

    OpenAIRE

    ZENITH, Federico

    2007-01-01

    This thesis deals with control of fuel cells, focusing on high-temperature proton-exchange-membrane fuel cells.Fuel cells are devices that convert the chemical energy of hydrogen, methanol or other chemical compounds directly into electricity, without combustion or thermal cycles. They are efficient, scalable and silent devices that can provide power to a wide variety of utilities, from portable electronics to vehicles, to nation-wide electric grids.Whereas studies about the design of fuel ce...

  10. Epidermal Stem Cells

    OpenAIRE

    Osman Köse

    2015-01-01

    The epidermis is the outermost layer of the human skin and comprises a multilayered epithelium, the interfollicular epidermis, with associated hair follicles, sebaceous glands, and eccrine sweat glands. There are many origins of stem cells in the skin and skin appendages. These stem cells are localized in different part of the pilosebaseous units and also express many different genes. Epidermal stem cells in the pilosebaseous units not only ensure the maintenance of epidermal homeostasis and ...

  11. Liver Cancer Stem Cells

    OpenAIRE

    Sameh Mikhail; Aiwu Ruth He

    2011-01-01

    Hepatocellular carcinoma is the most common primary malignancy of the liver in adults. It is also the fifth most common solid cancer worldwide and the third leading cause of cancer-related death. Recent research supports that liver cancer is a disease of adult stem cells. From the models of experimental hepatocarcinogenesis, there may be at least three distinct cell lineages with progenitor properties susceptible to neoplastic transformation. Identification of specific cell surface markers fo...

  12. Cell therapy of pseudarthrosis

    OpenAIRE

    Bastos Filho, Ricardo; Lermontov, Simone; Borojevic, Radovan; Schott, Paulo Cezar; Gameiro, Vinicius Schott; José Mauro GRANJEIRO

    2012-01-01

    Objective To assess the safety and efficiency of cell therapy for pseudarthrosis. Implant of the bone marrow aspirate was compared to mononuclear cells purified extemporaneously using the Sepax® equipment. Methods Six patients with nonunion of the tibia or femur were treated. Four received a percutaneous infusion of autologous bone marrow aspirated from the iliac crest, and two received autologous bone marrow mononuclear cells separated from the aspirate with the Sepax®. The primary fixation ...

  13. Hair cell ribbon synapses

    OpenAIRE

    Moser, Tobias; Brandt, Andreas; Lysakowski, Anna

    2006-01-01

    Hearing and balance rely on the faithful synaptic coding of mechanical input by the auditory and vestibular hair cells of the inner ear. Mechanical deflection of their stereocilia causes the opening of mechanosensitive channels, resulting in hair cell depolarization, which controls the release of glutamate at ribbon-type synapses. Hair cells have a compact shape with strong polarity. Mechanoelectrical transduction and active membrane turnover associated with stereociliar renewal dominate the ...

  14. Plasma cell gingivitis

    OpenAIRE

    Chandershekhar Joshi; Pradeep Shukla

    2015-01-01

    The aim of the article is to present a report on the clinical presentation of plasma cell gingivitis with the use of herbal toothpowder. Plasma cell gingivitis [PCG] is a rare benign condition of the gingiva characterized by sharply demarcated erythematous and edematous gingivitis often extending to the mucogingival junction. As the name suggests it is diffuse and massive infiltration of plasma cells into the sub-epithelial gingival tissue. It is a hypersensitivity reaction to some antigen, o...

  15. APUD cells in teratomas.

    OpenAIRE

    Bosman, F. T.; Louwerens, J. W.

    1981-01-01

    The origin of the endocrine cells in the respiratory tract and the gastrointestinal tract is still a matter of debate. In the original concept of the amine precursor uptake and decarboxylation (APUD) system, all APUD cells were considered to be derived from the neural crest. More recently it has been proposed that the APUD cell types of the gastrointestinal and respiratory tracts originate from neuroendocrine-programmed ectoblast. Still other investigators have reported observations that favo...

  16. Mesenchymal stem cells.

    Science.gov (United States)

    Ding, Dah-Ching; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2011-01-01

    Stem cells have two features: the ability to differentiate along different lineages and the ability of self-renewal. Two major types of stem cells have been described, namely, embryonic stem cells and adult stem cells. Embryonic stem cells (ESC) are obtained from the inner cell mass of the blastocyst and are associated with tumorigenesis, and the use of human ESCs involves ethical and legal considerations. The use of adult mesenchymal stem cells is less problematic with regard to these issues. Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as umbilical cord, endometrial polyps, menses blood, bone marrow, adipose tissue, etc. This is because the ease of harvest and quantity obtained make these sources most practical for experimental and possible clinical applications. Recently, MSCs have been found in new sources, such as menstrual blood and endometrium. There are likely more sources of MSCs waiting to be discovered, and MSCs may be a good candidate for future experimental or clinical applications. One of the major challenges is to elucidate the mechanisms of differentiation, mobilization, and homing of MSCs, which are highly complex. The multipotent properties of MSCs make them an attractive choice for possible development of clinical applications. Future studies should explore the role of MSCs in differentiation, transplantation, and immune response in various diseases. PMID:21396235

  17. Littoral Cells 2005

    Data.gov (United States)

    California Department of Resources — Littoral cells along the California Coast. Originally digitized by Melanie Coyne from the Assessment and Atlas of Shoreline Erosion Along the California Coast...

  18. Sarcomatoid renal cell carcinoma

    OpenAIRE

    Kafil Akhtar; Ahmad Shamshad; Zaheer Sufian; Mansoor Tariq

    2011-01-01

    Sarcomatoid renal cell carcinoma (SRCC) is an aggressive tumor variant thought to arise predominantly from differentiation of clear cell carcinoma. A few reports of SRCC asso-ciated with non-clear cell tumors led to the presumption that SRCC may arise from any renal cell carcinoma, although direct evidence of this is lacking. We report a case of a 70-year-old male patient, who presented with acute left upper quadrant abdominal pain and was diagnosed to have SRCC after pathological examination...

  19. Adenoviral Producer Cells

    Directory of Open Access Journals (Sweden)

    Imre Kovesdi

    2010-08-01

    Full Text Available Adenovirus (Ad vectors, in particular those of the serotype 5, are highly attractive for a wide range of gene therapy, vaccine and virotherapy applications (as discussed in further detail in this issue. Wild type Ad5 virus can replicate in numerous tissue types but to use Ad vectors for therapeutic purposes the viral genome requires modification. In particular, if the viral genome is modified in such a way that the viral life cycle is interfered with, a specific producer cell line is required to provide trans-complementation to overcome the modification and allow viral production. This can occur in two ways; use of a producer cell line that contains specific adenoviral sequences incorporated into the cell genome to trans-complement, or use of a producer cell line that naturally complements for the modified Ad vector genome. This review concentrates on producer cell lines that complement non-replicating adenoviral vectors, starting with the historical HEK293 cell line developed in 1977 for first generation Ad vectors. In addition the problem of replication-competent adenovirus (RCA contamination in viral preparations from HEK293 cells is addressed leading to the development of alternate cell lines. Furthermore novel cell lines for more complex Ad vectors and alternate serotype Ad vectors are discussed.

