WorldWideScience

Sample records for cells trojan exosomes

  1. HIV and mature dendritic cells : Trojan exosomes riding the Trojan horse?

    OpenAIRE

    Nuria Izquierdo-Useros; Mar Naranjo-Gómez; Itziar Erkizia; Maria Carmen Puertas; Francesc E Borràs; Julià Blanco; Javier Martinez-Picado

    2010-01-01

    Exosomes are secreted cellular vesicles that can induce specific CD4(+) T cell responses in vivo when they interact with competent antigen-presenting cells like mature dendritic cells (mDCs). The Trojan exosome hypothesis proposes that retroviruses can take advantage of the cell-encoded intercellular vesicle traffic and exosome exchange pathway, moving between cells in the absence of fusion events in search of adequate target cells. Here, we discuss recent data supporting this hypothesis, whi...

  2. HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse?

    Directory of Open Access Journals (Sweden)

    Nuria Izquierdo-Useros

    2010-03-01

    Full Text Available Exosomes are secreted cellular vesicles that can induce specific CD4(+ T cell responses in vivo when they interact with competent antigen-presenting cells like mature dendritic cells (mDCs. The Trojan exosome hypothesis proposes that retroviruses can take advantage of the cell-encoded intercellular vesicle traffic and exosome exchange pathway, moving between cells in the absence of fusion events in search of adequate target cells. Here, we discuss recent data supporting this hypothesis, which further explains how DCs can capture and internalize retroviruses like HIV-1 in the absence of fusion events, leading to the productive infection of interacting CD4(+ T cells and contributing to viral spread through a mechanism known as trans-infection. We suggest that HIV-1 can exploit an exosome antigen-dissemination pathway intrinsic to mDCs, allowing viral internalization and final trans-infection of CD4(+ T cells. In contrast to previous reports that focus on the ability of immature DCs to capture HIV in the mucosa, this review emphasizes the outstanding role that mature DCs could have promoting trans-infection in the lymph node, underscoring a new potential viral dissemination pathway.

  3. NK cell-released exosomes

    OpenAIRE

    Fais, Stefano

    2013-01-01

    We have recently reported that human natural killer (NK) cells release exosomes that express both NK-cell markers and cytotoxic molecules. Similar results were obtained with circulating exosomes from human healthy donors. Both NK-cell derived and circulating exosomes exerted a full functional activity and killed both tumor and activated immune cells. These findings indicate that NK-cell derived exosomes might constitute a new promising therapeutic tool.

  4. Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions.

    Science.gov (United States)

    Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A; Brown, Elizabeth E; Sanderson, Ralph D

    2016-01-22

    Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression.

  5. Cell to Cell Signalling via Exosomes Through esRNA

    OpenAIRE

    Lotvall, Jan; Valadi, Hadi

    2007-01-01

    Exosomes are small vesicles of endosomal origin that can be released by many different cells to the microenvironment. Exosomes have been shown to participate in the immune system, by mediating antigen presentation. We have recently shown the presence of both mRNA and microRNA in exosomes, specifically in exosomes derived from mast cells. This RNA can be transferred between one mast cell to another, most likely through fusion of the exosome to the recipient cell membrane. The delivered RNA is ...

  6. DMPD: Lipoprotein trafficking in vascular cells. Molecular Trojan horses and cellularsaboteurs. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 9287290 Lipoprotein trafficking in vascular cells. Molecular Trojan horses and cell...ml) Show Lipoprotein trafficking in vascular cells. Molecular Trojan horses and cellularsaboteurs. PubmedID ...9287290 Title Lipoprotein trafficking in vascular cells. Molecular Trojan horses

  7. Induction of myeloid-derived suppressor cells by tumor exosomes

    OpenAIRE

    Xiang, Xiaoyu; Poliakov, Anton; Liu, Cunren; Liu, Yuelong; Deng, Zhong-Bin; wang, Jianhua; Cheng, Ziqiang; Shah, Spandan V.; Wang, Gui-Jun; Zhang, Liming; Grizzle, William E.; Mobley, Jim; Zhang, Huang-Ge

    2009-01-01

    Myeloid-derived suppressor cells (MDSCs) promote tumor progression. The mechanisms of MDSC development during tumor growth remain unknown. Tumor exosomes (T-exosomes) have been implicated to play a role in immune regulation, however the role of exosomes in the induction of MDSCs is unclear. Our previous work demonstrated that exosomes isolated from tumor cells are taken up by bone marrow myeloid cells. Here, we extend those findings showing that exosomes isolated from T-exosomes switch the di...

  8. Delivery of Small Interfering RNAs to Cells via Exosomes.

    Science.gov (United States)

    Wahlgren, Jessica; Statello, Luisa; Skogberg, Gabriel; Telemo, Esbjörn; Valadi, Hadi

    2016-01-01

    Exosomes are small membrane bound vesicles between 30 and 100 nm in diameter of endocytic origin that are secreted into the extracellular environment by many different cell types. Exosomes play a role in intercellular communication by transferring proteins, lipids, and RNAs to recipient cells.Exosomes from human cells could be used as vectors to provide cells with therapeutic RNAs. Here we describe how exogenous small interfering RNAs may successfully be introduced into various kinds of human exosomes using electroporation and subsequently delivered to recipient cells. Methods used to confirm the presence of siRNA inside exosomes and cells are presented, such as flow cytometry, confocal microscopy, and Northern blot.

  9. Exosomes released from breast cancer carcinomas stimulate cell movement.

    Directory of Open Access Journals (Sweden)

    Dinari A Harris

    Full Text Available For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and exosome proteomic profiling on exosomes released from three breast cancer cell lines that model progressive stages of metastasis. Results from these experiments suggest: (1 exosomes promote cell migration and (2 the signal is stronger from exosomes isolated from cells with higher metastatic potentials; (3 exosomes are endocytosed at the same rate regardless of the cell type; (4 exosomes released from cells show differential enrichment of proteins with unique protein signatures of both identity and abundance. We conclude that breast cancer cells of increasing metastatic potential secrete exosomes with distinct protein signatures that proportionally increase cell movement and suggest that released exosomes could play an active role in metastasis.

  10. Exosomes Released from Breast Cancer Carcinomas Stimulate Cell Movement

    OpenAIRE

    Dinari A Harris; Patel, Sajni H.; Gucek, Marjan; Hendrix, An; Westbroek, Wendy; Taraska, Justin W.

    2015-01-01

    For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and e...

  11. Biogenesis and function of T cell-derived exosomes

    Directory of Open Access Journals (Sweden)

    Miguel Angel Alonso

    2016-08-01

    Full Text Available Exosomes are a particular type of extracellular vesicle, characterized by their endosomal origin as intraluminal vesicles present in large endosomes with a multivesicular structure. After these endosomes fuse with the plasma membrane, exosomes are secreted into the extracellular space. The ability of exosomes to carry and selectively deliver bioactive molecules (e.g., lipids, proteins and nucleic acids confers on them the capacity to modulate the activity of receptor cells, even if these cells are located in distant tissues or organs. Since exosomal cargo depends on cell type, a detailed understanding of the mechanisms that regulate the biochemical composition of exosomes is fundamental to a comprehensive view of exosome function. Here, we review the latest advances concerning exosome function and biogenesis in T cells, with particular focus on the mechanism of protein sorting at multivesicular endosomes. Exosomes secreted by specific T-cell subsets can modulate the activity of immune cells, including other T-cell subsets. Ceramide, tetraspanins and MAL have been revealed to be important in exosome biogenesis by T cells. These molecules, therefore, constitute potential molecular targets for artificially modulating exosome production and, hence, the immune response for therapeutic purposes.

  12. Biogenesis and Function of T Cell-Derived Exosomes.

    Science.gov (United States)

    Ventimiglia, Leandro N; Alonso, Miguel A

    2016-01-01

    Exosomes are a particular type of extracellular vesicle, characterized by their endosomal origin as intraluminal vesicles present in large endosomes with a multivesicular structure. After these endosomes fuse with the plasma membrane, exosomes are secreted into the extracellular space. The ability of exosomes to carry and selectively deliver bioactive molecules (e.g., lipids, proteins, and nucleic acids) confers on them the capacity to modulate the activity of receptor cells, even if these cells are located in distant tissues or organs. Since exosomal cargo depends on cell type, a detailed understanding of the mechanisms that regulate the biochemical composition of exosomes is fundamental to a comprehensive view of exosome function. Here, we review the latest advances concerning exosome function and biogenesis in T cells, with particular focus on the mechanism of protein sorting at multivesicular endosomes. Exosomes secreted by specific T-cell subsets can modulate the activity of immune cells, including other T-cell subsets. Ceramide, tetraspanins and MAL have been revealed to be important in exosome biogenesis by T cells. These molecules, therefore, constitute potential molecular targets for artificially modulating exosome production and, hence, the immune response for therapeutic purposes. PMID:27583248

  13. Interaction and uptake of exosomes by ovarian cancer cells

    International Nuclear Information System (INIS)

    Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts. In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, α-L-fucose, α-D-mannose, D-N-acetylglucosamine and the disaccharide β-lactose reduced exosomes uptake to a comparable extent as the control D-glucose. In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific glycoproteins that may constitute exosome markers. This work contributes to

  14. Exosomes and Their Therapeutic Potentials of Stem Cells

    OpenAIRE

    Chao Han; Xuan Sun; Ling Liu; Haiyang Jiang; Yan Shen; Xiaoyun Xu; Jie Li; Guoxin Zhang; Jinsha Huang; Zhicheng Lin; Nian Xiong; Tao Wang

    2015-01-01

    Exosomes, a group of vesicles originating from the multivesicular bodies (MVBs), are released into the extracellular space when MVBs fuse with the plasma membrane. Numerous studies indicate that exosomes play important roles in cell-to-cell communication, and exosomes from specific cell types and conditions display multiple functions such as exerting positive effects on regeneration in many tissues. It is widely accepted that the therapeutic potential of stem cells may be mediated largely by ...

  15. Interaction and uptake of exosomes by ovarian cancer cells

    OpenAIRE

    Altevogt Peter; Keller Sascha; Escrevente Cristina; Costa Júlia

    2011-01-01

    Abstract Background Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. Methods SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated w...

  16. Exosomes and Their Therapeutic Potentials of Stem Cells

    OpenAIRE

    Han, Chao; Sun, Xuan; Liu, Ling; Jiang, Haiyang; Shen, Yan; Xu, Xiaoyun; Li, Jie; Zhang, Guoxin; Huang, Jinsha; Lin, Zhicheng; Xiong, Nian; Tao WANG

    2016-01-01

    Exosomes, a group of vesicles originating from the multivesicular bodies (MVBs), are released into the extracellular space when MVBs fuse with the plasma membrane. Numerous studies indicate that exosomes play important roles in cell-to-cell communication, and exosomes from specific cell types and conditions display multiple functions such as exerting positive effects on regeneration in many tissues. It is widely accepted that the therapeutic potential of stem cells may be mediated largely by ...

  17. Stem cells and exosomes in cardiac repair.

    Science.gov (United States)

    Singla, Dinender K

    2016-04-01

    Cardiac diseases currently lead in the number of deaths per year, giving rise an interest in transplanting embryonic and adult stem cells as a means to improve damaged tissue from conditions such as myocardial infarction and coronary artery disease. After testing these cells as a treatment option in both animal and human models, it is believed that these cells improve the damaged tissue primarily through the release of autocrine and paracrine factors. Major concerns such as teratoma formation, immune response, difficulty harvesting cells, and limited cell proliferation and differentiation, hinder the routine use of these cells as a treatment option in the clinic. The advent of stem cell-derived exosomes circumvent those concerns, while still providing the growth factors, miRNA, and additional cell protective factors that aid in repairing and regenerating the damaged tissue. These exosomes have been found to be anti-apoptotic, anti-fibrotic, pro-angiogenic, as well as enhance cardiac differentiation, all of which are key to repairing damaged tissue. As such, stem cell derived exosomes are considered to be a potential new and novel approach in the treatment of various cardiac diseases. PMID:26848944

  18. Hypoxic enhancement of exosome release by breast cancer cells

    Directory of Open Access Journals (Sweden)

    King Hamish W

    2012-09-01

    Full Text Available Abstract Background Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling. Methods Breast cancer cell lines were cultured under either moderate (1% O2 or severe (0.1% O2 hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of  Results Exposure of three different breast cancer cell lines to moderate (1% O2 and severe (0.1% O2 hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions. Conclusions These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic

  19. Hypoxic enhancement of exosome release by breast cancer cells

    International Nuclear Information System (INIS)

    Exosomes are nanovesicles secreted by tumour cells which have roles in paracrine signalling during tumour progression, including tumour-stromal interactions, activation of proliferative pathways and bestowing immunosuppression. Hypoxia is an important feature of solid tumours which promotes tumour progression, angiogenesis and metastasis, potentially through exosome-mediated signalling. Breast cancer cell lines were cultured under either moderate (1% O2) or severe (0.1% O2) hypoxia. Exosomes were isolated from conditioned media and quantitated by nanoparticle tracking analysis (NTA) and immunoblotting for the exosomal protein CD63 in order to assess the impact of hypoxia on exosome release. Hypoxic exosome fractions were assayed for miR-210 by real-time reverse transcription polymerase chain reaction and normalised to exogenous and endogenous control genes. Statistical significance was determined using the Student T test with a P value of < 0.05 considered significant. Exposure of three different breast cancer cell lines to moderate (1% O2) and severe (0.1% O2) hypoxia resulted in significant increases in the number of exosomes present in the conditioned media as determined by NTA and CD63 immunoblotting. Activation of hypoxic signalling by dimethyloxalylglycine, a hypoxia-inducible factor (HIF) hydroxylase inhibitor, resulted in significant increase in exosome release. Transfection of cells with HIF-1α siRNA prior to hypoxic exposure prevented the enhancement of exosome release by hypoxia. The hypoxically regulated miR-210 was identified to be present at elevated levels in hypoxic exosome fractions. These data provide evidence that hypoxia promotes the release of exosomes by breast cancer cells, and that this hypoxic response may be mediated by HIF-1α. Given an emerging role for tumour cell-derived exosomes in tumour progression, this has significant implications for understanding the hypoxic tumour phenotype, whereby hypoxic cancer cells may release more

  20. Exosome-associated hepatitis C virus in cell cultures and patient plasma

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ziqing [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Zhang, Xiugen [Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Yu, Qigui [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); He, Johnny J., E-mail: johnny.he@unthsc.edu [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2014-12-12

    Highlights: • HCV occurs in both exosome-free and exosome-associated forms. • Exosome-associated HCV is infectious and resistant to neutralizing antibodies. • More exosome-associated HCV than exosome-free HCV is present in patient plasma. - Abstract: Hepatitis C virus (HCV) infects its target cells in the form of cell-free viruses and through cell–cell contact. Here we report that HCV is associated with exosomes. Using highly purified exosomes and transmission electron microscopic imaging, we demonstrated that HCV occurred in both exosome-free and exosome-associated forms. Exosome-associated HCV was infectious and resistant to neutralization by an anti-HCV neutralizing antibody. There were more exosome-associated HCV than exosome-free HCV detected in the plasma of HCV-infected patients. These results suggest exosome-associated HCV as an alternative form for HCV infection and transmission.

  1. Exosome-associated hepatitis C virus in cell cultures and patient plasma

    International Nuclear Information System (INIS)

    Highlights: • HCV occurs in both exosome-free and exosome-associated forms. • Exosome-associated HCV is infectious and resistant to neutralizing antibodies. • More exosome-associated HCV than exosome-free HCV is present in patient plasma. - Abstract: Hepatitis C virus (HCV) infects its target cells in the form of cell-free viruses and through cell–cell contact. Here we report that HCV is associated with exosomes. Using highly purified exosomes and transmission electron microscopic imaging, we demonstrated that HCV occurred in both exosome-free and exosome-associated forms. Exosome-associated HCV was infectious and resistant to neutralization by an anti-HCV neutralizing antibody. There were more exosome-associated HCV than exosome-free HCV detected in the plasma of HCV-infected patients. These results suggest exosome-associated HCV as an alternative form for HCV infection and transmission

  2. Itinerant exosomes: emerging roles in cell and tissue polarity

    OpenAIRE

    Lakkaraju, Aparna; Rodriguez-Boulan, Enrique

    2008-01-01

    Cells use secreted signals (e.g. chemokines and growth factors) and sophisticated vehicles such as argosomes, cytonemes, tunneling nanotubes and exosomes to relay important information to other cells, often over large distances. Exosomes, 30–100-nm intraluminal vesicles of multivesicular bodies (MVB) released upon exocytic fusion of the MVB with the plasma membrane, are increasingly recognized as a novel mode of cell-independent communication. Exosomes have been shown to function in antigen p...

  3. Protein Profile of Exosomes from Trabecular Meshwork Cells

    OpenAIRE

    Stamer, WD; Hoffman, EA; Luther, JM; Hachey, DL; Schey, KL

    2011-01-01

    To better understand the role of exosomes in the trabecular meshwork (TM), the site of intraocular pressure control, the exosome proteome from primary cultures of human TM cell monolayers was analyzed. Exosomes were purified from urine and conditioned media from primary cultures of human TM cell monolayers and subjected to two dimensional HPLC separation and MS/MS analyses using the MudPIT strategy. Spectra were searched against a human protein database using Sequest. Protein profiles were co...

  4. Involvement of Tspan8 in exosome assembly and target cell selection

    OpenAIRE

    Rana, Sanyukta

    2010-01-01

    Exosomes are the most important intercellular communicators. Tetraspanins/their complexes are suggested to be important in exosomal target cell selection. I showed: changes in Tetraspanin8 associations created from internalization persist upto exosomes and, differences in tetraspanin-complexes on exosomes allow for target cell selectivity.Based on the tetraspanin-complex on exosomes, predictions on potential target cells might be possible, allowing tailored exosome generation for drug delivery.

  5. Diagnostic technologies for circulating tumour cells and exosomes

    OpenAIRE

    Shao, Huilin; Chung, Jaehoon; Issadore, David

    2016-01-01

    Circulating tumour cells (CTCs) and exosomes are promising circulating biomarkers. They exist in easily accessible blood and carry large diversity of molecular information. As such, they can be easily and repeatedly obtained for minimally invasive cancer diagnosis and monitoring. Because of their intrinsic differences in counts, size and molecular contents, CTCs and exosomes pose unique sets of technical challenges for clinical translation–CTCs are rare whereas exosomes are small. Novel techn...

  6. Increasing the immune activity of exosomes: the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer* #

    OpenAIRE

    Que, Ri-sheng; Lin, Cheng; Ding, Guo-ping; WU, ZHENG-RONG; Cao, Li-ping

    2016-01-01

    Background: Tumor-derived exosomes were considered to be potential candidates for tumor vaccines because they are abundant in immune-regulating proteins, whereas tumor exosomal miRNAs may induce immune tolerance, thereby having an opposite immune function. Objective: This study was designed to separate exosomal protein and depleted exosomal microRNAs (miRNAs), increasing the immune activity of exosomes for activating dendritic cell/cytokine-induced killer cells (DC/CIKs) against pancreatic ca...

  7. Neural stem cell-derived exosomes mediate viral entry

    Directory of Open Access Journals (Sweden)

    Sims B

    2014-10-01

    Full Text Available Brian Sims,1,2,* Linlin Gu,3,* Alexandre Krendelchtchikov,3 Qiana L Matthews3,4 1Division of Neonatology, Department of Pediatrics, 2Department of Cell, Developmental, and Integrative Biology, 3Division of Infectious Diseases, Department of Medicine, 4Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL, USA *These authors contributed equally to this work Background: Viruses enter host cells through interactions of viral ligands with cellular receptors. Viruses can also enter cells in a receptor-independent fashion. Mechanisms regarding the receptor-independent viral entry into cells have not been fully elucidated. Exosomal trafficking between cells may offer a mechanism by which viruses can enter cells.Methods: To investigate the role of exosomes on cellular viral entry, we employed neural stem cell-derived exosomes and adenovirus type 5 (Ad5 for the proof-of-principle study. Results: Exosomes significantly enhanced Ad5 entry in Coxsackie virus and adenovirus receptor (CAR-deficient cells, in which Ad5 only had very limited entry. The exosomes were shown to contain T-cell immunoglobulin mucin protein 4 (TIM-4, which binds phosphatidylserine. Treatment with anti-TIM-4 antibody significantly blocked the exosome-mediated Ad5 entry.Conclusion: Neural stem cell-derived exosomes mediated significant cellular entry of Ad5 in a receptor-independent fashion. This mediation may be hampered by an antibody specifically targeting TIM-4 on exosomes. This set of results will benefit further elucidation of virus/exosome pathways, which would contribute to reducing natural viral infection by developing therapeutic agents or vaccines. Keywords: neural stem cell-derived exosomes, adenovirus type 5, TIM-4, viral entry, phospholipids

  8. Proteomic analysis of exosomes secreted by human mesothelioma cells

    NARCIS (Netherlands)

    J.P.J.J. Hegmans (Joost); A. Hemmes (Annabrita); T.M. Luider (Theo); M.J. Kleijmeer (Monique); J-B. Prins (Jan-Bas); L. Zitvogel; S.A. Burgers (Sjaak); H.C. Hoogsteden (Henk); B.N.M. Lambrecht (Bart); M.P.L. Bard (Martin)

    2004-01-01

    textabstractExosomes are small membrane vesicles secreted into the extracellular compartment by exocytosis. Tumor exosomes may be involved in the sampling of antigens to antigen presenting cells or as decoys allowing the tumor to escape immune-directed destruction. The proteins pre

  9. Neuronal Differentiation of Human Mesenchymal Stem Cells Using Exosomes Derived from Differentiating Neuronal Cells

    OpenAIRE

    Takeda, Yuji S.; Qiaobing Xu

    2015-01-01

    Exosomes deliver functional proteins and genetic materials to neighboring cells, and have potential applications for tissue regeneration. One possible mechanism of exosome-promoted tissue regeneration is through the delivery of microRNA (miRNA). In this study, we hypothesized that exosomes derived from neuronal progenitor cells contain miRNAs that promote neuronal differentiation. We treated mesenchymal stem cells (MSCs) daily with exosomes derived from PC12 cells, a neuronal cell line, for 1...

  10. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression

    OpenAIRE

    Shi, Si; Zhang, Qicheng; Xia, Yunfei; You, Bo; Shan, Ying; Bao, Lili; Li, Li; You, Yiwen; Gu, Zhifeng

    2016-01-01

    Mesenchymal stem cells (MSCs), which are capable of differentiating into multiple cell types, are reported to exert multiple effects on tumor development. However, the relationship between MSCs and nasopharyngeal carcinoma (NPC) cells remains unclear. Exosomes are small membrane vesicles that can be released by several cell types, including MSCs. Exosomes, which can carry membrane and cytoplasmic constituents, have been described as participants in a novel mechanism of cell-to-cell communicat...

  11. Exosomes: Decreased Sensitivity of Lung Cancer A549 Cells to Cisplatin

    OpenAIRE

    Xia Xiao; Shaorong Yu; Shuchun Li; Jianzhong Wu; Rong Ma; Haixia Cao; Yanliang Zhu; Jifeng Feng

    2014-01-01

    Exosomes are small extracellular membrane vesicles of endocytic origin released by many cells that could be found in most body fluids. The main functions of exosomes are cellular communication and cellular waste clean-up. This study was conducted to determine the involvement of exosomes in the regulation of sensitivity of the lung cancer cell line A549 to cisplatin (DDP). When DDP was added to A549 cells, exosomes secretion was strengthened. Addition of the secreted exosomes to other A549 cel...

  12. Myeloid-derived suppressor cells as a Trojan horse

    OpenAIRE

    Pan, Ping-Ying; Chen, Hui-Ming; Chen, Shu-Hsia

    2013-01-01

    We have recently demonstrated that oncolytic vesicular stomatitis viruses can be efficiently and selectively delivered to neoplastic lesions by myeloid-derived suppressor cells (MDSCs). Importantly, the loading of viruses onto MDSCs inhibited their immunosuppressive properties and endowed them with immunostimulatory and tumoricidal functions. Our study demonstrates the potential use of MDSCs as a Trojan horse for the tumor-targeted delivery of various anticancer therapeutics.

  13. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury

    OpenAIRE

    Yuanyuan Zhao; Xiaoxian Sun; Wenming Cao; Jie Ma; Li Sun; Hui Qian; Wei Zhu; Wenrong Xu

    2015-01-01

    This study is aimed at investigating whether human umbilical cord mesenchymal stem cell- (hucMSC-) derived exosomes (hucMSC-exosomes) have a protective effect on acute myocardial infarction (AMI). Exosomes were characterized under transmission electron microscopy and the particles of exosomes were further examined through nanoparticle tracking analysis. Exosomes (400 μg protein) were intravenously administrated immediately following ligation of the left anterior descending (LAD) coronary arte...

  14. Activated Human T Cells Secrete Exosomes That Participate in IL-2 Mediated Immune Response Signaling

    OpenAIRE

    Wahlgren, Jessica; Tanya De L Karlson; Glader, Pernilla; Telemo, Esbjörn; Valadi, Hadi

    2012-01-01

    It has previously been shown that nano-meter sized vesicles (30–100 nm), exosomes, secreted by antigen presenting cells can induce T cell responses thus showing the potential of exosomes to be used as immunological tools. Additionally, activated CD3+ T cells can secrete exosomes that have the ability to modulate different immunological responses. Here, we investigated what effects exosomes originating from activated CD3+ T cells have on resting CD3+ T cells by studying T cell proliferation, c...

  15. Exosomes and nanotubes: Control of immune cell communication.

    Science.gov (United States)

    McCoy-Simandle, Kessler; Hanna, Samer J; Cox, Dianne

    2016-02-01

    Cell-cell communication is critical to coordinate the activity and behavior of a multicellular organism. The cells of the immune system not only must communicate with similar cells, but also with many other cell types in the body. Therefore, the cells of the immune system have evolved multiple ways to communicate. Exosomes and tunneling nanotubes (TNTs) are two means of communication used by immune cells that contribute to immune functions. Exosomes are small membrane vesicles secreted by most cell types that can mediate intercellular communication and in the immune system they are proposed to play a role in antigen presentation and modulation of gene expression. TNTs are membranous structures that mediate direct cell-cell contact over several cell diameters in length (and possibly longer) and facilitate the interaction and/or the transfer of signals, material and other cellular organelles between connected cells. Recent studies have revealed additional, but sometimes conflicting, structural and functional features of both exosomes and TNTs. Despite the new and exciting information in exosome and TNT composition, origin and in vitro function, biologically significant functions are still being investigated and determined. In this review, we discuss the current field regarding exosomes and TNTs in immune cells providing evaluation and perspectives of the current literature.

  16. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis.

    NARCIS (Netherlands)

    Buschow, S.I.; Balkom, B.W.M. van; Aalberts, M.; Heck, A.J.R. van; Wauben, M.; Stoorvogel, W.

    2010-01-01

    Professional antigen-presenting cells secrete major histocompatibility complex class II (MHC II) carrying exosomes with unclear physiological function(s). Exosomes are first generated as the intraluminal vesicles (ILVs) of a specific type of multivesicular body, and are then secreted by fusion of th

  17. Diagnostic technologies for circulating tumour cells and exosomes.

    Science.gov (United States)

    Shao, Huilin; Chung, Jaehoon; Issadore, David

    2015-11-24

    Circulating tumour cells (CTCs) and exosomes are promising circulating biomarkers. They exist in easily accessible blood and carry large diversity of molecular information. As such, they can be easily and repeatedly obtained for minimally invasive cancer diagnosis and monitoring. Because of their intrinsic differences in counts, size and molecular contents, CTCs and exosomes pose unique sets of technical challenges for clinical translation-CTCs are rare whereas exosomes are small. Novel technologies are underway to overcome these specific challenges to fully harness the clinical potential of these circulating biomarkers. Herein, we will overview the characteristics of CTCs and exosomes as valuable circulating biomarkers and their associated technical challenges for clinical adaptation. Specifically, we will describe emerging technologies that have been developed to address these technical obstacles and the unique clinical opportunities enabled by technological innovations.

  18. Immunomodulatory effects of mesenchymal stromal cells-derived exosome.

    Science.gov (United States)

    Chen, Wancheng; Huang, Yukai; Han, Jiaochan; Yu, Lili; Li, Yanli; Lu, Ziyuan; Li, Hongbo; Liu, Zenghui; Shi, Chenyan; Duan, Fengqi; Xiao, Yang

    2016-08-01

    The mechanisms underlying immunomodulatory ability of mesenchymal stromal cells (MSCs) remain unknown. Recently, studies suggested that the immunomodulatory activity of MSCs is largely mediated by paracrine factors. Among which, exosome is considered to play a major role in the communication between MSCs and target tissue. The aim of our study is to investigate the effect of MSCs-derived exosome on peripheral blood mononuclear cells (PBMCs), especially T cells. We find that the MSCs-derived exosome extracted from healthy donors' bone marrow suppressed the secretion of pro-inflammatory factor TNF-α and IL-1β, but increased the concentration of anti-inflammatory factor TGF-β during in vitro culture. In addition, exosome may induce conversion of T helper type 1 (Th1) into T helper type 2 (Th2) cells and reduced potential of T cells to differentiate into interleukin 17-producing effector T cells (Th17). Moreover, the level of regulatory T cells (Treg) and cytotoxic T lymphocyte-associated protein 4 were also increased. These results suggested that MSC-derived exosome possesses the immunomodulatory properties. However, it showed no effects on the proliferation of PBMCs or CD3+ T cells, but increases the apoptosis of them. In addition, indoleamine 2, 3-dioxygenase (IDO) was previously shown to mediate the immunoregulation of MSCs, which was increased in PBMCs co-cultured with MSCs. In our study, IDO showed no significant changes in PBMCs exposed to MSCs-derived exosome. We conclude that exosome and MSCs might differ in their immune-modulating activities and mechanisms. PMID:27115513

  19. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation.

    Directory of Open Access Journals (Sweden)

    Lisa Mutschelknaus

    Full Text Available Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better

  20. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation.

    Science.gov (United States)

    Mutschelknaus, Lisa; Peters, Carsten; Winkler, Klaudia; Yentrapalli, Ramesh; Heider, Theresa; Atkinson, Michael John; Moertl, Simone

    2016-01-01

    Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells) increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better understanding of tumor

  1. Stromal-cell and cancer-cell exosomes leading the metastatic exodus for the promised niche

    OpenAIRE

    Hoffman, Robert M.

    2013-01-01

    Exosomes are thought to play an important role in metastasis. Luga and colleagues have described the production of exosomes by stromal cells such as cancer-associated fibroblasts that are taken up by breast cancer cells and are then loaded with Wnt 11, which is associated with stimulation of the invasiveness and metastasis of the breast cancer cells. Previous studies have shown that exosomes produced by breast cancer cells are taken up by stromal fibroblasts and other stromal cells, suggestin...

  2. Quantification of plasma exosome is a potential prognostic marker for esophageal squamous cell carcinoma

    Science.gov (United States)

    Matsumoto, Yasunori; Kano, Masayuki; Akutsu, Yasunori; Hanari, Naoyuki; Hoshino, Isamu; Murakami, Kentaro; Usui, Akihiro; Suito, Hiroshi; Takahashi, Masahiko; Otsuka, Ryota; Xin, Hu; Komatsu, Aki; Iida, Keiko; Matsubara, Hisahiro

    2016-01-01

    Exosomes play important roles in cancer progression. Although its contents (e.g., proteins and microRNAs) have been focused on in cancer research, particularly as potential diagnostic markers, the exosome behavior and methods for exosome quantification remain unclear. In the present study, we analyzed the tumor-derived exosome behavior and assessed the quantification of exosomes in patient plasma as a biomarker for esophageal squamous cell carcinoma (ESCC). A CD63-GFP expressing human ESCC cell line (TE2-CD63-GFP) was made by transfection, and mouse subcutaneous tumor models were established. Fluorescence imaging was performed on tumors and plasma exosomes harvested from mice. GFP-positive small vesicles were confirmed in the plasma obtained from TE2-CD63-GFP tumor-bearing mice. Patient plasma was collected in Chiba University Hospital (n=86). Exosomes were extracted from 100 µl of the plasma and quantified by acetylcholinesterase (AChE) activity. The relationship between exosome quantification and the patient clinical characteristics was assessed. The quantification of exosomes isolated from the patient plasma revealed that esophageal cancer patients (n=66) expressed higher exosome levels than non-malignant patients (n=20) (P=0.0002). Although there was no correlation between the tumor progression and the exosome levels, exosome number was the independent prognostic marker and low levels of exosome predicted a poor prognosis (P=0.03). In conclusion, exosome levels may be useful as an independent prognostic factor for ESCC patients. PMID:27599779

  3. Modulation of Immune Responses by Exosomes Derived from Antigen-Presenting Cells

    Science.gov (United States)

    Shenoda, Botros B.; Ajit, Seena K.

    2016-01-01

    Exosome-mediated signaling is important in mediating the inflammatory response. To exert their biological or pathophysiological functions in the recipient cells, exosomes deliver a diverse array of biomacromolecules including long and short coding and non-coding RNAs, proteins, and lipids. Exosomes secreted by antigen-presenting cells can confer therapeutic benefits by attenuating or stimulating the immune response. Exosomes play a crucial role in carrying and presenting functional major histocompatibility peptide complexes to modulate antigen-specific T cell responses. Exosomes from Dendritic Cells (DCs) can activate T and B cells and have been explored for their immunostimulatory properties in cancer therapy. The immunosuppressive properties of exosomes derived from macrophages and DCs can reduce inflammation in animal models for several inflammatory disorders. This review focuses on the protective role of exosomes in attenuating inflammation or augmenting immune response, emphasizing studies on exosomes derived from DCs and macrophages. PMID:27660518

  4. Modulation of Immune Responses by Exosomes Derived from Antigen-Presenting Cells.

    Science.gov (United States)

    Shenoda, Botros B; Ajit, Seena K

    2016-01-01

    Exosome-mediated signaling is important in mediating the inflammatory response. To exert their biological or pathophysiological functions in the recipient cells, exosomes deliver a diverse array of biomacromolecules including long and short coding and non-coding RNAs, proteins, and lipids. Exosomes secreted by antigen-presenting cells can confer therapeutic benefits by attenuating or stimulating the immune response. Exosomes play a crucial role in carrying and presenting functional major histocompatibility peptide complexes to modulate antigen-specific T cell responses. Exosomes from Dendritic Cells (DCs) can activate T and B cells and have been explored for their immunostimulatory properties in cancer therapy. The immunosuppressive properties of exosomes derived from macrophages and DCs can reduce inflammation in animal models for several inflammatory disorders. This review focuses on the protective role of exosomes in attenuating inflammation or augmenting immune response, emphasizing studies on exosomes derived from DCs and macrophages. PMID:27660518

  5. Exosomes derived from endometriotic stromal cells have enhanced angiogenic effects in vitro.

    Science.gov (United States)

    Harp, Djana; Driss, Adel; Mehrabi, Sharifeh; Chowdhury, Indrajit; Xu, Wei; Liu, Dong; Garcia-Barrio, Minerva; Taylor, Robert N; Gold, Bert; Jefferson, Samantha; Sidell, Neil; Thompson, Winston

    2016-07-01

    Our objective has been to establish a pro-angiogenic role for exosomes in endometriosis and to determine whether a differential expression profile of cellular and exosomal microRNAs (miRNAs) exists in endometriosis. We performed an in vitro study of human primary endometrial stromal cells (ESCs) and human umbilical vein endothelial cells (HUVECs). We isolated and characterized exosomes from ESCs from five endometriosis patients and five phase-matched controls. Exosomes were characterized by transmission electron microscopy and NanoSight technology. MiRNA was assessed by deep sequencing and reverse transcription with quantitative polymerase chain reaction. Exosome uptake studies were achieved by means of confocal microscopy. The pro-angiogenic experiments were executed by treating HUVECs with ESC-derived exosomes. We observed differential profiles of exosomal miRNA expression between exosomes derived from endometriosis lesion cells and diseased eutopic stromal cells compared with exosomes derived from control ESCs. We also demonstrated autocrine cellular uptake of exosomes and paracrine functional angiogenic effects of exosomes on HUVECs. The results of this study support the hypothesis that exosomes derived from ESCs play autocrine/paracrine roles in the development of endometriosis, potentially modulating angiogenesis. The broader clinical implications are that Sampson's theory of retrograde menstruation possibly encompasses the finding that exosomes work as intercellular communication modulators in endometriosis. PMID:26841879

  6. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4.

    Science.gov (United States)

    Xiao, J; Pan, Y; Li, X H; Yang, X Y; Feng, Y L; Tan, H H; Jiang, L; Feng, J; Yu, X Y

    2016-01-01

    Cardiac progenitor cells derived from adult heart have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are known to mediate cell-cell communication by transporting cell-derived proteins and nucleic acids, including various microRNAs (miRNAs). Here we investigated the cardiac progenitor cell (CPC)-derived exosomal miRNAs on protecting myocardium under oxidative stress. Sca1(+)CPCs-derived exosomes were purified from conditional medium, and identified by nanoparticle trafficking analysis (NTA), transmission electron microscopy and western blotting using CD63, CD9 and Alix as markers. Exosomes production was measured by NTA, the result showed that oxidative stress-induced CPCs secrete more exosomes compared with normal condition. Although six apoptosis-related miRNAs could be detected in two different treatment-derived exosomes, only miR-21 was significantly upregulated in oxidative stress-induced exosomes compared with normal exosomes. The same oxidative stress could cause low miR-21 and high cleaved caspase-3 expression in H9C2 cardiac cells. But the cleaved caspase-3 was significantly decreased when miR-21 was overexpressed by transfecting miR-21 mimic. Furthermore, miR-21 mimic or inhibitor transfection and luciferase activity assay confirmed that programmed cell death 4 (PDCD4) was a target gene of miR-21, and miR-21/PDCD4 axis has an important role in anti-apoptotic effect of H9C2 cell. Western blotting and Annexin V/PI results demonstrated that exosomes pre-treated H9C2 exhibited increased miR-21 whereas decreased PDCD4, and had more resistant potential to the apoptosis induced by the oxidative stress, compared with non-treated cells. These findings revealed that CPC-derived exosomal miR-21 had an inhibiting role in the apoptosis pathway through downregulating PDCD4. Restored miR-21/PDCD4 pathway using CPC-derived exosomes could protect myocardial cells against oxidative stress-related apoptosis. Therefore

  7. Pretreatment of Cardiac Stem Cells With Exosomes Derived From Mesenchymal Stem Cells Enhances Myocardial Repair

    OpenAIRE

    Zhang, Zhiwei; Yang, Junjie; Yan, Weiya; Li, Yangxin; Shen, Zhenya; Asahara, Takayuki

    2016-01-01

    Background Exosomes derived from mesenchymal stem cells (MSCs) were proved to boost cell proliferation and angiogenic potency. We explored whether cardiac stem cells (CSCs) preconditioned with MSC exosomes could survive and function better in a myocardial infarction model. Methods and Results DiI‐labeled exosomes were internalized with CSCs. They stimulated proliferation, migration, and angiotube formation of CSCs in a dose‐dependent manner. In a rat myocardial infarction model, MSC exosome–p...

  8. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation

    OpenAIRE

    Lisa Mutschelknaus; Carsten Peters; Klaudia Winkler; Ramesh Yentrapalli; Theresa Heider; Michael John Atkinson; Simone Moertl

    2016-01-01

    Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-i...

  9. Mast Cell-Derived Exosomes Promote Th2 Cell Differentiation via OX40L-OX40 Ligation

    OpenAIRE

    Fei Li; Yuping Wang; Lihui Lin; Juan Wang; Hui Xiao; Jia Li; Xia Peng; Huirong Dai; Li Li

    2016-01-01

    Exosomes are nanovesicles released by different cell types, such as dendritic cells (DCs), mast cells (MCs), and tumor cells. Exosomes of different origin play a role in antigen presentation and modulation of immune response to infectious disease. In this study, we demonstrate that mast cells and CD4+ T cells colocated in peritoneal lymph nodes from BALB/c mouse. Further, bone marrow-derived mast cells (BMMCs) constitutively release exosomes, which express CD63 and OX40L. BMMC-exosomes partia...

  10. Exosomes from B cells and Dendritic cells: mechanisms of formation, secretion and targeting

    NARCIS (Netherlands)

    Buschow, S.I.

    2006-01-01

    Many cell types, including dendritic cells (DC) and B cells, secrete small vesicles called exosomes. Exosomes from immune cells are thought to have immuno-regulatory functions but their precise role remains unresolved. The aim of the studies presented in this thesis was to get more insight into the

  11. Exosomes released from Mycoplasma infected tumor cells activate inhibitory B cells.

    Directory of Open Access Journals (Sweden)

    Chenjie Yang

    Full Text Available Mycoplasmas cause numerous human diseases and are common opportunistic pathogens in cancer patients and immunocompromised individuals. Mycoplasma infection elicits various host immune responses. Here we demonstrate that mycoplasma-infected tumor cells release exosomes (myco+ exosomes that specifically activate splenic B cells and induce splenocytes cytokine production. Induction of cytokines, including the proinflammatory IFN-γ and the anti-inflammatory IL-10, was largely dependent on the presence of B cells. B cells were the major IL-10 producers. In splenocytes from B cell deficient μMT mice, induction of IFN-γ+ T cells by myco+ exosomes was greatly increased compared with wild type splenocytes. In addition, anti-CD3-stimulated T cell proliferation was greatly inhibited in the presence of myco+ exosome-treated B cells. Also, anti-CD3-stimulated T cell signaling was impaired by myco+ exosome treatment. Proteomic analysis identified mycoplasma proteins in exosomes that potentially contribute to the effects. Our results demonstrate that mycoplasma-infected tumor cells release exosomes carrying mycoplasma components that preferentially activate B cells, which in turn, are able to inhibit T cell activity. These results suggest that mycoplasmas infecting tumor cells can exploit the exosome pathway to disseminate their own components and modulate the activity of immune cells, in particular, activate B cells with inhibitory activity.

  12. Breast Cancer Exosome-like Microvesicles and Salivary Gland Cells Interplay Alters Salivary Gland Cell-Derived Exosome-like Microvesicles In Vitro

    OpenAIRE

    Lau, Chang S.; Wong, David T. W.

    2012-01-01

    Saliva is a useful biofluid for the early detection of disease, but how distal tumors communicate with the oral cavity and create disease-specific salivary biomarkers remains unclear. Using an in vitro breast cancer model, we demonstrated that breast cancer-derived exosome-like microvesicles are capable of interacting with salivary gland cells, altering the composition of their secreted exosome-like microvesicles. We found that the salivary gland cells secreted exosome-like microvesicles enca...

  13. Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells.

    Science.gov (United States)

    Atienzar-Aroca, Sandra; Flores-Bellver, Miguel; Serrano-Heras, Gemma; Martinez-Gil, Natalia; Barcia, Jorge M; Aparicio, Silvia; Perez-Cremades, Daniel; Garcia-Verdugo, Jose M; Diaz-Llopis, Manuel; Romero, Francisco J; Sancho-Pelluz, Javier

    2016-08-01

    The retinal pigment epithelium (RPE), a monolayer located between the photoreceptors and the choroid, is constantly damaged by oxidative stress, particularly because of reactive oxygen species (ROS). As the RPE, because of its physiological functions, is essential for the survival of the retina, any sustained damage may consequently lead to loss of vision. Exosomes are small membranous vesicles released into the extracellular medium by numerous cell types, including RPE cells. Their cargo includes genetic material and proteins, making these vesicles essential for cell-to-cell communication. Exosomes may fuse with neighbouring cells influencing their fate. It has been observed that RPE cells release higher amounts of exosomes when they are under oxidative stress. Exosomes derived from cultured RPE cells were isolated by ultracentrifugation and quantified by flow cytometry. VEGF receptors (VEGFR) were analysed by both flow cytometry and Western blot. RT-PCR and qPCR were conducted to assess mRNA content of VEGFRs in exosomes. Neovascularization assays were performed after applying RPE exosomes into endothelial cell cultures. Our results showed that stressed RPE cells released a higher amount of exosomes than controls, with a higher expression of VEGFR in the membrane, and enclosed an extra cargo of VEGFR mRNA. Angiogenesis assays confirmed that endothelial cells increased their tube formation capacity when exposed to stressed RPE exosomes. PMID:26999719

  14. Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis

    OpenAIRE

    Taverna, S; Flugy Papè, AM; SAIEVA, L; Kohn, EC; A. Santoro; Meraviglia, S; De Leo, G; ALESSANDRO, R

    2011-01-01

    The present study is designed to assess if exosomes released from Chronic Myelogenous Leukemia (CML) cells may modulate angiogenesis. We have isolated and characterized the exosomes generated from LAMA84 CML cells and demonstrated that addition of exosomes to human vascular endothelial cells (HUVEC) induces an increase of both ICAM-1 and VCAM-1 cell adhesion molecules and interleukin-8 expression. The stimulation of cell-cell adhesion molecules was paralleled by a dose-dependent increase of a...

  15. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells

    DEFF Research Database (Denmark)

    Llorente, A.; Skotland, T.; Sylvanne, T.;

    2013-01-01

    The molecular lipid composition of exosomes is largely unknown. In this study, sophisticated shotgun and targeted molecular lipidomic assays were performed for in-depth analysis of the lipidomes of the metastatic prostate cancer cell line, PC-3, and their released exosomes. This study, based...... in the quantification of approximately 280 molecular lipid species, provides the most extensive lipid analysis of cells and exosomes to date. Interestingly, major differences were found in the lipid composition of exosomes compared to parent cells. Exosomes show a remarkable enrichment of distinct lipids, demonstrating...... an extraordinary discrimination of lipids sorted into these microvesicles. In particular, exosomes are highly enriched in glycosphingolipids, sphingomyelin, cholesterol, and phosphatidylserine (mol% of total lipids). Furthermore, lipid species, even of classes not enriched in exosomes, were selectively included...

  16. Exosomes and other extracellular vesicles in neural cells and neurodegenerative diseases.

    Science.gov (United States)

    Janas, Anna M; Sapoń, Karolina; Janas, Teresa; Stowell, Michael H B; Janas, Tadeusz

    2016-06-01

    The function of human nervous system is critically dependent on proper interneuronal communication. Exosomes and other extracellular vesicles are emerging as a novel form of information exchange within the nervous system. Intraluminal vesicles within multivesicular bodies (MVBs) can be transported in neural cells anterogradely or retrogradely in order to be released into the extracellular space as exosomes. RNA loading into exosomes can be either via an interaction between RNA and the raft-like region of the MVB limiting membrane, or via an interaction between an RNA-binding protein-RNA complex with this raft-like region. Outflow of exosomes from neural cells and inflow of exosomes into neural cells presumably take place on a continuous basis. Exosomes can play both neuro-protective and neuro-toxic roles. In this review, we characterize the role of exosomes and microvesicles in normal nervous system function, and summarize evidence for defective signaling of these vesicles in disease pathogenesis of some neurodegenerative diseases.

  17. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer.

    Science.gov (United States)

    Ji, Runbi; Zhang, Bin; Zhang, Xu; Xue, Jianguo; Yuan, Xiao; Yan, Yongmin; Wang, Mei; Zhu, Wei; Qian, Hui; Xu, Wenrong

    2015-08-01

    Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer.

  18. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhao

    2015-01-01

    Full Text Available This study is aimed at investigating whether human umbilical cord mesenchymal stem cell- (hucMSC- derived exosomes (hucMSC-exosomes have a protective effect on acute myocardial infarction (AMI. Exosomes were characterized under transmission electron microscopy and the particles of exosomes were further examined through nanoparticle tracking analysis. Exosomes (400 μg protein were intravenously administrated immediately following ligation of the left anterior descending (LAD coronary artery in rats. Cardiac function was evaluated by echocardiography and apoptotic cells were counted using TUNEL staining. The cardiac fibrosis was assessed using Masson’s trichrome staining. The Ki67 positive cells in ischemic myocardium were determined using immunohistochemistry. The effect of hucMSC-exosomes on blood vessel formation was evaluated through tube formation and migration of human umbilical vein endothelial cells (EA.hy926 cells. The results indicated that ligation of the LAD coronary artery reduced cardiac function and induced cardiomyocyte apoptosis. Administration of hucMSC-exosomes significantly improved cardiac systolic function and reduced cardiac fibrosis. Moreover, hucMSC-exosomes protected myocardial cells from apoptosis and promoted the tube formation and migration of EA.hy926 cells. It is concluded that hucMSC-exosomes improved cardiac systolic function by protecting myocardial cells from apoptosis and promoting angiogenesis. These effects of hucMSC-exosomes might be associated with regulating the expression of Bcl-2 family.

  19. Free Extracellular miRNA Functionally Targets Cells by Transfecting Exosomes from Their Companion Cells.

    Directory of Open Access Journals (Sweden)

    Krzysztof Bryniarski

    Full Text Available Lymph node and spleen cells of mice doubly immunized by epicutaneous and intravenous hapten application produce a suppressive component that inhibits the action of the effector T cells that mediate contact sensitivity reactions. We recently re-investigated this phenomenon in an immunological system. CD8+ T lymphocyte-derived exosomes transferred suppressive miR-150 to the effector T cells antigen-specifically due to exosome surface coat of antibody light chains made by B1a lymphocytes. Extracellular RNA (exRNA is protected from plasma RNases by carriage in exosomes or by chaperones. Exosome transfer of functional RNA to target cells is well described, whereas the mechanism of transfer of exRNA free of exosomes remains unclear. In the current study we describe extracellular miR-150, extracted from exosomes, yet still able to mediate antigen-specific suppression. We have determined that this was due to miR-150 association with antibody-coated exosomes produced by B1a cell companions of the effector T cells, which resulted in antigen-specific suppression of their function. Thus functional cell targeting by free exRNA can proceed by transfecting companion cell exosomes that then transfer RNA cargo to the acceptor cells. This contrasts with the classical view on release of RNA-containing exosomes from the multivesicular bodies for subsequent intercellular targeting. This new alternate pathway for transfer of exRNA between cells has distinct biological and immunological significance, and since most human blood exRNA is not in exosomes may be relevant to evaluation and treatment of diseases.

  20. Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling.

    Directory of Open Access Journals (Sweden)

    Jessica Wahlgren

    Full Text Available It has previously been shown that nano-meter sized vesicles (30-100 nm, exosomes, secreted by antigen presenting cells can induce T cell responses thus showing the potential of exosomes to be used as immunological tools. Additionally, activated CD3⁺ T cells can secrete exosomes that have the ability to modulate different immunological responses. Here, we investigated what effects exosomes originating from activated CD3⁺ T cells have on resting CD3⁺ T cells by studying T cell proliferation, cytokine production and by performing T cell and exosome phenotype characterization. Human exosomes were generated in vitro following CD3⁺ T cell stimulation with anti-CD28, anti-CD3 and IL-2. Our results show that exosomes purified from stimulated CD3⁺ T cells together with IL-2 were able to generate proliferation in autologous resting CD3⁺ T cells. The CD3⁺ T cells stimulated with exosomes together with IL-2 had a higher proportion of CD8⁺ T cells and had a different cytokine profile compared to controls. These results indicate that activated CD3⁺ T cells communicate with resting autologous T cells via exosomes.

  1. Stem Cell-Derived Exosomes: A Potential Alternative Therapeutic Agent in Orthopaedics

    OpenAIRE

    John Burke; Ravindra Kolhe; Monte Hunter; Carlos Isales; Mark Hamrick; Sadanand Fulzele

    2016-01-01

    Within the field of regenerative medicine, many have sought to use stem cells as a promising way to heal human tissue; however, in the past few years, exosomes (packaged vesicles released from cells) have shown more exciting promise. Specifically, stem cell-derived exosomes have demonstrated great ability to provide therapeutical benefits. Exosomal products can include miRNA, other genetic products, proteins, and various factors. They are released from cells in a paracrine fashion in order to...

  2. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration.

    Directory of Open Access Journals (Sweden)

    Carlos Salomon

    Full Text Available Studies completed to date provide persuasive evidence that placental cell-derived exosomes play a significant role in intercellular communication pathways that potentially contribute to placentation and development of materno-fetal vascular circulation. The aim of this study was to establish the gestational-age release profile and bioactivity of placental cell-derived exosome in maternal plasma. Plasma samples (n = 20 per pregnant group were obtained from non-pregnant and pregnant women in the first (FT, 6-12 weeks, second (ST, 22-24 weeks and third (TT, 32-38 weeks trimester. The number of exosomes and placental exosome contribution were determined by quantifying immunoreactive exosomal CD63 and placenta-specific marker (PLAP, respectively. The effect of exosomes isolated from FT, ST and TT on endothelial cell migration were established using a real-time, live-cell imaging system (Incucyte. Exosome plasma concentration was more than 50-fold greater in pregnant women than in non-pregnant women (p<0.001. During normal healthy pregnancy, the number of exosomes present in maternal plasma increased significantly with gestational age by more that two-fold (p<0.001. Exosomes isolated from FT, ST and TT increased endothelial cell migration by 1.9±0.1, 1.6±0.2 and 1.3±0.1-fold, respectively compared to the control. Pregnancy is associated with a dramatic increase in the number of exosomes present in plasma and maternal plasma exosomes are bioactive. While the role of placental cell-derived exosome in regulating maternal and/or fetal vascular responses remains to be elucidated, changes in exosome profile may be of clinical utility in the diagnosis of placental dysfunction.

  3. Sialoglycoproteins and N-Glycans from Secreted Exosomes of Ovarian Carcinoma Cells

    OpenAIRE

    Escrevente, Cristina; Grammel, Nicolas; Kandzia, Sebastian; Zeiser, Johannes; Tranfield, Erin M; Conradt, Harald S.; Costa, Júlia

    2013-01-01

    Exosomes consist of vesicles that are secreted by several human cells, including tumor cells and neurons, and they are found in several biological fluids. Exosomes have characteristic protein and lipid composition, however, the results concerning glycoprotein composition and glycosylation are scarce. Here, protein glycosylation of exosomes from ovarian carcinoma SKOV3 cells has been studied by lectin blotting, NP-HPLC analysis of 2-aminobenzamide labeled glycans and mass spectrometry. An abun...

  4. Cells release subpopulations of exosomes with distinct molecular and biological properties

    OpenAIRE

    Eduard Willms; Johansson, Henrik J; Imre Mäger; Yi Lee; Blomberg, K. Emelie M.; Mariam Sadik; Amr Alaarg; C.I. Edvard Smith; Janne Lehtiö; Samir EL Andaloussi; Matthew J A Wood; Pieter Vader

    2016-01-01

    Cells release nano-sized membrane vesicles that are involved in intercellular communication by transferring biological information between cells. It is generally accepted that cells release at least three types of extracellular vesicles (EVs): apoptotic bodies, microvesicles and exosomes. While a wide range of putative biological functions have been attributed to exosomes, they are assumed to represent a homogenous population of EVs. We hypothesized the existence of subpopulations of exosomes...

  5. Role of Exosome Shuttle RNA in Cell-to-Cell Communication.

    Science.gov (United States)

    Zhang, Wei; Peng, Peng; Shen, Keng

    2016-08-01

    There are several ways that transpire in cell-to-cell communication,with or without cell contact. Exosomes play an important role in cell-to-cell communication,which do not need cell contact,as that can result in a relatively long-distance influence. Exosome contains RNA components including mRNA and micro-RNA,which are protected by exosomes rigid membranes. This allows those components be passed long distance through the circulatory system. The mRNA components are far different from their donor cells,and the micro-RNA components may reflect the cell they originated. In this article we review the role of exosomes in cell-to-cell communication,with particular focus on their potentials in both diagnostic and therapeutic applications. PMID:27594165

  6. Electrical stimulation to optimize cardioprotective exosomes from cardiac stem cells.

    Science.gov (United States)

    Campbell, C R; Berman, A E; Weintraub, N L; Tang, Y L

    2016-03-01

    Injured or ischemic cardiac tissue has limited intrinsic capacity for regeneration. While stem cell transplantation is a promising approach to stimulating cardiac repair, its success in humans has thus far been limited. Harnessing the therapeutic benefits of stem cells requires a better understanding of their mechanisms of action and methods to optimize their function. Cardiac stem cells (CSC) represent a particularly effective cellular source for cardiac repair, and pre-conditioning CSC with electrical stimulation (EleS) was demonstrated to further enhance their function, although the mechanisms are unknown. Recent studies suggest that transplanted stem cells primarily exert their effects through communicating with endogenous tissues via the release of exosomes containing cardioprotective molecules such as miRNAs, which upon uptake by recipient cells may stimulate survival, proliferation, and angiogenesis. Exosomes are also effective therapeutic agents in isolation and may provide a feasible alternative to stem cell transplantation. We hypothesize that EleS enhances CSC-mediated cardiac repair through its beneficial effects on production of cardioprotective exosomes. Moreover, we hypothesize that the beneficial effects of biventricular pacing in patients with heart failure may in part result from EleS-induced preconditioning of endogenous CSC to promote cardiac repair. With future research, our hypothesis may provide applications to optimize stem cell therapy and augment current pacing protocols, which may significantly advance the treatment of patients with heart disease. PMID:26880625

  7. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host∶parasite interactions.

    Directory of Open Access Journals (Sweden)

    Olivia Twu

    Full Text Available Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogential tract where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Here, we use a combination of methodologies including cell fractionation, immunofluorescence and electron microscopy, RNA, proteomic and cytokine analyses and cell adherence assays to examine pathogenic properties of T. vaginalis. We have found that T.vaginalis produces and secretes microvesicles with physical and biochemical properties similar to mammalian exosomes. The parasite-derived exosomes are characterized by the presence of RNA and core, conserved exosomal proteins as well as parasite-specific proteins. We demonstrate that T. vaginalis exosomes fuse with and deliver their contents to host cells and modulate host cell immune responses. Moreover, exosomes from highly adherent parasite strains increase the adherence of poorly adherent parasites to vaginal and prostate epithelial cells. In contrast, exosomes from poorly adherent strains had no measurable effect on parasite adherence. Exosomes from parasite strains that preferentially bind prostate cells increased binding of parasites to these cells relative to vaginal cells. In addition to establishing that parasite exosomes act to modulate host∶parasite interactions, these studies are the first to reveal a potential role for exosomes in promoting parasite∶parasite communication and host cell colonization.

  8. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress.

    Science.gov (United States)

    Sheller, Samantha; Papaconstantinou, John; Urrabaz-Garza, Rheanna; Richardson, Lauren; Saade, George; Salomon, Carlos; Menon, Ramkumar

    2016-01-01

    At term, the signals of fetal maturity and feto-placental tissue aging prompt uterine readiness for delivery by transitioning quiescent myometrium to an active stage. It is still unclear how the signals reach the distant myometrium. Exosomes are a specific type of extracellular vesicle (EVs) that transport molecular signals between cells, and are released from a wide range of cells, including the maternal and fetal cells. In this study, we hypothesize that i) exosomes act as carriers of signals in utero-placental compartments and ii) exosomes reflect the physiologic status of the origin cells. The primary aims of this study were to determine exosomal contents in exosomes derived from primary amnion epithelial cells (AEC). We also determined the effect of oxidative stress on AEC derived exosomal cargo contents. AEC were isolated from amniotic membrane obtained from normal, term, not in labor placentae at delivery, and culture under standard conditions. Oxidative stress was induced using cigarette smoke extract for 48 hours. AEC-conditioned media were collected and exosomes isolated by differential centrifugations. Both growth conditions (normal and oxidative stress induced) produced cup shaped exosomes of around 50 nm, expressed exosomes enriched markers, such as CD9, CD63, CD81 and HSC70, embryonic stem cell marker Nanog, and contained similar amounts of cell free AEC DNA. Using confocal microscopy, the colocalization of histone (H) 3, heat shock protein (HSP) 70 and activated form of pro-senescence and term parturition associated marker p38 mitogen activated protein kinase (MAPK) (P-p38 MAPK) co-localized with exosome enrich marker CD9. HSP70 and P-p38 MAPK were significantly higher in exosomes from AEC grown under oxidative stress conditions than standard conditions (pmass spectrometry and bioinformatics analysis identified 221 different proteins involved in immunomodulatory response and cell-to-cell communication. This study determined AEC exosome

  9. Exosomes are fingerprints of originating cells: potential biomarkers for ovarian cancer

    Directory of Open Access Journals (Sweden)

    Kobayashi M

    2015-03-01

    Full Text Available Miharu Kobayashi, Gregory E Rice, Jorge Tapia, Murray D Mitchell, Carlos Salomon Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia. Abstract: The past decade has seen an extraordinary explosion of research in the field of extracellular vesicles, especially in a specific type of extracellular vesicles originating from endosomal compartments, called exosomes. Exosomes are a specific subtype of secreted vesicles that are defined as small (~30–120 nm but very stable membrane vesicles that are released from a wide range of cells, including normal and cancer cells. As the content of exosomes is cell type specific, it is believed that they are a "fingerprint" of the releasing cell and its metabolic status. We hypothesized that the exosomes and their specific exosomal content (eg, microribonucleic acid represent a precious biomedical tool and may be used as biomarkers for the diagnosis and prognosis of malignant tumors. In addition, exosomes may modify the phenotype of the parent and/or target cell by transferring pro-oncogenic molecules to induce cancerous phenotype of recipient cells and contribute to the formation of the premetastatic niche. The mechanism involved in these phenomena remains unclear; however, inclusion of signaling mediators into exosomes or exosome release may reduce their intracellular bioavailability in the parent cell, thereby altering cell phenotype and their metastatic potential. The aim of this review therefore is to analyze the biogenesis and role of exosomes from tumor cells, focusing primarily on ovarian cancer. Ovarian cancer is the most lethal gynecologic cancer, and an effective early diagnosis has the potential to improve patient survival. Ovarian cancer currently lacks a reliable method for early detection, however, exosomes have received great attention as potential biomarkers and mediators

  10. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation.

    Science.gov (United States)

    Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo

    2015-05-30

    Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes.

  11. The Genomic and Proteomic Content of Cancer Cell-Derived Exosomes

    Directory of Open Access Journals (Sweden)

    Meredith C Henderson

    2012-04-01

    Full Text Available Exosomes are secreted membrane vesicles that have been proposed as an effective means to detect a variety of disease states, including cancer. The properties of exosomes, including stability in biological fluids, allow for their efficient isolation and make them an ideal vehicle for studies on early disease detection and evaluation. Much data has been collected over recent years regarding the mRNA, miRNA, and protein contents of exosomes. In addition, many studies have described the functional role that exosomes play in disease initiation and progression. Tumor cells have been shown to secrete exosomes, often in increased amounts compared to normal cells, and these exosomes can carry the genomic and proteomic signatures characteristic of the tumor cells from which they were derived. While these unique signatures make exosomes ideal for cancer detection, exosomes derived from cancer cells have also been shown to play a functional role in cancer progression. Here, we review the unique genomic and proteomic contents of exosomes originating from cancer cells as well as their functional effects to promote tumor progression.

  12. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells

    International Nuclear Information System (INIS)

    Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24–48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3–1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. - Highlights: • Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes. • Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes. • Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation. • Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes. • Our findings suggest causal and potentially synergistic association of exosomes and

  13. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Thayanithy, Venugopal [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States); Babatunde, Victor [Moore Laboratory, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Dickson, Elizabeth L. [Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, MN 55455 (United States); Wong, Phillip [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States); Oh, Sanghoon; Ke, Xu; Barlas, Afsar; Fujisawa, Sho; Romin, Yevgeniy [Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Moreira, André L. [Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Downey, Robert J. [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Steer, Clifford J. [Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 (United States); Subramanian, Subbaya [Department of Surgery, University of Minnesota, Minneapolis, MN 55455 (United States); Manova-Todorova, Katia [Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Moore, Malcolm A.S. [Moore Laboratory, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Lou, Emil, E-mail: emil-lou@umn.edu [Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455 (United States)

    2014-04-15

    Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24–48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3–1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. - Highlights: • Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes. • Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes. • Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation. • Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes. • Our findings suggest causal and potentially synergistic association of exosomes and

  14. Amnion-Epithelial-Cell-Derived Exosomes Demonstrate Physiologic State of Cell under Oxidative Stress

    Science.gov (United States)

    Sheller, Samantha; Papaconstantinou, John; Urrabaz-Garza, Rheanna; Richardson, Lauren; Saade, George; Salomon, Carlos; Menon, Ramkumar

    2016-01-01

    At term, the signals of fetal maturity and feto-placental tissue aging prompt uterine readiness for delivery by transitioning quiescent myometrium to an active stage. It is still unclear how the signals reach the distant myometrium. Exosomes are a specific type of extracellular vesicle (EVs) that transport molecular signals between cells, and are released from a wide range of cells, including the maternal and fetal cells. In this study, we hypothesize that i) exosomes act as carriers of signals in utero-placental compartments and ii) exosomes reflect the physiologic status of the origin cells. The primary aims of this study were to determine exosomal contents in exosomes derived from primary amnion epithelial cells (AEC). We also determined the effect of oxidative stress on AEC derived exosomal cargo contents. AEC were isolated from amniotic membrane obtained from normal, term, not in labor placentae at delivery, and culture under standard conditions. Oxidative stress was induced using cigarette smoke extract for 48 hours. AEC-conditioned media were collected and exosomes isolated by differential centrifugations. Both growth conditions (normal and oxidative stress induced) produced cup shaped exosomes of around 50 nm, expressed exosomes enriched markers, such as CD9, CD63, CD81 and HSC70, embryonic stem cell marker Nanog, and contained similar amounts of cell free AEC DNA. Using confocal microscopy, the colocalization of histone (H) 3, heat shock protein (HSP) 70 and activated form of pro-senescence and term parturition associated marker p38 mitogen activated protein kinase (MAPK) (P-p38 MAPK) co-localized with exosome enrich marker CD9. HSP70 and P-p38 MAPK were significantly higher in exosomes from AEC grown under oxidative stress conditions than standard conditions (pexosome characteristics and their cargo reflected the physiologic status of the cell of origin and suggests that AEC-derived exosomal p38 MAPK plays a major role in determining the fate of pregnancy

  15. Profile of Exosomal and Intracellular microRNA in Gamma-Herpesvirus-Infected Lymphoma Cell Lines

    Science.gov (United States)

    Hoshina, Shiho; Sekizuka, Tsuyoshi; Kataoka, Michiyo; Hasegawa, Hideki; Hamada, Hiromichi; Kuroda, Makoto; Katano, Harutaka

    2016-01-01

    Exosomes are small vesicles released from cells, into which microRNAs (miRNA) are specifically sorted and accumulated. Two gamma-herpesviruses, Kaposi sarcoma-associated herpesvirus (KSHV) and Epstein—Barr virus (EBV), encode miRNAs in their genomes and express virus-encoded miRNAs in cells and exosomes. However, there is little information about the detailed distribution of virus-encoded miRNAs in cells and exosomes. In this study, we thus identified virus- and host-encoded miRNAs in exosomes released from KSHV- or EBV-infected lymphoma cell lines and compared them with intracellular miRNAs using a next-generation sequencer. Sequencing analysis demonstrated that 48% of the annotated miRNAs in the exosomes from KSHV-infected cells originated from KSHV. Human mir-10b-5p and mir-143-3p were much more highly concentrated in exosomes than in cells. Exosomes contained more nonexact mature miRNAs that did not exactly match those in miRBase than cells. Among the KSHV-encoded miRNAs, miRK12-3-5p was the most abundant exact mature miRNA in both cells and exosomes that exactly matched those in miRBase. Recently identified EXOmotifs, nucleotide motifs that control the loading of miRNAs into exosomes were frequently found within the sequences of KSHV-encoded miRNAs, and the presence of the EXOmotif CCCT or CCCG was associated with the localization of miRNA in exosomes in KSHV-infected cells. These observations suggest that specific virus-encoded miRNAs are sorted by EXOmotifs and accumulate in exosomes in virus-infected cells. PMID:27611973

  16. Profile of Exosomal and Intracellular microRNA in Gamma-Herpesvirus-Infected Lymphoma Cell Lines.

    Science.gov (United States)

    Hoshina, Shiho; Sekizuka, Tsuyoshi; Kataoka, Michiyo; Hasegawa, Hideki; Hamada, Hiromichi; Kuroda, Makoto; Katano, Harutaka

    2016-01-01

    Exosomes are small vesicles released from cells, into which microRNAs (miRNA) are specifically sorted and accumulated. Two gamma-herpesviruses, Kaposi sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), encode miRNAs in their genomes and express virus-encoded miRNAs in cells and exosomes. However, there is little information about the detailed distribution of virus-encoded miRNAs in cells and exosomes. In this study, we thus identified virus- and host-encoded miRNAs in exosomes released from KSHV- or EBV-infected lymphoma cell lines and compared them with intracellular miRNAs using a next-generation sequencer. Sequencing analysis demonstrated that 48% of the annotated miRNAs in the exosomes from KSHV-infected cells originated from KSHV. Human mir-10b-5p and mir-143-3p were much more highly concentrated in exosomes than in cells. Exosomes contained more nonexact mature miRNAs that did not exactly match those in miRBase than cells. Among the KSHV-encoded miRNAs, miRK12-3-5p was the most abundant exact mature miRNA in both cells and exosomes that exactly matched those in miRBase. Recently identified EXOmotifs, nucleotide motifs that control the loading of miRNAs into exosomes were frequently found within the sequences of KSHV-encoded miRNAs, and the presence of the EXOmotif CCCT or CCCG was associated with the localization of miRNA in exosomes in KSHV-infected cells. These observations suggest that specific virus-encoded miRNAs are sorted by EXOmotifs and accumulate in exosomes in virus-infected cells. PMID:27611973

  17. Harnessing the Angiogenic Potential of Stem Cell-Derived Exosomes for Vascular Regeneration

    OpenAIRE

    Alcayaga-Miranda, F.; M. Varas-Godoy; Khoury, M.

