WorldWideScience

Sample records for cells transcriptomics complements

  1. RNA-seq and microarray complement each other in transcriptome profiling

    Directory of Open Access Journals (Sweden)

    Kogenaru Sunitha

    2012-11-01

    Full Text Available Abstract Background RNA-seq and microarray are the two popular methods employed for genome-wide transcriptome profiling. Current comparison studies have shown that transcriptome quantified by these two methods correlated well. However, none of them have addressed if they complement each other, considering the strengths and the limitations inherent with them. The pivotal requirement to address this question is the knowledge of a well known data set. In this regard, HrpX regulome from pathogenic bacteria serves as an ideal choice as the target genes of HrpX transcription factor are well studied due to their central role in pathogenicity. Results We compared the performance of RNA-seq and microarray in their ability to detect known HrpX target genes by profiling the transcriptome from the wild-type and the hrpX mutant strains of γ-Proteobacterium Xanthomonas citri subsp. citri. Our comparative analysis indicated that gene expression levels quantified by RNA-seq and microarray well-correlated both at absolute as well as relative levels (Spearman correlation-coefficient, rs > 0.76. Further, the expression levels quantified by RNA-seq and microarray for the significantly differentially expressed genes (DEGs also well-correlated with qRT-PCR based quantification (rs = 0.58 to 0.94. Finally, in addition to the 55 newly identified DEGs, 72% of the already known HrpX target genes were detected by both RNA-seq and microarray, while, the remaining 28% could only be detected by either one of the methods. Conclusions This study has significantly advanced our understanding of the regulome of the critical transcriptional factor HrpX. RNA-seq and microarray together provide a more comprehensive picture of HrpX regulome by uniquely identifying new DEGs. Our study demonstrated that RNA-seq and microarray complement each other in transcriptome profiling.

  2. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses.

    Directory of Open Access Journals (Sweden)

    Guido Moll

    Full Text Available Infusion of human third-party mesenchymal stromal cells (MSCs appears to be a promising therapy for acute graft-versus-host disease (aGvHD. To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46 and DAF (CD55, but were protected from complement lysis via expression of protectin (CD59. Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.

  3. Evolution of the complement system in protostomes revealed by de novo transcriptome analysis of six species of Arthropoda.

    Science.gov (United States)

    Sekiguchi, Reo; Nonaka, Masaru

    2015-05-01

    To elucidate the evolutionary history of the complement system in Arthropoda, de novo transcriptome analysis was performed with six species among the Chelicerata, Myriapoda, and Crustacea, and complement genes were identified based on their characteristic domain structures. Complement C3 and factor B (FB) were identified from a sea spider, a jumping spider, and a centipede, but not from a sea firefly or two millipede species. No additional complement components identifiable by their characteristic domain structures were found from any of these six species. These results together with genome sequence information for several species of the Hexapoda suggest that the common ancestor of the Arthropoda possessed a simple complement system comprising C3 and FB, and thus resembled the alternative pathway of the mammalian complement system. It was lost at least twice independently during the evolution of Arthropoda in the millipede lineage and in the common ancestor of Crustacea and Hexapoda.

  4. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.

    Science.gov (United States)

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T; Sorensen, Staci A; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-02-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. We constructed a cellular taxonomy of one cortical region, primary visual cortex, in adult mice on the basis of single-cell RNA sequencing. We identified 49 transcriptomic cell types, including 23 GABAergic, 19 glutamatergic and 7 non-neuronal types. We also analyzed cell type-specific mRNA processing and characterized genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we found that some of our transcriptomic cell types displayed specific and differential electrophysiological and axon projection properties, thereby confirming that the single-cell transcriptomic signatures can be associated with specific cellular properties.

  5. Complementation of mutant phenotypes and genotypes of cultured mammalian cells

    NARCIS (Netherlands)

    A.J.R. de Jonge

    1985-01-01

    textabstractThis dissertation describes experiments aimed at the complementation of a genetic mutation in cultured mammalian cells in order to investigate several aspects of the structure and functioning of the human genome. Complementation is indicated by the correction of a biochemical function in

  6. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    Full Text Available BACKGROUND: The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. METHODOLOGY/PRINCIPAL FINDINGS: Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. CONCLUSION/SIGNIFICANCE: The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of

  7. Transcriptome changes during intestinal cell differentiation

    DEFF Research Database (Denmark)

    Tadjali, Mehrdad; Seidelin, Jakob B; Olsen, Jørgen Lillelund;

    2002-01-01

    The expression of 18149 genes have been analysed during the differentiation of the human intestinal cell line Caco-2. cDNA probes from undifferentiated and differentiated Caco-2 cells were separately hybridised to EST DNAs spotted in an array on a nylon membrane. A remarkable change...... in the transcriptome was observed during the differentiation of the Caco-2 cells. 8762 of the 18149 genes analysed were expressed above background level in the undifferentiated Caco-2 cells, whereas only 5767 genes were expressed above background in differentiated Caco-2 cells. This pattern of expression was caused...... by a general down-regulation of genes in the low abundance class. Similar results were found using mouse small intestinal crypt and villus cells, suggesting that the phenomenon also occurs in the intestine in vivo. The expression data were subsequently used in a search for markers for subsets of epithelial...

  8. Transcriptome changes during intestinal cell differentiation

    DEFF Research Database (Denmark)

    Tadjali, Mehrdad; Seidelin, Jakob B; Olsen, Jørgen;

    2002-01-01

    in the transcriptome was observed during the differentiation of the Caco-2 cells. 8762 of the 18149 genes analysed were expressed above background level in the undifferentiated Caco-2 cells, whereas only 5767 genes were expressed above background in differentiated Caco-2 cells. This pattern of expression was caused...... by a general down-regulation of genes in the low abundance class. Similar results were found using mouse small intestinal crypt and villus cells, suggesting that the phenomenon also occurs in the intestine in vivo. The expression data were subsequently used in a search for markers for subsets of epithelial...... cells by performing reverse transcriptase-polymerase chain reaction on RNA extracted from laser dissected intestinal crypt and villi. In a screen of eight transcripts one - SART3 - was identified as a marker for human colonic crypts....

  9. Single-cell transcriptomics enters the age of mass production

    NARCIS (Netherlands)

    Junker, Jan Philipp; van Oudenaarden, Alexander

    2015-01-01

    Two publications in the current issue of Cell introduce novel methods for high-throughput single-cell transcriptomics by using droplet microfluidics and sophisticated barcoding schemes for transcriptional profiling of thousands of individual cells.

  10. Transcriptomic dissection of tongue squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Schwartz Joel L

    2008-02-01

    Full Text Available Abstract Background The head and neck/oral squamous cell carcinoma (HNOSCC is a diverse group of cancers, which develop from many different anatomic sites and are associated with different risk factors and genetic characteristics. The oral tongue squamous cell carcinoma (OTSCC is one of the most common types of HNOSCC. It is significantly more aggressive than other forms of HNOSCC, in terms of local invasion and spread. In this study, we aim to identify specific transcriptomic signatures that associated with OTSCC. Results Genome-wide transcriptomic profiles were obtained for 53 primary OTSCCs and 22 matching normal tissues. Genes that exhibit statistically significant differences in expression between OTSCCs and normal were identified. These include up-regulated genes (MMP1, MMP10, MMP3, MMP12, PTHLH, INHBA, LAMC2, IL8, KRT17, COL1A2, IFI6, ISG15, PLAU, GREM1, MMP9, IFI44, CXCL1, and down-regulated genes (KRT4, MAL, CRNN, SCEL, CRISP3, SPINK5, CLCA4, ADH1B, P11, TGM3, RHCG, PPP1R3C, CEACAM7, HPGD, CFD, ABCA8, CLU, CYP3A5. The expressional difference of IL8 and MMP9 were further validated by real-time quantitative RT-PCR and immunohistochemistry. The Gene Ontology analysis suggested a number of altered biological processes in OTSCCs, including enhancements in phosphate transport, collagen catabolism, I-kappaB kinase/NF-kappaB signaling cascade, extracellular matrix organization and biogenesis, chemotaxis, as well as suppressions of superoxide release, hydrogen peroxide metabolism, cellular response to hydrogen peroxide, keratinization, and keratinocyte differentiation in OTSCCs. Conclusion In summary, our study provided a transcriptomic signature for OTSCC that may lead to a diagnosis or screen tool and provide the foundation for further functional validation of these specific candidate genes for OTSCC.

  11. Complement-dependent transport of antigen into B cell follicles

    DEFF Research Database (Denmark)

    Gonzalez, Santiago F.; Lukacs-Kornek, Veronika; Kuligowski, Michael P.

    2010-01-01

    an additional novel pathway in which complement C3 and its receptors enhance humoral immunity through delivery of Ag to the B cell compartment. In this review, we discuss this pathway and highlight several novel exceptions recently found with a model influenza vaccine, such as mannose-binding lectin...

  12. T Cell Transcriptomes Describe Patient Subtypes in Systemic Lupus Erythematosus.

    Directory of Open Access Journals (Sweden)

    Sean J Bradley

    Full Text Available T cells regulate the adaptive immune response and have altered function in autoimmunity. Systemic Lupus Erythematosus (SLE has great diversity of presentation and treatment response. Peripheral blood component gene expression affords an efficient platform to investigate SLE immune dysfunction and help guide diagnostic biomarker development for patient stratification.Gene expression in peripheral blood T cell samples for 14 SLE patients and 4 controls was analyzed by high depth sequencing. Unbiased clustering of genes and samples revealed novel patterns related to disease etiology. Functional annotation of these genes highlights pathways and protein domains involved in SLE manifestation.We found transcripts for hundreds of genes consistently altered in SLE T cell samples, for which DAVID analysis highlights induction of pathways related to mitochondria, nucleotide metabolism and DNA replication. Fewer genes had reduced mRNA expression, and these were linked to signaling, splicing and transcriptional activity. Gene signatures associated with the presence of dsDNA antibodies, low complement levels and nephritis were detected. T cell gene expression also indicates the presence of several patient subtypes, such as having only a minimal expression phenotype, male type, or severe with or without induction of genes related to membrane protein production.Unbiased transcriptome analysis of a peripheral blood component provides insight on autoimmune pathophysiology and patient variability. We present an open source workflow and richly annotated dataset to support investigation of T cell biology, develop biomarkers for patient stratification and perhaps help indicate a source of SLE immune dysfunction.

  13. Role of Complement in Red Cell Dysfunction in Trauma

    Science.gov (United States)

    2013-12-01

    such as in systemic lupus erythematosus (SLE), complement fragments deposit on the surface of red blood cells (RBC), which limits their...Peng C-K, Nicholson-Weller A, L. GA. Complex dynamics of human red blood cell flickering: Alterations with in vivo aging. Physical Review E. 2008;78...destruction: potential use in transfusion therapy . Blood. 2003;101:5046-5052. 22. Vaya A, Lopez JM, Contreras MT, et al. Erythrocyte deformability in

  14. Single-cell transcriptome analysis of endometrial tissue

    OpenAIRE

    Krjutškov, K.; Katayama, S .; Saare, M; Vera-Rodriguez, M.; Lubenets, D.; Samuel, K.; Laisk-Podar, T.; Teder, H.; Einarsdottir, E.; Salumets, A.; Kere, J.

    2016-01-01

    STUDY QUESTION How can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level? SUMMARY ANSWER By compiling and developing novel analytical tools for biopsy, tissue cryopreservation and disaggregation, single-cell sorting, library preparation, RNA sequencing (RNA-seq) and statistical data analysis. WHAT IS KNOWN ALREADY Although single-cell transcriptome analyses from various biopsied tissues have been published recently, corresponding protocols fo...

  15. Single cell transcriptome analysis using next generation sequencing.

    OpenAIRE

    Blattner, M.

    2010-01-01

    The heterogeneity of tissues, especially in cancer research, is a central issue in transcriptome analysis. In recent years, research has primarily focused on the development of methods for single cell analysis. Single cell analysis aims at gaining (novel) insights into biological processes of healthy and diseased cells. Some of the challenges in transcriptome analysis concern low abundance of sample starting material, necessary sample amplification steps and subsequent analysis. In this study...

  16. Validation of noise models for single-cell transcriptomics

    NARCIS (Netherlands)

    Grün, Dominic; Kester, Lennart; van Oudenaarden, Alexander

    2014-01-01

    Single-cell transcriptomics has recently emerged as a powerful technology to explore gene expression heterogeneity among single cells. Here we identify two major sources of technical variability: sampling noise and global cell-to-cell variation in sequencing efficiency. We propose noise models to co

  17. Complement activation by tubular cells is mediated by properdin binding

    NARCIS (Netherlands)

    Gaarkeuken, E.M.; Siezenga, M.A.; Zuidwijk, K.; Kooten, C. van; Rabelink, T.J.; Daha, M.R.; Berger, S.P.

    2008-01-01

    Activation of filtered complement products on the brush border of the tubular epithelium is thought to be a key factor underlying proteinuria-induced tubulointerstitial injury. However, the mechanism of tubular complement activation is still unclear. Recent studies on mechanisms of complement activa

  18. Microfluidic single-cell whole-transcriptome sequencing.

    Science.gov (United States)

    Streets, Aaron M; Zhang, Xiannian; Cao, Chen; Pang, Yuhong; Wu, Xinglong; Xiong, Liang; Yang, Lu; Fu, Yusi; Zhao, Liang; Tang, Fuchou; Huang, Yanyi

    2014-05-13

    Single-cell whole-transcriptome analysis is a powerful tool for quantifying gene expression heterogeneity in populations of cells. Many techniques have, thus, been recently developed to perform transcriptome sequencing (RNA-Seq) on individual cells. To probe subtle biological variation between samples with limiting amounts of RNA, more precise and sensitive methods are still required. We adapted a previously developed strategy for single-cell RNA-Seq that has shown promise for superior sensitivity and implemented the chemistry in a microfluidic platform for single-cell whole-transcriptome analysis. In this approach, single cells are captured and lysed in a microfluidic device, where mRNAs with poly(A) tails are reverse-transcribed into cDNA. Double-stranded cDNA is then collected and sequenced using a next generation sequencing platform. We prepared 94 libraries consisting of single mouse embryonic cells and technical replicates of extracted RNA and thoroughly characterized the performance of this technology. Microfluidic implementation increased mRNA detection sensitivity as well as improved measurement precision compared with tube-based protocols. With 0.2 M reads per cell, we were able to reconstruct a majority of the bulk transcriptome with 10 single cells. We also quantified variation between and within different types of mouse embryonic cells and found that enhanced measurement precision, detection sensitivity, and experimental throughput aided the distinction between biological variability and technical noise. With this work, we validated the advantages of an early approach to single-cell RNA-Seq and showed that the benefits of combining microfluidic technology with high-throughput sequencing will be valuable for large-scale efforts in single-cell transcriptome analysis.

  19. Generation of Viable Mice from Induced Pluripotent Stem Cells (iPSCs) Through Tetraploid Complementation.

    Science.gov (United States)

    Kang, Lan; Gao, Shaorong

    2015-01-01

    Tetraploid complementation assay is the most rigorous criteria for pluripotency characterization of pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Pluripotent stem cells could complement the developmental deficiency of tetraploid embryos and thus support the full-term mice development. Here we describe the protocol for tetraploid complementation using iPSCs to produce viable all-iPSC mice.

  20. Complement activation in the context of stem cells and tissue repair

    Institute of Scientific and Technical Information of China (English)

    Ingrid; U; Schraufstatter; Sophia; K; Khaldoyanidi; Richard; G; DiScipio

    2015-01-01

    The complement pathway is best known for its role in immune surveillance and inflammation. However,its ability of opsonizing and removing not only pathogens,but also necrotic and apoptotic cells,is a phylogenetically ancient means of initiating tissue repair. The means and mechanisms of complement-mediated tissue repair are discussed in this review. There is increasing evidence that complement activation contributes to tissue repair at several levels. These range from the chemo-attraction of stem and progenitor cells to areas of complement activation,to increased survival of various cell types in the presence of split products of complement,and to the production of trophic factors by cells activated by the anaphylatoxins C3 a and C5 a. This repair aspect of complement biology has not found sufficient appreciation until recently. The following will examine this aspect of complement biology with an emphasis on the anaphylatoxins C3 a and C5 a.

  1. Susceptibility of KSHV-Infected PEL Cell Lines to the Human Complement System.

    Science.gov (United States)

    Yoo, Seung-Min; Jeon, Hyungtaek; Lee, Suhyuk; Lee, Myung-Shin

    2016-03-01

    Pleural effusion lymphoma (PEL) is a rare B-cell lymphoma that has a very poor prognosis with a median survival time of around 6 months. PEL is caused by Kaposi's sarcoma-associated herpesvirus, and is often co-infected with the Epstein Barr virus. The complement system is fundamental in the innate immune system against pathogen invasion and tumor development. In the present study, we investigated the activation of the complement system in PEL cells using human serum complements. Interestingly, two widely used PEL cell lines, BCP-1 and BCBL-1, showed different susceptibility to the complement system, which may be due to CD46 expression on their cell membranes. Complement activation did not induce apoptosis but supported cell survival considerably. Our results demonstrated the susceptibility of PEL to the complement system and its underlying mechanisms, which would provide insight into understanding the pathogenesis of PEL.

  2. Inefficient complement system clearance of Trypanosoma cruzi metacyclic trypomastigotes enables resistant strains to invade eukaryotic cells.

    Directory of Open Access Journals (Sweden)

    Igor Cestari

    Full Text Available The complement system is the main arm of the vertebrate innate immune system against pathogen infection. For the protozoan Trypanosoma cruzi, the causative agent of Chagas disease, subverting the complement system and invading the host cells is crucial to succeed in infection. However, little attention has focused on whether the complement system can effectively control T. cruzi infection. To address this question, we decided to analyse: 1 which complement pathways are activated by T. cruzi using strains isolated from different hosts, 2 the capacity of these strains to resist the complement-mediated killing at nearly physiological conditions, and 3 whether the complement system could limit or control T. cruzi invasion of eukaryotic cells. The complement activating molecules C1q, C3, mannan-binding lectin and ficolins bound to all strains analysed; however, C3b and C4b deposition assays revealed that T. cruzi activates mainly the lectin and alternative complement pathways in non-immune human serum. Strikingly, we detected that metacyclic trypomastigotes of some T. cruzi strains were highly susceptible to complement-mediated killing in non-immune serum, while other strains were resistant. Furthermore, the rate of parasite invasion in eukaryotic cells was decreased by non-immune serum. Altogether, these results establish that the complement system recognizes T. cruzi metacyclic trypomastigotes, resulting in killing of susceptible strains. The complement system, therefore, acts as a physiological barrier which resistant strains have to evade for successful host infection.