  20. Radioresistance of dendritic cells

    International Nuclear Information System (INIS)

    To evaluate radiation sensitivity of dendritic cells in comparison with lymphocytes. T lymphocytes captured from peripheral blood were irradiated by 0 Gy, 10 Gy, 30 Gy. Apoptosis was measured by flowcytometry for staining of annexin V 4 hours after irradiation. Immature and mature dendritic cells processed from blood hematopoietic stem cell were irradiated by 0 Gy, 10 Gy, 30 Gy, 100 Gy respectively and apoptosis was measured by flowcytometry with time differences as 4h, 24h and 48h after irradiation. Morphometric analysis by percent nucleus was measured in three cell groups, also. Lymphocytes showed radiation sensitivity by increasing apoptotic fraction according to radiation dose. However, both mature and immature dendritic cells showed consistent fraction of apoptosis in spite of increasing radiation dose. Percent nucleus ratio is significantly higher in lymphocytes than that of mature or immature dendritic cells. Stimulation of T-cell by dendritic cells was not changed after irradiation. Dendritic cells showed radioresistance which was associated with small size of nucleus in comparison with lymphocytes and this result would be used as a basal data of radio-labelling for the cellular trafficking studies in nuclear medicine fields

  1. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan

    2006-12-15

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  2. T-cell costimulation

    DEFF Research Database (Denmark)

    Owens, T

    1996-01-01

    The CD40L molecule expressed by CD4+ regulatory T lymphocytes is known to deliver signals that activate B cells and macrophages. It now appears that CD40L regulates T cells themselves, during both their development and their participation in adaptive immune responses.......The CD40L molecule expressed by CD4+ regulatory T lymphocytes is known to deliver signals that activate B cells and macrophages. It now appears that CD40L regulates T cells themselves, during both their development and their participation in adaptive immune responses....

  3. Live-cell luciferase assay of drug resistant cells

    OpenAIRE

    sprotocols

    2015-01-01

    To date, multiplexing cell-based assay is essential for high-throughput screening of molecular targets. Measuring multiple parameters of a single sample increases consistency and decrease time and cost of assay. Functional assay of living cell is useful as a first step of multiplexing assay, because live-cell assay allows following second assay using cell lysate or stained cell. However, live-cell assay of drug resistant cells that are highly activated of drug efflux mechanisms is sometimes u...

  4. Stem cells - biological update and cell therapy progress

    OpenAIRE

    GIRLOVANU, MIHAI; Susman, Sergiu; Soritau, Olga; RUS-CIUCA, DAN; MELINCOVICI, CARMEN; CONSTANTIN, ANNE-MARIE; Carmen Mihaela MIHU

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods t...

  5. A focus on parietal cells as a renewing cell population

    Institute of Scientific and Technical Information of China (English)

    Sherif; M; Karam

    2010-01-01

    The fact that the acidsecreting parietal cells undergo continuous renewal has been ignored by many gastroenterologists and cell biologists. In the past, it was thought that these cells were static. However, by using 3Hthymidine radioautography in combination with electron microscopy, it was possible to demonstrate that parietal cells belong to a continuously renewing epithelial cell lineage. In the gastric glands, stem cells anchored in the isthmus region are responsible for the production of parietal cells...

  6. Liver epithelial cells inhibit proliferation and invasiveness of hepatoma cells.

    Science.gov (United States)

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Jeng, Wen-Juei; Sheen, I-Shyan; Li, Shih-Yun; Hung, Zih-Hang; Hsiau, Hsin-I; Yu, Ming-Che; Chang, Chiung-Fang

    2016-03-01

    Hepatocellular carcinoma (HCC) is a worldwide malignancy with poor prognosis. Liver progenitors or stem cells could be a potential therapy for HCC treatment since they migrate toward tumors. Rat liver epithelial (RLE) cells have both progenitor and stem cell-like properties. Therefore, our study elucidated the therapeutic effect of RLE cells in rat hepatoma cells. RLE cells were isolated from 10-day old rats and characterized for stem cell marker expression. RLE cells and rat hepatoma cells (H4-IIE-C3 cells) were co-cultured and divided into four groups with different ratios of RLE and hepatoma cells. Group A had only rat hepatoma cells as a control group. The ratios of rat hepatoma and RLE cells in group B, C and D were 5:1, 1:1 and 1:5, respectively. Effective inhibition of cell proliferation and migration was found in group D when compared to group A. There was a significant decrease in Bcl2 expression and increase in late apoptosis of rat hepatoma cells when adding more RLE cells. RLE cells reduced cell proliferation and migration of rat hepatoma cells. These results suggested that RLE cells could be used as a potential cell therapy. PMID:26647726

  7. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    Science.gov (United States)

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways. PMID:27590152

  8. The new stem cell biology.

    OpenAIRE

    Quesenberry, Peter J.; Colvin, Gerald A; Lambert, Jean-Francois; Frimberger, Angela E.; Dooner, Mark S.; Mcauliffe, Christina I.; Miller, Caroline; Becker, Pamela; Badiavas, Evangelis; Falanga, Vincent J.; Elfenbein, Gerald; Lum, Lawrence G.

    2002-01-01

    Recent studies have indicated that bone marrow stem cells are capable of generating muscle, cardiac, hepatic, renal, and bone cells. Purified hematopoietic stem cells have generated cardiac and hepatic cells and reversed disease manifestations in these tissues. Hematopoietic stem cells also alter phenotype with cell cycle transit or circadian phase. During a cytokine stimulated cell cycle transit, reversible alterations of differentiation and engraftment occur. Primitive hematopoietic stem ce...

  9. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division.

    Science.gov (United States)

    Høyem, Marte Rørvik; Måløy, Frode; Jakobsen, Per; Brandsdal, Bjørn Olav

    2015-09-01

    We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells. PMID:25997796

  10. Small cell glioblastoma or small cell carcinoma

    DEFF Research Database (Denmark)

    Hilbrandt, Christine; Sathyadas, Sathya; Dahlrot, Rikke H;

    2013-01-01

    was admitted to the hospital with left-sided loss of motor function. A MRI revealed a 6 cm tumor in the right temporoparietal area. The histology was consistent with both glioblastoma multiforme (GBM) and small cell lung carcinoma (SCLC) but IHC was suggestive of a SCLC metastasis. PET-CT revealed...

  11. Tracking Down Mutations Cell by Cell.

    Science.gov (United States)

    Kosik, Kenneth S

    2016-03-16

    Using somatic cell nuclear transfer, Hazen et al. (2016) examined clonally expanded single neurons for mutations and found ∼100 mutations from a variety of classes. Post-mitotic mutations in individual neurons represent an exploratory direction for finding fundamental origins of neurodegeneration. PMID:26985720

  12. Induction of embryonic stem cells to hematopoietic cells in vitro

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to get hematopoietic cells from embryonic stem (ES) cells and to study development mechanisms of hematopoietic cells, the method of inducing embryonic stem cells to hematopoietic cells was explored by differenciating mouse ES cells and human embryonic cells in three stages. The differentiated cells were identified by flow cytometry, immunohistochemistry and Wright's staining. The results showed that embryoid bodies (EBs) could form when ES cells were cultured in the medium with 2-mercaptoethanol (2-ME). However, cytokines, such as stem cell factor (SCF), thrombopoietin (TPO), interleukin-3 (IL-3), interleukin-6 (IL-6), erythropoietin (EPO) and granular colony stimulating factor (G-CSF), were not helpful for forming EBs. SCF, TPO and embryonic cell conditional medium were useful for the differentiation of mouse EBs to hematopoietic progenitors. Eighty-six percent of these cells were CD34+ after 6-d culture. Hematopoietic progenitors differentiated to B lymphocytes when they were cocultured with primary bone marrow stroma cells in the DMEM medium with SCF and IL-6. 14 d later, most of the cells were CD34-CD38+. Wright's staining and immunohistochemistry showed that 80% of these cells were plasma-like morphologically and immunoglubolin positive. The study of hematopoietic cells from human embryonic cells showed that human embryonic cell differentiation was very similar to that of mouse ES cells. They could form EBs in the first stage and the CD34 positive cells account for about 48.5% in the second stage.