    2016-01-01

    Mesenchymal stem cells (MSCs) are known to display important regenerative properties through the secretion of proangiogenic factors. Recent evidence pointed at the key role played by exosomes released from MSCs in this paracrine mechanism. Exosomes are key mediators of intercellular communication and contain a cargo that includes a modifiable content of microRNA (miRNA), mRNA, and proteins. Since the biogenesis of the MSCs-derived exosomes is regulated by the cross talk between MSCs and their...

  18. Inhibition of Myocardial Ischemia/Reperfusion Injury by Exosomes Secreted from Mesenchymal Stem Cells

    OpenAIRE

    Heng Zhang; Meng Xiang; Dan Meng; Ning Sun; Sifeng Chen

    2016-01-01

    Exosomes secreted by mesenchymal stem cells have shown great therapeutic potential in regenerative medicine. In this study, we performed meta-analysis to assess the clinical effectiveness of using exosomes in ischemia/reperfusion injury based on the reports published between January 2000 and September 2015 and indexed in the PUBMED and Web of Science databases. The effect of exosomes on heart function was evaluated according to the following parameters: the area at risk as a percentage of the...

  19. Endogenous RNAs Modulate MicroRNA Sorting to Exosomes and Transfer to Acceptor Cells

    Directory of Open Access Journals (Sweden)

    Mario Leonardo Squadrito

    2014-09-01

    Full Text Available MicroRNA (miRNA transfer via exosomes may mediate cell-to-cell communication. Interestingly, specific miRNAs are enriched in exosomes in a cell-type-dependent fashion. However, the mechanisms whereby miRNAs are sorted to exosomes and the significance of miRNA transfer to acceptor cells are unclear. We used macrophages and endothelial cells (ECs as a model of heterotypic cell communication in order to investigate both processes. RNA profiling of macrophages and their exosomes shows that miRNA sorting to exosomes is modulated by cell-activation-dependent changes of miRNA target levels in the producer cells. Genetically perturbing the expression of individual miRNAs or their targeted transcripts promotes bidirectional miRNA relocation from the cell cytoplasm/P bodies (sites of miRNA activity to multivesicular bodies (sites of exosome biogenesis and controls miRNA sorting to exosomes. Furthermore, the use of Dicer-deficient cells and reporter lentiviral vectors (LVs for miRNA activity shows that exosomal miRNAs are transferred from macrophages to ECs to detectably repress targeted sequences.

  20. Guanine-Rich Sequences Are a Dominant Feature of Exosomal microRNAs across the Mammalian Species and Cell Types

    OpenAIRE

    Momose, Fumiyasu; Seo, Naohiro; Akahori, Yasushi; Sawada, Shin-ichi; Harada, Naozumi; Ogura, Toru; Akiyoshi, Kazunari; Shiku, Hiroshi

    2016-01-01

    Exosome is an extracellular vesicle released from multivesicular endosomes and contains micro (mi) RNAs and functional proteins derived from the donor cells. Exosomal miRNAs act as an effector during communication with appropriate recipient cells, this can aid in the utilization of the exosomes in a drug delivery system for various disorders including malignancies. Differences in the miRNA distribution pattern between exosomes and donor cells indicate the active translocation of miRNAs into t...

  1. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection.

    NARCIS (Netherlands)

    Chaput, N.; Schartz, N.E.; Andre, F.; Taieb, J.; Novault, S.; Bonnaventure, P.; Aubert, N.; Bernard, J.; Lemonnier, F.; Merad, M.; Adema, G.J.; Adams, M.; Ferrantini, M.; Carpentier, A.F.; Escudier, B.; Tursz, T.; Angevin, E.; Zitvogel, L.

    2004-01-01

    Ideal vaccines should be stable, safe, molecularly defined, and out-of-shelf reagents efficient at triggering effector and memory Ag-specific T cell-based immune responses. Dendritic cell-derived exosomes could be considered as novel peptide-based vaccines because exosomes harbor a discrete set of p

  2. Cancer cells use exosomes as tools to manipulate immunity and the microenvironment

    OpenAIRE

    Clayton, Aled

    2012-01-01

    Exosomes are small vesicles secreted in relative abundance by cancer cells, which may prove useful as disease markers. However, exosomes also exhibit potent functions; modulating the behavior of immune- and other cells. Bridging our understanding of their molecular phenotype and functional mechanisms will provide key insight into their importance in cancer.

  3. Nanomechanical sandwich assay for multiple cancer biomarkers in breast cancer cell-derived exosomes.

    Science.gov (United States)

    Etayash, H; McGee, A R; Kaur, K; Thundat, T

    2016-08-18

    The use of exosomes as cancer diagnostic biomarkers is technically limited by their size, heterogeneity and the need for extensive purification and labelling. We report the use of cantilever arrays for simultaneous detection of multiple exosomal surface-antigens with high sensitivity and selectivity. Exosomes from breast cancer were selectively identified by detecting over-expressed membrane-proteins CD24, CD63, and EGFR. Excellent selectivity however, was achieved when targeting the cell-surface proteoglycan, Glypican-1 at extraordinary limits (∼200 exosomes per mL, ∼0.1 pg mL(-1)). PMID:27492928

  4. The Ste20 kinases SPAK and OSR1 travel between cells through exosomes.

    Science.gov (United States)

    Koumangoye, Rainelli; Delpire, Eric

    2016-07-01

    Proteomics studies have identified Ste20-related proline/alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1) in exosomes isolated from body fluids such as blood, saliva, and urine. Because proteomics studies likely overestimate the number of exosome proteins, we sought to confirm and extend this observation using traditional biochemical and cell biology methods. We utilized HEK293 cells in culture to verify the packaging of these Ste20 kinases in exosomes. Using a series of centrifugation and filtration steps of conditioned culture medium isolated from HEK293 cells, we isolated nanovesicles in the range of 40-100 nm. We show that these small vesicles express the tetraspanin protein CD63 and lack endoplasmic reticulum and Golgi markers, consistent with these being exosomes. We show by Western blot and immunogold analyses that these exosomes express SPAK, OSR1, and Na-K-Cl cotransporter 1 (NKCC1). We show that exosomes are not only secreted by cells, but also accumulated by adjacent cells. Indeed, exposing cultured cells to exosomes produced by other cells expressing a fluorescently labeled kinase resulted in the kinase finding its way into the cytoplasm of these cells, consistent with the idea of exosomes serving as cell-to-cell communication vessels. Similarly, coculturing cells expressing different fluorescently tagged proteins resulted in the exchange of proteins between cells. In addition, we show that both SPAK and OSR1 kinases entering cells through exosomes are preferentially expressed at the plasma membrane and that the kinases in exosomes are functional and maintain NKCC1 in a phosphorylated state. PMID:27122160

  5. Shikonin Inhibits the Proliferation of Human Breast Cancer Cells by Reducing Tumor-Derived Exosomes.

    Science.gov (United States)

    Wei, Yao; Li, Mingzhen; Cui, Shufang; Wang, Dong; Zhang, Chen-Yu; Zen, Ke; Li, Limin

    2016-01-01

    Shikonin is a naphthoquinone isolated from the traditional Chinese medicine Lithospermum. It has been used in the treatment of various tumors. However, the effects of shikonin on such diseases have not been fully elucidated. In the present study, we detected the exosome release of a breast cancer cell line (MCF-7) with shikonin treatment and found a positive relationship between the level of secreted exosomes and cell proliferation. We next analyzed miRNA profiles in MCF-7 cells and exosomes and found that some miRNAs are specifically sorted and abundant in exosomes. Knockdown of the most abundant miRNAs in exosomes and the MCF-7 proliferation assay showed that miR-128 in exosomes negatively regulates the level of Bax in MCF-7 recipient cells and inhibits cell proliferation. These results show that shikonin inhibits the proliferation of MCF-7 cells through reducing tumor-derived exosomal miR-128. The current study suggests that shikonin suppresses MCF-7 growth by the inhibition of exosome release. PMID:27322220

  6. Stem cell-derived exosomes as a therapeutic tool for cardiovascular disease

    Science.gov (United States)

    Suzuki, Etsu; Fujita, Daishi; Takahashi, Masao; Oba, Shigeyoshi; Nishimatsu, Hiroaki

    2016-01-01

    Mesenchymal stem cells (MSCs) have been used to treat patients suffering from acute myocardial infarction (AMI) and subsequent heart failure. Although it was originally assumed that MSCs differentiated into heart cells such as cardiomyocytes, recent evidence suggests that the differentiation capacity of MSCs is minimal and that injected MSCs restore cardiac function via the secretion of paracrine factors. MSCs secrete paracrine factors in not only naked forms but also membrane vesicles including exosomes containing bioactive substances such as proteins, messenger RNAs, and microRNAs. Although the details remain unclear, these bioactive molecules are selectively sorted in exosomes that are then released from donor cells in a regulated manner. Furthermore, exosomes are specifically internalized by recipient cells via ligand-receptor interactions. Thus, exosomes are promising natural vehicles that stably and specifically transport bioactive molecules to recipient cells. Indeed, stem cell-derived exosomes have been successfully used to treat cardiovascular disease (CVD), such as AMI, stroke, and pulmonary hypertension, in animal models, and their efficacy has been demonstrated. Therefore, exosome administration may be a promising strategy for the treatment of CVD. Furthermore, modifications of exosomal contents may enhance their therapeutic effects. Future clinical studies are required to confirm the efficacy of exosome treatment for CVD. PMID:27679686

  7. Characterization of Uptake and Internalization of Exosomes by Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Carrie A. Franzen

    2014-01-01

    Full Text Available Bladder tumors represent a special therapeutic challenge as they have a high recurrence rate requiring repeated interventions and may progress to invasive or metastatic disease. Exosomes carry proteins implicated in bladder cancer progression and have been implicated in bladder cancer cell survival. Here, we characterized exosome uptake and internalization by human bladder cancer cells using Amnis ImageStreamX, an image cytometer. Exosomes were isolated by ultracentrifugation from bladder cancer culture conditioned supernatant, labeled with PKH-26, and analyzed on the ImageStreamX with an internal standard added to determine concentration. Exosomes were cocultured with bladder cancer cells and analyzed for internalization. Using the IDEAS software, we determined exosome uptake based on the number of PKH-26+ spots and overall PKH-26 fluorescence intensity. Using unlabeled beads of a known concentration and size, we were able to determine concentrations of exosomes isolated from bladder cancer cells. We measured exosome uptake by recipient bladder cancer cells, and we demonstrated that uptake is dose and time dependent. Finally, we found that uptake is active and specific, which can be partially blocked by heparin treatment. The characterization of cellular uptake and internalization by bladder cancer cells may shed light on the role of exosomes on bladder cancer recurrence and progression.

  8. Shikonin Inhibits the Proliferation of Human Breast Cancer Cells by Reducing Tumor-Derived Exosomes

    Directory of Open Access Journals (Sweden)

    Yao Wei

    2016-06-01

    Full Text Available Shikonin is a naphthoquinone isolated from the traditional Chinese medicine Lithospermum. It has been used in the treatment of various tumors. However, the effects of shikonin on such diseases have not been fully elucidated. In the present study, we detected the exosome release of a breast cancer cell line (MCF-7 with shikonin treatment and found a positive relationship between the level of secreted exosomes and cell proliferation. We next analyzed miRNA profiles in MCF-7 cells and exosomes and found that some miRNAs are specifically sorted and abundant in exosomes. Knockdown of the most abundant miRNAs in exosomes and the MCF-7 proliferation assay showed that miR-128 in exosomes negatively regulates the level of Bax in MCF-7 recipient cells and inhibits cell proliferation. These results show that shikonin inhibits the proliferation of MCF-7 cells through reducing tumor-derived exosomal miR-128. The current study suggests that shikonin suppresses MCF-7 growth by the inhibition of exosome release.

  9. Stem cell-derived exosomes as a therapeutic tool for cardiovascular disease

    Science.gov (United States)

    Suzuki, Etsu; Fujita, Daishi; Takahashi, Masao; Oba, Shigeyoshi; Nishimatsu, Hiroaki

    2016-01-01

    Mesenchymal stem cells (MSCs) have been used to treat patients suffering from acute myocardial infarction (AMI) and subsequent heart failure. Although it was originally assumed that MSCs differentiated into heart cells such as cardiomyocytes, recent evidence suggests that the differentiation capacity of MSCs is minimal and that injected MSCs restore cardiac function via the secretion of paracrine factors. MSCs secrete paracrine factors in not only naked forms but also membrane vesicles including exosomes containing bioactive substances such as proteins, messenger RNAs, and microRNAs. Although the details remain unclear, these bioactive molecules are selectively sorted in exosomes that are then released from donor cells in a regulated manner. Furthermore, exosomes are specifically internalized by recipient cells via ligand-receptor interactions. Thus, exosomes are promising natural vehicles that stably and specifically transport bioactive molecules to recipient cells. Indeed, stem cell-derived exosomes have been successfully used to treat cardiovascular disease (CVD), such as AMI, stroke, and pulmonary hypertension, in animal models, and their efficacy has been demonstrated. Therefore, exosome administration may be a promising strategy for the treatment of CVD. Furthermore, modifications of exosomal contents may enhance their therapeutic effects. Future clinical studies are required to confirm the efficacy of exosome treatment for CVD.

  10. Extravillous trophoblast cells-derived exosomes promote Vascular Smooth Muscle Cell Migration

    Directory of Open Access Journals (Sweden)

    Carlos eSalomon

    2014-08-01

    Full Text Available Background: Vascular smooth muscle cells (VSMCs migration is a critical process during human uterine spiral artery (SpA remodeling and a successful pregnancy. Extravillous trophoblast cells (EVT interact with VSMC and enhance their migration, however, the mechanisms by which EVT remodel SpA remain to be fully elucidated. We hypothesize that exosomes released from EVT promote VSMC migration.Methods: JEG-3 and HTR-8/SVneo cell lines were used as models for EVT. Cells were cultured at 37 0C and humidified under an atmosphere of 5% CO2-balanced N2 to obtain 8% O2. Cell-conditioned media were collected and exosomes (exo-JEG-3 and exo- HTR-8/SVneo isolated by differential and buoyant density centrifugation. The effects of exo-EVT on VSMC migration were established using a real-time, live-cell imaging system (Incucyte™. Exosomal proteins where identified by mass spectrometry and submitted to bioinformatic pathway analysis (Ingenuity software .Results: HTR-8/SVneo cells were significantly more (~30% invasive than JEG-3 cells. HTR-8/SVneo cells released 2.6-fold more exosomes (6.39 x 108 ± 2.5 x108 particles/106 cells compared to JEG-3 (2.86 x 108 ± 0.78 x108 particles/106 cells. VSMC migration was significantly increased in the presence of exo-JEG-3 and exo-HTR-8/SVneo compared to control (-exosomes (21.83 ± 0.49 h and 15.57 ± 0.32, respectively, versus control 25.09 ± 0.58 h, p<0.05. Sonication completely abolished the effect of exosomes on VSMC migration. Finally, mass spectrometry analysis identified unique exosomal proteins for each EVT cell line-derived exosomes.Conclusion: The data obtained in this study are consistent with the hypothesis that the release, content and bioactivity of exosomes derived from EVT-like cell lines is cell origin-dependent and differentially regulates VSMC migration. Thus, an EVT exosomal signaling pathway may contribute to SpA remodeling by promoting the migration of VSMC out of the vessel walls.

  11. Exosomal Heat Shock Proteins as New Players in Tumour Cell-to-cell Communication

    Directory of Open Access Journals (Sweden)

    Claudia Campanella

    2014-06-01

    Full Text Available Exosomes have recently been proposed as novel elements in the study of intercellular communication in normal and pathological conditions. The biomolecular composition of exosomes reflects the specialized functions of the original cells. Heat shock proteins (Hsps are a group of chaperone proteins with diverse biological roles. In recent years, many studies have focused on the extracellular roles played by Hsps that appear to be involved in cancer development and immune system stimulation. Hsps localized on the surface of exosomes, secreted by normal and tumour cells, could be key players in intercellular cross-talk, particularly during the course of different diseases, such as cancer. Exosomal Hsps offer significant opportunities for clinical applications, including their use as potential novel biomarkers for the diagnoses or prognoses of different diseases, or for therapeutic applications and drug delivery.

  12. [Exosomes Derived from Mesenchymal Stem Cells--the Future Ideal Vector of Biological Therapy].

    Science.gov (United States)

    Zhang, Juan; Shi, Jing-Shu; Li, Jian

    2015-08-01

    MSC-exosomes are homogeneous menbrane vesicles with diameter 40-100 nm, derived from mesenchymal stem cells at physiological or pathology conditions. MSC-exosomes contain a great quantity and a wide variety of bioactive substances, such as proteins and miRNA. MSC-exosomes transfer bioactive substances to recipient cells to affect their functions through membrane fusion or endocytosis, which like the storage pools of signal vehicles for cell-to-cell comunication in vivo. MSC-exosomes can mimic the beneficial effect of MSC treatment, such as the promotion of tissue repair or the immune regulation. The biological property and functions of MSC-exosomes are reviwed in this article. PMID:26314469

  13. The regulation of cancer cell migration by lung cancer cell-derived exosomes through TGF-β and IL-10

    OpenAIRE

    Wang, Yuzhou; Yi, Jun; CHEN, XINGGUI; Zhang, Ying; Xu, Meng; Yang, Zhixiong

    2015-01-01

    Tumorigenesis has been considered to be as a result of abnormal cell-cell communication. It has been proposed that exosomes act as communicators between tumors and their microenvironment and have been demonstrated to be involved in tumorigenesis and subsequent metastasis. However, the mechanisms underlying the role of exosomes in these processes remains elusive. The present study sought to determine the underlying mechanisms. Using two lung cancer cell lines, it was demonstrated that exosomes...

  14. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins.

    Science.gov (United States)

    Chan, Yuk-Kit; Zhang, Huoming; Liu, Pei; Tsao, Sai-Wah; Lung, Maria Li; Mak, Nai-Ki; Ngok-Shun Wong, Ricky; Ying-Kit Yue, Patrick

    2015-10-15

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1 and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future.

  15. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit

    2015-04-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  16. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Atay, Safinur [Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY (United States); Gercel-Taylor, Cicek [Obstetrics, Gynecology and Women' s Health, University of Louisville School of Medicine, Louisville, KY (United States); Kesimer, Mehmet [Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Taylor, Douglas D., E-mail: ddtaylor@louisville.edu [Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY (United States); Obstetrics, Gynecology and Women' s Health, University of Louisville School of Medicine, Louisville, KY (United States)

    2011-05-01

    Exosomes represent an important intercellular communication vehicle, mediating events essential for the decidual microenvironment. While we have demonstrated exosome induction of pro-inflammatory cytokines, to date, no extensive characterization of trophoblast-derived exosomes has been provided. Our objective was to provide a morphologic and proteomic characterization of these exosomes. Exosomes were isolated from the conditioned media of Swan71 human trophoblast cells by ultrafiltration and ultracentrifugation. These were analyzed for density (sucrose density gradient centrifugation), morphology (electron microscopy), size (dynamic light scattering) and protein composition (Ion Trap mass spectrometry and western immunoblotting). Based on density gradient centrifugation, microvesicles from Sw71 cells exhibit a density between 1.134 and 1.173 g/ml. Electron microscopy demonstrated that microvesicles from Sw71 cells exhibit the characteristic cup-shaped morphology of exosomes. Dynamic light scattering showed a bell-shaped curve, indicating a homogeneous population with a mean size of 165 nm {+-} 0.5 nm. Ion Trap mass spectrometry demonstrated the presence of exosome marker proteins (including CD81, Alix, cytoskeleton related proteins, and Rab family). The MS results were confirmed by western immunoblotting. Based on morphology, density, size and protein composition, we defined the release of exosomes from extravillous trophoblast cells and provide their first extensive characterization. This characterization is essential in furthering our understanding of 'normal' early pregnancy.

  17. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells

    International Nuclear Information System (INIS)

    Exosomes represent an important intercellular communication vehicle, mediating events essential for the decidual microenvironment. While we have demonstrated exosome induction of pro-inflammatory cytokines, to date, no extensive characterization of trophoblast-derived exosomes has been provided. Our objective was to provide a morphologic and proteomic characterization of these exosomes. Exosomes were isolated from the conditioned media of Swan71 human trophoblast cells by ultrafiltration and ultracentrifugation. These were analyzed for density (sucrose density gradient centrifugation), morphology (electron microscopy), size (dynamic light scattering) and protein composition (Ion Trap mass spectrometry and western immunoblotting). Based on density gradient centrifugation, microvesicles from Sw71 cells exhibit a density between 1.134 and 1.173 g/ml. Electron microscopy demonstrated that microvesicles from Sw71 cells exhibit the characteristic cup-shaped morphology of exosomes. Dynamic light scattering showed a bell-shaped curve, indicating a homogeneous population with a mean size of 165 nm ± 0.5 nm. Ion Trap mass spectrometry demonstrated the presence of exosome marker proteins (including CD81, Alix, cytoskeleton related proteins, and Rab family). The MS results were confirmed by western immunoblotting. Based on morphology, density, size and protein composition, we defined the release of exosomes from extravillous trophoblast cells and provide their first extensive characterization. This characterization is essential in furthering our understanding of 'normal' early pregnancy.

  18. MicroRNA and protein profiling of brain metastasis competent cell-derived exosomes.

    Directory of Open Access Journals (Sweden)

    Laura Camacho

    Full Text Available Exosomes are small membrane vesicles released by most cell types including tumor cells. The intercellular exchange of proteins and genetic material via exosomes is a potentially effective approach for cell-to-cell communication and it may perform multiple functions aiding to tumor survival and metastasis. We investigated microRNA and protein profiles of brain metastatic (BM versus non-brain metastatic (non-BM cell-derived exosomes. We studied the cargo of exosomes isolated from brain-tropic 70W, MDA-MB-231BR, and circulating tumor cell brain metastasis-selected markers (CTC1BMSM variants, and compared them with parental non-BM MeWo, MDA-MB-231P and CTC1P cells, respectively. By performing microRNA PCR array we identified one up-regulated (miR-210 and two down-regulated miRNAs (miR-19a and miR-29c in BM versus non-BM exosomes. Second, we analyzed the proteomic content of cells and exosomes isolated from these six cell lines, and detected high expression of proteins implicated in cell communication, cell cycle, and in key cancer invasion and metastasis pathways. Third, we show that BM cell-derived exosomes can be internalized by non-BM cells and that they effectively transport their cargo into cells, resulting in increased cell adhesive and invasive potencies. These results provide a strong rationale for additional investigations of exosomal proteins and miRNAs towards more profound understandings of exosome roles in brain metastasis biogenesis, and for the discovery and application of non-invasive biomarkers for new therapies combating brain metastasis.

  19. More Than Tiny Sacks: Stem Cell Exosomes as Cell-Free Modality for Cardiac Repair.

    Science.gov (United States)

    Kishore, Raj; Khan, Mohsin

    2016-01-22

    Stem cell therapy provides immense hope for regenerating the pathological heart, yet has been marred by issues surrounding the effectiveness, unclear mechanisms, and survival of the donated cell population in the ischemic myocardial milieu. Poor survival and engraftment coupled to inadequate cardiac commitment of the adoptively transferred stem cells compromises the improvement in cardiac function. Various alternative approaches to enhance the efficacy of stem cell therapies and to overcome issues with cell therapy have been used with varied success. Cell-free components, such as exosomes enriched in proteins, messenger RNAs, and miRs characteristic of parental stem cells, represent a potential approach for treating cardiovascular diseases. Recently, exosomes from different kinds of stem cells have been effectively used to promote cardiac function in the pathological heart. The aim of this review is to summarize current research efforts on stem cell exosomes, including their potential benefits and limitations to develop a potentially viable therapy for cardiovascular problems.

  20. More Than Tiny Sacks: Stem Cell Exosomes as Cell-Free Modality for Cardiac Repair.

    Science.gov (United States)

    Kishore, Raj; Khan, Mohsin

    2016-01-22

    Stem cell therapy provides immense hope for regenerating the pathological heart, yet has been marred by issues surrounding the effectiveness, unclear mechanisms, and survival of the donated cell population in the ischemic myocardial milieu. Poor survival and engraftment coupled to inadequate cardiac commitment of the adoptively transferred stem cells compromises the improvement in cardiac function. Various alternative approaches to enhance the efficacy of stem cell therapies and to overcome issues with cell therapy have been used with varied success. Cell-free components, such as exosomes enriched in proteins, messenger RNAs, and miRs characteristic of parental stem cells, represent a potential approach for treating cardiovascular diseases. Recently, exosomes from different kinds of stem cells have been effectively used to promote cardiac function in the pathological heart. The aim of this review is to summarize current research efforts on stem cell exosomes, including their potential benefits and limitations to develop a potentially viable therapy for cardiovascular problems. PMID:26838317

  1. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression.

    Science.gov (United States)

    Cui, Yazhou; Luan, Jing; Li, Haiying; Zhou, Xiaoyan; Han, Jinxiang

    2016-01-01

    Mineralizing osteoblasts (MOBs) can release exosomes, although the functional significance remains unclear. In the present study, we demonstrate that exosomes derived from mineralizing pre-osteoblast MC3T3-E1 cells can promote bone marrow stromal cell (ST2) differentiation to osteoblasts. We reveal that MOB-derived exosomes significantly influence miRNA profiles in recipient ST2 cells, and these changes tend to activate the Wnt signaling pathway by inhibiting Axin1 expression and increasing β-catenin expression. We also suggest that MOB derived-exosomes partly induce the variation in miRNA expression in recipient ST2 cells by exosomal miRNA transfer. These findings suggest an exosome-mediated mode of cell-to-cell communication in the osteogenic microenvironment, and also indicate the potential of MOB exosomes in bone tissue engineering.

  2. Energy-requiring uptake of prostasomes and PC3 cell-derived exosomes into non-malignant and malignant cells

    OpenAIRE

    Panaretakis, Theocharis; Ronquist, Karl Göran; Sanchez, Claire; Dubois, Louise; Chioureas, Dimitris; Fonseca, Pedro; Larsson, Anders; Ullén, Anders; Yachnin, Jeffrey; Ronquist, Gunnar

    2016-01-01

    Epithelial cells lining the prostate acini release, in a regulated manner (exocytosis), nanosized vesicles called prostasomes that belong to the exosome family. Prostate cancer cells have preserved this ability to generate and export exosomes to the extracellular space. We previously demonstrated that human prostasomes have an ATP-forming capacity. In this study, we compared the capacity of extracellular vesicles (EVs) to generate ATP between normal seminal prostasomes and exosomes secreted b...

  3. Stem Cell-Derived Exosomes: A Potential Alternative Therapeutic Agent in Orthopaedics

    Directory of Open Access Journals (Sweden)

    John Burke

    2016-01-01

    Full Text Available Within the field of regenerative medicine, many have sought to use stem cells as a promising way to heal human tissue; however, in the past few years, exosomes (packaged vesicles released from cells have shown more exciting promise. Specifically, stem cell-derived exosomes have demonstrated great ability to provide therapeutical benefits. Exosomal products can include miRNA, other genetic products, proteins, and various factors. They are released from cells in a paracrine fashion in order to combat local cellular stress. Because of this, there are vast benefits that medicine can obtain from stem cell-derived exosomes. If exosomes could be extracted from stem cells in an efficient manner and packaged with particular regenerative products, then diseases such as rheumatoid arthritis, osteoarthritis, bone fractures, and other maladies could be treated with cell-free regenerative medicine via exosomes. Many advances must be made to get to this point, and the following review highlights the current advances of stem cell-derived exosomes with particular attention to regenerative medicine in orthopaedics.

  4. Mast Cell-Derived Exosomes Promote Th2 Cell Differentiation via OX40L-OX40 Ligation.

    Science.gov (United States)

    Li, Fei; Wang, Yuping; Lin, Lihui; Wang, Juan; Xiao, Hui; Li, Jia; Peng, Xia; Dai, Huirong; Li, Li

    2016-01-01

    Exosomes are nanovesicles released by different cell types, such as dendritic cells (DCs), mast cells (MCs), and tumor cells. Exosomes of different origin play a role in antigen presentation and modulation of immune response to infectious disease. In this study, we demonstrate that mast cells and CD4(+) T cells colocated in peritoneal lymph nodes from BALB/c mouse. Further, bone marrow-derived mast cells (BMMCs) constitutively release exosomes, which express CD63 and OX40L. BMMC-exosomes partially promoted the proliferation of CD4(+) T cells. BMMC-exosomes significantly enhanced the differentiation of naive CD4(+) T cells to Th2 cells in a surface contact method, and this ability was partly inhibited by the addition of anti-OX40L Ab. In conclusion, BMMC-exosomes promoted the proliferation and differentiation of Th2 cells via ligation of OX40L and OX40 between exosomes and T cells. This method represents a novel mechanism, in addition to direct cell surface contacts, soluble mediators, and synapses, to regulate T cell actions by BMMC-exosomes. PMID:27066504

  5. Mast Cell-Derived Exosomes Promote Th2 Cell Differentiation via OX40L-OX40 Ligation

    Directory of Open Access Journals (Sweden)

    Fei Li

    2016-01-01

    Full Text Available Exosomes are nanovesicles released by different cell types, such as dendritic cells (DCs, mast cells (MCs, and tumor cells. Exosomes of different origin play a role in antigen presentation and modulation of immune response to infectious disease. In this study, we demonstrate that mast cells and CD4+ T cells colocated in peritoneal lymph nodes from BALB/c mouse. Further, bone marrow-derived mast cells (BMMCs constitutively release exosomes, which express CD63 and OX40L. BMMC-exosomes partially promoted the proliferation of CD4+ T cells. BMMC-exosomes significantly enhanced the differentiation of naive CD4+ T cells to Th2 cells in a surface contact method, and this ability was partly inhibited by the addition of anti-OX40L Ab. In conclusion, BMMC-exosomes promoted the proliferation and differentiation of Th2 cells via ligation of OX40L and OX40 between exosomes and T cells. This method represents a novel mechanism, in addition to direct cell surface contacts, soluble mediators, and synapses, to regulate T cell actions by BMMC-exosomes.

  6. β-Elemene Reverses Chemoresistance of Breast Cancer Cells by Reducing Resistance Transmission via Exosomes

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2015-07-01

    Full Text Available Background: Currently, exosomes that act as mediators of intercellular communication are being researched extensively. Our previous studies confirmed that these exosomes contain microRNAs (miRNAs that could alter chemo-susceptibility, which is partly attributed to the successful intercellular transfer of multidrug resistance (MDR-specific miRNAs. We also confirmed that β-elemene could influence MDR-related miRNA expression and regulate the expression of the target genes PTEN and Pgp, which may lead to the reversal of the chemoresistant breast cancer (BCA cells. We are the first to report these findings, and we propose the following logical hypothesis: β-elemene can mediate MDR-related miRNA expression in cells, thereby affecting the exosome contents, reducing chemoresistance transmission via exosomes, and reversing the drug resistance of breast cancer cells. Methods: MTT-cytotoxic, miRNA microarray, real-time quantitative PCR, Dual Luciferase Activity Assay, and Western blot analysis were performed to investigate the impact of β-elemene on the expression of chemoresistance specific miRNA and PTEN as well as Pgp in chemoresistant BCA exosomes. Results: Drug resistance can be reversed by β-elemene related to exosomes. There were 104 differentially expressed miRNAs in the exosomes of two chemoresistant BCA cells: adriacin (Adr - resistant MCF-7 cells (MCF-7/Adr and docetaxel (Doc - resistant MCF-7 cells (MCF-7/Doc that underwent treatment. Of these, 31 miRNAs were correlated with the constant changes in the MDR. The expression of miR-34a and miR-452 can lead to changes in the characteristics of two chemoresistant BCA exosomes: MCF-7/Adr exosomes (A/exo and MCF-7/Doc exosomes (D/exo. The PTEN expression affected by β-elemene was significantly increased, and the Pgp expression affected by β-elemene was significantly decreased in both cells and exosomes. β-elemene induced a significant increase in the apoptosis rate in both MCF-7/Doc and MCF-7

  7. Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking.

    Science.gov (United States)

    Lee, Hee Doo; Kim, Yeon Hyang; Kim, Doo-Sik

    2014-04-01

    Integrin trafficking, including internalization, recycling, and lysosomal degradation, is crucial for the regulation of cellular functions. Exosomes, nano-sized extracellular vesicles, are believed to play important roles in intercellular communications. This study demonstrates that exosomes released from human macrophages negatively regulate endothelial cell migration through control of integrin trafficking. Macrophage-derived exosomes promote internalization of integrin β1 in primary HUVECs. The internalized integrin β1 persistently accumulates in the perinuclear region and is not recycled back to the plasma membrane. Experimental results indicate that macrophage-derived exosomes stimulate trafficking of internalized integrin β1 to lysosomal compartments with a corresponding decrease in the integrin destined for recycling endosomes, resulting in proteolytic degradation of the integrin. Moreover, ubiquitination of HUVEC integrin β1 is enhanced by the exosomes, and exosome-mediated integrin degradation is blocked by bafilomycin A, a lysosomal degradation inhibitor. Macrophage-derived exosomes were also shown to effectively suppress collagen-induced activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and HUVEC migration, which are both dependent on integrin β1. These observations provide new insight into the functional significance of exosomes in the regulation of integrin trafficking.

  8. Pancreatic cancer stem cell markers and exosomes - the incentive push.

    Science.gov (United States)

    Heiler, Sarah; Wang, Zhe; Zöller, Margot

    2016-07-14

    Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX. PMID:27468191

  9. Pancreatic cancer stem cell markers and exosomes - the incentive push

    Science.gov (United States)

    Heiler, Sarah; Wang, Zhe; Zöller, Margot

    2016-01-01

    Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX. PMID:27468191

  10. The study of exosomes and microvesicles secreted from breast cancer cell lines

    OpenAIRE

    Zheng, Ying

    2012-01-01

    Exosomes are small secreted vesicles of endocytic origin with a size range of 50-150 nm. They are secreted by many cell types and display multiple biological functions including immune-activation, immune-suppression, antigen presentation, and the shuttling of mRNA and miRNA, as well as other cargo. We have characterised the exosomes secreted from two breast cancer cell lines, MDA-MB-231 and MCF7. Exosomes secreted from both cell lines display typical markers including ALIX, Tsg101, CD9 and CD...

  11. MSCs-Derived Exosomes: Cell-Secreted Nanovesicles with Regenerative Potential.

    Science.gov (United States)

    Marote, Ana; Teixeira, Fábio G; Mendes-Pinheiro, Bárbara; Salgado, António J

    2016-01-01

    Exosomes are membrane-enclosed nanovesicles (30-150 nm) that shuttle active cargoes between different cells. These tiny extracellular vesicles have been recently isolated from mesenchymal stem cells (MSCs) conditioned medium, a population of multipotent cells identified in several adult tissues. MSCs paracrine activity has been already shown to be the key mediator of their elicited regenerative effects. On the other hand, the individual contribution of MSCs-derived exosomes for these effects is only now being unraveled. The administration of MSCs-derived exosomes has been demonstrated to restore tissue function in multiple diseases/injury models and to induce beneficial in vitro effects, mainly mediated by exosomal-enclosed miRNAs. Additionally, the source and the culture conditions of MSCs have been shown to influence the regenerative responses induced by exosomes. Therefore, these studies reveal that MSCs-derived exosomes hold a great potential for cell-free therapies that are safer and easier to manipulate than cell-based products. Nevertheless, this is an emerging research field and hence, further studies are required to understand the full dimension of this complex intercellular communication system and how it can be optimized to take full advantage of its therapeutic effects. In this mini-review, we summarize the most significant new advances in the regenerative properties of MSCs-derived exosomes and discuss the molecular mechanisms underlying these effects. PMID:27536241

  12. Exosomes as potent cell-free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naive Tc1 lymphocytes leading to tumor rejection.

    Science.gov (United States)

    Chaput, Nathalie; Schartz, Nöel E C; André, Fabrice; Taïeb, Julien; Novault, Sophie; Bonnaventure, Pierre; Aubert, Nathalie; Bernard, Jacky; Lemonnier, François; Merad, Miriam; Adema, Gosse; Adams, Malcolm; Ferrantini, Maria; Carpentier, Antoine F; Escudier, Bernard; Tursz, Thomas; Angevin, Eric; Zitvogel, Laurence

    2004-02-15

    Ideal vaccines should be stable, safe, molecularly defined, and out-of-shelf reagents efficient at triggering effector and memory Ag-specific T cell-based immune responses. Dendritic cell-derived exosomes could be considered as novel peptide-based vaccines because exosomes harbor a discrete set of proteins, bear functional MHC class I and II molecules that can be loaded with synthetic peptides of choice, and are stable reagents that were safely used in pioneering phase I studies. However, we showed in part I that exosomes are efficient to promote primary MHC class I-restricted effector CD8(+) T cell responses only when transferred onto mature DC in vivo. In this work, we bring evidence that among the clinically available reagents, Toll-like receptor 3 and 9 ligands are elective adjuvants capable of triggering efficient MHC-restricted CD8(+) T cell responses when combined to exosomes. Exosome immunogenicity across species allowed to verify the efficacy of good manufactory procedures-manufactured human exosomes admixed with CpG oligonucleotides in prophylactic and therapeutic settings of melanoma in HLA-A2 transgenic mice. CpG adjuvants appear to be ideal adjuvants for exosome-based cancer vaccines.

  13. Therapeutic uses of exosomes

    OpenAIRE

    Suntres, Zacharias E.; Smith, Milton G.; Momen-Heravi, Fatemeh; Hu, Jie; Zhang, Xin; Wu, Ying; Zhu, Hongguang; Wang, Jiping; Zhou, Jian; KUO, Winston Patrick

    2013-01-01

    Exosomes are membrane vesicles with a diameter of 40‐100 nm that are secreted by many cell types into the extracellular milieu. Exosomes are found in cell culture supernatants and in different biological fluids and are known to be secreted by most cell types under normal and pathological conditions. Considerable research is focusing on the exploitation of exosomes in biological fluids for biomarkers in the diagnosis of disease. More recently, exosomes are being exploit...

  14. Application of a Persistent Heparin Treatment Inhibits the Malignant Potential of Oral Squamous Carcinoma Cells Induced by Tumor Cell-Derived Exosomes

    OpenAIRE

    Sento, Shinya; Sasabe, Eri; Yamamoto, Tetsuya

    2016-01-01

    Exosomes are 30–100 nm-sized membranous vesicles, secreted from a variety of cell types into their surrounding extracellular space. Various exosome components including lipids, proteins, and nucleic acids are transferred to recipient cells and affect their function and activity. Numerous studies have showed that tumor cell-derived exosomes play important roles in tumor growth and progression. However, the effect of exosomes released from oral squamous cell carcinoma (OSCC) into the tumor micr...

  15. Application of a Persistent Heparin Treatment Inhibits the Malignant Potential of Oral Squamous Carcinoma Cells Induced by Tumor Cell-Derived Exosomes.

    Science.gov (United States)

    Sento, Shinya; Sasabe, Eri; Yamamoto, Tetsuya

    2016-01-01

    Exosomes are 30-100 nm-sized membranous vesicles, secreted from a variety of cell types into their surrounding extracellular space. Various exosome components including lipids, proteins, and nucleic acids are transferred to recipient cells and affect their function and activity. Numerous studies have showed that tumor cell-derived exosomes play important roles in tumor growth and progression. However, the effect of exosomes released from oral squamous cell carcinoma (OSCC) into the tumor microenvironment remains unclear. In the present study, we isolated exosomes from OSCC cells and investigated the influence of OSCC cell-derived exosomes on the tumor cell behavior associated with tumor development. We demonstrated that OSCC cell-derived exosomes were taken up by OSCC cells themselves and significantly promoted proliferation, migration, and invasion through the activation of the PI3K/Akt, MAPK/ERK, and JNK-1/2 pathways in vitro. These effects of OSCC cell-derived exosomes were obviously attenuated by treatment with PI3K, ERK-1/2, and JNK-1/2 pharmacological inhibitors. Furthermore, the growth rate of tumor xenografts implanted into nude mice was promoted by treatment with OSCC cell-derived exosomes. The uptake of exosomes by OSCC cells and subsequent tumor progression was abrogated in the presence of heparin. Taken together, these data suggest that OSCC cell-derived exosomes might be a novel therapeutic target and the use of heparin to inhibit the uptake of OSCC-derived exosomes by OSCC cells may be useful for treatment.

  16. Isolation and Characterization of Exosomes Derived from Tumor Cells Genetically Expressing Model Antigen

    Institute of Scientific and Technical Information of China (English)

    修方明; 杨云山; 蔡志坚; 王建莉; 曹雪涛

    2004-01-01

    Tumor cell-derived exosomes have been proposed as non-cellular nanomeric vaccine which could induce potent antitumor immune response in mice. In order to develop the protocols to prepare tumor cell-derived exosomes for basic research and clinical trail, we isolated exosomes from ovalbumin (OVA)-expressing thymoma cells EG. 7-OVA by various preparation methods. We demonstrate the non-sedimentation method is simple, rapid, efficient with higher yield and purity of exosomes. EG. 7-OVA-derived exosomes are 40-100 nm in diameter sequestered by lipid bi-layer, and contain rich heat shock protein (HSP) and OVA. The result of the size distribution determination is consistent with the calculation by the visual microscopic inspection, with 90.4% particles at the range of 50-90 nm. Moreover, as a model antigen of the EG. 7 cells, OVA concentration in EG.7-derived exosomes can be regarded as a good quality control parameter. Therefore, we have established a platform to efficiently prepare exosomes for tumor immunotherapy.

  17. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts.

    Science.gov (United States)

    Paggetti, Jerome; Haderk, Franziska; Seiffert, Martina; Janji, Bassam; Distler, Ute; Ammerlaan, Wim; Kim, Yeoun Jin; Adam, Julien; Lichter, Peter; Solary, Eric; Berchem, Guy; Moussay, Etienne

    2015-08-27

    Exosomes derived from solid tumor cells are involved in immune suppression, angiogenesis, and metastasis, but the role of leukemia-derived exosomes has been less investigated. The pathogenesis of chronic lymphocytic leukemia (CLL) is stringently associated with a tumor-supportive microenvironment and a dysfunctional immune system. Here, we explore the role of CLL-derived exosomes in the cellular and molecular mechanisms by which malignant cells create this favorable surrounding. We show that CLL-derived exosomes are actively incorporated by endothelial and mesenchymal stem cells ex vivo and in vivo and that the transfer of exosomal protein and microRNA induces an inflammatory phenotype in the target cells, which resembles the phenotype of cancer-associated fibroblasts (CAFs). As a result, stromal cells show enhanced proliferation, migration, and secretion of inflammatory cytokines, contributing to a tumor-supportive microenvironment. Exosome uptake by endothelial cells increased angiogenesis ex vivo and in vivo, and coinjection of CLL-derived exosomes and CLL cells promoted tumor growth in immunodeficient mice. Finally, we detected α-smooth actin-positive stromal cells in lymph nodes of CLL patients. These findings demonstrate that CLL-derived exosomes actively promote disease progression by modulating several functions of surrounding stromal cells that acquire features of cancer-associated fibroblasts.

  18. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein.

    Science.gov (United States)

    Jaworski, Elizabeth; Narayanan, Aarthi; Van Duyne, Rachel; Shabbeer-Meyering, Shabana; Iordanskiy, Sergey; Saifuddin, Mohammed; Das, Ravi; Afonso, Philippe V; Sampey, Gavin C; Chung, Myung; Popratiloff, Anastas; Shrestha, Bindesh; Sehgal, Mohit; Jain, Pooja; Vertes, Akos; Mahieux, Renaud; Kashanchi, Fatah

    2014-08-01

    Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells.

  19. Hijacking the Cellular Mail: Exosome Mediated Differentiation of Mesenchymal Stem Cells

    OpenAIRE

    Raghuvaran Narayanan; Chun-Chieh Huang; Sriram Ravindran

    2016-01-01

    Bone transplantation is one of the most widely performed clinical procedures. Consequently, bone regeneration using mesenchymal stem cells and tissue engineering strategies is one of the most widely researched fields in regenerative medicine. Recent scientific consensus indicates that a biomimetic approach is required to achieve proper regeneration of any tissue. Exosomes are nanovesicles secreted by cells that act as messengers that influence cell fate. Although exosomal function has been st...

  20. Exosomes: Mechanisms of Uptake

    OpenAIRE

    McKelvey, Kelly J.; Katie L. Powell; Ashton, Anthony W.; Morris, Jonathan M.; McCracken, Sharon A.

    2015-01-01

    Exosomes are 30–100 nm microvesicles which contain complex cellular signals of RNA, protein and lipids. Because of this, exosomes are implicated as having limitless therapeutic potential for the treatment of cancer, pregnancy complications, infections, and autoimmune diseases. To date we know a considerable amount about exosome biogenesis and secretion, but there is a paucity of data regarding the uptake of exosomes by immune and non- immune cell types (e.g., cancer cells) and the internal si...

  1. High LIN28A Expressing Ovarian Cancer Cells Secrete Exosomes That Induce Invasion and Migration in HEK293 Cells.

    Science.gov (United States)

    Enriquez, Vanessa A; Cleys, Ellane R; Da Silveira, Juliano C; Spillman, Monique A; Winger, Quinton A; Bouma, Gerrit J

    2015-01-01

    Epithelial ovarian cancer is the most aggressive and deadly form of ovarian cancer and is the most lethal gynecological malignancy worldwide; therefore, efforts to elucidate the molecular factors that lead to epithelial ovarian cancer are essential to better understand this disease. Recent studies reveal that tumor cells release cell-secreted vesicles called exosomes and these exosomes can transfer RNAs and miRNAs to distant sites, leading to cell transformation and tumor development. The RNA-binding protein LIN28 is a known marker of stem cells and when expressed in cancer, it is associated with poor tumor outcome. We hypothesized that high LIN28 expressing ovarian cancer cells secrete exosomes that can be taken up by nontumor cells and cause changes in gene expression and cell behavior associated with tumor development. IGROV1 cells were found to contain high LIN28A and secrete exosomes that were taken up by HEK293 cells. Moreover, exposure to these IGROV1 secreted exosomes led to significant increases in genes involved in Epithelial-to-Mesenchymal Transition (EMT), induced HEK293 cell invasion and migration. These changes were not observed with exosomes secreted by OV420 cells, which contain no detectable amounts of LIN28A or LIN28B. No evidence was found of LIN28A transfer from IGROV1 exosomes to HEK293 cells.

  2. Placenta Mesenchymal Stem Cell Derived Exosomes Confer Plasticity on Fibroblasts.

    Science.gov (United States)

    Tooi, Masayuki; Komaki, Motohiro; Morioka, Chikako; Honda, Izumi; Iwasaki, Kengo; Yokoyama, Naoki; Ayame, Hirohito; Izumi, Yuichi; Morita, Ikuo

    2016-07-01

    Mesenchymal stem cell (MSC)-conditioned medium (MSC-CM) has been reported to enhance wound healing. Exosomes contain nucleic acids, proteins, and lipids, and function as an intercellular communication vehicle for mediating some paracrine effects. However, the function of MSC-derived exosomes (MSC-exo) remains elusive. In this study, we isolated human placenta MSC (PlaMSC)-derived exosomes (PlaMSC-exo) and examined their function in vitro. PlaMSCs were isolated from human term placenta using enzymatic digestion. PlaMSC-exo were prepared from the conditioned medium of PlaMSC (PlaMSC-CM) by ultracentrifugation. The expression of stemness-related genes, such as OCT4 and NANOG, in normal adult human dermal fibroblasts (NHDF) after incubation with PlaMSC-exo was measured by real-time reverse transcriptase PCR analysis (real-time PCR). The effect of PlaMSC-exo on OCT4 transcription activity was assessed using Oct4-EGFP reporter mice-derived dermal fibroblasts. The stimulating effects of PlaMSC-exo on osteoblastic and adipocyte-differentiation of NHDF were evaluated by alkaline phosphatase (ALP), and Alizarin red S- and oil red O-staining, respectively. The expression of osteoblast- and adipocyte-related genes was also assessed by real-time PCR. The treatment of NHDF with PlaMSC-exo significantly upregulated OCT4 and NANOG mRNA expression. PlaMSC-exo also enhanced OCT4 transcription. The NHDF treated with PlaMSC-exo exhibited osteoblastic and adipocyte-differentiation in osteogenic and adipogenic induction media. PlaMSC-exo increase the expression of OCT4 and NANOG mRNA in fibroblasts. As a result, PlaMSC-exo influence the differentiation competence of fibroblasts to both osteoblastic and adipocyte-differentiation. It shows a new feature of MSCs and the possibility of clinical application of MSC-exo. J. Cell. Biochem. 117: 1658-1670, 2016. © 2015 Wiley Periodicals, Inc. PMID:26640165

  3. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1.

    NARCIS (Netherlands)

    Nolte-'t Hoen, E.N.; Buschow, S.I.; Anderton, S.M.; Stoorvogel, W.; Wauben, M.H.M.

    2009-01-01

    Dendritic cells (DCs) are known to secrete exosomes that transfer membrane proteins, like major histocompatibility complex class II, to other DCs. Intercellular transfer of membrane proteins is also observed during cognate interactions between DCs and CD4(+) T cells. The acquired proteins are functi

  4. Identification and Characterization of 293T Cell-Derived Exosomes by Profiling the Protein, mRNA and MicroRNA Components

    Science.gov (United States)

    Li, Dameng; Wang, Jifeng; Hou, Dongxia; Jiang, Xiaohong; Zhang, Junfeng; Wang, Jin; Zen, Ke; Yang, Fuquan; Zhang, Chen-Yu

    2016-01-01

    Cell-derived exosomes are leading candidates for in vivo drug delivery carriers. In particular, exosomes derived from 293T cells are used most frequently, although exosome dosing has varied greatly among studies. Considering their biological origin, it is crucial to characterize the molecular composition of exosomes if large doses are to be administered in clinical settings. In this study, we present the first comprehensive analysis of the protein, messenger RNA and microRNA profiles of 293T cell-derived exosomes; then, we characterized these data using Gene Ontology annotation and Kyoto Encyclopedia for Genes and Genomes pathway analysis. Our study will provide the basis for the selection of 293T cell-derived exosome drug delivery systems. Profiling the exosomal signatures of 293T cells will lead to a better understanding of 293T exosome biology and will aid in the identification of any harmful factors in exosomes that could cause adverse clinical effects. PMID:27649079

  5. Regulatory T cell derived Exosomes: possible therapeutic and diagnostic tools in transplantation

    Directory of Open Access Journals (Sweden)

    Akansha eAgarwal

    2014-11-01

    Full Text Available Exosomes are extracellular vesicles released by many cells of the body. These small vesicles play an important part in intercellular communication both in the local environment and systemically, facilitating in the transfer of proteins, cytokines as well as miRNA between cells. The observation that exosomes isolated from immune cells such as dendritic cells (DCs modulate the immune response has paved the way for these structures to be considered as potential immunotherapeutic reagents. Indeed clinical trials using DC derived exosomes to facilitate immune responses to specific cancer antigens are now underway. Exosomes can also have a negative effect on the immune response and exosomes isolated from regulatory T cells (Tregs and other subsets of T cells have been shown to have immune suppressive capacities. Here we review what is currently known about Treg derived exosomes and their contribution to immune regulation, as well as highlighting their possible therapeutic potential for preventing graft rejection, and their possible use as diagnostic tools to assess transplant outcome.

  6. Cancer becomes wasteful: emerging roles of exosomes in cell-fate determination

    Directory of Open Access Journals (Sweden)

    Franz Wendler

    2013-09-01

    Full Text Available Extracellular vesicles (EVs, including exosomes, have been widely recognized for their role in intercellular communication of the immune response system. In the past few years, significance has been given to exosomes in the induction and modulation of cell-fate-inducing signalling pathways, such as the Hedgehog (Hh, Wnts, Notch, transforming growth factor (TGF-β, epidermal growth factor (EGF and fibroblast growth factor (FGF pathways, placing them in the wider context of development and also of cancer. These protein families induce signalling cascades responsible for tissue specification, homeostasis and maintenance. Exosomes contribute to cell-fate signal secretion, and vice versa exosome secretion can be induced by these proteins. Interestingly, exosomes can also transfer their mRNA to host cells or modulate the signalling pathways directly by the removal of downstream effector molecules from the cell. Surprisingly, much of what we know about the function of exosomes in cell determination is gathered from pathological transformed cancer cells and wound healing while data about their biogenesis and biology in normal developing and adult tissue lag behind. In this report, we will summarize some of the published literature and point to current advances and questions in this fast-developing topic. In a brief foray, we will also update and shortly discuss their potential in diagnosis and targeted cancer treatment.

  7. Glucose Starvation in Cardiomyocytes Enhances Exosome Secretion and Promotes Angiogenesis in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Nahuel A Garcia

    Full Text Available Cardiomyocytes (CMs and endothelial cells (ECs have an intimate anatomical relationship that is essential for maintaining normal development and function in the heart. Little is known about the mechanisms that regulate cardiac and endothelial crosstalk, particularly in situations of acute stress when local active processes are required to regulate endothelial function. We examined whether CM-derived exosomes could modulate endothelial function. Under conditions of glucose deprivation, immortalized H9C2 cardiomyocytes increase their secretion of exosomes. CM-derived exosomes are loaded with a broad repertoire of miRNA and proteins in a glucose availability-dependent manner. Gene Ontology (GO analysis of exosome cargo molecules identified an enrichment of biological process that could alter EC activity. We observed that addition of CM-derived exosomes to ECs induced changes in transcriptional activity of pro-angiogenic genes. Finally, we demonstrated that incubation of H9C2-derived exosomes with ECs induced proliferation and angiogenesis in the latter. Thus, exosome-mediated communication between CM and EC establishes a functional relationship that could have potential implications for the induction of local neovascularization during acute situations such as cardiac injury.

  8. Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Piroon Jenjaroenpun

    2013-11-01

    Full Text Available Exosomes are nanosized (30–100 nm membrane vesicles secreted by most cell types. Exosomes have been found to contain various RNA species including miRNA, mRNA and long non-protein coding RNAs. A number of cancer cells produce elevated levels of exosomes. Because exosomes have been isolated from most body fluids they may provide a source for non-invasive cancer diagnostics. Transcriptome profiling that uses deep-sequencing technologies (RNA-Seq offers enormous amount of data that can be used for biomarkers discovery, however, in case of exosomes this approach was applied only for the analysis of small RNAs. In this study, we utilized RNA-Seq technology to analyze RNAs present in microvesicles secreted by human breast cancer cell lines. Exosomes were isolated from the media conditioned by two human breast cancer cell lines, MDA-MB-231 and MDA-MB-436. Exosomal RNA was profiled using the Ion Torrent semiconductor chip-based technology. Exosomes were found to contain various classes of RNA with the major class represented by fragmented ribosomal RNA (rRNA, in particular 28S and 18S rRNA subunits. Analysis of exosomal RNA content revealed that it reflects RNA content of the donor cells. Although exosomes produced by the two cancer cell lines shared most of the RNA species, there was a number of non-coding transcripts unique to MDA-MB-231 and MDA-MB-436 cells. This suggests that RNA analysis might distinguish exosomes produced by low metastatic breast cancer cell line (MDA-MB-436 from that produced by highly metastatic breast cancer cell line (MDA-MB-231. The analysis of gene ontologies (GOs associated with the most abundant transcripts present in exosomes revealed significant enrichment in genes encoding proteins involved in translation and rRNA and ncRNA processing. These GO terms indicate most expressed genes for both, cellular and exosomal RNA. For the first time, using RNA-seq, we examined the transcriptomes of exosomes secreted by human breast

  9. Exosome-mediated transfer from the tumor microenvironment increases TGFβ signaling in squamous cell carcinoma.

    Science.gov (United States)

    Languino, Lucia R; Singh, Amrita; Prisco, Marco; Inman, Gareth J; Luginbuhl, Adam; Curry, Joseph M; South, Andrew P

    2016-01-01

    Transforming growth factor-beta (TGFβ) signaling in cancer is context dependent and acts either as a tumor suppressor or a tumor promoter. Loss of function mutation in TGFβ type II receptor (TβRII) is a frequent event in oral cavity squamous cell carcinoma (SCC). Recently, heterogeneity of TGFβ response has been described at the leading edge of SCC and this heterogeneity has been shown to influence stem cell renewal and drug resistance. Because exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways we investigated whether exosomes contain components of the TGFβ signaling pathway and whether exosome transfer between stromal fibroblasts and tumor cells can influence TGFβ signaling in SCC. We demonstrate that exosomes purified from stromal fibroblasts isolated from patients with oral SCC contains TβRII. We also demonstrate that transfer of fibroblast exosomes increases TGFβ signaling in SCC keratinocytes devoid of TβRII which remain non-responsive to TGFβ ligand in the absence of exosome transfer. Overall our data show that stromal communication with tumor cells can direct TGFβ signaling in SCC. PMID:27347352

  10. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants.

    Science.gov (United States)

    Panfoli, Isabella; Ravera, Silvia; Podestà, Marina; Cossu, Claudia; Santucci, Laura; Bartolucci, Martina; Bruschi, Maurizio; Calzia, Daniela; Sabatini, Federica; Bruschettini, Matteo; Ramenghi, Luca Antonio; Romantsik, Olga; Marimpietri, Danilo; Pistoia, Vito; Ghiggeri, Gianmarco; Frassoni, Francesco; Candiano, Giovanni

    2016-04-01

    Exosomes are secreted nanovesicles that are able to transfer RNA and proteins to target cells. The emerging role of mesenchymal stem cell (MSC) exosomes as promoters of aerobic ATP synthesis restoration in damaged cells, prompted us to assess whether they contain an extramitochondrial aerobic respiration capacity. Exosomes were isolated from culture medium of human MSCs from umbilical cord of ≥37-wk-old newborns or between 28- to 30-wk-old newborns (i.e.,term or preterm infants). Characterization of samples was conducted by cytofluorometry. Oxidative phosphorylation capacity was assessed by Western blot analysis, oximetry, and luminometric and fluorometric analyses. MSC exosomes express functional respiratory complexes I, IV, and V, consuming oxygen. ATP synthesis was only detectable in exosomes from term newborns, suggestive of a specific mechanism that is not completed at an early gestational age. Activities are outward facing and comparable to those detected in mitochondria isolated from term MSCs. MSC exosomes display an unsuspected aerobic respiratory ability independent of whole mitochondria. This may be relevant for their ability to rescue cell bioenergetics. The differential oxidative metabolism of pretermvs.term exosomes sheds new light on the preterm newborn's clinical vulnerability. A reduced ability to repair damaged tissue and an increased capability to cope with anoxic environment for preterm infants can be envisaged.-Panfoli, I., Ravera, S., Podestà, M., Cossu, C., Santucci, L., Bartolucci, M., Bruschi, M., Calzia, D., Sabatini, F., Bruschettini, M., Ramenghi, L. A., Romantsik, O., Marimpietri, D., Pistoia, V., Ghiggeri, G., Frassoni, F., Candiano, G. Exosomes from human mesenchymal stem cells conduct aerobic metabolism in term and preterm newborn infants.

  11. The Novel Methods for Analysis of Exosomes Released from Endothelial Cells and Endothelial Progenitor Cells

    OpenAIRE

    Jinju Wang; Runmin Guo; Yi Yang; Bradley Jacobs; Suhong Chen; Ifeanyi Iwuchukwu; Gaines, Kenneth J.; Yanfang Chen; Richard Simman; Guiyuan Lv; Keng Wu; Bihl, Ji C.

    2016-01-01

    Exosomes (EXs) are cell-derived vesicles that mediate cell-cell communication and could serve as biomarkers. Here we described novel methods for purification and phenotyping of EXs released from endothelial cells (ECs) and endothelial progenitor cells (EPCs) by combining microbeads and fluorescence quantum dots (Q-dots®) techniques. EXs from the culture medium of ECs and EPCs were isolated and detected with cell-specific antibody conjugated microbeads and second antibody conjugated Q-dots by ...

  12. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

    OpenAIRE

    Raimondi, L.; De Luca, A.; Amodio, N; Manno, M.; Raccosta, S; Taverna, S; Bellavia, D; Naselli, F; Fontana, S; Schillaci, O.; Giardino, R.; Fini, M.; Tassone, P; A. Santoro; De Leo, G

    2015-01-01

    Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs ...

  13. Exosomes as Critical Agents of Cardiac Regeneration Triggered by Cell Therapy

    OpenAIRE

    Ahmed Gamal-Eldin Ibrahim; Ke Cheng; Eduardo Marbán

    2014-01-01

    Summary The CADUCEUS trial of cardiosphere-derived cells (CDCs) has shown that it may be possible to regenerate injured heart muscle previously thought to be permanently scarred. The mechanisms of benefit are known to be indirect, but the mediators have yet to be identified. Here we pinpoint exosomes secreted by human CDCs as critical agents of regeneration and cardioprotection. CDC exosomes inhibit apoptosis and promote proliferation of cardiomyocytes, while enhancing angiogenesis. Injection...

  14. Cell Infectivity in Relation to Bovine Leukemia Virus gp51 and p24 in Bovine Milk Exosomes

    OpenAIRE

    Yamada, Tetsuya; Shigemura, Hiroaki; ISHIGURO, Naotaka; Inoshima, Yasuo

    2013-01-01

    Exosomes are small membranous microvesicles (40–100 nm in diameter) and are extracellularly released from a wide variety of cells. Exosomes contain microRNA, mRNA, and cellular proteins, which are delivered into recipient cells via these exosomes, and play a role in intercellular communication. In bovine leukemia virus (BLV) infection of cattle, although it is thought to be a minor route of infection, BLV can be transmitted to calves via milk. Here, we investigated the association between exo...

  15. Cell Infectivity in Relation to Bovine Leukemia Virus gp51 and p24 in Bovine Milk Exosomes

    OpenAIRE

    Tetsuya Yamada; Hiroaki Shigemura; Naotaka Ishiguro; Yasuo Inoshima

    2013-01-01

    Exosomes are small membranous microvesicles (40-100 nm in diameter) and are extracellularly released from a wide variety of cells. Exosomes contain microRNA, mRNA, and cellular proteins, which are delivered into recipient cells via these exosomes, and play a role in intercellular communication. In bovine leukemia virus (BLV) infection of cattle, although it is thought to be a minor route of infection, BLV can be transmitted to calves via milk. Here, we investigated the association between exo...

  16. Ultrastructural Evidence of Exosome Secretion by Progenitor Cells in Adult Mouse Myocardium and Adult Human Cardiospheres

    Directory of Open Access Journals (Sweden)

    Lucio Barile

    2012-01-01

    Full Text Available The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34+ stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an “off-the-shelf” product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.

  17. Exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells to promote renal fibrosis

    OpenAIRE

    Xiao-ming Wu; Yan-bin Gao; Fang-qiang Cui; Na Zhang

    2016-01-01

    The interaction between glomerular endothelial cells (GECs) and glomerular mesangial cells (GMCs) is an essential aspect of diabetic nephropathy (DN). Therefore, understanding how GECs communicate with GMCs in the diabetic environment is crucial for the development of new targets for the prevention and treatment of DN. Exosomes, nanometer-sized extracellular membrane vesicles secreted by various cell types, play important roles in cell-to-cell communication via the transfer of mRNA, microRNA ...