  3. Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1

    Science.gov (United States)

    Ellegård, Rada; Crisci, Elisa; Andersson, Jonas; Shankar, Esaki M.; Nyström, Sofia; Hinkula, Jorma

    2015-01-01

    Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection. PMID:26157174

  4. Binding of Streptococcus pneumoniae endopeptidase O (PepO) to complement component C1q modulates the complement attack and promotes host cell adherence.

    Science.gov (United States)

    Agarwal, Vaibhav; Sroka, Magdalena; Fulde, Marcus; Bergmann, Simone; Riesbeck, Kristian; Blom, Anna M

    2014-05-30

    The Gram-positive species Streptococcus pneumoniae is a human pathogen causing severe local and life-threatening invasive diseases associated with high mortality rates and death. We demonstrated recently that pneumococcal endopeptidase O (PepO) is a ubiquitously expressed, multifunctional plasminogen and fibronectin-binding protein facilitating host cell invasion and evasion of innate immunity. In this study, we found that PepO interacts directly with the complement C1q protein, thereby attenuating the classical complement pathway and facilitating pneumococcal complement escape. PepO binds both free C1q and C1 complex in a dose-dependent manner based on ionic interactions. Our results indicate that recombinant PepO specifically inhibits the classical pathway of complement activation in both hemolytic and complement deposition assays. This inhibition is due to direct interaction of PepO with C1q, leading to a strong activation of the classical complement pathway, and results in consumption of complement components. In addition, PepO binds the classical complement pathway inhibitor C4BP, thereby regulating downstream complement activation. Importantly, pneumococcal surface-exposed PepO-C1q interaction mediates bacterial adherence to host epithelial cells. Taken together, PepO facilitates C1q-mediated bacterial adherence, whereas its localized release consumes complement as a result of its activation following binding of C1q, thus representing an additional mechanism of human complement escape by this versatile pathogen.

  5. Transcriptome Analysis of the Innate Immunity-Related Complement System in Spleen Tissue of Ctenopharyngodon idella Infected with Aeromonas hydrophila.

    Directory of Open Access Journals (Sweden)

    Yunfei Dang

    Full Text Available The grass carp (Ctenopharyngodon idella is an important commercial farmed herbivorous fish species in China, but is susceptible to Aeromonas hydrophila infections. In the present study, we performed de novo RNA-Seq sequencing of spleen tissue from specimens of a disease-resistant family, which were given intra-peritoneal injections containing PBS with or without a dose of A. hydrophila. The fish were sampled from the control group at 0 h, and from the experimental group at 4, 8, 12, 24, 48 and 72 h. 122.18 million clean reads were obtained from the normalized cDNA libraries; these were assembled into 425,260 contigs and then 191,795 transcripts. Of those, 52,668 transcripts were annotated with the NCBI Nr database, and 41,347 of the annotated transcripts were assigned into 90 functional groups. 20,569 unigenes were classified into six main categories, including 38 secondary KEGG pathways. 2,992 unigenes were used in the analysis of differentially expressed genes (DEGs. 89 of the putative DEGs were related to the immune system and 41 of them were involved in the complement and coagulation cascades pathway. This study provides insights into the complement and complement-related pathways involved in innate immunity, through expression profile analysis of the genomic resources in C. idella. We conclude that complement and complement-related genes play important roles during defense against A. hydrophila infection. The immune response is activated at 4 h after the bacterial injections, indicating that the complement pathways are activated at the early stage of bacterial infection. The study has improved our understanding of the immune response mechanisms in C. idella to bacterial pathogens.

  6. Genome-wide transcriptome analysis of 150 cell samples†

    Science.gov (United States)

    Russom, Aman; Xiao, Wenzhong; Wilhelmy, Julie; Wang, Shenglong; Heath, Joe Don; Kurn, Nurith; Tompkins, Ronald G.; Davis, Ronald W.; Toner, Mehmet

    2013-01-01

    A major challenge in molecular biology is interrogating the human transcriptome on a genome wide scale when only a limited amount of biological sample is available for analysis. Current methodologies using microarray technologies for simultaneously monitoring mRNA transcription levels require nanogram amounts of total RNA. To overcome the sample size limitation of current technologies, we have developed a method to probe the global gene expression in biological samples as small as 150 cells, or the equivalent of approximately 300 pg total RNA. The new method employs microfluidic devices for the purification of total RNA from mammalian cells and ultra-sensitive whole transcriptome amplification techniques. We verified that the RNA integrity is preserved through the isolation process, accomplished highly reproducible whole transcriptome analysis, and established high correlation between repeated isolations of 150 cells and the same cell culture sample. We validated the technology by demonstrating that the combined microfluidic and amplification protocol is capable of identifying biological pathways perturbed by stimulation, which are consistent with the information recognized in bulk-isolated samples. PMID:20023796

  7. Genome-wide transcriptome analysis of 150 cell samples.

    Science.gov (United States)

    Irimia, Daniel; Mindrinos, Michael; Russom, Aman; Xiao, Wenzhong; Wilhelmy, Julie; Wang, Shenglong; Heath, Joe Don; Kurn, Nurith; Tompkins, Ronald G; Davis, Ronald W; Toner, Mehmet

    2009-01-01

    A major challenge in molecular biology is interrogating the human transcriptome on a genome wide scale when only a limited amount of biological sample is available for analysis. Current methodologies using microarray technologies for simultaneously monitoring mRNA transcription levels require nanogram amounts of total RNA. To overcome the sample size limitation of current technologies, we have developed a method to probe the global gene expression in biological samples as small as 150 cells, or the equivalent of approximately 300 pg total RNA. The new method employs microfluidic devices for the purification of total RNA from mammalian cells and ultra-sensitive whole transcriptome amplification techniques. We verified that the RNA integrity is preserved through the isolation process, accomplished highly reproducible whole transcriptome analysis, and established high correlation between repeated isolations of 150 cells and the same cell culture sample. We validated the technology by demonstrating that the combined microfluidic and amplification protocol is capable of identifying biological pathways perturbed by stimulation, which are consistent with the information recognized in bulk-isolated samples.

  8. Complement modulation of T cell immune responses during homeostasis and disease.

    Science.gov (United States)

    Clarke, Elizabeth V; Tenner, Andrea J

    2014-11-01

    The complement system is an ancient and critical effector mechanism of the innate immune system as it senses, kills, and clears infectious and/or dangerous particles and alerts the immune system to the presence of the infection and/or danger. Interestingly, an increasing number of reports have demonstrated a clear role for complement in the adaptive immune system as well. Of note, a number of recent studies have identified previously unknown roles for complement proteins, receptors, and regulators in T cell function. Here, we will review recent data demonstrating the influence of complement proteins C1q, C3b/iC3b, C3a (and C3aR), and C5a (and C5aR) and complement regulators DAF (CD55) and CD46 (MCP) on T cell function during homeostasis and disease. Although new concepts are beginning to emerge in the field of complement regulation of T cell function, future experiments should focus on whether complement is interacting directly with the T cell or is having an indirect effect on T cell function via APCs, the cytokine milieu, or downstream complement activation products. Importantly, the identification of the pivotal molecular pathways in the human systems will be beneficial in the translation of concepts derived from model systems to therapeutic targeting for treatment of human disorders.

  9. Mortalin inhibitors sensitize K562 leukemia cells to complement-dependent cytotoxicity.

    Science.gov (United States)

    Pilzer, David; Saar, Moran; Koya, Keizo; Fishelson, Zvi

    2010-03-15

    Mortalin, the mitochondrial hsp70, is a vital constitutively expressed heat shock protein. Its elevated expression has been correlated with malignant transformation and poor cancer prognosis. Cancer cells exhibit increased resistance to complement-dependent cytotoxicity, partly due to their capacity to eliminate the complement membrane attack complex (MAC) from their cell surface. As we have previously reported, mortalin and the complement membrane attack complexes are released in membrane vesicles from complement attacked cells. As shown here, knock down of mortalin with specific siRNA reduces MAC elimination and enhances cell sensitivity to MAC-induced cell death. Similar results were obtained with MKT-077, a cationic rhodacyanine dye that inhibits mortalin. Treatment of human erythroleukemia K562 and colorectal carcinoma HCT116 cells with MKT-077 sensitizes them to cell death mediated by MAC but not by streptolysin O. Pre-treatment of cells with MKT-077 also reduces the extent of MAC-mortalin vesiculation following a sublytic complement attack. In the presence of MKT-077, the direct binding of mortalin to complement C9, the major MAC component, is inhibited. The tumor suppressor protein p53 is a known mortalin client protein. The effect of MKT-077 on complement-mediated lysis of HCT116 p53(+/+) and p53(-/-) cells was found to be independent on the presence of p53. Our results also demonstrate that recombinant human mortain inhibits complement-mediated hemolysis of rabbit erythrocytes as well as zinc-induced C9 polymerization. We conclude that mortalin supports cancer cell resistance to complement-dependent cytotoxicity and propose consideration of mortalin as a novel target for cancer adjuvant immunotherapy.

  10. Enhancement of antibody-dependent mechanisms of tumor cell lysis by a targeted activator of complement.

    Science.gov (United States)

    Imai, Masaki; Ohta, Rieko; Varela, Juan C; Song, Hongbin; Tomlinson, Stephen

    2007-10-01

    Complement inhibitors expressed on tumor cells provide a hindrance to the therapeutic efficacy of some monoclonal antibodies (mAb). We investigated a novel strategy to overwhelm complement inhibitor activity and amplify complement activation on tumor cells. The C3-binding domain of human complement receptor 2 (CR2; CD21) was linked to the complement-activating Fc region of human IgG1 (CR2-Fc), and the ability of the construct to target and amplify complement deposition on tumor cells was investigated. CR2 binds C3 activation fragments, and CR2-Fc targeted tumor cells by binding to C3 initially deposited by a tumor-specific antibody. Complement deposition on Du145 cells (human prostate cancer cell line) and anti-MUC1 mAb-mediated complement-dependent lysis of Du145 cells were significantly enhanced by CR2-Fc. Anti-MUC1 antibody-dependent cell-mediated cytotoxicity of Du145 by human peripheral blood mononuclear cells was also significantly enhanced by CR2-Fc in both the presence and the absence of complement. Radiolabeled CR2-Fc targeted to s.c. Du145 tumors in nude mice treated with anti-MUC1 mAb, validating the targeting strategy in vivo. A metastatic model was used to investigate the effect of CR2-Fc in a therapeutic paradigm. Administration of CR2-Fc together with mAb therapy significantly improved long-term survival of nude mice challenged with an i.v. injection of EL4 cells. The data show that CR2-Fc enhances the therapeutic efficacy of antibody therapy, and the construct may provide particular benefits under conditions of limiting antibody concentration or low tumor antigen density.

  11. Complement's hidden arsenal: New insights and novel functions inside the cell.

    Science.gov (United States)

    Liszewski, M Kathryn; Elvington, Michelle; Kulkarni, Hrishikesh S; Atkinson, John P

    2017-04-01

    A key component of both innate and adaptive immunity, new understandings of the complement system are expanding its roles beyond that traditionally appreciated. Evidence is accumulating that complement has an intracellular arsenal of components that provide not only immune defense, but also assist in key interactions for host cell functions. Although early work has primarily centered on T cells, the intracellular complement system likely functions in many if not most cells of the body. Some of these functions may trace their origins to the primitive complement system that began as a primeval form of C3 likely tasked for protection from intracellular pathogen invasion. This later expanded to include extracellular defense as C3 became a secreted protein to patrol the vasculature. Other components were added to the growing system including regulators to protect host cells from the indiscriminate effects of this potent system. Contemporary cells may retain some of these vestigial remnants. We now know that a) C3 serves as a damage-associated molecular pattern (in particular by coating pathogens that translocate into cells), b) most cells store C3 and recycle C3(H2O) for immediate use, and c) C3 assists in cellular survival and metabolic reprogramming. Other components also are part of this hidden arsenal including C5, properdin, factors H and B, and complement receptors. Importantly, better definition of the intracellular complement system may translate into new target discovery to assist in creating the next generation of complement therapeutics.

  12. Single-cell Transcriptome Study as Big Data

    Institute of Scientific and Technical Information of China (English)

    Pingjian Yu; Wei Lin

    2016-01-01

    The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteris-tics of scRNA-seq data and primary objectives of single-cell studies.

  13. Single-cell Transcriptome Study as Big Data

    Science.gov (United States)

    Yu, Pingjian; Lin, Wei

    2016-01-01

    The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies. PMID:26876720

  14. Molecular response of chorioretinal endothelial cells to complement injury: implications for macular degeneration.

    Science.gov (United States)

    Zeng, Shemin; Whitmore, S Scott; Sohn, Elliott H; Riker, Megan J; Wiley, Luke A; Scheetz, Todd E; Stone, Edwin M; Tucker, Budd A; Mullins, Robert F

    2016-02-01

    Age-related macular degeneration (AMD) is a common, blinding disease of the elderly in which macular photoreceptor cells, retinal pigment epithelium and choriocapillaris endothelial cells ultimately degenerate. Recent studies have found that degeneration of the choriocapillaris occurs early in this disease and that endothelial cell drop-out is concomitant with increased deposition of the complement membrane attack complex (MAC) at the choroidal endothelium. However, the impact of MAC injury to choroidal endothelial cells is poorly understood. To model this event in vitro, and to study the downstream consequences of MAC injury, endothelial cells were exposed to complement from human serum, compared to heat-inactivated serum, which lacks complement components. Cells exposed to complement components in human serum showed increased labelling with antibodies directed against the MAC, time- and dose-dependent cell death, as assessed by lactate dehydrogenase assay and increased permeability. RNA-Seq analysis following complement injury revealed increased expression of genes associated with angiogenesis including matrix metalloproteinase (MMP)-3 and -9, and VEGF-A. The MAC-induced increase in MMP9 RNA expression was validated using C5-depleted serum compared to C5-reconstituted serum. Increased levels of MMP9 were also established, using western blot and zymography. These data suggest that, in addition to cell lysis, complement attack on choroidal endothelial cells promotes an angiogenic phenotype in surviving cells.

  15. Transcriptomic response of goat mammary epithelial cells to Mycoplasma agalactiae challenge – a preliminary study

    DEFF Research Database (Denmark)

    Ogorevc, Jernej; Mihevc, Sonja Prpar; Hedegaard, Jakob;

    2015-01-01

    Mycoplasma agalactiae (Ma) is one of the main aetiological agents of intramammary infections in small ruminants, causing contagious agalactia. To better understand the underlying disease patterns a primary goat mammary epithelial cell (pgMEC) culture was established from the mammary tissue...... and challenged with Ma. High-throughput mRNA sequencing was performed to reveal differentially expressed genes (DEG) at different time-points (3 h, 12 h, and 24 h) post infection (PI). The pathway enrichment analysis of the DEG showed that infection significantly affected pathways associated with immune response...... of the complement system and apoptosis pathways, and expression of genes coding for antimicrobial molecules and peptides. In our study we attempted to interpret the detected transcriptomic changes in a biological context and infer mammary infection resistance candidate genes, interesting for further validation...

  16. Nuclear RNA sequencing of the mouse erythroid cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Jennifer A Mitchell

    Full Text Available In addition to protein coding genes a substantial proportion of mammalian genomes are transcribed. However, most transcriptome studies investigate steady-state mRNA levels, ignoring a considerable fraction of the transcribed genome. In addition, steady-state mRNA levels are influenced by both transcriptional and posttranscriptional mechanisms, and thus do not provide a clear picture of transcriptional output. Here, using deep sequencing of nuclear RNAs (nucRNA-Seq in parallel with chromatin immunoprecipitation sequencing (ChIP-Seq of active RNA polymerase II, we compared the nuclear transcriptome of mouse anemic spleen erythroid cells with polymerase occupancy on a genome-wide scale. We demonstrate that unspliced transcripts quantified by nucRNA-seq correlate with primary transcript frequencies measured by RNA FISH, but differ from steady-state mRNA levels measured by poly(A-enriched RNA-seq. Highly expressed protein coding genes showed good correlation between RNAPII occupancy and transcriptional output; however, genome-wide we observed a poor correlation between transcriptional output and RNAPII association. This poor correlation is due to intergenic regions associated with RNAPII which correspond with transcription factor bound regulatory regions and a group of stable, nuclear-retained long non-coding transcripts. In conclusion, sequencing the nuclear transcriptome provides an opportunity to investigate the transcriptional landscape in a given cell type through quantification of unspliced primary transcripts and the identification of nuclear-retained long non-coding RNAs.

  17. Transcriptome dynamics of transgene amplification in Chinese hamster ovary cells.

    Science.gov (United States)

    Vishwanathan, Nandita; Le, Huong; Jacob, Nitya M; Tsao, Yung-Shyeng; Ng, Sze-Wai; Loo, Bernard; Liu, Zhong; Kantardjieff, Anne; Hu, Wei-Shou

    2014-03-01

    Dihydrofolate reductase (DHFR) system is used to amplify the product gene to multiple copies in Chinese Hamster Ovary (CHO) cells for generating cell lines which produce the recombinant protein at high levels. The physiological changes accompanying the transformation of the non-protein secreting host cells to a high producing cell line is not well characterized. We performed transcriptome analysis on CHO cells undergoing the selection and amplification processes. A host CHO cell line was transfected with a vector containing genes encoding the mouse DHFR (mDHFR) and a recombinant human IgG (hIgG). Clones were isolated following selection and subcloned following amplification. Control cells were transfected with a control plasmid which did not have the hIgG genes. Although methotrexate (MTX) amplification increased the transcript level of the mDHFR gene significantly, its effect on both hIgG heavy and light chain genes was more modest. The subclones appeared to retain the transcriptome signatures of their parental clones, however, their productivity varied among those derived from the same clone. The transcript levels of hIgG transgenes of all subclones fall in a narrower range than the product titer, alluding to the role of many functional attributes, other than transgene transcript, on productivity. We cross examined functional class enrichment during selection and amplification as well as between high and low producers and discerned common features among them. We hypothesize that the role of amplification is not merely increasing transcript levels, but also enriching survivors which have developed the cellular machinery for secreting proteins, leading to an increased frequency of isolating high-producing clones. We put forward the possibility of assembling a hyper-productivity gene set through comparative transcriptome analysis of a wide range of samples.

  18. Single-cell transcriptome analysis of endometrial tissue

    Science.gov (United States)

    Krjutškov, K.; Katayama, S.; Saare, M.; Vera-Rodriguez, M.; Lubenets, D.; Samuel, K.; Laisk-Podar, T.; Teder, H.; Einarsdottir, E.; Salumets, A.; Kere, J.