  13. Retinal stem cells and potential cell transplantation treatments.

    Science.gov (United States)

    Lin, Tai-Chi; Hsu, Chih-Chien; Chien, Ke-Hung; Hung, Kuo-Hsuan; Peng, Chi-Hsien; Chen, Shih-Jen

    2014-11-01

    The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone) and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells). The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed. PMID:25238708

  14. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...

  15. Molecular Mechanisms of HTLV-1 Cell-to-Cell Transmission.

    Science.gov (United States)

    Gross, Christine; Thoma-Kress, Andrea K

    2016-01-01

    The tumorvirus human T-cell lymphotropic virus type 1 (HTLV-1), a member of the delta-retrovirus family, is transmitted via cell-containing body fluids such as blood products, semen, and breast milk. In vivo, HTLV-1 preferentially infects CD4⁺ T-cells, and to a lesser extent, CD8⁺ T-cells, dendritic cells, and monocytes. Efficient infection of CD4⁺ T-cells requires cell-cell contacts while cell-free virus transmission is inefficient. Two types of cell-cell contacts have been described to be critical for HTLV-1 transmission, tight junctions and cellular conduits. Further, two non-exclusive mechanisms of virus transmission at cell-cell contacts have been proposed: (1) polarized budding of HTLV-1 into synaptic clefts; and (2) cell surface transfer of viral biofilms at virological synapses. In contrast to CD4⁺ T-cells, dendritic cells can be infected cell-free and, to a greater extent, via viral biofilms in vitro. Cell-to-cell transmission of HTLV-1 requires a coordinated action of steps in the virus infectious cycle with events in the cell-cell adhesion process; therefore, virus propagation from cell-to-cell depends on specific interactions between cellular and viral proteins. Here, we review the molecular mechanisms of HTLV-1 transmission with a focus on the HTLV-1-encoded proteins Tax and p8, their impact on host cell factors mediating cell-cell contacts, cytoskeletal remodeling, and thus, virus propagation. PMID:27005656

  16. Cell Proliferation in Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Laura L. Stafman

    2016-01-01

    Full Text Available Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed.

  17. The Constitution by Cell

    Science.gov (United States)

    Greenhut, Stephanie; Jones, Megan

    2010-01-01

    On their visit to the National Archives Experience in Washington, D.C., students in Jenni Ashley and Gay Brock's U.S. history classes at the Potomac School in McLean, Virginia, participated in a pilot program called "The Constitution by Cell." Armed with their cell phones, a basic understanding of the Constitution, and a willingness to participate…

  18. Trapped vortex memory cells

    International Nuclear Information System (INIS)

    A memory cell is proposed which uses vortices in type-II superconductor thin film as information bits. In the memory cell, vortices are generated by coincident current in two superconductor lines and are read out by a Josephson junction. Preliminary experimental results on vortex generation and detection are also reported

  19. PLATINUM AND FUEL CELLS

    Science.gov (United States)

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  20. Patterning Stem Cell Differentiation

    OpenAIRE

    Vunjak-Novakovic, Gordana

    2008-01-01

    Regulation of cell differentiation and assembly remains a fundamental question in developmental biology. Now, a report from the Chen laboratory (Ruiz and Chen, 2008) describes an approach that represents a major step toward a more profound understanding of the geometric-force control of stem cell differentiation.

  1. Printed paper photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Huebler, Arved; Trnovec, Bystrik; Zillger, Tino; Ali, Moazzam; Wetzold, Nora [Inistitute for Print and Media Technology, Chemnitz University of Technology, Chemnitz (Germany); Mingebach, Markus; Wagenpfahl, Alexander; Deibel, Carsten [Experimental Physics VI, Julius-Maximilians-University of Wuerzburg (Germany); Dyakonov, Vladimir [Experimental Physics VI, Julius-Maximilians-University of Wuerzburg (Germany); Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany)

    2011-11-15

    Polymer/fullerene solar cells are printed on paper using a combination of gravure and flexographic printing techniques. The printed paper photovoltaic cells are free from expensive electrodes made with indium-tin oxide, silver, or gold. Oxidized zinc film is used as the electron-collecting layer. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Solar cell concentrating system

    International Nuclear Information System (INIS)

    This study reviews fabrication techniques and testing facilities for different solar cells under concentration which have been developed and tested. It is also aimed to examine solar energy concentrators which are prospective candidates for photovoltaic concentrator systems. This may provide an impetus to the scientists working in the area of solar cell technology

  3. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  4. Mesangial cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Hanna E., E-mail: Abboud@uthscsa.edu

    2012-05-15

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  5. Mast cell stabilisers.

    Science.gov (United States)

    Zhang, Tao; Finn, Deirdre Frances; Barlow, James William; Walsh, John Jarlath

    2016-05-01

    Mast cells play a critical role in type 1 hypersensitivity reactions. Indeed, mast cell mediators are implicated in many different conditions including allergic rhinitis, conjunctivitis, asthma, psoriasis, mastocytosis and the progression of many different cancers. Thus, there is intense interest in the development of agents which prevent mast cell mediator release or which inhibit the actions of such mediators once released into the environment of the cell. Much progress into the design of new agents has been made since the initial discovery of the mast cell stabilising properties of khellin from Ammi visnaga and the clinical approval of cromolyn sodium. This review critically examines the progress that has been made in the intervening years from the design of new agents that target a specific signalling event in the mast cell degranulation pathway to those agents which have been developed where the precise mechanism of action remains elusive. Particular emphasis is also placed on clinically used drugs for other indications that stabilise mast cells and how this additional action may be harnessed for their clinical use in disease processes where mast cells are implicated. PMID:26130122

  6. Sliver solar cells

    Science.gov (United States)

    Franklin, Evan; Blakers, Andrew; Everett, Vernie; Weber, Klaus

    2007-12-01

    Sliver solar cells are thin, mono-crystalline silicon solar cells, fabricated using micro-machining techniques combined with standard solar cell fabrication technology. Sliver solar modules can be efficient, low cost, bifacial, transparent, flexible, shadow-tolerant, and lightweight. Sliver modules require only 5 to 10% of the pure silicon and less than 5% of the wafer starts per MW p of factory output when compared with conventional photovoltaic modules. At ANU, we have produced 20% efficient Sliver solar cells using a robust, optimised cell fabrication process described in this paper. We have devised a rapid, reliable and simple method for extracting Sliver cells from a Sliver wafer, and methods for assembling modularised Sliver cell sub-modules. The method for forming these Sliver sub-modules, along with a low-cost method for rapidly forming reliable electrical interconnections, are presented. Using the sub-module approach, we describe low-cost methods for assembling and encapsulating Sliver cells into a range of module designs.

  7. Programmed cell death

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  8. Modeling: driving fuel cells

    Directory of Open Access Journals (Sweden)

    Michael Francis

    2002-05-01

    Fuel cells were invented in 1839 by Sir William Grove, a Welsh judge and gentleman scientist, as a result of his experiments on the electrolysis of water. To put it simply, fuel cells are electrochemical devices that take hydrogen gas from fuel, combine it with oxygen from the air, and generate electricity and heat, with water as the only by-product.

  9. Cell Maintenance Systems

    Science.gov (United States)

    Morrison, D. R.

    1985-01-01

    Living human cells require attachment to a suitable surface and special culture conditions in order to grow. These requirements are modified and amplified when cells are taken into a weightless environment. Special handling and maintenance systems are required for routine laboratory procedures conducted in the Orbiter and in the Spacelab. Methods were developed to maintain cells in special incubators designed for the Orbiter middeck, however, electrophoresis and other experiments require cells to be harvested off of the culture substrate before they can be processed or used. The cell transport assembly (CTA) was flown on STS-8, and results show that improvements are required to maintain adequate numbers of cells in this device longer than 48 hours. The life sciences middeck centrifuge probably can be used, but modifications will be required to transfer cells from the CTA and keep the cells sterile. Automated systems such as the Skylab SO-15 flight hardware and crew operated systems are being evaluated for use on the Space Shuttle, Spacelab, and Space Station research modules.