  18. Exosomes: Mechanisms of Uptake

    Directory of Open Access Journals (Sweden)

    Kelly J. McKelvey

    2015-07-01

    Full Text Available Exosomes are 30–100 nm microvesicles which contain complex cellular signals of RNA, protein and lipids. Because of this, exosomes are implicated as having limitless therapeutic potential for the treatment of cancer, pregnancy complications, infections, and autoimmune diseases. To date we know a considerable amount about exosome biogenesis and secretion, but there is a paucity of data regarding the uptake of exosomes by immune and non- immune cell types (e.g., cancer cells and the internal signalling pathways by which these exosomes elicit a cellular response. Answering these questions is of para‐ mount importance.

  19. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes

    OpenAIRE

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-01-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns w...

  20. Do Neural Cells Communicate with Endothelial Cells via Secretory Exosomes and Microvesicles?

    Directory of Open Access Journals (Sweden)

    Neil R. Smalheiser

    2009-01-01

    Full Text Available Neurons, glial, cells, and brain tumor cells tissues release small vesicles (secretory exosomes and microvesicles, which may represent a novel mechanism by which neuronal activity could influence angiogenesis within the embryonic and mature brain. If CNS-derived vesicles can enter the bloodstream as well, they may communicate with endothelial cells in the peripheral circulation and with cells concerned with immune surveillance.

  1. Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200

    OpenAIRE

    Kobayashi, Miharu; Salomon, Carlos; Tapia, Jorge; Illanes, Sebastian E; Mitchell, Murray D.; Rice, Gregory E

    2014-01-01

    Background The role of exosomes in the pathogenesis and metastatic spread of cancer remains to be fully elucidated. Recent studies support the hypothesis that the release of exosomes from cells modifies local extracellular conditions to promote cell growth and neovascularisation. In addition, exosomes may modify the phenotype of parent and/or target cell. For example, sequestration of signaling mediators into exosomes may reduce their intracellular bioavailability to the parent cell thereby a...

  2. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration.

    Science.gov (United States)

    Choi, Ji Suk; Yoon, Hwa In; Lee, Kyoung Soo; Choi, Young Chan; Yang, Seong Hyun; Kim, In-San; Cho, Yong Woo

    2016-01-28

    Exosomes released from skeletal muscle cells play important roles in myogenesis and muscle development via the transfer of specific signal molecules. In this study, we investigated whether exosomes secreted during myotube differentiation from human skeletal myoblasts (HSkM) could induce a cellular response from human adipose-derived stem cells (HASCs) and enhance muscle regeneration in a muscle laceration mouse model. The exosomes contained various signal molecules including myogenic growth factors related to muscle development, such as insulin-like growth factors (IGFs), hepatocyte growth factor (HGF), fibroblast growth factor-2 (FGF2), and platelet-derived growth factor-AA (PDGF-AA). Interestingly, exosome-treated HASCs fused with neighboring cells at early time points and exhibited a myotube-like phenotype with increased expression of myogenic proteins (myosin heavy chain and desmin). On day 21, mRNAs of terminal myogenic genes were also up-regulated in exosome-treated HASCs. Moreover, in vivo studies demonstrated that exosomes from differentiating HSkM reduced the fibrotic area and increased the number of regenerated myofibers in the injury site, resulting in significant improvement of skeletal muscle regeneration. Our findings suggest that exosomes act as a biochemical cue directing stem cell differentiation and provide a cell-free therapeutic approach for muscle regeneration.

  3. Dendritic Cell-Derived Exosomes Stimulate Stronger CD8+ CTL Responses and Antitumor Immunity than Tumor Cell-Derived Exosomes

    Institute of Scientific and Technical Information of China (English)

    Siguo Hao; Ou Bai; Jinying Yuan; Mabood Qureshi; Jim Xiang

    2006-01-01

    Exosomes (EXO) derived from dendritic cells (DC) and tumor cells have been used to stimulate antitumor immune responses in animal models and in clinical trials. However, there has been no side-by-side comparison of the stimulatory efficiency of the antitumor immune responses induced by these two commonly used EXO vaccines. In this study, we selected to study the phenotype characteristics of EXO derived from a transfected EG7 tumor cells expressing ovalbumin (OVA) and OVA-pulsed DC by flow cytometry. We compared the stimulatory effect in induction of OVA-specific immune responses between these two types of EXO. We found that OVA protein-pulsed DCovA-derived EXO (EXODC) can more efficiently stimulate naive OVA-specific CD8+ T cell proliferation and differentiation into cytotoxic T lymphocytes in vivo, and induce more efficient antitumor immunity than EG7 tumor cell-derived EXO (EXOEG7). In addition, we elucidated the important role of the host DC in EXO vaccines that the stimulatory effect of EXO is delivered to T cell responses by the host DC. Therefore, DC-derived EXO may represent a more effective EXO-based vaccine in induction of antitumor immunity.

  4. Lactose as a “Trojan Horse” for Quantum Dot Cell Transport**

    OpenAIRE

    Benito-Alifonso, David; Tremel, Shirley; Hou, Bo; Lockyear, Harriet; Mantell, Judith; Fermin, David J.; Verkade, Paul; Berry, Monica; Galan, M. Carmen

    2013-01-01

    A series of glycan-coated quantum dots were prepared to probe the effect of glycan presentation in intracellular localization in HeLa and SV40 epithelial cells. We show that glycan density mostly impacts on cell toxicity, whereas glycan type affects the cell uptake and intracellular localization. Moreover, we show that lactose can act as a “Trojan horse” on bi-functionalized QDs to help intracellular delivery of other non-internalizable glycan moieties and largely avoid the endosomal/lysosoma...

  5. Urinary Exosomes

    Directory of Open Access Journals (Sweden)

    Irena Dimov

    2009-01-01

    Full Text Available Exosomes are nanovesicles of endocytic origin that are secreted into the extracellular space or body fluids when a multivesicular body (MVB fuses with the cell membrane. Interest in exosomes intensified after their description in antigen-presenting cells and the observation that they can significantly moderate immune responses in vivo. In the past few years, several groups have reported on the secretion of exosomes by almost all cell types in an organism. In addition to a common set of membrane and cytosolic molecules, exosomes harbor unique subsets of proteins, reflecting their cellular source. Major research efforts were put into their surprisingly various biological functions and in translating knowledge into clinical practice. Urine provides an exciting noninvasive alternative to blood or tissue samples as a potential source of disease biomarkers. Urinary exosomes (UE became the subject of serious studies just a few years ago. A recent large-scale proteomics-based study of normal UE revealed a myriad of proteins, including disease-related gene products. Thus, UE have valuable potential as a source of biomarkers for early detection of various types of diseases, monitoring the disease evolution and/or response to therapy. As a relatively new field of research, it still faces many challenges, but UE have already shown some straightforward potential.

  6. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting

    NARCIS (Netherlands)

    van Balkom, Bas W M; Eisele, Almut S; Pegtel, D Michiel; Bervoets, Sander; Verhaar, Marianne C

    2015-01-01

    Exosomes are small vesicles that mediate cell-cell communication. They contain proteins, lipids and RNA, and evidence is accumulating that these molecules are specifically sorted for release via exosomes. We recently showed that endothelial-cell-produced exosomes promote angiogenesis in vivo in a sm

  7. Exosomes secreted from human colon cancer cells influence the adhesion of neighboring metastatic cells: Role of microRNA-210

    Science.gov (United States)

    Bigagli, Elisabetta; Luceri, Cristina; Guasti, Daniele; Cinci, Lorenzo

    2016-01-01

    ABSTRACT Cancer-secreted exosomes influence tumor microenvironment and support cancer growth and metastasis. MiR-210 is frequently up-regulated in colorectal cancer tissues and correlates with metastatic disease. We investigated whether exosomes are actively released by HCT-8 colon cancer cells, the role of exosomal miR-210 in the cross-talk between primary cancer cells and neighboring metastatic cells and its contribution in regulating epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). After 7 d of culture, a subpopulation of viable HCT-8 cells detached the monolayer and started to grow in suspension, suggesting anoikis resistance and a metastatic potential. The expression of key proteins of EMT revealed that these cells were E-cadherin negative and vimentin positive further confirming their metastatic phenotype and the acquisition of anoikis resistance. Metastatic cells, in the presence of adherently growing HCT-8, continued to grow in suspension whereas only if seeded in cell-free wells, were able to adhere again and to form E-cadherin positive and vimentin negative new colonies, suggesting the occurrence of MET. The chemosensitivity to 5 fluorouracil and to FOLFOX-like treatment of metastatic cells was significantly diminished compared to adherent HCT-8 cells. Of note, adherent new colonies undergoing MET, were insensitive to both chemotherapeutic strategies. Electron microscopy analysis demonstrated that adherently growing HCT-8, actually secreted exosomes and that exosomes in turn were taken up by metastatic cells. When exosomes secreted by adherently growing HCT-8 were administered to metastatic cells, MET was significantly inhibited. miR-210 was significantly upregulated in exosomes compared to its intracellular levels in adherently growing HCT-8 cells and correlated to anoikis resistance and EMT markers. Exosomes containing miR-210 might be considered as EMT promoting signals that preserve the local cancer

  8. Magnetic resonance imaging of ultrasmall superparamagnetic iron oxide-labeled exosomes from stem cells: a new method to obtain labeled exosomes

    Science.gov (United States)

    Busato, Alice; Bonafede, Roberta; Bontempi, Pietro; Scambi, Ilaria; Schiaffino, Lorenzo; Benati, Donatella; Malatesta, Manuela; Sbarbati, Andrea; Marzola, Pasquina; Mariotti, Raffaella

    2016-01-01

    Purpose Recent findings indicate that the beneficial effects of adipose stem cells (ASCs), reported in several neurodegenerative experimental models, could be due to their paracrine activity mediated by the release of exosomes. The aim of this study was the development and validation of an innovative exosome-labeling protocol that allows to visualize them with magnetic resonance imaging (MRI). Materials and methods At first, ASCs were labeled using ultrasmall superparamagnetic iron oxide nanoparticles (USPIO, 4–6 nm), and optimal parameters to label ASCs in terms of cell viability, labeling efficiency, iron content, and magnetic resonance (MR) image contrast were investigated. Exosomes were then isolated from labeled ASCs using a standard isolation protocol. The efficiency of exosome labeling was assessed by acquiring MR images in vitro and in vivo as well as by determining their iron content. Transmission electron microscopy images and histological analysis were performed to validate the results obtained. Results By using optimized experimental parameters for ASC labeling (200 µg Fe/mL of USPIO and 72 hours of incubation), it was possible to label 100% of the cells, while their viability remained comparable to unlabeled cells; the detection limit of MR images was of 102 and 2.5×103 ASCs in vitro and in vivo, respectively. Exosomes isolated from previously labeled ASCs retain nanoparticles, as demonstrated by transmission electron microscopy images. The detection limit by MRI was 3 µg and 5 µg of exosomes in vitro and in vivo, respectively. Conclusion We report a new approach for labeling of exosomes by USPIO that allows detection by MRI while preserving their morphology and physiological characteristics. PMID:27330291

  9. [Establishment and identification of the near-infrared fluorescence labeled exosomes in breast cancer cell lines].

    Science.gov (United States)

    Li, Taiming; Lan, Wenjun; Huang, Can; Zhang, Chun; Liu, Xiaomei

    2016-05-01

    Exosomes, a population of extracellular membrane vesicles of 30-100 nm in diameter, play important roles in cell biological functions, intercellular signal transduction and especially in cancer diagnosis and therapy. To better apply exosomes in mechanistic study of breast cancer signal transduction, we constructed recombinant eukaryotic expression vector expressing the near-infrared fluorescence protein and CD63 fusion protein through cloning iRFP682 gene and exosomal marker protein CD63 gene into plasmid containing the ITR of AAV. The constructed plasmids were co-transfected with helper plasmid in AAV-293 cell lines and were packaged into rAAV. After titer measurement, the recombinant plasmids were transfected into breast cancer cell lines. The cell lines that stably expressing near-infrared fluorescence protein were selected by fluorescence. Through isolation, purification and identification, we finally obtained a new biomarker: iRFP682 labeled exosomes secreted by breast cancer cell lines, which could be used in further studies of the distribution and signal transduction of exosomes in breast cancer microenvironment.

  10. Exosomes from Human Dental Pulp Stem Cells Suppress Carrageenan-Induced Acute Inflammation in Mice.

    Science.gov (United States)

    Pivoraitė, Ugnė; Jarmalavičiūtė, Akvilė; Tunaitis, Virginijus; Ramanauskaitė, Giedrė; Vaitkuvienė, Aida; Kašėta, Vytautas; Biziulevičienė, Genė; Venalis, Algirdas; Pivoriūnas, Augustas

    2015-10-01

    The primary goal of this study was to examine the effects of human dental pulp stem cell-derived exosomes on the carrageenan-induced acute inflammation in mice. Exosomes were purified by differential ultracentrifugation from the supernatants of stem cells derived from the dental pulp of human exfoliated deciduous teeth (SHEDs) cultivated in serum-free medium. At 1 h post-carrageenan injection, exosomes derived from supernatants of 2 × 10(6) SHEDs were administered by intraplantar injection to BALB/c mice; 30 mg/kg of prednisolone and phosphate-buffered saline (PBS) were used as positive and negative controls, respectively. Edema was measured at 6, 24, and 48 h after carrageenan injection. For the in vivo imaging experiments, AngioSPARK750, Cat B 750 FAST, and MMPSense 750 FAST were administered into the mouse tail vein 2 h post-carrageenan injection. Fluorescence images were acquired at 6, 24, and 48 h after edema induction by IVIS Spectrum in vivo imaging system. Exosomes significantly reduced the carrageenan-induced edema at all the time points studied (by 39.5, 41.6, and 25.6% at 6, 24, and 48 h after injection, respectively), to similar levels seen with the positive control (prednisolone). In vivo imaging experiments revealed that, both exosomes and prednisolone suppress activities of cathepsin B and matrix metalloproteinases (MMPs) at the site of carrageenan-induced acute inflammation, showing more prominent effects of prednisolone at the early stages, while exosomes exerted their suppressive effects gradually and at later time points. Our study demonstrates for the first time that exosomes derived from human dental pulp stem cells suppress carrageenan-induced acute inflammation in mice.

  11. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis.

    Directory of Open Access Journals (Sweden)

    Carlos Salomon

    Full Text Available Vasculogenesis and angiogenesis are critical processes in fetal circulation and placental vasculature development. Placental mesenchymal stem cells (pMSC are known to release paracrine factors (some of which are contained within exosomes that promote angiogenesis and cell migration. The aims of this study were: to determine the effects of oxygen tension on the release of exosomes from pMSC; and to establish the effects of pMSC-derived exosomes on the migration and angiogenic tube formation of placental microvascular endothelial cells (hPMEC. pMSC were isolated from placental villi (8-12 weeks of gestation, n = 6 and cultured under an atmosphere of 1%, 3% or 8% O2. Cell-conditioned media were collected and exosomes (exo-pMSC isolated by differential and buoyant density centrifugation. The dose effect (5-20 µg exosomal protein/ml of pMSC-derived exosomes on hPMEC migration and tube formation were established using a real-time, live-cell imaging system (Incucyte™. The exosome pellet was resuspended in PBS and protein content was established by mass spectrometry (MS. Protein function and canonical pathways were identified using the PANTHER program and Ingenuity Pathway Analysis, respectively. Exo-pMSC were identified, by electron microscopy, as spherical vesicles, with a typical cup-shape and diameters around of 100 nm and positive for exosome markers: CD63, CD9 and CD81. Under hypoxic conditions (1% and 3% O2 exo-pMSC released increased by 3.3 and 6.7 folds, respectively, when compared to the controls (8% O2; p<0.01. Exo-pMSC increased hPMEC migration by 1.6 fold compared to the control (p<0.05 and increased hPMEC tube formation by 7.2 fold (p<0.05. MS analysis identified 390 different proteins involved in cytoskeleton organization, development, immunomodulatory, and cell-to-cell communication. The data obtained support the hypothesis that pMSC-derived exosomes may contribute to placental vascular adaptation to low oxygen tension under both

  12. Investigation of Content, Stoichiometry and Transfer of miRNA from Human Neural Stem Cell Line Derived Exosomes.

    Science.gov (United States)

    Stevanato, Lara; Thanabalasundaram, Lavaniya; Vysokov, Nickolai; Sinden, John D

    2016-01-01

    Exosomes are small (30-100 nm) membrane vesicles secreted by a variety of cell types and only recently have emerged as a new avenue for cell-to-cell communication. They are natural shuttles of RNA and protein cargo, making them attractive as potential therapeutic delivery vehicles. MicroRNAs (miRNAs) are short non-coding RNAs which regulate biological processes and can be found in exosomes. Here we characterized the miRNA contents of exosomes derived from human neural stem cells (hNSCs). Our investigated hNSC line is a clonal, conditionally immortalized cell line, compliant with good manufacturing practice (GMP), and in clinical trials for stroke and critical limb ischemia in the UK (clinicaltrials.gov: NCT01151124, NCT02117635, and NCT01916369). By using next generation sequencing (NGS) technology we identified the presence of a variety of miRNAs in both exosomal and cellular preparations. Many of these miRNAs were enriched in exosomes indicating that cells specifically sort them for extracellular release. Although exosomes have been proven to contain miRNAs, the copy number quantification per exosome of a given miRNA remains unclear. Herein we quantified by real-time PCR a highly shuttled exosomal miRNA subtype (hsa-miR-1246) in order to assess its stoichiometry per exosome. Furthermore, we utilized an in vitro system to confirm its functional transfer by measuring the reduction in luciferase expression using a 3' untranslated region dual luciferase reporter assay. In summary, NGS analysis allowed the identification of a unique set of hNSC derived exosomal miRNAs. Stoichiometry and functional transfer analysis of one of the most abundant identified miRNA, hsa-miR-1246, were measured to support biological relevance of exosomal miRNA delivery.

  13. Investigation of Content, Stoichiometry and Transfer of miRNA from Human Neural Stem Cell Line Derived Exosomes.

    Directory of Open Access Journals (Sweden)

    Lara Stevanato

    Full Text Available Exosomes are small (30-100 nm membrane vesicles secreted by a variety of cell types and only recently have emerged as a new avenue for cell-to-cell communication. They are natural shuttles of RNA and protein cargo, making them attractive as potential therapeutic delivery vehicles. MicroRNAs (miRNAs are short non-coding RNAs which regulate biological processes and can be found in exosomes. Here we characterized the miRNA contents of exosomes derived from human neural stem cells (hNSCs. Our investigated hNSC line is a clonal, conditionally immortalized cell line, compliant with good manufacturing practice (GMP, and in clinical trials for stroke and critical limb ischemia in the UK (clinicaltrials.gov: NCT01151124, NCT02117635, and NCT01916369. By using next generation sequencing (NGS technology we identified the presence of a variety of miRNAs in both exosomal and cellular preparations. Many of these miRNAs were enriched in exosomes indicating that cells specifically sort them for extracellular release. Although exosomes have been proven to contain miRNAs, the copy number quantification per exosome of a given miRNA remains unclear. Herein we quantified by real-time PCR a highly shuttled exosomal miRNA subtype (hsa-miR-1246 in order to assess its stoichiometry per exosome. Furthermore, we utilized an in vitro system to confirm its functional transfer by measuring the reduction in luciferase expression using a 3' untranslated region dual luciferase reporter assay. In summary, NGS analysis allowed the identification of a unique set of hNSC derived exosomal miRNAs. Stoichiometry and functional transfer analysis of one of the most abundant identified miRNA, hsa-miR-1246, were measured to support biological relevance of exosomal miRNA delivery.

  14. The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells.

    Science.gov (United States)

    Wang, Jinheng; De Veirman, Kim; De Beule, Nathan; Maes, Ken; De Bruyne, Elke; Van Valckenborgh, Els; Vanderkerken, Karin; Menu, Eline

    2015-12-22

    Exosomes, extracellular nanovesicles secreted by various cell types, modulate the bone marrow (BM) microenvironment by regulating angiogenesis, cytokine release, immune response, inflammation, and metastasis. Interactions between bone marrow stromal cells (BMSCs) and multiple myeloma (MM) cells play crucial roles in MM development. We previously reported that BMSC-derived exosomes directly promote MM cell growth, whereas the other possible mechanisms for supporting MM progression by these exosomes are still not clear. Here, we investigated the effect of BMSC-derived exosomes on the MM BM cells with specific emphasis on myeloid-derived suppressor cells (MDSCs). BMSC-derived exosomes were able to be taken up by MM MDSCs and induced their expansion in vitro. Moreover, these exosomes directly induced the survival of MDSCs through activating STAT3 and STAT1 pathways and increasing the anti-apoptotic proteins Bcl-xL and Mcl-1. Inhibition of these pathways blocked the enhancement of MDSC survival. Furthermore, these exosomes increased the nitric oxide release from MM MDSCs and enhanced their suppressive activity on T cells. Taken together, our results demonstrate that BMSC-derived exosomes activate MDSCs in the BM through STAT3 and STAT1 pathways, leading to increased immunosuppression which favors MM progression.

  15. Human B Cell-Derived Lymphoblastoid Cell Lines Constitutively Produce Fas Ligand and Secrete MHCII+FasL+ Killer Exosomes

    OpenAIRE

    Klinker, Matthew W.; Lizzio, Vincent; Reed, Tamra J.; Fox, David A.; Lundy, Steven K.

    2014-01-01

    Immune suppression mediated by exosomes is an emerging concept with potentially immense utility for immunotherapy in a variety of inflammatory contexts, including allogeneic transplantation. Exosomes containing the apoptosis-inducing molecule Fas ligand (FasL) have demonstrated efficacy in inhibiting antigen-specific immune responses upon adoptive transfer in animal models. We report here that a very high frequency of human B cell-derived lymphoblastoid cell lines (LCL) constitutively produce...

  16. The Trojan Horse Tale Revisited: An Eye on Metastatic Spread of Carcinoma Cells.

    Science.gov (United States)

    Grajewski, Rafael S; Bosch, Jacobus J; Bruns, Heiko; Cursiefen, Claus; Heindl, Ludwig M

    2016-02-01

    The metastatic spread of carcinoma cells is not fully understood. Here, we compare the peripheral blood mononuclear cells (PBMC) and intraocular metastatic cells in parotid gland carcinoma with the PBMCs of healthy donors by immunohistochemistry and flow cytometry. We found Ber-EP4 tumor marker-positive carcinoma cells in the aqueous humor of the patient's right eye and a CD45 and Ber-EP4-expressing PBMC population in his blood. These Ber-EP4-expressing cells exhibited a monocytic-myeloid phenotype with coexpression of CD11b, CD115, and the macrophage marker CD172a (SIRP-α). Uptake of pHrodogreen revealed their phagocytic activity. Our findings suggest that the tumor cells in the anterior chamber originally derived from cell fusions between tumor cells and myeloid cells in the peripheral blood. Thus, metastases of a solid malignancy could use monocytes-macrophages as the Trojan horse to enter the eye. PMID:26608963

  17. Cells release subpopulations of exosomes with distinct molecular and biological properties

    NARCIS (Netherlands)

    Willms, Eduard; Johansson, Henrik J; Mäger, Imre; Lee, Yi; Blomberg, K Emelie M; Sadik, Mariam; Alaarg, Amr; Smith, C I Edvard; Lehtiö, Janne; El Andaloussi, Samir; Wood, Matthew J A; Vader, Pieter

    2016-01-01

    Cells release nano-sized membrane vesicles that are involved in intercellular communication by transferring biological information between cells. It is generally accepted that cells release at least three types of extracellular vesicles (EVs): apoptotic bodies, microvesicles and exosomes. While a wi

  18. The crosstalk of telomere dysfunction and inflammation through cell-free TERRA containing exosomes.

    Science.gov (United States)

    Wang, Zhuo; Lieberman, Paul M

    2016-08-01

    Telomeric repeats-containing RNA (TERRA) are telomere-derived non-coding RNAs that contribute to telomere function in protecting chromosome ends. We recently identified a cell-free form of TERRA (cfTERRA) enriched in extracellular exosomes. These cfTERRA-containing exosomes stimulate inflammatory cytokines when incubated with immune responsive cells. Here, we report that cfTERRA levels were increased in exosomes during telomere dysfunction induced by the expression of the dominant negative TRF2. The exosomes from these damaged cells also enriched with DNA damage marker γH2AX and fragmented telomere repeat DNA. Purified cfTERRA stimulated inflammatory cytokines, but the intact membrane-associated nucleoprotein complexes produced a more robust cytokine activation. Therefore, we propose cfTERRA-containing exosomes transport a telomere-associated molecular pattern (TAMP) and telomere-specific alarmin from dysfunctional telomeres to the extracellular environment to elicit an inflammatory response. Since cfTERRA can be readily detected in human serum it may provide a useful biomarker for the detection of telomere dysfunction in the early stage of cancers and aging-associated inflammatory disease.

  19. HPV-E7 Delivered by Engineered Exosomes Elicits a Protective CD8+ T Cell-Mediated Immune Response

    Directory of Open Access Journals (Sweden)

    Paola Di Bonito

    2015-03-01

    Full Text Available We developed an innovative strategy to induce a cytotoxic T cell (CTL immune response against protein antigens of choice. It relies on the production of exosomes, i.e., nanovesicles spontaneously released by all cell types. We engineered the upload of huge amounts of protein antigens upon fusion with an anchoring protein (i.e., HIV-1 Nefmut, which is an inactive protein incorporating in exosomes at high levels also when fused with foreign proteins. We compared the immunogenicity of engineered exosomes uploading human papillomavirus (HPV-E7 with that of lentiviral virus-like particles (VLPs incorporating equivalent amounts of the same antigen. These exosomes, whose limiting membrane was decorated with VSV-G, i.e., an envelope protein inducing pH-dependent endosomal fusion, proved to be as immunogenic as the cognate VLPs. It is noteworthy that the immunogenicity of the engineered exosomes remained unaltered in the absence of VSV-G. Most important, we provide evidence that the inoculation in mouse of exosomes uploading HPV-E7 induces production of anti-HPV E7 CTLs, blocks the growth of syngeneic tumor cells inoculated after immunization, and controls the development of tumor cells inoculated before the exosome challenge. These results represent the proof-of-concept about both feasibility and efficacy of the Nefmut-based exosome platform for the induction of CD8+ T cell immunity.

  20. Exosomes - the future of vaccination?

    OpenAIRE

    Gehrmann, Ulf

    2011-01-01

    Exosomes are small membrane vesicles that are secreted by cells as means of intercellular communication. They are typically between 50 and 100 nm in diameter and originate from the endosomal compartment of cells. Exosomes have been considered a potential novel cell- free therapeutic agent since exosomes are capable of antigen presentation. Indeed, exosomes from dendritic cells can activate the innate and adaptive immune systems, can establish protective immunity in various models of infectiou...

  1. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma

    DEFF Research Database (Denmark)

    Jakobsen, Kristine Raaby; Paulsen, Birgitte Sandfeld; Bæk, Rikke;

    2015-01-01

    Background: Lung cancer is one of the leading causes of cancer-related death. At the time of diagnosis, more than half of the patients will have disseminated disease and, yet, diagnosing can be challenging. New methods are desired to improve the diagnostic work-up. Exosomes are cell-derived vesic......Background: Lung cancer is one of the leading causes of cancer-related death. At the time of diagnosis, more than half of the patients will have disseminated disease and, yet, diagnosing can be challenging. New methods are desired to improve the diagnostic work-up. Exosomes are cell...... control subjects based on the differential display of exosomal protein markers. Methods: Plasma was isolated from 109 NSCLC patients with advanced stage (IIIa–IV) disease and 110 matched control subjects initially suspected of having cancer, but diagnosed to be cancer free. The Extracellular Vesicle Array...... (EV Array) was used to phenotype exosomes directly from the plasma samples. The array contained 37 antibodies targeting lung cancer-related proteins and was used to capture exosomes, which were visualised with a cocktail of biotin-conjugated CD9, CD63 and CD81 antibodies. Results: The EV Array...

  2. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma

    DEFF Research Database (Denmark)

    Jakobsen, Kristine R; Paulsen, Birgitte S; Bæk, Rikke;

    2015-01-01

    BACKGROUND: Lung cancer is one of the leading causes of cancer-related death. At the time of diagnosis, more than half of the patients will have disseminated disease and, yet, diagnosing can be challenging. New methods are desired to improve the diagnostic work-up. Exosomes are cell-derived vesic......BACKGROUND: Lung cancer is one of the leading causes of cancer-related death. At the time of diagnosis, more than half of the patients will have disseminated disease and, yet, diagnosing can be challenging. New methods are desired to improve the diagnostic work-up. Exosomes are cell...... control subjects based on the differential display of exosomal protein markers. METHODS: Plasma was isolated from 109 NSCLC patients with advanced stage (IIIa-IV) disease and 110 matched control subjects initially suspected of having cancer, but diagnosed to be cancer free. The Extracellular Vesicle Array...... (EV Array) was used to phenotype exosomes directly from the plasma samples. The array contained 37 antibodies targeting lung cancer-related proteins and was used to capture exosomes, which were visualised with a cocktail of biotin-conjugated CD9, CD63 and CD81 antibodies. RESULTS: The EV Array...

  3. Tetraspanin-3 regulates protective immunity against Eimera tenella infection following immunization with dendritic cell-derived exosomes

    Science.gov (United States)

    The effects of immunization with dendritic cell (DC) exosomes, which had been incubated or non-incubated with an anti-tetraspanin-3 (Tspan-3) blocking antibody (Ab), were studied using an experimental model of Eimeria tenella avian coccidiosis. Purified exosomes from cecal tonsil and splenic DCs exp...

  4. Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function.

    Directory of Open Access Journals (Sweden)

    Venkateswara Rao Simhadri

    Full Text Available NKp30, a natural cytotoxicity receptor expressed on NK cells is critically involved in direct cytotoxicity against various tumor cells and directs both maturation and selective killing of dendritic cells. Recently the intracellular protein BAT3, which is involved in DNA damage induced apoptosis, was identified as a ligand for NKp30. However, the mechanisms underlying the exposure of the intracellular ligand BAT3 to surface NKp30 and its role in NK-DC cross talk remained elusive. Electron microscopy and flow cytometry demonstrate that exosomes released from 293T cells and iDCs express BAT3 on the surface and are recognized by NKp30-Ig. Overexpression and depletion of BAT3 in 293T cells directly correlates with the exosomal expression level and the activation of NK cell-mediated cytokine release. Furthermore, the NKp30-mediated NK/DC cross talk resulting either in iDC killing or maturation was BAT3-dependent. Taken together this puts forward a new model for the activation of NK cells through intracellular signals that are released via exosomes from accessory cells. The manipulation of the exosomal regulation may offer a novel strategy to induce tumor immunity or inhibit autoimmune diseases caused by NK cell-activation.

  5. A comparative analysis of lncRNAs in prostate cancer exosomes and their parental cell lines.

    Science.gov (United States)

    Ahadi, Alireza; Khoury, Samantha; Losseva, Maria; Tran, Nham

    2016-09-01

    Prostate cancer is the second leading cancer in men world-wide. Due to its heterogeneous nature, a considerable amount of research effort has been dedicated in identifying effective clinical biomarkers with a focus on proteins, messenger RNA and microRNAs [1]. However, there is limited data on the role and expression of long noncoding RNAs (lncRNAs) in prostate cancer exosomes [2]. This array dataset which is linked to our publication describes the profiling of human lncRNAs in prostate cancer and their exosomes from five different cell lines [3]. From this dataset, we identified a list of statistically significant prostate cancer lncRNAs which are differentially expressed in the exosomes compared to their parent cell lines. This dataset has been deposited into Gene Expression Omnibus (GSE81034). PMID:27330995

  6. A comparative analysis of lncRNAs in prostate cancer exosomes and their parental cell lines

    Directory of Open Access Journals (Sweden)

    Alireza Ahadi

    2016-09-01

    Full Text Available Prostate cancer is the second leading cancer in men world-wide. Due to its heterogeneous nature, a considerable amount of research effort has been dedicated in identifying effective clinical biomarkers with a focus on proteins, messenger RNA and microRNAs [1]. However, there is limited data on the role and expression of long noncoding RNAs (lncRNAs in prostate cancer exosomes [2]. This array dataset which is linked to our publication describes the profiling of human lncRNAs in prostate cancer and their exosomes from five different cell lines [3]. From this dataset, we identified a list of statistically significant prostate cancer lncRNAs which are differentially expressed in the exosomes compared to their parent cell lines. This dataset has been deposited into Gene Expression Omnibus (GSE81034.

  7. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets

    OpenAIRE

    Laurent Muller; Masato Mitsuhashi; Patricia Simms; GOODING, WILLIAM E.; Whiteside, Theresa L.

    2016-01-01

    Tumor cell-derived exosomes (TEX) suppress functions of immune cells. Here, changes in the gene profiles of primary human T lymphocytes exposed in vitro to exosomes were evaluated. CD4+ Tconv, CD8+ T or CD4+ CD39+ Treg were isolated from normal donors’ peripheral blood and co-incubated with TEX or exosomes isolated from supernatants of cultured dendritic cells (DEX). Expression levels of 24–27 immune response-related genes in these T cells were quantified by qRT-PCR. In activated T cells, TEX...

  8. Exosomes in human semen restrict HIV-1 transmission by vaginal cells and block intravaginal replication of LP-BM5 murine AIDS virus complex.

    Science.gov (United States)

    Madison, Marisa N; Jones, Philip H; Okeoma, Chioma M

    2015-08-01

    Exosomes are membranous extracellular nanovesicles secreted by diverse cell types. Exosomes from healthy human semen have been shown to inhibit HIV-1 replication and to impair progeny virus infectivity. In this study, we examined the ability of healthy human semen exosomes to restrict HIV-1 and LP-BM5 murine AIDS virus transmission in three different model systems. We show that vaginal cells internalize exosomes with concomitant transfer of functional mRNA. Semen exosomes blocked the spread of HIV-1 from vaginal epithelial cells to target cells in our cell-to-cell infection model and suppressed transmission of HIV-1 across the vaginal epithelial barrier in our trans-well model. Our in vivo model shows that human semen exosomes restrict intravaginal transmission and propagation of murine AIDS virus. Our study highlights an antiretroviral role for semen exosomes that may be harnessed for the development of novel therapeutic strategies to combat HIV-1 transmission.

  9. Exosomes derived from SW480 colorectal cancer cells promote cell migration in HepG2 hepatocellular cancer cells via the mitogen-activated protein kinase pathway.

    Science.gov (United States)

    Chiba, Mitsuru; Watanabe, Narumi; Watanabe, Miki; Sakamoto, Maki; Sato, Akika; Fujisaki, Mizuki; Kubota, Shiori; Monzen, Satoru; Maruyama, Atsushi; Nanashima, Naoki; Kashiwakura, Ikuo; Nakamura, Toshiya

    2016-01-01

    Exosomes are membrane-derived extracellular vesicles that have recently been recognized as important mediators of intercellular communication. In the present study, we investigated the effects of exosomes derived from SW480 colorectal cancer cells in recipient HepG2 hepatocellular cancer cells. We demonstrated that SW480-derived exosomes were taken up by the recipient HepG2 cells via dynamin-dependent endocytosis and were localized to the HepG2 lysosomes. In addition, SW480-derived exosomes induced the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 following their uptake into HepG2 cells. Of note, these changes occurred during the early phase after exosome treatment. Furthermore, SW480-derived exosomes promoted the migration of recipient HepG2 cells in a wound-healing assay, which was suppressed by pretreatment with U0126, an upstream inhibitor of ERK1/2. These results indicated that SW480-derived exosomes activated a classical mitogen-activated protein kinase pathway in recipient HepG2 cells via dynamin-dependent endocytosis and subsequently enhanced cell migration by ERK1/2 activation. Our results provide new insights into the regulation of cellular functions by exosomes.

  10. Investigation of Content, Stoichiometry and Transfer of miRNA from Human Neural Stem Cell Line Derived Exosomes

    OpenAIRE

    Stevanato, Lara; Thanabalasundaram, Lavaniya; Vysokov, Nickolai; Sinden, John D.

    2016-01-01

    Exosomes are small (30-100 nm) membrane vesicles secreted by a variety of cell types and only recently have emerged as a new avenue for cell-to-cell communication. They are natural shuttles of RNA and protein cargo, making them attractive as potential therapeutic delivery vehicles. MicroRNAs (miRNAs) are short non-coding RNAs which regulate biological processes and can be found in exosomes. Here we characterized the miRNA contents of exosomes derived from human neural stem cells (hNSCs). Our ...

  11. Investigation of Content, Stoichiometry and Transfer of miRNA from Human Neural Stem Cell Line Derived Exosomes

    OpenAIRE

    Stevanato, Lara; Thanabalasundaram, Lavaniya; Vysokov, Nickolai; Sinden, John D.

    2016-01-01

    Exosomes are small (30–100 nm) membrane vesicles secreted by a variety of cell types and only recently have emerged as a new avenue for cell-to-cell communication. They are natural shuttles of RNA and protein cargo, making them attractive as potential therapeutic delivery vehicles. MicroRNAs (miRNAs) are short non-coding RNAs which regulate biological processes and can be found in exosomes. Here we characterized the miRNA contents of exosomes derived from human neural stem cells (hNSCs). Our ...

  12. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells.

    Science.gov (United States)

    Wei, Yifang; Lai, Xiaofeng; Yu, Shentong; Chen, Suning; Ma, Yongzheng; Zhang, Yuan; Li, Huichen; Zhu, Xingmei; Yao, Libo; Zhang, Jian

    2014-09-01

    Recent studies have demonstrated that specific miRNAs, such as miR-221/222, may be responsible for tamoxifen resistance in breast cancer. Secreted miRNAs enclosed in exosomes can act as intercellular bio-messengers. Our objective is to investigate the role of secreted miR-221/222 in tamoxifen resistance of ER-positive breast cancer cells. Transmission electron microscopy analysis and nanoparticle tracking analysis were performed to determine the exosomes difference between MCF-7(TamR) (tamoxifen resistant) and MCF-7(wt) (tamoxifen sensitive) cells. PKH67 fluorescent labeling assay was used to detect exosomes derived from MCF-7(TamR) cells entering into MCF-7(wt) cells. The potential function of exosomes on tamoxifen resistance transmission was analyzed with cell viability, apoptosis ,and colony formation. MiRNA microarrays and qPCR were used to detect and compare the miRNAs expression levels in the two cells and exosomes. As the targets of miR-221/222, p27 and ERα were analyzed with western blot and qPCR. Compared with the MCF-7(wt) exosomes, there were significant differences in the concentration and size distribution of MCF-7(TamR) exosomes. MCF-7(wt) cells had an increased amount of exosomal RNA and proteins compared with MCF-7(TamR) cells. MCF-7(TamR) exosomes could enter into MCF-7(wt) cells, and then released miR-221/222. And the elevated miR-221/222 effectively reduced the target genes expression of P27 and ERα, which enhanced tamoxifen resistance in recipient cells. Our results are the first to show that secreted miR-221/222 serves as signaling molecules to mediate communication of tamoxifen resistance. PMID:25007959

  13. Quantitative Analysis of Exosomes From Murine Lung Cancer Cells by Flow Cytometry

    Science.gov (United States)

    Rim, Kyung-Taek; Kim, Soo-Jin

    2016-01-01

    In vivo studies regarding biochemical, molecular biological, and histopathological changes in cancer tissues have been widely performed by the administration of carcinogens in rodents. In these established methods, dissection of the animal following sacrifice must be carried out. Exosomes are cell-derived vesicles that are present in all body fluids and these vesicles have specific roles within cells. Thus, much attention is given to the clinical application of exosomes that can possibly be used for prediction and therapy and as biomarkers related to cancer. To develop a new tool for monitoring in vivo genetic alterations, as a result of carcinogenesis, without the need for frequent euthanasia, we performed quantitative measurement of exosomes in Mlg2908 murine lung fibroblasts and LA-4 and KLN 205 murine lung cancer cells using fluorescence-activated cell sorting. We detected an increase in CD63-specific exosomes in LA-4 lung cancer cells. This result is able to be applied to the classification of cancer-specific proteins and miRNA as diagnostic markers. PMID:27722146

  14. Effect of hyperthermic CO2-treated dendritic cell-derived exosomes on the human gastric cancer AGS cell line

    OpenAIRE

    Wang, Jinlin; Wang, Zhiyong; MO, YANXIA; Zeng, Zhaohui; Wei, Pei; Li, Tao

    2015-01-01

    The aim of the present study was to determine the antitumor effects of hyperthermic CO2 (HT-CO2)-treated dendritic cell (DC)-derived exosomes (Dex) on human gastric cancer AGS cells. Mouse-derived DCs were incubated in HT-CO2 at 43°C for 4 h. The exosomes in the cell culture supernatant were then isolated. Cell proliferation was analyzed using the cell counting kit-8 (CCK-8) assay. Cell apoptosis was observed using flow cytometry, Hoechst 33258 staining and the analysis of caspase-3 activity....

  15. Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFκB-TLR signaling pathway

    OpenAIRE

    Li, Xiaoxia; Wang, Shihua; Zhu, Rongjia; Li, Hongling; Han, Qin; Zhao, Robert Chunhua

    2016-01-01

    Background In tumor microenvironment, a continuous cross-talk between cancer cells and other cellular components is required to sustain tumor progression. Accumulating evidence suggests that exosomes, a novel way of cell communication, play an important role in such cross-talk. Exosomes could facilitate the direct intercellular transfer of proteins, lipids, and miRNA/mRNA/DNAs between cells. Since mesenchymal stem cells (MSCs) can be attracted to tumor sites and become an important component ...

  16. Exosome-shuttling microRNA-21 promotes cell migration and invasion-targeting PDCD4 in esophageal cancer.

    Science.gov (United States)

    Liao, Juan; Liu, Ran; Shi, Ya-Juan; Yin, Li-Hong; Pu, Yue-Pu

    2016-06-01

    Recent evidence indicates that exosomes can mediate certain microRNAs (miRNAs) involved in a series of biological functions in tumor occurrence and development. Our previous studies showed that microRNA-21 (miR-21) was abundant in both esophageal cancer cells and their corresponding exosomes. The present study explored the function of exosome-shuttling miR-21 involved in esophageal cancer progression. We found that exosomes could be internalized from the extracellular space to the cytoplasm. The exosome-derived Cy3-labeled miR-21 mimics could be transported into recipient cells in a neutral sphingomyelinase 2 (nSMase2)-dependent manner. miR-21 overexpression from donor cells significantly promoted the migration and invasion of recipient cells by targeting programmed cell death 4 (PDCD4) and activating its downstream c-Jun N-terminal kinase (JNK) signaling pathway after co-cultivation. Our population plasma sample analysis indicated that miR-21 was upregulated significantly in plasma from esophageal cancer patients and showed a significant risk association for esophageal cancer. Our data demonstrated that a close correlation existed between exosome-shuttling miR-21 and esophageal cancer recurrence and distant metastasis. Thus, exosome-shuttling miR-21 may become a potential biomarker for prognosis among esophageal cancer patients. PMID:27035745

  17. Extraction and identification of exosomes from drug-resistant breast cancer cells and their potential role in cell-to-cell drug-resistance transfer

    Institute of Scientific and Technical Information of China (English)

    许金金

    2014-01-01

    Objective To explore whether docetaxel-resistant cells(MCF-7/Doc)and doxorubicin-resistant cells(MCF-7/ADM)can secrete Exosomes and their potential role in cell-cell drug-resistance transfer.Methods Exosomes were extracted from the cell culture supernatants of MCF-7/Doc and MCF-7/ADM cells by fractionation ultracentrifugation,and were identified by transmission

  18. Guanine-Rich Sequences Are a Dominant Feature of Exosomal microRNAs across the Mammalian Species and Cell Types.

    Science.gov (United States)

    Momose, Fumiyasu; Seo, Naohiro; Akahori, Yasushi; Sawada, Shin-Ichi; Harada, Naozumi; Ogura, Toru; Akiyoshi, Kazunari; Shiku, Hiroshi

    2016-01-01

    Exosome is an extracellular vesicle released from multivesicular endosomes and contains micro (mi) RNAs and functional proteins derived from the donor cells. Exosomal miRNAs act as an effector during communication with appropriate recipient cells, this can aid in the utilization of the exosomes in a drug delivery system for various disorders including malignancies. Differences in the miRNA distribution pattern between exosomes and donor cells indicate the active translocation of miRNAs into the exosome cargos in a miRNA sequence-dependent manner, although the molecular mechanism is little known. In this study, we statistically analyzed the miRNA microarray data and revealed that the guanine (G)-rich sequence is a dominant feature of exosome-dominant miRNAs, across the mammalian species-specificity and the cell types. Our results provide important information regarding the potential use of exosome cargos to develop miRNA-based drugs for the treatment of human diseases. PMID:27101102

  19. Exosome cargo reflects TGF-β1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells.

    Science.gov (United States)

    Kim, Jiyeon; Kim, Tae Yeon; Lee, Myung Shin; Mun, Ji Young; Ihm, Chunhwa; Kim, Soon Ae

    2016-09-16

    It has been suggested that tumor cells secrete exosomes to modify the local microenvironment, which then promotes intercellular communication and metastasis. Although exosomes derived from cancer cells may contribute to the epithelial-mesenchymal transition (EMT) in untransformed cells, few studies have defined exosome cargo upon induction of EMT. In this study, we investigated the changes in exosomal cargo from the epithelial to mesenchymal cell phenotype by inducing EMT with transforming growth factor (TGF)-β1 in A549 human lung adenocarcinoma cells. The protein content of the exosomes reflects the change in the cell phenotype. In addition, miR-23a was significantly enriched in the exosomes after mesenchymal transition. Following treatment of exosomes from mesenchymal cells via EMT induction with TGF-β1 to the epithelial cell type, phenotypic changes in protein expression level and cell morphology were observed. Autologous treatment of exosomes enhanced the transcriptional activity and abundance of β-catenin. Our results suggest that the exosomal protein and miRNA content reflects the physiological condition of its source and that exosomes induce phenotypic changes via autocrine signaling. PMID:27492069

  20. Comparison of ultracentrifugation and density gradient separation methods for isolating Tca8113 human tongue cancer cell line-derived exosomes

    OpenAIRE

    Zhang, Zhuoyuan; Wang, Chenxing; Li, Tang; LIU, ZHE; LI, LONGJIANG

    2014-01-01

    The aim of the present study was to compare the method of ultracentrifugation and density gradient separation for isolating Tca8113 human tongue squamous cell carcinoma cell line-derived exosomes. The exosomes were obtained from the culture supernatant of cultured Tca8113 cells, respectively, followed by identification with transmission electron microscopy observation and western blot analysis. The two different methods were then compared by the morphology, the distribution range of the parti...

  1. Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth proteome profiling.

    Science.gov (United States)

    Weng, Yejing; Sui, Zhigang; Shan, Yichu; Hu, Yechen; Chen, Yuanbo; Zhang, Lihua; Zhang, Yukui

    2016-08-01

    Exosomes are secreted nanovesicles shed by almost all kinds of cells. Recently, increased interest has been focused on these extracellular vesicles as natural carriers transporting biological contents for intercellular communication. However, current isolation techniques, such as ultracentrifugation, are not convenient and often require specialized equipment. Herein, we describe a polyethylene glycol (PEG)-based approach, which could permit facile, low-cost and effective isolation of exosomes from cell culture supernatant. High-resolution electron microscopes clearly visualized the size and morphology of isolated exosome aggregates, implying the mechanism of PEG-based precipitation. Combined with tandem mass spectrometry analysis, 6299 protein groups encoded by 5120 genes were successfully characterized from HeLa cell culture supernatant, including numerous exosome proteins which could overlap 97% of the Top 100 exosome marker proteins recorded in the ExoCarta database, as well as a series of low-abundance cytokines and biomarkers. Furthermore, we found a higher ratio of neo-cleavage sites in proteins identified from exosomes compared with cellular proteins, revealing the potential roles of exosomes in accumulation and transportation of protein degradation intermediates. PMID:27229443

  2. Necroptosis: The Trojan horse in cell autonomous antiviral host defense.

    Science.gov (United States)

    Mocarski, Edward S; Guo, Hongyan; Kaiser, William J

    2015-05-01

    Herpesviruses suppress cell death to assure sustained infection in their natural hosts. Murine cytomegalovirus (MCMV) encodes suppressors of apoptosis as well as M45-encoded viral inhibitor of RIP activation (vIRA) to block RIP homotypic interaction motif (RHIM)-signaling and recruitment of RIP3 (also called RIPK3), to prevent necroptosis. MCMV and human cytomegalovirus encode a viral inhibitor of caspase (Casp)8 activation to block apoptosis, an activity that unleashes necroptosis. Herpes simplex virus (HSV)1 and HSV2 incorporate both RHIM and Casp8 suppression strategies within UL39-encoded ICP6 and ICP10, respectively, which are herpesvirus-conserved homologs of MCMV M45. Both HSV proteins sensitize human cells to necroptosis by blocking Casp8 activity while preventing RHIM-dependent RIP3 activation and death. In mouse cells, HSV1 ICP6 interacts with RIP3 and, surprisingly, drives necroptosis. Thus, herpesviruses have illuminated the contribution of necoptosis to host defense in the natural host as well as its potential to restrict cross-species infections in nonnatural hosts. PMID:25819165

  3. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity.

    Science.gov (United States)

    Buck, Amy H; Coakley, Gillian; Simbari, Fabio; McSorley, Henry J; Quintana, Juan F; Le Bihan, Thierry; Kumar, Sujai; Abreu-Goodger, Cei; Lear, Marissa; Harcus, Yvonne; Ceroni, Alessandro; Babayan, Simon A; Blaxter, Mark; Ivens, Alasdair; Maizels, Rick M

    2014-11-25

    In mammalian systems RNA can move between cells via vesicles. Here we demonstrate that the gastrointestinal nematode Heligmosomoides polygyrus, which infects mice, secretes vesicles containing microRNAs (miRNAs) and Y RNAs as well as a nematode Argonaute protein. These vesicles are of intestinal origin and are enriched for homologues of mammalian exosome proteins. Administration of the nematode exosomes to mice suppresses Type 2 innate responses and eosinophilia induced by the allergen Alternaria. Microarray analysis of mouse cells incubated with nematode exosomes in vitro identifies Il33r and Dusp1 as suppressed genes, and Dusp1 can be repressed by nematode miRNAs based on a reporter assay. We further identify miRNAs from the filarial nematode Litomosoides sigmodontis in the serum of infected mice, suggesting that miRNA secretion into host tissues is conserved among parasitic nematodes. These results reveal exosomes as another mechanism by which helminths manipulate their hosts and provide a mechanistic framework for RNA transfer between animal species.

  4. Inhibition of myocardial ischemia/reperfusion injury by exosomes secreted from mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Heng; XIANG Meng; MENG Dan; SUN Ning; CHEN Si-feng

    2016-01-01

    Exosomes secreted by mesenchymal stem cells have shown great therapeutic potential in regenerative medicine .In this study, we performed meta-analysis to assess the clinical effectiveness of using exosomes in ischemia /reperfusion injury based on the reports pub-lished between January 2000 and September 2015 and indexed in the PubMed and Web of Science databases .The effect of exosomes on heart function was evaluated according to the following parameters:the area at risk as a percentage of the left ventricle , infarct size as a percentage of the area at risk , infarct size as a percentage of the left ventricle , left ventricular ejection fraction , left ventricular frac-tion shortening , end-diastolic volume , and end-systolic volume .Our analysis indicated that the currently available evidence confirmed the therapeutic potential of mesenchymal stem cell-secreted exosomes in the improvement of heart function .However , further mechanis-tic studies, therapeutic safety and clinical trials are required for optimization and validation of this approach to cardiac regeneration after ischemia/reperfusion injury .

  5. Inhibition of Myocardial Ischemia/Reperfusion Injury by Exosomes Secreted from Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2016-01-01

    Full Text Available Exosomes secreted by mesenchymal stem cells have shown great therapeutic potential in regenerative medicine. In this study, we performed meta-analysis to assess the clinical effectiveness of using exosomes in ischemia/reperfusion injury based on the reports published between January 2000 and September 2015 and indexed in the PUBMED and Web of Science databases. The effect of exosomes on heart function was evaluated according to the following parameters: the area at risk as a percentage of the left ventricle, infarct size as a percentage of the area at risk, infarct size as a percentage of the left ventricle, left ventricular ejection fraction, left ventricular fraction shortening, end-diastolic volume, and end-systolic volume. Our analysis indicated that the currently available evidence confirmed the therapeutic potential of mesenchymal stem cell-secreted exosomes in the improvement of heart function. However, further mechanistic studies, therapeutic safety, and clinical trials are required for optimization and validation of this approach to cardiac regeneration after ischemia/reperfusion injury.

  6. Porcine milk-derived exosomes promote proliferation of intestinal epithelial cells.

    Science.gov (United States)

    Chen, Ting; Xie, Mei-Ying; Sun, Jia-Jie; Ye, Rui-Song; Cheng, Xiao; Sun, Rui-Ping; Wei, Li-Min; Li, Meng; Lin, De-Lin; Jiang, Qing-Yan; Xi, Qian-Yun; Zhang, Yong-Liang

    2016-01-01

    Milk-derived exosomes were identified as a novel mechanism of mother-to-child transmission of regulatory molecules, but their functions in intestinal tissues of neonates are not well-studied. Here, we characterized potential roles of porcine milk-derived exosomes in the intestinal tract. In vitro, treatment with milk-derived exosomes (27 ± 3 ng and 55 ± 5 ng total RNA) significantly promoted IPEC-J2 cell proliferation by MTT, CCK8, EdU fluorescence and EdU flow cytometry assays. The qRT-PCR and Western blot analyses indicated milk-derived exosomes (0.27 ± 0.03 μg total RNA) significantly promoted expression of CDX2, IGF-1R and PCNA, and inhibited p53 gene expression involved in intestinal proliferation. Additionally, six detected miRNAs were significantly increased in IPEC-J2 cell, while FAS and SERPINE were significantly down-regulated relative to that in control. In vivo, treated groups (0.125 μg and 0.25 μg total RNA) significantly raised mice' villus height, crypt depth and ratio of villus length to crypt depth of intestinal tissues, significantly increased CDX2, PCNA and IGF-1R' expression and significantly inhibited p53' expression. Our study demonstrated that milk-derived exosomes can facilitate intestinal cell proliferation and intestinal tract development, thus giving a new insight for milk nutrition and newborn development and health. PMID:27646050

  7. Porcine milk-derived exosomes promote proliferation of intestinal epithelial cells

    Science.gov (United States)

    Chen, Ting; Xie, Mei-Ying; Sun, Jia-Jie; Ye, Rui-Song; Cheng, Xiao; Sun, Rui-Ping; Wei, Li-Min; Li, Meng; Lin, De-Lin; Jiang, Qing-Yan; Xi, Qian-Yun; Zhang, Yong-Liang

    2016-01-01

    Milk-derived exosomes were identified as a novel mechanism of mother-to-child transmission of regulatory molecules, but their functions in intestinal tissues of neonates are not well-studied. Here, we characterized potential roles of porcine milk-derived exosomes in the intestinal tract. In vitro, treatment with milk-derived exosomes (27 ± 3 ng and 55 ± 5 ng total RNA) significantly promoted IPEC-J2 cell proliferation by MTT, CCK8, EdU fluorescence and EdU flow cytometry assays. The qRT-PCR and Western blot analyses indicated milk-derived exosomes (0.27 ± 0.03 μg total RNA) significantly promoted expression of CDX2, IGF-1R and PCNA, and inhibited p53 gene expression involved in intestinal proliferation. Additionally, six detected miRNAs were significantly increased in IPEC-J2 cell, while FAS and SERPINE were significantly down-regulated relative to that in control. In vivo, treated groups (0.125 μg and 0.25 μg total RNA) significantly raised mice’ villus height, crypt depth and ratio of villus length to crypt depth of intestinal tissues, significantly increased CDX2, PCNA and IGF-1R’ expression and significantly inhibited p53′ expression. Our study demonstrated that milk-derived exosomes can facilitate intestinal cell proliferation and intestinal tract development, thus giving a new insight for milk nutrition and newborn development and health. PMID:27646050

  8. Expression Profiling of Exosomal miRNAs Derived from Human Esophageal Cancer Cells by Solexa High-Throughput Sequencing

    OpenAIRE

    Juan Liao; Ran Liu; Lihong Yin; Yuepu Pu

    2014-01-01

    Cellular genetic materials, such as microRNAs (miRNAs), mRNAs and proteins, are packaged inside exosomes, small membrane vesicles of endocytic origin that are released into the extracellular environment. These cellular genetic materials can be delivered into recipient cells, where they exert their respective biological effects. However, the miRNA profiles and biological functions of exosomes secreted by cancer cells remain unknown. The present study explored the miRNA expression profile and d...

  9. Exosomal miR-10a derived from amniotic fluid stem cells preserves ovarian follicles after chemotherapy

    OpenAIRE

    Guan-Yu Xiao; Chun-Chun Cheng; Yih-Shien Chiang; Winston Teng-Kuei Cheng; I-Hsuan Liu; Shinn-Chih Wu

    2016-01-01

    Chemotherapy (CTx)-induced premature ovarian failure (POF) in woman remains clinically irreversible. Amniotic fluid stem cells (AFSCs) have shown the potential to treat CTx-induced POF; however, the underlying mechanism is unclear. Here we demonstrate that AFSC-derived exosomes recapitulate the anti-apoptotic effect of AFSCs on CTx-damaged granulosa cells (GCs), which are vital for the growth of ovarian follicles. AFSC-derived exosomes prevent ovarian follicular atresia in CTx-treated mice vi...

  10. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma

    Directory of Open Access Journals (Sweden)

    Kristine R. Jakobsen

    2015-03-01

    Full Text Available Background: Lung cancer is one of the leading causes of cancer-related death. At the time of diagnosis, more than half of the patients will have disseminated disease and, yet, diagnosing can be challenging. New methods are desired to improve the diagnostic work-up. Exosomes are cell-derived vesicles displaying various proteins on their membrane surfaces. In addition, they are readily available in blood samples where they constitute potential biomarkers of human diseases, such as cancer. Here, we examine the potential of distinguishing non-small cell lung carcinoma (NSCLC patients from control subjects based on the differential display of exosomal protein markers. Methods: Plasma was isolated from 109 NSCLC patients with advanced stage (IIIa–IV disease and 110 matched control subjects initially suspected of having cancer, but diagnosed to be cancer free. The Extracellular Vesicle Array (EV Array was used to phenotype exosomes directly from the plasma samples. The array contained 37 antibodies targeting lung cancer-related proteins and was used to capture exosomes, which were visualised with a cocktail of biotin-conjugated CD9, CD63 and CD81 antibodies. Results: The EV Array analysis was capable of detecting and phenotyping exosomes in all samples from only 10 µL of unpurified plasma. Multivariate analysis using the Random Forests method produced a combined 30-marker model separating the two patient groups with an area under the curve of 0.83, CI: 0.77–0.90. The 30-marker model has a sensitivity of 0.75 and a specificity of 0.76, and it classifies patients with 75.3% accuracy. Conclusion: The EV Array technique is a simple, minimal-invasive tool with potential to identify lung cancer patients.

  11. Mesenchymal Stem Cell-Derived Exosomes: New Opportunity in Cell-Free Therapy

    Science.gov (United States)

    Pashoutan Sarvar, Davod; Shamsasenjan, Karim; Akbarzadehlaleh, Parvin

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are involved in tissue homeostasis through direct cell-to-cell interaction, as well as secretion of soluble factors. Exosomes are the sort of soluble biological mediators that obtained from MSCs cultured media in vitro. MSC-derived exosomes (MSC-DEs) which produced under physiological or pathological conditions are central mediators of intercellular communications by conveying proteins, lipids, mRNAs, siRNA, ribosomal RNAs and miRNAs to the neighbor or distant cells. MSC-DEs have been tested in various disease models, and the results have revealed that their functions are similar to those of MSCs. They have the supportive functions in organisms such as repairing tissue damages, suppressing inflammatory responses, and modulating the immune system. MSC-DEs are of great interest in the scope of regenerative medicine because of their unique capacity to the regeneration of the damaged tissues, and the present paper aims to introduce MSC-DEs as a novel hope in cell-free therapy.

  12. Exosomes in developmental signalling.

    Science.gov (United States)

    McGough, Ian John; Vincent, Jean-Paul

    2016-07-15

    In order to achieve coordinated growth and patterning during development, cells must communicate with one another, sending and receiving signals that regulate their activities. Such developmental signals can be soluble, bound to the extracellular matrix, or tethered to the surface of adjacent cells. Cells can also signal by releasing exosomes - extracellular vesicles containing bioactive molecules such as RNA, DNA and enzymes. Recent work has suggested that exosomes can also carry signalling proteins, including ligands of the Notch receptor and secreted proteins of the Hedgehog and WNT families. Here, we describe the various types of exosomes and their biogenesis. We then survey the experimental strategies used so far to interfere with exosome formation and critically assess the role of exosomes in developmental signalling. PMID:27436038

  13. Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche

    Directory of Open Access Journals (Sweden)

    Alejandro Luarte

    2016-01-01

    Full Text Available Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer’s Disease, Parkinson’s Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have been explored. Stem cells, as well as most cells, release extracellular vesicles such as exosomes, which are nanovesicles able to target specific cell types and thus to modify their function by delivering proteins, lipids, and nucleic acids. Exosomes have recently been tested in vivo and in vitro as therapeutic conveyors for the treatment of diseases. As such, they could be engineered to target specific populations of cells within the CNS. Considering the fact that many degenerative brain diseases have an impact on adult neurogenesis, we discuss how the modulation of the adult neurogenic niches may be a therapeutic target of stem cell-derived exosomes. These novel approaches should be examined in cellular and animal models to provide better, more effective, and specific therapeutic tools in the future.

  14. Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche

    Science.gov (United States)

    Luarte, Alejandro; Bátiz, Luis Federico; Wyneken, Ursula; Lafourcade, Carlos

    2016-01-01

    Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer's Disease, Parkinson's Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have been explored. Stem cells, as well as most cells, release extracellular vesicles such as exosomes, which are nanovesicles able to target specific cell types and thus to modify their function by delivering proteins, lipids, and nucleic acids. Exosomes have recently been tested in vivo and in vitro as therapeutic conveyors for the treatment of diseases. As such, they could be engineered to target specific populations of cells within the CNS. Considering the fact that many degenerative brain diseases have an impact on adult neurogenesis, we discuss how the modulation of the adult neurogenic niches may be a therapeutic target of stem cell-derived exosomes. These novel approaches should be examined in cellular and animal models to provide better, more effective, and specific therapeutic tools in the future. PMID:27195011

  15. Carcinogenic activity of PbS quantum dots screened using exosomal biomarkers secreted from HEK293 cells.

    Science.gov (United States)

    Kim, Jung-Hee; Kim, Hye-Rim; Lee, Bo-Ram; Choi, Eun-Sook; In, Su-Il; Kim, Eunjoo

    2015-01-01

    Lead sulfide (PbS) quantum dots (QDs) have been applied in the biomedical area because they offer an excellent platform for theragnostic applications. In order to comprehensively evaluate the biocompatibility of PbS QDs in human cells, we analyzed the exosomes secreted from cells because exosomes are released during cellular stress to convey signals to other cells and serve as a reservoir of enriched biomarkers. PbS QDs were synthesized and coated with 3-mercaptopropionic acid (MPA) to allow the particles to disperse in water. Exosomes were isolated from HEK293 cells treated with PbS-MPA at concentrations of 0 µg/mL, 5 µg/mL, and 50 µg/mL, and the exosomal expression levels of miRNAs and proteins were analyzed. As a result, five miRNAs and two proteins were proposed as specific exosomal biomarkers for the exposure of HEK293 cells to PbS-MPA. Based on the pathway analysis, the molecular signature of the exosomes suggested that PbS-MPA QDs had carcinogenic activity. The comet assay and expression of molecular markers, such as p53, interleukin (IL)-8, and C-X-C motif chemokine 5, indicated that DNA damage occurred in HEK293 cells following PbS-MPA exposure, which supported the carcinogenic activity of the particles. In addition, there was obvious intensification of miRNA expression signals in the exosomes compared with that of the parent cells, which suggested that exosomal biomarkers could be detected more sensitively than those of whole cellular extracts.

  16. Exosomes derived from M. Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Pramod K Giri

    Full Text Available Activation of both CD4(+ and CD8(+ T cells is required for an effective immune response to an M. tuberculosis infection. However, infected macrophages are poor antigen presenting cells and may be spatially separated from recruited T cells, thus limiting antigen presentation within a granuloma. Our previous studies showed that infected macrophages release from cells small membrane-bound vesicles called exosomes which contain mycobacterial lipid components and showed that these exosomes could stimulate a pro-inflammatory response in naïve macrophages. In the present study we demonstrate that exosomes stimulate both CD4(+ and CD8(+ splenic T cells isolated from mycobacteria-sensitized mice. Although the exosomes contain MHC I and II as well as costimulatory molecules, maximum stimulation of T cells required prior incubation of exosomes with antigen presenting cells. Exosomes isolated from M. bovis and M. tuberculosis infected macrophages also stimulated activation and maturation of mouse bone marrow-derived dendritic cells. Interestingly, intranasal administration of mice with exosomes isolated from M. bovis BCG infected macrophages induce the generation of memory CD4(+ and CD8(+ T cells. The isolated T cells also produced IFN-gamma upon restimulation with BCG antigens. The release of exosomes from infected macrophages may overcome some of the defects in antigen presentation associated with mycobacterial infections and we suggest that exosomes may be a promising M. tuberculosis vaccine candidate.

  17. Exosomes in liver pathology.

    Science.gov (United States)

    Sato, Keisaku; Meng, Fanyin; Glaser, Shannon; Alpini, Gianfranco

    2016-07-01

    Exosomes are small (∼100nm) membrane-bound extracellular vesicles released by various types of cells into biological fluids. They contain proteins, mRNAs and miRNAs as cargo. Different cell types can take up exosomes by endocytosis and the cargo contained within them can be transferred horizontally to these recipient cells. Exosomal proteins and miRNAs can be functional and regulate physiological cell events modifying the microenvironment in target cells, a key event of liver pathology. Exosome-mediated cell-cell communication can alter tumor growth, cell migration, antiviral infection and hepatocyte regeneration, indicating that exosomes have great potential for development as diagnostic or therapeutic tools. Analyses of circulating total or exosomal miRNAs have identified a large number of candidate miRNAs that are regulated in liver diseases, and the diagnostic testing using single or multiple miRNAs shows good sensitivity and specificity. Some candidate miRNAs have been identified to play an important role in various liver disorders. This review summarizes recent findings on the role of extracellular vesicles in liver diseases and their diagnostic and therapeutic potential, mainly focusing on exosomes but also includes microvesicles in liver pathology. PMID:26988731

  18. Dendritic cells as Achilles' heel and Trojan horse during varicella zoster virus infection

    Directory of Open Access Journals (Sweden)

    Günther eSchönrich

    2015-05-01

    Full Text Available Varicella zoster virus (VZV, a human alphaherpesvirus, causes varicella and subsequently estab-lishes latency within sensory nerve ganglia. Later in life VZV can reactivate to cause herpes zoster. A reduced frequency of VZV-specific T cells is strongly associated with herpes zoster illustrating that these immune cells are central to control latency. Dendritic cells (DCs are required for the generation of VZV-specific T cells. However, DCs can also be infected in vitro and in vivo allowing VZV to evade the antiviral immune response. Thus, DCs represent the immune systems’ Achilles heel. Uniquely among the human herpesviruses, VZV infects both DCs and T cells, and exploits both as Trojan horses. During primary infection VZV-infected DCs traffic to the draining lymph nodes and tonsils, where the virus is transferred to T cells. VZV-infected T cells subsequently spread infection throughout the body to give the typical varicella skin rash. The delicate interplay between VZV and DCs and its consequences for viral immune evasion and viral dissemination will be discussed in this article.