    2016-01-01

    STUDY QUESTION How can we study the full transcriptome of endometrial stromal and epithelial cells at the single-cell level? SUMMARY ANSWER By compiling and developing novel analytical tools for biopsy, tissue cryopreservation and disaggregation, single-cell sorting, library preparation, RNA sequencing (RNA-seq) and statistical data analysis. WHAT IS KNOWN ALREADY Although single-cell transcriptome analyses from various biopsied tissues have been published recently, corresponding protocols for human endometrium have not been described. STUDY DESIGN, SIZE, DURATION The frozen-thawed endometrial biopsies were fluorescence-activated cell sorted (FACS) to distinguish CD13-positive stromal and CD9-positive epithelial cells and single-cell transcriptome analysis performed from biopsied tissues without culturing the cells. We studied gene transcription, applying a modern and efficient RNA-seq protocol. In parallel, endometrial stromal cells were cultured and global expression profiles were compared with uncultured cells. PARTICIPANTS/MATERIALS, SETTING, METHODS For method validation, we used two endometrial biopsies, one from mid-secretory phase (Day 21, LH+8) and another from late-secretory phase (Day 25). The samples underwent single-cell FACS sorting, single-cell RNA-seq library preparation and Illumina sequencing. MAIN RESULTS AND THE ROLE OF CHANCE Here we present a complete pipeline for single-cell gene-expression studies, from clinical sampling to statistical data analysis. Tissue manipulation, starting from disaggregation and cell-type-specific labelling and ending with single-cell automated sorting, is managed within 90 min at low temperature to minimize changes in the gene expression profile. The single living stromal and epithelial cells were sorted using CD13- and CD9-specific antibodies, respectively. Of the 8622 detected genes, 2661 were more active in cultured stromal cells than in biopsy cells. In the comparison of biopsy versus cultured cells, 5603

  19. Transcriptome Landscapes of Mammalian Embryonic Cells

    NARCIS (Netherlands)

    Brinkhof, B.

    2015-01-01

    This thesis describes research on gene expression profiles from different embryonic stages and cell types to identify genes involved in pluripotency or differentiation in bovine and porcine cells. The results are compared with data from other mammals. RNA expression profiles of morula and blastocyst

  20. Complement-Opsonized HIV-1 Overcomes Restriction in Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Wilfried Posch

    2015-06-01

    Full Text Available DCs express intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. Thus, DCs are productively infected only at very low levels with HIV-1, and this non-permissiveness of DCs is suggested to go along with viral evasion. We now illustrate that complement-opsonized HIV-1 (HIV-C efficiently bypasses SAMHD1 restriction and productively infects DCs including BDCA-1 DCs. Efficient DC infection by HIV-C was also observed using single-cycle HIV-C, and correlated with a remarkable elevated SAMHD1 T592 phosphorylation but not SAMHD1 degradation. If SAMHD1 phosphorylation was blocked using a CDK2-inhibitor HIV-C-induced DC infection was also significantly abrogated. Additionally, we found a higher maturation and co-stimulatory potential, aberrant type I interferon expression and signaling as well as a stronger induction of cellular immune responses in HIV-C-treated DCs. Collectively, our data highlight a novel protective mechanism mediated by complement opsonization of HIV to effectively promote DC immune functions, which might be in the future exploited to tackle HIV infection.

  1. The cell cycle regulated transcriptome of Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Stuart K Archer

    Full Text Available Progression of the eukaryotic cell cycle requires the regulation of hundreds of genes to ensure that they are expressed at the required times. Integral to cell cycle progression in yeast and animal cells are temporally controlled, progressive waves of transcription mediated by cell cycle-regulated transcription factors. However, in the kinetoplastids, a group of early-branching eukaryotes including many important pathogens, transcriptional regulation is almost completely absent, raising questions about the extent of cell-cycle regulation in these organisms and the mechanisms whereby regulation is achieved. Here, we analyse gene expression over the Trypanosoma brucei cell cycle, measuring changes in mRNA abundance on a transcriptome-wide scale. We developed a "double-cut" elutriation procedure to select unperturbed, highly synchronous cell populations from log-phase cultures, and compared this to synchronization by starvation. Transcriptome profiling over the cell cycle revealed the regulation of at least 430 genes. While only a minority were homologous to known cell cycle regulated transcripts in yeast or human, their functions correlated with the cellular processes occurring at the time of peak expression. We searched for potential target sites of RNA-binding proteins in these transcripts, which might earmark them for selective degradation or stabilization. Over-represented sequence motifs were found in several co-regulated transcript groups and were conserved in other kinetoplastids. Furthermore, we found evidence for cell-cycle regulation of a flagellar protein regulon with a highly conserved sequence motif, bearing similarity to consensus PUF-protein binding motifs. RNA sequence motifs that are functional in cell-cycle regulation were more widespread than previously expected and conserved within kinetoplastids. These findings highlight the central importance of post-transcriptional regulation in the proliferation of parasitic kinetoplastids.

  2. Comparative Transcriptomics of Arabidopsis thaliana Sperm Cells

    Science.gov (United States)

    In flowering plants the two sperm cells are embedded within the cytoplasm of the growing pollen tube and as such are passively transported to the embryo sac, wherein double fertilization occurs upon their release. Understanding the mechanisms and conditions by which male gametes mature and take part...

  3. Role of CD59 in T cell activation induced by non-lethal complement attack

    Institute of Scientific and Technical Information of China (English)

    HAN Gen-cheng; BAI Yun; JIANG Man; LI Wan-ling; ZHU Xi-hua

    2001-01-01

    To study the mechanism ofT-cell activation induced by non-lethal complement attack and the role of CD59 in this process. Methods: Human CD59 and its transmembrane counterpart CD59TM cDNA were transfected into murine thymoma EL-4 cells. Activation and proliferation of EL-4 transfectants were observed with MTT assay.Results: Both CD59 and CD59 TM cDNA expressed on EL-4 cells effectively inhibited complement-mediated membrane damage. Cross-linking of CD59 with antibody induced activation of CD59/EL-4 cells but not CD59TM/EL-4cells. This effect was inhibited by Herbimycin A, a special protein tyrosine kinase (PTK) inhibitor. Non-lethal complement attack induced CD59/EL-4 but not CD59TM/EL-4 cell to proliferate, and this reaction was not blocked by Herbimycin A. Conclusion: CD59 takes part in T cell activation induced by non-lethal complement attack. The mechanisms of T cell activation induced by non-lethal complement attack are different from those by cross-linking of CD59.

  4. Transcriptome-based repurposing of apigenin as a potential anti-fibrotic agent targeting hepatic stellate cells

    Science.gov (United States)

    Hicks, Daniel F.; Goossens, Nicolas; Blas-García, Ana; Tsuchida, Takuma; Wooden, Benjamin; Wallace, Michael C.; Nieto, Natalia; Lade, Abigale; Redhead, Benjamin; Cederbaum, Arthur I; Dudley, Joel T.; Fuchs, Bryan C.; Lee, Youngmin A.; Hoshida, Yujin; Friedman, Scott L.

    2017-01-01

    We have used a computational approach to identify anti-fibrotic therapies by querying a transcriptome. A transcriptome signature of activated hepatic stellate cells (HSCs), the primary collagen-secreting cell in liver, and queried against a transcriptomic database that quantifies changes in gene expression in response to 1,309 FDA-approved drugs and bioactives (CMap). The flavonoid apigenin was among 9 top-ranked compounds predicted to have anti-fibrotic activity; indeed, apigenin dose-dependently reduced collagen I in the human HSC line, TWNT-4. To identify proteins mediating apigenin’s effect, we next overlapped a 122-gene signature unique to HSCs with a list of 160 genes encoding proteins that are known to interact with apigenin, which identified C1QTNF2, encoding for Complement C1q tumor necrosis factor-related protein 2, a secreted adipocytokine with metabolic effects in liver. To validate its disease relevance, C1QTNF2 expression is reduced during hepatic stellate cell activation in culture and in a mouse model of alcoholic liver injury in vivo, and its expression correlates with better clinical outcomes in patients with hepatitis C cirrhosis (n = 216), suggesting it may have a protective role in cirrhosis progression.These findings reinforce the value of computational approaches to drug discovery for hepatic fibrosis, and identify C1QTNF2 as a potential mediator of apigenin’s anti-fibrotic activity. PMID:28256512

  5. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  6. Transcriptome and microRNome of Theileria annulata Host Cells

    KAUST Repository

    Rchiad, Zineb

    2016-06-01

    Tropical Theileriosis is a parasitic disease of calves with a profound economic impact caused by Theileria annulata, an apicomplexan parasite of the genus Theileria. Transmitted by Hyalomma ticks, T. annulata infects and transforms bovine lymphocytes and macrophages into a cancer-like phenotype characterized by all six hallmarks of cancer. In the current study we investigate the transcriptional landscape of T. annulata-infected lymphocytes to define genes and miRNAs regulated by host cell transformation using next generation sequencing. We also define genes and miRNAs differentially expressed as a result of the attenuation of a T.annulata-infected macrophage cell line used as a vaccine. By comparing the transcriptional landscape of one attenuated and two transformed cell lines we identify four genes that we propose as key factors in transformation and virulence of the T. annulata host cells. We also identify miR- 126-5p as a key regulator of infected cells proliferation, adhesion, survival and invasiveness. In addition to the host cell trascriptome we studied T. annulata transcriptome and identified the role of ROS and TGF-β2 in controlling parasite gene expression. Moreover, we have used the deep parasite ssRNA-seq data to refine the available T. annulata annotation. Taken together, this study provides the full list of host cell’s genes and miRNAs transcriptionally perturbed after infection with T. annulata and after attenuation and describes genes and miRNAs never identified before as players in this type of host cell transformation. Moreover, this study provides the first database for the transcriptome of T. annulata and its host cells using next generation sequencing.

  7. Functional transcriptomics of a migrating cell in Caenorhabditis elegans.

    Science.gov (United States)

    Schwarz, Erich M; Kato, Mihoko; Sternberg, Paul W

    2012-10-02

    In both metazoan development and metastatic cancer, migrating cells must carry out a detailed, complex program of sensing cues, binding substrates, and moving their cytoskeletons. The linker cell in Caenorhabditis elegans males undergoes a stereotyped migration that guides gonad organogenesis, occurs with precise timing, and requires the nuclear hormone receptor NHR-67. To better understand how this occurs, we performed RNA-seq of individually staged and dissected linker cells, comparing transcriptomes from linker cells of third-stage (L3) larvae, fourth-stage (L4) larvae, and nhr-67-RNAi-treated L4 larvae. We observed expression of 8,000-10,000 genes in the linker cell, 22-25% of which were up- or down-regulated 20-fold during development by NHR-67. Of genes that we tested by RNAi, 22% (45 of 204) were required for normal shape and migration, suggesting that many NHR-67-dependent, linker cell-enriched genes play roles in this migration. One unexpected class of genes up-regulated by NHR-67 was tandem pore potassium channels, which are required for normal linker-cell migration. We also found phenotypes for genes with human orthologs but no previously described migratory function. Our results provide an extensive catalog of genes that act in a migrating cell, identify unique molecular functions involved in nematode cell migration, and suggest similar functions in humans.

  8. A novel "complement-metabolism-inflammasome axis" as a key regulator of immune cell effector function.

    Science.gov (United States)

    Arbore, Giuseppina; Kemper, Claudia

    2016-07-01

    The inflammasomes are intracellular multiprotein complexes that induce and regulate the generation of the key pro-inflammatory cytokines IL-1β and IL-18 in response to infectious microbes and cellular stress. The activation of inflammasomes involves several upstream signals including classic pattern or danger recognition systems such as the TLRs. Recently, however, the activation of complement receptors, such as the anaphylatoxin C3a and C5a receptors and the complement regulator CD46, in conjunction with the sensing of cell metabolic changes, for instance increased amino acid influx and glycolysis (via mTORC1), have emerged as additional critical activators of the inflammasome. This review summarizes recent advances in our knowledge about complement-mediated inflammasome activation, with a specific focus on a novel "complement - metabolism - NLRP3 inflammasome axis."

  9. Spontaneous complement activation on human B cells results in localized membrane depolarization and the clustering of complement receptor type 2 and C3 fragments

    DEFF Research Database (Denmark)

    Løbner, Morten; Leslie, Robert G Q; Prodinger, Wolfgang M

    2009-01-01

    While our previous studies have demonstrated that complement activation induced by complement receptors type 2 (CR2/CD21) and 1 (CR1/CD35) results in C3-fragment deposition and membrane attack complex (MAC) formation in human B cells, the consequences of these events for B-cell functions remain...... requires activation of complement via the alternative pathway, as indicated by total inhibition upon neutralization of factor D, and is abrogated by combined blockade of CR1 and CR2, but not of either receptor alone. The membrane depolarization is not associated with the apoptosis of B cells, as examined...... by co-staining with APO-2.7 or by the TdT-mediated biotin-dUTP nick-end labelling (TUNEL) assay. Confocal microscopy revealed that depolarization and C3 deposition, unlike MAC deposition, are limited to restricted areas on the B-cell surface. Double staining revealed a close association between the C3...

  10. DNA repair in human cells: from genetic complementation to isolation of genes.

    NARCIS (Netherlands)

    D. Bootsma (Dirk); A. Westerveld (Andries); J.H.J. Hoeijmakers (Jan)

    1988-01-01

    textabstractThe genetic disease xeroderma pigmentosum (XP) demonstrates the association between defective repair of DNA lesions and cancer. Complementation analysis performed on XP cell strains and on repair deficient rodent cell lines has revealed that at least nine and possibly more than 13 genes

  11. Detailed transcriptome atlas of the pancreatic beta cell

    Directory of Open Access Journals (Sweden)

    Eizirik Decio L

    2009-01-01

    Full Text Available Abstract Background Gene expression patterns provide a detailed view of cellular functions. Comparison of profiles in disease vs normal conditions provides insights into the processes underlying disease progression. However, availability and integration of public gene expression datasets remains a major challenge. The aim of the present study was to explore the transcriptome of pancreatic islets and, based on this information, to prepare a comprehensive and open access inventory of insulin-producing beta cell gene expression, the Beta Cell Gene Atlas (BCGA. Methods We performed Massively Parallel Signature Sequencing (MPSS analysis of human pancreatic islet samples and microarray analyses of purified rat beta cells, alpha cells and INS-1 cells, and compared the information with available array data in the literature. Results MPSS analysis detected around 7600 mRNA transcripts, of which around a third were of low abundance. We identified 2000 and 1400 transcripts that are enriched/depleted in beta cells compared to alpha cells and INS-1 cells, respectively. Microarray analysis identified around 200 transcription factors that are differentially expressed in either beta or alpha cells. We reanalyzed publicly available gene expression data and integrated these results with the new data from this study to build the BCGA. The BCGA contains basal (untreated conditions gene expression level estimates in beta cells as well as in different cell types in human, rat and mouse pancreas. Hierarchical clustering of expression profile estimates classify cell types based on species while beta cells were clustered together. Conclusion Our gene atlas is a valuable source for detailed information on the gene expression distribution in beta cells and pancreatic islets along with insulin producing cell lines. The BCGA tool, as well as the data and code used to generate the Atlas are available at the T1Dbase website (T1DBase.org.

  12. Bovine mammary stem cells: Transcriptome profiling and the stem cell niche

    Science.gov (United States)

    Identification and transcriptome analysis of mammary stem cells (MaSC) are important steps toward understanding the molecular basis of mammary epithelial growth, homeostasis and tissue repair. Our objective was to evaluate the molecular profiles of four categories of cells within the bovine mammary ...

  13. Transcriptome analysis of mouse stem cells and early embryos.

    Directory of Open Access Journals (Sweden)

    Alexei A Sharov

    2003-12-01

    Full Text Available Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine.

  14. Transcriptome Analysis of Mouse Stem Cells and Early Embryos

    Science.gov (United States)

    Sharov, Alexei A; Piao, Yulan; Matoba, Ryo; Dudekula, Dawood B; Qian, Yong; VanBuren, Vincent; Falco, Geppino; Martin, Patrick R; Stagg, Carole A; Bassey, Uwem C; Wang, Yuxia; Carter, Mark G; Hamatani, Toshio; Aiba, Kazuhiro; Akutsu, Hidenori; Sharova, Lioudmila; Tanaka, Tetsuya S; Kimber, Wendy L; Yoshikawa, Toshiyuki; Jaradat, Saied A; Pantano, Serafino; Nagaraja, Ramaiah; Boheler, Kenneth R; Taub, Dennis; Hodes, Richard J; Longo, Dan L; Schlessinger, David; Keller, Jonathan; Klotz, Emily; Kelsoe, Garnett; Umezawa, Akihiro; Vescovi, Angelo L; Rossant, Janet; Kunath, Tilo; Hogan, Brigid L. M; Curci, Anna; D'Urso, Michele; Kelso, Janet; Hide, Winston

    2003-01-01

    Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine. PMID:14691545

  15. De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data.

    Science.gov (United States)

    Grün, Dominic; Muraro, Mauro J; Boisset, Jean-Charles; Wiebrands, Kay; Lyubimova, Anna; Dharmadhikari, Gitanjali; van den Born, Maaike; van Es, Johan; Jansen, Erik; Clevers, Hans; de Koning, Eelco J P; van Oudenaarden, Alexander

    2016-08-04

    Adult mitotic tissues like the intestine, skin, and blood undergo constant turnover throughout the life of an organism. Knowing the identity of the stem cell is crucial to understanding tissue homeostasis and its aberrations upon disease. Here we present a computational method for the derivation of a lineage tree from single-cell transcriptome data. By exploiting the tree topology and the transcriptome composition, we establish StemID, an algorithm for identifying stem cells among all detectable cell types within a population. We demonstrate that StemID recovers two known adult stem cell populations, Lgr5+ cells in the small intestine and hematopoietic stem cells in the bone marrow. We apply StemID to predict candidate multipotent cell populations in the human pancreas, a tissue with largely uncharacterized turnover dynamics. We hope that StemID will accelerate the search for novel stem cells by providing concrete markers for biological follow-up and validation.