  10. Cell Phones for Education

    Science.gov (United States)

    Roberson, James H.; Hagevik, Rita A.

    2008-01-01

    Cell phones are fast becoming an integral part of students' everyday lives. They are regarded as important companions and tools for personal expression. School-age children are integrating the cell phone as such, and thus placing a high value on them. Educators endeavor to instill in students a high value for education, but often meet with…

  11. Cell manipulation in microfluidics

    International Nuclear Information System (INIS)

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available. (topical review)

  12. Metallization of bacteria cells

    Institute of Scientific and Technical Information of China (English)

    LI; Xiangfeng; (黎向锋); LI; Yaqin; (李雅芹); CAI; Jun; (蔡军); ZHANG; Deyuan; (张德远)

    2003-01-01

    Bacteria cells with different standard shapes are well suited for use as templates for the fabrication of magnetic and electrically conductive microstructures. In this paper, metallization of bacteria cells is demonstrated by an electroless deposition technique of nickel-phosphorus initiated by colloid palladium-tin catalyst on the surfaces of Citeromyces matritensis and Bacillus cereus. The activated and metallized bacteria cells have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). Results showed that both Citeromyces matritensis and Bacillus cereus had no deformation in shape after metallization; the metallized films deposited on the surfaces of bacteria cells are homogeneous in thickness and noncrystalline in phase structure. The kinetics of colloid palladium-tin solution and electroless plating on bacteria cells is discussed.

  13. PEM regenerative fuel cells

    Science.gov (United States)

    Swette, Larry L.; Laconti, Anthony B.; McCatty, Stephen A.

    1993-11-01

    This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 sq cm electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80 C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt, Ir, Ru, Rh, and Na(x)Pt3O4 catalysts as well as for electrode structure variations.

  14. Nanoelectrochemistry of mammalian cells.

    Science.gov (United States)

    Sun, Peng; Laforge, François O; Abeyweera, Thushara P; Rotenberg, Susan A; Carpino, James; Mirkin, Michael V

    2008-01-15

    There is a significant current interest in development of new techniques for direct characterization of the intracellular redox state and high-resolution imaging of living cells. We used nanometer-sized amperometric probes in combination with the scanning electrochemical microscope (SECM) to carry out spatially resolved electrochemical experiments in cultured human breast cells. With the tip radius approximately 1,000 times smaller than that of a cell, an electrochemical probe can penetrate a cell and travel inside it without apparent damage to the membrane. The data demonstrate the possibility of measuring the rate of transmembrane charge transport and membrane potential and probing redox properties at the subcellular level. The same experimental setup was used for nanoscale electrochemical imaging of the cell surface. PMID:18178616

  15. Digital Microfluidic Cell Culture.

    Science.gov (United States)

    Ng, Alphonsus H C; Li, Bingyu Betty; Chamberlain, M Dean; Wheeler, Aaron R

    2015-01-01

    Digital microfluidics (DMF) is a droplet-based liquid-handling technology that has recently become popular for cell culture and analysis. In DMF, picoliter- to microliter-sized droplets are manipulated on a planar surface using electric fields, thus enabling software-reconfigurable operations on individual droplets, such as move, merge, split, and dispense from reservoirs. Using this technique, multistep cell-based processes can be carried out using simple and compact instrumentation, making DMF an attractive platform for eventual integration into routine biology workflows. In this review, we summarize the state-of-the-art in DMF cell culture, and describe design considerations, types of DMF cell culture, and cell-based applications of DMF. PMID:26643019

  16. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  17. Fuel cells : emerging markets

    International Nuclear Information System (INIS)

    This presentation highlighted the findings of the 2009 review of the fuel cell industry and emerging markets as they appeared in Fuel Cell Today (FCT), a benchmark document on global fuel cell activity. Since 2008, the industry has seen a 50 per cent increase in fuel cell systems shipped, from 12,000 units to 18,000 units. Applications have increased for backup power for datacentres, telecoms and light duty vehicles. The 2009 review focused on emerging markets which include non-traditional regions that may experience considerable diffusion of fuel cells within the next 5 year forecast period. The 2009 review included an analysis on the United Arab Emirates, Mexico, Brazil and India and reviewed primary drivers, likely applications for near-term adoption, and government and private sector activity in these regions. The presentation provided a forecast of the global state of the industry in terms of shipments as well as a forecast of countries with emerging markets

  18. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    As part of the process to create a fossil free Denmark by 2050, there is a need for the development of new energy technologies with higher efficiencies than the current technologies. Fuel cells, that can generate electricity at higher efficiencies than conventional combustion engines, can...... potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor....... This type of fuel cell operates at higher temperature than comparable fuel cell types and they distinguish themselves by high CO tolerance. Platinum based catalysts have their efficiency reduced by CO and the effect is more pronounced at low temperature. This Ph.D. Thesis investigates this type of fuel...

  19. Phalange Tactile Load Cell

    Science.gov (United States)

    Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert (Inventor); Griffith, Bryan Kristian (Inventor)

    2010-01-01

    A tactile load cell that has particular application for measuring the load on a phalange in a dexterous robot system. The load cell includes a flexible strain element having first and second end portions that can be used to mount the load cell to the phalange and a center portion that can be used to mount a suitable contact surface to the load cell. The strain element also includes a first S-shaped member including at least three sections connected to the first end portion and the center portion and a second S-shaped member including at least three sections coupled to the second end portion and the center portion. The load cell also includes eight strain gauge pairs where each strain gauge pair is mounted to opposing surfaces of one of the sections of the S-shaped members where the strain gauge pairs provide strain measurements in six-degrees of freedom.

  20. Cell Control Engineering

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1996-01-01

    The engineering process of creating cell control systems is described, and a Cell Control Engineering (CCE) concept is defined. The purpose is to assist people, representing different disciplines in the organisation, to implement cell controllers by addressing the complexity of having many systems...... in physically and logically different and changing manufacturing environments. The defined CCE concept combines state-of-the-art of commercially available enabling technologies for automation system software development, generic cell control models and guidelines for the complete engineering process....... It facilitates the understanding of the task and structure of cell controllers and uses this knowledge directly in the implementation of the system. By applying generic models CCE facilitates reuse of software components and maintenance of applications. In many enterprises, software makes up an...

  1. Cell fusions in mammals

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge; Bjerregaard, Bolette; Talts, Jan Fredrik

    2008-01-01

    Cell fusions are important to fertilization, placentation, development of skeletal muscle and bone, calcium homeostasis and the immune defense system. Additionally, cell fusions participate in tissue repair and may be important to cancer development and progression. A large number of factors appear...... to regulate cell fusions, including receptors and ligands, membrane domain organizing proteins, proteases, signaling molecules and fusogenic proteins forming alpha-helical bundles that bring membranes close together. The syncytin family of proteins represent true fusogens and the founding member......, syncytin-1, has been documented to be involved in fusions between placental trophoblasts, between cancer cells and between cancer cells and host ells. We review the literature with emphasis on the syncytin family and propose that syncytins may represent universal fusogens in primates and rodents, which...