  19. Dendritic cells as Achilles' heel and Trojan horse during varicella zoster virus infection.

    Science.gov (United States)

    Schönrich, Günther; Raftery, Martin J

    2015-01-01

    Varicella zoster virus (VZV), a human alphaherpesvirus, causes varicella and subsequently establishes latency within sensory nerve ganglia. Later in life VZV can reactivate to cause herpes zoster. A reduced frequency of VZV-specific T cells is strongly associated with herpes zoster illustrating that these immune cells are central to control latency. Dendritic cells (DCs) are required for the generation of VZV-specific T cells. However, DCs can also be infected in vitro and in vivo allowing VZV to evade the antiviral immune response. Thus, DCs represent the immune systems' Achilles heel. Uniquely among the human herpesviruses, VZV infects both DCs and T cells, and exploits both as Trojan horses. During primary infection VZV-infected DCs traffic to the draining lymph nodes and tonsils, where the virus is transferred to T cells. VZV-infected T cells subsequently spread infection throughout the body to give the typical varicella skin rash. The delicate interplay between VZV and DCs and its consequences for viral immune evasion and viral dissemination will be discussed in this article. PMID:26005438

  20. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells.

    Science.gov (United States)

    Ribeiro, A R; Gemini-Piperni, S; Travassos, R; Lemgruber, L; Silva, R C; Rossi, A L; Farina, M; Anselme, K; Shokuhfar, T; Shahbazian-Yassar, R; Borojevic, R; Rocha, L A; Werckmann, J; Granjeiro, J M

    2016-03-29

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of 'Trojan-horse' internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.

  1. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells.

    Science.gov (United States)

    Ribeiro, A R; Gemini-Piperni, S; Travassos, R; Lemgruber, L; C Silva, R; Rossi, A L; Farina, M; Anselme, K; Shokuhfar, T; Shahbazian-Yassar, R; Borojevic, R; Rocha, L A; Werckmann, J; Granjeiro, J M

    2016-01-01

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of 'Trojan-horse' internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies. PMID:27021687

  2. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells

    Science.gov (United States)

    Ribeiro, A. R.; Gemini-Piperni, S.; Travassos, R.; Lemgruber, L.; C. Silva, R.; Rossi, A. L.; Farina, M.; Anselme, K.; Shokuhfar, T.; Shahbazian-Yassar, R.; Borojevic, R.; Rocha, L. A.; Werckmann, J.; Granjeiro, J. M.

    2016-03-01

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of ‘Trojan-horse’ internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies.

  3. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells

    Science.gov (United States)

    Ribeiro, A. R.; Gemini-Piperni, S.; Travassos, R.; Lemgruber, L.; C. Silva, R.; Rossi, A. L.; Farina, M.; Anselme, K.; Shokuhfar, T.; Shahbazian-Yassar, R.; Borojevic, R.; Rocha, L. A.; Werckmann, J.; Granjeiro, J. M.

    2016-01-01

    Dentistry and orthopedics are undergoing a revolution in order to provide more reliable, comfortable and long-lasting implants to patients. Titanium (Ti) and titanium alloys have been used in dental implants and total hip arthroplasty due to their excellent biocompatibility. However, Ti-based implants in human body suffer surface degradation (corrosion and wear) resulting in the release of metallic ions and solid wear debris (mainly titanium dioxide) leading to peri-implant inflammatory reactions. Unfortunately, our current understanding of the biological interactions with titanium dioxide nanoparticles is still very limited. Taking this into consideration, this study focuses on the internalization of titanium dioxide nanoparticles on primary bone cells, exploring the events occurring at the nano-bio interface. For the first time, we report the selective binding of calcium (Ca), phosphorous (P) and proteins from cell culture medium to anatase nanoparticles that are extremely important for nanoparticle internalization and bone cells survival. In the intricate biological environment, anatase nanoparticles form bio-complexes (mixture of proteins and ions) which act as a kind of ‘Trojan-horse’ internalization by cells. Furthermore, anatase nanoparticles-induced modifications on cell behavior (viability and internalization) could be understand in detail. The results presented in this report can inspire new strategies for the use of titanium dioxide nanoparticles in several regeneration therapies. PMID:27021687

  4. Inhibition of the Expression of the Small Heat Shock Protein αB-Crystallin Inhibits Exosome Secretion in Human Retinal Pigment Epithelial Cells in Culture.

    Science.gov (United States)

    Gangalum, Rajendra K; Bhat, Ankur M; Kohan, Sirus A; Bhat, Suraj P

    2016-06-17

    Exosomes carry cell type-specific molecular cargo to extracellular destinations and therefore act as lateral vectors of intercellular communication and transfer of genetic information from one cell to the other. We have shown previously that the small heat shock protein αB-crystallin (αB) is exported out of the adult human retinal pigment epithelial cells (ARPE19) packaged in exosomes. Here, we demonstrate that inhibition of the expression of αB via shRNA inhibits exosome secretion from ARPE19 cells indicating that exosomal cargo may have a role in exosome biogenesis (synthesis and/or secretion). Sucrose density gradient fractionation of the culture medium and cellular extracts suggests continued synthesis of exosomes but an inhibition of exosome secretion. In cells where αB expression was inhibited, the distribution of CD63 (LAMP3), an exosome marker, is markedly altered from the normal dispersed pattern to a stacked perinuclear presence. Interestingly, the total anti-CD63(LAMP3) immunofluorescence in the native and αB-inhibited cells remains unchanged suggesting continued exosome synthesis under conditions of impaired exosome secretion. Importantly, inhibition of the expression of αB results in a phenotype of the RPE cell that contains an increased number of vacuoles and enlarged (fused) vesicles that show increased presence of CD63(LAMP3) and LAMP1 indicating enhancement of the endolysosomal compartment. This is further corroborated by increased Rab7 labeling of this compartment (RabGTPase 7 is known to be associated with late endosome maturation). These data collectively point to a regulatory role for αB in exosome biogenesis possibly via its involvement at a branch point in the endocytic pathway that facilitates secretion of exosomes. PMID:27129211

  5. Exosomes in cancer: small particle, big player.

    Science.gov (United States)

    Zhang, Xu; Yuan, Xiao; Shi, Hui; Wu, Lijun; Qian, Hui; Xu, Wenrong

    2015-07-10

    Exosomes have emerged as a novel mode of intercellular communication. Exosomes can shuttle bioactive molecules including proteins, DNA, mRNA, as well as non-coding RNAs from one cell to another, leading to the exchange of genetic information and reprogramming of the recipient cells. Increasing evidence suggests that tumor cells release excessive amount of exosomes, which may influence tumor initiation, growth, progression, metastasis, and drug resistance. In addition, exosomes transfer message from tumor cells to immune cells and stromal cells, contributing to the escape from immune surveillance and the formation of tumor niche. In this review, we highlight the recent advances in the biology of exosomes as cancer communicasomes. We review the multifaceted roles of exosomes, the small secreted particles, in communicating with other cells within tumor microenvironment. Given that exosomes are cell type specific, stable, and accessible from body fluids, exosomes may provide promising biomarkers for cancer diagnosis and represent new targets for cancer therapy.

  6. Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids

    OpenAIRE

    Oliveira-Rodríguez, Myriam; López-Cobo, Sheila; Hugh T. Reyburn; López-Martín, Soraya; Yáñez Mo, María; Cernuda-Morollón, Eva; Paschen, Annette; Valés-Gómez, Mar; Blanco-López, Maria Carmen; Costa-García, Agustín

    2016-01-01

    Exosomes are cell-secreted nanovesicles (40–200 nm) that represent a rich source of novel biomarkers in the diagnosis and prognosis of certain diseases. Despite the increasingly recognized relevance of these vesicles as biomarkers, their detection has been limited due in part to current technical challenges in the rapid isolation and analysis of exosomes. The complexity of the development of analytical platforms relies on the heterogeneous composition of the exosome membrane. One of the most ...

  7. Exosomes in Cancer Disease.

    Science.gov (United States)

    Zöller, Margot

    2016-01-01

    Cancer diagnosis and therapy is steadily improving. Still, diagnosis is frequently late and diagnosis and follow-up procedures mostly are time-consuming and expensive. Searching for tumor-derived exosomes (TEX) in body fluids may provide an alternative, minimally invasive, yet highly reliable diagnostic tool. Beyond this, there is strong evidence that TEX could become a potent therapeutics. Exosomes, small vesicles delivered by many cells of the organism, are found in all body fluids. Exosomes are characterized by lipid composition, common and donor cell specific proteins, mRNA, small non-coding RNA including miRNA and DNA. Particularly the protein and miRNA markers received much attention as they may allow for highly specific diagnosis and can provide hints toward tumor aggressiveness and progression, where exosome-based diagnosis and follow-up is greatly facilitated by the recovery of exosomes in body fluids, particularly the peripheral blood. Beyond this, exosomes are the most important intercellular communicators that modulate, instruct, and reprogram their surrounding as well as distant organs. In concern about TEX this includes message transfer from tumor cells toward the tumor stroma, the premetastatic niche, the hematopoietic system and, last but not least, the instruction of non-cancer stem cells by cancer-initiating cells (CIC). Taking this into account, it becomes obvious that "tailored" exosomes offer themselves as potent therapeutic delivery system. In brief, during the last 4-5 years there is an ever-increasing, overwhelming interest in exosome research. This boom appears fully justified provided the content of the exosomes becomes most thoroughly analyzed and their mode of intercellular interaction can be unraveled in detail as this knowledge will open new doors toward cancer diagnosis and therapy including immunotherapy and CIC reprogramming.

  8. Altered MicroRNA Expression Profile in Exosomes during Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Science.gov (United States)

    Zhang, Shui-Jun; Zhao, Chen; Qiu, Bin-Song; Gu, Hai-Feng; Hong, Jian-Fei; Cao, Li; Chen, Yu; Xia, Bing; Bi, Qin; Wang, Ya-Ping

    2014-01-01

    The physiological role of microRNAs (miRNAs) in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs) culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84%) could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05) when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221) were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation. PMID:25503309

  9. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Ji-Feng Xu

    Full Text Available The physiological role of microRNAs (miRNAs in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84% could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05 when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221 were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation.

  10. Exosomes in Alzheimer's disease.

    Science.gov (United States)

    Malm, Tarja; Loppi, Sanna; Kanninen, Katja M

    2016-07-01

    Exosomes, nano-sized extracellular vesicles secreted by most cell types, are found everywhere in the body. The role of exosomes in cellular functions has in the past years developed from being considered little more than cellular trashcans, to being proven important intercellular messengers and notable contributors to both health and in disease. A vast number of studies have revealed the multiple, and somewhat controversial role of exosomes in Alzheimer's disease, the most common neurodegenerative disease. Exosomes have been shown to spread toxic amyloid-beta and hyperphosphorylated tau between cells, and they have been suspected of inducing apoptosis and thereby contributing to neuronal loss. On the other hand, exosomes seem to possess the ability to reduce brain amyloid-beta through microglial uptake, and they are known to transfer neuroprotective substances between cells. These features, among many others, make exosomes extremely interesting from the point of view of developing novel therapeutic approaches. The fact that exosomes derived from the central nervous system can be found in bodily fluids also makes them an appealing target for biomarker development, which is not limited only to Alzheimer's disease. PMID:27131734

  11. Endothelial Cells Can Regulate Smooth Muscle Cells in Contractile Phenotype through the miR-206/ARF6&NCX1/Exosome Axis

    OpenAIRE

    Lin, Xiao; He, Yu; Hou, Xue; Zhang, Zhenming; Wang, Rui; Wu, Qiong

    2016-01-01

    Active interactions between endothelial cells and smooth muscle cells (SMCs) are critical to maintaining the SMC phenotype. Exosomes play an important role in intercellular communication. However, little is known about the mechanisms that regulate endothelial cells and SMCs crosstalk. We aimed to determine the mechanisms underlying the regulation of the SMC phenotype by human umbilical vein endothelial cells (HUVECs) through exosomes. We found that HUVECs overexpressing miR-206 upregulated co...

  12. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion.

    Directory of Open Access Journals (Sweden)

    Marie Lundholm

    Full Text Available Tumor-derived exosomes, which are nanometer-sized extracellular vesicles of endosomal origin, have emerged as promoters of tumor immune evasion but their role in prostate cancer (PC progression is poorly understood. In this study, we investigated the ability of prostate tumor-derived exosomes to downregulate NKG2D expression on natural killer (NK and CD8+ T cells. NKG2D is an activating cytotoxicity receptor whose aberrant loss in cancer plays an important role in immune suppression. Using flow cytometry, we found that exosomes produced by human PC cells express ligands for NKG2D on their surface. The NKG2D ligand-expressing prostate tumor-derived exosomes selectively induced downregulation of NKG2D on NK and CD8+ T cells in a dose-dependent manner, leading to impaired cytotoxic function in vitro. Consistent with these findings, patients with castration-resistant PC (CRPC showed a significant decrease in surface NKG2D expression on circulating NK and CD8+ T cells compared to healthy individuals. Tumor-derived exosomes are likely involved in this NKG2D downregulation, since incubation of healthy lymphocytes with exosomes isolated from serum or plasma of CRPC patients triggered downregulation of NKG2D expression in effector lymphocytes. These data suggest prostate tumor-derived exosomes as down-regulators of the NKG2D-mediated cytotoxic response in PC patients, thus promoting immune suppression and tumor escape.

  13. Macrophages play an essential role in antigen-specific immune suppression mediated by T CD8⁺ cell-derived exosomes.

    Science.gov (United States)

    Nazimek, Katarzyna; Ptak, Wlodzimierz; Nowak, Bernadeta; Ptak, Maria; Askenase, Philip W; Bryniarski, Krzysztof

    2015-09-01

    Murine contact sensitivity (CS) reaction could be antigen-specifically regulated by T CD8(+) suppressor (Ts) lymphocytes releasing microRNA-150 in antibody light-chain-coated exosomes that were formerly suggested to suppress CS through action on macrophages (Mφ). The present studies investigated the role of Mφ in Ts cell-exosome-mediated antigen-specific suppression as well as modulation of Mφ antigen-presenting function in humoral and cellular immunity by suppressive exosomes. Mice depleted of Mφ by clodronate liposomes could not be tolerized and did not produce suppressive exosomes. Moreover, isolated T effector lymphocytes transferring CS were suppressed by exosomes only in the presence of Mφ, demonstrating the substantial role of Mφ in the generation and action of Ts cell regulatory exosomes. Further, significant decrease of number of splenic B cells producing trinitrophenyl (TNP) -specific antibodies with the alteration of the ratio of serum titres of IgM to IgG was observed in recipients of exosome-treated, antigen-pulsed Mφ and the significant suppression of CS was demonstrated in recipients of exosome-treated, TNP-conjugated Mφ. Additionally, exosome-pulsed, TNP-conjugated Mφ mediated suppression of CS in mice pre-treated with a low-dose of cyclophosphamide, suggesting de novo induction of T regulatory (Treg) lymphocytes. Treg cell involvement in the effector phase of the studied suppression mechanism was proved by unsuccessful tolerization of DEREG mice depleted of Treg lymphocytes. Furthermore, the inhibition of proliferation of CS effector cells cultured with exosome-treated Mφ in a transmembrane manner was observed. Our results demonstrated the essential role of Mφ in antigen-specific immune suppression mediated by Ts cell-derived exosomes and realized by induction of Treg lymphocytes and inhibition of T effector cell proliferation. PMID:25808106

  14. Macrophages play an essential role in antigen-specific immune suppression mediated by T CD8⁺ cell-derived exosomes.

    Science.gov (United States)

    Nazimek, Katarzyna; Ptak, Wlodzimierz; Nowak, Bernadeta; Ptak, Maria; Askenase, Philip W; Bryniarski, Krzysztof

    2015-09-01

    Murine contact sensitivity (CS) reaction could be antigen-specifically regulated by T CD8(+) suppressor (Ts) lymphocytes releasing microRNA-150 in antibody light-chain-coated exosomes that were formerly suggested to suppress CS through action on macrophages (Mφ). The present studies investigated the role of Mφ in Ts cell-exosome-mediated antigen-specific suppression as well as modulation of Mφ antigen-presenting function in humoral and cellular immunity by suppressive exosomes. Mice depleted of Mφ by clodronate liposomes could not be tolerized and did not produce suppressive exosomes. Moreover, isolated T effector lymphocytes transferring CS were suppressed by exosomes only in the presence of Mφ, demonstrating the substantial role of Mφ in the generation and action of Ts cell regulatory exosomes. Further, significant decrease of number of splenic B cells producing trinitrophenyl (TNP) -specific antibodies with the alteration of the ratio of serum titres of IgM to IgG was observed in recipients of exosome-treated, antigen-pulsed Mφ and the significant suppression of CS was demonstrated in recipients of exosome-treated, TNP-conjugated Mφ. Additionally, exosome-pulsed, TNP-conjugated Mφ mediated suppression of CS in mice pre-treated with a low-dose of cyclophosphamide, suggesting de novo induction of T regulatory (Treg) lymphocytes. Treg cell involvement in the effector phase of the studied suppression mechanism was proved by unsuccessful tolerization of DEREG mice depleted of Treg lymphocytes. Furthermore, the inhibition of proliferation of CS effector cells cultured with exosome-treated Mφ in a transmembrane manner was observed. Our results demonstrated the essential role of Mφ in antigen-specific immune suppression mediated by Ts cell-derived exosomes and realized by induction of Treg lymphocytes and inhibition of T effector cell proliferation.

  15. FRTL-5 Rat Thyroid Cells Release Thyroglobulin Sequestered in Exosomes: A Possible Novel Mechanism for Thyroglobulin Processing in the Thyroid

    Science.gov (United States)

    Vlasov, Pavel; Doi, Sonia Q.; Sellitti, Donald F.

    2016-01-01

    Exosomes are 30–100 nm, membrane-bound vesicles containing specific cellular proteins, mRNAs, and microRNAs that take part in intercellular communication between cells. A possible role for exosomes in thyroid function has not been fully explored. In the present study, FRTL-5 rat thyroid cells were grown to confluence and received medium containing either thyroid stimulating hormone (TSH), exogenous bovine thyroglobulin (bTg), or neither additive for 24 or 48 hours followed by collection of spent medium and ultracentrifugation to isolate small vesicles. Transmission electron microscopy and Western blotting for CD9 indicated the presence of exosomes. Western blotting of exosome extract using a monoclonal anti-Tg antibody revealed a Tg-positive band at ~330 kDa (the expected size of monomeric Tg) with a higher density in TSH-treated cells compared to that in untreated cells. These results are the first to show that normal thyroid cells in culture produce exosomes containing undegraded Tg. PMID:27379194

  16. Exosomes go with the Wnt

    OpenAIRE

    Koles, Kate; Budnik, Vivian

    2012-01-01

    Exosomes, small secreted microvesicles, are implicated in intercellular communication in diverse cell types, transporting protein, lipid and nucleic acid cargo that impact the physiology of recipient cells. Besides the signaling function of exosomes they also serve as a mechanism to dispose obsolete cellular material. 1 Particularly exciting is the involvement of exosomal communication in the nervous system, as this has important implications for brain development and function. The properties...

  17. Characterization of Human Thymic Exosomes

    OpenAIRE

    Gabriel Skogberg; Judith Gudmundsdottir; Sjoerd van der Post; Kerstin Sandström; Sören Bruhn; Mikael Benson; Lucia Mincheva-Nilsson; Vladimir Baranov; Esbjörn Telemo; Olov Ekwall

    2013-01-01

    Exosomes are nanosized membrane-bound vesicles that are released by various cell types and are capable of carrying proteins, lipids and RNAs which can be delivered to recipient cells. Exosomes play a role in intercellular communication and have been described to mediate immunologic information. In this article we report the first isolation and characterization of exosomes from human thymic tissue. Using electron microscopy, particle size determination, density gradient measurement, flow cytom...

  18. Exosomes in cancer: small particle, big player

    OpenAIRE

    Zhang, Xu; Yuan, Xiao; Shi, Hui; Wu, Lijun; QIAN, HUI; Xu, Wenrong

    2015-01-01

    Exosomes have emerged as a novel mode of intercellular communication. Exosomes can shuttle bioactive molecules including proteins, DNA, mRNA, as well as non-coding RNAs from one cell to another, leading to the exchange of genetic information and reprogramming of the recipient cells. Increasing evidence suggests that tumor cells release excessive amount of exosomes, which may influence tumor initiation, growth, progression, metastasis, and drug resistance. In addition, exosomes transfer messag...

  19. Exosomes: Implications in HIV-1 Pathogenesis

    OpenAIRE

    Madison, Marisa N; Okeoma, Chioma M.

    2015-01-01

    Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral ...

  20. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation.

    Science.gov (United States)

    Yamashita, Takuma; Takahashi, Yuki; Nishikawa, Makiya; Takakura, Yoshinobu

    2016-01-01

    Exosomes, which are expected to be delivery systems for biomolecules such as nucleic acids, are collected by several methods. However, the effect of exosome isolation methods on the characteristics of exosomes as drug carriers, such as recovery efficiency after sterile filtration and pharmacokinetics, has not been investigated despite the importance of these characteristics for the development of exosome-based delivery systems. In the present study, exosomes collected from murine melanoma B16-BL6 cells by several methods were compared with respect to dispersibility, recovery rate after filtering, and clearance from the blood circulation in mice. The exosomes were collected by three ultracentrifugation-based methods: simple ultracentrifugation/pelleting (pelleting method), ultracentrifugation with an iodixanol cushion (cushion method), and ultracentrifugation on an iodixanol density gradient (gradient method). The isolation methods had little effect on the particle number of exosomes. In contrast, transmission electron microscopy observation and size distribution measurement using tunable resistive pulse sensing indicated that the exosomes of the gradient method were more dispersed than the others. The exosomes were labeled with Gaussia luciferase and intravenously injected into mice. Clearance of injected exosomes from the blood circulation did not significantly change with isolation methods. When the exosomes were filtered using a 0.2-μm filter, the recovery rate was 82% for the exosomes of the gradient method, whereas it was less than 50% for the others. These results indicate that the exosome isolation method markedly affects the dispersibility and filtration efficiency of the exosomes. PMID:26545617

  1. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder cancer cells reveal differential expression of EMT factors

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Nawrocki, Arkadiusz; Jensen, Steffen Grann;

    2014-01-01

    Cancer cells secrete soluble factors and various extracellular vesicles, including exosomes, into their tissue microenvironment. The secretion of exosomes is speculated to facilitate local invasion and metastatic spread. Here, we used an in vivo metastasis model of human bladder carcinoma cell line...... T24 without metastatic capacity and its two isogenic derivate cell lines SLT4 and FL3, which form metastases in the lungs and liver of mice, respectively. Cultivation in CLAD1000 bioreactors rather than conventional culture flasks resulted in a 13-16-fold increased exosome yield and facilitated...... quantitative proteomics of fractionated exosomes. Exosomes from T24, SLT4, and FL3 cells were partitioned into membrane and luminal fractions and changes in protein abundance related to the gain of metastatic capacity were identified by quantitative iTRAQ- proteomics. We identified several proteins linked...

  2. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects

    OpenAIRE

    Taylor, D D; Gerçel-Taylor, C

    2005-01-01

    Dendritic and lymphoid ‘exosomes' regulate immune activation. Tumours release membranous material mimicking these ‘exosomes,' resulting in deletion of reactive lymphocytes. Tumour-derived ‘exosomes' have recently been explored as vaccines, without analysis of their immunologic consequences. This investigation examines the composition of tumour-derived ‘exosomes' and their effects on T lymphocytes. Membranous materials were isolated from ascites of ovarian cancer patients (n=6) and Western imm...

  3. FRTL-5 Rat Thyroid Cells Release Thyroglobulin Sequestered in Exosomes: A Possible Novel Mechanism for Thyroglobulin Processing in the Thyroid

    OpenAIRE

    Vlasov, Pavel; Doi, Sonia Q.; Sellitti, Donald F.

    2016-01-01

    Exosomes are 30–100 nm, membrane-bound vesicles containing specific cellular proteins, mRNAs, and microRNAs that take part in intercellular communication between cells. A possible role for exosomes in thyroid function has not been fully explored. In the present study, FRTL-5 rat thyroid cells were grown to confluence and received medium containing either thyroid stimulating hormone (TSH), exogenous bovine thyroglobulin (bTg), or neither additive for 24 or 48 hours followed by collection of sp...

  4. Interactions between exosomes from breast cancer cells and primary mammary epithelial cells leads to generation of reactive oxygen species which induce DNA damage response, stabilization of p53 and autophagy in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sujoy Dutta

    Full Text Available Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive "niches". Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7, representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs. Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment.

  5. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington's disease in vitro model.

    Science.gov (United States)

    Lee, Mijung; Liu, Tian; Im, Wooseok; Kim, Manho

    2016-08-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by the aggregation of mutant Huntingtin (mHtt). Adipose-derived stem cells (ASCs) have a potential for use in the treatment of incurable disorders, including HD. ASCs secrete various neurotrophic factors and microvesicles, and modulate hostile microenvironments affected by disease through paracrine mechanisms. Exosomes are small vesicles that transport nucleic acid and protein between cells. Here, we investigated the therapeutic role of exosomes from ASCs (ASC-exo) using in vitro HD model by examining pathological phenotypes of this model. Immunocytochemistry result showed that ASC-exo significantly decreases mHtt aggregates in R6/2 mice-derived neuronal cells. Western blot result further confirmed the reduction in mHtt aggregates level by ASC-exo treatment. ASC-exo up-regulates PGC-1, phospho-CREB and ameliorates abnormal apoptotic protein level in an in vitro HD model. In addition, MitoSOX Red, JC-1 and cell viability assay showed that ASC-exo reduces mitochondrial dysfunction and cell apoptosis of in vitro HD model. These findings suggest that ASC-exo has a therapeutic potential for treating HD by modulating representative cellular phenotypes of HD. PMID:27177616

  6. Comparative proteomics of exosomes secreted by tumoral Jurkat T cells and normal human T cell blasts unravels a potential tumorigenic role for valosin-containing protein

    Science.gov (United States)

    Sanclemente, Manuel; Iturralde, María; Naval, Javier; Alava, María Angeles; Martínez-Lostao, Luis; Thierse, Hermann-Josef; Anel, Alberto

    2016-01-01

    We have previously characterized that FasL and Apo2L/TRAIL are stored in their bioactive form inside human T cell blasts in intraluminal vesicles present in multivesicular bodies. These vesicles are rapidly released to the supernatant in the form of exosomes upon re-activation of T cells. In this study we have compared for the first time proteomics of exosomes produced by normal human T cell blasts with those produced by tumoral Jurkat cells, with the objective of identify proteins associated with tumoral exosomes that could have a previously unrecognized role in malignancy. We have identified 359 and 418 proteins in exosomes from T cell blasts and Jurkat cells, respectively. Interestingly, only 145 (around a 40%) are common. The major proteins in both cases are actin and tubulin isoforms and the common interaction nodes correspond to these cytoskeleton and related proteins, as well as to ribosomal and mRNA granule proteins. We detected 14 membrane proteins that were especially enriched in exosomes from Jurkat cells as compared with T cell blasts. The most abundant of these proteins was valosin-containing protein (VCP), a membrane ATPase involved in ER homeostasis and ubiquitination. In this work, we also show that leukemic cells are more sensitive to cell death induced by the VCP inhibitor DBeQ than normal T cells. Furthermore, VCP inhibition prevents functional exosome secretion only in Jurkat cells, but not in T cell blasts. These results suggest VCP targeting as a new selective pathway to exploit in cancer treatment to prevent tumoral exosome secretion. PMID:27086912

  7. Exosomes in development, metastasis and drug resistance of breast cancer

    OpenAIRE

    Yu, Dan-Dan; Wu, Ying; Shen, Hong-yu; Lv, Meng-meng; Chen, Wei-Xian; Zhang, Xiao-Hui; Zhong, Shan-liang; Tang, Jin-Hai; Zhao, Jian-Hua

    2015-01-01

    Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attent...

  8. Modification of tumor cell exosome content by transfection with wt-p53 and microRNA-125b expressing plasmid DNA and its effect on macrophage polarization.

    Science.gov (United States)

    Trivedi, M; Talekar, M; Shah, P; Ouyang, Q; Amiji, M

    2016-01-01

    Exosomes are responsible for intercellular communication between tumor cells and others in the tumor microenvironment. These microvesicles promote oncogensis and can support towards metastasis by promoting a pro-tumorogenic environment. Modifying the exosomal content and exosome delivery are emerging novel cancer therapies. However, the clinical translation is limited due to feasibility of isolating and delivery of treated exosomes as well as an associated immune response in patients. In this study, we provide proof-of-concept for a novel treatment approach for manipulating exosomal content by genetic transfection of tumor cells using dual-targeted hyaluronic acid-based nanoparticles. Following transfection with plasmid DNA encoding for wild-type p53 (wt-p53) and microRNA-125b (miR-125b), we evaluate the transgene expression in the SK-LU-1 cells and in the secreted exosomes. Furthermore, along with modulation of wt-p53 and miR-125b expression, we also show that the exosomes (i.e., wt-p53/exo, miR-125b/exo and combination/exo) have a reprogramed global miRNA profile. The miRNAs in the exosomes were mainly related to the activation of genes associated with apoptosis as well as p53 signaling. More importantly, these altered miRNA levels in the exosomes could mediate macrophage repolarization towards a more pro-inflammatory/antitumor M1 phenotype. However, further studies, especially in vivo studies, are warranted to assess the direct influence of such macrophage reprogramming on cancer cells and oncogenesis post-treatment. The current study provides a novel platform enabling the development of therapeutic strategies affecting not only the cancer cells but also the tumor microenvironment by utilizing the 'bystander effect' through genetic transfer with secreted exosomes. Such modification could also support antitumor environment leading to decreased oncogenesis. PMID:27500388

  9. Modification of tumor cell exosome content by transfection with wt-p53 and microRNA-125b expressing plasmid DNA and its effect on macrophage polarization

    Science.gov (United States)

    Trivedi, M; Talekar, M; Shah, P; Ouyang, Q; Amiji, M

    2016-01-01

    Exosomes are responsible for intercellular communication between tumor cells and others in the tumor microenvironment. These microvesicles promote oncogensis and can support towards metastasis by promoting a pro-tumorogenic environment. Modifying the exosomal content and exosome delivery are emerging novel cancer therapies. However, the clinical translation is limited due to feasibility of isolating and delivery of treated exosomes as well as an associated immune response in patients. In this study, we provide proof-of-concept for a novel treatment approach for manipulating exosomal content by genetic transfection of tumor cells using dual-targeted hyaluronic acid-based nanoparticles. Following transfection with plasmid DNA encoding for wild-type p53 (wt-p53) and microRNA-125b (miR-125b), we evaluate the transgene expression in the SK-LU-1 cells and in the secreted exosomes. Furthermore, along with modulation of wt-p53 and miR-125b expression, we also show that the exosomes (i.e., wt-p53/exo, miR-125b/exo and combination/exo) have a reprogramed global miRNA profile. The miRNAs in the exosomes were mainly related to the activation of genes associated with apoptosis as well as p53 signaling. More importantly, these altered miRNA levels in the exosomes could mediate macrophage repolarization towards a more pro-inflammatory/antitumor M1 phenotype. However, further studies, especially in vivo studies, are warranted to assess the direct influence of such macrophage reprogramming on cancer cells and oncogenesis post-treatment. The current study provides a novel platform enabling the development of therapeutic strategies affecting not only the cancer cells but also the tumor microenvironment by utilizing the ‘bystander effect' through genetic transfer with secreted exosomes. Such modification could also support antitumor environment leading to decreased oncogenesis. PMID:27500388

  10. Exosome and Exosomal MicroRNA:Trafficking, Sorting, and Function

    Institute of Scientific and Technical Information of China (English)

    Jian Zhang; Sha Li; Lu Li; Meng Li; Chongye Guo; Jun Yao; Shuangli Mi

    2015-01-01

    Exosomes are 40–100 nm nano-sized vesicles that are released from many cell types into the extracellular space. Such vesicles are widely distributed in various body fluids. Recently, mRNAs and microRNAs (miRNAs) have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells. This suggests an active sort-ing mechanism of exosomal miRNAs, since the miRNA profiles of exosomes may differ from those of the parent cells. Exosomal miRNAs play an important role in disease progression, and can stimu-late angiogenesis and facilitate metastasis in cancers. In this review, we will introduce the origin and the trafficking of exosomes between cells, display current research on the sorting mechanism of exo-somal miRNAs, and briefly describe how exosomes and their miRNAs function in recipient cells. Finally, we will discuss the potential applications of these miRNA-containing vesicles in clinical settings.

  11. Human Urinary Exosomes as Innate Immune Effectors

    OpenAIRE

    2014-01-01

    Exosomes are small extracellular vesicles, approximately 50 nm in diameter, derived from the endocytic pathway and released by a variety of cell types. Recent data indicate a spectrum of exosomal functions, including RNA transfer, antigen presentation, modulation of apoptosis, and shedding of obsolete protein. Exosomes derived from all nephron segments are also present in human urine, where their function is unknown. Although one report suggested in vitro uptake of exosomes by renal cortical ...

  12. Paracrine Induction of Endothelium by Tumor Exosomes

    OpenAIRE

    Hood, Joshua L.; Pan, Hua; Lanza, Gregory M.; Wickline, Samuel A.

    2009-01-01

    Cancers utilize a nanoscale messenger system known as exosomes to communicate with surrounding tissues and immune cells. However, the functional relationship between tumor exosomes, endothelial signaling, angiogenesis, and metastasis is poorly understood. Herein, we describe a standardized approach for defining the angiogenic potential of isolated exosomes. We created a powerful technique to rapidly and efficiently isolate and track exosomes for study using dynamic light scattering in conjunc...

  13. Epstein-Barr virus-encoded small RNAs (EBERs are present in fractions related to exosomes released by EBV-transformed cells.

    Directory of Open Access Journals (Sweden)

    Waqar Ahmed

    Full Text Available Epstein-Barr virus (EBV is an oncogenic herpesvirus associated with a number of human malignancies of epithelial and lymphoid origin. However, the mechanism of oncogenesis is unclear. A number of viral products, including EBV latent proteins and non-protein coding RNAs have been implicated. Recently it was reported that EBV-encoded small RNAs (EBERs are released from EBV infected cells and they can induce biological changes in cells via signaling from toll-like receptor 3. Here, we investigated if these abundantly expressed non-protein coding EBV RNAs (EBER-1 and EBER-2 are excreted from infected cells in exosomal fractions. Using differential ultracentrifugation we isolated exosomes from three EBV positive cell lines (B95-8, EBV-LCL, BL30-B95-8, one EBER-1 transfected cell line (293T-pHEBo-E1 and two EBV-negative cell lines (BL30, 293T-pHEBo. The identity of purified exosomes was determined by electron microscopy and western blotting for CD63. The presence of EBERs in cells, culture supernatants and purified exosomal fractions was determined using RT-PCR and confirmed by sequencing. Purified exosomal fractions were also tested for the presence of the EBER-1-binding protein La, using western blotting. Both EBER-1 and EBER-2 were found to be present not only in the culture supernatants, but also in the purified exosome fractions of all EBV-infected cell lines. EBER-1 could also be detected in exosomal fractions from EBER-1 transfected 293T cells whilst the fractions from vector only transfectants were clearly negative. Furthermore, purified exosomal fractions also contained the EBER-binding protein (La, supporting the notion that EBERs are most probably released from EBV infected cells in the form of EBER-La complex in exosomes.

  14. Exosomes in the Immune Response and Tolerance

    Institute of Scientific and Technical Information of China (English)

    修方明; 曹雪涛

    2004-01-01

    Exosomes, secreted by many live cells, are small non-cell vesicles with nanoparticle-grade size. In addition to the original function of discarding the uselessful membrane molecules, exosomes are involved in a range of immunoregulatory functions. Dendritic cell-derived exosomes and tumor-derived exosomes are the best characterized vesicles with potent antitumor effect by efficienfly inducing immune response. Down-regtdation of immune response or induction of immune tolerance is another interesting function of exosomes, Further functional studies of the exosomes will shed light on the application of exosomes。

  15. Effects of exosomes derived from MDA-MB-231 on proliferation of endothelial cells and the role of MAPK/ERK and PI3K/Akt pathways

    Directory of Open Access Journals (Sweden)

    Shuang LONG

    2012-11-01

    Full Text Available Objective  To investigate the effects of exosomes derived from breast cancer cell line MDA-MB-231 on proliferation of human umbilical cord vein endothelial cells (HUVECs, and evaluate the role of MAPK/ERK and PI3K/Akt signal transduction pathway during the process. Methods  Exosomes were derived and purified from MDA-MB-231 by cryogenic ultracentrifugation and density gradient centrifugation. MTT assay was carried out for measurement of cell proliferation in HUVECs with exosome of 50, 100, 200 and 400μg/ml. The states of cell cycle of HUVECs co-cultured with 200μg/ml exosomes were detected by flow cytometry. The effects of 200μg/ml exosomes on the expression of ERK, Akt and phosphorylated ERK, Akt in HUVECs were detected with Western blotting. Results  Exosomes derived from MDA-MB-231 significantly promoted HUVECs proliferation in a classical time-and dose-dependent manner. Flow cytometry revealed that, co-cultured with 200μg/ml exosomes for 24h, S-phase cells in HUVECs increased, while G1/S phase cells in HUVECs decreased. Western blotting showed that, cocultured with 200μg/ml exosomes for 24h, 48h and 72h, the expressions of phosphorylated ERK and Akt were up-regulated in a time-dependent manner. Conclusion  Exosomes derived from breast cancer cell line MDA-MB-231 may promote HUVECs proliferation, the changes in cell cycle and the continuous activation of the MAPK/ERK and PI3K/Akt signal transduction pathways may be the underlying mechanism.

  16. Exosomes as a novel therapeutic tool

    International Nuclear Information System (INIS)

    Exosomes are extracellular membrane vesicles released from cells and mediate inter-cellular communication. Exosomes contain representative materials (proteins and RNAs) in the originating cell. These cargoes can be transferred and influence in receiving cells. As bi-lipid membrane vesicles, exosomes protect the contents from degradative enzymes or chemicals in body fluid. Therefore, exosomes are attractive carrier to encapsulate and protect exogenous proteins and/or oligonucleotides for delivery to target cells. In order to exploit therapeutic application of exosomes in drug delivery system (DDS), technologies introducing therapeutic factors into exosomes and sufficient knowledge of how to be internalized in target cells and tissues are needed. We summarize to date knowledge on exosome biology, biogenesis, secretion, uptake processes and discuss their potential therapeutic applications in DDS. (author)

  17. Exosomes Derived from M. Bovis BCG Infected Macrophages Activate Antigen-Specific CD4+ and CD8+ T Cells In Vitro and In Vivo

    OpenAIRE

    Giri, Pramod K.; Schorey, Jeffrey S.

    2008-01-01

    Activation of both CD4(+) and CD8(+) T cells is required for an effective immune response to an M. tuberculosis infection. However, infected macrophages are poor antigen presenting cells and may be spatially separated from recruited T cells, thus limiting antigen presentation within a granuloma. Our previous studies showed that infected macrophages release from cells small membrane-bound vesicles called exosomes which contain mycobacterial lipid components and showed that these exosomes could...

  18. 喉癌 Hep -2细胞来源的 exosomes 的发现和鉴定%Discovery and isolation of exosomes derived from laryngocarcinoma Hep - 2 cells

    Institute of Scientific and Technical Information of China (English)

    吉晓滨; 梁俊毅; 刘启才; 谢景华

    2015-01-01

    Objective:To observe whether laryngocarcinoma Hep - 2 cells can secrete exosomes,and to identify exosomes morphologically. Methods:A large number of laryngocarcinoma Hep - 2 cells were cultivated,the yield of exosomes increased by hot shock,cell culture supernatant was gathered. Firstly,the culture supernatant was pretreat-ment by clarification through a 3 / 0. 8μm small filter element for deep filter to remove particles and impurities with larger diameter. Secondly,exosome isolation kit was used to isolate and extract exosomes. Cells culture supernatant 4ml was gathered,the solutions of the kit were added into the supernatant in proper sequence,then filtered by the special column,the concentrated fluid was obtained. The exosomes were observed under transmission electron microscopy. Re-sults:Exosomes could be isolated and extracted from culture supernatant of laryngocarcinoma Hep - 2 cells,and it present circular or elliptical vesicle with bilayer membrane,high density,well - distribution,and with range from 20 to 100nm of diameter. Conclusion:Exosomes can be secreted from laryngocarcinoma Hep - 2 cells was first discovered, which provide a new research to laryngocarcinoma immunotherapy.%目的:观察喉癌 Hep -2细胞可否分泌 exosomes,并从形态学角度鉴定。方法:大量培养喉癌 Hep -2细胞,热休克处理,收集培养上清。先通过3/0.8μm 深层过滤小型滤芯对上清进行预处理,去除直径较大的颗粒和杂质。采用 Exosome Isolation Kit(商品化试剂盒)收集培养上清液4ml,依次加入 Exosome Isolation Kit内试剂,通过 exosomes 提取专用过滤柱,收集浓缩液。用高倍透射电子显微镜对 exosomes 做鉴定。结果:成功从喉癌 Hep -2细胞培养上清中分离提取出 exosomes,电镜观察见 exosomes 呈圆形或椭圆形双层膜的囊泡状结构,直径约20~100nm,密度较高,分散均匀。结论:首次发现喉癌细胞自身能分泌 exosomes,为喉

  19. Resolving sorting mechanisms into exosomes

    NARCIS (Netherlands)

    Stoorvogel, Willem

    2015-01-01

    The complexity of mechanisms driving protein sorting into exosomes is only beginning to emerge. In a paper recently published in Cell Research, Roucourt et al. report that trimming of heparan sulfate side chains of syndecans by endosomal heparanase facilitates sorting into exosomes by the formation

  20. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs.

    Directory of Open Access Journals (Sweden)

    Wei-xian Chen

    Full Text Available Adriamycin and docetaxel are two agents commonly used in treatment of breast cancer, but their efficacy is often limited by the emergence of chemoresistance. Recent studies indicate that exosomes act as vehicles for exchange of genetic cargo between heterogeneous populations of tumor cells, engendering a transmitted drug resistance for cancer development and progression. However, the specific contribution of breast cancer-derived exosomes is poorly understood. Here we reinforced other's report that human breast cancer cell line MCF-7/S could acquire increased survival potential from its resistant variants MCF-7/Adr and MCF-7/Doc. Additionally, exosomes of the latter, A/exo and D/exo, significantly modulated the cell cycle distribution and drug-induced apoptosis with respect to S/exo. Exosomes pre-treated with RNase were unable to regulate cell cycle and apoptosis resistance, suggesting an RNA-dependent manner. Microarray and polymerase chain reaction for the miRNA expression profiles of A/exo, D/exo, and S/exo demonstrated that they loaded selective miRNA patterns. Following A/exo and D/exo transfer to recipient MCF-7/S, the same miRNAs were significantly increased in acquired cells. Target gene prediction and pathway analysis showed the involvement of miR-100, miR-222, and miR-30a in pathways implicated in cancer pathogenesis, membrane vesiculation and therapy failure. Furthermore, D/exo co-culture assays and miRNA mimics transfection experiments indicated that miR-222-rich D/exo could alter target gene expression in MCF-7/S. Our results suggest that drug-resistant breast cancer cells may spread resistance capacity to sensitive ones by releasing exosomes and that such effects could be partly attributed to the intercellular transfer of specific miRNAs.

  1. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment.

    Science.gov (United States)

    Xiao, Deyi; Barry, Samantha; Kmetz, Daniel; Egger, Michael; Pan, Jianmin; Rai, Shesh N; Qu, Jifu; McMasters, Kelly M; Hao, Hongying

    2016-07-01

    The tumor microenvironment is abundant with exosomes that are secreted by the cancer cells themselves. Exosomes are nanosized, organelle-like membranous structures that are increasingly being recognized as major contributors in the progression of malignant neoplasms. A critical element in melanoma progression is its propensity to metastasize, but little is known about how melanoma cell-derived exosomes modulate the microenvironment to optimize conditions for tumor progression and metastasis. Here, we provide evidence that melanoma cell-derived exosomes promote phenotype switching in primary melanocytes through paracrine/autocrine signaling. We found that the mitogen-activated protein kinase (MAPK) signaling pathway was activated during the exosome-mediated epithelial-to-mesenchymal transition (EMT)-resembling process, which promotes metastasis. Let-7i, an miRNA modulator of EMT, was also involved in this process. We further defined two other miRNA modulators of EMT (miR-191 and let-7a) in serum exosomes for differentiating stage I melanoma patients from non-melanoma subjects. These results provide the first strong molecular evidence that melanoma cell-derived exosomes promote the EMT-resembling process in the tumor microenvironment. Thus, novel strategies targeting EMT and modulating the tumor microenvironment may emerge as important approaches for the treatment of metastatic melanoma. PMID:27063098

  2. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts

    Science.gov (United States)

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair. PMID:27615560

  3. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts.

    Science.gov (United States)

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair. PMID:27615560

  4. Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA.

    Science.gov (United States)

    Sampey, Gavin C; Saifuddin, Mohammed; Schwab, Angela; Barclay, Robert; Punya, Shreya; Chung, Myung-Chul; Hakami, Ramin M; Zadeh, Mohammad Asad; Lepene, Benjamin; Klase, Zachary A; El-Hage, Nazira; Young, Mary; Iordanskiy, Sergey; Kashanchi, Fatah

    2016-01-15

    HIV-1 infection results in a chronic illness because long-term highly active antiretroviral therapy can lower viral titers to an undetectable level. However, discontinuation of therapy rapidly increases virus burden. Moreover, patients under highly active antiretroviral therapy frequently develop various metabolic disorders, neurocognitive abnormalities, and cardiovascular diseases. We have previously shown that exosomes containing trans-activating response (TAR) element RNA enhance susceptibility of undifferentiated naive cells to HIV-1 infection. This study indicates that exosomes from HIV-1-infected primary cells are highly abundant with TAR RNA as detected by RT-real time PCR. Interestingly, up to a million copies of TAR RNA/μl were also detected in the serum from HIV-1-infected humanized mice suggesting that TAR RNA may be stable in vivo. Incubation of exosomes from HIV-1-infected cells with primary macrophages resulted in a dramatic increase of proinflammatory cytokines, IL-6 and TNF-β, indicating that exosomes containing TAR RNA could play a direct role in control of cytokine gene expression. The intact TAR molecule was able to bind to PKR and TLR3 effectively, whereas the 5' and 3' stems (TAR microRNAs) bound best to TLR7 and -8 and none to PKR. Binding of TAR to PKR did not result in its phosphorylation, and therefore, TAR may be a dominant negative decoy molecule in cells. The TLR binding through either TAR RNA or TAR microRNA potentially can activate the NF-κB pathway and regulate cytokine expression. Collectively, these results imply that exosomes containing TAR RNA could directly affect the proinflammatory cytokine gene expression and may explain a possible mechanism of inflammation observed in HIV-1-infected patients under cART.

  5. Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7.

    Science.gov (United States)

    Staubach, Simon; Razawi, Hanieh; Hanisch, Franz-Georg

    2009-05-01

    Apically expressed human MUC1 is known to become endocytosed and either to re-enter the secretory pathway for recycling to the plasma membrane or to be exported by the cells via the formation of multi-vesicular bodies and the release of exosomes. By using recombinant fusion-tagged MUC1 as a bait protein we followed an anti-myc affinity-based approach for isolating subpopulations of lipid rafts from the plasma membranes and exosomes of MCF-7 breast cancer cells. MUC1(+) lipid rafts were not only found to contain genuine raft proteins (flotillin-1, prohibitin, G protein, annexin A2), but also raft-associated proteins linking these to the cytoskeleton (ezrin/villin-2, profilin II, HSP27, gamma-actin, beta-actin) or proteins in complexes with raft proteins, including the bait protein (HSP60, HSP70). Major overlaps were revealed for the subproteomes of plasma membranous and exosomal lipid raft preparations, indicating that MUC1 is sorted into subpopulations of rafts for its trafficking via flotillin-dependent pathways and export via exosomes.

  6. The Genomic and Proteomic Content of Cancer Cell-Derived Exosomes

    OpenAIRE

    Henderson, Meredith C.; Azorsa, David O.

    2012-01-01

    Exosomes are secreted membrane vesicles that have been proposed as an effective means to detect a variety of disease states, including cancer. The properties of exosomes, including stability in biological fluids, allow for their efficient isolation and make them an ideal vehicle for studies on early disease detection and evaluation. Much data has been collected over recent years regarding the messenger RNA, microRNA, and protein contents of exosomes. In addition, many studies have described t...

  7. Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids.

    Science.gov (United States)

    Oliveira-Rodríguez, Myriam; López-Cobo, Sheila; Reyburn, Hugh T; Costa-García, Agustín; López-Martín, Soraya; Yáñez-Mó, María; Cernuda-Morollón, Eva; Paschen, Annette; Valés-Gómez, Mar; Blanco-López, Maria Carmen

    2016-01-01

    Exosomes are cell-secreted nanovesicles (40-200 nm) that represent a rich source of novel biomarkers in the diagnosis and prognosis of certain diseases. Despite the increasingly recognized relevance of these vesicles as biomarkers, their detection has been limited due in part to current technical challenges in the rapid isolation and analysis of exosomes. The complexity of the development of analytical platforms relies on the heterogeneous composition of the exosome membrane. One of the most attractive tests is the inmunochromatographic strips, which allow rapid detection by unskilled operators. We have successfully developed a novel lateral flow immunoassay (LFIA) for the detection of exosomes based on the use of tetraspanins as targets. We have applied this platform for the detection of exosomes purified from different sources: cell culture supernatants, human plasma and urine. As proof of concept, we explored the analytical potential of this LFIA platform to accurately quantify exosomes purified from a human metastatic melanoma cell line. The one-step assay can be completed in 15 min, with a limit of detection of 8.54×10(5) exosomes/µL when a blend of anti-CD9 and anti-CD81 were selected as capture antibodies and anti-CD63 labelled with gold nanoparticles as detection antibody. Based on our results, this platform could be well suited to be used as a rapid exosome quantification tool, with promising diagnostic applications, bearing in mind that the detection of exosomes from different sources may require adaptation of the analytical settings to their specific composition. PMID:27527605

  8. Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids

    Directory of Open Access Journals (Sweden)

    Myriam Oliveira-Rodríguez

    2016-08-01

    Full Text Available Exosomes are cell-secreted nanovesicles (40–200 nm that represent a rich source of novel biomarkers in the diagnosis and prognosis of certain diseases. Despite the increasingly recognized relevance of these vesicles as biomarkers, their detection has been limited due in part to current technical challenges in the rapid isolation and analysis of exosomes. The complexity of the development of analytical platforms relies on the heterogeneous composition of the exosome membrane. One of the most attractive tests is the inmunochromatographic strips, which allow rapid detection by unskilled operators. We have successfully developed a novel lateral flow immunoassay (LFIA for the detection of exosomes based on the use of tetraspanins as targets. We have applied this platform for the detection of exosomes purified from different sources: cell culture supernatants, human plasma and urine. As proof of concept, we explored the analytical potential of this LFIA platform to accurately quantify exosomes purified from a human metastatic melanoma cell line. The one-step assay can be completed in 15 min, with a limit of detection of 8.54×105 exosomes/µL when a blend of anti-CD9 and anti-CD81 were selected as capture antibodies and anti-CD63 labelled with gold nanoparticles as detection antibody. Based on our results, this platform could be well suited to be used as a rapid exosome quantification tool, with promising diagnostic applications, bearing in mind that the detection of exosomes from different sources may require adaptation of the analytical settings to their specific composition.

  9. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    Science.gov (United States)

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate tha...

  10. Photochemical internalization of tamoxifens transported by a "Trojan-horse" nanoconjugate into breast-cancer cell lines.

    Science.gov (United States)

    Theodossiou, Theodossis A; Gonçalves, A Ricardo; Yannakopoulou, Konstantina; Skarpen, Ellen; Berg, Kristian

    2015-04-13

    Photochemical internalization (PCI) has shown great promise as a therapeutic alternative for targeted drug delivery by light-harnessed activation. However, it has only been applicable to therapeutic macromolecules or medium-sized molecules. Herein we describe the use of an amphiphilic, water-soluble porphyrin-β-cyclodextrin conjugate (mTHPP-βCD) as a "Trojan horse" to facilitate the endocytosis of CD-guest tamoxifens into breast-cancer cells. Upon irradiation, the porphyrin core of mTHPP-βCD expedited endosomal membrane rupture and tamoxifen release into the cytosol, as documented by confocal microscopy. The sustained complexation of mTHPP-βCD with tamoxifen was corroborated by 2D NMR spectroscopy and FRET studies. Following the application of PCI protocols with 4-hydroxytamoxifen (4-OHT), estrogen-receptor β-positive (Erβ+, but not ERβ-) cell groups exhibited extensive cytotoxicity and/or growth suspension even at 72 h after irradiation. PMID:25663536

  11. Distinct Dasatinib-Induced Mechanisms of Apoptotic Response and Exosome Release in Imatinib-Resistant Human Chronic Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Juan Liu

    2016-04-01

    Full Text Available Although dasatinib is effective in most imatinib mesylate (IMT-resistant chronic myeloid leukemia (CML patients, the underlying mechanism of its effectiveness in eliminating imatinib-resistant cells is only partially understood. This study investigated the effects of dasatinib on signaling mechanisms driving-resistance in imatinib-resistant CML cell line K562 (K562RIMT. Compared with K562 control cells, exsomal release, the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt/ mammalian target of rapamycin (mTOR signaling and autophagic activity were increased significantly in K562RIMT cells and mTOR-independent beclin-1/Vps34 signaling was shown to be involved in exosomal release in these cells. We found that Notch1 activation-mediated reduction of phosphatase and tensin homolog (PTEN was responsible for the increased Akt/mTOR activities in K562RIMT cells and treatment with Notch1 γ-secretase inhibitor prevented activation of Akt/mTOR. In addition, suppression of mTOR activity by rapamycin decreased the level of activity of p70S6K, induced upregulation of p53 and caspase 3, and led to increase of apoptosis in K562RIMT cells. Inhibition of autophagy by spautin-1 or beclin-1 knockdown decreased exosomal release, but did not affect apoptosis in K562RIMT cells. In summary, in K562RIMT cells dasatinib promoted apoptosis through downregulation of Akt/mTOR activities, while preventing exosomal release and inhibiting autophagy by downregulating expression of beclin-1 and Vps34. Our findings reveal distinct dasatinib-induced mechanisms of apoptotic response and exosomal release in imatinib-resistant CML cells.

  12. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p.

    Science.gov (United States)

    Ding, Guoping; Zhou, Liangjing; Qian, Yingming; Fu, Mingnian; Chen, Jian; Chen, Jionghuang; Xiang, Jianyang; Wu, Zhengrong; Jiang, Guixing; Cao, Liping

    2015-10-01

    It has been reported tumor-derived exosomes can transfer miRNAs to recipient cells in the tumor microenvironment, promoting tumor invasion and metastasis. The present research aimed to explore how pancreatic cancer (PC) derived exosomal miRNAs inhibited mRNA expression of dendritic cells and induced immune tolerance. Our study revealed that 9 PC-related miRNAs were increased and 208 mRNAs were inhibited in exosome-stimulated dendritic cells (exo-iDCs) compared to immature dendritic cells (iDCs). A target prediction between the 9 miRNAs and 208 mRNAs was performed by bioinformatics database analysis. From the target prediction, it was predicted and validated that regulatory factor X-associated protein (RFXAP), an important transcription factor for MHC II, was inhibited by miR-212-3p transferred from PC-secreted exosomes, resulting in decreased MHC II expression. Moreover, a clinical study showed a negative correlation between miR-212-3p and RFXAP in PC tissue. From these data, we concluded that PC-related miRNAs can be transferred to dendritic cells via exosome and inhibit target mRNA expression. More importantly, PC-derived exosomes inhibit RFXAP expression via miR-212-3p, which decrease MHC II expression and induce immune tolerance of dendritic cells. RFXAP deficiency has never been reported in solid tumors. The functions and mechanisms of RFXAP in tumors deserve future explorations.

  13. Exosomes : Nano-vesicles in immune regulation

    OpenAIRE

    Johansson, Sara M

    2008-01-01

    Nano-vesicles (30-100 nm) with an endosome-derived limiting membrane are called exosomes. These are released from the cell when the endosome fuses with the outer cell membrane. Exosomes from antigen presenting cells (APC) carry MHC class I and class II as well as integrins, tetraspanins and co-stimulatory molecules. They can either stimulate T cell responses or induce tolerance. Exosomes are presently being evaluated as therapeutic tools but still little is known about their...

  14. Donor-derived exosomes induce specific regulatory T cells to suppress immune inflammation in the allograft heart

    OpenAIRE

    Jiangping Song; Jie Huang; Xiao Chen; Xiao Teng; Zhizhao Song; Yong Xing; Mangyuan Wang; Kai Chen; Zheng Wang; Pingchang Yang; Shengshou Hu

    2016-01-01

    To inhibit the immune inflammation in the allografts can be beneficial to organ transplantation. This study aims to induce the donor antigen specific regulatory T cells (Treg cell) inhibit the immune inflammation in the allograft heart. In this study, peripheral exosomes were purified from the mouse serum. A heart transplantation mouse model was developed. The immune inflammation of the allograft heart was assessed by histology and flow cytometry. The results showed that the donor antigen-spe...

  15. Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats

    OpenAIRE

    Jiang, Zhen-zhen; Liu, Yu-mei; Niu, Xin; Yin, Jian-yong; Hu, Bin; Guo, Shang-chun; Fan, Ying; Wang, Yang; Wang, Nian-song

    2016-01-01

    Background Diabetic nephropathy is one of the most serious complications in patients with diabetes. At present, there are no satisfactory treatments available for diabetic nephropathy. Stem cells are currently the main candidates for the development of new treatments for diabetic nephropathy, as they may exert their therapeutic effects mainly through paracrine mechanisms. Exosomes derived from stem cells have been reported to play an important role in kidney injury. In this article, we try to...

  16. Transcriptome analysis of exosome-compromised human cells using high-density tiling arrays

    DEFF Research Database (Denmark)

    Jensen, Torben Heick

    The extent of RNA degradation in the nucleus has traditionally been underestimated. However, all major RNA species are synthesized, processed and can be degraded in this compartment and consequently an enormous amount of nucleosides are turned over and recycled. The RNA exosome, a multisubunit...... complex of 3’-5’ exoribonucleases, is a key player in these processive/degradative pathways. The exosome is highly conserved between yeast and man, and exists in a cytoplasmic and a nuclear form; the 3’-5’ exoribonuclease Rrp6 (human homologue PM/Scl100) is a specific component of the nuclear exosome.......Studies in yeast using exosome-mutant strains has revealed specific functions of the nuclear exosome: (i) processing or degradation of small nuclear/nucleolar RNAs (snRNAs, snoRNAs), (ii) surveillance and degradation of malformed mRNAs and (iii) processing or degradation of ribosomal precursor RNA to mature r...

  17. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral Latent Membrane Protein 1 and the immunomodulatory protein galectin 9

    International Nuclear Information System (INIS)

    Nasopharyngeal carcinomas (NPC) are consistently associated with the Epstein-Barr virus (EBV). Their malignant epithelial cells contain the viral genome and express several antigenic viral proteins. However, the mechanisms of immune escape in NPCs are still poorly understood. EBV-transformed B-cells have been reported to release exosomes carrying the EBV-encoded latent membrane protein 1 (LMP1) which has T-cell inhibitory activity. Although this report suggested that NPC cells could also produce exosomes carrying immunosuppressive proteins, this hypothesis has remained so far untested. Malignant epithelial cells derived from NPC xenografts – LMP1-positive (C15) or negative (C17) – were used to prepare conditioned culture medium. Various microparticles and vesicles released in the culture medium were collected and fractionated by differential centrifugation. Exosomes collected in the last centrifugation step were further purified by immunomagnetic capture on beads carrying antibody directed to HLA class II molecules. Purified exosomes were visualized by electron microscopy and analysed by western blotting. The T-cell inhibitory activities of recombinant LMP1 and galectin 9 were assessed on peripheral blood mononuclear cells activated by CD3/CD28 cross-linking. HLA-class II-positive exosomes purified from C15 and C17 cell supernatants were containing either LMP1 and galectin 9 (C15) or galectin 9 only (C17). Recombinant LMP1 induced a strong inhibition of T-cell proliferation (IC50 = 0.17 nM). In contrast recombinant galectin 9 had a weaker inhibitory effect (IC50 = 46 nM) with no synergy with LMP1. This study provides the proof of concept that NPC cells can release HLA class-II positive exosomes containing galectin 9 and/or LMP1. It confirms that the LMP1 molecule has intrinsic T-cell inhibitory activity. These findings will encourage investigations of tumor exosomes in the blood of NPC patients and assessment of their effects on various types of target cells

  18. CLL Exosomes Modulate the Transcriptome and Behaviour of Recipient Stromal Cells and Are Selectively Enriched in miR-202-3p.

    Directory of Open Access Journals (Sweden)

    Mosavar Farahani

    Full Text Available Bi-directional communication with the microenvironment is essential for homing and survival of cancer cells with implications for disease biology and behaviour. In chronic lymphocytic leukemia (CLL, the role of the microenvironment on malignant cell behaviour is well described. However, how CLL cells engage and recruit nurturing cells is poorly characterised. Here we demonstrate that CLL cells secrete exosomes that are nanovesicles originating from the fusion of multivesicular bodies with the plasma membrane, to shuttle proteins, lipids, microRNAs (miR and mRNAs to recipient cells. We characterise and confirm the size (50-100 nm and identity of the CLL-derived exosomes by Electron microscopy (EM, Atomic force microscopy (AFM, flow cytometry and western blotting using both exosome- and CLL-specific markers. Incubation of CLL-exosomes, derived either from cell culture supernatants or from patient plasma, with human stromal cells shows that they are readily taken up into endosomes, and induce expression of genes such as c-fos and ATM as well as enhance proliferation of recipient HS-5 cells. Furthermore, we show that CLL exosomes encapsulate abundant small RNAs and are enriched in certain miRs and specifically hsa-miR-202-3p. We suggest that such specific packaging of miR-202-3p into exosomes results in enhanced expression of 'suppressor of fused' (Sufu, a Hedgehog (Hh signalling intermediate, in the parental CLL cells. Thus, our data show that CLL cells secrete exosomes that alter the transcriptome and behaviour of recipient cells. Such communication with microenvironment is likely to have an important role in CLL disease biology.

  19. [Analysis and Control of in Vivo Kinetics of Exosomes for the Development of Exosome-based DDS].

    Science.gov (United States)

    Takahashi, Yuki; Nishikawa, Makiya; Takakura, Yoshinobu

    2016-01-01

      Exosomes are secretory membrane vesicles containing lipids, proteins, and nucleic acids. They act as intercellular transporters by delivering their components to exosome recipient cells. Based on their endogenous delivery system properties, exosomes are expected to become drug delivery systems (DDS) for various molecules such as nucleic acid-based drugs. Important factors such as drug loading to exosomes, production, and pharmacokinetics of exosomes need to be considered for the development of exosome-based DDS. Of these, the pharmacokinetics of exosomes have rarely been studied, probably because of the lack of quantitative evaluation methods of in vivo exosomal pharmacokinetics. We selected lactadherin as an exosome tropic protein and developed it as a fusion protein with Gaussia luciferase to label exosomes for in vivo imaging. In addition, a fusion protein of lactadherin and streptavidin was developed, and the tissue distribution of exosomes was quantitatively evaluated by radiolabeling the exosomes using (125)I-labeled biotin. Using labeled exosomes, we found that intravenously injected exosomes were rapidly cleared from the systemic circulation by macrophages. In addition, the exosomes were mainly distributed to the liver, lung, and spleen. We also examined the effect of exosome isolation methods on their physicochemical and pharmacokinetic properties. We found that exosomes collected by the ultracentrifugation-based density-gradient method were more dispersed than exosomes collected by other methods, including the ultracentrifugation-based pelleting method. The gradient method is more time-consuming than others; therefore the development of a more efficient method for exosome isolation will advance the development of exosome-based DDS. PMID:26725667

  20. Curb Challenges of the “Trojan Horse” Approach: Smart Strategies in Achieving Effective yet Safe Cell-penetrating Peptide-based Drug Delivery

    OpenAIRE

    Huang, Yongzhuo; Jiang, Yifan; Wang, Huiyuan; Wang, Jianxin; Shin, Meong Cheol; Byun, Youngro; He, Huining; Liang, Yanqin; Yang, Victor C.

    2013-01-01

    Cell-penetrating peptide (CPP)-mediated intracellular drug delivery system, often specifically termed as “the Trojan horse approach”, has become the “holy grail” in achieving effective delivery of macromolecular compounds such as proteins, DNA, siRNAs, and drug carriers. It is characterized by the unique cell- (or receptor-), temperature-, and payload-independent mechanisms, therefore offering potent means to improve poor cellular uptake of a variety of macromolecular drugs. Nevertheless, thi...