  16. Molecular characterization of heterogeneous mesenchymal stem cells with single-cell transcriptomes.

    Science.gov (United States)

    Li, Zhongjun; Zhang, Chao; Weiner, Leslie P; Zhang, Yiqiang; Zhong, Jiang F

    2013-01-01

    Mesenchymal stem cells (MSC) are heterogeneous cell populations with promising therapeutic potentials in regenerative medicine. The therapeutic values of MSC in various clinical situations have been reported. Clonal assays (expansion of MSC from a single cell) demonstrated that multiple types of cells with different developmental potential exist in a MSC population. Due to the heterogeneous nature of MSC, molecular characterization of MSC in the absence of known biomarkers is a challenge for cell therapy with MSC. Here, we review potential therapeutic applications of MSC and discuss a systematic approach for molecular characterization of heterogeneous cell population using single-cell transcriptome analysis. Differentiation/maturation of cells is orchestrated by sequential expression of a series of genes within a cell. Therefore, single-cell mRNA expression (transcriptome) profiles from consecutive developmental stages are more similar than those from disparate stages. Bioinformatic analysis can cluster single-cell transcriptome profiles from consecutive developmental stages into a dendrogram based on the similarity matrix of these profiles. Because a single-cell is an ultimately "pure" sample in expression profiling, these dendrograms can be used to classify individual cells into molecular subpopulations within a heterogeneous cell population without known biomarkers. This approach is especially powerful in studying cell populations with little molecular information and few known biomarkers, for example the MSC populations. The molecular understanding will provide novel targets for manipulating MSC differentiation with small molecules and other drugs to enable safer and more effective therapeutic applications of MSC.

  17. Role of complement receptor 1 (CR1; CD35) on epithelial cells: A model for understanding complement-mediated damage in the kidney.

    Science.gov (United States)

    Java, Anuja; Liszewski, M Kathryn; Hourcade, Dennis E; Zhang, Fan; Atkinson, John P

    2015-10-01

    The regulators of complement activation gene cluster encodes a group of proteins that have evolved to control the amplification of complement at the critical step of C3 activation. Complement receptor 1 (CR1) is the most versatile of these inhibitors with both receptor and regulatory functions. While expressed on most peripheral blood cells, the only epithelial site of expression in the kidney is by the podocyte. Its expression by this cell population has aroused considerable speculation as to its biologic function in view of many complement-mediated renal diseases. The goal of this investigation was to assess the role of CR1 on epithelial cells. To this end, we utilized a Chinese hamster ovary cell model system. Among our findings, CR1 reduced C3b deposition by ∼ 80% during classical pathway activation; however, it was an even more potent regulator (>95% reduction in C3b deposition) of the alternative pathway. This inhibition was primarily mediated by decay accelerating activity. The deposited C4b and C3b were progressively cleaved with a t½ of ∼ 30 min to C4d and C3d, respectively, by CR1-dependent cofactor activity. CR1 functioned intrinsically (i.e, worked only on the cell on which it was expressed). Moreover, CR1 efficiently and stably bound but didn't internalize C4b/C3b opsonized immune complexes. Our studies underscore the potential importance of CR1 on an epithelial cell population as both an intrinsic complement regulator and an immune adherence receptor. These results provide a framework for understanding how loss of CR1 expression on podocytes may contribute to complement-mediated damage in the kidney.

  18. Genetic complementation of human muscle cells via directed stem cell fusion.

    Science.gov (United States)

    Gonçalves, Manuel A F V; Swildens, Jim; Holkers, Maarten; Narain, Anjali; van Nierop, Gijsbert P; van de Watering, Marloes J M; Knaän-Shanzer, Shoshan; de Vries, Antoine A F

    2008-04-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the X chromosome-linked DMD gene, which encodes the sarcolemma-stabilizing protein-dystrophin. Initial attempts at DMD therapy deployed muscle progenitor cells from healthy donors. The utilization of these cells is, however, hampered by their immunogenicity, while those from DMD patients are scarce and display limited ex vivo replication. Nonmuscle cells with myogenic capacity may offer valuable alternatives especially if, to allow autologous transplantation, they are amenable to genetic intervention. As a paradigm for therapeutic gene transfer by heterotypic cell fusion we are investigating whether human mesenchymal stem cells (hMSCs) can serve as donors of recombinant DMD genes for recipient human muscle cells. Here, we show that forced MyoD expression in hMSCs greatly increases their tendency to participate in human myotube formation turning them into improved DNA delivery vehicles. Efficient loading of hMSCs with recombinant DMD was achieved through a new tropism-modified high-capacity adenoviral (hcAd) vector directing striated muscle-specific synthesis of full-length dystrophin. This study introduces the principle of genetic complementation of gene-defective cells via directed cell fusion and provides an initial framework to test whether transient MyoD synthesis in autologous, gene-corrected hMSCs increases their potential for treating DMD and, possibly, other muscular dystrophies.

  19. Expression of innate immune complement regulators on brain epithelial cells during human bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Gasque Philippe

    2006-09-01

    Full Text Available Abstract Background In meningitis, the cerebrospinal fluid contains high levels of innate immune molecules (e.g. complement which are essential to ward off the infectious challenge and to promote the infiltration of phagocytes (neutrophils, monocytes. However, epithelial cells of either the ependymal layer, one of the established niche for adult neural stem cells, or of the choroid plexus may be extremely vulnerable to bystander attack by cytotoxic and cytolytic complement components. Methods In this study, we assessed the capacity of brain epithelial cells to express membrane-bound complement regulators (ie, CD35, CD46, CD55 and CD59 in vitro and in situ by immunostaining of control and meningitis human brain tissue sections. Results Double immunofluorescence experiments for ependymal cell markers (GFAP, S100, ZO-1, E-cadherin and complement regulators indicated that the human ependymal cell line model was strongly positive for CD55, CD59 compared to weak stainings for CD46 and CD35. In tissues, we found that CD55 was weakly expressed in control choroid plexus and ependyma but was abundantly expressed in meningitis. Anti-CD59 stained both epithelia in apical location while increased CD59 staining was solely demonstrated in inflamed choroid plexus. CD46 and CD35 were not detected in control tissue sections. Conversely, in meningitis, the ependyma, subependyma and choroid plexus epithelia were strongly stained for CD46 and CD35. Conclusion This study delineates for the first time the capacity of brain ependymal and epithelial cells to respond to and possibly sustain the innate complement-mediated inflammatory insult.

  20. A Transcriptomic Signature of Mouse Liver Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Adam M. Passman

    2016-01-01

    Full Text Available Liver progenitor cells (LPCs can proliferate extensively, are able to differentiate into hepatocytes and cholangiocytes, and contribute to liver regeneration. The presence of LPCs, however, often accompanies liver disease and hepatocellular carcinoma (HCC, indicating that they may be a cancer stem cell. Understanding LPC biology and establishing a sensitive, rapid, and reliable method to detect their presence in the liver will assist diagnosis and facilitate monitoring of treatment outcomes in patients with liver pathologies. A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of muscle and embryonic stem cell lines, embryonic and developed liver (DL, and HCC. Three gene clusters distinguishing LPCs from other liver cell types were identified. Pathways overrepresented in these clusters denote the proliferative nature of LPCs and their association with HCC. Our analysis also revealed 26 novel markers, LPC markers, including Mcm2 and Ltbp3, and eight known LPC markers, including M2pk and Ncam. These markers specified the presence of LPCs in pathological liver tissue by qPCR and correlated with LPC abundance determined using immunohistochemistry. These results showcase the value of global transcript profiling to identify pathways and markers that may be used to detect LPCs in injured or diseased liver.

  1. Murine complement receptor 1 is required for germinal center B cell maintenance but not initiation.

    Science.gov (United States)

    Donius, Luke R; Weis, Janis J; Weis, John H

    2014-06-01

    Germinal centers are the anatomic sites for the generation of high affinity immunoglobulin expressing plasma cells and memory B cells. The germinal center B cells that are precursors of these cells circulate between the light zone B cell population that interact with antigen laden follicular dendritic cells (FDC) and the proliferative dark zone B cell population. Antigen retention by follicular dendritic cells is dependent on Fc receptors and complement receptors, and complement receptor 1 (Cr1) is the predominant complement receptor expressed by FDC. The newly created Cr1KO mouse was used to test the effect of Cr1-deficiency on the kinetics of the germinal center reaction and the generation of IgM and switched memory B cell formation. Immunization of Cr1KO mice with a T cell-dependent antigen resulted in the normal initial expansion of B cells with a germinal center phenotype however these cells were preferentially lost in the Cr1KO animal over time (days). Bone marrow chimera animals documented the surprising finding that the loss of germinal center B cell maintenance was linked to the expression of Cr1 on B cells, not the FDC. Cr1-deficiency further resulted in antigen-specific IgM titer and IgM memory B cell reductions, but not antigen-specific IgG after 35-37 days. Investigations of nitrophenyl (NP)-specific IgG demonstrated that Cr1 is not necessary for affinity maturation during the response to particulate antigen. These data, along with those generated in our initial description of the Cr1KO animal describe unique functions of Cr1 on the surface of both B cells and FDC.

  2. Complement C1q activates tumor suppressor WWOX to induce apoptosis in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Qunying Hong

    Full Text Available BACKGROUND: Tissue exudates contain low levels of serum complement proteins, and their regulatory effects on prostate cancer progression are largely unknown. We examined specific serum complement components in coordinating the activation of tumor suppressors p53 and WWOX (also named FOR or WOX1 and kinases ERK, JNK1 and STAT3 in human prostate DU145 cells. METHODOLOGY/PRINCIPAL FINDINGS: DU145 cells were cultured overnight in 1% normal human serum, or in human serum depleted of an indicated complement protein. Under complement C1q- or C6-free conditions, WOX1 and ERK were mainly present in the cytoplasm without phosphorylation, whereas phosphorylated JNK1 was greatly accumulated in the nuclei. Exogenous C1q rapidly restored the WOX1 activation (with Tyr33 phosphorylation in less than 2 hr. Without serum complement C9, p53 became activated, and hyaluronan (HA reversed the effect. Under C6-free conditions, HA induced activation of STAT3, an enhancer of metastasis. Notably, exogenous C1q significantly induced apoptosis of WOX1-overexpressing DU145 cells, but not vehicle-expressing cells. A dominant negative and Y33R mutant of WOX1 blocked the apoptotic effect. C1q did not enhance p53-mediated apoptosis. By total internal reflection fluorescence (TIRF microscopy, it was determined that C1q destabilized adherence of WOX1-expressing DU145 cells by partial detaching and inducing formation of clustered microvilli for focal adhesion particularly in between cells. These cells then underwent shrinkage, membrane blebbing and death. Remarkably, as determined by immunostaining, benign prostatic hyperplasia and prostate cancer were shown to have a significantly reduced expression of tissue C1q, compared to age-matched normal prostate tissues. CONCLUSIONS/SIGNIFICANCE: We conclude that complement C1q may induce apoptosis of prostate cancer cells by activating WOX1 and destabilizing cell adhesion. Downregulation of C1q enhances prostate hyperplasia and cancerous

  3. Parallel WGA and WTA for Comparative Genome and Transcriptome NGS Analysis Using Tiny Cell Numbers.

    Science.gov (United States)

    Korfhage, Christian; Fricke, Evelyn; Meier, Andreas

    2015-07-01

    Genomic DNA determines how and when the transcriptome is changed by a trigger or environmental change and how cellular metabolism is influenced. Comparative genome and transcriptome analysis of the same cell sample links a defined genome with all changes in the bases, structure, or numbers of the transcriptome. However, comparative genome and transcriptome analysis using next-generation sequencing (NGS) or real-time PCR is often limited by the small amount of sample available. In mammals, the amount of DNA and RNA in a single cell is ∼10 picograms, but deep analysis of the genome and transcriptome currently requires several hundred nanograms of nucleic acids for library preparation for NGS sequencing. Consequently, accurate whole-genome amplification (WGA) and whole-transcriptome amplification (WTA) is required for such quantitative analysis. This unit describes how the genome and the transcriptome of a tiny number of cells can be amplified in a highly parallel and comparable process. Protocols for quality control of amplified DNA and application of amplified DNA for NGS are included.

  4. Genome-wide analysis of primary CD4+ and CD8+ T cell transcriptomes shows evidence for a network of enriched pathways associated with HIV disease

    Directory of Open Access Journals (Sweden)

    Wang Bin

    2011-03-01

    Full Text Available Abstract Background HIV preferentially infects CD4+ T cells, and the functional impairment and numerical decline of CD4+ and CD8+ T cells characterize HIV disease. The numerical decline of CD4+ and CD8+ T cells affects the optimal ratio between the two cell types necessary for immune regulation. Therefore, this work aimed to define the genomic basis of HIV interactions with the cellular transcriptome of both CD4+ and CD8+ T cells. Results Genome-wide transcriptomes of primary CD4+ and CD8+ T cells from HIV+ patients were analyzed at different stages of HIV disease using Illumina microarray. For each cell subset, pairwise comparisons were performed and differentially expressed (DE genes were identified (fold change >2 and B-statistic >0 followed by quantitative PCR validation. Gene ontology (GO analysis of DE genes revealed enriched categories of complement activation, actin filament, proteasome core and proton-transporting ATPase complex. By gene set enrichment analysis (GSEA, a network of enriched pathways functionally connected by mitochondria was identified in both T cell subsets as a transcriptional signature of HIV disease progression. These pathways ranged from metabolism and energy production (TCA cycle and OXPHOS to mitochondria meditated cell apoptosis and cell cycle dysregulation. The most unique and significant feature of our work was that the non-progressing status in HIV+ long-term non-progressors was associated with MAPK, WNT, and AKT pathways contributing to cell survival and anti-viral responses. Conclusions These data offer new comparative insights into HIV disease progression from the aspect of HIV-host interactions at the transcriptomic level, which will facilitate the understanding of the genetic basis of transcriptomic interaction of HIV in vivo and how HIV subverts the human gene machinery at the individual cell type level.

  5. Both Freshly Prepared and Frozen-Stored Amniotic Membrane Cells Express the Complement Inhibitor CD59

    Directory of Open Access Journals (Sweden)

    Ágnes Füst

    2012-01-01

    Full Text Available Amniotic membrane proved to be very effective tool in the treatment of a number of ocular surface diseases. The amniotic membrane, however, has to be stored before its transplantation onto the ocular surface followed by mandatory serologic control in order to exclude the transmission of certain viruses. Therefore it is most important to study if cryopreservation of the membrane affects cell surface expression of the molecules. We measured cell surface expression of CD59, a membrane-bound complement inhibitor on the cells of freshly prepared and cryopreserved amniotic membrane. Cells of amniotic membrane were separated mechanically. Epithelial and mesenchymal cells were identified by the intracellular expression of nanog and the cell surface ICAM1 positivity, respectively. Multicolor flow cytometric immunophenotyping was used for determination of the CD59 expression. CellQuest-Pro software program (Becton Dickinson was used both for measurements and analysis. CD59-positive cells could be detected in all investigated samples and in all investigated cell types, although the expression level of CD59 differed. CD59 was expressed both on freshly prepared and frozen-stored samples. Higher level of CD59 was detected on ICAM1+ mesenchymal cells than on nanog+ epithelial cells. Our findings indicate that amniotic membranes maintain their complement inhibiting capacity after cryopreservation.

  6. Transcriptome profile of human neuroblastoma cells in the hypomagnetic field.

    Science.gov (United States)

    Mo, WeiChuan; Liu, Ying; Bartlett, Perry F; He, RongQiao

    2014-04-01

    Research has shown that the hypomagnetic field (HMF) can affect embryo development, cell proliferation, learning and memory, and in vitro tubulin assembly. In the present study, we aimed to elucidate the molecular mechanism by which the HMF exerts its effect, by comparing the transcriptome profiles of human neuroblastoma cells exposed to either the HMF or the geomagnetic field. A total of 2464 differentially expressed genes (DEGs) were identified, 216 of which were up-regulated and 2248 of which were down-regulated after exposure to the HMF. These DEGs were found to be significantly clustered into several key processes, namely macromolecule localization, protein transport, RNA processing, and brain function. Seventeen DEGs were verified by real-time quantitative PCR, and the expression levels of nine of these DEGs were measured every 6 h. Most notably, MAPK1 and CRY2, showed significant up- and down-regulation, respectively, during the first 6 h of HMF exposure, which suggests involvement of the MAPK pathway and cryptochrome in the early bio-HMF response. Our results provide insights into the molecular mechanisms underlying the observed biological effects of the HMF.

  7. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis.

    Directory of Open Access Journals (Sweden)

    Nancy A Turner

    Full Text Available BACKGROUND: Vascular endothelial cells (ECs express and release protein components of the complement pathways, as well as secreting and anchoring ultra-large von Willebrand factor (ULVWF multimers in long string-like structures that initiate platelet adhesion during hemostasis and thrombosis. The alternative complement pathway (AP is an important non-antibody-requiring host defense system. Thrombotic microangiopathies can be associated with defective regulation of the AP (atypical hemolytic-uremic syndrome or with inadequate cleavage by ADAMTS-13 of ULVWF multimeric strings secreted by/anchored to ECs (thrombotic thrombocytopenic purpura. Our goal was to determine if EC-anchored ULVWF strings caused the assembly and activation of AP components, thereby linking two essential defense mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We quantified gene expression of these complement components in cultured human umbilical vein endothelial cells (HUVECs by real-time PCR: C3 and C5; complement factor (CF B, CFD, CFP, CFH and CFI of the AP; and C4 of the classical and lectin (but not alternative complement pathways. We used fluorescent microscopy, monospecific antibodies against complement components, fluorescent secondary antibodies, and the analysis of >150 images to quantify the attachment of HUVEC-released complement proteins to ULVWF strings secreted by, and anchored to, the HUVECs (under conditions of ADAMTS-13 inhibition. We found that HUVEC-released C4 did not attach to ULVWF strings, ruling out activation of the classical and lectin pathways by the strings. In contrast, C3, FB, FD, FP and C5, FH and FI attached to ULVWF strings in quantitative patterns consistent with assembly of the AP components into active complexes. This was verified when non-functional FB blocked the formation of AP C3 convertase complexes (C3bBb on ULVWF strings. CONCLUSIONS/SIGNIFICANCE: AP components are assembled and activated on EC-secreted/anchored ULVWF multimeric

  8. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.

    Science.gov (United States)

    Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J

    2014-03-01

    Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states.

  9. Complement Receptor Type 1 Suppresses Human B Cell Functions in SLE Patients

    Directory of Open Access Journals (Sweden)

    Mariann Kremlitzka

    2016-01-01

    Full Text Available Complement receptors (CRs play an integral role in innate immunity and also function to initiate and shape the adaptive immune response. Our earlier results showed that complement receptor type 1 (CR1, CD35 is a potent inhibitor of the B cell receptor- (BCR- induced functions of human B lymphocytes. Here we show that this inhibition occurs already at the initial steps of B cell activation since ligation of CR1 reduces the BCR-induced phosphorylation of key signaling molecules such as Syk and mitogen activated protein kinases (MAPKs. Furthermore, our data give evidence that although B lymphocytes of active systemic lupus erythematosus (SLE patients express lower level of CR1, the inhibitory capacity of this complement receptor is still maintained and its ligand-induced clustering results in significant inhibition of the main B cell functions, similar to that found in the case of healthy individuals. Since we have found that reduced CR1 expression of SLE patients does not affect the inhibitory capacity of the receptor, our results further support the therapeutical potential of CD35 targeting the decrease of B cell activation and autoantibody production in autoimmune patients.