  2. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  3. Advances in stem cell research

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@In 1998, biologists Thomson and Gearhart successfully derived stem cells from human embryos. One year later, several researchers discovered that adult stem cells still retain the ability to be differentiated into unrelated types of cells. Advances in stem cell research open a promising direction for applied medical science. Moreover, it may also force scientists to reconsider the fundamental theory about how cells grow up. Stem cell research was considered by Science as the top of the ten breakthroughs of science of the year[1]. This paper gives a survey of recent advances in stem cell research. 1 Overview In the 1980s, embryonic stem cell and/or embryonic germ cell line (ES cell line, EG cell line) of multifarious mammalian animals, especially those of non-human pri-mates, had been established. In 1998, Thomson and Shamblott obtained ES, EG cell lines from human blasto-cysts and gonad ridges of early human embryos, respec-tively. Their research brought up an ethical debate about whether human embryos can be used as experimental materials. It was not appeased until 1999 when research-ers discovered that stem cells from adults still retain the ability to become different kinds of tissue cells. For in-stance, brain cells can become blood cells[2], and cells from bone marrow can become cells in liver. Scientists believe, for a long time, that cells can only be developed from early pluripotent embryo cells; the differentiation potential of stem cells from mature tissues is restricted to only one of the cell types of the tissue where stem cells are obtained. Recent stem cell researches, however, sub-verted the traditional view of stem cells. These discoveries made scientists speed ahead with the work on adult stem cells, hoping to discover whether their promise will rival that of ES cells.

  4. Langerhans' cells, veiled cells, and interdigitating cells in the mouse recognized by a monoclonal antibody

    OpenAIRE

    1986-01-01

    An mAb, NLDC-145, is described that specifically reacts with a group of nonlymphoid dendritic cells including Langerhans cells (LC), veiled cells (VC), and interdigitating cells (IDC). The antibody does not react with precursor cells in bone marrow and blood. Macrophages are not stained by the antibody, but a subpopulation of Ia+ peritoneal exudate cells is recognized. Possible relationships of the various nonlymphoid dendritic cell (NLDC) types are discussed.

  5. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    OpenAIRE

    Stefania Bruno; Cristina Grange; Marta Tapparo; Chiara Pasquino; Renato Romagnoli; Ennia Dametto; Antonio Amoroso; Ciro Tetta; Giovanni Camussi

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell co...

  6. From Adult Bone Marrow Cells to Other Cell Lineages:Transdifferentiation or Cells Fusion

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Recent studies have demonstrated that intravenous transplantation or local injection of bone marrow cells can induce unexpected changes of their fate. The results of these experiments showed that after transplantation or injecton, some of tissue specific somatic cells such as hepatocytes, skeleton, cardiac muscle cells and brain cells expressed the donor cell-specific genes, such as Y chromosome. There are two hypotheses that can explain this phenomenon. One is bone marrow stem cell transdifferentiation and the other is spontaneous cell fusion.

  7. Cell-to-Cell Transmission Can Overcome Multiple Donor and Target Cell Barriers Imposed on Cell-Free HIV

    OpenAIRE

    Zhong, Peng; Agosto, Luis M.; Ilinskaya, Anna; Dorjbal, Batsukh; Truong, Rosaline; Derse, David; Uchil, Pradeep D; Heidecker, Gisela; Mothes, Walther

    2013-01-01

    Virus transmission can occur either by a cell-free mode through the extracellular space or by cell-to-cell transmission involving direct cell-to-cell contact. The factors that determine whether a virus spreads by either pathway are poorly understood. Here, we assessed the relative contribution of cell-free and cell-to-cell transmission to the spreading of the human immunodeficiency virus (HIV). We demonstrate that HIV can spread by a cell-free pathway if all the steps of the viral replication...

  8. Synthesis and Cytotoxicity of Chalcones and 5-Deoxyflavonoids

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2013-01-01

    Full Text Available Chalcones 1~8 and 5-deoxyflavonoids 9~22 were synthesized in good yields by aldol condensation, Algar-Flynn-Oyamada reaction, glycosidation, and deacetylation reaction, respectively, starting from 2-acetyl phenols substituted by methoxy or methoxymethoxy group and appropriately benzaldehydes substituted by methoxy, methoxymethoxy group, or chlorine. Among them, 13 and 17~22 are new compounds. The cytotoxicity bioassays of these chalcones and 5-deoxyflavonoids were screened using the sulforhodamine B (SRB protein staining method, and the results showed that compounds 2, 4, 5, 6, 10, 15, and 19 exhibited moderate cytotoxicity against the cancer cell line of MDA-MB-231, U251, BGC-823, and B16 in comparison with control drugs (HCPT, Vincristine, and Taxol.

  9. Many facets of stem cells

    Institute of Scientific and Technical Information of China (English)

    Jiarui Wu

    2011-01-01

    @@ Research area on stem cells is one of frontiers in biology.The collection of five research articles in this issue aims to cover timely developments in stem cell biology, ranging from generating and identifying stem cell line to manipulating stem cells, and from basic mechanism analysis to applied medical potential.These papers reflect the various research tasks in stem cell biology.

  10. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  11. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...... are currently available for isolation of the mesenchymal stem cells based on their physical and immunological characteristics. Because of the ease of their isolation and their extensive differentiation potential, mesenchymal stem cells are among the first stem cell types to be introduced in the clinic. Recent...... studies have demonstrated that the life span of mesenchymal stem cells in vitro can be extended by increasing the levels of telomerase expression in the cells and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells...

  12. Immunology of Stem Cells and Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Yang

    2007-01-01

    The capacity of pluri-potent stem cells to repair the tissues in which stem cells reside holds great promise in development of novel cell replacement therapeutics for treating chronic and degenerative diseases. However,numerous reports show that stem cell therapy, even in an autologous setting, triggers lymphocyte infiltration and inflammation. Therefore, an important question to be answered is how the host immune system responds to engrafted autologous stem cells or allogeneous stem cells. In this brief review, we summarize the progress in several related areas in this field, including some of our data, in four sections: (1) immunogenicity of stem cells; (2)strategies to inhibit immune rejection to allograft stem cells; (3) immune responses to cancer stem cells; and (4)mesenchymal stem cells in immune regulation. Improvement of our understanding on these and other aspects of immune system-stem cell interplay would greatly facilitate the development of stem cell-based therapeutics for regenerative purposes.

  13. Dedifferentiation of committed epithelial cells into stem cells in vivo

    OpenAIRE

    Tata, Purushothama Rao; Mou, Hongmei; Pardo-Saganta, Ana; Zhao, Rui; Prabhu, Mythili; Law, Brandon M.; Vinarsky, Vladimir; Josalyn L Cho; Breton, Sylvie; Sahay, Amar; Medoff, Benjamin D.; Rajagopal, Jayaraj

    2013-01-01

    Summary Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes, and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. We now present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. Following the ablation of airway stem cells, we observed a surprising increase in the proliferation of c...

  14. Dedifferentiation of committed epithelial cells into stem cells in vivo

    OpenAIRE

    Tata, Purushothama Rao; Mou, Hongmei; Pardo-Saganta, Ana; Zhao, Rui; Prabhu, Mythili; Law, Brandon M.; Vinarsky, Vladimir; Josalyn L Cho; Breton, Sylvie; Sahay, Amar; Medoff, Benjamin D.; Rajagopal, Jayaraj

    2014-01-01

    Summary Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes, and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. We now present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. Following the ablation of airway stem cells, we observed a surprising increase in the proliferation of c...

  15. Clear Cell Basal Cell Carcinoma with Sialomucin Deposition

    OpenAIRE

    Kim, Do Young; Cho, Sung Bin; Chung, Kee Yang; Kim, You Chan

    2006-01-01

    Clear cell basal cell carcinoma (BCC) is a variant of BCC with a characteristic clear cell component that may occupy all or part of the tumor islands. Periodic acid-Schiff (PAS) staining for glycogen is variably positive, and mild deposition of sulfated mucin has been noted. However, to our knowledge, clear cell BCC with sialomucin deposition has not been reported. Here we report a case of clear cell BCC showing sialomucin deposition. The clear tumor cells stained with PAS and showed incomple...