  1. Tetherin is an exosomal tether

    Science.gov (United States)

    Edgar, James R; Manna, Paul T; Nishimura, Shinichi; Banting, George; Robinson, Margaret S

    2016-01-01

    Exosomes are extracellular vesicles that are released when endosomes fuse with the plasma membrane. They have been implicated in various functions in both health and disease, including intercellular communication, antigen presentation, prion transmission, and tumour cell metastasis. Here we show that inactivating the vacuolar ATPase in HeLa cells causes a dramatic increase in the production of exosomes, which display endocytosed tracers, cholesterol, and CD63. The exosomes remain clustered on the cell surface, similar to retroviruses, which are attached to the plasma membrane by tetherin. To determine whether tetherin also attaches exosomes, we knocked it out and found a 4-fold reduction in plasma membrane-associated exosomes, with a concomitant increase in exosomes discharged into the medium. This phenotype could be rescued by wild-type tetherin but not tetherin lacking its GPI anchor. We propose that tetherin may play a key role in exosome fate, determining whether they participate in long-range or short-range interactions. DOI: http://dx.doi.org/10.7554/eLife.17180.001 PMID:27657169

  2. Differential Distribution of Exosome Subunits at the Nuclear Lamina and in Cytoplasmic FociD⃞V⃞

    OpenAIRE

    Graham, Amy C.; Kiss, Daniel L.; Andrulis, Erik D.

    2006-01-01

    The exosome complex plays important roles in RNA processing and turnover. Despite significant mechanistic insight into exosome function, we still lack a basic understanding of the subcellular locales where exosome complex biogenesis and function occurs. Here, we employ a panel of Drosophila S2 stable cell lines expressing epitope-tagged exosome subunits to examine the subcellular distribution of exosome complex components. We show that tagged Drosophila exosome subunits incorporate into compl...

  3. Proteomic profiling of human plasma exosomes identifies PPARγ as an exosome-associated protein

    International Nuclear Information System (INIS)

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPARγ as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  4. Exosomes released by granulocytic myeloid-derived suppressor cells attenuate DSS-induced colitis in mice.

    Science.gov (United States)

    Wang, Yungang; Tian, Jie; Tang, Xinyi; Rui, Ke; Tian, Xinyu; Ma, Jie; Ma, Bin; Xu, Huaxi; Lu, Liwei; Wang, Shengjun

    2016-03-29

    Myeloid-derived suppressor cells (MDSC) have been described in inflammatory bowel disease (IBD), but their role in the disease remains controversial. We sought to define the effect of granulocytic MDSC-derived exosomes (G-MDSC exo) in dextran sulphate sodium (DSS)-induced murine colitis. G-MDSC exo-treated mice showed greater resistance to colitis, as reflected by lower disease activity index, decreased inflammatory cell infiltration damage. There was a decrease in the proportion of Th1 cells and an increase in the proportion of regulatory T cells (Tregs) in mesenteric lymph nodes (MLNs) from G-MDSC exo-treated colitis mice. Moreover, lower serum levels of interferon (IFN)-γ and tumor necrosis factor (TNF)-α were detected in G-MDSC exo-treated colitis mice. Interestingly, inhibition of arginase (Arg)-1 activity in G-MDSC exo partially abrogated the spontaneous improvement of colitis. In addition, G-MDSC exo could suppress CD4+ T cell proliferation and IFN-γ secretion in vitro and inhibit the delayed-type hypersensitivity (DTH) response, and these abilities were associated with Arg-1 activity. Moreover, G-MDSC exo promoted the expansion of Tregs in vitro. Taken together, these results suggest that G-MDSC exo attenuate DSS-induced colitis through inhibiting Th1 cells proliferation and promoting Tregs expansion.

  5. Physiological and pathological impact of exosomes of adipose tissue.

    Science.gov (United States)

    Zhang, Yan; Yu, Mei; Tian, Weidong

    2016-02-01

    Exosomes are nanovesicles that have emerged as a new intercellular communication system for transporting proteins and RNAs; recent studies have shown that they play a role in many physiological and pathological processes such as immune regulation, cell differentiation, infection and cancer. By transferring proteins, mRNAs and microRNAs, exosomes act as information vehicles that alter the behavior of recipient cells. Compared to direct cell-cell contact or secreted factors, exosomes can affect recipient cells in more efficient ways. In whole adipose tissues, it has been shown that exosomes exist in supernatants of adipocytes and adipose stromal cells (ADSCs). Adipocyte exosomes are linked to lipid metabolism and obesity-related insulin resistance and exosomes secreted by ADSCs are involved in angiogenesis, immunomodulation and tumor development. This review introduces characteristics of exosomes in adipose tissue, summarizes their functions in different physiological and pathological processes and provides the further insight into potential application of exosomes to disease diagnosis and treatment.

  6. Exosomes: Implications in HIV-1 Pathogenesis.

    Science.gov (United States)

    Madison, Marisa N; Okeoma, Chioma M

    2015-07-20

    Exosomes are membranous nanovesicles of endocytic origin that carry host and pathogen derived genomic, proteomic, and lipid cargos. Exosomes are secreted by most cell types into the extracellular milieu and are subsequently internalized by recipient cells. Upon internalization, exosomes condition recipient cells by donating their cargos and/or activating various signal transduction pathways, consequently regulating physiological and pathophysiological processes. The role of exosomes in viral pathogenesis, especially human immunodeficiency virus type 1 [HIV-1] is beginning to unravel. Recent research reports suggest that exosomes from various sources play important but different roles in the pathogenesis of HIV-1. From these reports, it appears that the source of exosomes is the defining factor for the exosomal effect on HIV-1. In this review, we will describe how HIV-1 infection is modulated by exosomes and in turn how exosomes are targeted by HIV-1 factors. Finally, we will discuss potentially emerging therapeutic options based on exosomal cargos that may have promise in preventing HIV-1 transmission.

  7. Tumour exosome integrins determine organotropic metastasis.

    Science.gov (United States)

    Hoshino, Ayuko; Costa-Silva, Bruno; Shen, Tang-Long; Rodrigues, Goncalo; Hashimoto, Ayako; Tesic Mark, Milica; Molina, Henrik; Kohsaka, Shinji; Di Giannatale, Angela; Ceder, Sophia; Singh, Swarnima; Williams, Caitlin; Soplop, Nadine; Uryu, Kunihiro; Pharmer, Lindsay; King, Tari; Bojmar, Linda; Davies, Alexander E; Ararso, Yonathan; Zhang, Tuo; Zhang, Haiying; Hernandez, Jonathan; Weiss, Joshua M; Dumont-Cole, Vanessa D; Kramer, Kimberly; Wexler, Leonard H; Narendran, Aru; Schwartz, Gary K; Healey, John H; Sandstrom, Per; Labori, Knut Jørgen; Kure, Elin H; Grandgenett, Paul M; Hollingsworth, Michael A; de Sousa, Maria; Kaur, Sukhwinder; Jain, Maneesh; Mallya, Kavita; Batra, Surinder K; Jarnagin, William R; Brady, Mary S; Fodstad, Oystein; Muller, Volkmar; Pantel, Klaus; Minn, Andy J; Bissell, Mina J; Garcia, Benjamin A; Kang, Yibin; Rajasekhar, Vinagolu K; Ghajar, Cyrus M; Matei, Irina; Peinado, Hector; Bromberg, Jacqueline; Lyden, David

    2015-11-19

    Ever since Stephen Paget's 1889 hypothesis, metastatic organotropism has remained one of cancer's greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.

  8. Exosomes: Potential in Cancer Diagnosis and Therapy

    OpenAIRE

    Phillip Munson; Arti Shukla

    2015-01-01

    Exosomes are membrane-bound, intercellular communication shuttles that are defined by their endocytic origin and size range of 30–140 nm. Secreted by nearly all mammalian cell types and present in myriad bodily fluids, exosomes confer messages between cells, proximal and distal, by transporting biofunctional cargo in the form of proteins, nucleic acids, and lipids. They play a vital role in cellular signaling in both normal physiology and disease states, particularly cancer. Exosomes are powe...

  9. Q&A: What are exosomes, exactly?

    Science.gov (United States)

    Edgar, James R

    2016-01-01

    Exosomes are extracellular vesicles first described as such 30 years ago and since implicated in cell-cell communication and the transmission of disease states, and explored as a means of drug discovery. Yet fundamental questions about their biology remain unanswered. Here I explore what exosomes are, highlight the difficulties in studying them and explain the current definition and some of the outstanding issues in exosome biology. PMID:27296830

  10. Proteomic profiling of exosomes: Current perspectives

    DEFF Research Database (Denmark)

    Simpson, Richard J; Jensen, Søren S; Lim, Justin W E

    2008-01-01

    Exosomes are 40-100 nm membrane vesicles of endocytic origin secreted by most cell types in vitro. Recent studies have shown that exosomes are also found in vivo in body fluids such as blood, urine, amniotic fluid, malignant ascites, bronchoalveolar lavage fluid, synovial fluid, and breast milk....... While the biological function of exosomes is still unclear, they can mediate communication between cells, facilitating processes such as antigen presentation and in trans signaling to neighboring cells. Exosome-like vesicles identified in Drosophila (referred to as argosomes) may be potential vehicles...... for the spread of morphogens in epithelia. The advent of current MS-based proteomic technologies has contributed significantly to our understanding of the molecular composition of exosomes. In addition to a common set of membrane and cytosolic proteins, it is becoming increasingly apparent that exosomes harbor...

  11. Mast cells and basophils: trojan horses of conventional lin- stem/progenitor cell isolates.

    Science.gov (United States)

    Heneberg, Petr

    2011-11-01

    Cancer microenvironment is increasingly recognized as an important factor affecting cancer onset and progression. Since Wirchow reported in 1863 that tumors contain inflammatory cells, the field shifted significantly forward, and immune cells residing in tumors appear to be attractive targets of cancer therapies. For some methods, such as stem/progenitor cell isolation from both cancer and healthy tissues, removal of contaminating immune cells is crucial to achieve consistent, reproducible and accurate results. Despite current methods of lineage negative selection accounts for removal of over 99 % of immune cells from stem/progenitor cell isolates, the vast majority of lineage antibody cocktails retain basophils, dendritic cells, and mast cells. Here we discuss the ability of the most commonly used lineage markers to bind to the plasma membrane of mast cells and/or basophils, and suggest alternatives, which may be used for negative selection of these cellular populations. Both, mast cells and basophils, were shown to participate actively in cancer-associated angiogenesis, tissue remodeling and recruitment of other immune cell types, including eosinophils, B cells, memory T cells and Treg cells. In turn, tumor-derived peptides and chemotactic factors are known to recruit and activate mast cells in neoplasias, resulting in altered tumor progression. Repeated findings of CD34+ populations of mast cells and basophils further highlight necessity of their separation from stem/progenitor cell isolates in both, preclinical experiments and clinical praxis. PMID:22103846

  12. Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance.

    Science.gov (United States)

    Gong, Jingyi; Körner, Roman; Gaitanos, Louise; Klein, Rüdiger

    2016-07-01

    The cellular release of membranous vesicles known as extracellular vesicles (EVs) or exosomes represents a novel mode of intercellular communication. Eph receptor tyrosine kinases and their membrane-tethered ephrin ligands have very important roles in such biologically diverse processes as neuronal development, plasticity, and pathological diseases. Until now, it was thought that ephrin-Eph signaling requires direct cell contact. Although the biological functions of ephrin-Eph signaling are well understood, our mechanistic understanding remains modest. Here we report the release of EVs containing Ephs and ephrins by different cell types, a process requiring endosomal sorting complex required for transport (ESCRT) activity and regulated by neuronal activity. Treatment of cells with purified EphB2(+) EVs induces ephrinB1 reverse signaling and causes neuronal axon repulsion. These results indicate a novel mechanism of ephrin-Eph signaling independent of direct cell contact and proteolytic cleavage and suggest the participation of EphB2(+) EVs in neural development and synapse physiology. PMID:27354374

  13. Exosome-bound WD repeat protein Monad inhibits breast cancer cell invasion by degrading amphiregulin mRNA.

    Directory of Open Access Journals (Sweden)

    Makio Saeki

    Full Text Available Increased stabilization of mRNA coding for key cancer genes can contribute to invasiveness. This is achieved by down-regulation of exosome cofactors, which bind to 3'-UTR in cancer-related genes. Here, we identified amphiregulin, an EGFR ligand, as a target of WD repeat protein Monad, a component of R2TP/prefoldin-like complex, in MDA-MB-231 breast cancer cells. Monad specifically interacted with both the 3'-UTR of amphiregulin mRNA and the RNA degrading exosome, and enhanced decay of amphiregulin transcripts. Knockdown of Monad increased invasion and this effect was abolished with anti-amphiregulin neutralizing antibody. These results suggest that Monad could prevent amphiregulin-mediated invasion by degrading amphiregulin mRNA.

  14. Exosome mediated growth effect on the non-growing pre-B acute lymphoblastic leukemia cells at low starting cell density

    Science.gov (United States)

    Patel, Sapan J; Darie, Costel C; Clarkson, Bayard D

    2016-01-01

    Tumors contain heterogeneous cell populations and achieve dominance by functioning as collective systems. The mechanisms underlying the aberrant growth and interactions between cells are not very well understood. The pre-B acute lymphoblastic leukemia cells we studied were obtained directly from a patient with Ph+ ALL. A new Ph+ ALL cell line (ALL3) was established from the leukemic cells growing as ascitic cells in his pleural fluid. The patient died of his disease shortly after the cells were obtained. ALL3 cells grow well at high cell densities (HD), but not at low cell densities. ALL3 cells are very sensitive to potent tyrosine kinase inhibitors (TKIs) such as Dasatinib and PD166325, but less sensitive to AMN 107, Imatinib, and BMS 214662 (a farnesyl transferase inhibitor). Here, we show that the growth of the LD ALL3 cells can be stimulated to grow in the presence of diffusible, soluble factors secreted by ALL3 cells themselves growing at high density. We also show that exosomes, part of the secretome components, are also able to stimulate the growth of the non-growing LD ALL3 cells and modulate their proliferative behavior. Characterization of the exosome particles also showed that the HD ALL3 cells are able to secret them in large quantities and that they are capable of inducing the growth of the LD ALL3 cells without which they will not survive. Direct stimulation of non-growing LD ALL3 cells using purified exosomes shows that the ALL3 cells can also communicate with each other by means of exchange of exosomes independently of direct cell-cell contacts or diffusible soluble stimulatory factors secreted by HD ALL3 cells. PMID:27725845

  15. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes

    Science.gov (United States)

    Nagaishi, Kanna; Mizue, Yuka; Chikenji, Takako; Otani, Miho; Nakano, Masako; Konari, Naoto; Fujimiya, Mineko

    2016-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) have contributed to the improvement of diabetic nephropathy (DN); however, the actual mediator of this effect and its role has not been characterized thoroughly. We investigated the effects of MSC therapy on DN, focusing on the paracrine effect of renal trophic factors, including exosomes secreted by MSCs. MSCs and MSC-conditioned medium (MSC-CM) as renal trophic factors were administered in parallel to high-fat diet (HFD)-induced type 2 diabetic mice and streptozotocin (STZ)-induced insulin-deficient diabetic mice. Both therapies showed approximately equivalent curative effects, as each inhibited the exacerbation of albuminuria. They also suppressed the excessive infiltration of BMDCs into the kidney by regulating the expression of the adhesion molecule ICAM-1. Proinflammatory cytokine expression (e.g., TNF-α) and fibrosis in tubular interstitium were inhibited. TGF-β1 expression was down-regulated and tight junction protein expression (e.g., ZO-1) was maintained, which sequentially suppressed the epithelial-to-mesenchymal transition of tubular epithelial cells (TECs). Exosomes purified from MSC-CM exerted an anti-apoptotic effect and protected tight junction structure in TECs. The increase of glomerular mesangium substrate was inhibited in HFD-diabetic mice. MSC therapy is a promising tool to prevent DN via the paracrine effect of renal trophic factors including exosomes due to its multifactorial action. PMID:27721418

  16. Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche

    Science.gov (United States)

    Sánchez, Catherine A.; Andahur, Eliana I.; Valenzuela, Rodrigo; Castellón, Enrique A.; Fullá, Juan A.; Ramos, Christian G.; Triviño, Juan C.

    2016-01-01

    The different prostate cancer (PCa) cell populations (bulk and cancer stem cells, CSCs) release exosomes that contain miRNAs that could modify the local or premetastatic niche. The analysis of the differential expression of miRNAs in exosomes allows evaluating the differential biological effect of both populations on the niche, and the identification of potential biomarkers and therapeutic targets. Five PCa primary cell cultures were established to originate bulk and CSCs cultures. From them, exosomes were purified by precipitation for miRNAs extraction to perform a comparative profile of miRNAs by next generation sequencing in an Illumina platform. 1839 miRNAs were identified in the exosomes. Of these 990 were known miRNAs, from which only 19 were significantly differentially expressed: 6 were overexpressed in CSCs and 13 in bulk cells exosomes. miR-100-5p and miR-21-5p were the most abundant miRNAs. Bioinformatics analysis indicated that differentially expressed miRNAs are highly related with PCa carcinogenesis, fibroblast proliferation, differentiation and migration, and angiogenesis. Besides, miRNAs from bulk cells affects osteoblast differentiation. Later, their effect was evaluated in normal prostate fibroblasts (WPMY-1) where transfection with miR-100-5p, miR-21-5p and miR-139-5p increased the expression of metalloproteinases (MMPs) -2, -9 and -13 and RANKL and fibroblast migration. The higher effect was achieved with miR21 transfection. As conclusion, miRNAs have a differential pattern between PCa bulk and CSCs exosomes that act collaboratively in PCa progression and metastasis. The most abundant miRNAs in PCa exosomes are interesting potential biomarkers and therapeutic targets. PMID:26675257

  17. Pancreatic Cancer Cell Exosome-Mediated Macrophage Reprogramming and the Role of MicroRNAs 155 and 125b2 Transfection using Nanoparticle Delivery Systems.

    Science.gov (United States)

    Su, Mei-Ju; Aldawsari, Hibah; Amiji, Mansoor

    2016-01-01

    Exosomes are nano-sized endosome-derived small intraluminal vesicles, which are important facilitators of intercellular communication by transporting contents, such as protein, mRNA, and microRNAs, between neighboring cells, such as in the tumor microenvironment. The purpose of this study was to understand the mechanisms of exosomes-mediated cellular communication between human pancreatic cancer (Panc-1) cells and macrophages (J771.A1) using a Transwell co-culture system. Following characterization of exosome-mediated cellular communication and pro-tumoral baseline M2 macrophage polarization, the Panc-1 cells were transfected with microRNA-155 (miR-155) and microRNA-125b-2 (miR-125b2) expressing plasmid DNA using hyaluronic acid-poly(ethylene imine)/hyaluronic acid-poly(ethylene glycol) (HA-PEI/HA-PEG) self-assembling nanoparticle-based non-viral vectors. Our results show that upon successful transfection of Panc-1 cells, the exosome content was altered leading to differential communication and reprogramming of the J774.A1 cells to an M1 phenotype. Based on these results, genetic therapies targeted towards selective manipulation of tumor cell-derived exosome content may be very promising for cancer therapy. PMID:27443190

  18. Pancreatic Cancer Cell Exosome-Mediated Macrophage Reprogramming and the Role of MicroRNAs 155 and 125b2 Transfection using Nanoparticle Delivery Systems

    Science.gov (United States)

    Su, Mei-Ju; Aldawsari, Hibah; Amiji, Mansoor

    2016-01-01

    Exosomes are nano-sized endosome-derived small intraluminal vesicles, which are important facilitators of intercellular communication by transporting contents, such as protein, mRNA, and microRNAs, between neighboring cells, such as in the tumor microenvironment. The purpose of this study was to understand the mechanisms of exosomes-mediated cellular communication between human pancreatic cancer (Panc-1) cells and macrophages (J771.A1) using a Transwell co-culture system. Following characterization of exosome-mediated cellular communication and pro-tumoral baseline M2 macrophage polarization, the Panc-1 cells were transfected with microRNA-155 (miR-155) and microRNA-125b-2 (miR-125b2) expressing plasmid DNA using hyaluronic acid-poly(ethylene imine)/hyaluronic acid-poly(ethylene glycol) (HA-PEI/HA-PEG) self-assembling nanoparticle-based non-viral vectors. Our results show that upon successful transfection of Panc-1 cells, the exosome content was altered leading to differential communication and reprogramming of the J774.A1 cells to an M1 phenotype. Based on these results, genetic therapies targeted towards selective manipulation of tumor cell-derived exosome content may be very promising for cancer therapy. PMID:27443190

  19. Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells.

    Science.gov (United States)

    Song, Man; Wang, Yu; Shang, Zeng-Fu; Liu, Xiao-Dan; Xie, Da-Fei; Wang, Qi; Guan, Hua; Zhou, Ping-Kun

    2016-01-01

    Radiation-induced bystander effect (RIBE) describes a set of biological effects in non-targeted cells that receive bystander signals from the irradiated cells. RIBE brings potential hazards to adjacent normal tissues in radiotherapy, and imparts a higher risk than previously thought. Excessive release of some substances from irradiated cells into extracellular microenvironment has a deleterious effect. For example, cytokines and reactive oxygen species have been confirmed to be involved in RIBE process via extracellular medium or gap junctions. However, RIBE-mediating signals and intercellular communication pathways are incompletely characterized. Here, we first identified a set of differentially expressed miRNAs in the exosomes collected from 2 Gy irradiated human bronchial epithelial BEP2D cells, from which miR-7-5p was found to induce autophagy in recipient cells. This exosome-mediated autophagy was significantly attenuated by miR-7-5p inhibitor. Moreover, our data demonstrated that autophagy induced by exosomal miR-7-5p was associated with EGFR/Akt/mTOR signaling pathway. Together, our results support the involvement of secretive exosomes in propagation of RIBE signals to bystander cells. The exosomes-containing miR-7-5p is a crucial mediator of bystander autophagy. PMID:27417393

  20. Pulmonary epithelial cancer cells and their exosomes metabolize myeloid cell-derived leukotriene C4 to leukotriene D4.

    Science.gov (United States)

    Lukic, Ana; Ji, Jie; Idborg, Helena; Samuelsson, Bengt; Palmberg, Lena; Gabrielsson, Susanne; Rådmark, Olof

    2016-09-01

    Leukotrienes (LTs) play major roles in lung immune responses, and LTD4 is the most potent agonist for cysteinyl LT1, leading to bronchoconstriction and tissue remodeling. Here, we studied LT crosstalk between myeloid cells and pulmonary epithelial cells. Monocytic cells (Mono Mac 6 cell line, primary dendritic cells) and eosinophils produced primarily LTC4 In coincubations of these myeloid cells and epithelial cells, LTD4 became a prominent product. LTC4 released from the myeloid cells was further transformed by the epithelial cells in a transcellular manner. Formation of LTD4 was rapid when catalyzed by γ-glutamyl transpeptidase (GGT)1 in the A549 epithelial lung cancer cell line, but considerably slower when catalyzed by GGT5 in primary bronchial epithelial cells. When A549 cells were cultured in the presence of IL-1β, GGT1 expression increased about 2-fold. Also exosomes from A549 cells contained GGT1 and augmented LTD4 formation. Serine-borate complex (SBC), an inhibitor of GGT, inhibited conversion of LTC4 to LTD4 Unexpectedly, SBC also upregulated translocation of 5-lipoxygenase (LO) to the nucleus in Mono Mac 6 cells, and 5-LO activity. Our results demonstrate an active role for epithelial cells in biosynthesis of LTD4, which may be of particular relevance in the lung. PMID:27436590

  1. Exosomes for Immunoregulation and Therapeutic Intervention in Cancer.

    Science.gov (United States)

    Zhang, Xuan; Pei, Zenglin; Chen, Jinyun; Ji, Chunxia; Xu, Jianqing; Zhang, Xiaoyan; Wang, Jin

    2016-01-01

    Exosomes, as a subset of extracellular vesicles, function as a mode of intercellular communication and molecular transfer, and facilitate the direct extracellular transfer of proteins, lipids, and miRNAs/mRNAs/DNAs between cells. Cancers have adapted exosomes and related microvesicles as a pathway that can suppress the immune system and establish a fertile local and distant environment to support neoplastic growth, invasion, and metastasis; these tumor-derived exosomes affect immunoregulation mechanisms, including immune activation and immune suppression. Immune cell-derived exosomes can modulate the immune response in cancer, which supports the belief that these membranous vesicles are immunotherapeutic reagents. In this review, we discuss the recent advances in the cancer immunotherapy, roles of exosomes in cancer, immunoregulation of tumor-derived exosomes, and immunomodulation by immune cell-derived exosomes. The topics covered here highlight novel insights into the development of efficient exosome-based cancer vaccines for cancer therapeutic intervention. PMID:27326251

  2. Exosomes for Immunoregulation and Therapeutic Intervention in Cancer

    Science.gov (United States)

    Zhang, Xuan; Pei, Zenglin; Chen, Jinyun; Ji, Chunxia; Xu, Jianqing; Zhang, Xiaoyan; Wang, Jin

    2016-01-01

    Exosomes, as a subset of extracellular vesicles, function as a mode of intercellular communication and molecular transfer, and facilitate the direct extracellular transfer of proteins, lipids, and miRNAs/mRNAs/DNAs between cells. Cancers have adapted exosomes and related microvesicles as a pathway that can suppress the immune system and establish a fertile local and distant environment to support neoplastic growth, invasion, and metastasis; these tumor-derived exosomes affect immunoregulation mechanisms, including immune activation and immune suppression. Immune cell-derived exosomes can modulate the immune response in cancer, which supports the belief that these membranous vesicles are immunotherapeutic reagents. In this review, we discuss the recent advances in the cancer immunotherapy, roles of exosomes in cancer, immunoregulation of tumor-derived exosomes, and immunomodulation by immune cell-derived exosomes. The topics covered here highlight novel insights into the development of efficient exosome-based cancer vaccines for cancer therapeutic intervention. PMID:27326251

  3. Micro RNA in Exosomes from HIV-Infected Macrophages.

    Science.gov (United States)

    Roth, William W; Huang, Ming Bo; Addae Konadu, Kateena; Powell, Michael D; Bond, Vincent C

    2015-12-22

    Exosomes are small membrane-bound vesicles secreted by cells that function to shuttle RNA and proteins between cells. To examine the role of exosomal micro RNA (miRNA) during the early stage of HIV-1 infection we characterized miRNA in exosomes from HIV-infected macrophages, compared with exosomes from non-infected macrophages. Primary human monocytes from uninfected donors were differentiated to macrophages (MDM) which were either mock-infected or infected with the macrophage-tropic HIV-1 BaL strain. Exosomes were recovered from culture media and separated from virus particles by centrifugation on iodixanol density gradients. The low molecular weight RNA fraction was prepared from purified exosomes. After pre-amplification, RNA was hybridized to microarrays containing probes for 1200 miRNA species of known and unknown function. We observed 48 miRNA species in both infected and uninfected MDM exosomes. Additionally, 38 miRNAs were present in infected-cell exosomes but not uninfected-cell exosomes. Of these, 13 miRNAs were upregulated in exosomes from HIV-infected cells, including 4 miRNA species that were increased by more than 10-fold. Though numerous miRNA species have been identified in HIV-infected cells, relatively little is known about miRNA content in exosomes from these cells. In the future, we plan to investigate whether the upregulated miRNA species we identified are increased in exosomes from HIV-1-positive patients.

  4. Registered report: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET.

    Science.gov (United States)

    Lesnik, Jake; Antes, Travis; Kim, Jeewon; Griner, Erin; Pedro, Luisa

    2016-01-29

    The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered Report describes the proposed replication plan of key experiments from "Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET" by Peinado and colleagues, published in Nature Medicine in 2012 (Peinado et al., 2012). The key experiments being replicated are from Figures 4E, as well as Supplementary Figures 1C and 5A. In these experiments, Peinado and colleagues show tumor exosomes enhance metastasis to bones and lungs, which is diminished by reducing Met expression in exosomes (Peinado et al., 2012). The Reproducibility Project: Cancer Biology is a collaboration between the Center for Open Science and Science Exchange and the results of the replications will be published in eLife.

  5. Induction of mouse melioidosis with meningitis by CD11b+ phagocytic cells harboring intracellular B. pseudomallei as a Trojan horse.

    Directory of Open Access Journals (Sweden)

    Pei-Ju Liu

    Full Text Available BACKGROUND: Approximately 3-5% of patients with melioidosis manifest CNS symptoms; however, the clinical data regarding neurological melioidosis are limited. METHODS AND FINDINGS: We established a mouse model of melioidosis with meningitis characterized by neutrophil infiltration into the meninges histologically and B. pseudomallei in the cerebrospinal fluid (CSF by bacteriological culturing methods. As the disease progresses, the bacteria successively colonize the spleen, liver, bone marrow (BM and brain and invade splenic and BM cells by days 2 and 6 post-infection, respectively. The predominant cell types intracellularly infected with B. pseudomallei were splenic and BM CD11b(+ populations. The CD11b(+Ly6C(high inflamed monocytes, CD11b(+Ly6C(low resident monocytes, CD11b(+Ly6G(+ neutrophils, CD11b(+F4/80(+ macrophages and CD11b(+CD19(+ B cells were expanded in the spleen and BM during the progression of melioidosis. After adoptive transfer of CD11b populations harboring B. pseudomallei, the infected CD11b(+ cells induced bacterial colonization in the brain, whereas CD11b(- cells only partially induced colonization; extracellular (free B. pseudomallei were unable to colonize the brain. CD62L (selectin was absent on splenic CD11b(+ cells on day 4 but was expressed on day 10 post-infection. Adoptive transfer of CD11b(+ cells expressing CD62L (harvested on day 10 post-infection resulted in meningitis in the recipients, but transfer of CD11b(+ CD62L-negative cells did not. CONCLUSIONS/SIGNIFICANCE: We suggest that B. pseudomallei-infected CD11b(+ selectin-expressing cells act as a Trojan horse and are able to transmigrate across endothelial cells, resulting in melioidosis with meningitis.

  6. Coronary Artery-Bypass-Graft Surgery Increases the Plasma Concentration of Exosomes Carrying a Cargo of Cardiac MicroRNAs:An Example of Exosome Trafficking Out of the Human Heart with Potential for Cardiac Biomarker Discovery

    OpenAIRE

    Emanueli, Costanza; Shearn, Andrew I. U.; Laftah, Abas; Fiorentino, Francesca; Reeves, Barnaby C.; Beltrami, Cristina; Mumford, Andrew; Clayton, Aled; Gurney, Mark; Shantikumar, Saran; Angelini, Gianni D.

    2016-01-01

    INTRODUCTION: Exosome nanoparticles carry a composite cargo, including microRNAs (miRs). Cultured cardiovascular cells release miR-containing exosomes. The exosomal trafficking of miRNAs from the heart is largely unexplored. Working on clinical samples from coronary-artery by-pass graft (CABG) surgery, we investigated if: 1) exosomes containing cardiac miRs and hence putatively released by cardiac cells increase in the circulation after surgery; 2) circulating exosomes and exosomal cardiac mi...

  7. Coronary Artery-Bypass-Graft Surgery Increases the Plasma Concentration of Exosomes Carrying a Cargo of Cardiac MicroRNAs: An Example of Exosome Trafficking Out of the Human Heart with Potential for Cardiac Biomarker Discovery

    OpenAIRE

    Emanueli, Costanza; Shearn, Andrew I. U.; Laftah, Abas; Fiorentino, Francesca; Reeves, Barnaby C.; Beltrami, Cristina; Mumford, Andrew; Clayton, Aled; Gurney, Mark; Shantikumar, Saran; Angelini, Gianni D.

    2016-01-01

    Introduction Exosome nanoparticles carry a composite cargo, including microRNAs (miRs). Cultured cardiovascular cells release miR-containing exosomes. The exosomal trafficking of miRNAs from the heart is largely unexplored. Working on clinical samples from coronary-artery by-pass graft (CABG) surgery, we investigated if: 1) exosomes containing cardiac miRs and hence putatively released by cardiac cells increase in the circulation after surgery; 2) circulating exosomes and exosomal cardiac miR...

  8. Keystone Symposia "ncRNAs in Development and Cancer", Vancouver, Canada: Increased release of exosomes and export of invasion-modulating miRNAs miR921, -23b, -and -224 from metastatic urothelial carcinoma cells

    DEFF Research Database (Denmark)

    Ostenfeld, Marie Stampe; Jeppesen, Dennis Kjølhede; Laurberg, Jens Reumert;

    2013-01-01

    Cancer cells secrete soluble factors and various extracellular vesicles, including exosomes, into their tissue microenvironment. The secretion of exosomes is speculated to facilitate local invasion and increase the propensity of tumors to form distant metastases. Here we present a characterization...... of exosome vesicles from isogenic urothelial carcinoma cell lines, with different metastatic propensity by western blotting, electron microscopy, nanoparticle tracking analysis, dynamic light scattering, and profiling of 671 miRNAs by qRT-PCR. An increase in the number of multivesicular bodies and exosomes...... was observed for metastatic FL3 cells compared to isogenic non-metastatic T24 cells. The release was significantly inhibited by knockdown of Rab27b and pharmacological inhibition of nsmase2 by GW4869. miRNA profiling was conducted on parental cells and their secreted exosomes. Here, selective export of miR921...

  9. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization

    International Nuclear Information System (INIS)

    Tumor-associated macrophages (TAM) play an important role in tumor microenvironment. Particularly, M2 macrophages contribute to tumor progression, depending on the expression of NF-κB. Tumor-derived exosomes can modulate tumor microenvironment by transferring miRNAs to immune cells. Epigallocatechin gallate (EGCG) has well known anti-tumor effects; however, no data are available on the influence of EGCG on communication with cancer cells and TAM. Murine breast cancer cell lines, 4T1, was used for in vivo and ex vivo studies. Exosome was extracted from EGCG-treated 4T1 cells, and the change of miRNAs was screened using microarray. Tumor cells or TAM isolated from murine tumor graft were incubated with exosomes derived from EGCG-treated and/or miR-16 inhibitor-transfected 4T1 cells. Chemokines for monocytes (CSF-1 and CCL-2), cytokines both with high (IL-6 and TGF-β) and low (TNF-α) expression in M2 macrophages, and molecules in NF-κB pathway (IKKα and Iκ-B) were evaluated by RT-qPCR or western blot. EGCG suppressed tumor growth in murine breast cancer model, which was associated with decreased TAM and M2 macrophage infiltration. Expression of chemokine for monocytes (CSF-1 and CCL-2) were low in tumor cells from EGCG-treated mice, and cytokines of TAM was skewed from M2- into M1-like phenotype by EGCG as evidenced by decreased IL-6 and TGF-β and increased TNF-α. Ex vivo incubation of isolated tumor cells with EGCG inhibited the CSF-1 and CCL-2 expression. Ex vivo incubation of TAM with exosomes from EGCG-treated 4T1 cells led to IKKα suppression and concomitant I-κB accumulation; increase of IL-6 and TGF-β; and, decrease of TNF-α. EGCG up-regulated miR-16 in 4T1 cells and in the exosomes. Treatment of tumor cells or TAM with exosomes derived from EGCG-treated and miR-16-knock-downed 4T1 cells restored the above effects on chemokines, cytokines, and NF-κB pathway elicited by EGCG-treated exosomes. Our data demonstrate that EGCG up-regulates miR-16 in

  10. Engineering hybrid exosomes by membrane fusion with liposomes

    OpenAIRE

    Sato, Yuko T.; Kaori Umezaki; Shinichi Sawada; Sada-atsu Mukai; Yoshihiro Sasaki; Naozumi Harada; Hiroshi Shiku; Kazunari Akiyoshi

    2016-01-01

    Exosomes are a valuable biomaterial for the development of novel nanocarriers as functionally advanced drug delivery systems. To control and modify the performance of exosomal nanocarriers, we developed hybrid exosomes by fusing their membranes with liposomes using the freeze–thaw method. Exosomes embedded with a specific membrane protein isolated from genetically modified cells were fused with various liposomes, confirming that membrane engineering methods can be combined with genetic modifi...

  11. Mesenchymal Stem Cells Deliver Exogenous MicroRNA-let7c via Exosomes to Attenuate Renal Fibrosis.

    Science.gov (United States)

    Wang, Bo; Yao, Kevin; Huuskes, Brooke M; Shen, Hsin-Hui; Zhuang, Junli; Godson, Catherine; Brennan, Eoin P; Wilkinson-Berka, Jennifer L; Wise, Andrea F; Ricardo, Sharon D

    2016-08-01

    The advancement of microRNA (miRNA) therapies has been hampered by difficulties in delivering miRNA to the injured kidney in a robust and sustainable manner. Using bioluminescence imaging in mice with unilateral ureteral obstruction (UUO), we report that mesenchymal stem cells (MSCs), engineered to overexpress miRNA-let7c (miR-let7c-MSCs), selectively homed to damaged kidneys and upregulated miR-let7c gene expression, compared with nontargeting control (NTC)-MSCs. miR-let7c-MSC therapy attenuated kidney injury and significantly downregulated collagen IVα1, metalloproteinase-9, transforming growth factor (TGF)-β1, and TGF-β type 1 receptor (TGF-βR1) in UUO kidneys, compared with controls. In vitro analysis confirmed that the transfer of miR-let7c from miR-let7c-MSCs occurred via secreted exosomal uptake, visualized in NRK52E cells using cyc3-labeled pre-miRNA-transfected MSCs with/without the exosomal inhibitor, GW4869. The upregulated expression of fibrotic genes in NRK52E cells induced by TGF-β1 was repressed following the addition of isolated exosomes or indirect coculture of miR-let7c-MSCs, compared with NTC-MSCs. Furthermore, the cotransfection of NRK52E cells using the 3'UTR of TGF-βR1 confirmed that miR-let7c attenuates TGF-β1-driven TGF-βR1 gene expression. Taken together, the effective antifibrotic function of engineered MSCs is able to selectively transfer miR-let7c to damaged kidney cells and will pave the way for the use of MSCs for therapeutic delivery of miRNA targeted at kidney disease. PMID:27203438

  12. DC/CIKs细胞通过无 miRNA 的 exosome 蛋白刺激后能增强对胰腺癌细胞的免疫作用%Increasing the immune activity of exosomes:the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Ri-sheng QUE; Cheng LIN; Guo-ping DING; Zheng-rong WU; Li-ping CAO

    2016-01-01

    Background: Tumor-derived exosomes were considered to be potential candidates for tumor vaccines because they are abundant in immune-regulating proteins, whereas tumor exosomal miRNAs may induce immune tolerance, thereby having an opposite immune function. Objective: This study was designed to separate exosomal protein and depleted exosomal microRNAs (miRNAs), increasing the immune activity of exosomes for activating dendritic cell/cytokine-induced kil er cel s (DC/CIKs) against pancreatic cancer (PC). Methods:PC-derived exosomes (PEs) were extracted from cultured PANC-1 cel supernatants and then ruptured; this was fol owed by ultrafiltered exosome lysates (UELs). DCs were stimulated with lipopolysaccharide (LPS), PE, and UEL, fol owed by co-culture with CIKs. The anti-tumor effects of DC/CIKs against PC were evaluated by proliferation and kil ing rates, tumor ne-crosis factor-α(TNF-α) and perforin secretion. Exosomal miRNAs were depleted after lysis and ultrafiltration, while 128 proteins were retained, including several immune-activating proteins. Results: UEL-stimulated DC/CIKs showed a higher killing rate than LPS- and PE-stimulated DC/CIKs. Conclusions: miRNA-depleted exosome proteins may be promising agonists for specifical y activating DC/CIKs against PC.%目的:本文通过分离提取无小 RNA(miRNA)的外来体(exosome)刺激树突细胞/细胞因子活化杀伤细胞(DC/CIKs),激活其对于胰腺癌细胞的免疫杀伤作用。  创新点:无 miRNA的 exosome超速离心裂解产物可以通过激活 DC/CIKs 细胞增强其对肿瘤细胞的杀伤作用。  方法:通过收集PANC-1细胞的上清并超速离心提取其中的exosome。提取的DC细胞分别通过脂多糖、肿瘤来源exosome及无miRNA的exosome刺激后,与CIK细胞共培养。通过计算增值与杀伤效率,肿瘤坏死因子-α(TNF-α)及穿孔素的分泌,比较各组间CIK细胞对胰腺癌细胞的杀伤作用。  结论:经

  13. Melanoma exosome induction of endothelial cell GM-CSF in pre-metastatic lymph nodes may result in different M1 and M2 macrophage mediated angiogenic processes.

    Science.gov (United States)

    Hood, Joshua L

    2016-09-01

    Angiogenesis is a key process in the preparation of lymph nodes for melanoma metastasis. Granulocyte macrophage colony stimulating factor (GM-CSF) induces hypoxia inducible factor 1 alpha (HIF-1α) in M1 or HIF-2α in M2 polarized macrophages. HIF-1α promotes neoangiogenesis while HIF-2α facilitates morphogenic normalization of neovasculature. Melanoma exosomes induce GM-CSF expression by endothelial cells in vitro and HIF-1α expression in pre-metastatic lymph nodes in vivo. This suggest a relationship between melanoma exosome induced endothelial GM-CSF and macrophage mediated angiogenesis in lymph nodes. Theoretically, induction of endothelial cell derived GM-CSF by melanoma exosomes mediates different angiogenic functions in pre-metastatic lymph nodes depending on subcapsular sinus (SCS) macrophage polarity. To explore this hypothesis, experiments utilizing melanoma exosomes in a lymph node model are outlined. Despite their opposing immune functions, indirect melanoma exosome stimulation of M1 or M2 SCS macrophages via endothelial derived GM-CSF in lymph nodes may induce different although complementary pro-tumor angiogenic processes. PMID:27515216

  14. Exosomes as a Nanodelivery System: a Key to the Future of Neuromedicine?

    OpenAIRE

    Aryani, Arian; Denecke, Bernd

    2014-01-01

    Since the beginning of the last decade, exosomes have been of increased interest in the science community. Exosomes represent a new kind of long distance transfer of biological molecules among cells. This review provides a comprehensive overview about the construction of exosomes, their targeting and their fusion mechanisms to the recipient cells. Complementarily, the current state of research regarding the cargo of exosomes is discussed. A particular focus was placed on the role of exosomes ...

  15. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons

    OpenAIRE

    Chivet, Mathilde,; Javalet, Charlotte; Laulagnier, Karine; Blot, Béatrice; Fiona J. Hemming; Sadoul, Rémy

    2014-01-01

    Exosomes are nano-sized vesicles of endocytic origin released into the extracellular space upon fusion of multivesicular bodies with the plasma membrane. Exosomes represent a novel mechanism of cell–cell communication allowing direct transfer of proteins, lipids and RNAs. In the nervous system, both glial and neuronal cells secrete exosomes in a way regulated by glutamate. It has been hypothesized that exosomes can be used for interneuronal communication implying that neuronal exosomes should...

  16. Research progress in dendritic cell-derived exosomes%树突状细胞来源的exosomes研究进展

    Institute of Scientific and Technical Information of China (English)

    朱伟国; 朱建华

    2009-01-01

    Exosomes ale small vesicles that form within late endocytic compartments by various cell types.Exosomes from different cellular origins have different properties which ale functionally relevant to their distinct proteins derived from the producing cell and the microenvironment around.Dendritic cell-derived exosomes (Dex) which richly contain various bioactive molecules such as MHC-I/MHC-II and costimulatory molecules were shown to be able to induee immune response or immune tolerance in vivo and in vitro,which is similar to that induced by the parent dendritic cells:The immunogenic potential of Dex as cell-free vaccines has been highlighted widespreadly these years,exceptionally for their immunostimulatory properties in anticancer immunotherapy and their potential tolerogenesis in reducing transplantation rejections and autoimmune diseases.%Exosomes 是多种活细胞晚期内体分泌的小囊泡体,不同来源的 exosomes 其特异性功能与它所含的特异性蛋白质以及它所处的微环境密切相关.树突状细胞来源的 exosomes(Dex) 富含树突状细胞的MHC-Ⅰ/Ⅱ类分子、协同刺激分子等多种生物活性分子,在体内、外实验中显示出与树突状细胞相似的功能,可诱发机体免疫应答或诱导免疫耐受.作为一种新型的非细胞疫苗,exosomes在抗肿瘤免疫治疗以及抑制移植免疫排斥和自身免疫性疾病治疗等各方面的应用前景受到极大的关注.

  17. The biology and function of exosomes in cancer.

    Science.gov (United States)

    Kalluri, Raghu

    2016-04-01

    Humans circulate quadrillions of exosomes at all times. Exosomes are a class of extracellular vesicles released by all cells, with a size range of 40-150 nm and a lipid bilayer membrane. Exosomes contain DNA, RNA, and proteins. Exosomes likely remove excess and/or unnecessary constituents from the cells, functioning like garbage bags, although their precise physiological role remains unknown. Additionally, exosomes may mediate specific cell-to-cell communication and activate signaling pathways in cells they fuse or interact with. Exosomes are detected in the tumor microenvironment, and emerging evidence suggests that they play a role in facilitating tumorigenesis by regulating angiogenesis, immunity, and metastasis. Circulating exosomes can be used as liquid biopsies and noninvasive biomarkers for early detection, diagnosis, and treatment of cancer patients.

  18. Using exosomes, naturally-equipped nanocarriers, for drug delivery.

    Science.gov (United States)

    Batrakova, Elena V; Kim, Myung Soo

    2015-12-10

    Exosomes offer distinct advantages that uniquely position them as highly effective drug carriers. Comprised of cellular membranes with multiple adhesive proteins on their surface, exosomes are known to specialize in cell-cell communications and provide an exclusive approach for the delivery of various therapeutic agents to target cells. In addition, exosomes can be amended through their parental cells to express a targeting moiety on their surface, or supplemented with desired biological activity. Development and validation of exosome-based drug delivery systems are the focus of this review. Different techniques of exosome isolation, characterization, drug loading, and applications in experimental disease models and clinic are discussed. Exosome-based drug formulations may be applied to a wide variety of disorders such as cancer, various infectious, cardiovascular, and neurodegenerative disorders. Overall, exosomes combine benefits of both synthetic nanocarriers and cell-mediated drug delivery systems while avoiding their limitations.

  19. The biology and function of exosomes in cancer.

    Science.gov (United States)

    Kalluri, Raghu

    2016-04-01

    Humans circulate quadrillions of exosomes at all times. Exosomes are a class of extracellular vesicles released by all cells, with a size range of 40-150 nm and a lipid bilayer membrane. Exosomes contain DNA, RNA, and proteins. Exosomes likely remove excess and/or unnecessary constituents from the cells, functioning like garbage bags, although their precise physiological role remains unknown. Additionally, exosomes may mediate specific cell-to-cell communication and activate signaling pathways in cells they fuse or interact with. Exosomes are detected in the tumor microenvironment, and emerging evidence suggests that they play a role in facilitating tumorigenesis by regulating angiogenesis, immunity, and metastasis. Circulating exosomes can be used as liquid biopsies and noninvasive biomarkers for early detection, diagnosis, and treatment of cancer patients. PMID:27035812

  20. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases.

    Science.gov (United States)

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J; Nie, Guangjun

    2016-04-15

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment.

  1. Cortactin enhances exosome secretion without altering cargo.

    Science.gov (United States)

    Gangoda, Lahiru; Mathivanan, Suresh

    2016-07-18

    The role of cortactin, a regulator of late endosomal trafficking, in the biogenesis and secretion of exosomes is poorly understood. In this issue, Sinha et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201601025) elucidate the role of cortactin as a positive regulator of late endosomal docking and exosome secretion. PMID:27432895

  2. Epidermal Growth Factor Receptor in Prostate Cancer Derived Exosomes.

    Directory of Open Access Journals (Sweden)

    Geetanjali Kharmate

    Full Text Available Exosomes proteins and microRNAs have gained much attention as diagnostic tools and biomarker potential in various malignancies including prostate cancer (PCa. However, the role of exosomes and membrane-associated receptors, particularly epidermal growth factor receptor (EGFR as mediators of cell proliferation and invasion in PCa progression remains unexplored. EGFR is frequently overexpressed and has been associated with aggressive forms of PCa. While PCa cells and tissues express EGFR, it is unknown whether exosomes derived from PCa cells or PCa patient serum contains EGFR. The aim of this study was to detect and characterize EGFR in exosomes derived from PCa cells, LNCaP xenograft and PCa patient serum. Exosomes were isolated from conditioned media of different PCa cell lines; LNCaP xenograft serum as well as patient plasma/serum by differential centrifugation and ultracentrifugation on a sucrose density gradient. Exosomes were confirmed by electron microscopy, expression of exosomal markers and NanoSight™ analysis. EGFR expression was determined by western blot analysis and ELISA. This study demonstrates that exosomes may easily be derived from PCa cell lines, serum obtained from PCa xenograft bearing mice and clinical samples derived from PCa patients. Presence of exosomal EGFR in PCa patient exosomes may present a novel approach for measuring of the disease state. Our work will allow to build on this finding for future understanding of PCa exosomes and their potential role in PCa progression and as minimal invasive biomarkers for PCa.

  3. Exosomes and Exosomal miRNA in Respiratory Diseases

    Science.gov (United States)

    Alipoor, Shamila D.; Garssen, Johan; Movassaghi, Masoud

    2016-01-01

    Exosomes are nanosized vesicles released from every cell in the body including those in the respiratory tract and lungs. They are found in most body fluids and contain a number of different biomolecules including proteins, lipids, and both mRNA and noncoding RNAs. Since they can release their contents, particularly miRNAs, to both neighboring and distal cells, they are considered important in cell-cell communication. Recent evidence has shown their possible importance in the pathogenesis of several pulmonary diseases. The differential expression of exosomes and of exosomal miRNAs in disease has driven their promise as biomarkers of disease enabling noninvasive clinical diagnosis in addition to their use as therapeutic tools. In this review, we summarize recent advances in this area as applicable to pulmonary diseases.

  4. Exosomes and Exosomal miRNA in Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Shamila D. Alipoor

    2016-01-01

    Full Text Available Exosomes are nanosized vesicles released from every cell in the body including those in the respiratory tract and lungs. They are found in most body fluids and contain a number of different biomolecules including proteins, lipids, and both mRNA and noncoding RNAs. Since they can release their contents, particularly miRNAs, to both neighboring and distal cells, they are considered important in cell-cell communication. Recent evidence has shown their possible importance in the pathogenesis of several pulmonary diseases. The differential expression of exosomes and of exosomal miRNAs in disease has driven their promise as biomarkers of disease enabling noninvasive clinical diagnosis in addition to their use as therapeutic tools. In this review, we summarize recent advances in this area as applicable to pulmonary diseases.

  5. An intestinal Trojan horse for gene delivery

    Science.gov (United States)

    Peng, Haisheng; Wang, Chao; Xu, Xiaoyang; Yu, Chenxu; Wang, Qun

    2015-02-01

    The intestinal epithelium forms an essential element of the mucosal barrier and plays a critical role in the pathophysiological response to different enteric disorders and diseases. As a major enteric dysfunction of the intestinal tract, inflammatory bowel disease is a genetic disease which results from the inappropriate and exaggerated mucosal immune response to the normal constituents in the mucosal microbiota environment. An intestine targeted drug delivery system has unique advantages in the treatment of inflammatory bowel disease. As a new concept in drug delivery, the Trojan horse system with the synergy of nanotechnology and host cells can achieve better therapeutic efficacy in specific diseases. Here, we demonstrated the feasibility of encapsulating DNA-functionalized gold nanoparticles into primary isolated intestinal stem cells to form an intestinal Trojan horse for gene regulation therapy of inflammatory bowel disease. This proof-of-concept intestinal Trojan horse will have a wide variety of applications in the diagnosis and therapy of enteric disorders and diseases.

  6. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral Latent Membrane Protein 1 and the immunomodulatory protein galectin 9

    Directory of Open Access Journals (Sweden)

    Hirashima Mitsuomi

    2006-12-01

    Full Text Available Abstract Background Nasopharyngeal carcinomas (NPC are consistently associated with the Epstein-Barr virus (EBV. Their malignant epithelial cells contain the viral genome and express several antigenic viral proteins. However, the mechanisms of immune escape in NPCs are still poorly understood. EBV-transformed B-cells have been reported to release exosomes carrying the EBV-encoded latent membrane protein 1 (LMP1 which has T-cell inhibitory activity. Although this report suggested that NPC cells could also produce exosomes carrying immunosuppressive proteins, this hypothesis has remained so far untested. Methods Malignant epithelial cells derived from NPC xenografts – LMP1-positive (C15 or negative (C17 – were used to prepare conditioned culture medium. Various microparticles and vesicles released in the culture medium were collected and fractionated by differential centrifugation. Exosomes collected in the last centrifugation step were further purified by immunomagnetic capture on beads carrying antibody directed to HLA class II molecules. Purified exosomes were visualized by electron microscopy and analysed by western blotting. The T-cell inhibitory activities of recombinant LMP1 and galectin 9 were assessed on peripheral blood mononuclear cells activated by CD3/CD28 cross-linking. Results HLA-class II-positive exosomes purified from C15 and C17 cell supernatants were containing either LMP1 and galectin 9 (C15 or galectin 9 only (C17. Recombinant LMP1 induced a strong inhibition of T-cell proliferation (IC50 = 0.17 nM. In contrast recombinant galectin 9 had a weaker inhibitory effect (IC50 = 46 nM with no synergy with LMP1. Conclusion This study provides the proof of concept that NPC cells can release HLA class-II positive exosomes containing galectin 9 and/or LMP1. It confirms that the LMP1 molecule has intrinsic T-cell inhibitory activity. These findings will encourage investigations of tumor exosomes in the blood of NPC patients and

  7. Exosomes in Tumor Microenvironment Influence Cancer Progression and Metastasis

    OpenAIRE

    Kahlert, Christoph; Kalluri, Raghu

    2013-01-01

    Exosomes are small membrane vesicles of endocytic origin with a size of 50 – 100 nm. They can contain microRNAs, mRNAs, DNA fragments and proteins, which are shuttled from a donar cell to recipient cells. Many different cell types including immune cells, mesenchymal cells and cancer cells release exosomes. There is emerging evidence that cancer-derived exosomes contribute to the recruitment and reprogramming of constituents associated with tumor environment. Here, we discuss different mechani...

  8. Human semen contains exosomes with potent anti-HIV-1 activity

    OpenAIRE

    Madison, Marisa N; Roller, Richard J.; Okeoma, Chioma M.

    2014-01-01

    Background Exosomes are membranous nanovesicles secreted into the extracellular milieu by diverse cell types. Exosomes facilitate intercellular communication, modulate cellular pheno/genotype, and regulate microbial pathogenesis. Although human semen contains exosomes, their role in regulating infection with viruses that are sexually transmitted remains unknown. In this study, we used semen exosomes purified from healthy human donors to evaluate the role of exosomes on the infectivity of diff...

  9. Isolation and Characterization of CD34+ Blast-Derived Exosomes in Acute Myeloid Leukemia

    OpenAIRE

    Chang Sook Hong; Laurent Muller; Michael Boyiadzis; Theresa L. Whiteside

    2014-01-01

    Exosomes are membrane-bound vesicles found in all biological fluids. AML patients' plasma collected at diagnosis contains elevated exosome levels relative to normal donor (ND) plasma. The molecular profile of AML exosomes changes in the course of therapy and may serve as a measure of disease progression or response to therapy. However, plasma contains a mix of exosomes derived from various cell types. To be able to utilize blast-derived exosomes as biomarkers for AML, we have developed an imm...

  10. [Research progress of relationship between exosomes and breast cancer].

    Science.gov (United States)

    Bi, Tao-Ling; Sun, Jin-Jian; Tian, Yu-Zi; Zhou, Ye-Fang

    2016-06-25

    Exosomes are nanosized small membrane microvesicles of endocytic origin secreted by most cell types. Exosomes, through its carrying protein or RNA from derived cells, affect gene regulation networks or epigenetic reorganization of receptor cell, and then modulate the physiological processes of cells. Studies have shown that external exosomes secreted by breast cancer cells or other cells play an important role in the development of tumor, including cell migration, cell differentiation and the immune response, etc. In this article, the latest studies were summarized to provide an overview of current understanding of exosomes in breast cancer. PMID:27350208

  11. 3D plasmonic nanobowl platform for the study of exosomes in solution

    Science.gov (United States)

    Lee, Changwon; Carney, Randy P.; Hazari, Sidhartha; Smith, Zachary J.; Knudson, Alisha; Robertson, Christopher S.; Lam, Kit S.; Wachsmann-Hogiu, Sebastian

    2015-05-01

    Thin silver film coated nanobowl Surface Enhanced Raman Spectroscopy (SERS) substrates are used to capture exosomes in solution for SERS measurements that can provide biochemical analysis of intact and ruptured exosomes. Exosomes derived via Total Exosome Isolation Reagent (TEIR) as well as ultracentrifugation (UC) from the SKOV3 cell line were analyzed. Spectra of exosomes derived via TEIR are dominated by a signal characteristic for the TEIR kit that needs to be subtracted for all measurements. Differences in SERS spectra recorded at different times during the drying of the exosome solution are statistically analyzed with Principal Component Analysis (PCA). At the beginning of the drying process, SERS spectra of exosomes exhibit peaks characteristic for both lipids and proteins. Later on during the drying process, new SERS peaks develop, suggesting that the initially intact exosome ruptures over time. This time-dependent evolution of SERS peaks enables analysis of exosomal membrane contents and the contents inside the exosomes.

  12. Podoplanin is a component of extracellular vesicles that reprograms cell-derived exosomal proteins and modulates lymphatic vessel formation

    Science.gov (United States)

    Andrés, Germán; Gopal, Shashi K.; Martín-Villar, Ester; Renart, Jaime; Simpson, Richard J.; Quintanilla, Miguel

    2016-01-01

    Podoplanin (PDPN) is a transmembrane glycoprotein that plays crucial roles in embryonic development, the immune response, and malignant progression. Here, we report that cells ectopically or endogenously expressing PDPN release extracellular vesicles (EVs) that contain PDPN mRNA and protein. PDPN incorporates into membrane shed microvesicles (MVs) and endosomal-derived exosomes (EXOs), where it was found to colocalize with the canonical EV marker CD63 by immunoelectron microscopy. We have previously found that expression of PDPN in MDCK cells induces an epithelial-mesenchymal transition (EMT). Proteomic profiling of MDCK-PDPN cells compared to control cells shows that PDPN-induced EMT is associated with upregulation of oncogenic proteins and diminished expression of tumor suppressors. Proteomic analysis of exosomes reveals that MDCK-PDPN EXOs were enriched in protein cargos involved in cell adhesion, cytoskeletal remodeling, signal transduction and, importantly, intracellular trafficking and EV biogenesis. Indeed, expression of PDPN in MDCK cells stimulated both EXO and MV production, while knockdown of endogenous PDPN in human HN5 squamous carcinoma cells reduced EXO production and inhibited tumorigenesis. EXOs released from MDCK-PDPN and control cells both stimulated in vitro angiogenesis, but only EXOs containing PDPN were shown to promote lymphatic vessel formation. This effect was mediated by PDPN on the surface of EXOs, as demonstrated by a neutralizing specific monoclonal antibody. These results contribute to our understanding of PDPN-induced EMT in association to tumor progression, and suggest an important role for PDPN in EV biogenesis and/or release and for PDPN-EXOs in modulating lymphangiogenesis. PMID:26893367

  13. Information transfer by exosomes: A new frontier in hematologic malignancies.

    Science.gov (United States)

    Boyiadzis, Michael; Whiteside, Theresa L

    2015-09-01

    Exosomes are small (30-150 mm) vesicles secreted by all cell types and present in all body fluids. They are emerging as vehicles for delivery of membrane-tethered signaling molecules and membrane enclosed genes to target cells. Exosome-mediated information transfer allows for crosstalk of cells within the hematopoietic system and for interactions between hematopoietic cells and local or distant tissue cells. Exosomes carry physiological signals essential for health and participate in pathological processes, including malignant transformation. In hematologic malignancies, exosomes reprogram the bone marrow microenvironment, creating a niche for abnormal cells and favoring their expansion. The molecular and genetic mechanisms exosomes utilize to shuttle information between cells are currently being examined as are the potential roles exosomes play as biomarkers of disease or future therapeutic targets.

  14. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases.

    Science.gov (United States)

    Tran, Thanh-Huyen; Mattheolabakis, George; Aldawsari, Hibah; Amiji, Mansoor

    2015-09-01

    Cell secreted exosomes (30-100nm vesicles) play a major role in intercellular communication due to their ability to transfer proteins and nucleic acids from one cell to another. Depending on the originating cell type and the cargo, exosomes can have immunosuppressive or immunostimulatory effects, which have potential application as immunotherapies for cancer and autoimmune diseases. Cellular components shed from tumor cells or antigen presenting cells (APCs), such as dendritic cells, macrophages and B cells, have been shown to be efficiently packaged in exosomes. In this review, we focus on the application of exosomes as nanocarriers and immunological agents for cancer and autoimmune immunotherapy. APC-derived exosomes demonstrate effective therapeutic efficacy for the treatment of cancer and experimental autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. In addition to their intrinsic immunomodulating activity, exosomes have many advantages over conventional nanocarriers for drug and gene delivery.

  15. Human tumor virus utilizes exosomes for intercellular communication

    OpenAIRE

    Meckes, David G.; Shair, Kathy H. Y.; Marquitz, Aron R.; Kung, Che-Pei; Edwards, Rachel H.; Raab-Traub, Nancy

    2010-01-01

    The Epstein–Barr virus (EBV) latent membrane protein 1 (LMP1) is expressed in multiple human malignancies and has potent effects on cell growth. It has been detected in exosomes and shown to inhibit immune function. Exosomes are small secreted cellular vesicles that contain proteins, mRNAs, and microRNAs (miRNAs). When produced by malignant cells, they can promote angiogenesis, cell proliferation, tumor-cell invasion, and immune evasion. In this study, exosomes released from nasopharyngeal ca...

  16. Exosomes Mediate the Intercellular Communication after Myocardial Infarction

    OpenAIRE

    YUAN, MING-JIE; Maghsoudi, Taneen; Tao WANG

    2016-01-01

    The mechanisms of cardiac repair after myocardial infarction (MI) are complicated and not well-understood currently. It is known that exosomes are released from most cells, recognized as new candidates with important roles in intercellular and tissue-level communication. Cells can package proteins and RNA messages into exosome and secret to recipient cells, which regulate gene expression in recipient cells. The research on exosomes in cardiovascular disease is just emerging. It is well-known ...

  17. Designer exosomes as next-generation cancer immunotherapy.

    Science.gov (United States)

    Bell, Brandon M; Kirk, Isabel D; Hiltbrunner, Stefanie; Gabrielsson, Susanne; Bultema, Jarred J

    2016-01-01

    Exosomes are small 40-120 nm vesicles secreted by nearly all cells and are an important form of intercellular communication. Exosomes are abundant, stable, and highly bioavailable to tissues in vivo. Increasingly, exosomes are being recognized as potential therapeutics as they have the ability to elicit potent cellular responses in vitro and in vivo. Patient-derived exosomes have been employed as a novel cancer immunotherapy in several clinical trials, but at this point lack sufficient efficacy. Still other researchers have focused on modifying the content and function of exosomes in various ways, toward the end-goal of specialized therapeutic exosomes. Here we highlight major advances in the use of exosomes for cancer immunotherapy and exosome bioengineering followed by a discussion of focus areas for future research to generate potent therapeutic exosomes. From the Clinical Editor: Exosomes are small vesicles used by cells for intercellular communication. In this short article, the authors described the current status and the potential use of exosomes in the clinical setting.

  18. Exosomes and exosomal miRNAs in cardiovascular protection and repair.

    Science.gov (United States)

    Emanueli, Costanza; Shearn, Andrew I U; Angelini, Gianni D; Sahoo, Susmita

    2015-08-01

    Cell-cell communication between cardiac and vascular cells and from stem and progenitor cells to differentiated cardiovascular cells is both an important and complex process, achieved through a diversity of mechanisms that have an impact on cardiovascular biology, disease and therapeutics. In recent years, evidence has accumulated suggesting that extracellular vesicles (EVs) are a new system of intercellular communication. EVs of different sizes are produced via different biogenesis pathways and have been shown to be released and taken up by most of known cell types, including heart and vascular cells, and stem and progenitor cells. This review will focus on exosomes, the smallest EVs (up to 100nm in diameter) identified so far. Cells can package cargoes consisting of selective lipids, proteins and RNA in exosomes and such cargoes can be shipped to recipient cells, inducing expressional and functional changes. This review focuses on exosomes and microRNAs in the context of cardiovascular disease and repair. We will describe exosome biogenesis and cargo formation and discuss the available information on in vitro and in vivo exosomes-based cell-to-cell communication relevant to cardiovascular science. The methods used in exosome research will be also described. Finally, we will address the promise of exosomes as clinical biomarkers and their impact as a biomedical tool in stem cell-based cardiovascular therapeutics.

  19. Exosomes from Human Synovial-Derived Mesenchymal Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head in the Rat

    Science.gov (United States)

    Guo, Shang-Chun; Tao, Shi-Cong; Yin, Wen-Jing; Qi, Xin; Sheng, Jia-Gen; Zhang, Chang-Qing

    2016-01-01

    Osteonecrosis of the femoral head (ONFH) represents a debilitating complication following glucocorticoid (GC)-based therapy. Synovial-derived mesenchymal stem cells (SMSCs) can exert protective effect in the animal model of GC-induced ONFH by inducing cell proliferation and preventing cell apoptosis. Recent studies indicate the transplanted cells exert therapeutic effects primarily via a paracrine mechanism and exosomes are an important paracrine factor that can be directly used as therapeutic agents for tissue engineering. Herein, we provided the first demonstration that the early treatment of exosomes secreted by human synovial-derived mesenchymal stem cells (SMSC-Exos) could prevent GC-induced ONFH in the rat model. Using a series of in vitro functional assays, we found that SMSC-Exos could be internalized into bone marrow derived stromal cells (BMSCs) and enhance their proliferation and have anti-apoptotic abilities. Finally, SMSC-Exos may be promising for preventing GC-induced ONFH.

  20. Detection of tumor cell-specific mRNA and protein in exosome-like microvesicles from blood and saliva.

    Science.gov (United States)

    Yang, Jieping; Wei, Fang; Schafer, Christopher; Wong, David T W

    2014-01-01

    The discovery of disease-specific biomarkers in oral fluids has revealed a new dimension in molecular diagnostics. Recent studies have reported the mechanistic involvement of tumor cells derived mediators, such as exosomes, in the development of saliva-based mRNA biomarkers. To further our understanding of the origins of disease-induced salivary biomarkers, we here evaluated the hypothesis that tumor-shed secretory lipidic vesicles called exosome-like microvesicles (ELMs) that serve as protective carriers of tissue-specific information, mRNAs, and proteins, throughout the vasculature and bodily fluids. RNA content was analyzed in cell free-saliva and ELM-enriched fractions of saliva. Our data confirmed that the majority of extracellular RNAs (exRNAs) in saliva were encapsulated within ELMs. Nude mice implanted with human lung cancer H460 cells expressing hCD63-GFP were used to follow the circulation of tumor cell specific protein and mRNA in the form of ELMs in vivo. We were able to identify human GAPDH mRNA in ELMs of blood and saliva of tumor bearing mice using nested RT-qPCR. ELMs positive for hCD63-GFP were detected in the saliva and blood of tumor bearing mice as well as using electric field-induced release and measurement (EFIRM). Altogether, our results demonstrate that ELMs carry tumor cell-specific mRNA and protein from blood to saliva in a xenografted mouse model of human lung cancer. These results therefore strengthen the link between distal tumor progression and the biomarker discovery of saliva through the ELMs.