  10. Revealing fosfomycin primary effect on Staphylococcus aureus transcriptome: modulation of cell envelope biosynthesis and phosphoenolpyruvate induced starvation

    Directory of Open Access Journals (Sweden)

    Gruden Kristina

    2010-06-01

    Full Text Available Abstract Background Staphylococcus aureus is a highly adaptable human pathogen and there is a constant search for effective antibiotics. Fosfomycin is a potent irreversible inhibitor of MurA, an enolpyruvyl transferase that uses phosphoenolpyruvate as substrate. The goal of this study was to identify the pathways and processes primarily affected by fosfomycin at the genome-wide transcriptome level to aid development of new drugs. Results S. aureus ATCC 29213 cells were treated with sub-MIC concentrations of fosfomycin and harvested at 10, 20 and 40 minutes after treatment. S. aureus GeneChip statistical data analysis was complemented by gene set enrichment analysis. A visualization tool for mapping gene expression data into biological pathways was developed in order to identify the metabolic processes affected by fosfomycin. We have shown that the number of significantly differentially expressed genes in treated cultures increased with time and with increasing fosfomycin concentration. The target pathway - peptidoglycan biosynthesis - was upregulated following fosfomycin treatment. Modulation of transport processes, cofactor biosynthesis, energy metabolism and nucleic acid biosynthesis was also observed. Conclusions Several pathways and genes downregulated by fosfomycin have been identified, in contrast to previously described cell wall active antibiotics, and was explained by starvation response induced by phosphoenolpyruvate accumulation. Transcriptomic profiling, in combination with meta-analysis, has been shown to be a valuable tool in determining bacterial response to a specific antibiotic.

  11. Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Kaestel, Charlotte; Folkersen, Lasse

    2011-01-01

    In this study we examined the effect of T cell-derived cytokines on retinal pigment epithelial (RPE) cells with respect to expression of complement components. We used an in vitro co-culture system in which CD3/CD28-activated human T cells were separated from the human RPE cell line (ARPE-19) by ...... of inflammatory ocular diseases such as uveitis and age-related macular degeneration. --------------------------------------------------------------------------------...

  12. The giant protein Ebh is a determinant of Staphylococcus aureus cell size and complement resistance.

    Science.gov (United States)

    Cheng, Alice G; Missiakas, Dominique; Schneewind, Olaf

    2014-03-01

    Staphylococcus aureus USA300, the clonal type associated with epidemic community-acquired methicillin-resistant S. aureus (MRSA) infections, displays the giant protein Ebh on its surface. Mutations that disrupt the ebh reading frame increase the volume of staphylococcal cells and alter the cross wall, a membrane-enclosed peptidoglycan synthesis and assembly compartment. S. aureus ebh variants display increased sensitivity to oxacillin (methicillin) as well as susceptibility to complement-mediated killing. Mutations in ebh are associated with reduced survival of mutant staphylococci in blood and diminished virulence in mice. We propose that Ebh, following its secretion into the cross wall, contributes to the characteristic cell growth and envelope assembly pathways of S. aureus, thereby enabling complement resistance and the pathogenesis of staphylococcal infections.

  13. SPONGIOTIC DERMATITIS WITH A MIXED INFLAMMATORY INFILTRATE OF LYMPHOCYTES, ANTIGEN PRESENTING CELLS, IMMUNOGLOBULINS AND COMPLEMENT

    Directory of Open Access Journals (Sweden)

    Abreu Velez Ana Maria

    2011-04-01

    Full Text Available Background: The clinical and histological presentation of spongiotic dermatitis and its inflammatory infiltrates warrant further investigation. In this case documentation of a patient with cutaneous spongiotic reactivity, we aim to characterize antigen presenting cells, as well as the skin-specific cutaneous lymphocyte antigen population by multiple techniques. Case report: A 30 year old Caucasian female presented with a two week history of blistering and erosions around the vaginal, rectal and axillary areas. Material and Methods: We utilized hematoxylin and eosin histology, direct immunofluorescence, immunohistochemistry and confocal microscopy methods to evaluate the immune reaction patterns of the cutaneous inflammatory cells. Results: In the primary histologic areas of spongiotic dermatitis, a mixed population of B and T lymphocytes was seen. Ki-67 antigen proliferative index staining was accentuated in these areas, correlating with the presence of large numbers of epidermal and dermal antigen presenting cells. Among the antigen presenting cell population, we detected strong positivities with CD1a, Factor XIIIa, myeloid/hystoid antigen, S100, HAM-56, and CD68. Interestingly, immunoglobulins G, D and M and Complement factors C1q and C3 were also strongly expressed in antigen presenting cell areas, including positivity within the spongiotic epidermis and around dermal vessels. Conclusions: We document a heterogeneous population of B and T lymphocytes and the presence of multiple classes of antigen presenting cells, immunoglobulins and complement in and surrounding histologically spongiotic areas; these findings further correlated with increased levels of expression of Ki-67.

  14. Cellular characterization of cells from the Fanconi anemia complementation group, FA-D1/BRCA2

    Energy Technology Data Exchange (ETDEWEB)

    Godthelp, Barbara C. [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands); Buul, Paul P.W. van [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands); Jaspers, Nicolaas G.J. [Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000 DR Rotterdam (Netherlands); Elghalbzouri-Maghrani, Elhaam [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands); Duijn-Goedhart, Annemarie van [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands); Arwert, Fre [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Amsterdam (Netherlands); Joenje, Hans [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Amsterdam (Netherlands); Zdzienicka, Malgorzata Z. [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands) and Department of Molecular Cell Genetics, Collegium Medicum, N.Copernicus University, Bydgoszcz (Poland)]. E-mail: M.Z.Zdzienicka@LUMC.nl

    2006-10-10

    Fanconi anemia (FA) is an inherited cancer-susceptibility disorder, characterized by genomic instability and hypersensitivity to DNA cross-linking agents. The discovery of biallelic BRCA2 mutations in the FA-D1 complementation group allows for the first time to study the characteristics of primary BRCA2-deficient human cells. FANCD1/BRCA2-deficient fibroblasts appeared hypersensitive to mitomycin C (MMC), slightly sensitive to methyl methane sulfonate (MMS), and like cells derived from other FA complementation groups, not sensitive to X-ray irradiation. However, unlike other FA cells, FA-D1 cells were slightly sensitive to UV irradiation. Despite the observed lack of X-ray sensitivity in cell survival, significant radioresistant DNA synthesis (RDS) was observed in the BRCA2-deficient fibroblasts but also in the FANCA-deficient fibroblasts, suggesting an impaired S-phase checkpoint. FA-D1/BRCA2 cells displayed greatly enhanced levels of spontaneous as well as MMC-induced chromosomal aberrations (Canada), similar to cells deficient in homologous recombination (HR) and non-D1 FA cells. In contrast to Brca2-deficient rodent cells, FA-D1/BRCA2 cells showed normal sister chromatid exchange (SCE) levels, both spontaneous as well as after MMC treatment. Hence, these data indicate that human cells with biallelic BRCA2 mutations display typical features of both FA- and HR-deficient cells, which suggests that FANCD1/BRCA2 is part of the integrated FA/BRCA DNA damage response pathway but also controls other functions outside the FA pathway.

  15. Complement proteins C7 and CFH control the stemness of liver cancer cells via LSF-1.

    Science.gov (United States)

    Seol, Hyang Sook; Lee, Sang Eun; Song, Joon Seon; Rhee, Je-Keun; Singh, Shree Ram; Chang, Suhwan; Jang, Se Jin

    2016-03-01

    Tumor-initiating cells are important for the formation and maintenance of tumor bulks in various tumors. To identify surface markers of liver tumor-initiating cells, we performed primary tumorsphere culture and analyzed the expression of cluster of differentiation (CD) antigen genes using NanoString. Interestingly, we found significant upregulation of the complement proteins (p = 1.60 × 10(-18)), including C7 and CFH. Further studies revealed that C7 and CFH are required to maintain stemness in liver cancer cells. Knockdown of C7 and CFH expression abrogated tumorsphere formation and induced differentiation, whereas overexpression stimulated stemness factor expression as well as in vivo cell growth. Mechanistically, by studying C7 and CFH-dependent LSF-1 expression and its direct role on stemness factor transcription, we found that LSF-1 is involved in this regulation. Taken together, our data demonstrate the unprecedented role of complement proteins on the maintenance of stemness in liver tumor-initiating cells.

  16. Ability of tetraploid rat blastocysts to support fetal development after complementation with embryonic stem cells.

    Science.gov (United States)

    Hirabayashi, Masumi; Tamura, Chihiro; Sanbo, Makoto; Goto, Teppei; Kato-Itoh, Megumi; Kobayashi, Toshihiro; Nakauchi, Hiromitsu; Hochi, Shinichi

    2012-06-01

    This study was undertaken to generate rat offspring via tetraploid blastocyst complementation with embryonic stem (ES) cells. Tetraploid blastocysts were prepared by electrofusion of blastomeres from two-cell stage embryos, and subsequent in vivo culture for 4 days. Microinjection into the tetraploid blastocoel of an inner cell mass isolated by immunosurgery resulted in the generation of rat offspring, suggesting the successful contribution of tetraploid blastocysts to their placenta. Tetraploid blastocyst complementation was attempted with a total of 4 ES cell lines (2 lines of female karyotype and 2 lines of male karyotype). In the rESWIv-3i-5 (XX) cell line, normal-sized fetuses with heartbeats were harvested on E11.5 (12.1%), E12.5 (9.5%), and E13.5 (9.1%), but no viable fetuses were detected on E14.5. Similarly, use of the rESWIv-3i-1 (XX) cell line resulted in no viable fetus production on E14.5. Using the rESBLK2i-1 (XY) cell line, viable fetuses were harvested not only on E11.5-E13.5 (2.6-5.5%), but also on E14.5 (3.0%). The transfer of a total of 487 tetraploid blastocysts complemented with rESBLK2i-1 cells resulted in 256 implantation sites (52.6%) on E21.5, but no viable offspring was detected. Use of the rESBLK2i-1/huKO (XY) cell line also resulted in no viable offspring production on E21.5. Analyses of the methylation pattern in differentially methylated regions and transcript level of genes that are imprinted in mice (H19, Meg3, Igf2r, Peg5, and Peg10) in the E14.5 conceptuses indicated a marked difference between the ES cell-derived and control normal fetuses, but not between the tetraploid and control diploid placenta.

  17. Canine Adipose Derived Mesenchymal Stem Cells Transcriptome Composition Alterations: A Step towards Standardizing Therapeutic

    Directory of Open Access Journals (Sweden)

    Nina Krešić

    2017-01-01

    Full Text Available Although canine adipose derived stem cells (cASCs morphology characteristics and differentiation ability are well documented, transcriptome alterations of undifferentiated cASCs during ex vivo cultivation remain unknown. Here we demonstrate, for the first time, the transcriptome composition of isolated cASCs in undifferentiated state originating from six donors. Transcriptome changes were monitored during ex vivo cultivation between passage 3 (P3 and P5, which are mostly used in therapy. Influence of donors’ age in given passage number on transcriptome composition was also investigated. Cultivation from P3 to P5 resulted in 16 differentially expressed genes with cooverexpression of pluripotency and self-renewal transcription factors genes SOX2 and POU5F1 dominant in old donors’ cells. Furthermore, cASCs demonstrated upregulation of IL-6 in young and old donors’ cells. In addition, ex vivo cultivation of cASCs revealed well-known morphological alterations accompanied with decrease in expression of CD90 and CD44 markers in P4 and higher monitored by flow cytometry and successful osteo- and chondrodifferentiation but inefficient adipodifferentiation in P3. Our results revealed the impact of ex vivo cultivation on nature of cells. Correlation of transcriptome changes with secretome composition is needed and its further impact on therapeutic potential of cASCs remains to be evaluated in clinical trials.

  18. Draft De Novo Transcriptome of the Rat Kangaroo Potorous tridactylus as a Tool for Cell Biology.

    Science.gov (United States)

    Udy, Dylan B; Voorhies, Mark; Chan, Patricia P; Lowe, Todd M; Dumont, Sophie

    2015-01-01

    The rat kangaroo (long-nosed potoroo, Potorous tridactylus) is a marsupial native to Australia. Cultured rat kangaroo kidney epithelial cells (PtK) are commonly used to study cell biological processes. These mammalian cells are large, adherent, and flat, and contain large and few chromosomes-and are thus ideal for imaging intra-cellular dynamics such as those of mitosis. Despite this, neither the rat kangaroo genome nor transcriptome have been sequenced, creating a challenge for probing the molecular basis of these cellular dynamics. Here, we present the sequencing, assembly and annotation of the draft rat kangaroo de novo transcriptome. We sequenced 679 million reads that mapped to 347,323 Trinity transcripts and 20,079 Unigenes. We present statistics emerging from transcriptome-wide analyses, and analyses suggesting that the transcriptome covers full-length sequences of most genes, many with multiple isoforms. We also validate our findings with a proof-of-concept gene knockdown experiment. We expect that this high quality transcriptome will make rat kangaroo cells a more tractable system for linking molecular-scale function and cellular-scale dynamics.

  19. Functional analysis of membrane-bound complement regulatory protein on T-cell immune response in ginbuna crucian carp.

    Science.gov (United States)

    Nur, Indriyani; Abdelkhalek, Nevien K; Motobe, Shiori; Nakamura, Ryota; Tsujikura, Masakazu; Somamoto, Tomonori; Nakao, Miki

    2016-02-01

    Complements have long been considered to be a pivotal component in innate immunity. Recent researches, however, highlight novel roles of complements in T-cell-mediated adaptive immunity. Membrane-bound complement regulatory protein CD46, a costimulatory protein for T cells, is a key molecule for T-cell immunomodulation. Teleost CD46-like molecule, termed Tecrem, has been newly identified in common carp and shown to function as a complement regulator. However, it remains unclear whether Tecrem is involved in T-cell immune response. We investigated Tecrem function related to T-cell responses in ginbuna crucian carp. Ginbuna Tecrem (gTecrem) proteins were detected by immunoprecipitation using anti-common carp Tecrem monoclonal antibody (mAb) and were ubiquitously expressed on blood cells including CD8α(+) and CD4(+) lymphocytes. gTecrem expression on leucocyte surface was enhanced after stimulation with the T-cell mitogen, phytohaemagglutinin (PHA). Coculture with the anti-Tecrem mAb significantly inhibited the proliferative activity of PHA-stimulated peripheral blood lymphocytes, suggesting that cross-linking of Tecrems on T-cells interferes with a signal transduction pathway for T-cell activation. These findings indicate that Tecrem may act as a T-cell moderator and imply that the complement system in teleost, as well as mammals, plays an important role for linking adaptive and innate immunity.

  20. Sundanese Complementation

    Science.gov (United States)

    Kurniawan, Eri

    2013-01-01

    The focus of this thesis is the description and analysis of clausal complementation in Sundanese, an Austronesian language spoken in Indonesia. The thesis examined a range of clausal complement types in Sundanese, which consists of (i) "yen/(wi)rehna" "that" complements, (ii) "pikeun" "for" complements,…

  1. Red blood cell destruction in autoimmune hemolytic anemia: role of complement and potential new targets for therapy.

    Science.gov (United States)

    Berentsen, Sigbjørn; Sundic, Tatjana

    2015-01-01

    Autoimmune hemolytic anemia (AIHA) is a collective term for several diseases characterized by autoantibody-initiated destruction of red blood cells (RBCs). Exact subclassification is essential. We provide a review of the respective types of AIHA with emphasis on mechanisms of RBC destruction, focusing in particular on complement involvement. Complement activation plays a definitive but limited role in warm-antibody AIHA (w-AIHA), whereas primary cold agglutinin disease (CAD), secondary cold agglutinin syndrome (CAS), and paroxysmal cold hemoglobinuria (PCH) are entirely complement-dependent disorders. The details of complement involvement differ among these subtypes. The theoretical background for therapeutic complement inhibition in selected patients is very strong in CAD, CAS, and PCH but more limited in w-AIHA. The optimal target complement component for inhibition is assumed to be important and highly dependent on the type of AIHA. Complement modulation is currently not an evidence-based therapy modality in any AIHA, but a number of experimental and preclinical studies are in progress and a few clinical observations have been reported. Clinical studies of new complement inhibitors are probably not far ahead.

  2. Transcriptome-wide mapping of pea seed ageing reveals a pivotal role for genes related to oxidative stress and programmed cell death.

    Directory of Open Access Journals (Sweden)

    Hongying Chen

    Full Text Available Understanding of seed ageing, which leads to viability loss during storage, is vital for ex situ plant conservation and agriculture alike. Yet the potential for regulation at the transcriptional level has not been fully investigated. Here, we studied the relationship between seed viability, gene expression and glutathione redox status during artificial ageing of pea (Pisum sativum seeds. Transcriptome-wide analysis using microarrays was complemented with qRT-PCR analysis of selected genes and a multilevel analysis of the antioxidant glutathione. Partial degradation of DNA and RNA occurred from the onset of artificial ageing at 60% RH and 50°C, and transcriptome profiling showed that the expression of genes associated with programmed cell death, oxidative stress and protein ubiquitination were altered prior to any sign of viability loss. After 25 days of ageing viability started to decline in conjunction with progressively oxidising cellular conditions, as indicated by a shift of the glutathione redox state towards more positive values (>-190 mV. The unravelling of the molecular basis of seed ageing revealed that transcriptome reprogramming is a key component of the ageing process, which influences the progression of programmed cell death and decline in antioxidant capacity that ultimately lead to seed viability loss.

  3. Cloning and expression of the complement receptor glycoprotein C from Herpesvirus simiae (herpes B virus): protection from complement-mediated cell lysis.