  16. Differentiation of human embryonic stem cells into insulin- secreting cells

    OpenAIRE

    S Mollamohammadi; Massumi, M.; H Jafary; Baharvand, H.

    2006-01-01

    Introduction: Type I diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. A new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. Methods: Human embryonic stem cell lines (Royan H1) were used to produce embryoid bodies. Differentiation carried out by growth factor-mediated selection of nestin positive cells. In final stage, these cells were expanded in the presence of bFGF, ...

  17. Defective alloantigen-presenting capacity of 'Langerhans cell histiocytosis cells'.

    OpenAIRE

    Yu, R C; Morris, J F; Pritchard, J.; Chu, T C

    1992-01-01

    The functional activity of skin cells derived from an infant who died of multisystem Langerhans cell histiocytosis (LCH) was examined. Involved and non-involved skin was obtained at postmortem examination within three hours of death; normal epidermal Langerhans cells and 'LCH cells' were separated by means of dispase digestion. The functional activity of different populations of CD1a positive cells was assessed using the conventional six day allogeneic mixed cell reaction. Compared with Lange...

  18. Cell Shape and Cell Division in Fission Yeast Minireview

    OpenAIRE

    Piel, Matthieu; Tran, Phong T.

    2009-01-01

    The fission yeast Schizosaccharomyces pombe has served as an important model organism for investigating cellular morphogenesis. This unicellular rod-shaped fission yeast grows by tip extension and divides by medial fission. In particular, microtubules appear to define sites of polarized cell growth by delivering cell polarity factors to the cell tips. Microtubules also position the cell nucleus at the cell middle, marking sites of cell division. Here, we review the microtubule-dependent mecha...

  19. ADAM17调控Hippo信号转导通路对人脑胶质瘤细胞增殖和迁移的影响%Effects of ADAM17 on Proliferation and Migration of Human Glioma Cells through Hippo Signaling Pathway

    Institute of Scientific and Technical Information of China (English)

    张春利; 韩秀; 熊二梦; 彭琬昕; 杜凤仪; 周海浪; 龚爱华

    2016-01-01

    为探讨去整合素-金属蛋白酶17(disintegrin and metalloproteinase 17,ADAM17)对人胶质瘤细胞增殖和迁移的影响及其调控机制,该研究用ADAM17 shRNA质粒转染ADAM17高表达的胶质瘤细胞U87MG、 U251MG,用过表达ADAM17载体转染ADAM17低表达细胞SW1783,q-PCR和Western blot检测ADAM17表达水平的变化,同时检测ADAM17和Hippo信号通路中相关蛋白质表达水平,CCK-8法分析细胞增殖能力并绘制生长曲线,划痕实验检测细胞迁移率.结果表明,下调ADAM17后,U87MG、U251MG细胞增殖和迁移能力减弱,而Hippo信号通路中MST2、p-MOBl、p-YAP蛋白表达水平升高;上调ADAM17后,SW1783细胞增殖和迁移能力增强,而MST2、p-MOB1、p-YAP蛋白表达水平降低.结果说明,ADAM17在脑胶质瘤细胞的增殖和迁移中发挥了重要作用,这可能是通过抑制Hippo信号通路来实现的,MST2被抑制,p-MOB1水平降低,从而YAP的磷酸化水平也降低,促进了胶质瘤细胞的增殖和迁移.

  20. A novel cell subset: Interferon-producing killer dendritic cells

    Institute of Scientific and Technical Information of China (English)

    WANG JiongKun; XING FeiYue

    2008-01-01

    Recent reports introduce a novel cell subset of DCs with antigenic phenotypes shared by both NK cells and B cells, but without surface markers of pDCs and T cells, appearing to be a chimera of NK cells and DCs, namely interferon-producing killer dendritic cells (IKDCs). IKDCs not only secret type Ⅰ and type Ⅱ interferons to recognize and kill tumor cells effectively, but also express MHC-Ⅱ molecules to present antigens. Thus, IKDCs are considered as important immunosurveilance cells for tumors, providing a link between innate and adaptive immunity.

  1. A novel cell subset:Interferon-producing killer dendritic cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent reports introduce a novel cell subset of DCs with antigenic phenotypes shared by both NK cells and B cells, but without surface markers of pDCs and T cells, appearing to be a chimera of NK cells and DCs, namely interferon-producing killer dendritic cells(IKDCs).IKDCs not only secret type I and type II interferons to recognize and kill tumor cells effectively, but also express MHC-II molecules to present antigens.Thus, IKDCs are considered as important immunosurveilance cells for tumors, providing a link between innate and adaptive immunity.

  2. Plant Cell Lines in Cell Morphogenesis Research

    Czech Academy of Sciences Publication Activity Database

    Seifertová, Daniela; Klíma, Petr; Pařezová, Markéta; Petrášek, Jan; Zažímalová, Eva; Opatrný, Z.

    Vol. 1080. New York: Humana Press, 2014 - (Žárský, V.; Cvrčková, F.), s. 215-229. (Methods in Molecular Biology). ISBN 978-1-62703-643-6 R&D Projects: GA ČR(CZ) GAP305/11/0797; GA ČR(CZ) GAP305/11/2476 Institutional support: RVO:61389030 Keywords : BY-2 * VBI-0 * Suspension-cultured cells Subject RIV: EB - Genetics ; Molecular Biology

  3. Plasma cell leukemia

    DEFF Research Database (Denmark)

    Fernández de Larrea, C; Kyle, R A; Durie, B G M;

    2013-01-01

    -pathological entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10(9)/l) of plasma cells in the peripheral blood. It is proposed that the thresholds for......Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic...

  4. Stem Cells and Cancer

    International Nuclear Information System (INIS)

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  5. Fuel cells; Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, K. Andreas [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Technische Thermodynamik

    2012-07-01

    In Germany, the fuel cell technology is characterized by projects and demonstration activities within the National Innovation Programme. Above all, the field tests for fuel cell vehicles under the Clean Energy Partnership, and the field tests for domestic power systems within the project Callux stand out in public. The subsidized market launch of home energy systems in Japan received a great encouragement. Technologically further progresses in the field of reliability and durability were achieved. This is confirmed by the successful and highly publicized trip of three B-Class F-Cell vehicles around the world. In the next few years, the hydrogen infrastructure increasingly becomes important.

  6. Limbal Stem Cell Therapy

    OpenAIRE

    Kringlegarden, Hilde Grane

    2013-01-01

    It is widely accepted today that stem cells in the adult corneal epithelium is located to the limbus. No specific marker of limbal epithelial cells (LESCs) has been identified, yet many have been suggested, including ΔNp63α, ABCG2, vimentin and notch 1. Negative markers include amongst others the differentiation markers Ck3 and Ck12. The lack of an identified specific marker elucidates the need for establishment of more exact molecular markers of LESCs. Limbal stem cell deficiency (LSCD) may ...

  7. Fuel cell systems

    International Nuclear Information System (INIS)

    Fuel cell systems are an entirely different approach to the production of electricity than traditional technologies. They are similar to the batteries in that both produce direct current through electrochemical process. There are six types of fuel cells each with a different type of electrolyte, but they all share certain important characteristics: high electrical efficiency, low environmental impact and fuel flexibility. Fuel cells serve a variety of applications: stationary power plants, transport vehicles and portable power. That is why world wide efforts are addressed to improvement of this technology. (Original)

  8. Materials for fuel cells

    Directory of Open Access Journals (Sweden)

    Sossina M Haile

    2003-03-01

    Full Text Available Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cells are attractive for their modular and distributed nature, and zero noise pollution. They will also play an essential role in any future hydrogen fuel economy.