  1. Dendritic cells as Achilles' heel and Trojan horse during varicella zoster virus infection

    OpenAIRE

    Günther eSchönrich; Raftery, Martin J.

    2015-01-01

    Varicella zoster virus (VZV), a human alphaherpesvirus, causes varicella and subsequently estab-lishes latency within sensory nerve ganglia. Later in life VZV can reactivate to cause herpes zoster. A reduced frequency of VZV-specific T cells is strongly associated with herpes zoster illustrating that these immune cells are central to control latency. Dendritic cells (DCs) are required for the generation of VZV-specific T cells. However, DCs can also be infected in vitro and in vivo allowing V...

  2. Dendritic cells as Achilles’ heel and Trojan horse during varicella zoster virus infection

    OpenAIRE

    Schönrich, Günther; Raftery, Martin J.

    2015-01-01

    Varicella zoster virus (VZV), a human alphaherpesvirus, causes varicella and subsequently establishes latency within sensory nerve ganglia. Later in life VZV can reactivate to cause herpes zoster. A reduced frequency of VZV-specific T cells is strongly associated with herpes zoster illustrating that these immune cells are central to control latency. Dendritic cells (DCs) are required for the generation of VZV-specific T cells. However, DCs can also be infected in vitro and in vivo allowing VZ...

  3. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases

    OpenAIRE

    Masyuk, Anatoliy I.; Masyuk, Tatyana V.; LaRusso, Nicholas F.

    2013-01-01

    Exosomes are small (30–100 nm in diameter) extracellular membrane-enclosed vesicles released by different cell types into the extracellular space or into biological fluids by exocytosis as a result of fusion of intracellular multivesicular bodies with the plasma membrane. The primary function of exosomes is intercellular communication with both beneficial (physiological) and harmful (pathological) potential outcomes. Liver cells are exosome-releasing cells as well as targets for endogenous ex...

  4. Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells growth: a possible role for exosomal disposal of miR-21

    OpenAIRE

    Taverna, S; Giallombardo, M.; Pucci, M; Flugy, A; Manno, M.; Raccosta, S; Rolfo, C.; Leo, G.; Alessandro, R

    2015-01-01

    Exosomes are nanosize vesicles released from cancer cells containing microRNAs that can influence gene expression in target cells. Curcumin has been shown to exhibit antitumor activities in a wide spectrum of human cancer. The addition of Curcumin, to Chronic Myelogenous Leukemia (CML) cells, caused a dose-dependent increase of PTEN, target of miR-21. Curcumin treatment also decreased AKT phosphorylation and VEGF expression and release. Colony formation assays indicated that Curcumin affects ...

  5. Exosomes in development, metastasis and drug resistance of breast cancer.

    Science.gov (United States)

    Yu, Dan-dan; Wu, Ying; Shen, Hong-yu; Lv, Meng-meng; Chen, Wei-xian; Zhang, Xiao-hui; Zhong, Shan-liang; Tang, Jin-hai; Zhao, Jian-hua

    2015-08-01

    Transport through the cell membrane can be divided into active, passive and vesicular types (exosomes). Exosomes are nano-sized vesicles released by a variety of cells. Emerging evidence shows that exosomes play a critical role in cancers. Exosomes mediate communication between stroma and cancer cells through the transfer of nucleic acid and proteins. It is demonstrated that the contents and the quantity of exosomes will change after occurrence of cancers. Over the last decade, growing attention has been paid to the role of exosomes in the development of breast cancer, the most life-threatening cancer in women. Breast cancer could induce salivary glands to secret specific exosomes, which could be used as biomarkers in the diagnosis of early breast cancer. Exosome-delivered nucleic acid and proteins partly facilitate the tumorigenesis, metastasis and resistance of breast cancer. Exosomes could also transmit anti-cancer drugs outside breast cancer cells, therefore leading to drug resistance. However, exosomes are effective tools for transportation of anti-cancer drugs with lower immunogenicity and toxicity. This is a promising way to establish a drug delivery system.

  6. Composition of exosomes derived from Atlantic salmon (Salmo salar) head kidney leukocytes

    OpenAIRE

    Strandskog, Guro; Sobhkhez, Mehrdad; Jørgensen, Jorunn B.; Iliev, Dimitar Borisov

    2015-01-01

    Exosomes are secreted nanosize vesicles (30−100 nm) derived from multivesicular endosomes. Exosomes are released by different immune cell types, including T- and B-lymphocytes, mast cells and antigen-presenting cells (APCs). The composition of exosomes - including protein and RNA content reflects their endosomal origin and the type of cells that produce them. Mammalian APCs produce large amounts of exosomes loaded with MHC class I and II molecules with important immunomodulatory propert...

  7. Exosomes: Fundamental Biology and Roles in Cardiovascular Physiology.

    Science.gov (United States)

    Ibrahim, Ahmed; Marbán, Eduardo

    2016-01-01

    Exosomes are nanosized membrane particles that are secreted by cells that transmit information from cell to cell. The information within exosomes prominently includes their protein and RNA payloads. Exosomal microRNAs in particular can potently and fundamentally alter the transcriptome of recipient cells. Here we summarize what is known about exosome biogenesis, content, and transmission, with a focus on cardiovascular physiology and pathophysiology. We also highlight some of the questions currently under active investigation regarding these extracellular membrane vesicles and their potential in diagnostic and therapeutic applications.

  8. Exosomes: Fundamental Biology and Roles in Cardiovascular Physiology.

    Science.gov (United States)

    Ibrahim, Ahmed; Marbán, Eduardo

    2016-01-01

    Exosomes are nanosized membrane particles that are secreted by cells that transmit information from cell to cell. The information within exosomes prominently includes their protein and RNA payloads. Exosomal microRNAs in particular can potently and fundamentally alter the transcriptome of recipient cells. Here we summarize what is known about exosome biogenesis, content, and transmission, with a focus on cardiovascular physiology and pathophysiology. We also highlight some of the questions currently under active investigation regarding these extracellular membrane vesicles and their potential in diagnostic and therapeutic applications. PMID:26667071

  9. Placental exosomes in normal and complicated pregnancy.

    Science.gov (United States)

    Mitchell, Murray D; Peiris, Hassendrini N; Kobayashi, Miharu; Koh, Yong Q; Duncombe, Gregory; Illanes, Sebastian E; Rice, Gregory E; Salomon, Carlos

    2015-10-01

    While there is considerable contemporary interest in elucidating the role of placenta-derived extracellular vesicles in normal and complicated pregnancies and their utility as biomarkers and therapeutic interventions, progress in the field is hindered by a lack of standardized extracellular vesicle taxonomy and isolation protocols. The term "extracellular vesicle" is nonspecific and refers to all membrane-bound vesicles from nanometer to micrometer diameters and of different biogenic origins. To meaningfully ascribe biological function and/or diagnostic and therapeutic utility to extracellular vesicles, and in particular exosomes, greater specificity and vesicle characterization is required. The current literature relating to exosome biology must be interpreted in this context. Exosomes are a subtype of extracellular vesicle that are specifically defined by an endosomal biogenesis and particle size (40-120 nm) and density (1.13-1.19 g/mL(-1)). Exosomes are specifically package with signaling molecules (including protein, messenger RNA, microRNA, and noncoding RNA) and are released by exocytosis into biofluid compartments. Exosomes regulate the activity of both proximal and distal target cells, including translational activity, angiogenesis, proliferation, metabolism, and apoptosis. As such, exosomal signaling represents an integral pathway mediating intercellular communication. During pregnancy, the placenta releases exosomes into the maternal circulation from as early as 6 weeks of gestation. Release is regulated by factors that include both oxygen tension and glucose concentration and correlates with placental mass and perfusion. The concentration of placenta-derived exosomes in maternal plasma increases progressively during gestation. Exosomes isolated from maternal plasma are bioactive in vitro and are incorporated into target cells by endocytosis. While the functional significance of placental exosomes in pregnancy remains to be fully elucidated, available

  10. Nanostructural and Transcriptomic Analyses of Human Saliva Derived Exosomes

    OpenAIRE

    Palanisamy, Viswanathan; Sharma, Shivani; Deshpande, Amit; Zhou, Hui; Gimzewski, James; Wong, David T.

    2010-01-01

    Background Exosomes, derived from endocytic membrane vesicles are thought to participate in cell-cell communication and protein and RNA delivery. They are ubiquitous in most body fluids (breast milk, saliva, blood, urine, malignant ascites, amniotic, bronchoalveolar lavage, and synovial fluids). In particular, exosomes secreted in human saliva contain proteins and nucleic acids that could be exploited for diagnostic purposes. To investigate this potential use, we isolated exosomes from human ...

  11. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1

    OpenAIRE

    Au Yeung, Chi Lam; Co, Ngai-Na; Tsuruga, Tetsushi; Yeung, Tsz-Lun; Kwan, Suet-Ying; Leung, Cecilia S.; LI, YONG; Lu, Edward S.; Kwan, Kenny; Wong, Kwong-Kwok; Schmandt, Rosemarie; Lu, Karen H.; Mok, Samuel C.

    2016-01-01

    Advanced ovarian cancer usually spreads to the visceral adipose tissue of the omentum. However, the omental stromal cell-derived molecular determinants that modulate ovarian cancer growth have not been characterized. Here, using next-generation sequencing technology, we identify significantly higher levels of microRNA-21 (miR21) isomiRNAs in exosomes and tissue lysates isolated from cancer-associated adipocytes (CAAs) and fibroblasts (CAFs) than in those from ovarian cancer cells. Functional ...

  12. Exosomes as potent regulators of HCC malignancy and potential bio-tools in clinical application

    OpenAIRE

    QU, ZHEN; Jiang, Chunping; Wu, Junhua; Ding, Yitao

    2015-01-01

    Exosomes are small membranous vesicles about 30~100 nm in diameter and formed from inward budding of the limiting membrane of multi-vesicular bodies (MVB). Exosomes are secreted by most cell types (including hepatocellular carcinoma cells) into the extracellular environment and can be isolated from various body fluids. Exosomes have broad biological function through delivering contained molecules to the target cells. Although limited studies on hepatocellular carcinoma (HCC) exosomes, increas...

  13. Elucidating diversity of exosomes: biophysical and molecular characterization methods.

    Science.gov (United States)

    Khatun, Zamila; Bhat, Anjali; Sharma, Shivani; Sharma, Aman

    2016-09-01

    Exosomes are cell-secreted nanovesicles present in biological fluids in normal and diseased conditions. Owing to their seminal role in cell-cell communication, emerging evidences suggest that exosomes are fundamental regulators of various diseases. Due to their potential usefulness in disease diagnosis, robust isolation and characterization of exosomes is critical in developing exosome-based assays. In the last few years, different exosome characterization methods, both biophysical and molecular, have been developed to characterize these tiny vesicles. Here, in this review we summarize: first, biophysical techniques based on spectroscopy (e.g., Raman spectroscopy, dynamic light scattering) and other principles, for example, scanning electron microscopy, atomic force microscopy; second, antibody-based molecular techniques including flow cytometry, transmission electron microscopy and third, nanotechnology-dependent exosome characterization methodologies. PMID:27488053

  14. Exosomes and Cancer: A Newly Described Pathway of Immune Suppression

    OpenAIRE

    Zhang, Huang-Ge; Grizzle, William E.

    2011-01-01

    Exosomes are small (30 to 100 nm) membrane-bound particles that are released from normal, diseased, and neoplastic cells and are present in blood and other bodily fluids. Exosomes contain a variety of molecules including signal peptides, mRNA, microRNA, and lipids. Exosomes can function to export from cells unneeded endogenous molecules and therapeutic drugs. When exosomes are taken up by specific cells, they may act locally to provide autocrine or paracrine signals or, at a distance, as a ne...

  15. Exosomes as drug delivery vehicles for Parkinson's disease therapy.

    Science.gov (United States)

    Haney, Matthew J; Klyachko, Natalia L; Zhao, Yuling; Gupta, Richa; Plotnikova, Evgeniya G; He, Zhijian; Patel, Tejash; Piroyan, Aleksandr; Sokolsky, Marina; Kabanov, Alexander V; Batrakova, Elena V

    2015-06-10

    Exosomes are naturally occurring nanosized vesicles that have attracted considerable attention as drug delivery vehicles in the past few years. Exosomes are comprised of natural lipid bilayers with the abundance of adhesive proteins that readily interact with cellular membranes. We posit that exosomes secreted by monocytes and macrophages can provide an unprecedented opportunity to avoid entrapment in mononuclear phagocytes (as a part of the host immune system), and at the same time enhance delivery of incorporated drugs to target cells ultimately increasing drug therapeutic efficacy. In light of this, we developed a new exosomal-based delivery system for a potent antioxidant, catalase, to treat Parkinson's disease (PD). Catalase was loaded into exosomes ex vivo using different methods: the incubation at room temperature, permeabilization with saponin, freeze-thaw cycles, sonication, or extrusion. The size of the obtained catalase-loaded exosomes (exoCAT) was in the range of 100-200nm. A reformation of exosomes upon sonication and extrusion, or permeabilization with saponin resulted in high loading efficiency, sustained release, and catalase preservation against proteases degradation. Exosomes were readily taken up by neuronal cells in vitro. A considerable amount of exosomes was detected in PD mouse brain following intranasal administration. ExoCAT provided significant neuroprotective effects in in vitro and in vivo models of PD. Overall, exosome-based catalase formulations have a potential to be a versatile strategy to treat inflammatory and neurodegenerative disorders.

  16. Perturbed Trojan satellites

    Science.gov (United States)

    Morais, M. H. M.; Murray, C. D.

    1999-09-01

    We present some mechanisms that can lead to instability of initially small eccentricity Trojan-type orbits associated with planetary satellites. Dermott & Murray (1981) showed that in the context of the hierarchical restricted three-body problem (M>> m), stable small eccentricity coorbital motion associated with the mass m, occurs within a region of relative width in semi-major axis a_s=0.74 epsilon (where epsilon is the dimensionless Hill's radius). However, for large eccentricities, the size of the stable coorbital region shrinks as a_s=4 (epsilon /e)(1/2) epsilon (Namouni 1999). The perturbations from other nearby bodies can cause increases in both eccentricity and semi-major axis, leading to ejection from the coorbital region via collisions with the parent body or a nearby perturber. We show that mean motion resonances among saturnian satellites can cause chaotic diffusion of both the eccentricity and the semi-major axis of their associated Trojan orbits. Moreover, we show that secular resonances inside the coorbital regions of some uranian and saturnian satellites can induce significant increases in the eccentricity of Trojan objects. A better insight into the complicated dynamics exhibited by Trojan objects when they are being subject to perturbations is fundamental to be able to assess the likelihood of finding real examples of these configurations. Dermott & Murray (1981). Icarus 48, 1-11. Namouni (1999). Icarus 137, 293-314.

  17. Exosomes for Intramyocardial Intercellular Communication

    OpenAIRE

    Elisabetta Cervio; Lucio Barile; Tiziano Moccetti; Giuseppe Vassalli

    2015-01-01

    Cross-talk between different cell types plays central roles both in cardiac homeostasis and in adaptive responses of the heart to stress. Cardiomyocytes (CMs) send biological messages to the other cell types present in the heart including endothelial cells (ECs) and fibroblasts. In turn, CMs receive messages from these cells. Recent evidence has now established that exosomes, nanosized secreted extracellular vesicles, are crucial mediators of such messages. CMs, ECs, cardiac fibroblasts, and ...

  18. Exosomes derived from atorvastatin-modified bone marrow dendritic cells ameliorate experimental autoimmune myasthenia gravis by up-regulated levels of IDO/Treg and partly dependent on FasL/Fas pathway

    OpenAIRE

    Li, Xiao-Li; Li, Heng; Zhang, Min; Xu, Hua; Yue, Long-Tao; Zhang, Xin-Xin; Wang, Shan; Wang, Cong-Cong; Li, Yan-Bin; Dou, Ying-Chun; Duan, Rui-Sheng

    2016-01-01

    Background Previously, we have demonstrated that spleen-derived dendritic cells (DCs) modified with atorvastatin suppressed immune responses of experimental autoimmune myasthenia gravis (EAMG). However, the effects of exosomes derived from atorvastatin-modified bone marrow DCs (BMDCs) (statin-Dex) on EAMG are still unknown. Methods Immunophenotypical characterization of exosomes from atorvastatin- and dimethylsulfoxide (DMSO)-modified BMDCs was performed by electron microscopy, flow cytometry...

  19. Nanocarriers Conjugated with Cell Penetrating Peptides: New Trojan Horses by Modern Ulysses.

    Science.gov (United States)

    Zappavigna, Silvia; Misso, Gabriella; Falanga, Annarita; Perillo, Emiliana; Novellino, Ettore; Galdiero, Massimiliano; Grieco, Paolo; Caraglia, Michele; Galdiero, Stefania

    2016-01-01

    Nanomedicine has opened the way to the design of more efficient diagnostics and therapeutics. Moreover, recent literature has illustrated the use of short cationic and/or amphipathic peptides, known as cell-penetrating peptides (CPPs), for mediating advanced drug delivery. CPPs exploit their ability to enter cells and enhance the uptake of many cargoes ranging from small molecules to proteins. The distinctive properties of nanocarriers (NC) based systems provide unforeseen benefits over pure drugs for biomedical applications and constitute a challenging research field particularly focused on imaging and delivery; nonetheless, several problems have to be overcome to make them a viable option in clinic. The use of CPPs improves significantly their delivery to specific intracellular targets and thus readily contributes to their use both for effective tumor therapy and gene therapy. A key issue is related to their mechanism of uptake, because although classical CPPs enhance NCs' uptake, the entry mechanism involves the endocytic pathway, which means that the delivered material is sequestered within vesicles and only a small amount will escape from this environment and reach the desired target. In this review, we will summarize recent advances in the use of CPP for enhanced delivery of nanocarriers, nucleic acids, and drugs, we will discuss their uptake mechanisms and we will describe novel approaches to improve endosomal escape of internalized nanosystems. PMID:27087493

  20. Isolation and immunologic characteristics of exosomes derived from colon carcinoma cells%结肠癌源性exosomes的分离及其相关免疫学性质

    Institute of Scientific and Technical Information of China (English)

    冯业童; 刘朋飞; 吴昊昱; 刘迪; 董超; 吴璇; 周余来; 孙波

    2012-01-01

    目的 分离结肠癌细胞株的exosomes,并分析其在致敏抗原呈递细胞及激活相关效应细胞过程中的作用.方法 差速离心法分离体外培养的正常exosomes和经热休克处理的sw1116细胞(Heat shocked sw1116,HS-sw1116)分泌的exosomes (Heat shocked exosomes,HS-Exo),并在电子显微镜下观察exosomes和HS-Exo的形态结构;SDS-PAGE初步分析exosomes和HS-Exo的蛋白组分,CCK-8法检测其促外周血单个核细胞(Peripheral blood monouclear cells,PBMCs)增殖的能力.结果 电子显微镜观察,exosomes和HS-Exo的形态学结构无明显差异,其平均直径约为150 nm;exosomes和HS-Exo的蛋白条带分布情况基本相同,在高相对分子质量区域蛋白分布较多;exosomes比sw1116细胞更易引起PBMCs的增殖反应,HS-sw1116细胞和HS-Exo促PBMCs增殖的作用比sw1116细胞和exosomes更明显(P<0.05).结论 结肠癌sw1116细胞株可分泌exosomes,其比肿瘤细胞更易引起PBMCs的增殖,热休克处理可进一步增强细胞和exosomes的促PBMCs增殖的能力,exosomes在结肠癌免疫治疗方面具有重要的应用价值.%Objective To isolate exosomes from colon carcinoma cell strain and analyze its role in sensitization of antigen-presenting cells (APCs) and activation of effecter cells. Methods Normal exosomes cultured in vitro and heat shocked exosomes (HS-Exo) were isolated by differential centrifugation and observed for morphology by electron microscopy. The protein components of exosomes and HS-Exo were preliminarily analyzed by SDS-PAGE, and their abilities in promoting the proliferation of peripheral blood monouclear cells(PBMCs) by CCK-8 method. Results Normal exosomes and HS-Exo showed no significant difference in morphology under electron microscope, of which the mean diameter was about 150 nm. The distributions of protein bands of exosomes and HS-Exo were similar, which were mainly in the zones with high relative molecular masses. Compared with sw1116 cells, exosomes

  1. Effects of subtoxic concentrations of TiO{sub 2} and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Willman, Britta; Gehrmann, Ulf; Cansu, Zekiye [Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm (Sweden); Buerki-Thurnherr, Tina; Krug, Harald F. [Laboratory for Materials — Biology Interactions, Swiss Federal Laboratories of Materials Testing and Research, St. Gallen (Switzerland); Gabrielsson, Susanne [Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm (Sweden); Scheynius, Annika, E-mail: annika.scheynius@ki.se [Translational Immunology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm (Sweden)

    2012-10-01

    Metal oxide nanoparticles are widely used in the paint and coating industry as well as in cosmetics, but the knowledge of their possible interactions with the immune system is very limited. Our aims were to investigate if commercially available TiO{sub 2} and ZnO nanoparticles may affect different human immune cells and their production of exosomes, nano-sized vesicles that have a role in cell to cell communication. We found that the TiO{sub 2} or ZnO nanoparticles at concentrations from 1 to 100 μg/mL did not affect the viability of primary human peripheral blood mononuclear cells (PBMC). In contrast, monocyte-derived dendritic cells (MDDC) reacted with a dose dependent increase in cell death and caspase activity to ZnO but not to TiO{sub 2} nanoparticles. Non-toxic exposure, 10 μg/mL, to TiO{sub 2} and ZnO nanoparticles did not significantly alter the phenotype of MDDC. Interestingly, ZnO but not TiO{sub 2} nanoparticles induced a down regulation of FcγRIII (CD16) expression on NK-cells in the PBMC population, suggesting that subtoxic concentrations of ZnO nanoparticles might have an effect on FcγR-mediated immune responses. The phenotype and size of exosomes produced by PBMC or MDDC exposed to the nanoparticles were similar to that of exosomes harvested from control cultures. TiO{sub 2} or ZnO nanoparticles could not be detected within or associated to exosomes as analyzed with TEM. We conclude that TiO{sub 2} and ZnO nanoparticles differently affect immune cells and that evaluations of nanoparticles should be performed even at subtoxic concentrations on different primary human immune cells when investigating potential effects on immune functions. -- Highlights: ► ZnO nanoparticles induce cell death of MDDC but not of PBMC. ► ZnO nanoparticles induce caspase activation and DNA fragmentation in MDDC. ► TiO{sub 2} nanoparticles are taken up by MDDC but have no effect on their phenotype. ► ZnO nanoparticles induce a significant reduction of CD16

  2. Oncogenic H-ras reprograms Madin-Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition.

    Science.gov (United States)

    Tauro, Bow J; Mathias, Rommel A; Greening, David W; Gopal, Shashi K; Ji, Hong; Kapp, Eugene A; Coleman, Bradley M; Hill, Andrew F; Kusebauch, Ulrike; Hallows, Janice L; Shteynberg, David; Moritz, Robert L; Zhu, Hong-Jian; Simpson, Richard J

    2013-08-01

    Epithelial-mesenchymal transition (EMT) is a highly conserved morphogenic process defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. EMT is associated with increased aggressiveness, invasiveness, and metastatic potential in carcinoma cells. To assess the contribution of extracellular vesicles following EMT, we conducted a proteomic analysis of exosomes released from Madin-Darby canine kidney (MDCK) cells, and MDCK cells transformed with oncogenic H-Ras (21D1 cells). Exosomes are 40-100 nm membranous vesicles originating from the inward budding of late endosomes and multivesicular bodies and are released from cells on fusion of multivesicular bodies with the plasma membrane. Exosomes from MDCK cells (MDCK-Exos) and 21D1 cells (21D1-Exos) were purified from cell culture media using density gradient centrifugation (OptiPrep™), and protein content identified by GeLC-MS/MS proteomic profiling. Both MDCK- and 21D1-Exos populations were morphologically similar by cryo-electron microscopy and contained stereotypical exosome marker proteins such as TSG101, Alix, and CD63. In this study we show that the expression levels of typical EMT hallmark proteins seen in whole cells correlate with those observed in MDCK- and 21D1-Exos, i.e. reduction of characteristic inhibitor of angiogenesis, thrombospondin-1, and epithelial markers E-cadherin, and EpCAM, with a concomitant up-regulation of mesenchymal makers such as vimentin. Further, we reveal that 21D1-Exos are enriched with several proteases (e.g. MMP-1, -14, -19, ADAM-10, and ADAMTS1), and integrins (e.g. ITGB1, ITGA3, and ITGA6) that have been recently implicated in regulating the tumor microenvironment to promote metastatic progression. A salient finding of this study was the unique presence of key transcriptional regulators (e.g. the master transcriptional regulator YBX1) and core splicing complex components (e.g. SF3B1, SF3B3, and SFRS1) in mesenchymal 21D1-Exos. Taken

  3. Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production

    International Nuclear Information System (INIS)

    Metal oxide nanoparticles are widely used in the paint and coating industry as well as in cosmetics, but the knowledge of their possible interactions with the immune system is very limited. Our aims were to investigate if commercially available TiO2 and ZnO nanoparticles may affect different human immune cells and their production of exosomes, nano-sized vesicles that have a role in cell to cell communication. We found that the TiO2 or ZnO nanoparticles at concentrations from 1 to 100 μg/mL did not affect the viability of primary human peripheral blood mononuclear cells (PBMC). In contrast, monocyte-derived dendritic cells (MDDC) reacted with a dose dependent increase in cell death and caspase activity to ZnO but not to TiO2 nanoparticles. Non-toxic exposure, 10 μg/mL, to TiO2 and ZnO nanoparticles did not significantly alter the phenotype of MDDC. Interestingly, ZnO but not TiO2 nanoparticles induced a down regulation of FcγRIII (CD16) expression on NK-cells in the PBMC population, suggesting that subtoxic concentrations of ZnO nanoparticles might have an effect on FcγR-mediated immune responses. The phenotype and size of exosomes produced by PBMC or MDDC exposed to the nanoparticles were similar to that of exosomes harvested from control cultures. TiO2 or ZnO nanoparticles could not be detected within or associated to exosomes as analyzed with TEM. We conclude that TiO2 and ZnO nanoparticles differently affect immune cells and that evaluations of nanoparticles should be performed even at subtoxic concentrations on different primary human immune cells when investigating potential effects on immune functions. -- Highlights: ► ZnO nanoparticles induce cell death of MDDC but not of PBMC. ► ZnO nanoparticles induce caspase activation and DNA fragmentation in MDDC. ► TiO2 nanoparticles are taken up by MDDC but have no effect on their phenotype. ► ZnO nanoparticles induce a significant reduction of CD16 expression on NK cells. ► ZnO and TiO2 nanoparticles

  4. Micro RNA in Exosomes from HIV-Infected Macrophages

    OpenAIRE

    Roth, William W.; Ming Bo Huang; Kateena Addae Konadu; Powell, Michael D.; Bond, Vincent C

    2015-01-01

    Exosomes are small membrane-bound vesicles secreted by cells that function to shuttle RNA and proteins between cells. To examine the role of exosomal micro RNA (miRNA) during the early stage of HIV-1 infection we characterized miRNA in exosomes from HIV-infected macrophages, compared with exosomes from non-infected macrophages. Primary human monocytes from uninfected donors were differentiated to macrophages (MDM) which were either mock-infected or infected with the macrophage-tropic HIV-1 Ba...

  5. Identification and analysis of exosomes secreted from macrophages extracted by different methods

    OpenAIRE

    Wang, Jianjun; Yao, Yongliang; Wu, Jianhong; Li, Guangxin

    2015-01-01

    Exosomes were small vesicles secreted by many cells, and they can play an important role in cell signal transductions. Because the diameter of exosomes is about 30-100 nm, it is so difficult to collection them. In this paper, three kinds of exosomes purifying methods (density gradient ultracentrifugation method, the ultracentrifugation and ultrafiltration method, ExoQuick™ Extraction kit method) were used to collected exosomes in culture supernatants of macrophages. The morphologies of three ...

  6. Serum exosomes in pregnancy-associated immune modulation and neuroprotection during CNS autoimmunity

    OpenAIRE

    Williams, Jessica L.; Gatson, NaTosha N.; Smith, Kristen M; Almad, Akshata; McTigue, Dana M; Whitacre, Caroline C

    2013-01-01

    In multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), relapses are markedly reduced during pregnancy. Exosomes are lipid-bound vesicles and are more abundant in the serum during pregnancy. We demonstrate that serum exosomes suppress T cell activation, promote the maturation of oligodendrocyte precursor cells (OPC), and pregnancy exosomes facilitate OPC migration into active CNS lesions. However, exosomes derived from both pregnant and non-pregnant mice reduced the se...

  7. 大鼠T细胞源性exosome提取方法比较%The comparison among extraction methods of exosomes from T cells of rats

    Institute of Scientific and Technical Information of China (English)

    孙祯; 黄赤兵; 宋亚军; 陈益荣; 李传贵

    2013-01-01

    目的:采用3种方法从大鼠T细胞培养上清中提取纯化exosome ,以获取高质量的exosome。方法分别采用Exo-Quick Precipitation提取法、超滤密度梯度离心法、差速离心法提取 T 细胞培养上清中的exosome。利用透射电镜进行形态学观察,2,2-联喹啉-4,4-二甲酸二钠(BCA )法进行蛋白定量,十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE )分析蛋白表达的差异,Western blotting检测白细胞介素2(IL-2)的表达。结果3种方法均可提取出exosome;ExoQuick Precipitation 提取法、超滤密度梯度离心法所得样本浓度显著高于差速离心法所得样本浓度(P<0.05);SDS-PAGE结果显示3种方法所得样本具有蛋白表达强度的差异;Western blotting显示3种方法所得样本均表达IL-2。结论 ExoQuick Precipitation提取法、超滤密度梯度离心法可获得高纯度、无蛋白丢失的exosome样本。%Objective The purification methods of the exosomes derived form T cells were established in order to get high quan-tity exosomes .Methods Exosomes from T cells culture supernatants were purified by ExoQuick Precipitation ,ultrafiltration and sucrose gradient centrifugation ,differential ultracentrifugation ,and confirmed via using transmission electron microscopy .The pro-tein expression of the exosomes were analyzed by SDS-PAGE electrophoresis .Western blotting was used to test the expression of IL-2 .Results The protein concentration of the exosomes purified through ExoQuick Precipitation ,ultrafiltration and sucrose gradi-ent centrifugation were higher than through differential ultracentrifugation (P<0 .05) .SDS-PAGE displayed the difference among the exosome purified by three methods .Three kinds of exosomes all expressed IL-2 .Conclusion ExoQuick Precipitation ,ultrafiltra-tion and sucrose gradient centrifugation technique can obtain high purity and complete exosome sample .

  8. Cortactin promotes exosome secretion by controlling branched actin dynamics.

    Science.gov (United States)

    Sinha, Seema; Hoshino, Daisuke; Hong, Nan Hyung; Kirkbride, Kellye C; Grega-Larson, Nathan E; Seiki, Motoharu; Tyska, Matthew J; Weaver, Alissa M

    2016-07-18

    Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites. PMID:27402952

  9. Bovine milk-derived exosomes for drug delivery.

    Science.gov (United States)

    Munagala, Radha; Aqil, Farrukh; Jeyabalan, Jeyaprakash; Gupta, Ramesh C

    2016-02-01

    Exosomes are biological nanovesicles that are involved in cell-cell communication via the functionally-active cargo (such as miRNA, mRNA, DNA and proteins). Because of their nanosize, exosomes are explored as nanodevices for the development of new therapeutic applications. However, bulk, safe and cost-effective production of exosomes is not available. Here, we show that bovine milk can serve as a scalable source of exosomes that can act as a carrier for chemotherapeutic/chemopreventive agents. Drug-loaded exosomes showed significantly higher efficacy compared to free drug in cell culture studies and against lung tumor xenografts in vivo. Moreover, tumor targeting ligands such as folate increased cancer-cell targeting of the exosomes resulting in enhanced tumor reduction. Milk exosomes exhibited cross-species tolerance with no adverse immune and inflammatory response. Thus, we show the versatility of milk exosomes with respect to the cargo it can carry and ability to achieve tumor targetability. This is the first report to identify a biocompatible and cost-effective means of exosomes to enhance oral bioavailability, improve efficacy and safety of drugs.

  10. Interrogating Circulating Microsomes and Exosomes Using Metal Nanoparticles.

    Science.gov (United States)

    Zhou, Yi-Ge; Mohamadi, Reza M; Poudineh, Mahla; Kermanshah, Leyla; Ahmed, Sharif; Safaei, Tina Saberi; Stojcic, Jessica; Nam, Robert K; Sargent, Edward H; Kelley, Shana O

    2016-02-10

    A chip-based approach for electrochemical characterization and detection of microsomes and exosomes based on direct electro-oxidation of metal nanoparticles (MNPs) that specifically recognize surface markers of these vesicles is reported. It is found that exosomes and microsomes derived from prostate cancer cells can be identified by their surface proteins EpCAM and PSMA, suggesting the potential of exosomes and microsomes for use as diagnostic biomarkers. PMID:26707703

  11. Microvesicles but Not Exosomes from Pathfinder Cells Stimulate Functional Recovery of the Pancreas in a Mouse Streptozotocin-Induced Diabetes Model.

    Science.gov (United States)

    McGuinness, Dagmara; Anthony, Diana F; Moulisova, Vladimira; MacDonald, Alasdair I; MacIntyre, Alan; Thomson, Jacqueline; Nag, Abhijeet; Davies, R Wayne; Shiels, Paul G

    2016-06-01

    Pathfinder cells (PCs), a novel cell type derived from the pancreas of adult rats, have been demonstrated to stimulate recovery of tissue structure and function in two animal models of acute tissue damage to date-streptozotocin (STZ)-induced diabetes and ischemia-reperfusion damage to the kidney. In repaired tissue, PCs and their progeny typically represent only 0.02% of the repaired tissue, suggesting that they act via a paracrine mechanism on native cells in the damaged area. Extracellular vesicles are strong candidates for mediating such a paracrine effect. Therefore, we studied the effects of two PC-derived extracellular vesicle fractions on tissue repair in the STZ diabetes model, one containing primarily microvesicles and the second containing predominantly exosomes. Treatment of STZ-induced diabetic mice with the microvesicles preparation led to blood glucose, insulin, glucagon, and C-peptide levels similar to those found with PC treatment. Furthermore, analysis of the histopathology of the pancreas indicated islet regeneration. In contrast, the exosome fraction demonstrated no repair activity, and STZ diabetic mice treated with exosome preparations had blood glucose values that were indistinguishable from those of vehicle-only treated controls. Therefore, we conclude that exosomes play no part in PC action as detected by this assay, whereas microvesicles provide all or a large component of the paracrine activity of PCs. Because they act to stimulate repair of multiple tissues, PC-derived microvesicles may similarly have the potential to stimulate repair of many damaged tissues, identifying a very significant cell-free therapeutic opportunity in regenerative medicine. PMID:26414011

  12. The odyssey of Hsp60 from tumor cells to other destinations includes plasma membrane-associated stages and Golgi and exosomal protein-trafficking modalities.

    Directory of Open Access Journals (Sweden)

    Claudia Campanella

    Full Text Available BACKGROUND: In a previous work we showed for the first time that human tumor cells secrete Hsp60 via exosomes, which are considered immunologically active microvesicles involved in tumor progression. This finding raised questions concerning the route followed by Hsp60 to reach the exosomes, its location in them, and whether Hsp60 can be secreted also via other mechanisms, e.g., by the Golgi. We addressed these issues in the work presented here. PRINCIPAL FINDINGS: We found that Hsp60 localizes in the tumor cell plasma membrane, is associated with lipid rafts, and ends up in the exosomal membrane. We also found evidence that Hsp60 localizes in the Golgi apparatus and its secretion is prevented by an inhibitor of this organelle. CONCLUSIONS/SIGNIFICANCE: We propose a multistage process for the translocation of Hsp60 from the inside to the outside of the cell that includes a combination of protein traffic pathways and, ultimately, presence of the chaperonin in the circulating blood. The new information presented should help in designing future strategies for research and for developing diagnostic-monitoring means useful in clinical oncology.

  13. Exosomes and their roles in immune regulation and cancer.

    Science.gov (United States)

    Greening, David W; Gopal, Shashi K; Xu, Rong; Simpson, Richard J; Chen, Weisan

    2015-04-01

    Exosomes, a subset of extracellular vesicles (EVs), function as a mode of intercellular communication and molecular transfer. Exosomes facilitate the direct extracellular transfer of proteins, lipids, and miRNA/mRNA/DNAs between cells in vitro and in vivo. The immunological activities of exosomes affect immunoregulation mechanisms including modulating antigen presentation, immune activation, immune suppression, immune surveillance, and intercellular communication. Besides immune cells, cancer cells secrete immunologically active exosomes that influence both physiological and pathological processes. The observation that exosomes isolated from immune cells such as dendritic cells (DCs) modulate the immune response has enforced the way these membranous vesicles are being considered as potential immunotherapeutic reagents. Indeed, tumour- and immune cell-derived exosomes have been shown to carry tumour antigens and promote immunity, leading to eradication of established tumours by CD8(+) T cells and CD4(+) T cells, as well as directly suppressing tumour growth and resistance to malignant tumour development. Further understanding of these areas of exosome biology, and especially of molecular mechanisms involved in immune cell targeting, interaction and manipulation, is likely to provide significant insights into immunorecognition and therapeutic intervention. Here, we review the emerging roles of exosomes in immune regulation and the therapeutic potential in cancer.

  14. Pathways for Modulating Exosome Lipids Identified By High-Density Lipoprotein-Like Nanoparticle Binding to Scavenger Receptor Type B-1

    OpenAIRE

    Nicholas L. Angeloni; McMahon, Kaylin M.; Suchitra Swaminathan; Michael P. Plebanek; Iman Osman; Volpert, Olga V.; C. Shad Thaxton

    2016-01-01

    Exosomes are produced by cells to mediate intercellular communication, and have been shown to perpetuate diseases, including cancer. New tools are needed to understand exosome biology, detect exosomes from specific cell types in complex biological media, and to modify exosomes. Our data demonstrate a cellular pathway whereby membrane-bound scavenger receptor type B-1 (SR-B1) in parent cells becomes incorporated into exosomes. We tailored synthetic HDL-like nanoparticles (HDL NP), high-affinit...

  15. Immunoregulatory Role of Dendritic Cell-derived Exosomes%树突状细胞来源的Exosomes的免疫调节作用

    Institute of Scientific and Technical Information of China (English)

    刘袁媛; 范华骅; 陈亮

    2007-01-01

    Exosomes是多种细胞经晚期内体形成的一种膜性小囊泡,最初认为其功能仅为降解内吞物质,但研究发现exosomes的特异功能与其来源细胞相关,尤其是抗原提呈细胞(APCs)--树突状细胞来源的exosomes(dendritic cell-derived exosomes,DEXs)集MHC-I/MHC-Ⅱ、共刺激分子、黏附分子、热休克蛋白于一身,在体内外免疫调节中起非常重要的作用.现对DEXs诱导抗肿瘤免疫应答和诱导免疫耐受两方面的功能及可能的免疫调节机制进行综述.

  16. Natural CD8{sup +}25{sup +} regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yufeng; Zhang, Xueshu; Zhao, Tuo; Li, Wei; Xiang, Jim, E-mail: jim.xiang@saskcancer.ca

    2013-08-16

    Highlights: •CD8{sup +}25{sup +} regulatory T cells secrete tolerogenic exosomes. •CD8{sup +}25{sup +} regulatory T cell-derived exosomes exhibit immunosuppressive effect. •CD8{sup +}25{sup +} regulatory T cell-derived exosomes inhibit antitumor immunity. -- Abstract: Natural CD4{sup +}25{sup +} and CD8{sup +}25{sup +} regulatory T (Tr) cells have been shown to inhibit autoimmune diseases. Immune cells secrete exosomes (EXOs), which are crucial for immune regulation. However, immunomodulatory effect of natural Tr cell-secreted EXOs is unknown. In this study, we purified natural CD8{sup +}25{sup +} Tr cells from C57BL/6 mouse naive CD8{sup +} T cells, and in vitro amplified them with CD3/CD28 beads. EXOs (EXO{sub Tr}) were purified from Tr cell’s culture supernatants by differential ultracentrifugation and analyzed by electron microscopy, Western blot and flow cytometry. Our data showed that EXO{sub Tr} had a “saucer” or round shape with 50–100 nm in diameter, contained EXO-associated markers LAMP-1 and CD9, and expressed natural Tr cell markers CD25 and GITR. To assess immunomodulatory effect, we i.v. immunized C57BL/6 mice with ovalbumin (OVA)-pulsed DCs (DC{sub OVA}) plus Tr cells or EXO{sub Tr}, and then assessed OVA-specific CD8{sup +} T cell responses using PE-H-2K{sup b}/OVA tetramer and FITC-anti-CD8 antibody staining by flow cytometry and antitumor immunity in immunized mice with challenge of OVA-expressing BL6–10{sub OVA} melanoma cells. We demonstrated that DC{sub OVA}-stimulated CD8{sup +} T cell responses and protective antitumor immunity significantly dropped from 2.52% to 1.08% and 1.81% (p < 0.05), and from 8/8 to 2/8 and 5/8 mice DC{sub OVA} (p < 0.05) in immunized mice with co-injection of Tr cells and EXO{sub Tr}, respectively. Our results indicate that natural CD8{sup +}25{sup +} Tr cell-released EXOs, alike CD8{sup +}25{sup +} Tr cells, can inhibit CD8{sup +} T cell responses and antitumor immunity. Therefore, EXOs derived from

  17. TROJAN HORSE TEACHING

    OpenAIRE

    Poddiakov, Alexander N.

    2009-01-01

    An advanced strategic behavior, which we term, “Trojan horse” teaching (ThT), is described. In this type of counteractive behavior, a “teacher”, ostensibly helping his or her rival to learn something, really teaches the rival useless or disadvantageous things. This interaction is an object of interdisciplinary research related to the theory of human capital, the theory of agency, knowledge management, the theory of conflict, and to social and educational psychology. Examples of ThT in real li...

  18. Natural CD8+25+ regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma

    International Nuclear Information System (INIS)

    Highlights: •CD8+25+ regulatory T cells secrete tolerogenic exosomes. •CD8+25+ regulatory T cell-derived exosomes exhibit immunosuppressive effect. •CD8+25+ regulatory T cell-derived exosomes inhibit antitumor immunity. -- Abstract: Natural CD4+25+ and CD8+25+ regulatory T (Tr) cells have been shown to inhibit autoimmune diseases. Immune cells secrete exosomes (EXOs), which are crucial for immune regulation. However, immunomodulatory effect of natural Tr cell-secreted EXOs is unknown. In this study, we purified natural CD8+25+ Tr cells from C57BL/6 mouse naive CD8+ T cells, and in vitro amplified them with CD3/CD28 beads. EXOs (EXOTr) were purified from Tr cell’s culture supernatants by differential ultracentrifugation and analyzed by electron microscopy, Western blot and flow cytometry. Our data showed that EXOTr had a “saucer” or round shape with 50–100 nm in diameter, contained EXO-associated markers LAMP-1 and CD9, and expressed natural Tr cell markers CD25 and GITR. To assess immunomodulatory effect, we i.v. immunized C57BL/6 mice with ovalbumin (OVA)-pulsed DCs (DCOVA) plus Tr cells or EXOTr, and then assessed OVA-specific CD8+ T cell responses using PE-H-2Kb/OVA tetramer and FITC-anti-CD8 antibody staining by flow cytometry and antitumor immunity in immunized mice with challenge of OVA-expressing BL6–10OVA melanoma cells. We demonstrated that DCOVA-stimulated CD8+ T cell responses and protective antitumor immunity significantly dropped from 2.52% to 1.08% and 1.81% (p OVA (p Tr, respectively. Our results indicate that natural CD8+25+ Tr cell-released EXOs, alike CD8+25+ Tr cells, can inhibit CD8+ T cell responses and antitumor immunity. Therefore, EXOs derived from natural CD4+25+ and CD8+25+ Tr cells may become an alternative for immunotherapy of autoimmune diseases

  19. Exosomes from hypoxic endothelial cells have increased collagen crosslinking activity through up-regulation of lysyl oxidase-like 2

    NARCIS (Netherlands)

    de Jong, Olivier G.; van Balkom, Bas W M; Gremmels, Hendrik; Verhaar, Marianne C.

    2016-01-01

    Exosomes are important mediators of intercellular communication. Additionally, they contain a variety of components capable of interacting with the extracellular matrix (ECM), including integrins, matrix metalloproteinases and members of the immunoglobin superfamily. Despite these observations, rese

  20. Analysis of the Secretome of Apoptotic Peripheral Blood Mononuclear Cells: Impact of Released Proteins and Exosomes for Tissue Regeneration.

    Science.gov (United States)

    Beer, Lucian; Zimmermann, Matthias; Mitterbauer, Andreas; Ellinger, Adolf; Gruber, Florian; Narzt, Marie-Sophie; Zellner, Maria; Gyöngyösi, Mariann; Madlener, Sibylle; Simader, Elisabeth; Gabriel, Christian; Mildner, Michael; Ankersmit, Hendrik Jan

    2015-01-01

    We previously showed that, when peripheral blood mononuclear cells (PBMCs) were stressed with ionizing radiation, they released paracrine factors that showed regenerative capacity in vitro and in vivo. This study aimed to characterize the secretome of PBMCs and to investigate its biologically active components in vitro and vivo. Bioinformatics analysis revealed that irradiated PBMCs differentially expressed genes that encoded secreted proteins. These genes were primarily involved in (a) pro-angiogenic and regenerative pathways and (b) the generation of oxidized phospholipids with known pro-angiogenic and inflammation-modulating properties. Subsequently, in vitro assays showed that the exosome and protein fractions of irradiated and non-irradiated PBMC secretome were the major biological components that enhanced cell mobility; conversely, secreted lipids and microparticles had no effects. We tested a viral-cleared PBMC secretome, prepared according to good manufacturing practice (GMP), in a porcine model of closed chest, acute myocardial infarction. We found that the potency for preventing ventricular remodeling was similar with the GMP-compliant and experimentally-prepared PBMC secretomes. Our results indicate that irradiation modulates the release of proteins, lipid-mediators and extracellular vesicles from human PBMCs. In addition our findings implicate the use of secretome fractions as valuable material for the development of cell-free therapies in regenerative medicine. PMID:26567861

  1. Macrophage Exosomes Induce Placental Inflammatory Cytokines: A Novel Mode of Maternal–Placental Messaging

    OpenAIRE

    Holder, Beth; Jones, Tessa; Sancho Shimizu, Vanessa; Rice, Thomas F.; Donaldson, Beverly; Bouqueau, Marielle; Forbes, Karen; Kampmann, Beate

    2016-01-01

    Exosome trafficking from the placenta into the maternal circulation is well documented; the possibility that this trafficking is bi‐directional was unknown. We demonstrated clathrin‐mediated endocytosis of macrophage exosomes by the human placenta. We also demonstrated that macrophage exosomes induced placental production of cytokines interleukin (IL)‐6, IL‐8 and IL‐10. Exosomes therefore comprise an additional mechanism of immune cell signalling to the placenta, potentially facilitating prot...

  2. Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node

    OpenAIRE

    Swetha Srinivasan; Fredrik O. Vannberg; Brandon Dixon, J.

    2016-01-01

    It is well documented that cells secrete exosomes, which can transfer biomolecules that impact recipient cells’ functionality in a variety of physiologic and disease processes. The role of lymphatic drainage and transport of exosomes is as yet unknown, although the lymphatics play critical roles in immunity and exosomes are in the ideal size-range for lymphatic transport. Through in vivo near-infrared (NIR) imaging we have shown that exosomes are rapidly transported within minutes from the pe...

  3. Release of luminal exosomes contributes to TLR4-mediated epithelial antimicrobial defense.

    Directory of Open Access Journals (Sweden)

    Guoku Hu

    Full Text Available Exosomes are membranous nanovesicles released by most cell types from multi-vesicular endosomes. They are speculated to transfer molecules to neighboring or distant cells and modulate many physiological and pathological procedures. Exosomes released from the gastrointestinal epithelium to the basolateral side have been implicated in antigen presentation. Here, we report that luminal release of exosomes from the biliary and intestinal epithelium is increased following infection by the protozoan parasite Cryptosporidium parvum. Release of exosomes involves activation of TLR4/IKK2 signaling through promoting the SNAP23-associated vesicular exocytotic process. Downregulation of let-7 family miRNAs by activation of TLR4 signaling increases SNAP23 expression, coordinating exosome release in response to C. parvum infection. Intriguingly, exosomes carry antimicrobial peptides of epithelial cell origin, including cathelicidin-37 and beta-defensin 2. Activation of TLR4 signaling enhances exosomal shuttle of epithelial antimicrobial peptides. Exposure of C. parvum sporozoites to released exosomes decreases their viability and infectivity both in vitro and ex vivo. Direct binding to the C. parvum sporozoite surface is required for the anti-C. parvum activity of released exosomes. Biliary epithelial cells also increase exosomal release and display exosome-associated anti-C. parvum activity following LPS stimulation. Our data indicate that TLR4 signaling regulates luminal exosome release and shuttling of antimicrobial peptides from the gastrointestinal epithelium, revealing a new arm of mucosal immunity relevant to antimicrobial defense.

  4. Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases.

    Science.gov (United States)

    Xitong, Dang; Xiaorong, Zeng

    2016-01-10

    Exosomes are 30-120 nm membrane bound vesicles secreted naturally by almost all cells and exist in all body fluids. Accumulating evidence has shown that exosomes contain proteins, lipids, DNA, mRNA, miRNA, and lncRNA that can be transferred from producer cells to recipient cells, facilitating cell-cell communication. As the natural carrier of these signal molecules, exosomes possess many other properties such as stability, biocompatibility, biological barrier permeability, low toxicity, and low immunogenicity, which make them an attractive vehicle for therapeutic delivery. How exosomes target recipient cells in vivo remains largely unknown, however, exosomes are selectively enriched in some transmembrane proteins that can be genetically engineered to display ligands/homing peptides on their surface, which confers exosome targeting capability to cells bearing cognate receptors. With the discovery of many peptides homing to diseased tissues or organs through phage display and in vivo biopanning technologies, there is ample opportunity to explore the potential use of exosome for targeted gene therapy. Here, we briefly review exosome biogenesis, mechanisms of exosome-mediated cell–cell communication, and exosome isolation and purification methods, and specifically focus on the emerging exosome targeting technologies.

  5. A novel Trojan-horse targeting strategy to reduce the non-specific uptake of nanocarriers by non-cancerous cells.

    Science.gov (United States)

    Shen, Zheyu; Wu, Hao; Yang, Sugeun; Ma, Xuehua; Li, Zihou; Tan, Mingqian; Wu, Aiguo

    2015-11-01

    One big challenge with active targeting of nanocarriers is non-specific binding between targeting molecules and non-target moieties expressed on non-cancerous cells, which leads to non-specific uptake of nanocarriers by non-cancerous cells. Here, we propose a novel Trojan-horse targeting strategy to hide or expose the targeting molecules of nanocarriers on-demand. The non-specific uptake by non-cancerous cells can be reduced because the targeting molecules are hidden in hydrophilic polymers. The nanocarriers are still actively targetable to cancer cells because the targeting molecules can be exposed on-demand at tumor regions. Typically, Fe3O4 nanocrystals (FN) as magnetic resonance imaging (MRI) contrast agents were encapsulated into albumin nanoparticles (AN), and then folic acid (FA) and pH-sensitive polymers (PP) were grafted onto the surface of AN-FN to construct PP-FA-AN-FN nanoparticles. Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), transmission electron microscope (TEM) and gel permeation chromatography (GPC) results confirm successful construction of PP-FA-AN-FN. According to difference of nanoparticle-cellular uptake between pH 7.4 and 5.5, the weight ratio of conjugated PP to nanoparticle FA-AN-FN (i.e. graft density) and the molecular weight of PP (i.e. graft length) are optimized to be 1.32 and 5.7 kDa, respectively. In vitro studies confirm that the PP can hide ligand FA to prevent it from binding to cells with FRα at pH 7.4 and shrink to expose FA at pH 5.5. In vivo studies demonstrate that our Trojan-horse targeting strategy can reduce the non-specific uptake of the PP-FA-AN-FN by non-cancerous cells. Therefore, our PP-FA-AN-FN might be used as an accurately targeted MRI contrast agent. PMID:26295434

  6. Real time and label free profiling of clinically relevant exosomes.

    Science.gov (United States)

    Sina, Abu Ali Ibn; Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G; Shiddiky, Muhammad J A; Trau, Matt

    2016-01-01

    Tumor-derived exosomes possess significant clinical relevance due to their unique composition of genetic and protein material that is representative of the parent tumor. Specific isolation as well as identification of proportions of these clinically relevant exosomes (CREs) from biological samples could help to better understand their clinical significance as cancer biomarkers. Herein, we present a simple approach for quantification of the proportion of CREs within the bulk exosome population isolated from patient serum. This proportion of CREs can potentially inform on the disease stage and enable non-invasive monitoring of inter-individual variations in tumor-receptor expression levels. Our approach utilises a Surface Plasmon Resonance (SPR) platform to quantify the proportion of CREs in a two-step strategy that involves (i) initial isolation of bulk exosome population using tetraspanin biomarkers (i.e., CD9, CD63), and (ii) subsequent detection of CREs within the captured bulk exosomes using tumor-specific markers (e.g., human epidermal growth factor receptor 2 (HER2)). We demonstrate the isolation of bulk exosome population and detection of as low as 10% HER2(+) exosomes from samples containing designated proportions of HER2(+) BT474 and HER2(-) MDA-MB-231 cell derived exosomes. We also demonstrate the successful isolation of exosomes from a small cohort of breast cancer patient samples and identified that approximately 14-35% of their bulk population express HER2. PMID:27464736

  7. Real time and label free profiling of clinically relevant exosomes

    Science.gov (United States)

    Sina, Abu Ali Ibn; Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G.; Shiddiky, Muhammad J. A.; Trau, Matt

    2016-01-01

    Tumor-derived exosomes possess significant clinical relevance due to their unique composition of genetic and protein material that is representative of the parent tumor. Specific isolation as well as identification of proportions of these clinically relevant exosomes (CREs) from biological samples could help to better understand their clinical significance as cancer biomarkers. Herein, we present a simple approach for quantification of the proportion of CREs within the bulk exosome population isolated from patient serum. This proportion of CREs can potentially inform on the disease stage and enable non-invasive monitoring of inter-individual variations in tumor-receptor expression levels. Our approach utilises a Surface Plasmon Resonance (SPR) platform to quantify the proportion of CREs in a two-step strategy that involves (i) initial isolation of bulk exosome population using tetraspanin biomarkers (i.e., CD9, CD63), and (ii) subsequent detection of CREs within the captured bulk exosomes using tumor-specific markers (e.g., human epidermal growth factor receptor 2 (HER2)). We demonstrate the isolation of bulk exosome population and detection of as low as 10% HER2(+) exosomes from samples containing designated proportions of HER2(+) BT474 and HER2(−) MDA-MB-231 cell derived exosomes. We also demonstrate the successful isolation of exosomes from a small cohort of breast cancer patient samples and identified that approximately 14–35% of their bulk population express HER2. PMID:27464736

  8. αB crystallin is apically secreted within exosomes by polarized human retinal pigment epithelium and provides neuroprotection to adjacent cells.

    Directory of Open Access Journals (Sweden)

    Parameswaran G Sreekumar

    Full Text Available αB crystallin is a chaperone protein with anti-apoptotic and anti-inflammatory functions and has been identified as a biomarker in age-related macular degeneration. The purpose of this study was to determine whether αB crystallin is secreted from retinal pigment epithelial (RPE cells, the mechanism of this secretory pathway and to determine whether extracellular αB crystallin can be taken up by adjacent retinal cells and provide protection from oxidant stress. We used human RPE cells to establish that αB crystallin is secreted by a non-classical pathway that involves exosomes. Evidence for the release of exosomes by RPE and localization of αB crystallin within the exosomes was achieved by immunoblot, immunofluorescence, and electron microscopic analyses. Inhibition of lipid rafts or exosomes significantly reduced αB crystallin secretion, while inhibitors of classic secretory pathways had no effect. In highly polarized RPE monolayers, αB crystallin was selectively secreted towards the apical, photoreceptor-facing side. In support, confocal microscopy established that αB crystallin was localized predominantly in the apical compartment of RPE monolayers, where it co-localized in part with exosomal marker CD63. Severe oxidative stress resulted in barrier breakdown and release of αB crystallin to the basolateral side. In normal mouse retinal sections, αB crystallin was identified in the interphotoreceptor matrix. An increased uptake of exogenous αB crystallin and protection from apoptosis by inhibition of caspase 3 and PARP activation were observed in stressed RPE cultures. αB Crystallin was taken up by photoreceptors in mouse retinal explants exposed to oxidative stress. These results demonstrate an important role for αB crystallin in maintaining and facilitating a neuroprotective outer retinal environment and may also explain the accumulation of αB crystallin in extracellular sub-RPE deposits in the stressed microenvironment in age

  9. Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21.

    Science.gov (United States)

    Taverna, Simona; Fontana, Simona; Monteleone, Francesca; Pucci, Marzia; Saieva, Laura; De Caro, Viviana; Cardinale, Valeria Giunta; Giallombardo, Marco; Vicario, Emanuela; Rolfo, Christian; Leo, Giacomo De; Alessandro, Riccardo

    2016-05-24

    Tumor derived exosomes are vesicles which contain proteins and microRNAs that mediate cell-cell communication and are involved in angiogenesis and tumor progression. Curcumin derived from the plant Curcuma longa, shows anticancer effects. Exosomes released by CML cells treated with Curcumin contain a high amount of miR-21 that is shuttled into the endothelial cells in a biologically active form. The treatment of HUVECs with CML Curcu-exosomes reduced RhoB expression and negatively modulated endothelial cells motility. We showed that the addition of CML control exosomes to HUVECs caused an increase in IL8 and VCAM1 levels, but Curcu-exosomes reversed these effects thus attenuating their angiogenic properties. This antiangiogenic effect was confirmed with in vitro and in vivo vascular network formation assays. SWATH analysis of the proteomic profile of Curcu-exosomes revealed that Curcumin treatment deeply changes their molecular properties, in particular, Curcumin induces a release of exosomes depleted in pro-angiogenic proteins and enriched in proteins endowed with anti-angiogenic activity. Among the proteins differential expressed we focused on MARCKS, since it was the most modulated protein and a target of miR-21. Taken together our data indicated that also Curcumin attenuates the exosome's ability to promote the angiogenic phenotype and to modulate the endothelial barrier organization. PMID:27050372

  10. Cholangiocarcinoma-derived exosomes inhibit the antitumor activity of cytokine-induced killer cells by down-regulating the secretion of tumor necrosis factor-α and perforin*

    Science.gov (United States)

    Chen, Jiong-huang; Xiang, Jian-yang; Ding, Guo-ping; Cao, Li-ping

    2016-01-01

    Objective: The aim of our study is to observe the impact of cholangiocarcinoma-derived exosomes on the antitumor activities of cytokine-induced killer (CIK) cells and then demonstrate the appropriate mechanism. Methods: Tumor-derived exosomes (TEXs), which are derived from RBE cells (human cholangiocarcinoma line), were collected by ultracentrifugation. CIK cells induced from peripheral blood were stimulated by TEXs. Fluorescence-activated cell sorting (FACS) was performed to determine the phenotypes of TEX-CIK and N-CIK (normal CIK) cells. The concentrations of tumor necrosis factor-α (TNF-α) and perforin in the culture medium supernatant were examined by using an enzyme-linked immunosorbent assay (ELISA) kit. A CCK-8 kit was used to evaluate the cytotoxic activity of the CIK cells to the RBE cell line. Results: The concentrations of TNF-α and perforin of the group TEX-CIK were 138.61 pg/ml and 2.41 ng/ml, respectively, lower than those of the group N-CIK 194.08 pg/ml (Pexosomes inhibit the antitumor activity of CIK cells by down-regulating the population of CD3+, CD8+, NK (CD56+), and CD3+CD56+ cells and the secretion of TNF-α and perforin. TEX may play an important role in cholangiocarcinoma immune escape. PMID:27381730

  11. Dependence of intracellular and exosomal microRNAs on viral E6/E7 oncogene expression in HPV-positive tumor cells.

    Directory of Open Access Journals (Sweden)

    Anja Honegger

    2015-03-01

    Full Text Available Specific types of human papillomaviruses (HPVs cause cervical cancer. Cervical cancers exhibit aberrant cellular microRNA (miRNA expression patterns. By genome-wide analyses, we investigate whether the intracellular and exosomal miRNA compositions of HPV-positive cancer cells are dependent on endogenous E6/E7 oncogene expression. Deep sequencing studies combined with qRT-PCR analyses show that E6/E7 silencing significantly affects ten of the 52 most abundant intracellular miRNAs in HPV18-positive HeLa cells, downregulating miR-17-5p, miR-186-5p, miR-378a-3p, miR-378f, miR-629-5p and miR-7-5p, and upregulating miR-143-3p, miR-23a-3p, miR-23b-3p and miR-27b-3p. The effects of E6/E7 silencing on miRNA levels are mainly not dependent on p53 and similarly observed in HPV16-positive SiHa cells. The E6/E7-regulated miRNAs are enriched for species involved in the control of cell proliferation, senescence and apoptosis, suggesting that they contribute to the growth of HPV-positive cancer cells. Consistently, we show that sustained E6/E7 expression is required to maintain the intracellular levels of members of the miR-17~92 cluster, which reduce expression of the anti-proliferative p21 gene in HPV-positive cancer cells. In exosomes secreted by HeLa cells, a distinct seven-miRNA-signature was identified among the most abundant miRNAs, with significant downregulation of let-7d-5p, miR-20a-5p, miR-378a-3p, miR-423-3p, miR-7-5p, miR-92a-3p and upregulation of miR-21-5p, upon E6/E7 silencing. Several of the E6/E7-dependent exosomal miRNAs have also been linked to the control of cell proliferation and apoptosis. This study represents the first global analysis of intracellular and exosomal miRNAs and shows that viral oncogene expression affects the abundance of multiple miRNAs likely contributing to the E6/E7-dependent growth of HPV-positive cancer cells.

  12. 肾癌ACHN细胞exosome对自身细胞增殖和凋亡的影响%Effects of renal carcinoma cell line ACHN-derived exosomes on ACHN cell proliferation and apoptosis

    Institute of Scientific and Technical Information of China (English)

    杨林; 吴小候; 罗春丽; 何云锋; 张尧; 陈雄; 张龙; 陈力学

    2012-01-01

    Objective To investigate the effects of exosomes derived from renal cancer cell line ACHN on the proliferation and apoptosis of ACHN cells and explore the mechanism. Methods Exosomes derived from ACHN cells were separated and purified by ultrafiltration and sucrose gradient centrifugation. The effects of the exosomes on the proliferation and apoptosis of ACHN cells were analyzed with CCK-8 assay and flow cytometry, respectively. The changes of mRNA and protein expressions of cyclin D1, caspase-3 were examined using RT-PCR and Western blotting, and the changes in the protein expression of p-Akt and p-ERKl/2 were detected with Western blotting. Results Exosomes were successfully purified by ultrafiltration and sucrose gradient centrifugation. Compared with the control cells, ACHN cells treated with the exosomes showed enhanced proliferative activity with suppressed cell apoptosis. Exosomes treatment upregulated cyclinDl mRNA and protein expression, down-regulated caspase-3 protein expression without affecting caspase-3 mRNA expression, and upregulated the expression of p-Akt and p-ERKl/2. Conclusion Exosomes can promote the growth and proliferation and inhibit the apoptosis of renal cancer cell line ACHN. Removal of the exosomes from the microenvironment of renal cancer or inhibition of its function can be new strategies for treatment of renal cancer.%目的 探讨肾癌ACHN细胞来源的exosome对肾癌ACHN细胞自身增殖和凋亡的影响及机制.方法 用超滤和蔗糖重水密度梯度超速离心法分离纯化肾癌ACHN细胞分泌的exosome;采用CCK-8法评价exosome对肾癌ACHN细胞增殖的影响;Annexin V-FITC/PI双染色流式细胞术检测细胞凋亡的变化;RT-PCR和Western blotting检测CyclinD1、caspase-3 mRNA和蛋白的表达;Western blotting检测p-Akt、p-ERK1/2的变化.结果 成功使用超滤和蔗糖重水密度梯度超速离心法分离纯化肾癌ACHN细胞分泌的exosome.exosome可促进肾癌ACHN细胞增殖,抑制

  13. Bovine milk exosome proteome

    Science.gov (United States)

    Exosomes are 40-100 nm membrane vesicles of endocytic origin and are found in blood, urine, amniotic fluid, bronchoalveolar lavage (BAL) fluid, as well as human and bovine milk. Exosomes are extracellular organelles important in intracellular communication/signaling, immune function, and biomarkers ...

  14. Finding the Exosome

    OpenAIRE

    Mitchell, Phil; Tollervey, David

    2010-01-01

    We describe the events surrounding the identification of the exosome complex and the subsequent early development of the field. Like many scientific discoveries, the initial identification and characterization of the exosome was a based on a combination of skill, good fortune - and the availability of cutting edge technology.