    Science.gov (United States)

    Huemer, Hartwig P; Wechselberger, Christian; Bennett, Alice M; Falke, Dietrich; Harrington, Lesley

    2003-05-01

    Simian herpes B virus (SHBV) is the herpes simplex virus (HSV) homologue for the species MACACA: Unlike in its natural host, and unlike other animal herpesviruses, SHBV causes high mortality in accidentally infected humans. SHBV-infected cells, like those infected with HSV-1 and equine herpesvirus types 1 and 4, express complement C3 receptor activity. To study immunoregulatory functions involved in susceptibility/resistance against interspecies transmission, the SHBV glycoprotein C (gC(SHBV)) gene (encoding 467 aa) was isolated. Sequence analysis revealed amino acid identity with gC proteins from HSV-2 (46.9 %), HSV-1 (44.5 %) and pseudorabies virus (21.2 %). Highly conserved cysteine residues were also noted. Similar to gC(HSV-2), gC(SHBV) is less glycosylated than gC(HSV-1), resulting in a molecular mass of 65 kDa if expressed in replication-deficient vaccinia virus Ankara. Stable transfectants expressing full-length gC(SHBV) on the cell surface induced C3 receptor activity and were substantially protected from complement-mediated lysis; no protection was observed with control constructs. This suggests that expression of the gC homologues on infected cell surfaces might also contribute to the survival of infected cells in addition to decreased virion inactivation. Interestingly, soluble gC(SHBV) isolated from protein-free culture supernatants did not interfere with the binding of the alternative complement pathway activator properdin to C3b, which is similar to our findings with gC(HSV-2) and could be attributed to major differences in the amino-terminal portion of the protein with extended deletions in both gC(SHBV) and gC(HSV-2). Binding of recombinant gC(SHBV) to polysulphates was observed. This, together with the heparin-sensitivity of the gC(SHBV)-C3 interaction on the infected cell surface, suggests a role in adherence to heparan sulphate, similar to the gC proteins of other herpesviruses.

  4. Real time imaging of mRNA expression dynamics in live cells using protein complementation methods

    Science.gov (United States)

    Meller, Amit

    2009-03-01

    Traditional methods for mRNA quantification in cells, such as northern blots, quantitative PCR or microarrays assays, require cell lysis and therefore do not preserve its dynamics. These methods cannot be used to probe the spatio-temporal localization of mRNA in cells, which provide useful information for a wide range biomolecular process, including RNA metabolizim, expression kinetics and RNA interference. To probe mRNA dynamics in live prokaryotic and eukaryotic cells, we develop a method, which exploit the strong affinity of the eukaryotic initiation factor 4A (eIF4A) to specific RNA aptamers. Two parts of the eIF4A are fused to a split Green Fluorescence Protein (GFP), and are expressed in the cells at high abundance. However, only when the RNA apatmer is also present, the two protein parts complement and become fluorescent. Thus, the fluorescent background remains low, allowing us to directly image the expression of mRNA molecules in live e-coli cells from its early onset, over hours. We find that the expression kinetics can be classified in one out of at least three forms, which also display distinct spatial distributions. I will discuss the possible biological origin for these distributions and their time evolution.

  5. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM deficient blastocysts.

    Directory of Open Access Journals (Sweden)

    Duancheng Wen

    Full Text Available Tetraploid complementation is often used to produce mice from embryonic stem cells (ESCs by injection of diploid (2n ESCs into tetraploid (4n blastocysts (ESC-derived mice. This method has also been adapted to mouse cloning and the derivation of mice from induced pluripotent stem (iPS cells. However, the underlying mechanism(s of the tetraploid complementation remains largely unclear. Whether this approach can give rise to completely ES cell-derived mice is an open question, and has not yet been unambiguously proven. Here, we show that mouse tetraploid blastocysts can be classified into two groups, according to the presence or absence of an inner cell mass (ICM. We designate these as type a (presence of ICM at blastocyst stage or type b (absence of ICM. ESC lines were readily derived from type a blastocysts, suggesting that these embryos retain a pluripotent epiblast compartment; whereas the type b blastocysts possessed very low potential to give rise to ESC lines, suggesting that they had lost the pluripotent epiblast. When the type a blastocysts were used for tetraploid complementation, some of the resulting mice were found to be 2n/4n chimeric; whereas when type b blastocysts were used as hosts, the resulting mice are all completely ES cell-derived, with the newborn pups displaying a high frequency of abdominal hernias. Our results demonstrate that completely ES cell-derived mice can be produced using ICM-deficient 4n blastocysts, and provide evidence that the exclusion of tetraploid cells from the fetus in 2n/4n chimeras can largely be attributed to the formation of ICM-deficient blastocysts.

  6. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM) deficient blastocysts.

    Science.gov (United States)

    Wen, Duancheng; Saiz, Nestor; Rosenwaks, Zev; Hadjantonakis, Anna-Katerina; Rafii, Shahin

    2014-01-01

    Tetraploid complementation is often used to produce mice from embryonic stem cells (ESCs) by injection of diploid (2n) ESCs into tetraploid (4n) blastocysts (ESC-derived mice). This method has also been adapted to mouse cloning and the derivation of mice from induced pluripotent stem (iPS) cells. However, the underlying mechanism(s) of the tetraploid complementation remains largely unclear. Whether this approach can give rise to completely ES cell-derived mice is an open question, and has not yet been unambiguously proven. Here, we show that mouse tetraploid blastocysts can be classified into two groups, according to the presence or absence of an inner cell mass (ICM). We designate these as type a (presence of ICM at blastocyst stage) or type b (absence of ICM). ESC lines were readily derived from type a blastocysts, suggesting that these embryos retain a pluripotent epiblast compartment; whereas the type b blastocysts possessed very low potential to give rise to ESC lines, suggesting that they had lost the pluripotent epiblast. When the type a blastocysts were used for tetraploid complementation, some of the resulting mice were found to be 2n/4n chimeric; whereas when type b blastocysts were used as hosts, the resulting mice are all completely ES cell-derived, with the newborn pups displaying a high frequency of abdominal hernias. Our results demonstrate that completely ES cell-derived mice can be produced using ICM-deficient 4n blastocysts, and provide evidence that the exclusion of tetraploid cells from the fetus in 2n/4n chimeras can largely be attributed to the formation of ICM-deficient blastocysts.

  7. Cell-specific transcriptomic analyses of three-dimensional shoot development in the moss Physcomitrella patens.

    Science.gov (United States)

    Frank, Margaret H; Scanlon, Michael J

    2015-08-01

    Haploid moss gametophytes harbor distinct stem cell types, including tip cells that divide in single planes to generate filamentous protonemata, and bud cells that divide in three planes to yield axial gametophore shoots. This transition from filamentous to triplanar growth occurs progressively during the moss life cycle, and is thought to mirror evolution of the first terrestrial plants from Charophycean green algal ancestors. The innovation of morphologically complex plant body plans facilitated colonization of the vertical landscape, and enabled development of complex vegetative and reproductive plant morphologies. Despite its profound evolutionary significance, the molecular programs involved in this transition from filamentous to triplanar meristematic plant growth are poorly understood. In this study, we used single-cell type transcriptomics to identify more than 4000 differentially expressed genes that distinguish uniplanar protonematal tip cells from multiplanar gametophore bud cells in the moss Physcomitrella patens. While the transcriptomes of both tip and bud cells show molecular signatures of proliferative cells, the bud cell transcriptome exhibits a wider variety of genes with significantly increased transcript abundances. Our data suggest that combined expression of genes involved in shoot patterning and asymmetric cell division accompanies the transition from uniplanar to triplanar meristematic growth in moss.

  8. Transcriptomic microarray analysis of BoMac cells after infection with bovine foamy virus

    NARCIS (Netherlands)

    Rola-Luszczak, M.; Materniak, M.; Pluta, A.; Hulst, M.M.; Kuz'mak, J.

    2014-01-01

    Bovine foamy virus (BFV) infections are highly prevalent among cattle worldwide. However, relatively little is known about the impact of this virus on the host immune system. In our study, we focused on a bovine macrophage cell line (BoMac) and examined changes in the BoMac transcriptome after in vi

  9. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection.

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2016-04-01

    Full Text Available Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and

  10. Investigating evolutionary perspective of carcinogenesis with single-cell transcriptome analysis

    Institute of Scientific and Technical Information of China (English)

    Xi Zhang; Cheng Zhang; Zhongjun Li; Jiangjian Zhong; Leslie P. Weiner; Jiang F. Zhong

    2013-01-01

    We developed phase-switch microfluidic devices for molecular profiling of a large number of single cells. Whole genome microarrays and RNA-sequencing are commonly used to determine the expression levels of genes in cell lysates (a physical mix of millions of cells) for inferring gene functions. However, cellular heterogeneity becomes an inherent noise in the measurement of gene expression. The unique molecular characteristics of individual cells, as well as the temporal and quantitative information of gene expression in cells, are lost when averaged among all cells in cell lysates. Our single-cell technology overcomes this limitation and enables us to obtain a large number of single-cell transcriptomes from a population of cells. A collection of single-cell molecular profiles allows us to study carcinogenesis from an evolutionary perspective by treating cancer as a diverse population of cells with abnormal molecular characteristics. Because a cancer cellpopulation contains cells at various stages of development toward drug resistance, clustering similar single-cell molecular profiles could reveal how drug-resistant sub-clones evolve during cancer treatment. Here, we discuss how single-celltranscriptome analysis technology could enable the study of carcinogenesis from an evolutionary perspective and the development of drug-resistance in leukemia. The single-cell transcriptome analysis reported here could have a direct and significant impact on current cancer treatments and future personalized cancer therapies.

  11. Entry of Francisella tularensis into Murine B Cells: The Role of B Cell Receptors and Complement Receptors.

    Directory of Open Access Journals (Sweden)

    Lenka Plzakova

    Full Text Available Francisella tularensis, the etiological agent of tularemia, is an intracellular pathogen that dominantly infects and proliferates inside phagocytic cells but can be seen also in non-phagocytic cells, including B cells. Although protective immunity is known to be almost exclusively associated with the type 1 pathway of cellular immunity, a significant role of B cells in immune responses already has been demonstrated. Whether their role is associated with antibody-dependent or antibody-independent B cell functions is not yet fully understood. The character of early events during B cell-pathogen interaction may determine the type of B cell response regulating the induction of adaptive immunity. We used fluorescence microscopy and flow cytometry to identify the basic requirements for the entry of F. tularensis into B cells within in vivo and in vitro infection models. Here, we present data showing that Francisella tularensis subsp. holarctica strain LVS significantly infects individual subsets of murine peritoneal B cells early after infection. Depending on a given B cell subset, uptake of Francisella into B cells is mediated by B cell receptors (BCRs with or without complement receptor CR1/2. However, F. tularensis strain FSC200 ΔiglC and ΔftdsbA deletion mutants are defective in the ability to enter B cells. Once internalized into B cells, F. tularensis LVS intracellular trafficking occurs along the endosomal pathway, albeit without significant multiplication. The results strongly suggest that BCRs alone within the B-1a subset can ensure the internalization process while the BCRs on B-1b and B-2 cells need co-signaling from the co receptor containing CR1/2 to initiate F. tularensis engulfment. In this case, fluidity of the surface cell membrane is a prerequisite for the bacteria's internalization. The results substantially underline the functional heterogeneity of B cell subsets in relation to F. tularensis.

  12. Exploring the Innate Immune System: Using Complement-Medicated Cell Lysis in the Classroom

    Science.gov (United States)

    Fuller, Kevin G.

    2008-01-01

    The protein complement pathway comprises an important part of the innate immunity. The use of serum to demonstrate complement-mediated destruction across a series of bacterial dilutions allows an instructor to introduce a number of important biological concepts such as bacterial growth, activation cascades, and adaptive versus innate immunity.

  13. Transcriptome profiling of whole blood cells identifies PLEK2 and C1QB in human melanoma.

    Directory of Open Access Journals (Sweden)

    Yuchun Luo

    Full Text Available Developing analytical methodologies to identify biomarkers in easily accessible body fluids is highly valuable for the early diagnosis and management of cancer patients. Peripheral whole blood is a "nucleic acid-rich" and "inflammatory cell-rich" information reservoir and represents systemic processes altered by the presence of cancer cells.We conducted transcriptome profiling of whole blood cells from melanoma patients. To overcome challenges associated with blood-based transcriptome analysis, we used a PAXgene™ tube and NuGEN Ovation™ globin reduction system. The combined use of these systems in microarray resulted in the identification of 78 unique genes differentially expressed in the blood of melanoma patients. Of these, 68 genes were further analyzed by quantitative reverse transcriptase PCR using blood samples from 45 newly diagnosed melanoma patients (stage I to IV and 50 healthy control individuals. Thirty-nine genes were verified to be differentially expressed in blood samples from melanoma patients. A stepwise logit analysis selected eighteen 2-gene signatures that distinguish melanoma from healthy controls. Of these, a 2-gene signature consisting of PLEK2 and C1QB led to the best result that correctly classified 93.3% melanoma patients and 90% healthy controls. Both genes were upregulated in blood samples of melanoma patients from all stages. Further analysis using blood fractionation showed that CD45(- and CD45(+ populations were responsible for the altered expression levels of PLEK2 and C1QB, respectively.The current study provides the first analysis of whole blood-based transcriptome biomarkers for malignant melanoma. The expression of PLEK2, the strongest gene to classify melanoma patients, in CD45(- subsets illustrates the importance of analyzing whole blood cells for biomarker studies. The study suggests that transcriptome profiling of blood cells could be used for both early detection of melanoma and monitoring of patients

  14. Transcriptomes of bovine ovarian follicular and luteal cells

    Science.gov (United States)

    RNA expression analysis was performed on four somatic ovarian cell types using a gene array panel: the granulosa cells (GCs) and theca cells (TCs) of the dominant follicle and the large luteal cells (LLCs) and small luteal cells (SLCs) of the corpus luteum. The normalized linear microarray data was ...

  15. Melanocytes in the skin--comparative whole transcriptome analysis of main skin cell types.

    Science.gov (United States)

    Reemann, Paula; Reimann, Ene; Ilmjärv, Sten; Porosaar, Orm; Silm, Helgi; Jaks, Viljar; Vasar, Eero; Kingo, Külli; Kõks, Sulev

    2014-01-01

    Melanocytes possess several functions besides a role in pigment synthesis, but detailed characteristics of the cells are still unclear. We used whole transcriptome sequencing (RNA-Seq) to assess differential gene expression of cultivated normal human melanocytes with respect to keratinocytes, fibroblasts and whole skin. The present results reveal cultivated melanocytes as highly proliferative cells with possible stem cell-like properties. The enhanced readiness to regenerate makes melanocytes the most vulnerable cells in the skin and explains their high risk of developing into malignant melanoma.

  16. HCMV Displays a Unique Transcriptome of Immunomodulatory Genes in Primary Monocyte-Derived Cell Types

    Science.gov (United States)

    Van Damme, Ellen; Thys, Kim; Tuefferd, Marianne; Van Hove, Carl; Aerssens, Jeroen; Van Loock, Marnix

    2016-01-01

    Human cytomegalovirus (HCMV) is a betaherpesvirus which rarely presents problems in healthy individuals, yet may result in severe morbidity in immunocompromised patients and in immune-naïve neonates. HCMV has a large 235 kb genome with a coding capacity of at least 165 open reading frames (ORFs). This large genome allows complex gene regulation resulting in different sets of transcripts during lytic and latent infection. While latent virus mainly resides within monocytes and CD34+ progenitor cells, reactivation to lytic infection is driven by differentiation towards terminally differentiated myeloid dendritic cells and macrophages. Consequently, it has been suggested that macrophages and dendritic cells contribute to viral spread in vivo. Thus far only limited knowledge is available on the expression of HCMV genes in terminally differentiated myeloid primary cells and whether or not the virus exhibits a different set of lytic genes in primary cells compared with lytic infection in NHDF fibroblasts. To address these questions, we used Illumina next generation sequencing to determine the HCMV transcriptome in macrophages and dendritic cells during lytic infection and compared it to the transcriptome in NHDF fibroblasts. Here, we demonstrate unique expression profiles in macrophages and dendritic cells which significantly differ from the transcriptome in fibroblasts mainly by modulating the expression of viral transcripts involved in immune modulation, cell tropism and viral spread. In a head to head comparison between macrophages and dendritic cells, we observed that factors involved in viral spread and virion composition are differentially regulated suggesting that the plasticity of the virion facilitates the infection of surrounding cells. Taken together, this study provides the full transcript expression analysis of lytic HCMV genes in monocyte-derived type 1 and type 2 macrophages as well as in monocyte-derived dendritic cells. Thereby underlining the potential

  17. Combination of two anti-CD5 monoclonal antibodies synergistically induces complement-dependent cytotoxicity of chronic lymphocytic leukaemia cells

    DEFF Research Database (Denmark)

    Klitgaard, Josephine L; Koefoed, Klaus; Geisler, Christian

    2013-01-01

    secondary effector functions represent an attractive opportunity for CLL treatment. Here, a repertoire of mAbs against human CD5 was generated and tested for ability to induce complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC) both as single m...

  18. Single-cell transcriptome analysis of fish immune cells provides insight into the evolution of vertebrate immune cell types

    Science.gov (United States)

    Ferreira, Lauren; Macaulay, Iain C.; Stubbington, Michael J.T.

    2017-01-01

    The immune system of vertebrate species consists of many different cell types that have distinct functional roles and are subject to different evolutionary pressures. Here, we first analyzed conservation of genes specific for all major immune cell types in human and mouse. Our results revealed higher gene turnover and faster evolution of trans-membrane proteins in NK cells compared with other immune cell types, and especially T cells, but similar conservation of nuclear and cytoplasmic protein coding genes. To validate these findings in a distant vertebrate species, we used single-cell RNA sequencing of lck:GFP cells in zebrafish and obtained the first transcriptome of specific immune cell types in a nonmammalian species. Unsupervised clustering and single-cell TCR locus reconstruction identified three cell populations, T cells, a novel type of NK-like cells, and a smaller population of myeloid-like cells. Differential expression analysis uncovered new immune-cell–specific genes, including novel immunoglobulin-like receptors, and neofunctionalization of recently duplicated paralogs. Evolutionary analyses confirmed the higher gene turnover of trans-membrane proteins in NK cells compared with T cells in fish species, suggesting that this is a general property of immune cell types across all vertebrates. PMID:28087841

  19. Mutations in new cell cycle genes that fail to complement a multiply mutant third chromosome of Drosophila.

    Science.gov (United States)

    White-Cooper, H; Carmena, M; Gonzalez, C; Glover, D M

    1996-11-01

    We have simultaneously screened for new alleles and second site mutations that fail to complement five cell cycle mutations of Drosphila carried on a single third chromosome (gnu, polo, mgr, asp, stg). Females that are either transheterozygous for scott of the antartic (scant) and polo, or homozygous for scant produce embryos that show mitotic defects. A maternal effect upon embryonic mitoses is also seen in embryos derived from females transheterozygous with helter skelter (hsk) and either mgr or asp. cleopatra (cleo), fails to complement asp but is not uncovered by a deficiency for asp. The mitotic phenotype of larvae heterozygous for cleo and the multiple mutant chromosome is similar to weak alleles of asp, but there are no defects in male meiosis. Mutations that failed to complement stg fell into two complementation groups corresponding to stg and a new gene noose. Three of the new stg alleles are early zygotic lethals, whereas the fourth is a pharate adult lethal allele that affects both mitosis and meiosis. Mutations in noose fully complement a small deficiency that removes stg, but when placed in trans to certain stg alleles, result in late lethality and mitotic abnormalities in larval brains.