  9. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  10. Cell-Assisted Lipotransfer

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Quaade, Marlene Louise; Sørensen, Jens Ahm

    2016-01-01

    -derived stromal cells (ASCs) to enrich the fat graft, a procedure termed cell-assisted lipotransfer (CAL). The aim of this review was to systematically review the current preclinical and clinical evidence for the efficacy of CAL compared with conventional lipotransfer. MATERIALS AND METHODS: A systematic search....... CONCLUSIONS: The present evidence suggests that there is a big potential for CAL in reconstructive surgery; however, the present studies are so far still of low quality with inherent weaknesses. Several aspects regarding CAL still remain unknown such as the optimal degree of cell enrichment and also its...

  11. Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division.

    NARCIS (Netherlands)

    Giebel, B.; Zhang, T.; Beckmann, J.; Spanholtz, J.; Wernet, P.; Ho, A.; Punzel, M.

    2006-01-01

    It is often predicted that stem cells divide asymmetrically, creating a daughter cell that maintains the stem-cell capacity, and 1 daughter cell committed to differentiation. While asymmetric stem-cell divisions have been proven to occur in model organisms (eg, in Drosophila), it remains illusive wh

  12. Stem Cell Transplants (For Teens)

    Science.gov (United States)

    ... Can I Help a Friend Who Cuts? Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants Print ... it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  13. Fuel cells: Problems and prospects

    OpenAIRE

    Shukla, AK; Ramesh, KV; Kannan, AM

    1986-01-01

    n recent years, fuel cell technology has advanced significantly. Field trials on certain types of fuel cells have shown promise for electrical use. This article reviews the electrochemistry, problems and prospects of fuel cell systems.

  14. Donating Peripheral Blood Stem Cells

    Science.gov (United States)

    ... this page Print this page Donating peripheral blood stem cells Peripheral blood stem cell (PBSC) donation is a nonsurgical procedure to collect ... Donating bone marrow Donor experiences videos Peripheral blood stem cell (PBSC) donation is one of two methods of ...

  15. Learning about Sickle Cell Disease

    Science.gov (United States)

    ... genetic terms used on this page Learning About Sickle Cell Disease What do we know about heredity and ... Information What do we know about heredity and sickle cell disease? Sickle cell disease is the most common ...

  16. {sup 18}F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiaoyuan; Park, Ryan; Shahinian, Anthony H.; Tohme, Michel; Khankaldyyan, Vazgen; Bozorgzadeh, Mohammed H.; Bading, James R.; Moats, Rex; Laug, Walter E.; Conti, Peter S. E-mail: pconti@usc.edu

    2004-02-01

    Brain tumors are highly angiogenesis dependent. The cell adhesion receptor integrin {alpha}{sub v}{beta}{sub 3} is overexpressed in glioma and activated endothelial cells and plays an important role in brain tumor growth, spread and angiogenesis. Suitably labeled {alpha}{sub v}{beta}{sub 3}-integrin antagonists may therefore be useful for imaging brain tumor associated angiogenesis. Cyclic RGD peptide c(RGDyK) was labeled with {sup 18}F via N-succinimidyl-4-[{sup 18}F]fluorobenzoate through the side-chain {epsilon}-amino group of the lysine residue. The radiotracer was evaluated in vivo for its tumor targeting efficacy and pharmacokinetics in subcutaneously implanted U87MG and orthotopically implanted U251T glioblastoma nude mouse models by means of microPET, quantitative autoradiography and direct tissue sampling. The N-4-[{sup 18}F]fluorobenzoyl-RGD ([{sup 18}F]FB-RGD) was produced in less than 2 h with 20-25% decay-corrected yields and specific activity of 230 GBq/{mu}mol at end of synthesis. The tracer showed very rapid blood clearance and both hepatobiliary and renal excretion. Tumor-to-muscle uptake ratio at 30 min was approximately 5 in the subcutaneous U87MG tumor model. MicroPET imaging with the orthotopic U251T brain tumor model revealed very high tumor-to-brain ratio, with virtually no uptake in the normal brain. Successful blocking of tumor uptake of [{sup 18}F]FB-RGD in the presence of excess amount of c(RGDyK) revealed receptor specific activity accumulation. Hence, N-4-[{sup 18}F]fluorobenzoyl labeled cyclic RGD peptide [{sup 18}F]FB-RGD is a potential tracer for imaging {alpha}{sub v}{beta}{sub 3}-integrin positive tumors in brain and other anatomic locations.

  17. Rejuvenation of automotive fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Langlois, David A.

    2016-08-23

    A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.

  18. Kinetics of adrenal medullary cells.

    OpenAIRE

    Verhofstad, A A

    1993-01-01

    The adrenal medulla of mammals has a heterogeneous population of cells. In adults most are epithelial cells containing a particular type of cytoplasmic granule. Based on a variety of cytochemical and ultrastructural studies it is now accepted that 2 different adrenal medullary chromaffin cell types can be distinguished, i.e. noradrenaline (NA) and adrenaline (A) synthesising and storing cells. Other cell types present in the adrenal medulla include neuronal elements comprising either cell bod...

  19. Pancreatic Stem Cells Remain Unresolved

    OpenAIRE

    Jiang, Fang-Xu; Morahan, Grant

    2014-01-01

    Diabetes mellitus is caused by absolute (type 1) or relative (type 2) deficiency of insulin-secreting islet β cells. An ideal treatment of diabetes would, therefore, be to replace the lost or deficient β cells, by transplantation of donated islets or differentiated endocrine cells or by regeneration of endogenous islet cells. Due to their ability of unlimited proliferation and differentiation into all functional lineages in our body, including β cells, embryonic stem cells and induced pluripo...

  20. Mycoplasmas detection in cells cultures

    OpenAIRE

    Rivera-Tapia José Antonio; Castillo-Viveros Linda Valeria; Sánchez-Hernández José Antonio

    2010-01-01

    INTRODUCTION. Cells cultures are widely used in both biomedical and biotechnological research centers and industry, as well as for diagnostic test in hospitals. Contaminations of cells cultures with microbial organisms as well as with virus or other eukaryotic cell lines are a major problem in cell culture related research.OBJECTIVE. Mycoplasmas detection in cells cultures came from biomedical laboratories.MATERIAL AND METHODS. The cells cultures screened for mycoplasmas by using of microbiol...

  1. Mast cells in bacterial infections

    OpenAIRE

    Rönnberg, Elin

    2014-01-01

    Mast cells are implicated in immunity towards bacterial infection, but the molecular mechanisms by which mast cells contribute to the host response are only partially understood. Previous studies have examined how mast cells react to purified bacterial cell wall components, such as peptidoglycan and lipopolysaccharide. To investigate how mast cells react to live bacteria we co-cultured mast cells and the gram-positive bacteria Streptococcus equi (S. equi) and Staphylococcus aureus (S. aureus)...

  2. FUEL CELLS IN ENERGY PRODUCTION

    OpenAIRE

    Huang, Xiaoyu

    2011-01-01

    The purpose of this thesis is to study fuel cells. They convert chemical energy directly into electrical energy with high efficiency and low emmission of pollutants. This thesis provides an overview of fuel cell technology.The basic working principle of fuel cells and the basic fuel cell system components are introduced in this thesis. The properties, advantages, disadvantages and applications of six different kinds of fuel cells are introduced. Then the efficiency of each fuel cell is p...

  3. Mice cloned from skin cells

    OpenAIRE

    Li, Jinsong; Greco, Valentina; Guasch, Géraldine; Fuchs, Elaine; Mombaerts, Peter

    2007-01-01

    Adult stem cells represent unique populations of undifferentiated cells with self-renewal capacity. In many tissues, stem cells divide less often than their progeny. It has been widely speculated, but largely untested, that their undifferentiated and quiescent state may make stem cells more efficient as donors for cloning by nuclear transfer (NT). Here, we report the use of nuclei from hair follicle stem cells and other skin keratinocytes as NT donors. When keratinocyte stem cells (KSCs) were...