  15. Exploitation of Exosomes as Nanocarriers for Gene-, Chemo-, and Immune-Therapy of Cancer.

    Science.gov (United States)

    Srivastava, Akhil; Babu, Anish; Filant, Justyna; Moxley, Katherine M; Ruskin, Rachel; Dhanasekaran, Danny; Sood, Anil K; McMeekin, Scott; Ramesh, Rajagopal

    2016-06-01

    The bottleneck in current vector-based cancer therapy is the targeted and controlled release of therapeutics in tumors. Exosomes are submicron-sized vesicles that are secreted by all cell types and are involved in communication and transportation of materials between cells. Analogous in size and function to synthetic nanoparticles, exosomes offer many advantages, rendering them the most promising candidates for targeted drug or gene delivery vehicles. Patient-specific customized therapeutic strategies can be engineered using exosomes derived from the patient's own healthy cells. Therefore, exosome-based cancer therapy has the potential to become an important part of personalized medicine. Interest in exosomes as carrier organelles is relatively recent. Knowledge about exosomal biology and its applications remains limited. The present review is an attempt to describe the current status of the application of exosomes to cancer therapy and the potential challenges associated with their use. PMID:27319211

  16. Exploitation of Exosomes as Nanocarriers for Gene-, Chemo-, and Immune-Therapy of Cancer.

    Science.gov (United States)

    Srivastava, Akhil; Babu, Anish; Filant, Justyna; Moxley, Katherine M; Ruskin, Rachel; Dhanasekaran, Danny; Sood, Anil K; McMeekin, Scott; Ramesh, Rajagopal

    2016-06-01

    The bottleneck in current vector-based cancer therapy is the targeted and controlled release of therapeutics in tumors. Exosomes are submicron-sized vesicles that are secreted by all cell types and are involved in communication and transportation of materials between cells. Analogous in size and function to synthetic nanoparticles, exosomes offer many advantages, rendering them the most promising candidates for targeted drug or gene delivery vehicles. Patient-specific customized therapeutic strategies can be engineered using exosomes derived from the patient's own healthy cells. Therefore, exosome-based cancer therapy has the potential to become an important part of personalized medicine. Interest in exosomes as carrier organelles is relatively recent. Knowledge about exosomal biology and its applications remains limited. The present review is an attempt to describe the current status of the application of exosomes to cancer therapy and the potential challenges associated with their use.

  17. Exosomal Proteins as a Diagnostic Biomarkers in Lung Cancer

    DEFF Research Database (Denmark)

    Sandfeld-Paulsen, B; Jakobsen, K R; Bæk, R;

    2016-01-01

    BACKGROUND: Exosomes have been suggested as promising biomarkers in non-small cell lung cancer (NSCLC), since they contain proteins from their originating cells and are readily available in plasma. In this study, we explore the potential of exosome protein profiling in diagnosing lung cancer...... patients of all stages and various histological subtypes. METHODS: Plasma was isolated from 581 patients (431 with lung cancer, 150 controls). The Extracellular Vesicle (EV) Array was used to phenotype exosomes. The EV Array contained 49 antibodies for capturing exosomes. Subsequently, a cocktail of biotin......-conjugated CD9, CD81 and CD63 antibodies was used to detect and visualize captured exosomes. Multi-marker models were made combining two or more markers. The optimal multi-marker model was evaluated by Area under the curve (AUC) and Random Forests analysis. RESULTS: The markers CD151, CD171 and Tspan8 were...

  18. Smart blood cell and microvesicle-based Trojan horse drug delivery: Merging expertise in blood transfusion and biomedical engineering in the field of nanomedicine.

    Science.gov (United States)

    Wu, Yu-Wen; Goubran, Hadi; Seghatchian, Jerard; Burnouf, Thierry

    2016-04-01

    Therapeutic and diagnostic applications of nanomedicine are playing increasingly important roles in human health. Various types of synthetic nanoparticles, including liposomes, micelles, and other nanotherapeutic platforms and conjugates, are being engineered to encapsulate or carry drugs for treating diseases such as cancer, cardiovascular disorders, neurodegeneration, and inflammations. Nanocarriers are designed to increase the half-life of drugs, decrease their toxicity and, ideally, target pathological sites. Developing smart carriers with the capacity to deliver drugs specifically to the microenvironment of diseased cells with minimum systemic toxicity is the goal. Blood cells, and potentially also the liposome-like micro- and nano-vesicles they generate, may be regarded as ideally suited to perform such specific targeting with minimum immunogenic risks. Blood cell membranes are "decorated" with complex physiological receptors capable of targeting and communicating with other cells and tissues and delivering their content to the surrounding pathological microenvironment. Blood cells, such as erythrocytes, have been developed as permeable carriers to release drugs to diseased tissues or act as biofactory allowing enzymatic degradation of a pathological substrate. Interestingly, attempts are also being made to improve the targeting capacity of synthetic nanoparticles by "decorating" their surface with blood cell membrane receptor-like biochemical structures. Research is needed to further explore the benefits that blood cell-derived microvesicles, as a Trojan horse delivery systems, can bring to the arsenal of therapeutic micro- and nanotechnologies. This short review focuses on the therapeutic roles that red blood cells and platelets can play as smart drug-delivery systems, and highlights the benefits that blood transfusion expertise can bring to this exciting and novel biomedical engineering field.

  19. Smart blood cell and microvesicle-based Trojan horse drug delivery: Merging expertise in blood transfusion and biomedical engineering in the field of nanomedicine.

    Science.gov (United States)

    Wu, Yu-Wen; Goubran, Hadi; Seghatchian, Jerard; Burnouf, Thierry

    2016-04-01

    Therapeutic and diagnostic applications of nanomedicine are playing increasingly important roles in human health. Various types of synthetic nanoparticles, including liposomes, micelles, and other nanotherapeutic platforms and conjugates, are being engineered to encapsulate or carry drugs for treating diseases such as cancer, cardiovascular disorders, neurodegeneration, and inflammations. Nanocarriers are designed to increase the half-life of drugs, decrease their toxicity and, ideally, target pathological sites. Developing smart carriers with the capacity to deliver drugs specifically to the microenvironment of diseased cells with minimum systemic toxicity is the goal. Blood cells, and potentially also the liposome-like micro- and nano-vesicles they generate, may be regarded as ideally suited to perform such specific targeting with minimum immunogenic risks. Blood cell membranes are "decorated" with complex physiological receptors capable of targeting and communicating with other cells and tissues and delivering their content to the surrounding pathological microenvironment. Blood cells, such as erythrocytes, have been developed as permeable carriers to release drugs to diseased tissues or act as biofactory allowing enzymatic degradation of a pathological substrate. Interestingly, attempts are also being made to improve the targeting capacity of synthetic nanoparticles by "decorating" their surface with blood cell membrane receptor-like biochemical structures. Research is needed to further explore the benefits that blood cell-derived microvesicles, as a Trojan horse delivery systems, can bring to the arsenal of therapeutic micro- and nanotechnologies. This short review focuses on the therapeutic roles that red blood cells and platelets can play as smart drug-delivery systems, and highlights the benefits that blood transfusion expertise can bring to this exciting and novel biomedical engineering field. PMID:27179926

  20. Exosomes Secreted by Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Repair Critical-Sized Bone Defects through Enhanced Angiogenesis and Osteogenesis in Osteoporotic Rats

    Science.gov (United States)

    Qi, Xin; Zhang, Jieyuan; Yuan, Hong; Xu, Zhengliang; Li, Qing; Niu, Xin; Hu, Bin; Wang, Yang; Li, Xiaolin

    2016-01-01

    Bone defects caused by trauma, severe infection, tumor resection and skeletal abnormalities are common osteoporotic conditions and major challenges in orthopedic surgery, and there is still no effective solution to this problem. Consequently, new treatments are needed to develop regeneration procedures without side effects. Exosomes secreted by mesenchymal stem cells (MSCs) derived from human induced pluripotent stem cells (hiPSCs, hiPSC-MSC-Exos) incorporate the advantages of both MSCs and iPSCs with no immunogenicity. However, there are no reports on the application of hiPSC-MSC-Exos to enhance angiogenesis and osteogenesis under osteoporotic conditions. HiPSC-MSC-Exos were isolated and identified before use. The effect of hiPSC-MSC-Exos on the proliferation and osteogenic differentiation of bone marrow MSCs derived from ovariectomized (OVX) rats (rBMSCs-OVX) in vitro were investigated. In vivo, hiPSC-MSC-Exos were implanted into critical size bone defects in ovariectomized rats, and bone regeneration and angiogenesis were examined by microcomputed tomography (micro-CT), sequential fluorescent labeling analysis, microfil perfusion and histological and immunohistochemical analysis. The results in vitro showed that hiPSC-MSC-Exos enhanced cell proliferation and alkaline phosphatase (ALP) activity, and up-regulated mRNA and protein expression of osteoblast-related genes in rBMSCs-OVX. In vivo experiments revealed that hiPSC-MSC-Exos dramatically stimulated bone regeneration and angiogenesis in critical-sized calvarial defects in ovariectomized rats. The effect of hiPSC-MSC-Exos increased with increasing concentration. In this study, we showed that hiPSC-MSC-Exos effectively stimulate the proliferation and osteogenic differentiation of rBMSCs-OVX, with the effect increasing with increasing exosome concentration. Further analysis demonstrated that the application of hiPSC-MSC-Exos+β-TCP scaffolds promoted bone regeneration in critical-sized calvarial defects by

  1. Exosomes derived form bladder transitional cell carcinoma cells induce CTL cytotoxicity in vitro%膀胱移行细胞癌来源的exosome诱导体外细胞毒性T细胞杀伤效应

    Institute of Scientific and Technical Information of China (English)

    张家模; 吴小候; 张尧; 夏雨果; 罗春丽

    2009-01-01

    目的 观察膀胱移行细胞癌T24细胞来源的exosome体外诱导细胞毒性特异性T淋巴细胞(CTL)对肿瘤细胞的杀伤效应.方法 采用超滤和蔗糖密度梯度离心法分离T24细胞释放的exosome,电镜、Western blot观察exosome的特征.将exosome和肿瘤细胞负载到人外周血分离培养的树突状细胞(Dc)上,并与T细胞体外共同培养,分为exosome致敏DC组、未致敏DC组和对照组,Alamar blue检测CTL对T24细胞的细胞毒活性.结果 T24细胞分泌的exosome为直径约30~90nm的类圆碟形小囊泡.Western blot证实,exosome表达热休克蛋白70(HSP70)、细胞间黏附分子1(ICAM-1)和人细胞角蛋白20(CK20)分子.与未致敏DC组和对照组比较,exosome致敏DC组活化的T细胞对T24细胞有更强的细胞毒活性(P<0.01).结论 T24细胞来源的exosome负载了HSP70、ICAM-1等免疫相关蛋白;exosome经DC负载后活化CTL产生抗肿瘤活性.%Objective To isolate and purify exosomes derived from human bladder transitional cell carcinoma T24 cells,analyze the morphology and protein composition,and investigate the antitumor effect of specific cytotoxic T lymphocytes induced by exosomes.Methods Exosomes were isolated and purified by ultrafihration and sucrose gradient centrifugation,and characterized by electron microscopy and Western blot.Dendritic cells were amplified and purified from peripheral blood and pulsed with exosomes.Then they were co-cultured with T cells,and divided into 3 groups:exosome-pulsed DC group,unplused DC group and control group.Alamar-Blue assay was used to evaluate the specific cytolytic activity.Results The exosomes were in size about 30~90 nm saucer-shaped membranous vesicles.HSP70,ICAM-1 and CK20 were detected by Western blot.The CTL induced by DC pulsed with exosomes had significant cytolytic activity (P<0.01).Conclusion The exosomes derived from T24 cells are loaded with immunoprotein HSP70 and ICAM-1,and DC pulsed with exosomes can promote the anti

  2. Multimodal transfer of MDR by exosomes in human osteosarcoma.

    Science.gov (United States)

    Torreggiani, Elena; Roncuzzi, Laura; Perut, Francesca; Zini, Nicoletta; Baldini, Nicola

    2016-07-01

    Exosomes are extracellular vesicles released by both normal and tumour cells which are involved in a new intercellular communication pathway by delivering cargo (e.g., proteins, microRNAs, mRNAs) to recipient cells. Tumour-derived exosomes have been shown to play critical roles in different stages of tumour growth and progression. In this study, we investigated the potential role of exosomes to transfer the multidrug resistance (MDR) phenotype in human osteosarcoma cells. Exosomes were isolated by differential centrifugation of culture media from multidrug resistant human osteosarcoma MG-63DXR30 (Exo/DXR) and MG-63 parental cells (Exo/S). Exosome purity was examined by transmission electron microscopy and confirmed by immunoblot analysis for the expression of specific exosomal markers. Our data showed that exosomes derived from doxorubicin-resistant osteosarcoma cells could be taken up into secondary cells and induce a doxorubicin-resistant phenotype. The incubation of osteosarcoma cells with Exo/DXR decreased the sensitivity of parental cells to doxorubicin, while exposure with Exo/S was ineffective. In addition, we demonstrated that Exo/DXR expressed higher levels of MDR-1 mRNA and P-glycoprotein compared to Exo/S (p=0.03). Interestingly, both MDR-1 mRNA and P-gp increased in MG-63 cells after incubation with Exo/DXR, suggesting this as the main mechanism of exosome-mediated transfer of drug resistance. Our findings suggest that multidrug resistant osteosarcoma cells are able to spread their ability to resist the effects of doxorubicin treatment on sensitive cells by transferring exosomes carrying MDR-1 mRNA and its product P-glycoprotein. PMID:27176642

  3. Perturbations in the Urinary Exosome in Transplant Rejection

    Energy Technology Data Exchange (ETDEWEB)

    Sigdel, Tara K.; NG, Yolanda; Lee, Sangho; Nicora, Carrie D.; Qian, Weijun; Smith, Richard D.; Camp, David G.; Sarwal, Minnie M.

    2015-01-05

    Background: Urine exosomes, vesicles exocytosed into urine by all renal epithelial cell types, occur under normal physiologic and disease states. Exosome contents may mirror disease-specific proteome perturbations in kidney injury. Analysis methodologies for the exosomal fraction of the urinary proteome were developed and for comparing the urinary exosomal fraction versus unfractionated proteome for biomarker discovery. Methods: Urine exosomes were isolated by centrifugal filtration from mid-stream, second morning void, urine samples collected from kidney transplant recipients with and without biopsy matched acute rejection. The proteomes of unfractionated whole urine (Uw) and urine exosomes (Uexo) underwent mass spectrometry-based quantitative proteomics analysis. The proteome data were analyzed for significant differential protein abundances in acute rejection (AR). Results: Identifications of 1018 and 349 proteins, Uw and Uexo fractions, respectively, demonstrated a 279 protein overlap between the two urinary compartments with 25%(70) of overlapping proteins unique to Uexoand represented membrane bound proteins (p=9.31e-7). Of 349 urine exosomal proteins identified in transplant patients 220 were not previously identified in the normal urine exosomal fraction. Uexo proteins (11), functioning in the inflammatory / stress response, were more abundant in patients with biopsy-confirmed acute rejection, 3 of which were exclusive to Uexo. Uexo AR-specific biomarkers (8) were also detected in Uw, but since they were observed at significantly lower abundances in Uw, they were not significant for AR in Uw. Conclusions: A rapid urinary exosome isolation method and quantitative measurement of enriched Uexo proteins was applied. Urine proteins specific to the exosomal fraction were detected either in unfractionated urine (at low abundances) or by Uexo fraction analysis. Perturbed proteins in the exosomal compartment of urine collected from kidney transplant patients were

  4. Electrokinetic Evaluation of Individual Exosomes by On-Chip Microcapillary Electrophoresis with Laser Dark-Field Microscopy

    Science.gov (United States)

    Kato, Kei; Kobayashi, Masashi; Hanamura, Nami; Akagi, Takanori; Kosaka, Nobuyoshi; Ochiya, Takahiro; Ichiki, Takanori

    2013-06-01

    Cell-secreted nanovesicles called exosomes are expected as a promising candidate biomarker of various diseases. Toward the future application of exosomes as a disease biomarker for low-invasive diagnostics, challenges remain in the development of sensitive and precise analysis methods for exosomes. In this study, we performed the electrokinetic evaluation of individual exosomes by the combined use of on-chip microcapillary electrophoresis and laser dark-field microscopy. We extracted exosomes from six types of human cell cultured in a serum-free medium by differential ultracentrifugation and their zeta potential (electrophoretic mobility) were evaluated. We demonstrated that the proposed electrophoresis apparatus is particularly suitable for the tracking analysis of the electrophoretic migration of individual exosomes and enables the accurate evaluation of the zeta potential distribution of exosomes, for the first time. From the experimental results, we found that there is a strong correlation between the average zeta potentials of exosomes and their cells of origin.

  5. Exosomal miRNAs as cancer biomarkers and therapeutic targets.

    Science.gov (United States)

    Thind, Arron; Wilson, Clive

    2016-01-01

    Intercommunication between cancer cells and with their surrounding and distant environments is key to the survival, progression and metastasis of the tumour. Exosomes play a role in this communication process. MicroRNA (miRNA) expression is frequently dysregulated in tumour cells and can be reflected by distinct exosomal miRNA (ex-miRNA) profiles isolated from the bodily fluids of cancer patients. Here, the potential of ex-miRNA as a cancer biomarker and therapeutic target is critically analysed. Exosomes are a stable source of miRNA in bodily fluids but, despite a number of methods for exosome extraction and miRNA quantification, their suitability for diagnostics in a clinical setting is questionable. Furthermore, exosomally transferred miRNAs can alter the behaviour of recipient tumour and stromal cells to promote oncogenesis, highlighting a role in cell communication in cancer. However, our incomplete understanding of exosome biogenesis and miRNA loading mechanisms means that strategies to target exosomes or their transferred miRNAs are limited and not specific to tumour cells. Therefore, if ex-miRNA is to be employed in novel non-invasive diagnostic approaches and as a therapeutic target in cancer, two further advances are necessary: in methods to isolate and detect ex-miRNA, and a better understanding of their biogenesis and functions in tumour-cell communication. PMID:27440105

  6. Purification and analysis of endogenous human RNA exosome complexes

    Science.gov (United States)

    Domanski, Michal; Upla, Paula; Rice, William J.; Molloy, Kelly R.; Ketaren, Natalia E.; Stokes, David L.; Jensen, Torben Heick; Rout, Michael P.

    2016-01-01

    As a result of its importance in key RNA metabolic processes, the ribonucleolytic RNA exosome complex has been the focus of intense study for almost two decades. Research on exosome subunit assembly, cofactor and substrate interaction, enzymatic catalysis and structure have largely been conducted using complexes produced in the yeast Saccharomyces cerevisiae or in bacteria. Here, we examine different populations of endogenous exosomes from human embryonic kidney (HEK) 293 cells and test their enzymatic activity and structural integrity. We describe methods to prepare EXOSC10-containing, enzymatically active endogenous human exosomes at suitable yield and purity for in vitro biochemistry and negative stain transmission electron microscopy. This opens the door for assays designed to test the in vitro effects of putative cofactors on human exosome activity and will enable structural studies of preparations from endogenous sources. PMID:27402899

  7. Exosome removal as a therapeutic adjuvant in cancer

    Directory of Open Access Journals (Sweden)

    Marleau Annette M

    2012-06-01

    Full Text Available Abstract Exosome secretion is a notable feature of malignancy owing to the roles of these nanoparticles in cancer growth, immune suppression, tumor angiogenesis and therapeutic resistance. Exosomes are 30–100 nm membrane vesicles released by many cells types during normal physiological processes. Tumors aberrantly secrete large quantities of exosomes that transport oncoproteins and immune suppressive molecules to support tumor growth and metastasis. The role of exosomes in intercellular signaling is exemplified by human epidermal growth factor receptor type 2 (HER2 over-expressing breast cancer, where exosomes with the HER2 oncoprotein stimulate tumor growth and interfere with the activity of the therapeutic antibody Herceptin®. Since numerous observations from experimental model systems point toward an important clinical impact of exosomes in cancer, several pharmacological strategies have been proposed for targeting their malignant activities. We also propose a novel device strategy involving extracorporeal hemofiltration of exosomes from the entire circulatory system using an affinity plasmapheresis platform known as the Aethlon ADAPT™ (adaptive dialysis-like affinity platform technology system, which would overcome the risks of toxicity and drug interactions posed by pharmacological approaches. This technology allows affinity agents, including exosome-binding lectins and antibodies, to be immobilized in the outer-capillary space of plasma filtration membranes that integrate into existing kidney dialysis systems. Device therapies that evolve from this platform allow rapid extracorporeal capture and selective retention of target particles 

  8. Exosomes and Their Signiifcance in Diagnosis and Treatment of Tumors

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; LI Chao; LI Wei

    2015-01-01

    In the research field of biological markers for tumor diagnosis, the appearance of exosomes has resolved the problem that RNA molecules can be easily degraded. Exosomes carry various RNAs and can protect them from being degraded. They are deifned as polymorphism vesicle-like corpuscles (diameter: 30-100 nm) derived from late endosome or multi-vesicular endosomes in cellular endocytosis system, which contain abundant biological information, including multiple lipids, proteins and nucleic acids, etc. Exosomes are extracellular nanoscale vesicae formed in a series of regulating process of cellular “endocytosis-fusion-excretion”, and they carry proteins and transport RNAs, thus playing an important role in the intercellular material and informational transduction. There are still large amount of mRNAs and miRNAs in exosomes. Exosomes can not only protect in-vitro RNA stability, but also transfer RNA to speciifc target cells as effective carriers so as to play their regulatory function. Exosomes realize their biological information exchanges and transition via endocrine, paracrine and autocrine, and regulate cellular biological activities through direct action on superficial signal molecules or extracellular release and membrane fusion of biological active ingredients. They can directly act on tumors to impact tumor progression, or improve tumor angiogenesis and metastasis by regulating immunological function. Additionally, they can also be used for tumor diagnosis. Therefore, this study mainly summarized the biological characteristics of exosomes and their application in the regulation, diagnosis and treatment of tumors, hoping to provide references for the application of exosomes in tumors.

  9. Exosomes in Prostate Cancer: Putting Together the Pieces of a Puzzle

    OpenAIRE

    Colleen C Nelson; Carolina Soekmadji; Russell, Pamela J.

    2013-01-01

    Exosomes have been shown to act as mediators for cell to cell communication and as a potential source of biomarkers for many diseases, including prostate cancer. Exosomes are nanosized vesicles secreted by cells and consist of proteins normally found in multivesicular bodies, RNA, DNA and lipids. As a potential source of biomarkers, exosomes have attracted considerable attention, as their protein content resembles that of their cells of origin, even though it is noted that the proteins, miRNA...

  10. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages

    OpenAIRE

    Gabrielsson Susanne; Sjöstrand Margareta; Bossios Apostolos; Torregrosa Paredes Patricia; Eldh Maria; Ekström Karin; Seyed Alikhani Vesta; Lässer Cecilia; Lötvall Jan; Valadi Hadi

    2011-01-01

    Abstract Background Exosomes are 30-100 nm membrane vesicles of endocytic origin produced by numerous cells. They can mediate diverse biological functions, including antigen presentation. Exosomes have recently been shown to contain functional RNA, which can be delivered to other cells. Exosomes may thus mediate biological functions either by surface-to-surface interactions with cells, or by the delivery of functional RNA to cells. Our aim was therefore to determine the presence of RNA in exo...

  11. Tumor-Derived Exosomes and Their Role in Cancer Progression.

    Science.gov (United States)

    Whiteside, Theresa L

    2016-01-01

    Tumor cells actively produce, release, and utilize exosomes to promote tumor growth. Mechanisms through which tumor-derived exosomes subserve the tumor are under intense investigation. These exosomes are information carriers, conveying molecular and genetic messages from tumor cells to normal or other abnormal cells residing at close or distant sites. Tumor-derived exosomes are found in all body fluids. Upon contact with target cells, they alter phenotypic and functional attributes of recipients, reprogramming them into active contributors to angiogenesis, thrombosis, metastasis, and immunosuppression. Exosomes produced by tumors carry cargos that in part mimic contents of parent cells and are of potential interest as noninvasive biomarkers of cancer. Their role in inhibiting the host antitumor responses and in mediating drug resistance is important for cancer therapy. Tumor-derived exosomes may interfere with cancer immunotherapy, but they also could serve as adjuvants and antigenic components of antitumor vaccines. Their biological roles in cancer development or progression as well as cancer therapy suggest that tumor-derived exosomes are critical components of oncogenic transformation.

  12. Identification and proteomic profiling of exosomes in human cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Street Jonathan M

    2012-01-01

    Full Text Available Abstract Background Exosomes are released from multiple cell types, contain protein and RNA species, and have been exploited as a novel reservoir for disease biomarker discovery. They can transfer information between cells and may cause pathology, for example, a role for exosomes has been proposed in the pathophysiology of Alzheimer's disease. Although studied in several biofluids, exosomes have not been extensively studied in the cerebrospinal fluid (CSF from humans. The objective of this study was to determine: 1 whether human CSF contains exosomes and 2 the variability in exosomal protein content across individuals. Methods CSF was collected from 5 study participants undergoing thoraco-abdominal aortic aneurysm repair (around 200 - 500 ml per participant and low-density membrane vesicles were concentrated by ultracentrifugation. The presence of exosomes was determined by western blot for marker proteins, isopycnic centrifugation on a sucrose step gradient and transmission electron microscopy with immuno-labelling. Whole protein profiling was performed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR. Results Flotillin 1 and tumor susceptibility gene 101 (TSG101, two exosomal marker proteins, were identified in the ultracentrifugation pellet using western blot. These markers localized to a density consistent with exosomes following isopycnic centrifugation. Transmission electron microscopy visualized structures consistent with exosomes in size and appearance that labelled positive for flotillin 1. Therefore, the pellet that resulted from ultracentrifugation of human CSF contained exosomes. FT-ICR profiling of this pellet was performed and 84-161 ions were detected per study participant. Around one third of these ions were only present in a single study participant and one third were detected in all five. With regard to ion quantity, the median coefficient of variation was 81% for ions detected in two or more samples

  13. 'Trojan Horse" Teaching

    Directory of Open Access Journals (Sweden)

    Alexander N. Poddiakov

    2009-01-01

    Full Text Available An advanced strategic behavior, which we term, “Trojan horse” teaching (ThT, is described. In this type of counteractive behavior, a “teacher”, ostensibly helping his or her rival to learn something, really teaches the rival useless or disadvantageous things. This interaction is an object of interdisciplinary research related to the theory of human capital, the theory of agency, knowledge management, the theory of conflict, and to social and educational psychology. Examples of ThT in real life, and results of experiential studies, including the administration of a survey concerning people’s beliefs about teaching “with evil intent”, and a set of experiments with participation of adults and children, have been described. Possible directions of artificial intelligence systems development related to ThT are described. General relations between: (a counteraction to learning, and (b development in spite of the counteraction are discussed.

  14. Hardware Trojan Horses in Cryptographic IP Cores

    OpenAIRE

    Bhasin, Shivam; Danger, Jean-Luc; Guilley, Sylvain; Ngo, Xuan Thuy; Sauvage, Laurent

    2013-01-01

    International audience Detecting hardware trojans is a difficult task in general. In this article we study hardware trojan horses insertion and detection in cryptographic intellectual property (IP) blocks. The context is that of a fabless design house that sells IP blocks as GDSII hard macros, and wants to check that final products have not been infected by trojans during the foundry stage. First, we show the efficiency of a medium cost hardware trojans detection method if the placement or...

  15. Combining Exosomes Derived from Immature DCs with Donor Antigen-Specific Treg Cells Induces Tolerance in a Rat Liver Allograft Model

    Science.gov (United States)

    Ma, Ben; Yang, Jing-Yue; Song, Wen-jie; Ding, Rui; Zhang, Zhuo-chao; Ji, Hong-chen; Zhang, Xuan; Wang, Jian-lin; Yang, Xi-sheng; Tao, Kai-shan; Dou, Ke-feng; Li, Xiao

    2016-01-01

    Allograft tolerance is the ultimate goal in the field of transplantation immunology. Immature dendritic cells (imDCs) play an important role in establishing tolerance but have limitations, including potential for maturation, short lifespan in vivo and short storage times in vitro. However, exosomes (generally 30–100 nm) from imDCs (imDex) retain many source cell properties and may overcome these limitations. In previous reports, imDex prolonged the survival time of heart or intestine allografts. However, tolerance or long-term survival was not achieved unless immune suppressants were used. Regulatory T cells (Tregs) can protect allografts from immune rejection, and our previous study showed that the effects of imDex were significantly associated with Tregs. Therefore, we incorporated Tregs into the treatment protocol to further reduce or avoid suppressant use. We defined the optimal exosome dose as approximately 20 μg (per treatment before, during and after transplantation) in rat liver transplantation and the antigen-specific role of Tregs in protecting liver allografts. In the co-treatment group, recipients achieved long-term survival, and tolerance was induced. Moreover, imDex amplified Tregs, which required recipient DCs and were enhanced by IL-2. Fortunately, the expanded Tregs retained their regulatory ability and donor-specificity. Thus, imDex and donor-specific Tregs can collaboratively induce graft tolerance. PMID:27640806

  16. Combining Exosomes Derived from Immature DCs with Donor Antigen-Specific Treg Cells Induces Tolerance in a Rat Liver Allograft Model.

    Science.gov (United States)

    Ma, Ben; Yang, Jing-Yue; Song, Wen-Jie; Ding, Rui; Zhang, Zhuo-Chao; Ji, Hong-Chen; Zhang, Xuan; Wang, Jian-Lin; Yang, Xi-Sheng; Tao, Kai-Shan; Dou, Ke-Feng; Li, Xiao

    2016-01-01

    Allograft tolerance is the ultimate goal in the field of transplantation immunology. Immature dendritic cells (imDCs) play an important role in establishing tolerance but have limitations, including potential for maturation, short lifespan in vivo and short storage times in vitro. However, exosomes (generally 30-100 nm) from imDCs (imDex) retain many source cell properties and may overcome these limitations. In previous reports, imDex prolonged the survival time of heart or intestine allografts. However, tolerance or long-term survival was not achieved unless immune suppressants were used. Regulatory T cells (Tregs) can protect allografts from immune rejection, and our previous study showed that the effects of imDex were significantly associated with Tregs. Therefore, we incorporated Tregs into the treatment protocol to further reduce or avoid suppressant use. We defined the optimal exosome dose as approximately 20 μg (per treatment before, during and after transplantation) in rat liver transplantation and the antigen-specific role of Tregs in protecting liver allografts. In the co-treatment group, recipients achieved long-term survival, and tolerance was induced. Moreover, imDex amplified Tregs, which required recipient DCs and were enhanced by IL-2. Fortunately, the expanded Tregs retained their regulatory ability and donor-specificity. Thus, imDex and donor-specific Tregs can collaboratively induce graft tolerance. PMID:27640806

  17. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai; Obara, Chizuka; Yasuda, Takeshi; Gotoh, Takaya; Tanaka, Izumi; Yakumaru, Haruko; Ishihara, Hiroshi; Tajima, Katsushi, E-mail: tajima@nirs.go.jp

    2014-04-18

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.

  18. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    International Nuclear Information System (INIS)

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation

  19. The non-targeted effects of radiation are perpetuated by exosomes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mayah, Ammar; Bright, Scott; Chapman, Kim [Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP (United Kingdom); Irons, Sarah [Insect Virus Research Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP (United Kingdom); Luo, Ping [Izon Science Ltd., The Oxford Science Park, Magdalen Centre, Robert Robinson Avenue, Oxford OX4 4GA (United Kingdom); Carter, David [Chromatin and non-coding RNA, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP (United Kingdom); Goodwin, Edwin [The New Mexico Consortium, Los Alamos, NM 87544 (United States); Kadhim, Munira, E-mail: mkadhim@brookes.ac.uk [Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP (United Kingdom)

    2015-02-15

    Highlights: • Radiation induces a DNA damaging process in bystander cells through cell–cell signalling. • Exosome RNA and protein molecules play crucial roles in bystander effects. • Cell progeny inherit the ability to secret bystander effect-inducing exosomes. • This mechanism is most likely accountable for the propagation of GI. - Abstract: Exosomes contain cargo material from endosomes, cytosol, plasma membrane and microRNA molecules, they are released by a number of non-cancer and cancer cells into both the extracellular microenvironment and body fluids such as blood plasma. Recently we demonstrated radiation-induced non-targeted effects [NTE: genomic instability (GI) and bystander effects (BE)] are partially mediated by exosomes, particularly the RNA content. However the mechanistic role of exosomes in NTE is yet to be fully understood. The present study used MCF7 cells to characterise the longevity of exosome-induced activity in the progeny of irradiated and unirradiated bystander cells. Exosomes extracted from conditioned media of irradiated and bystander progeny were added to unirradiated cells. Analysis was carried out at 1 and 20/24 population doublings following medium/exosome transfer for DNA/chromosomal damage. Results confirmed exosomes play a significant role in mediating NTE of ionising radiation (IR). This effect was remarkably persistent, observed >20 doublings post-irradiation in the progeny of bystander cells. Additionally, cell progeny undergoing a BE were themselves capable of inducing BE in other cells via exosomes they released. Furthermore we investigated the role of exosome cargo. Culture media from cells exposed to 2 Gy X-rays was subjected to ultracentrifugation and four inoculants prepared, (a) supernatants with exosomes removed, and pellets with (b) exosome proteins denatured, (c) RNA degraded, and (d) a combination of protein–RNA inactivation. These were added to separate populations of unirradiated cells. The BE was

  20. The non-targeted effects of radiation are perpetuated by exosomes

    International Nuclear Information System (INIS)

    Highlights: • Radiation induces a DNA damaging process in bystander cells through cell–cell signalling. • Exosome RNA and protein molecules play crucial roles in bystander effects. • Cell progeny inherit the ability to secret bystander effect-inducing exosomes. • This mechanism is most likely accountable for the propagation of GI. - Abstract: Exosomes contain cargo material from endosomes, cytosol, plasma membrane and microRNA molecules, they are released by a number of non-cancer and cancer cells into both the extracellular microenvironment and body fluids such as blood plasma. Recently we demonstrated radiation-induced non-targeted effects [NTE: genomic instability (GI) and bystander effects (BE)] are partially mediated by exosomes, particularly the RNA content. However the mechanistic role of exosomes in NTE is yet to be fully understood. The present study used MCF7 cells to characterise the longevity of exosome-induced activity in the progeny of irradiated and unirradiated bystander cells. Exosomes extracted from conditioned media of irradiated and bystander progeny were added to unirradiated cells. Analysis was carried out at 1 and 20/24 population doublings following medium/exosome transfer for DNA/chromosomal damage. Results confirmed exosomes play a significant role in mediating NTE of ionising radiation (IR). This effect was remarkably persistent, observed >20 doublings post-irradiation in the progeny of bystander cells. Additionally, cell progeny undergoing a BE were themselves capable of inducing BE in other cells via exosomes they released. Furthermore we investigated the role of exosome cargo. Culture media from cells exposed to 2 Gy X-rays was subjected to ultracentrifugation and four inoculants prepared, (a) supernatants with exosomes removed, and pellets with (b) exosome proteins denatured, (c) RNA degraded, and (d) a combination of protein–RNA inactivation. These were added to separate populations of unirradiated cells. The BE was

  1. Tumour-derived exosomes: Tiny envelopes for big stories.

    Science.gov (United States)

    Miller, Isabella V; Grunewald, Thomas G P

    2015-09-01

    The discovery of exosomes, which are small, 30-100 nm sized extracellular vesicles that are released by virtual all cells, has initiated a rapidly expanding and vibrant research field. Current investigations are mainly directed toward the role of exosomes in intercellular communication and their potential value as biomarkers for a broad set of diseases. By horizontal transfer of molecular information such as micro RNAs, messenger RNAs or proteins, as well as by receptor-cell interactions, exosomes are capable to mediate the reprogramming of surrounding cells. Herein, we review how especially cancer cells take advantage of this mechanism to influence their microenvironment in favour of immune escape, therapy resistance, tumour growth and metastasis. Moreover, we provide a comprehensive microarray analysis (n > 1970) to study the expression patterns of genes known to be intimately involved in exosome biogenesis across 26 different cancer entities and a normal tissue atlas. Consistent with the elevated production of exosomes observed in cancer patient plasma, we found a significant overexpression especially of RAB27A, CHMP4C and SYTL4 in the corresponding cancer entities as compared to matched normal tissues. Finally, we discuss the immune-modulatory and anti-tumorigenic functions of exosomes as well as innovative approaches to specifically target the exosomal circuits in experimental cancer therapy.

  2. Development and regulation of exosome-based therapy products.

    Science.gov (United States)

    Batrakova, Elena V; Kim, Myung Soo

    2016-09-01

    Recently, various innovative therapies involving the ex vivo manipulation and subsequent reintroduction of exosome-based therapeutics into humans have been developed and validated, although no exosome-based therapeutics have yet to be brought into the clinic. Exosomes are nanosized vesicles secreted by many cells that utilize them for cell-to-cell communications to facilitate transport of proteins and genetic material. Comprised of cellular membranes with multiple adhesive proteins on their surface, exosomes offer distinct advantages that exceptionally position them as highly effective drug carriers. Additionally, exosomes can exert unique biological activity reflective of their origin that may be used for therapy of various diseases. In fact, exosomes have benefits of both synthetic nanocarriers and cell-mediated drug delivery systems, and avoid their limitations. This concise review highlights the recent developments in exosome-based drug delivery systems and the main regulatory considerations for using this type of therapeutic in clinic. WIREs Nanomed Nanobiotechnol 2016, 8:744-757. doi: 10.1002/wnan.1395 For further resources related to this article, please visit the WIREs website. PMID:26888041

  3. Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers.

    Science.gov (United States)

    Wu, Yueting; Deng, Wentao; Klinke, David J

    2015-10-01

    As a type of secreted membrane vesicle, exosomes are an emerging mode of cell-to-cell communication. Yet as exosome samples are commonly contaminated with other extracellular vesicles, the biological roles of exosomes in regulating immunity and promoting oncogenesis remain controversial. Wondering whether existing methods could distort our view of exosome biology, we compared two direct methods for imaging extracellular vesicles and quantified the impact of different production and storage conditions on the quality of exosome samples. Scanning electron microscopy (SEM) was compared to transmission electron microscopy (TEM) as alternatives to examine the morphology of exosomes. Using SEM, we were able to distinguish exosomes from other contaminating extracellular vesicles based on the size distribution. More importantly, freezing of samples prior to SEM imaging made it more difficult to distinguish exosomes from extracellular vesicles secreted during cell death. In addition to morphology, the quality of RNA contained within the exosomes was characterized under different storage conditions, where freezing of samples also degraded RNA. Finally, we developed a new flow cytometry approach to assay transmembrane proteins on exosomes. While high-copy-number proteins could be readily detected, detecting low-copy-number proteins was improved using a lipophilic tracer that clustered exosomes. To illustrate this, we observed that exosomes derived from SKBR3 cells, a cell model for human HER2+ breast cancer, contained both HER1 and HER2 but at different levels of abundance. Collectively, these new methods will help to ensure a consistent framework to identify specific roles that exosomes play in regulating cell-to-cell communication.

  4. miR150*-Loaded exosomes from marrow stromal cells could inhibit glioma cells growth%miR-150*修饰骨髓间充质干细胞来源的 exosome对胶质瘤细胞的影响

    Institute of Scientific and Technical Information of China (English)

    廖克曼; 季卫阳; 鲁晓杰

    2015-01-01

    Objective MiRNA-based therapeutics hold great promise for tumor suppression, this study was to investigate the effect of miR-150*-loaded exosomes on regulation of glioma cells proliferation and cell cycle.Methods Quantitative real-time PCR on 15 glioblastoma tissues samples and normal controls were used to confirm the miR-150* expression level.Western blotting analysis and electron microscopy were employed to test exosomal biomarkers and their morphology. Transfection assay were used to collect miR-150*-loaded exosomes from bone marrow mesenchymal stem cells (BMSCs)culture medium.CCK-8 and cell cycle assays were used to analyze miR-150*-loaded exosomes effects on glioma cells.Results Level of miR-150* expression was much lower in glioblastoma than in normal tissues.Transfection assay successfully acquired miR150*-loaded exosomes which derived from bone marrow mesenchymal stem cells (BMSCs).Furthermore,miR-150*-loaded exosomes could largely inhibited glioma cells proliferation and suppress cell cycle progression.Cell counting kit 8 (CCK-8)assays also demonstrated miR-150* delivered in exosomes was much less toxic.Conclusions This study demonstrated miR-150* is down-regulated in glioblastoma.miR-150*-loaded exosomes could suppress glioma cells and exosomes may be a potentially efficient therapeutic delivery system.%目的:研究 miR-150*修饰对骨髓间充质干细胞来源的囊泡(exosome)对胶质瘤细胞的影响。方法qRT-PCR 检测 miR-150*在胶质母细胞瘤组织与正常组织间的表达量差异。培养骨髓间充质干细胞(BMSCs),分别转染 miR-150*模拟物和阴性对照序列,上调 BMSCs 中 miR-150*表达水平,提取 BMSCs 培养基中的 exosome。Western blot 验证 exosomal 的表面标记蛋白 CD63和 flotillin-1,电镜下观察 exosome 的形态。CCK-8和细胞周期实验验证 miR-150*修饰 BMSCs 来源的 exosome 对胶质瘤细胞的影响。结果miR-150*在胶质母细胞瘤组织中表达明显

  5. Exosome removal as a therapeutic adjuvant in cancer.

    Science.gov (United States)

    Marleau, Annette M; Chen, Chien-Shing; Joyce, James A; Tullis, Richard H

    2012-01-01

    Exosome secretion is a notable feature of malignancy owing to the roles of these nanoparticles in cancer growth, immune suppression, tumor angiogenesis and therapeutic resistance. Exosomes are 30-100 nm membrane vesicles released by many cells types during normal physiological processes. Tumors aberrantly secrete large quantities of exosomes that transport oncoproteins and immune suppressive molecules to support tumor growth and metastasis. The role of exosomes in intercellular signaling is exemplified by human epidermal growth factor receptor type 2 (HER2) over-expressing breast cancer, where exosomes with the HER2 oncoprotein stimulate tumor growth and interfere with the activity of the therapeutic antibody Herceptin®. Since numerous observations from experimental model systems point toward an important clinical impact of exosomes in cancer, several pharmacological strategies have been proposed for targeting their malignant activities. We also propose a novel device strategy involving extracorporeal hemofiltration of exosomes from the entire circulatory system using an affinity plasmapheresis platform known as the Aethlon ADAPT™ (adaptive dialysis-like affinity platform technology) system, which would overcome the risks of toxicity and drug interactions posed by pharmacological approaches. This technology allows affinity agents, including exosome-binding lectins and antibodies, to be immobilized in the outer-capillary space of plasma filtration membranes that integrate into existing kidney dialysis systems. Device therapies that evolve from this platform allow rapid extracorporeal capture and selective retention of target particles circulatory system. This strategy is supported by clinical experience in hepatitis C virus-infected patients using an ADAPT™ device, the Hemopurifier®, to reduce the systemic load of virions having similar sizes and glycosylated surfaces as cancer exosomes. This review discusses the possible therapeutic approaches for

  6. Adipose-derived stem cells from lean and obese humans show depot specific differences in their stem cell markers, exosome contents and senescence: role of protein kinase C delta (PKCδ) in adipose stem cell niche

    Science.gov (United States)

    Patel, Rekha S.; Carter, Gay; El Bassit, Ghattas; Patel, Achintya A.; Cooper, Denise R.; Murr, Michel

    2016-01-01

    Background Adipose-derived stem cells (ASC) and its exosomes are gaining utmost importance in the field of regenerative medicine. The ASCs tested for their potential in wound healing are predominantly derived from the subcutaneous depot of lean donors. However, it is important to characterize the ASC derived from different adipose depots as these depots have clinically distinct roles. Methods We characterized the ASC derived from subcutaneous and omental depots from a lean donor (sc-ASCn and om-ASCn) and compared it to the ASC derived from an obese donor (sc-ASCo and om-ASCo) using flow cytometry and real time qPCR. Results We show that stem cell markers Oct4, Sal4, Sox15, KLF4 and BMI1 have distinct expression patterns in each ASC. We evaluated the secretome of the ASC and characterized their secreted exosomes. We show long noncoding RNAs (lncRNAs) are secreted by ASC and their expression varied between the ASC’s derived from different depots. Protein kinase C delta (PKCδ) regulates the mitogenic signals in stem cells. We evaluated the effect of silencing PKCδ in sc-ASCn, om-ASCn, sc-ASCo and om-ASCo. Using β-galactosidase staining, we evaluated the percentage of senescent cells in sc-ASCn, om-ASCn, sc-ASCo and om-ASCo. Our results also indicated that silencing PKCδ increases the percentage of senescent cells. Conclusions Our case-specific study demonstrates a role of PKCδ in maintaining the adipose stem cell niche and importantly demonstrates depot-specific differences in adipose stem cells and their exosome content. PMID:27358894

  7. Exosomes: novel effectors of human platelet lysate activity

    Directory of Open Access Journals (Sweden)

    E Torreggiani

    2014-09-01

    Full Text Available Despite the popularity of platelet-rich plasma (PRP and platelet lysate (PL in orthopaedic practice, the mechanism of action and the effectiveness of these therapeutic tools are still controversial. So far, the activity of PRP and PL has been associated with different growth factors (GF released during platelet degranulation. This study, for the first time, identifies exosomes, nanosized vesicles released in the extracellular compartment by a number of elements, including platelets, as one of the effectors of PL activity. Exosomes were isolated from human PL by differential ultracentrifugation, and analysed by electron microscopy and Western blotting. Bone marrow stromal cells (MSC treated with three different exosome concentrations (0.6 μg, 5 μg and 50 μg showed a significant, dose-dependent increase in cell proliferation and migration compared to the control. In addition, osteogenic differentiation assays demonstrated that exosome concentration differently affected the ability of MSC to deposit mineralised matrix. Finally, the analysis of exosome protein content revealed a higher amount of basic fibroblast growth factor (bFGF, vascular endothelial growth factor (VEGF, platelet-derived growth factor (PDGF-BB and transforming growth factor beta 1 (TGF-β1 as compared to PL. In regards to RNA content, an enrichment of small RNAs in exosomes as compared to donor platelets has been found. These results suggest that exosomes consistently contribute to PL activity and could represent an advantageous nanodelivery system for cell-free regeneration therapies.

  8. Exosomes: novel effectors of human platelet lysate activity.

    Science.gov (United States)

    Torreggiani, E; Perut, F; Roncuzzi, L; Zini, N; Baglìo, S R; Baldini, N

    2014-01-01

    Despite the popularity of platelet-rich plasma (PRP) and platelet lysate (PL) in orthopaedic practice, the mechanism of action and the effectiveness of these therapeutic tools are still controversial. So far, the activity of PRP and PL has been associated with different growth factors (GF) released during platelet degranulation. This study, for the first time, identifies exosomes, nanosized vesicles released in the extracellular compartment by a number of elements, including platelets, as one of the effectors of PL activity. Exosomes were isolated from human PL by differential ultracentrifugation, and analysed by electron microscopy and Western blotting. Bone marrow stromal cells (MSC) treated with three different exosome concentrations (0.6 μg, 5 μg and 50 μg) showed a significant, dose-dependent increase in cell proliferation and migration compared to the control. In addition, osteogenic differentiation assays demonstrated that exosome concentration differently affected the ability of MSC to deposit mineralised matrix. Finally, the analysis of exosome protein content revealed a higher amount of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-BB) and transforming growth factor beta 1 (TGF-β1) as compared to PL. In regards to RNA content, an enrichment of small RNAs in exosomes as compared to donor platelets has been found. These results suggest that exosomes consistently contribute to PL activity and could represent an advantageous nanodelivery system for cell-free regeneration therapies. PMID:25241964

  9. Exosomes derived from renal cancer cells induce Jurkat T cell apoptosis in vitro%肾癌细胞来源的exosomes诱导Jurkat T细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    杨林; 吴小候; 罗春丽; 王丹; 陈力学

    2013-01-01

    Objective To investigate the underlying mechanism of exosomes derived from renal cancer cell lines 786-0 to mediate tumor immune escape in vitro. Methods CCK-8 assay was used to determine the effects of exosomes on proliferation in Jurkat T cells. Morphological changes were by wright-giemsa staining;flow cytometry with Annexin V-FITC/PI double staining was used to detect the apoptosis; secretion functions of Jurkat T cell were detected by ELISA assay; effects of exosomes on apoptosis of Jurkat T cell were detected by soluble Fas block experiment; effects on the protein expression of FasL, caspase, Bax and Bcl-2 were assessed by Western blot analysis. Results Exosomes could inhibit Jurkat T cell proliferation, 10 μg/mL exosomes act on Jurkat T cell for 24 and 72 h, growth inhibition rate was (19. 64 ±0. 92)% and (36. 24 ± 1. 12)% ; while 400 μg/mL exosomes act on it for 24 h and 72 h, growth inhibition rate was (55.96 ± 1.35)% and (76.51 ± 1. 37)% respectively. Exosomes could induce Jurkat T cell apoptosis, 10 μg/mL exosomes act on Jurkat T cell for 8 h, apoptosis rate was (7. 31 ±1.32)% , extending this monitoring to 24 h, apoptosis rate was (20. 19 ± 1.47)% ; while 400μg/mL exosomes act on it for 8 and 24 h, apoptosis rate was (27. 28 ± 1. 29)% and (41.72 ±0.88)% respectively. Exosomes also suppressed IL-2, IFN-γ, IL-6 and IL-10 secretion obviously. FasL was highly expressed in exosomes, soluble Fas block could reverse Jurkat T cell apoptosis. In this course, caspase-3 , caspase-8, caspase-9 were activated, and the ratio of Bax/Bcl-2 increased. Conclusion Exosomes could inhibit the growth of Jurkat T cell and induce apoptosis. It could mediate tumor immune escape.%目的 体外研究肾癌786-0细胞来源的exosomes介导肿瘤免疫逃逸的机制.方法 采用CCK-8法检测肾癌786-0细胞来源的exosomes对Jurkat T细胞生长的影响,瑞氏-姬姆萨染色检测Jurkat T细胞形态变化,Annexin V-FITC/PI双染色流式细胞术检测Jurkat T

  10. Coronary Artery-Bypass-Graft Surgery Increases the Plasma Concentration of Exosomes Carrying a Cargo of Cardiac MicroRNAs: An Example of Exosome Trafficking Out of the Human Heart with Potential for Cardiac Biomarker Discovery.

    Directory of Open Access Journals (Sweden)

    Costanza Emanueli

    Full Text Available Exosome nanoparticles carry a composite cargo, including microRNAs (miRs. Cultured cardiovascular cells release miR-containing exosomes. The exosomal trafficking of miRNAs from the heart is largely unexplored. Working on clinical samples from coronary-artery by-pass graft (CABG surgery, we investigated if: 1 exosomes containing cardiac miRs and hence putatively released by cardiac cells increase in the circulation after surgery; 2 circulating exosomes and exosomal cardiac miRs correlate with cardiac troponin (cTn, the current "gold standard" surrogate biomarker of myocardial damage.The concentration of exosome-sized nanoparticles was determined in serial plasma samples. Cardiac-expressed (miR-1, miR-24, miR-133a/b, miR-208a/b, miR-210, non-cardiovascular (miR-122 and quality control miRs were measured in whole plasma and in plasma exosomes. Linear regression analyses were employed to establish the extent to which the circulating individual miRs, exosomes and exosomal cardiac miR correlated with cTn-I. Cardiac-expressed miRs and the nanoparticle number increased in the plasma on completion of surgery for up to 48 hours. The exosomal concentration of cardiac miRs also increased after CABG. Cardiac miRs in the whole plasma did not correlate significantly with cTn-I. By contrast cTn-I was positively correlated with the plasma exosome level and the exosomal cardiac miRs.The plasma concentrations of exosomes and their cargo of cardiac miRs increased in patients undergoing CABG and were positively correlated with hs-cTnI. These data provide evidence that CABG induces the trafficking of exosomes from the heart to the peripheral circulation. Future studies are necessary to investigate the potential of circulating exosomes as clinical biomarkers in cardiac patients.

  11. From structures to functions: insights into exosomes as promising drug delivery vehicles.

    Science.gov (United States)

    Ren, Jinghua; He, Wenshan; Zheng, Lifen; Duan, Hongwei

    2016-05-24

    Exosomes are small membrane vesicles secreted by most cell types, and appear ubiquitously in cell culture supernatants and body fluids. Increasing evidence supports that exosomes play important roles in intercellular communication, both locally and systemically, by transporting their contents such as proteins, lipids and RNAs between cells. Of particular interest for controlled drug delivery is that cell-derived exosomes offer the possibilities of overcoming biological barriers, thereby allowing the incorporated gene and drug to reach targeted tissue, which have been considerable challenges for synthetic carriers. Great research efforts have been dedicated to developing exosome-based drug delivery systems for the treatment of inflammatory diseases, degenerative disorders and cancer. In this review, we will describe the structural and functional properties of exosomes and emphasize current advances in the therapeutic applications of exosomes as drug delivery vehicles, followed by a discussion on current challenges and future perspectives.

  12. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo

    Science.gov (United States)

    Greening, David W.; Ji, Hong; Chen, Maoshan; Robinson, Bruce W. S.; Dick, Ian M.; Creaney, Jenette; Simpson, Richard J.

    2016-01-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets. PMID:27605433

  13. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo.

    Science.gov (United States)

    Greening, David W; Ji, Hong; Chen, Maoshan; Robinson, Bruce W S; Dick, Ian M; Creaney, Jenette; Simpson, Richard J

    2016-01-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets. PMID:27605433

  14. Secreted primary human malignant mesothelioma exosome signature reflects oncogenic cargo

    Science.gov (United States)

    Greening, David W.; Ji, Hong; Chen, Maoshan; Robinson, Bruce W. S.; Dick, Ian M.; Creaney, Jenette; Simpson, Richard J.

    2016-09-01

    Malignant mesothelioma (MM) is a highly-aggressive heterogeneous malignancy, typically diagnosed at advanced stage. An important area of mesothelioma biology and progression is understanding intercellular communication and the contribution of the secretome. Exosomes are secreted extracellular vesicles shown to shuttle cellular cargo and direct intercellular communication in the tumour microenvironment, facilitate immunoregulation and metastasis. In this study, quantitative proteomics was used to investigate MM-derived exosomes from distinct human models and identify select cargo protein networks associated with angiogenesis, metastasis, and immunoregulation. Utilising bioinformatics pathway/network analyses, and correlation with previous studies on tumour exosomes, we defined a select mesothelioma exosomal signature (mEXOS, 570 proteins) enriched in tumour antigens and various cancer-specific signalling (HPGD/ENO1/OSMR) and secreted modulators (FN1/ITLN1/MAMDC2/PDGFD/GBP1). Notably, such circulating cargo offers unique insights into mesothelioma progression and tumour microenvironment reprogramming. Functionally, we demonstrate that oncogenic exosomes facilitate the migratory capacity of fibroblast/endothelial cells, supporting the systematic model of MM progression associated with vascular remodelling and angiogenesis. We provide biophysical and proteomic characterisation of exosomes, define a unique oncogenic signature (mEXOS), and demonstrate the regulatory capacity of exosomes in cell migration/tube formation assays. These findings contribute to understanding tumour-stromal crosstalk in the context of MM, and potential new diagnostic and therapeutic extracellular targets.

  15. Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche

    OpenAIRE

    Luarte, Alejandro; Bátiz, Luis Federico; Wyneken, Ursula; Lafourcade, Carlos

    2016-01-01

    Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer's Disease, Parkinson's Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have be...

  16. Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche

    OpenAIRE

    Luarte, Alejandro; Bátiz, Luis Federico; Wyneken, Ursula; Lafourcade, Carlos

    2016-01-01

    Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer’s Disease, Parkinson’s Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have be...

  17. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice

    Directory of Open Access Journals (Sweden)

    Takafumi Imai

    2015-02-01

    Full Text Available Previous studies using B16BL6-derived exosomes labelled with gLuc–lactadherin (gLuc-LA, a fusion protein of Gaussia luciferase (a reporter protein and lactadherin (an exosome-tropic protein, showed that the exosomes quickly disappeared from the systemic circulation after intravenous injection in mice. In the present study, the mechanism of rapid clearance of intravenously injected B16BL6 exosomes was investigated. gLuc-LA-labelled exosomes were obtained from supernatant of B16BL6 cells after transfection with a plasmid DNA encoding gLuc-LA. Labelling was stable when the exosomes were incubated in serum. By using B16BL6 exosomes labelled with PKH26, a lipophilic fluorescent dye, it was demonstrated that PKH26-labelled B16BL6 exosomes were taken up by macrophages in the liver and spleen but not in the lung, while PKH26-labelled exosomes were taken up by the endothelial cells in the lung. Subsequently, gLuc-LA-labelled B16BL6 exosomes were injected into macrophage-depleted mice prepared by injection with clodronate-containing liposomes. The clearance of the intravenously injected B16BL6 exosomes from the blood circulation was much slower in macrophage-depleted mice than that in untreated mice. These results indicate that macrophages play important roles in the clearance of intravenously injected B16BL6 exosomes from the systemic circulation.

  18. Microparticles and Exosomes in Gynecologic Neoplasias

    NARCIS (Netherlands)

    R. Nieuwland; J.A.M. van der Post; C.A.R. Lok Gemma; G. Kenter; A. Sturk

    2010-01-01

    This review presents an overview of the functions of microparticles and exosomes in gynecologic neoplasias. Growing evidence suggests that vesicles released from cancer cells in gynecologic malignancies contribute to the hypercoagulable state of these patients and contribute to tumor progression by

  19. Role of tyrosine kinase Src in gastric cancer exosome mediated promotion of tumor cell proliferation%Src激酶在胃癌细胞来源的exosome促进肿瘤细胞增殖中的作用

    Institute of Scientific and Technical Information of China (English)

    曲晶磊; 曲秀娟; 刘云鹏; 赵明芳; 侯科佐; 姜又红; 杨向红

    2011-01-01

    目的:研究胃癌细胞来源的外泌体(exosome)对肿瘤细胞增殖的影响,初步探讨Src蛋白激酶在此过程中的作用.方法:采用离心超滤和蔗糖密度梯度超速离心的方法从胃癌SGC7901细胞的上清液中分离出胃癌细胞来源的exosome.透射电子显微镜下观察exosome形态.MTT法检测细胞增殖能力,Western blot检测蛋白的表达.结果:透射电子显微镜下观察胃癌SGC7901细胞来源的exosome具有特征性的盘状结构.由双层膜构成,他们的直径30-1 00 nm.Westernblot结果显示exosome表面富含CD9和TSG101分子.MTT结果显示exosome能以时间和剂量依赖性的方式促进SGC7901细胞的增殖,200 mg/L和400 mg/L的exosome处理SGC7901细胞72 h,细胞的增殖比率分别是对照组的138%(P<0.001)和144%(P<0.001),在此过程中伴随有p-Src表达的上调.结论:胃癌细胞来源的exosome能促进肿瘤细胞的增殖,其机制可能与激活Src蛋白激酶有关.%AIM: To investigate the effect of gastric cancer exosomes on tumor cell proliferation and to evaluate the role of tyrosine kinase Src in this process.METHODS: Exosomes were isolated and purified from gastric cancer SGC7901 cells by serial centrifugation and sucrose gradient ultracentrifugation and observed by electron microscopy.Cell proliferation was measured by MTT assay.Protein expression was assayed by Western blot.RESULTS: Gastric cancer exosomes had a characteristic saucer-like shape that was limited by a lipid bilayer, and their diameter ranged from 30 to 100 nm.CD9 and TSG101 were abundant on the surface of exosomes.Gastric cancer exosomes significantly increased SGC7901 cell proliferation in a time- and dose-dependent manner.Compared with control cells, the proliferation of cells treated with 200 and 400 mg/L exosomes for 72 h were increased to 138% and 144%, respectively (both P < 0.01).The expression of phosphorylated Src in SGC7901 cells was up-regulated in a time- and dose-dependent manner after

  20. Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes

    OpenAIRE

    Kato, Tomohiro; Miyaki, Shigeru; Ishitobi, Hiroyuki; Nakamura, Yoshihiro; Nakasa, Tomoyuki; Lotz, Martin K.; Ochi, Mitsuo

    2014-01-01

    Introduction Osteoarthritis (OA) is a whole joint disease, and characterized by progressive degradation of articular cartilage, synovial hyperplasia, bone remodeling and angiogenesis in various joint tissues. Exosomes are a type of microvesicles (MVs) that may play a role in tissue-tissue and cell-cell communication in homeostasis and diseases. We hypothesized that exosomes function in a novel regulatory network that contributes to OA pathogenesis and examined the function of exosomes in comm...

  1. Comparative analysis of discrete exosome fractions obtained by differential centrifugation

    Directory of Open Access Journals (Sweden)

    Dennis K. Jeppesen

    2014-11-01

    Full Text Available Background: Cells release a mixture of extracellular vesicles, amongst these exosomes, that differ in size, density and composition. The standard isolation method for exosomes is centrifugation of fluid samples, typically at 100,000×g or above. Knowledge of the effect of discrete ultracentrifugation speeds on the purification from different cell types, however, is limited. Methods: We examined the effect of applying differential centrifugation g-forces ranging from 33,000×g to 200,000×g on exosome yield and purity, using 2 unrelated human cell lines, embryonic kidney HEK293 cells and bladder carcinoma FL3 cells. The fractions were evaluated by nanoparticle tracking analysis (NTA, total protein quantification and immunoblotting for CD81, TSG101, syntenin, VDAC1 and calreticulin. Results: NTA revealed the lowest background particle count in Dulbecco's Modified Eagle's Medium media devoid of phenol red and cleared by 200,000×g overnight centrifugation. The centrifugation tube fill level impacted the sedimentation efficacy. Comparative analysis by NTA, protein quantification, and detection of exosomal and contamination markers identified differences in vesicle size, concentration and composition of the obtained fractions. In addition, HEK293 and FL3 vesicles displayed marked differences in sedimentation characteristics. Exosomes were pelleted already at 33,000×g, a g-force which also removed most contaminating microsomes. Optimal vesicle-to-protein yield was obtained at 67,000×g for HEK293 cells but 100,000×g for FL3 cells. Relative expression of exosomal markers (TSG101, CD81, syntenin suggested presence of exosome subpopulations with variable sedimentation characteristics. Conclusions: Specific g-force/k factor usage during differential centrifugation greatly influences the purity and yield of exosomes. The vesicle sedimentation profile differed between the 2 cell lines.

  2. Epidermal Growth Factor Receptor in Prostate Cancer Derived Exosomes

    OpenAIRE

    Geetanjali Kharmate; Elham Hosseini-Beheshti; Josselin Caradec; Mei Yieng Chin; Tomlinson Guns, Emma S.

    2016-01-01

    Exosomes proteins and microRNAs have gained much attention as diagnostic tools and biomarker potential in various malignancies including prostate cancer (PCa). However, the role of exosomes and membrane-associated receptors, particularly epidermal growth factor receptor (EGFR) as mediators of cell proliferation and invasion in PCa progression remains unexplored. EGFR is frequently overexpressed and has been associated with aggressive forms of PCa. While PCa cells and tissues express EGFR, it ...

  3. Exosomes in Prostate Cancer: Putting Together the Pieces of a Puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Soekmadji, Carolina, E-mail: carolina.soekmadji@qut.edu.au; Russell, Pamela J.; Nelson, Colleen C. [Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Level 3 West, 37 Kent Street, Brisbane, Queensland 4102 (Australia)

    2013-11-11

    Exosomes have been shown to act as mediators for cell to cell communication and as a potential source of biomarkers for many diseases, including prostate cancer. Exosomes are nanosized vesicles secreted by cells and consist of proteins normally found in multivesicular bodies, RNA, DNA and lipids. As a potential source of biomarkers, exosomes have attracted considerable attention, as their protein content resembles that of their cells of origin, even though it is noted that the proteins, miRNAs and lipids found in the exosomes are not a reflective stoichiometric sampling of the contents from the parent cells. While the biogenesis of exosomes in dendritic cells and platelets has been extensively characterized, much less is known about the biogenesis of exosomes in cancer cells. An understanding of the processes involved in prostate cancer will help to further elucidate the role of exosomes and other extracellular vesicles in prostate cancer progression and metastasis. There are few methodologies available for general isolation of exosomes, however validation of those methodologies is necessary to study the role of exosomal-derived biomarkers in various diseases. In this review, we discuss “exosomes” as a member of the family of extracellular vesicles and their potential to provide candidate biomarkers for prostate cancer.

  4. Exosomes in Prostate Cancer: Putting Together the Pieces of a Puzzle

    International Nuclear Information System (INIS)

    Exosomes have been shown to act as mediators for cell to cell communication and as a potential source of biomarkers for many diseases, including prostate cancer. Exosomes are nanosized vesicles secreted by cells and consist of proteins normally found in multivesicular bodies, RNA, DNA and lipids. As a potential source of biomarkers, exosomes have attracted considerable attention, as their protein content resembles that of their cells of origin, even though it is noted that the proteins, miRNAs and lipids found in the exosomes are not a reflective stoichiometric sampling of the contents from the parent cells. While the biogenesis of exosomes in dendritic cells and platelets has been extensively characterized, much less is known about the biogenesis of exosomes in cancer cells. An understanding of the processes involved in prostate cancer will help to further elucidate the role of exosomes and other extracellular vesicles in prostate cancer progression and metastasis. There are few methodologies available for general isolation of exosomes, however validation of those methodologies is necessary to study the role of exosomal-derived biomarkers in various diseases. In this review, we discuss “exosomes” as a member of the family of extracellular vesicles and their potential to provide candidate biomarkers for prostate cancer

  5. Exosomes in Prostate Cancer: Putting Together the Pieces of a Puzzle

    Directory of Open Access Journals (Sweden)

    Colleen C. Nelson

    2013-11-01

    Full Text Available Exosomes have been shown to act as mediators for cell to cell communication and as a potential source of biomarkers for many diseases, including prostate cancer. Exosomes are nanosized vesicles secreted by cells and consist of proteins normally found in multivesicular bodies, RNA, DNA and lipids. As a potential source of biomarkers, exosomes have attracted considerable attention, as their protein content resembles that of their cells of origin, even though it is noted that the proteins, miRNAs and lipids found in the exosomes are not a reflective stoichiometric sampling of the contents from the parent cells. While the biogenesis of exosomes in dendritic cells and platelets has been extensively characterized, much less is known about the biogenesis of exosomes in cancer cells. An understanding of the processes involved in prostate cancer will help to further elucidate the role of exosomes and other extracellular vesicles in prostate cancer progression and metastasis. There are few methodologies available for general isolation of exosomes, however validation of those methodologies is necessary to study the role of exosomal-derived biomarkers in various diseases. In this review, we discuss “exosomes” as a member of the family of extracellular vesicles and their potential to provide candidate biomarkers for prostate cancer.