  20. Comparison of American mink embryonic stem and induced pluripotent stem cell transcriptomes

    DEFF Research Database (Denmark)

    Menzorov, Aleksei G; Matveeva, Natalia M.; Markakis, Marios Nektarios

    2015-01-01

    BACKGROUND: Recently fibroblasts of many mammalian species have been reprogrammed to pluripotent state using overexpression of several transcription factors. This technology allows production of induced pluripotent stem (iPS) cells with properties similar to embryonic stem (ES) cells....... The completeness of reprogramming process is well studied in such species as mouse and human but there is not enough data on other species. We produced American mink (Neovison vison) ES and iPS cells and compared these cells using transcriptome analysis. RESULTS: We report the generation of 10 mink ES and 22 i......PS cell lines. The majority of the analyzed cell lines had normal diploid chromosome number. The only ES cell line with XX chromosome set had both X-chromosomes in active state that is characteristic of pluripotent cells. The pluripotency of ES and iPS cell lines was confirmed by formation of teratomas...

  1. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance

    DEFF Research Database (Denmark)

    Fort, Alexandre; Hashimoto, Kosuke; Yamada, Daisuke

    2014-01-01

    The importance of microRNAs and long noncoding RNAs in the regulation of pluripotency has been documented; however, the noncoding components of stem cell gene networks remain largely unknown. Here we investigate the role of noncoding RNAs in the pluripotent state, with particular emphasis...... on nuclear and retrotransposon-derived transcripts. We have performed deep profiling of the nuclear and cytoplasmic transcriptomes of human and mouse stem cells, identifying a class of previously undetected stem cell-specific transcripts. We show that long terminal repeat (LTR)-derived transcripts contribute...

  2. Complement in hemolytic anemia.

    Science.gov (United States)

    Brodsky, Robert A

    2015-01-01

    Complement is increasingly being recognized as an important driver of human disease, including many hemolytic anemias. Paroxysmal nocturnal hemoglobinuria (PNH) cells are susceptible to hemolysis because of a loss of the complement regulatory proteins CD59 and CD55. Patients with atypical hemolytic uremic syndrome (aHUS) develop a thrombotic microangiopathy (TMA) that in most cases is attributable to mutations that lead to activation of the alternative pathway of complement. For optimal therapy, it is critical, but often difficult, to distinguish aHUS from other TMAs, such as thrombotic thrombocytopenic purpura; however, novel bioassays are being developed. In cold agglutinin disease (CAD), immunoglobulin M autoantibodies fix complement on the surface of red cells, resulting in extravascular hemolysis by the reticuloendothelial system. Drugs that inhibit complement activation are increasingly being used to treat these diseases. This article discusses the pathophysiology, diagnosis, and therapy for PNH, aHUS, and CAD.

  3. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation

    Directory of Open Access Journals (Sweden)

    Xiaoying Chen

    2016-02-01

    Full Text Available ABSTRACT The mammalian brain is heterogeneous, containing billions of neurons and trillions of synapses forming various neural circuitries, through which sense, movement, thought, and emotion arise. The cellular heterogeneity of the brain has made it difficult to study the molecular logic of neural circuitry wiring, pruning, activation, and plasticity, until recently, transcriptome analyses with single cell resolution makes decoding of gene regulatory networks underlying aforementioned circuitry properties possible. Here we report success in performing both electrophysiological and whole-genome transcriptome analyses on single human neurons in culture. Using Weighted Gene Coexpression Network Analyses (WGCNA, we identified gene clusters highly correlated with neuronal maturation judged by electrophysiological characteristics. A tight link between neuronal maturation and genes involved in ubiquitination and mitochondrial function was revealed. Moreover, we identified a list of candidate genes, which could potentially serve as biomarkers for neuronal maturation. Coupled electrophysiological recording and single cell transcriptome analysis will serve as powerful tools in the future to unveil molecular logics for neural circuitry functions.

  4. A novel meta-analysis approach of cancer transcriptomes reveals prevailing transcriptional networks in cancer cells.

    Science.gov (United States)

    Niida, Atsushi; Imoto, Seiya; Nagasaki, Masao; Yamaguchi, Rui; Miyano, Satoru

    2010-01-01

    Although microarray technology has revealed transcriptomic diversities underlining various cancer phenotypes, transcriptional programs controlling them have not been well elucidated. To decode transcriptional programs governing cancer transcriptomes, we have recently developed a computational method termed EEM, which searches for expression modules from prescribed gene sets defined by prior biological knowledge like TF binding motifs. In this paper, we extend our EEM approach to predict cancer transcriptional networks. Starting from functional TF binding motifs and expression modules identified by EEM, we predict cancer transcriptional networks containing regulatory TFs, associated GO terms, and interactions between TF binding motifs. To systematically analyze transcriptional programs in broad types of cancer, we applied our EEM-based network prediction method to 122 microarray datasets collected from public databases. The data sets contain about 15000 experiments for tumor samples of various tissue origins including breast, colon, lung etc. This EEM based meta-analysis successfully revealed a prevailing cancer transcriptional network which functions in a large fraction of cancer transcriptomes; they include cell-cycle and immune related sub-networks. This study demonstrates broad applicability of EEM, and opens a way to comprehensive understanding of transcriptional networks in cancer cells.

  5. Single prokaryotic cell isolation and total transcript amplification protocol for transcriptomic analysis.

    Science.gov (United States)

    Kang, Yun; McMillan, Ian; Norris, Michael H; Hoang, Tung T

    2015-07-01

    Until recently, transcriptome analyses of single cells have been confined to eukaryotes. The information obtained from single-cell transcripts can provide detailed insight into spatiotemporal gene expression, and it could be even more valuable if expanded to prokaryotic cells. Transcriptome analysis of single prokaryotic cells is a recently developed and powerful tool. Here we describe a procedure that allows amplification of the total transcript of a single prokaryotic cell for in-depth analysis. This is performed by using a laser-capture microdissection instrument for single-cell isolation, followed by reverse transcription via Moloney murine leukemia virus, degradation of chromosomal DNA with McrBC and DpnI restriction enzymes, single-stranded cDNA (ss-cDNA) ligation using T4 polynucleotide kinase and CircLigase, and polymerization of ss-cDNA to double-stranded cDNA (ds-cDNA) by Φ29 polymerase. This procedure takes ∼5 d, and sufficient amounts of ds-cDNA can be obtained from single-cell RNA template for further microarray analysis.

  6. Profiling of Sox4-dependent transcriptome in skin links tumour suppression and adult stem cell activation

    Directory of Open Access Journals (Sweden)

    Miguel Foronda

    2015-12-01

    Full Text Available Adult stem cells (ASCs reside in specific niches in a quiescent state in adult mammals. Upon specific cues they become activated and respond by self-renewing and differentiating into newly generated specialised cells that ensure appropriate tissue fitness. ASC quiescence also serves as a tumour suppression mechanism by hampering cellular transformation and expansion (White AC et al., 2014. Some genes restricted to early embryonic development and adult stem cell niches are often potent modulators of stem cell quiescence, and derailed expression of these is commonly associated to cancer (Vervoort SJ et al., 2013. Among them, it has been shown that recommissioned Sox4 expression facilitates proliferation, survival and migration of malignant cells. By generating a conditional Knockout mouse model in stratified epithelia (Sox4cKO mice, we demonstrated a delayed plucking-induced Anagen in the absence of Sox4. Skin global transcriptome analysis revealed a prominent defect in the induction of transcriptional networks that control hair follicle stem cell (HFSC activation such as those regulated by Wnt/Ctnnb1, Shh, Myc or Sox9, cell cycle and DNA damage response-associated pathways. Besides, Sox4cKO mice are resistant to skin carcinogenesis, thus linking Sox4 to both normal and pathological HFSC activation (Foronda M et al., 2014. Here we provide additional details on the analysis of Sox4-regulated transcriptome in Telogen and Anagen skin. The raw and processed microarray data is deposited in GEO under GSE58155.

  7. Single cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming

    Science.gov (United States)

    Kim, Daniel H.; Marinov, Georgi K.; Pepke, Shirley; Singer, Zakary S.; He, Peng; Williams, Brian; Schroth, Gary P.; Elowitz, Michael B.; Wold, Barbara J.

    2014-01-01

    SUMMARY Cellular reprogramming highlights the epigenetic plasticity of the somatic cell state. Long noncoding RNAs (lncRNAs) have emerging roles in epigenetic regulation, but their potential functions in reprogramming cell fate have been largely unexplored. We used single-cell RNA sequencing to characterize the expression patterns of over 16,000 genes, including 437 lncRNAs, during defined stages of reprogramming to pluripotency. Self-organizing maps (SOMs) were used as an intuitive way to structure and interrogate transcriptome data at the single-cell level. Early molecular events during reprogramming involved the activation of Ras signaling pathways, along with hundreds of lncRNAs. Loss-of-function studies showed that activated lncRNAs can repress lineage-specific genes, while lncRNAs activated in multiple reprogramming cell types can regulate metabolic gene expression. Our findings demonstrate that reprogramming cells activate defined sets of functionally relevant lncRNAs and provide a resource to further investigate how dynamic changes in the transcriptome reprogram cell state. PMID:25575081

  8. Substituting complements

    OpenAIRE

    Dari-Mattiacci, G.; Parisi, F.; Heller, M.

    2009-01-01

    The presence of multiple sellers in the provision of (nonsubstitutable) complementary goods leads to outcomes that are worse than those generated by a monopoly (with a vertically integrated production of complements), a problem known in the economic literature as complementary oligopoly and recently popularized in the legal literature as the tragedy of the anticommons. We ask the following question: how many substitutes for each complement are necessary to render the presence of multiple sell...

  9. Genome-wide transcriptomic alterations induced by ethanol treatment in human dental pulp stem cells (DPSCs

    Directory of Open Access Journals (Sweden)

    Omar Khalid

    2014-12-01

    Full Text Available Human dental pulp stem cells (DPSCs isolated from adult dental pulp are multipotent mesenchymal stem cells that can be directed to differentiate into osteogenic/odontogenic cells and also trans-differentiate into neuronal cells. The utility of DPSC has been explored in odontogenic differentiation for tooth regeneration. Alcohol abuse appears to lead to periodontal disease, tooth decay and mouth sores that are potentially precancerous. Persons who abuse alcohol are at high risk of having seriously deteriorated teeth, gums and compromised oral health in general. It is currently unknown if alcohol exposure has any impact on adult stem cell maintenance, stem cell fate determination and plasticity, and stem cell niche environment. Here we provide detailed experimental methods, analysis and information associated with our data deposited into Gene Expression Omnibus (GEO under GSE57255. Our data provide transcriptomic changes that are occurring by EtOH treatment of DPSCs at 24-hour and 48-hour time point.

  10. Transcriptome changes and cAMP oscillations in an archaeal cell cycle

    Directory of Open Access Journals (Sweden)

    Soppa Jörg

    2007-06-01

    Full Text Available Abstract Background The cell cycle of all organisms includes mass increase by a factor of two, replication of the genetic material, segregation of the genome to different parts of the cell, and cell division into two daughter cells. It is tightly regulated and typically includes cell cycle-specific oscillations of the levels of transcripts, proteins, protein modifications, and signaling molecules. Until now cell cycle-specific transcriptome changes have been described for four eukaryotic species ranging from yeast to human, but only for two prokaryotic species. Similarly, oscillations of small signaling molecules have been identified in very few eukaryotic species, but not in any prokaryote. Results A synchronization procedure for the archaeon Halobacterium salinarum was optimized, so that nearly 100% of all cells divide in a time interval that is 1/4th of the generation time of exponentially growing cells. The method was used to characterize cell cycle-dependent transcriptome changes using a genome-wide DNA microarray. The transcript levels of 87 genes were found to be cell cycle-regulated, corresponding to 3% of all genes. They could be clustered into seven groups with different transcript level profiles. Cluster-specific sequence motifs were detected around the start of the genes that are predicted to be involved in cell cycle-specific transcriptional regulation. Notably, many cell cycle genes that have oscillating transcript levels in eukaryotes are not regulated on the transcriptional level in H. salinarum. Synchronized cultures were also used to identify putative small signaling molecules. H. salinarum was found to contain a basal cAMP concentration of 200 μM, considerably higher than that of yeast. The cAMP concentration is shortly induced directly prior to and after cell division, and thus cAMP probably is an important signal for cell cycle progression. Conclusion The analysis of cell cycle-specific transcriptome changes of H. salinarum

  11. Gene pair signatures in cell type transcriptomes reveal lineage control

    Science.gov (United States)

    Heinäniemi, Merja; Nykter, Matti; Kramer, Roger; Wienecke-Baldacchino, Anke; Sinkkonen, Lasse; Zhou, Joseph Xu; Kreisberg, Richard; Kauffman, Stuart A.; Huang, Sui; Shmulevich, Ilya

    2013-01-01

    The distinct cell types of multicellular organisms arise due to constraints imposed by gene regulatory networks on the collective change of gene expression across the genome, creating self-stabilizing expression states, or attractors. We compiled a resource of curated human expression data comprising 166 cell types and 2,602 transcription regulating genes and developed a data driven method built around the concept of expression reversal defined at the level of gene pairs, such as those participating in toggle switch circuits. This approach allows us to organize the cell types into their ontogenetic lineage-relationships and to reflect regulatory relationships among genes that explain their ability to function as determinants of cell fate. We show that this method identifies genes belonging to regulatory circuits that control neuronal fate, pluripotency and blood cell differentiation, thus offering a novel large-scale perspective on lineage specification. PMID:23603899

  12. Transcriptome profiling of LGR5 positive colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Daniela Hirsch

    2014-12-01

    Full Text Available The concept of cancer stem cells (CSCs claims that colorectal carcinomas (CRCs, like normal colorectal epithelium, are organized hierarchically and contain a subpopulation of qualitatively distinct cancer cells. The expression of distinctive surface markers or of certain enzymes is a prerequisite for the isolation and characterization of the CSC population. With respect to CRCs, putative CSCs can be identified by leucine-rich-repeat-containing G-protein-coupled receptor 5 (Lgr5, also known as G-protein-coupled receptor 49, Gpr49. However, the precise function of the intestinal stem cell marker Lgr5 in CRCs remains largely unknown. We silenced LGR5 expression in SW480 CRC cells via lentiviral shRNA constructs. This led to the depletion of a morphologically distinct subpopulation of SW480 CRC cells. Microarray gene expression profiling revealed a down-regulation of NOTCH signaling upon LGR5 silencing that could be confirmed by immunohistochemistry. Furthermore, we induced inflammation-driven colon tumors in Lgr5-EGFP-IRES-Cre-ERT2 mice via administration of azoxymethane and dextrane sodium sulfate. The induced tumors were flow-sorted into fractions of epithelial cells that expressed high or low levels of Lgr5 and were characterized using gene expression profiling. Lgr5 high tumor cells showed higher levels of several stem cell-associated genes and higher Wnt signaling than Lgr5 low tumor cells and Lgr5 high normal stem cells. Here we provide a thorough description of our two gene expression datasets including quality control checks uploaded to Gene Expression Omnibus database (data accession number: GSE46200. The analysis and interpretation of our gene expression data and related results have been published recently by Hirsch and colleagues in Carcinogenesis in 2014.

  13. Complement Factor H Expressed by Retinal Pigment Epithelium Cells Can Suppress Neovascularization of Human Umbilical Vein Endothelial Cells: An in vitro Study.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available Complement factor H (CFH is one of the most important soluble complement regulatory proteins and is closely associated with age-related macular degeneration (AMD, the leading cause of irreversible central vision loss in the elderly population in developed countries. Our study searches to investigate whether CFH expression is changed in oxidative damaged retinal pigment epithelium (RPE cells and the role of CFH in the in vitro neovascularization. First, it was confirmed by immunofluorescence staining that CFH was expressed by ARPE-19 cells. CFH mRNA and protein in oxidative (H2O2 damaged ARPE-19 cells were both reduced, as determined by Real-time PCR and Western blotting analysis. Enzyme-linked immunosorbent assay (ELISA also showed that ARPE-19 cells treated with H2O2 caused an increase in C3a content, which indicates complement activation. Then, wound assays were performed to show that CFH expression suppression promoted human umbilical vein endothelial cell (HUVECs migration. Thereafter, ARPE-19 cells were transfected with CFH-specific siRNA and CFH knockdown was confirmed with the aid of Real-time PCR, immunofluorescence staining and Western blotting. The ELISA results showed that specific CFH knockdown in ARPE-19 cells activated the complement system. Finally, in vitro matrigel tube formation assay was performed to determine whether change of CFH expression in RPE would affect tube formation by HUVECs. More tubes were formed by HUVECs co-cultured with ARPE-19 cells transfected with CFH specific-siRNA when compared with controls. Our results suggested that RPE cells might be the local CFH source, and RPE cell injuries (such as oxidative stress may cause CFH expression suppression, which in turn may lead to complement activation and promotion of tube formation by HUVECs. This finding is of importance in elucidating the role of complement in the pathogenesis of ocular neovascularization including choroidal neovascularization.

  14. Characterization of inflammatory markers and transcriptome profiles of differentially activated embryonic stem cell-derived microglia.

    Science.gov (United States)

    Beins, Eva; Ulas, Thomas; Ternes, Svenja; Neumann, Harald; Schultze, Joachim L; Zimmer, Andreas

    2016-06-01

    Microglia, the immune cells of the CNS, are highly adaptive cells that can acquire different pro- and anti-inflammatory activation states with distinct functions in CNS homeostasis and pathologies. To study microglial function in vitro, primary microglia or immortalized cell lines are commonly used. An alternative to these cells are embryonic stem cell-derived microglia (ESdM). ESdM have previously been shown to be very similar to primary microglia in terms of expression profiles and surface molecules. In this study, ESdM and primary microglia were treated with different inflammatory stimulants to analyze their ability to adopt different activation states. Using quantitative real-time PCR, comparative transcriptomics, ELISA, and flow cytometry, we found that different activation states can be induced in ESdM, which are similar to those found in primary microglia. These states are characterized by specific sets of inflammatory marker molecules and differential transcriptome signatures. Our results show that ESdM are a valuable alternative cell model to study microglial functions and neuroinflammatory mechanisms.