  4. Concise Review: Asymmetric Cell Divisions in Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Florian Murke

    2015-11-01

    Full Text Available Somatic stem cells are rare cells with unique properties residing in many organs and tissues. They are undifferentiated cells responsible for tissue regeneration and homeostasis, and contain both the capacity to self-renew in order to maintain their stem cell potential and to differentiate towards tissue-specific, specialized cells. However, the knowledge about the mechanisms controlling somatic stem cell fate decisions remains sparse. One mechanism which has been described to control daughter cell fates in selected somatic stem cell systems is the process of asymmetric cell division (ACD. ACD is a tightly regulated and evolutionary conserved process allowing a single stem or progenitor cell to produce two differently specified daughter cells. In this concise review, we will summarize and discuss current concepts about the process of ACD as well as different ACD modes. Finally, we will recapitulate the current knowledge and our recent findings about ACD in human hematopoiesis.

  5. DNA repair in murine embryonic stem cells and differentiated cells

    International Nuclear Information System (INIS)

    Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells

  6. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  7. Acoustics Noise Test Cell

    Data.gov (United States)

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  8. Merkel Cell Carcinoma

    Science.gov (United States)

    ... of the Year Award Arnold P. Gold Foundation Humanism in Medicine Award Diversity Mentorship Program Eugene Van ... 300 PUVA treatments. What causes Merkel cell carcinoma? Scientists are still studying what causes this skin cancer. ...

  9. RSW Cell Centered Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — New cell centered grids are generated to complement the node-centered ones uploaded. Six tarballs containing the coarse, medium, and fine mixed-element and pure...

  10. CAM and NK Cells

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Takeda

    2004-01-01

    Full Text Available It is believed that tumor development, outgrowth and metastasis are under the surveillance of the immune system. Although both innate and acquired immune systems play roles, innate immunity is the spearhead against tumors. Recent studies have revealed the critical role of natural killer (NK cells in immune surveillance and that NK cell activity is considerably influenced by various agents, such as environmental factors, stress, foods and drugs. Some of these NK cell stimulants have been used in complementary and alternative medicine (CAM since ancient times. Therefore, the value of CAM should be re-evaluated from this point of view. In this review, we overview the intimate correlation between NK cell functions and CAM agents, and discuss possible underlying mechanisms mediating this. In particular, neuro-immune crosstalk and receptors for CAM agents are the most important and interesting candidates for such mechanisms.

  11. Sickle cell test

    Science.gov (United States)

    Sickledex; Hgb S test ... This test is done to tell if a person has abnormal hemoglobin that causes sickle cell disease and sickle ... and no symptoms, or only mild ones. This test does not tell the difference between these two ...

  12. Renal Medullary Interstitial Cells

    Science.gov (United States)

    Rao, Reena; Hao, Chuan-Ming; Breyer, Matthew D.

    2007-04-01

    Renal medullary interstitial cells (RMICs) are specialized fibroblast-like cells that reside in the renal medulla among the vasa recta, the thin limbs of Henle's loop, and medullary collecting ducts. These cells are characterized by abundant lipid droplets in the cytoplasm. The lipid droplets are composed of triglycerides, cholesterol esters and free long-chain fatty acids, including arachidonic acid. RMICs are also a major site of cyclooxygenase2 (COX-2) expression, and thus a major site of COX-2 derived prostanoid biosynthesis. RMICs are also a potential target of hormones such as angiotensin II and endothelin. The RMIC COX-2 expression and the abundance of lipid droplets change with salt and water intake. These properties of RMICs are consistent with an important role of these cells in modulating physiologic and pathologic processes of the kidney.

  13. Langerhans cell histiocytosis

    OpenAIRE

    Xiao-ling YAN

    2014-01-01

    A case report and literature review. We present a boy with a multisystemic presentation of Langerhans cell histiocytosis and severe pulmonary lesion.Skin lesion helped to suspect and confirm diagnosis by scalpbiopsy. Chemotherapy was important for favorable result.

  14. [Pulmonary Langerhans cell histiocytosis].

    Science.gov (United States)

    Popper, H H

    2015-09-01

    Pulmonary Langerhans cell histiocytosis is regarded as a reactive proliferation of the dendritic Langerhans cell population stimulated by chronic tobacco-derived plant proteins due to incomplete combustion but can also occur in childhood as a tumor-like systemic disease. Currently, both these forms cannot be morphologically distinguished. In the lungs a nodular proliferation of Langerhans cells occurs in the bronchial mucosa and also peripherally in the alveolar septa with an accompanying infiltration by eosinophilic granulocytes and destruction of the bronchial wall. Langerhans cells can be selectively detected with antibodies against CD1a and langerin. In the reactive isolated pulmonary form, abstinence from tobacco smoking in most patients leads to regression of infiltration and improvement of symptoms. In high-resolution computed tomography (HRCT) the small star-like scars can still be detected even after complete cessation of tobacco smoking. PMID:26289803

  15. Hypoxic cell radiosensitizers

    International Nuclear Information System (INIS)

    Hyperbaric oxygen results have demonstrated that there is a problem of hypoxid cells in some types of tumour, and that even small daily fractions with HBO can give improved results. Reasons are given for expecting radiosensitizing drugs to penetrate better than HBO to the hypoxic cells, which exist in tumours exceeding 1 or 2 mm diameter. Preliminary clinical studies have demonstrated significant effects on human tumours of misonidazole and metronidazole. Concentrations of misonidazole have been measured in human tumours which were 40-110% of those in plasma, usually 70-90%. A number of clinical trials are being initiated using misonidazole. Future clinical results of hypoxic cell radiosentizers will clarify further the role of hypoxic cells in causing resistance to radiotherapy. (orig./MG) 891 MG/orig.- 892 RDG

  16. Lipocytes (fat cells) (image)

    Science.gov (United States)

    ... to energy output, there is no expansion of fat cells (lipocytes) to accommodate excess. It is only when more calories are taken in than used that the extra fat is stored in the lipocytes and the person ...

  17. Fibronectin-cell interactions

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, M R; Woods, A

    1990-01-01

    in vivo. Much data suggests that fibronectins may promote extracellular matrix assembly, and cell adhesion to those matrices. However, one outstanding enigma is that fibronectins may, under different circumstances, promote both cell migration and anchorage. An analysis of the interaction of fibroblasts...... with proteolytically derived and purified domains of plasma fibronectin revealed that the type of adhesion and the correlated cytoskeletal organization depended on multiple interactions of fibronectin domains with the cell surface. Human dermal fibroblasts were capable of interacting with the integrin-binding domain...... and both heparin-binding domains of the plasma fibronectin molecule and their interactions determined the type of adhesion. The same principle was seen in a study of the ability of plasma fibronectin to promote basement membrane assembly in an endodermal cell line, PF-HR9. There also, interactions of both...

  18. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The...

  19. Familial germ cell tumor

    Directory of Open Access Journals (Sweden)

    Sanju Cyriac

    2012-01-01

    Full Text Available Familial testicular germ cell tumors are well known in literature. Only few cases are reported where both brother and sister of the same family suffered from germ cell malignancies. We present a family where the proband is a survivor of ovarian dysgerminoma stage IA. Her elder male sibling became acutely ill and was detected to have disseminated testicular malignancy with grossly elevated markers and vegetations in the mitral valve leaflets. Despite all measures he could not be saved. Presence of germ cell malignancies in the siblings of different sex in the same family points toward a genetic susceptibility. Literature review revealed only six similar cases. A discussion regarding the rare occurrence of familial germ cell malignancies with the affected family members may be worthwhile.

  20. Metaphyseal giant cell tumor

    International Nuclear Information System (INIS)

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed. (Author)