  6. The limited capacity of malignant glioma-derived exosomes to suppress peripheral immune effectors.

    Science.gov (United States)

    Iorgulescu, J Bryan; Ivan, Michael E; Safaee, Michael; Parsa, Andrew T

    2016-01-15

    Tumor-derived microvesicular exosomes permit intercellular communication both locally and systemically by delivering a snapshot of the tumor cell's constituents. We thus investigated whether exosomes mediate malignant glioma's facility for inducing peripheral immunosuppression. In Western blot and RT-PCR analyses, glioma-derived exosomes displayed exosome-specific markers, but failed to recapitulate the antigen-presentation machinery, surface co-modulatory signals, or immunosuppressive mediator status of their parent tumor cells. Treatment with glioma-derived exosomes promoted immunosuppressive HLA-DR(low) monocytic phenotypes, but failed to induce monocytic PD-L1 expression or alter the activation of cytotoxic T-cells from patients' peripheral blood by FACS and RT-PCR analyses. Our results suggest that malignant glioma-derived exosomes are restricted in their capacity to directly prime peripheral immunosuppression.

  7. The experimental study of effect of exosomes derived from breast cancer cell line on human umbilical vein endothelial cells%乳腺癌细胞exosomes对人脐静脉内皮作用的实验研究

    Institute of Scientific and Technical Information of China (English)

    谢莹珊; 沈宜; 隆霜; 孙迪; 姜蓉; 陈黎

    2011-01-01

    Objective:To observe the effect of exosomes derived from MDA- MB- 231 cell line on proliferation, immigration and capillary- like tube formation of Human Umbilical Vein Endothelial cells. Method: Exosomes were puried by serial ultracentrifugation and sugar density ultracentrifugation, MTT assay was used to observe the effect of exosomes on proliferation of HUVECs;HUVECs were treated with exosomes for 24 h,the change of cell migration was detected by Transwell chamber method. The capillary-like tube formations by HUVECs were observed. Result: MTT result showed that the concentration range of exosomes significantly increased HUVECs proliferation in a concentration - and time - dependent manner ( P < 0.01 ); It may significantly enhance the migration of HUVECs after treated with 200 μ/ml exosomes for 24 h ( P < 0.01 ) , and may significantly promoted the capability of capillary - like tube formation of HUVECs ( P < 0.05 ) Conclusion: Exosomes derived from MDA - MB - 231 cell line significantly increased HUVECs proliferation in a concentration - and time - dependent manner and it may promote the migration and the capability of capillary - like tube formation of HUVECs.%目的:观察人乳腺癌细胞株MDA-MB-231细胞源exosomes对人脐静脉内皮细胞株(HUVECs)增殖、迁移能力及血管样结构形成的影响.方法:超速离心及密度梯度离心法提取exosomes;MTT法检测MDA-MB-231细胞源exosomes对HUVECs增殖的影响;Transwell小室法检测HUVECs与exosomes混合培养24h后迁移能力的影响;观察HUVECs与exosomes混合培养24h后管腔样结构形成变化.结果:各浓度exosomes均具有促进HUVECs细胞增殖作用,且以时间剂量依赖性促进HUVEC细胞增殖(P

  8. Anti-tumor effect induced by exosomes derived from dendritic cells loaded with lung cancer cell lysates%肺癌细胞裂解物负载对树突状细胞分泌的exosome诱导抗肿瘤作用的影响

    Institute of Scientific and Technical Information of China (English)

    张在云; 李希德; 刘叶; 王志仑; 潘祥林

    2011-01-01

    目的 为制备高效的胞外体(exosome)肿瘤疫苗提供理论依据.方法 用细胞因子诱导培养树突状细胞(DC),将肺癌细胞裂解物负载DC,提取exosome;用exosome活化T细胞(负载组),以未负载DC的exosome(未负载组)及肺癌细胞裂解物负载DC(DC组)活化的T细胞为对照,MTT法检测三组肺癌细胞的杀伤率.结果 exosome中有HSP70、HLA及CEA表达.活化T细胞/肺癌细胞为25∶1、10∶1 、5∶1时负载组杀伤率均明显高于未负载组及DC组(P均<0.05).结论 肺癌细胞裂解物负载能增强DC分泌的exosome诱导的抗肿瘤作用;本研究为制备高效的exosome肿瘤疫苗提供了理论依据.%Objective To obtain theoretical bases for making high efficacy exosome cancer vaccine. Methods Dendritic cells (DC) were induced with cytokines and then loaded with whole lung cancer cell lysates. Exosomes were isolated from supernatant of DC, and T cells activated by the exosomes (group loaded) , T cells activated by exosomes from nonloaded DC (group non-loaded) or activated by lysate-loaded DC(group DC) were taken as control. 11k activity of T cells for killing lung cancer cells were detected by MTT method. Results HSP70, HLA and CEA protein were found in exosomes. The kill rates of activated T cells in group loaded at E: T ratio 25:1, 10= 1, 5:1 were much higher than those in group non-loaded and group DC( all P <0.05). Condnsiong Lung cancer cell lysates loading can promote the anti-tumor activity induced by DC-derived exosomes; this study can provide theoretical bases for making high efficacy exosome cancer vaccine.

  9. A novel TP53 pathway influences the HGS-mediated exosome formation in colorectal cancer.

    Science.gov (United States)

    Sun, Yulin; Zheng, Weiwei; Guo, Zhengguang; Ju, Qiang; Zhu, Lin; Gao, Jiajia; Zhou, Lanping; Liu, Fang; Xu, Yang; Zhan, Qimin; Zhou, Zhixiang; Sun, Wei; Zhao, Xiaohang

    2016-01-01

    Tumor-derived exosomes are important for cell-cell communication. However, the role of TP53 in the control of exosome production in colorectal cancer (CRC) is controversial and unclear. The features of exosomes secreted from HCT116 TP53-wild type (WT), TP53-knockout (KO) and constructed TP53 (R273H)-mutant (MT) cells were assessed. The exosomes from the MT and KO cells exhibited significantly reduced sizes compared with the WT cells. A comprehensive proteomic analysis of exosomal proteins was performed using the isobaric tag for relative and absolute quantitation (iTRAQ)-2D-LC-MS/MS strategy. A total of 3437 protein groups with ≥2 matched peptides were identified. Specifically, hepatocyte growth factor-regulated tyrosine kinase substrate (HGS) was consistently down-regulated in the exosomes from the MT and KO cells. Functional studies demonstrated that low HGS levels were responsible for the decreased exosome size. TP53 regulated HGS expression and thus HGS-dependent exosome formation. Furthermore, the HGS expression was gradually increased concomitant with CRC carcinogenesis and was an independent poor prognostic factor. In conclusion, a novel HGS-dependent TP53 mechanism in exosome formation was identified in CRC. HGS may serve as a novel prognostic biomarker and a candidate target for therapeutic interventions. PMID:27312428

  10. Identification and proteomic analysis of osteoblast-derived exosomes.

    Science.gov (United States)

    Ge, Min; Ke, Ronghu; Cai, Tianyi; Yang, Junyi; Mu, Xiongzheng

    2015-11-01

    Exosomes are nanometer-sized vesicles with the function of intercellular communication, and they are released by various cell types. To reveal the knowledge about the exosomes from osteoblast, and explore the potential functions of osteogenesis, we isolated microvesicles from supernatants of mouse Mc3t3 by ultracentrifugation, characterized exosomes by electron microscopy and immunoblotting and presented the protein profile by proteomic analysis. The result demonstrated that microvesicles were between 30 and 100 nm in diameter, round shape with cup-like concavity and expressed exosomal marker tumor susceptibility gene (TSG) 101 and flotillin (Flot) 1. We identified a total number of 1069 proteins among which 786 proteins overlap with ExoCarta database. Gene Oncology analysis indicated that exosomes mostly derived from plasma membrane and mainly involved in protein localization and intracellular signaling. The Ingenuity Pathway Analysis showed pathways are mostly involved in exosome biogenesis, formation, uptake and osteogenesis. Among the pathways, eukaryotic initiation factor 2 pathways played an important role in osteogenesis. Our study identified osteoblast-derived exosomes, unveiled the content of them, presented potential osteogenesis-related proteins and pathways and provided a rich proteomics data resource that will be valuable for further studies of the functions of individual proteins in bone diseases.

  11. Hypoxia-induced changes in the bioactivity of cytotrophoblast-derived exosomes.

    Directory of Open Access Journals (Sweden)

    Carlos Salomon

    Full Text Available Migration of extravillous trophoblasts (EVT into decidua and myometrium is a critical process in the conversion of maternal spiral arterioles and establishing placenta perfusion. EVT migration is affected by cell-to-cell communication and oxygen tension. While the release of exosomes from placental cells has been identified as a significant pathway in materno-fetal communication, the role of placental-derived exosomes in placentation has yet to be established. The aim of this study was to establish the effect of oxygen tension on the release and bioactivity of cytotrophoblast (CT-derived exosomes on EVT invasion and proliferation. CT were isolated from first trimester fetal tissue (n = 12 using a trypsin-deoxyribonuclease-dispase/Percoll method. CT were cultured under 8%, 3% or 1% O2 for 48 h. Exosomes from CT-conditioned media were isolated by differential and buoyant density centrifugation. The effect of oxygen tension on exosome release (µg exosomal protein/10(6cells/48 h and bioactivity were established. HTR-8/SVneo (EVT were used as target cells to establish the effect (bioactivity of exosomes on invasion and proliferation as assessed by real-time, live-cell imaging (Incucyte™. The release and bioactivity of CT-derived exosomes were inversely correlated with oxygen tension (p<0.001. Under low oxygen tensions (i.e. 1% O2, CT-derived exosomes promoted EVT invasion and proliferation. Proteomic analysis of exosomes identified oxygen-dependent changes in protein content. We propose that in response to changes in oxygen tension, CTs modify the bioactivity of exosomes, thereby, regulating EVT phenotype. Exosomal induction of EVT migration may represent a normal process of placentation and/or an adaptive response to placental hypoxia.

  12. Exosomal transfer of functional small RNAs mediates cancer-stroma communication in human endometrium.

    Science.gov (United States)

    Maida, Yoshiko; Takakura, Masahiro; Nishiuchi, Takumi; Yoshimoto, Tanihiro; Kyo, Satoru

    2016-02-01

    Exosomes are small membrane vesicles secreted from a variety of cell types. Recent evidence indicates that human cells communicate with each other by exchanging exosomes. Cancer cells closely interact with neighboring stromal cells, and together they cooperatively promote disease via bidirectional communication. Here, we investigated whether exosomes can play roles in intercellular communication between cancer cells and neighboring fibroblasts. Endometrial fibroblasts were isolated from normal endometrial tissues and from endometrial cancer tissues, and cell-to-cell transfer of endometrial cancer cell line Ishikawa-derived exosomes was examined. The isolated fibroblasts were cultured in conditioned media from CD63-GFP-expressing Ishikawa cells, and we found that GFP-positive exosomes were transferred from Ishikawa cells to the fibroblasts. Next, we introduced a shRNA for a luciferase gene into Ishikawa cells. This shRNA was encapsulated into exosomes, was transferred to the fibroblasts, and then downregulated luciferase expression in the fibroblasts. The mature microRNAs naturally expressed in Ishikawa-derived exosomes were also transported into the endometrial fibroblasts, and they altered the microRNA expression profiles of the fibroblasts. These results indicated that endometrial cancer cells could transmit small regulatory RNAs to endometrial fibroblasts via exosomes. Our findings document a previously unknown mode of intercellular communication between cancer cells and related fibroblasts in human endometrium.

  13. Exosomal transfer of functional small RNAs mediates cancer-stroma communication in human endometrium.

    Science.gov (United States)

    Maida, Yoshiko; Takakura, Masahiro; Nishiuchi, Takumi; Yoshimoto, Tanihiro; Kyo, Satoru

    2016-02-01

    Exosomes are small membrane vesicles secreted from a variety of cell types. Recent evidence indicates that human cells communicate with each other by exchanging exosomes. Cancer cells closely interact with neighboring stromal cells, and together they cooperatively promote disease via bidirectional communication. Here, we investigated whether exosomes can play roles in intercellular communication between cancer cells and neighboring fibroblasts. Endometrial fibroblasts were isolated from normal endometrial tissues and from endometrial cancer tissues, and cell-to-cell transfer of endometrial cancer cell line Ishikawa-derived exosomes was examined. The isolated fibroblasts were cultured in conditioned media from CD63-GFP-expressing Ishikawa cells, and we found that GFP-positive exosomes were transferred from Ishikawa cells to the fibroblasts. Next, we introduced a shRNA for a luciferase gene into Ishikawa cells. This shRNA was encapsulated into exosomes, was transferred to the fibroblasts, and then downregulated luciferase expression in the fibroblasts. The mature microRNAs naturally expressed in Ishikawa-derived exosomes were also transported into the endometrial fibroblasts, and they altered the microRNA expression profiles of the fibroblasts. These results indicated that endometrial cancer cells could transmit small regulatory RNAs to endometrial fibroblasts via exosomes. Our findings document a previously unknown mode of intercellular communication between cancer cells and related fibroblasts in human endometrium. PMID:26700550

  14. Host Matrix Modulation by Tumor Exosomes Promotes Motility and Invasiveness

    Directory of Open Access Journals (Sweden)

    Wei Mu

    2013-08-01

    Full Text Available Exosomes are important intercellular communicators, where tumor exosomes (TEX severely influence hematopoiesis and premetastatic organ cells. With the extracellular matrix (ECM being an essential constituent of non-transformed tissues and tumors, we asked whether exosomes from a metastatic rat tumor also affect the organization of the ECM and whether this has consequences on host and tumor cell motility. TEX bind to individual components of the ECM, the preferential partner depending on the exosomes' adhesion molecule profile such that high CD44 expression is accompanied by hyaluronic acid binding and high α6β4 expression by laminin (LN 332 binding, which findings were confirmed by antibody blocking. TEX can bind to the tumor matrix already during exosome delivery but also come in contact with distinct organ matrices. Being rich in proteases, TEX modulate the ECM as demonstrated for degradation of collagens, LNs, and fibronectin. Matrix degradation by TEX has severe consequences on tumor and host cell adhesion, motility, and invasiveness. By ECM degradation, TEX also promote host cell proliferation and apoptosis resistance. Taken together, the host tissue ECM modulation by TEX is an important factor in the cross talk between a tumor and the host including premetastatic niche preparation and the recruitment of hematopoietic cells. Reorganization of the ECM by exosomes likely also contributes to organogenesis, physiological and pathologic angiogenesis, wound healing, and clotting after vessel disruption.

  15. Comparative analysis of discrete exosome fractions obtained by differential centrifugation

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Hvam, Michael L; Primdahl-Bengtson, Bjarke;

    2014-01-01

    BACKGROUND: Cells release a mixture of extracellular vesicles, amongst these exosomes, that differ in size, density and composition. The standard isolation method for exosomes is centrifugation of fluid samples, typically at 100,000×g or above. Knowledge of the effect of discrete ultracentrifugat......BACKGROUND: Cells release a mixture of extracellular vesicles, amongst these exosomes, that differ in size, density and composition. The standard isolation method for exosomes is centrifugation of fluid samples, typically at 100,000×g or above. Knowledge of the effect of discrete...... ultracentrifugation speeds on the purification from different cell types, however, is limited. METHODS: We examined the effect of applying differential centrifugation g-forces ranging from 33,000×g to 200,000×g on exosome yield and purity, using 2 unrelated human cell lines, embryonic kidney HEK293 cells and bladder...... of phenol red and cleared by 200,000×g overnight centrifugation. The centrifugation tube fill level impacted the sedimentation efficacy. Comparative analysis by NTA, protein quantification, and detection of exosomal and contamination markers identified differences in vesicle size, concentration...

  16. The Influence of Ionizing Radiation on Exosome Composition, Secretion and Intercellular Communication

    Science.gov (United States)

    Jelonek, Karol; Widlak, Piotr; Pietrowska, Monika

    2016-01-01

    A large variety of vesicles is actively secreted into the extracellular space by most type of cells. The smallest nanoparticles (30-120 nm), called exosomes, are known to transport their cargo (nucleic acids, proteins and lipids) between diverse locations in the body. Specific content of exosomes and their influence on recipient cells depends primarily on the type of the secretory (donor) cell, yet several studies highlight the importance of environmental stress on which the donor cells are exposed. Ionizing radiation, which induces damage to DNA and other structures of a target cell, is one of well-recognized stress conditions influencing behavior of affected cells. A few recent studies have evidenced radiation-induced changes in composition of exosomes released from irradiated cells and their involvement in radiation-related communication between cells. Inducible pathways of exosome secretion activated in irradiated cells are regulated by TSAP6 protein (the transmembrane protein tumor suppressor-activated pathway 6), which is transcriptionally regulated by p53, hence cellular status of this major DNA damage response factor affects composition and secretion rate of exosomes released from target cells. Moreover, exosomes released from irradiated cells have been shown to mediate the radiation-induced bystander effect. Understanding radiation-related mechanisms involved in exosome formation and “makeup” of their cargo would shed light on the role of exosomes in systemic response of cells, tissues and organisms to ionizing radiation which may open new perspectives in translational medicine and anticancer-treatment. PMID:27117741

  17. Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity

    Science.gov (United States)

    Sun, Weijia; Zhao, Chenyang; Li, Yuheng; Wang, Liang; Nie, Guangjun; Peng, Jiang; Wang, Aiyuan; Zhang, Pengfei; Tian, Weiming; Li, Qi; Song, Jinping; Wang, Cheng; Xu, Xiaolong; Tian, Yanhua; Zhao, Dingsheng; Xu, Zi; Zhong, Guohui; Han, Bingxing; Ling, Shukuan; Chang, Yan-Zhong; Li, Yingxian

    2016-01-01

    MicroRNAs have an important role in bone homeostasis. However, the detailed mechanism of microRNA-mediated intercellular communication between bone cells remains elusive. Here, we report that osteoclasts secrete microRNA-enriched exosomes, by which miR-214 is transferred into osteoblasts to inhibit their function. In a coculture system, inhibition of exosome formation and secretion prevented miR-214 transportation. Exosomes specifically recognized osteoblasts through the interaction between ephrinA2 and EphA2. In osteoclast-specific miR-214 transgenic mice, exosomes were secreted into the serum, and miR-214 and ephrinA2 levels were elevated. Therefore, these exosomes have an inhibitory role in osteoblast activity. miR-214 and ephrinA2 levels in serum exosomes from osteoporotic patients and mice were upregulated substantially. These exosomes may significantly inhibit osteoblast activity. Inhibition of exosome secretion via Rab27a small interfering RNA prevented ovariectomized-induced osteoblast dysfunction in vivo. Taken together, these findings suggest that exosome-mediated transfer of microRNA plays an important role in the regulation of osteoblast activity. Circulating miR-214 in exosomes not only represents a biomarker for bone loss but could selectively regulate osteoblast function. PMID:27462462

  18. Chemokine Receptors, CXCR1 and CXCR2, Differentially Regulate Exosome Release in Hepatocytes.

    Science.gov (United States)

    Nojima, Hiroyuki; Konishi, Takanori; Freeman, Christopher M; Schuster, Rebecca M; Japtok, Lukasz; Kleuser, Burkhard; Edwards, Michael J; Gulbins, Erich; Lentsch, Alex B

    2016-01-01

    Exosomes are small membrane vesicles released by different cell types, including hepatocytes, that play important roles in intercellular communication. We have previously demonstrated that hepatocyte-derived exosomes contain the synthetic machinery to form sphingosine-1-phosphate (S1P) in target hepatocytes resulting in proliferation and liver regeneration after ischemia/reperfusion (I/R) injury. We also demonstrated that the chemokine receptors, CXCR1 and CXCR2, regulate liver recovery and regeneration after I/R injury. In the current study, we sought to determine if the regulatory effects of CXCR1 and CXCR2 on liver recovery and regeneration might occur via altered release of hepatocyte exosomes. We found that hepatocyte release of exosomes was dependent upon CXCR1 and CXCR2. CXCR1-deficient hepatocytes produced fewer exosomes, whereas CXCR2-deficient hepatocytes produced more exosomes compared to their wild-type controls. In CXCR2-deficient hepatocytes, there was increased activity of neutral sphingomyelinase (Nsm) and intracellular ceramide. CXCR1-deficient hepatocytes had no alterations in Nsm activity or ceramide production. Interestingly, exosomes from CXCR1-deficient hepatocytes had no effect on hepatocyte proliferation, due to a lack of neutral ceramidase and sphingosine kinase. The data demonstrate that CXCR1 and CXCR2 regulate hepatocyte exosome release. The mechanism utilized by CXCR1 remains elusive, but CXCR2 appears to modulate Nsm activity and resultant production of ceramide to control exosome release. CXCR1 is required for packaging of enzymes into exosomes that mediate their hepatocyte proliferative effect. PMID:27551720

  19. Perturbations in the Urinary Exosome in Transplant Rejection

    Directory of Open Access Journals (Sweden)

    Tara eSigdel

    2015-01-01

    Full Text Available Urine exosomes are small vesicles exocytosed into the urine by all renal epithelial cell types under normal physiologic and disease states. Urine exosomal proteins may mirror disease specific proteome perturbations in kidney injury. Analysis methodologies for the exosomal fraction of the urinary proteome were developed for comparing the urinary exosomal fraction versus unfractionated proteome for biomarker discovery. Urine exosomes were isolated by centrifugal filtration of urine samples collected from kidney transplant patients with and without acute rejection, which were biopsy matched. The proteomes of unfractionated whole urine (Uw and urine exosomes (Ue underwent mass spectroscopy-based quantitative proteonomics analysis. The proteome data were analyzed for significant differential protein abundances in acute rejection (AR. A total of 1018 proteins were identified in Uw and 349 proteins in Ue. 279 overlapped between the two urinary compartments and 70 proteins were unique to the Ue compartment. Of 349 exosomal proteins identified from transplant patients,220 had not been previously identified in the normal Ue fraction. 11 Ue proteins, functionally involved in an inflammatory and stress response, were more abundant in urine samples from patients with acute rejection, 3 of which are exclusive to the Ue fraction. Ue AR-specific biomarkers(8 were also detected in Uw, but since they were observed at significantly lower abundances in Uw, they were not significant for AR in Uw. A rapid urinary exosome isolation method and quantitative measurement of enriched Ue proteins was applied. Perturbed proteins in the exosomal compartment of urine collected from kidney transplant patients were specific to inflammatory responses, and were not observed in the Ue fraction from normal healthy subjects. Ue specific protein alterations in renal disease provide potential mechanistic insights and offer a unique panel of sensitive biomarkers for monitoring AR.

  20. Plasma exosome profiles from dairy cows with divergent fertility phenotypes.

    Science.gov (United States)

    Mitchell, M D; Scholz-Romero, K; Reed, S; Peiris, H N; Koh, Y Q; Meier, S; Walker, C G; Burke, C R; Roche, J R; Rice, G; Salomon, C

    2016-09-01

    Cell-to-cell communication in physiological and pathological conditions may be influenced by neighboring cells, distant tissues, or local environmental factors. Exosomes are specific subsets of extracellular vesicles that internalize and deliver their content to near and distant sites. Exosomes may play a role in the maternal-embryo crosstalk vital for the recognition and maintenance of a pregnancy; however, their role in dairy cow reproduction has not been established. This study aimed to characterize the exosome profile in the plasma of 2 strains of dairy cow with divergent fertility phenotypes. Plasma was obtained and characterized on the basis of genetic ancestry as fertile (FERT; 92% North American genetics, North American Holstein-Friesian strain, n=8). Exosomes were isolated by differential and buoyant density centrifugation and characterized by size distribution (nanoparticle tracking analysis, NanoSight NS500, NanoSight Ltd., Amesbury, UK), the presence of CD63 (Western blot), and their morphology (electron microscopy). The total number of exosomes was determined by quantifying the immunoreactive CD63 (ExoELISA kit, System Biosciences), and the protein content established by mass spectrometry. Enriched exosome fractions were identified as cup-shape vesicles with diameters around 100 nm and positive for the CD63 marker. The concentration of exosomes was 50% greater in FERT cows. Mass spectrometry identified 104 and 117 proteins in FERT and SUBFERT cows, of which 23 and 36 were unique, respectively. Gene ontology analysis revealed enrichment for proteins involved in immunomodulatory processes and cell-to-cell communication. Although the role of exosomes in dairy cow reproduction remains to be elucidated, their quantification and content in models with divergent fertility phenotypes could provide novel information to support both physiological and genetic approaches to improving dairy cow fertility. PMID:27372594

  1. Tumour exosomes display differential mechanical and complement activation properties dependent on malignant state: implications in endothelial leakiness

    Directory of Open Access Journals (Sweden)

    Bradley Whitehead

    2015-12-01

    Full Text Available Background: Exosomes have been implicated in tumour progression and metastatic spread. Little is known of the effect of mechanical and innate immune interactions of malignant cell-derived exosomes on endothelial integrity, which may relate to increased extravasation of circulating tumour cells and, therefore, increased metastatic spread. Methods: Exosomes isolated from non-malignant immortalized HCV-29 and isogenic malignant non-metastatic T24 and malignant metastatic FL3 bladder cells were characterized by nanoparticle tracking analysis and quantitative nanomechanical mapping atomic force microscopy (QNM AFM to determine size and nanomechanical properties. Effect of HCV-29, T24 and FL3 exosomes on human umbilical vein endothelial cell (HUVEC monolayer integrity was determined by transendothelial electrical resistance (TEER measurements and transport was determined by flow cytometry. Complement activation studies in human serum of malignant and non-malignant cell-derived exosomes were performed. Results: FL3, T24 and HCV-29 cells produced exosomes at similar concentration per cell (6.64, 6.61 and 6.46×104 exosomes per cell for FL3, T24 and HCV-29 cells, respectively and of similar size (120.2 nm for FL3, 127.6 nm for T24 and 117.9 nm for HCV-29, respectively. T24 and FL3 cell-derived exosomes exhibited a markedly reduced stiffness, 95 MPa and 280 MPa, respectively, compared with 1,527 MPa with non-malignant HCV-29 cell-derived exosomes determined by QNM AFM. FL3 and T24 exosomes induced endothelial disruption as measured by a decrease in TEER in HUVEC monolayers, whereas no effect was observed for HCV-29 derived exosomes. FL3 and T24 exosomes traffic more readily (11.6 and 21.4% of applied exosomes, respectively across HUVEC monolayers than HCV-29 derived exosomes (7.2% of applied exosomes. Malignant cell-derived exosomes activated complement through calcium-sensitive pathways in a concentration-dependent manner. Conclusions: Malignant

  2. Antigen transfer from exosomes to dendritic cells as an explanation for the immune enhancement seen by IgE immune complexes.

    Directory of Open Access Journals (Sweden)

    Rebecca K Martin

    Full Text Available IgE antigen complexes induce increased specific T cell proliferation and increased specific IgG production. Immediately after immunization, CD23(+ B cells capture IgE antigen complexes, transport them to the spleen where, via unknown mechanisms, dendritic cells capture the antigen and present it to T cells. CD23, the low affinity IgE receptor, binds IgE antigen complexes and internalizes them. In this study, we show that these complexes are processed onto B-cell derived exosomes (bexosomes in a CD23 dependent manner. The bexosomes carry CD23, IgE and MHC II and stimulate antigen specific T-cell proliferation in vitro. When IgE antigen complex stimulated bexosomes are incubated with dendritic cells, dendritic cells induce specific T-cell proliferation in vivo, similar to IgE antigen complexes. This suggests that bexosomes can provide the essential transfer mechanism for IgE antigen complexes from B cells to dendritic cells.

  3. A Trojan Horse in Birmingham

    Science.gov (United States)

    Yarker, Patrick

    2014-01-01

    "Trojan Horse" has become journalistic shorthand for an apparent attempt by a small group in East Birmingham to secure control of local non-faith schools and impose policies and practices in keeping with the very conservative (Salafist and Wahhabi) version of Islam which they hold. In this article, Pat Yarker gives an account of two…

  4. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lijuan [Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009 (China); Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Wang, Yingjie [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Internal Medicine of Traditional Chinese Medicine, Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Pan, Yaohua; Zhang, Lan [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Shen, Chengxing [Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai (China); Qin, Gangjian [Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 (United States); Ashraf, Muhammad [Pathology and Lab Med, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Weintraub, Neal [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States); Ma, Genshan, E-mail: magenshan@hotmail.com [Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009 (China); Tang, Yaoliang, E-mail: tangyg@ucmail.uc.edu [Cardiovascular Disease, Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267 (United States)

    2013-02-15

    Highlights: ► Cardiac progenitor-derived (CPC) Exosomes protect H9C2 from apoptosis in vitro. ► CPC-exosomes protect cardiomyoyctes from MI/R induced apoptosis in vivo. ► CPC-exosomes were taken up by H9C2 with high efficiency using PKH26 labeling. ► miR-451, one of GATA4-responsive miRNA cluster, is enriched in CPC-exosomes. -- Abstract: Background: Cardiac progenitors (CPC) mediate cardioprotection via paracrine effects. To date, most of studies focused on secreted paracrine proteins. Here we investigated the CPC-derived-exosomes on protecting myocardium from acute ischemia/reperfusion (MI/R) injury. Methods and results: CPC were isolated from mouse heart using two-step protocol. Exosomes were purified from conditional medium, and confirmed by electron micrograph and Western blot using CD63 as a marker. qRT-PCR shows that CPC-exosomes have high level expression of GATA4-responsive-miR-451. Exosomes were ex vivo labeled with PKH26, We observed exosomes can be uptaken by H9C2 cardiomyoblasts with high efficiency after 12 h incubation. CPC-exosomes protect H9C2 from oxidative stress by inhibiting caspase 3/7 activation invitro. In vivo delivery of CPC-exosomes in an acute mouse myocardial ischemia/reperfusion model inhibited cardiomyocyte apoptosis by about 53% in comparison with PBS control (p < 0.05). Conclusion: Our results suggest, for the first time, the CPC-exosomes can be used as a therapeutic vehicle for cardioprotection, and highlights a new perspective for using non-cell exosomes for cardiac disease.

  5. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury

    International Nuclear Information System (INIS)

    Highlights: ► Cardiac progenitor-derived (CPC) Exosomes protect H9C2 from apoptosis in vitro. ► CPC-exosomes protect cardiomyoyctes from MI/R induced apoptosis in vivo. ► CPC-exosomes were taken up by H9C2 with high efficiency using PKH26 labeling. ► miR-451, one of GATA4-responsive miRNA cluster, is enriched in CPC-exosomes. -- Abstract: Background: Cardiac progenitors (CPC) mediate cardioprotection via paracrine effects. To date, most of studies focused on secreted paracrine proteins. Here we investigated the CPC-derived-exosomes on protecting myocardium from acute ischemia/reperfusion (MI/R) injury. Methods and results: CPC were isolated from mouse heart using two-step protocol. Exosomes were purified from conditional medium, and confirmed by electron micrograph and Western blot using CD63 as a marker. qRT-PCR shows that CPC-exosomes have high level expression of GATA4-responsive-miR-451. Exosomes were ex vivo labeled with PKH26, We observed exosomes can be uptaken by H9C2 cardiomyoblasts with high efficiency after 12 h incubation. CPC-exosomes protect H9C2 from oxidative stress by inhibiting caspase 3/7 activation invitro. In vivo delivery of CPC-exosomes in an acute mouse myocardial ischemia/reperfusion model inhibited cardiomyocyte apoptosis by about 53% in comparison with PBS control (p < 0.05). Conclusion: Our results suggest, for the first time, the CPC-exosomes can be used as a therapeutic vehicle for cardioprotection, and highlights a new perspective for using non-cell exosomes for cardiac disease

  6. Ubiquitination as a Mechanism To Transport Soluble Mycobacterial and Eukaryotic Proteins to Exosomes.

    Science.gov (United States)

    Smith, Victoria L; Jackson, Liam; Schorey, Jeffrey S

    2015-09-15

    Exosomes are extracellular vesicles of endocytic origin that function in intercellular communication. Our previous studies indicate that exosomes released from Mycobacterium tuberculosis-infected macrophages contain soluble mycobacterial proteins. However, it was unclear how these secreted proteins were targeted to exosomes. In this study, we determined that exosome production by the murine macrophage cell line RAW264.7 requires the endosomal sorting complexes required for transport and that trafficking of mycobacterial proteins from phagocytosed bacilli to exosomes was dependent on protein ubiquitination. Moreover, soluble mycobacterial proteins, when added exogenously to RAW264.7 or human HEK293 cells, were endocytosed, ubiquitinated, and released via exosomes. This suggested that endocytosed proteins could be recycled from cells through exosomes. This hypothesis was supported using the tumor-associated protein He4, which, when endocytosed by RAW264.7 or HEK293 cells, was transported to exosomes in a ubiquitin-dependent manner. Our data suggest that ubiquitination is a modification sufficient for trafficking soluble proteins within the phagocytic/endocytic network to exosomes.

  7. The Complete Exosome Workflow Solution: From Isolation to Characterization of RNA Cargo

    Directory of Open Access Journals (Sweden)

    Jeoffrey Schageman

    2013-01-01

    Full Text Available Exosomes are small (30–150 nm vesicles containing unique RNA and protein cargo, secreted by all cell types in culture. They are also found in abundance in body fluids including blood, saliva, and urine. At the moment, the mechanism of exosome formation, the makeup of the cargo, biological pathways, and resulting functions are incompletely understood. One of their most intriguing roles is intercellular communication—exosomes function as the messengers, delivering various effector or signaling macromolecules between specific cells. There is an exponentially growing need to dissect structure and the function of exosomes and utilize them for development of minimally invasive diagnostics and therapeutics. Critical to further our understanding of exosomes is the development of reagents, tools, and protocols for their isolation, characterization, and analysis of their RNA and protein contents. Here we describe a complete exosome workflow solution, starting from fast and efficient extraction of exosomes from cell culture media and serum to isolation of RNA followed by characterization of exosomal RNA content using qRT-PCR and next-generation sequencing techniques. Effectiveness of this workflow is exemplified by analysis of the RNA content of exosomes derived from HeLa cell culture media and human serum, using Ion Torrent PGM as a sequencing platform.

  8. High Levels of Exosomes Expressing CD63 and Caveolin-1 in Plasma of Melanoma Patients

    OpenAIRE

    Logozzi, Mariantonia; De Milito, Angelo; Lugini, Luana; Borghi, Martina; Calabrò, Luana; Spada, Massimo; Perdicchio, Maurizio; MARINO, MARIA LUCIA; Federici, Cristina; Iessi, Elisabetta; Brambilla, Daria; Venturi, Giulietta; Lozupone, Francesco; Santinami, Mario; Huber, Veronica

    2009-01-01

    Background Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. Methodology/Principal Findings We designed an in-house sandwich ELISA (Exotest) to capture and quantify exos...

  9. Exosomes in Human Immunodeficiency Virus Type I Pathogenesis: Threat or Opportunity?

    OpenAIRE

    Sin-Yeang Teow; Alif Che Nordin; Syed A. Ali; Alan Soo-Beng Khoo

    2016-01-01

    Nanometre-sized vesicles, also known as exosomes, are derived from endosomes of diverse cell types and present in multiple biological fluids. Depending on their cellular origins, the membrane-bound exosomes packed a variety of functional proteins and RNA species. These microvesicles are secreted into the extracellular space to facilitate intercellular communication. Collective findings demonstrated that exosomes from HIV-infected subjects share many commonalities with Human Immunodeficiency V...

  10. Platelet-derived exosomes from septic shock patients induce myocardial dysfunction

    OpenAIRE

    Azevedo, Luciano Cesar Pontes; Janiszewski, Mariano; Pontieri, Vera; Pedro, Marcelo de Almeida; Bassi, Estevão; Tucci, Paulo José Ferreira; Laurindo, Francisco Rafael Martins

    2007-01-01

    Introduction Mechanisms underlying inotropic failure in septic shock are incompletely understood. We previously identified the presence of exosomes in the plasma of septic shock patients. These exosomes are released mainly by platelets, produce superoxide, and induce apoptosis in vascular cells by a redox-dependent pathway. We hypothesized that circulating platelet-derived exosomes could contribute to inotropic dysfunction of sepsis. Methods We collected blood samples from 55 patients with se...

  11. Microfluidic device (ExoChip) for On-Chip isolation, quantification and characterization of circulating exosomes

    OpenAIRE

    Kanwar, Shailender Singh; Dunlay, Christopher James; Simeone, Diane M; Nagrath, Sunitha

    2014-01-01

    Membrane bound vesicles, including microvesicles and exosomes, are secreted by both normal and cancerous cells into the extracellular space and in blood circulation. These circulating extracellular vesicles (cirEVs) and exosomes in particular are recognized as a potential source of disease biomarkers. However, to exploit the use of circulatory exosomes as a biomarker, a rapid, high-throughput and reproducible method is required for their isolation and molecular analysis. We have developed a s...

  12. Proteomic and immunologic analyses of brain tumor exosomes

    OpenAIRE

    Graner, Michael W.; Alzate, Oscar; Dechkovskaia, Angelika M.; Keene, Jack D.; Sampson, John H; Mitchell, Duane A; Bigner, Darell D.

    2009-01-01

    Brain tumors are horrific diseases with almost universally fatal outcomes; new therapeutics are desperately needed and will come from improved understandings of glioma biology. Exosomes are endosomally derived 30–100 nm membranous vesicles released from many cell types into the extracellular milieu; surprisingly, exosomes are virtually unstudied in neuro-oncology. These microvesicles were used as vaccines in other tumor settings, but their immunological significance is unevaluated in brain tu...

  13. Exosomes enriched in stemness/metastatic-related mRNAS promote oncogenic potential in breast cancer.

    Science.gov (United States)

    Rodríguez, Marta; Silva, Javier; Herrera, Alberto; Herrera, Mercedes; Peña, Cristina; Martín, Paloma; Gil-Calderón, Beatriz; Larriba, María Jesús; Coronado, M Josés; Soldevilla, Beatriz; Turrión, Víctor S; Provencio, Mariano; Sánchez, Antonio; Bonilla, Félix; García-Barberán, Vanesa

    2015-12-01

    Cancer cells efficiently transfer exosome contents (essentially mRNAs and microRNAs) to other cell types, modifying immune responses, cell growth, angiogenesis and metastasis. Here we analyzed the exosomes release by breast tumor cells with different capacities of stemness/metastasis based on CXCR4 expression, and evaluated their capacity to generate oncogenic features in recipient cells. Breast cancer cells overexpressing CXCR4 showed an increase in stemness-related markers, and in proliferation, migration and invasion capacities. Furthermore, recipient cells treated with exosomes from CXCR4-cells showed increased in the same abilities. Moreover, inoculation of CXCR4-cell-derived exosomes in immunocompromised mice stimulated primary tumor growth and metastatic potential. Comparison of nucleic acids contained into exosomes isolated from patients revealed a "stemness and metastatic" signature in exosomes of patients with worse prognosis. Finally, our data supported the view that cancer cells with stem-like properties show concomitant metastatic behavior, and their exosomes stimulate tumor progression and metastasis. Exosomes-derived nucleic acids from plasma of breast cancer patients are suitable markers in the prognosis of such patients.

  14. 外质体(Exosomes)与肾脏疾病%Exosomes and kidney diseases

    Institute of Scientific and Technical Information of China (English)

    柏云

    2012-01-01

    Exosomes are nanovesicles originating from multivesicular bodies ( MVBs) and secreted into the extracellular space or body fluids when a multivesicular body {endocytic origin) fuses with the plasma membrane. Exosomes contain multiple proteins, mRNAs, microRNAs, and signaling molecules that may reflect the physiological state of their cells of origin and consequently provide potential biomarkers. At present,the studies on exosomes are mostly focused on their roles in immunology and oncology and exosorne-based immunotherapy has become a new means in cancer treatment and immune tolerance. In recent years, urinary exosomes (UE) and their roles in kidney diseases have been receiving great attention. Exosomes are secreted to the urine from all types of renal epithelial cell, including glomerular podocytes, renal tubular cells, and the cells lining the urinary drainage system. Thus, urinary exosomes have potential as a source of valuable biomarkers for early detection of kidney diseases. The present review aims to summarize their biological characteristics,and their potential uses in the diagnosis and treatment of kidney disease.%外质体( Exosomes)足起源于多泡体的微小囊泡,由细胞内吞途径中的多泡体外膜和细胞膜融合后释放到胞外环境或体液中.Exosomes含有多种蛋白、mRNAs、microRNAs、信号分子等,能够反映来源细胞的生物学状态,因而可能成为潜在的生物学标志物.目前,exosomes的研究大多集中在免疫学和肿瘤学,并已经成为一种免疫治疗的新手段,应用于肿瘤治疗和免疫耐受等方面.近年人们才关注exosomes与肾脏疾病的关系,研究表明几乎所有肾脏上皮细胞包括肾小球足细胞、肾小管上皮细胞、尿道上皮细胞均可分泌exosomes,因此尿液来源的exosomes可能成为寻找肾脏疾病早期诊断的标志物.本文着重从exosomes的生物学特性及其在肾脏疾病诊断和治疗的研究进行综述.

  15. Matrix metalloproteinase 13-containing exosomes promote nasopharyngeal carcinoma metastasis.

    Science.gov (United States)

    You, Yiwen; Shan, Ying; Chen, Jing; Yue, Huijun; You, Bo; Shi, Si; Li, Xingyu; Cao, Xiaolei

    2015-12-01

    Nasopharyngeal cancer (NPC) is an endemic type of head and neck cancer with a high rate of cervical lymph node metastasis. Metastasis is the major cause of death in NPC patients. Increasing evidence indicates that exosomes play a pivotal role in promoting cancer metastasis by enhancing angiogenesis and ECM degradation. Matrix metalloproteinase 13 is an important kind of matrix proteinase that is often overexpressed in various tumors and increases the risk of metastasis. However, little is known about the potential role of MMP13-containing exosomes in NPC. In this study, we found that MMP13 was overexpressed in NPC cells and exosomes purified from conditioned medium (CM) as well as NPC patients' plasma. Transwell analysis revealed that MMP13-containing exosomes facilitated the metastasis of NPC cells. Furthermore, siRNA inhibited the effect of MMP13-containing exosomes on tumor cells metastasis as well as angiogenesis. The current findings provided novel insight into the vital role of MMP13-containing exosomes in NPC progression which might offer unique insights for potential therapeutic strategies for NPC progressions.

  16. Exosomes isolation protocols: facts and artifacts for cardiac regeneration.

    Science.gov (United States)

    Angelini, Francesco; Ionta, Vittoria; Rossi, Fabrizio; Pagano, Francesca; Chimenti, Isotta; Messina, Elisa; Giacomello, Alessandro

    2016-01-01

    In recent years, exosomes have attracted increasing scientific interest and are no longer considered just as containers for cell waste, but as important mediators of intercellular communication. Among many biomedical research topics, a possible direct role of exosomes in the regenerative medicine field has been underlined in recent studies, including those regarding the so called "paracrine hypothesis". In this perspective, a therapeutic role and/or use of exosomes for tissue regeneration seems to be plausible. However, the majority of the cells isolated and cultured in vitro are exposed to an exogenous exosomes source because of the wide use of foetal bovine serum as cell culture supplement. Bovine serum has been gradually considered as a major biological stimulus, but with still unknown outcome. In this review, we present the state of the art about the role of exosomes in regenerative medicine, particularly for the cardiovascular system. We also analyse the most commonly used exosome isolation techniques that, since their discovery, have undergone continuous development to reach the highest degree of scalability for future clinical translation. PMID:27100708

  17. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges.

    Science.gov (United States)

    Ha, Dinh; Yang, Ningning; Nadithe, Venkatareddy

    2016-07-01

    Exosomes are small intracellular membrane-based vesicles with different compositions that are involved in several biological and pathological processes. The exploitation of exosomes as drug delivery vehicles offers important advantages compared to other nanoparticulate drug delivery systems such as liposomes and polymeric nanoparticles; exosomes are non-immunogenic in nature due to similar composition as body׳s own cells. In this article, the origin and structure of exosomes as well as their biological functions are outlined. We will then focus on specific applications of exosomes as drug delivery systems in pharmaceutical drug development. An overview of the advantages and challenges faced when using exosomes as a pharmaceutical drug delivery vehicles will also be discussed. PMID:27471669

  18. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges.

    Science.gov (United States)

    Ha, Dinh; Yang, Ningning; Nadithe, Venkatareddy

    2016-07-01

    Exosomes are small intracellular membrane-based vesicles with different compositions that are involved in several biological and pathological processes. The exploitation of exosomes as drug delivery vehicles offers important advantages compared to other nanoparticulate drug delivery systems such as liposomes and polymeric nanoparticles; exosomes are non-immunogenic in nature due to similar composition as body׳s own cells. In this article, the origin and structure of exosomes as well as their biological functions are outlined. We will then focus on specific applications of exosomes as drug delivery systems in pharmaceutical drug development. An overview of the advantages and challenges faced when using exosomes as a pharmaceutical drug delivery vehicles will also be discussed.

  19. Exosomes Mediate LTB4 Release during Neutrophil Chemotaxis.

    Science.gov (United States)

    Majumdar, Ritankar; Tavakoli Tameh, Aidin; Parent, Carole A

    2016-01-01

    Leukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies that, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in a LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments. PMID:26741884

  20. Exosomes Mediate LTB4 Release during Neutrophil Chemotaxis.

    Directory of Open Access Journals (Sweden)

    Ritankar Majumdar

    2016-01-01

    Full Text Available Leukotriene B4 (LTB4 is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies that, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in a LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments.

  1. Exosomes Mediate LTB4 Release during Neutrophil Chemotaxis

    Science.gov (United States)

    Majumdar, Ritankar; Tavakoli Tameh, Aidin; Parent, Carole A.

    2016-01-01

    Leukotriene B4 (LTB4) is secreted by chemotactic neutrophils, forming a secondary gradient that amplifies the reach of primary chemoattractants. This strategy increases the recruitment range for neutrophils and is important during inflammation. Here, we show that LTB4 and its synthesizing enzymes localize to intracellular multivesicular bodies that, upon stimulation, release their content as exosomes. Purified exosomes can activate resting neutrophils and elicit chemotactic activity in a LTB4 receptor-dependent manner. Inhibition of exosome release leads to loss of directional motility with concomitant loss of LTB4 release. Our findings establish that the exosomal pool of LTB4 acts in an autocrine fashion to sensitize neutrophils towards the primary chemoattractant, and in a paracrine fashion to mediate the recruitment of neighboring neutrophils in trans. We envision that this mechanism is used by other signals to foster communication between cells in harsh extracellular environments. PMID:26741884

  2. Exploiting Semiconductor Properties for Hardware Trojans

    CERN Document Server

    Shiyanovskii, Y; Papachristou, C; Weyer, D; Clay, W

    2009-01-01

    This paper discusses the possible introduction of hidden reliability defects during CMOS foundry fabrication processes that may lead to accelerated wearout of the devices. These hidden defects or hardware Trojans can be created by deviation from foundry design rules and processing parameters. The Trojans are produced by exploiting time-based wearing mechanisms (HCI, NBTI, TDDB and EM) and/or condition-based triggers (ESD, Latchup and Softerror). This class of latent damage is difficult to test due to its gradual degradation nature. The paper describes life-time expectancy results for various Trojan induced scenarios. Semiconductor properties, processing and design parameters critical for device reliability and Trojan creation are discussed.

  3. Exosomes: messengers and mediators of tumor–stromal interactions

    Directory of Open Access Journals (Sweden)

    Shkarina K. A.

    2014-11-01

    Full Text Available Intercellular communication is one of the most important factors involved in the maintenance of tissue homeostasis. The alteration of intercellular interaction correlates with a lot of human diseases including cancerogenesis. There are several types of such interconnection. First of all, it is a direct cell-cell contact, as it takes place in epithelium. The disturbance of this communication is expressed as a loss of cell-cell, cell-matrix contacts, disturbances of cell polarity etc. Another way of intercellular interaction involves mutual influence via paracrine factors produced by corresponding cells. However, there is another kind of information exchange between the cells, namely microvesicular transportation. It was revealed that the exosomes take part in intercellular communication in normal tissues as well as in malignant neoplasia. The present review provides the recent information on the formation of exosomes, their composition and especially the exosome participation in tumor-stromal interactions.

  4. Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer.

    Directory of Open Access Journals (Sweden)

    Salma Khan

    Full Text Available BACKGROUND: Survivin is expressed in prostate cancer (PCa, and its downregulation sensitizes PCa cells to chemotherapeutic agents in vitro and in vivo. Small membrane-bound vesicles called exosomes, secreted from the endosomal membrane compartment, contain RNA and protein that they readily transport via exosome internalization into recipient cells. Recent progress has shown that tumor-derived exosomes play multiple roles in tumor growth and metastasis and may produce these functions via immune escape, tumor invasion and angiogenesis. Furthermore, exosome analysis may provide novel biomarkers to diagnose or monitor PCa treatment. METHODS: Exosomes were purified from the plasma and serum from 39 PCa patients, 20 BPH patients, 8 prostate cancer recurrent and 16 healthy controls using ultracentrifugation and their quantities and qualities were quantified and visualized from both the plasma and the purified exosomes using ELISA and Western blotting, respectively. RESULTS: Survivin was significantly increased in the tumor-derived samples, compared to those from BPH and controls with virtually no difference in the quantity of Survivin detected in exosomes collected from newly diagnosed patients exhibiting low (six or high (nine Gleason scores. Exosome Survivin levels were also higher in patients that had relapsed on chemotherapy compared to controls. CONCLUSIONS: These studies demonstrate that Survivin exists in plasma exosomes from both normal, BPH and PCa subjects. The relative amounts of exosomal Survivin in PCa plasma was significantly higher than in those with pre-inflammatory BPH and control plasma. This differential expression of exosomal Survivin was seen with both newly diagnosed and advanced PCa subjects with high or low-grade cancers. Analysis of plasma exosomal Survivin levels may offer a convenient tool for diagnosing or monitoring PCa and may, as it is elevated in low as well as high Gleason scored samples, be used for early detection.

  5. The characterization of exosome from blood plasma of patients with colorectal cancer

    Science.gov (United States)

    Yunusova, N. V.; Tamkovich, S. N.; Stakheeva, M. N.; Afanas'ev, S. G.; Frolova, A. Y.; Kondakova, I. V.

    2016-08-01

    Exosomes are extracellular membrane structures involved in many physiological and pathological processes including cancerogenesis and metastasis. The clarification of the criteria for exosome isolating and identifying is the purpose of this study. Exosome samples from the plasma of patients with colorectal cancer and healthy donors were examined using transmission electron microscopy and flow cytometry in accordance with the minimum requirements of "International Society for Extracellular Vesicles". The choice of the method for isolation of exosomes from the blood plasma by ultrafiltration and ultracentrifugation allowed obtaining highly purified samples of exosomes, in which all the structural components were clearly seen. The results obtained with flow cytometry suggest that exosomes of blood plasma from patients with colorectal cancer can be produced by epithelial cells. Moreover, cells produce different types of exosomes, which correspond to different mechanisms in sorting macromolecules in the membrane of multivesicular bodies. Determination of significant differences in the expression of specific exosomal proteins from colorectal cancer patients compared to healthy donors suggests a high diagnostic potential significance of circulating exosomes.

  6. Coordinate regulation of residual bone marrow function by paracrine trafficking of AML exosomes.

    Science.gov (United States)

    Huan, J; Hornick, N I; Goloviznina, N A; Kamimae-Lanning, A N; David, L L; Wilmarth, P A; Mori, T; Chevillet, J R; Narla, A; Roberts, C T; Loriaux, M M; Chang, B H; Kurre, P

    2015-12-01

    We recently demonstrated that acute myeloid leukemia (AML) cell lines and patient-derived blasts release exosomes that carry RNA and protein; following an in vitro transfer, AML exosomes produce proangiogenic changes in bystander cells. We reasoned that paracrine exosome trafficking may have a broader role in shaping the leukemic niche. In a series of in vitro studies and murine xenografts, we demonstrate that AML exosomes downregulate critical retention factors (Scf, Cxcl12) in stromal cells, leading to hematopoietic stem and progenitor cell (HSPC) mobilization from the bone marrow. Exosome trafficking also regulates HSPC directly, and we demonstrate declining clonogenicity, loss of CXCR4 and c-Kit expression, and the consistent repression of several hematopoietic transcription factors, including c-Myb, Cebp-β and Hoxa-9. Additional experiments using a model of extramedullary AML or direct intrafemoral injection of purified exosomes reveal that the erosion of HSPC function can occur independent of direct cell-cell contact with leukemia cells. Finally, using a novel multiplex proteomics technique, we identified candidate pathways involved in the direct exosome-mediated modulation of HSPC function. In aggregate, this work suggests that AML exosomes participate in the suppression of residual hematopoietic function that precedes widespread leukemic invasion of the bone marrow directly and indirectly via stromal components.

  7. Next-Generation Sequencing of Protein-Coding and Long Non-protein-Coding RNAs in Two Types of Exosomes Derived from Human Whole Saliva.

    Science.gov (United States)

    Ogawa, Yuko; Tsujimoto, Masafumi; Yanoshita, Ryohei

    2016-01-01

    Exosomes are small extracellular vesicles containing microRNAs and mRNAs that are produced by various types of cells. We previously used ultrafiltration and size-exclusion chromatography to isolate two types of human salivary exosomes (exosomes I, II) that are different in size and proteomes. We showed that salivary exosomes contain large repertoires of small RNAs. However, precise information regarding long RNAs in salivary exosomes has not been fully determined. In this study, we investigated the compositions of protein-coding RNAs (pcRNAs) and long non-protein-coding RNAs (lncRNAs) of exosome I, exosome II and whole saliva (WS) by next-generation sequencing technology. Although 11% of all RNAs were commonly detected among the three samples, the compositions of reads mapping to known RNAs were similar. The most abundant pcRNA is ribosomal RNA protein, and pcRNAs of some salivary proteins such as S100 calcium-binding protein A8 (protein S100-A8) were present in salivary exosomes. Interestingly, lncRNAs of pseudogenes (presumably, processed pseudogenes) were abundant in exosome I, exosome II and WS. Translationally controlled tumor protein gene, which plays an important role in cell proliferation, cell death and immune responses, was highly expressed as pcRNA and pseudogenes in salivary exosomes. Our results show that salivary exosomes contain various types of RNAs such as pseudogenes and small RNAs, and may mediate intercellular communication by transferring these RNAs to target cells as gene expression regulators. PMID:27582331

  8. Stimulating the Release of Exosomes Increases the Intercellular Transfer of Prions.

    Science.gov (United States)

    Guo, Belinda B; Bellingham, Shayne A; Hill, Andrew F

    2016-03-01

    Exosomes are small extracellular vesicles released by cells and play important roles in intercellular communication and pathogen transfer. Exosomes have been implicated in several neurodegenerative diseases, including prion disease and Alzheimer disease. Prion disease arises upon misfolding of the normal cellular prion protein, PrP(C), into the disease-associated isoform, PrP(Sc). The disease has a unique transmissible etiology, and exosomes represent a novel and efficient method for prion transmission. The precise mechanism by which prions are transmitted from cell to cell remains to be fully elucidated, although three hypotheses have been proposed: direct cell-cell contact, tunneling nanotubes, and exosomes. Given the reported presence of exosomes in biological fluids and in the lipid and nucleic acid contents of exosomes, these vesicles represent an ideal mechanism for encapsulating prions and potential cofactors to facilitate prion transmission. This study investigates the relationship between exosome release and intercellular prion dissemination. Stimulation of exosome release through treatment with an ionophore, monensin, revealed a corresponding increase in intercellular transfer of prion infectivity. Conversely, inhibition of exosome release using GW4869 to target the neutral sphingomyelinase pathway induced a decrease in intercellular prion transmission. Further examination of the effect of monensin on PrP conversion revealed that monensin also alters the conformational stability of PrP(C), leading to increased generation of proteinase K-resistant prion protein. The findings presented here provide support for a positive relationship between exosome release and intercellular transfer of prion infectivity, highlighting an integral role for exosomes in facilitating the unique transmissible nature of prions.

  9. Stimulating the Release of Exosomes Increases the Intercellular Transfer of Prions.

    Science.gov (United States)

    Guo, Belinda B; Bellingham, Shayne A; Hill, Andrew F

    2016-03-01

    Exosomes are small extracellular vesicles released by cells and play important roles in intercellular communication and pathogen transfer. Exosomes have been implicated in several neurodegenerative diseases, including prion disease and Alzheimer disease. Prion disease arises upon misfolding of the normal cellular prion protein, PrP(C), into the disease-associated isoform, PrP(Sc). The disease has a unique transmissible etiology, and exosomes represent a novel and efficient method for prion transmission. The precise mechanism by which prions are transmitted from cell to cell remains to be fully elucidated, although three hypotheses have been proposed: direct cell-cell contact, tunneling nanotubes, and exosomes. Given the reported presence of exosomes in biological fluids and in the lipid and nucleic acid contents of exosomes, these vesicles represent an ideal mechanism for encapsulating prions and potential cofactors to facilitate prion transmission. This study investigates the relationship between exosome release and intercellular prion dissemination. Stimulation of exosome release through treatment with an ionophore, monensin, revealed a corresponding increase in intercellular transfer of prion infectivity. Conversely, inhibition of exosome release using GW4869 to target the neutral sphingomyelinase pathway induced a decrease in intercellular prion transmission. Further examination of the effect of monensin on PrP conversion revealed that monensin also alters the conformational stability of PrP(C), leading to increased generation of proteinase K-resistant prion protein. The findings presented here provide support for a positive relationship between exosome release and intercellular transfer of prion infectivity, highlighting an integral role for exosomes in facilitating the unique transmissible nature of prions. PMID:26769968

  10. Maximizing exosome colloidal stability following electroporation.

    Science.gov (United States)

    Hood, Joshua L; Scott, Michael J; Wickline, Samuel A

    2014-03-01

    Development of exosome-based semisynthetic nanovesicles for diagnostic and therapeutic purposes requires novel approaches to load exosomes with cargo. Electroporation has previously been used to load exosomes with RNA. However, investigations into exosome colloidal stability following electroporation have not been considered. Herein, we report the development of a unique trehalose pulse media (TPM) that minimizes exosome aggregation following electroporation. Dynamic light scattering (DLS) and RNA absorbance were employed to determine the extent of exosome aggregation and electroextraction post electroporation in TPM compared to common PBS pulse media or sucrose pulse media (SPM). Use of TPM to disaggregate melanoma exosomes post electroporation was dependent on both exosome concentration and electric field strength. TPM maximized exosome dispersal post electroporation for both homogenous B16 melanoma and heterogeneous human serum-derived populations of exosomes. Moreover, TPM enabled heavy cargo loading of melanoma exosomes with 5nm superparamagnetic iron oxide nanoparticles (SPION5) while maintaining original exosome size and minimizing exosome aggregation as evidenced by transmission electron microscopy. Loading exosomes with SPION5 increased exosome density on sucrose gradients. This provides a simple, label-free means of enriching exogenously modified exosomes and introduces the potential for MRI-driven theranostic exosome investigations in vivo.

  11. Dendritic cells serve as a “Trojan horse” for oncolytic adenovirus delivery in the treatment of mouse prostate cancer

    Science.gov (United States)

    Li, Zhao-lun; Liang, Xuan; Li, He-cheng; Wang, Zi-ming; Chong, Tie

    2016-01-01

    Aim: Adenovirus-mediated gene therapy is a novel therapeutic approach for the treatment of cancer, in which replication of the virus itself is the anticancer method. However, the success of this novel therapy is limited due to inefficient delivery of the virus to the target sites. In this study, we used dendritic cells (DCs) as carriers for conditionally replicating adenoviruses (CRAds) in targeting prostate carcinoma (PCa). Methods: Four types of CRAds, including Ad-PC (without PCa-specific promoter and a recombinant human tumor necrosis factor, rmhTNF, sequence), Ad-PC-rmhTNF (without PCa-specific promoter), Ad-PPC-NCS (without an rmhTNF sequence) and Ad-PPC-rmhTNF, were constructed. The androgen-insensitive mouse PCa RM-1 cells were co-cultured with CRAd-loading DCs, and the viability of RM-1 cells was examined using MTT assay. The in vivo effects of CRAd-loading DCs on PCa were evaluated in RM-1 xenograft mouse model. Results: Two PCa-specific CRAds (Ad-PPC-NCS, Ad-PPC-rmhTNF) exhibited more potent suppression on the viability of RM-1 cells in vitro than the PCa-non-specific CRAds (Ad-PC, Ad-PC-rmhTNF). In PCa-bearing mice, intravenous injection of the PCa-specific CRAd-loading DCs significantly inhibited the growth of xenografted tumors, extended the survival time, and induced T-cell activation. Additionally, the rmhTNF-containing CRAds exhibited greater tumor killing ability than CRAds without rmhTNF. Conclusion: DCs may be an effective vector for the delivery of CRAds in the treatment of PCa. PMID:27345628

  12. Exosomes and Their Significance in Diagnosis and Treatment of Tumors

    Directory of Open Access Journals (Sweden)

    Jian WANG

    2015-12-01

    Full Text Available Abstract In the research field of biological markers for tumor diagnosis, the appearance of exosomes has resolved the problem that RNA molecules can be easily degraded. Exosomes carry various RNAs and can protect them from being degraded. They are defined as polymorphism vesicle-like corpuscles (diameter: 30-100 nm derived from late endosome or multi-vesicular endosomes in cellular endocytosis system, which contain abundant biological information, including multiple lipids, proteins and nucleic acids, etc. Exosomes are extracellular nanoscale vesicae formed in a series of regulating process of cellular “endocytosis-fusion-excretion”, and they carry proteins and transport RNAs, thus playing an important role in the intercellular material and informational transduction. There are still large amount of mRNAs and miRNAs in exosomes. Exosomes can not only protect in-vitro RNA stability, but also transfer RNA to specific target cells as effective carriers so as to play their regulatory function. Exosomes realize their biological information exchanges and transition via endocrine, paracrine and autocrine, and regulate cellular biological activities through direct action on superficial signal molecules or extracellular release and membrane fusion of biological active ingredients. They can directly act on tumors to impact tumor progression, or improve tumor angiogenesis and metastasis by regulating immunological function. Additionally, they can also be used for tumor diagnosis. Therefore, this study mainly summarized the biological characteristics of exosomes and their application in the regulation, diagnosis and treatment of tumors, hoping to provide references for the application of exosomes in tumors.

  13. Where are the Uranus Trojans?

    OpenAIRE

    Dvorak, R.; Bazsó, Á.; Zhou, L.-Y.

    2010-01-01

    Abstract The area of stable motion for fictitious Trojan asteroids around Uranus? equilateral equilibrium points is investigated with respect to the inclination of the asteroid?s orbit to determine the size of the regions and their shape. For this task we used the results of extensive numerical integrations of orbits for a grid of initial conditions around the points L4 and L5, and analyzed the stability of the individual orbits. Our basic dynamical model was the Outer Solar System...

  14. Identification and characterization of EGF receptor in individual exosomes by fluorescence-activated vesicle sorting.

    Science.gov (United States)

    Higginbotham, James N; Zhang, Qin; Jeppesen, Dennis K; Scott, Andrew M; Manning, H Charles; Ochieng, Josiah; Franklin, Jeffrey L; Coffey, Robert J

    2016-01-01

    Exosomes are small, 40-130 nm secreted extracellular vesicles that recently have become the subject of intense focus as agents of intercellular communication, disease biomarkers and potential vehicles for drug delivery. It is currently unknown whether a cell produces different populations of exosomes with distinct cargo and separable functions. To address this question, high-resolution methods are needed. Using a commercial flow cytometer and directly labelled fluorescent antibodies, we show the feasibility of using fluorescence-activated vesicle sorting (FAVS) to analyse and sort individual exosomes isolated by sequential ultracentrifugation from the conditioned medium of DiFi cells, a human colorectal cancer cell line. EGFR and the exosomal marker, CD9, were detected on individual DiFi exosomes by FAVS; moreover, both markers were identified by high-resolution stochastic optical reconstruction microscopy on individual, approximately 100 nm vesicles from flow-sorted EGFR/CD9 double-positive exosomes. We present evidence that the activation state of EGFR can be assessed in DiFi-derived exosomes using a monoclonal antibody (mAb) that recognizes "conformationally active" EGFR (mAb 806). Using human antigen-specific antibodies, FAVS was able to detect human EGFR and CD9 on exosomes isolated from the plasma of athymic nude mice bearing DiFi tumour xenografts. Multicolour FAVS was used to simultaneously identify CD9, EGFR and an EGFR ligand, amphiregulin (AREG), on human plasma-derived exosomes from 3 normal individuals. These studies demonstrate the feasibility of FAVS to both analyse and sort individual exosomes based on specific cell-surface markers. We propose that FAVS may be a useful tool to monitor EGFR and AREG in circulating exosomes from individuals with colorectal cancer and possibly other solid tumours. PMID:27345057

  15. Identification and characterization of EGF receptor in individual exosomes by fluorescence-activated vesicle sorting

    Science.gov (United States)

    Higginbotham, James N.; Zhang, Qin; Jeppesen, Dennis K.; Scott, Andrew M.; Manning, H. Charles; Ochieng, Josiah; Franklin, Jeffrey L.; Coffey, Robert J.

    2016-01-01

    Exosomes are small, 40–130 nm secreted extracellular vesicles that recently have become the subject of intense focus as agents of intercellular communication, disease biomarkers and potential vehicles for drug delivery. It is currently unknown whether a cell produces different populations of exosomes with distinct cargo and separable functions. To address this question, high-resolution methods are needed. Using a commercial flow cytometer and directly labelled fluorescent antibodies, we show the feasibility of using fluorescence-activated vesicle sorting (FAVS) to analyse and sort individual exosomes isolated by sequential ultracentrifugation from the conditioned medium of DiFi cells, a human colorectal cancer cell line. EGFR and the exosomal marker, CD9, were detected on individual DiFi exosomes by FAVS; moreover, both markers were identified by high-resolution stochastic optical reconstruction microscopy on individual, approximately 100 nm vesicles from flow-sorted EGFR/CD9 double-positive exosomes. We present evidence that the activation state of EGFR can be assessed in DiFi-derived exosomes using a monoclonal antibody (mAb) that recognizes “conformationally active” EGFR (mAb 806). Using human antigen-specific antibodies, FAVS was able to detect human EGFR and CD9 on exosomes isolated from the plasma of athymic nude mice bearing DiFi tumour xenografts. Multicolour FAVS was used to simultaneously identify CD9, EGFR and an EGFR ligand, amphiregulin (AREG), on human plasma-derived exosomes from 3 normal individuals. These studies demonstrate the feasibility of FAVS to both analyse and sort individual exosomes based on specific cell-surface markers. W