  15. Transcriptomic comparisons between cultured human adipose tissue-derived pericytes and mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Lindolfo da Silva Meirelles

    2016-03-01

    Full Text Available Mesenchymal stromal cells (MSCs, sometimes called mesenchymal stem cells, are cultured cells able to give rise to mature mesenchymal cells such as adipocytes, osteoblasts, and chondrocytes, and to secrete a wide range of trophic and immunomodulatory molecules. Evidence indicates that pericytes, cells that surround and maintain physical connections with endothelial cells in blood vessels, can give rise to MSCs (da Silva Meirelles et al., 2008 [1]; Caplan and Correa, 2011 [2]. We have compared the transcriptomes of highly purified, human adipose tissue pericytes subjected to culture-expansion in pericyte medium or MSC medium, with that of human adipose tissue MSCs isolated with traditional methods to test the hypothesis that their transcriptomes are similar (da Silva Meirelles et al., 2015 [3]. Here, we provide further information and analyses of microarray data from three pericyte populations cultured in pericyte medium, three pericyte populations cultured in MSC medium, and three adipose tissue MSC populations deposited in the Gene Expression Omnibus under accession number GSE67747.

  16. CD8+DR+ T-Cells and C3 Complement Serum Concentration as Potential Biomarkers in Thrombotic Antiphospholipid Syndrome

    Directory of Open Access Journals (Sweden)

    Elizabeth Sarmiento

    2014-01-01

    Full Text Available Purpose. To assess complement factors and T lymphocyte activation subset abnormalities in patients with thrombotic antiphospholipid syndrome (APS as potential biomarkers for development of clinical complications. Methods. We assessed C3, C4, factor B concentrations (nephelometry, complement haemolytic functional activity (CH100, radial immune diffusion, and the activation status of CD4+ and CD8+ T-cells (three-colour flow cytometry in patients with thrombotic APS. Antiphospholipid (aPL positive patients without APS-related clinical criteria, systemic lupus erythematosus (SLE patients, and healthy individuals were evaluated as controls. A clinical followup was performed to assess the potential relationship between the immunological parameters and development of APS-related complications. Results. Lower concentrations of C3 and higher levels of CD8+DR+ cells were risk factors for development of APS-related complications during followup, including rethrombosis and neuropsychiatric symptoms. Patients with diagnosed thrombotic APS had significantly lower levels of C3, C4, and CH100 as well as higher percentages of activated CD4+DR+ and of CD8+DR+ T-cells than healthy controls but similar to that observed in autoimmune disease controls. Conclusion. Lower C3 and C4 complement levels and higher percentages of CD8+DR+ T-cells were observed in thrombotic APS patients. The potential role of these abnormalities as biomarkers of clinical outcome warrants further evaluation in a multicenter study.

  17. Single-Cell Transcriptomics Bioinformatics and Computational Challenges

    OpenAIRE

    Lana Garmire; Olivier Bertrand Poirion; Xun Zhu; Travers Ching

    2016-01-01

    The emerging single-cell RNA-Seq (scRNA-Seq) technology holds the promise to revolutionize our understanding of diseases and associated biological processes at an unprecedented resolution. It opens the door to reveal the intercellular heterogeneity and has been employed to a variety of applications, ranging from characterizing cancer cells subpopulations to elucidating tumor resistance mechanisms. Parallel to improving experimental protocols to deal with technological issues, deriving new ana...

  18. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells.

    Science.gov (United States)

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-12-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results

  19. Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches.

    Directory of Open Access Journals (Sweden)

    Nicolas Maunoury

    Full Text Available The legume plant Medicago truncatula establishes a symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti which takes place in root nodules. The formation of nodules employs a complex developmental program involving organogenesis, specific cellular differentiation of the host cells and the endosymbiotic bacteria, called bacteroids, as well as the specific activation of a large number of plant genes. By using a collection of plant and bacterial mutants inducing non-functional, Fix(- nodules, we studied the differentiation processes of the symbiotic partners together with the nodule transcriptome, with the aim of unravelling links between cell differentiation and transcriptome activation. Two waves of transcriptional reprogramming involving the repression and the massive induction of hundreds of genes were observed during wild-type nodule formation. The dominant features of this "nodule-specific transcriptome" were the repression of plant defense-related genes, the transient activation of cell cycle and protein synthesis genes at the early stage of nodule development and the activation of the secretory pathway along with a large number of transmembrane and secretory proteins or peptides throughout organogenesis. The fifteen plant and bacterial mutants that were analyzed fell into four major categories. Members of the first category of mutants formed non-functional nodules although they had differentiated nodule cells and bacteroids. This group passed the two transcriptome switch-points similarly to the wild type. The second category, which formed nodules in which the plant cells were differentiated and infected but the bacteroids did not differentiate, passed the first transcriptome switch but not the second one. Nodules in the third category contained infection threads but were devoid of differentiated symbiotic cells and displayed a root-like transcriptome. Nodules in the fourth category were free of bacteria, devoid of

  20. Fingolimod alters the transcriptome profile of circulating CD4+ cells in multiple sclerosis

    Science.gov (United States)

    Friess, Jörg; Hecker, Michael; Roch, Luisa; Koczan, Dirk; Fitzner, Brit; Angerer, Ines Charlotte; Schröder, Ina; Flechtner, Kristin; Thiesen, Hans-Jürgen; Winkelmann, Alexander; Zettl, Uwe Klaus

    2017-01-01

    Multiple sclerosis is a demyelinating disease affecting the central nervous system. T cells are known to contribute to this immune-mediated condition. Fingolimod modulates sphingosine-1-phosphate receptors, thereby preventing the egress of lymphocytes, especially CCR7-expressing CD8+ and CD4+ T cells, from lymphoid tissues. Using Affymetrix Human Transcriptome Arrays (HTA 2.0), we performed a transcriptome profiling analysis of CD4+ cells obtained from the peripheral blood of patients with highly active relapsing-remitting multiple sclerosis. The samples were drawn before the first administration of fingolimod as well as 24 hours and 3 months after the start of therapy. Three months after treatment initiation, 890 genes were found to be differentially expressed with fold-change >2.0 and t-test p-value CCR7 as expected, while 618 genes showed an increase in expression, e.g., CCR2, CX3CR1, CD39, CD58 as well as LYN, PAK1 and TLR2. To conclude, we studied the gene expression of CD4+ cells to evaluate the effects of fingolimod treatment, and we identified 890 genes to be altered in expression after continuous drug administration. T helper cells circulating in the blood during fingolimod therapy present a distinct gene expression signature. PMID:28155899

  1. Targeting the Human Complement Membrane Attack Complex to Selectively Kill Prostate Cancer Cells

    Science.gov (United States)

    2014-12-01

    information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE December 2014... Ogata , R.T. and P.J. Low, Complement component C5: engineering of a mutant that is specifically cleaved by the C4-specific C1s protease. J Immunol

  2. Complement protein C1q induces maturation of human dendritic cells

    DEFF Research Database (Denmark)

    Cosmor, E; Bajtay, Z; Sándor, N;

    2007-01-01

    in the absence of antibodies, we undertook to investigate whether this complement protein has an impact on various functions of human DCs. Maturation of monocyte-derived immature DCs (imMDCs) cultured on immobilized C1q was followed by monitoring expression of CD80, CD83, CD86, MHCII and CCR7. The functional...

  3. Comparative transcriptome analysis of embryonic and adult stem cells with extended and limited differentiation capacity

    Science.gov (United States)

    Ulloa-Montoya, Fernando; Kidder, Benjamin L; Pauwelyn, Karen A; Chase, Lucas G; Luttun, Aernout; Crabbe, Annelies; Geraerts, Martine; Sharov, Alexei A; Piao, Yulan; Ko, Minoru SH; Hu, Wei-Shou; Verfaillie, Catherine M

    2007-01-01

    Background Recently, several populations of postnatal stem cells, such as multipotent adult progenitor cells (MAPCs), have been described that have broader differentiation ability than classical adult stem cells. Here we compare the transcriptome of pluripotent embryonic stem cells (ESCs), MAPCs, and lineage-restricted mesenchymal stem cells (MSCs) to determine their relationship. Results Applying principal component analysis, non-negative matrix factorization and k-means clustering algorithms to the gene-expression data, we identified a unique gene-expression profile for MAPCs. Apart from the ESC-specific transcription factor Oct4 and other ESC transcripts, some of them associated with maintaining ESC pluripotency, MAPCs also express transcripts characteristic of early endoderm and mesoderm. MAPCs do not, however, express Nanog or Sox2, two other key transcription factors involved in maintaining ESC properties. This unique molecular signature was seen irrespective of the microarray platform used and was very similar for both mouse and rat MAPCs. As MSC-like cells isolated under MAPC conditions are virtually identical to MSCs, and MSCs cultured in MAPC conditions do not upregulate MAPC-expressed transcripts, the MAPC signature is cell-type specific and not merely the result of differing culture conditions. Conclusion Multivariate analysis techniques clustered stem cells on the basis of their expressed gene profile, and the genes determining this clustering reflected the stem cells' differentiation potential in vitro. This comparative transcriptome analysis should significantly aid the isolation and culture of MAPCs and MAPC-like cells, and form the basis for studies to gain insights into genes that confer on these cells their greater developmental potency. PMID:17683608

  4. Comparative transcriptomic analysis of Porphyromonas gingivalis biofilm and planktonic cells

    Directory of Open Access Journals (Sweden)

    Lissel J Patricia

    2009-01-01

    Full Text Available Abstract Background Porphyromonas gingivalis in subgingival dental plaque, as part of a mature biofilm, has been strongly implicated in the onset and progression of chronic periodontitis. In this study using DNA microarray we compared the global gene expression of a P. gingivalis biofilm with that of its planktonic counterpart grown in the same continuous culture. Results Approximately 18% (377 genes, at 1.5 fold or more, P-value P. gingivalis genome was differentially expressed when the bacterium was grown as a biofilm. Genes that were down-regulated in biofilm cells, relative to planktonic cells, included those involved in cell envelope biogenesis, DNA replication, energy production and biosynthesis of cofactors, prosthetic groups and carriers. A number of genes encoding transport and binding proteins were up-regulated in P. gingivalis biofilm cells. Several genes predicted to encode proteins involved in signal transduction and transcriptional regulation were differentially regulated and may be important in the regulation of biofilm growth. Conclusion This study analyzing global gene expression provides insight into the adaptive response of P. gingivalis to biofilm growth, in particular showing a down regulation of genes involved in growth and metabolic activity.

  5. Complement 5a Enhances Hepatic Metastases of Colon Cancer via Monocyte Chemoattractant Protein-1-mediated Inflammatory Cell Infiltration.

    Science.gov (United States)

    Piao, Chunmei; Cai, Lun; Qiu, Shulan; Jia, Lixin; Song, Wenchao; Du, Jie

    2015-04-24

    Complement 5a (C5a), a potent immune mediator generated by complement activation, promotes tumor growth; however, its role in tumor metastasis remains unclear. We demonstrate that C5a contributes to tumor metastases by modulating tumor inflammation in hepatic metastases of colon cancer. Colon cancer cell lines generate C5a under serum-free conditions, and C5a levels increase over time in a murine syngeneic colon cancer hepatic metastasis model. Furthermore, in the absence of C5a receptor or upon pharmacological inhibition of C5a production with an anti-C5 monoclonal antibody, tumor metastasis is severely impaired. A lack of C5a receptor in colon cancer metastatic foci reduces the infiltration of macrophages, neutrophils, and dendritic cells, and the role for C5a receptor on these cells were further verified by bone marrow transplantation experiments. Moreover, C5a signaling increases the expression of the chemokine monocyte chemoattractant protein-1 and the anti-inflammatory molecules arginase-1, interleukin 10, and transforming growth factor β, but is inversely correlated with the expression of pro-inflammatory molecules, which suggests a mechanism for the role of C5a in the inflammatory microenvironment required for tumor metastasis. Our results indicate a new and potentially promising therapeutic application of complement C5a inhibitor for the treatment of malignant tumors.

  6. Transcriptomic profiling of primary alveolar epithelial cell differentiation in human and rat

    Directory of Open Access Journals (Sweden)

    Crystal N. Marconett

    2014-12-01

    Full Text Available Cell-type specific gene regulation is a key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how changes in transcriptional activation during alveolar epithelial cell (AEC differentiation determine phenotype. We performed transcriptomic profiling using in vitro differentiation of human and rat primary AEC. This model recapitulates in vitro an in vivo process in which AEC transition from alveolar type 2 (AT2 cells to alveolar type 1 (AT1 cells during normal maintenance and regeneration following lung injury. Here we describe in detail the quality control, preprocessing, and normalization of microarray data presented within the associated study (Marconett et al., 2013. We also include R code for reproducibility of the referenced data and easily accessible processed data tables.

  7. Transcriptome Profiling and Analysis during Cotton Fiber Cell Development

    Institute of Scientific and Technical Information of China (English)

    ZHU Yu-xian

    2008-01-01

    @@ In this project,we aim to elucidate the molecular mechanism controlling initiation and elongation of tetraploid Gossypium hirsutum fiber cells by setting up a high throughput custom-designed cDNA microarray and a systematic gene expression profiling during cotton fiber development.We first constructed a microarray consisting of more than 28,000 cotton UniESTs that we obtained by deep-sequencing of several cotton ovule cDNA libraries.

  8. Dynamics of the transcriptome response of cultured human embryonic stem cells to ionizing radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Mykyta V., E-mail: sokolovm@mail.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States); Panyutin, Irina V., E-mail: ipanyutinv@mail.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States); Panyutin, Igor G., E-mail: igorp@helix.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States); Neumann, Ronald D., E-mail: rneumann@mail.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States)

    2011-05-10

    One of the key consequences of exposure of human cells to genotoxic agents is the activation of DNA damage responses (DDR). While the mechanisms underpinning DDR in fully differentiated somatic human cells have been studied extensively, molecular signaling events and pathways involved in DDR in pluripotent human embryonic stem cells (hESC) remain largely unexplored. We studied changes in the human genome-wide transcriptome of H9 hESC line following exposures to 1 Gy of gamma-radiation at 2 h and 16 h post-irradiation. Quantitative real-time PCR was performed to verify the expression data for a subset of genes. In parallel, the cell growth, DDR kinetics, and expression of pluripotency markers in irradiated hESC were monitored. The changes in gene expression in hESC after exposure to ionizing radiation (IR) are substantially different from those observed in somatic human cell lines. Gene expression patterns at 2 h post-IR showed almost an exclusively p53-dependent, predominantly pro-apoptotic, signature with a total of only 30 up-regulated genes. In contrast, the gene expression patterns at 16 h post-IR showed 354 differentially expressed genes, mostly involved in pro-survival pathways, such as increased expression of metallothioneins, ubiquitin cycle, and general metabolism signaling. Cell growth data paralleled trends in gene expression changes. DDR in hESC followed the kinetics reported for human somatic differentiated cells. The expression of pluripotency markers characteristic of undifferentiated hESC was not affected by exposure to IR during the time course of our analysis. Our data on dynamics of transcriptome response of irradiated hESCs may provide a valuable tool to screen for markers of IR exposure of human cells in their most naive state; thus unmasking the key elements of DDR; at the same time, avoiding the complexity of interpreting distinct cell type-dependent genotoxic stress responses of terminally differentiated cells.

  9. Laser capture microdissection in Ectocarpus siliculosus: the pathway to cell-specific transcriptomics in brown algae

    Directory of Open Access Journals (Sweden)

    Denis eSaint-Marcoux

    2015-02-01

    Full Text Available Laser capture microdissection (LCM facilitates the isolation of individual cells from tissue sections, and when combined with RNA amplification techniques, it is an extremely powerful tool for examining genome-wide expression profiles in specific cell-types. LCM has been widely used to address various biological questions in both animal and plant systems, however, no attempt has been made so far to transfer LCM technology to macroalgae. Macroalgae are a collection of widespread eukaryotes living in fresh and marine water. In line with the collective effort to promote molecular investigations of macroalgal biology, here we demonstrate the feasibility of using LCM and cell-specific transcriptomics to study development of the brown alga, Ectocarpus siliculosus. We describe a workflow comprising cultivation and fixation of algae on glass slides, laser microdissection, and RNA amplification. To illustrate the effectiveness of the procedure, we show qPCR data and metrics obtained from cell-specific transcriptomes generated from both upright and prostrate filaments of Ectocarpus.

  10. Glucocorticoids Significantly Influence the Transcriptome of Bone Microvascular Endothelial Cells of Human Femoral Head

    Institute of Scientific and Technical Information of China (English)

    Qing-Sheng Yu; Wan-Shou Guo; Li-Ming Cheng; Yu-Feng Lu; Jian-Ying Shen; Ping Li

    2015-01-01

    Background:Appropriate expression and regulation of the transcriptome,which mainly comprise ofmRNAs and lncRNAs,are important for all biological and cellular processes including the physiological activities of bone microvascular endothelial cells (BMECs).Through an intricate intracellular signaling systems,the transcriptome regulates the pharmacological response of the cells.Although studies have elucidated the impact of glucocorticoids (GCs) cell-specific gene expression signatures,it remains necessary to comprehensively characterize the impact of lncRNAs to transcriptional changes.Methods:BMECs were divided into two groups.One was treated with GCs and the other left untreated as a paired control.Differential expression was analyzed with GeneSpring software V12.0 (Agilent,Santa Clara,CA,USA) and hierarchical clustering was conducted using Cluster 3.0 software.The Gene Ontology (GO) analysis was performed with Molecular Annotation System provided by CapitalBio Corporation.Results:Our results highlight the involvement of genes implicated in development,differentiation and apoptosis following GC stimulation.Elucidation of differential gene expression emphasizes the importance of regulatory gene networks induced by GCs.We identified 73 up-regulated and 166 down-regulated long noncoding RNAs,the expression of 107 of which significantly correlated with 172 mRNAs induced by hydrocortisone.Conclusions:Transcriptome analysis of BMECs from human samples was performed to identify specific gene networks induced by GCs.Our results identified complex RNA crosstalk underlying the pathogenesis of steroid-induced necrosis of femoral head.

  11. Genome-scale transcriptome analysis in response to nitric oxide in birch cells: implications of the triterpene biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Fansuo Zeng

    Full Text Available Evidence supporting nitric oxide (NO as a mediator of plant biochemistry continues to grow, but its functions at the molecular level remains poorly understood and, in some cases, controversial. To study the role of NO at the transcriptional level in Betula platyphylla cells, we conducted a genome-scale transcriptome analysis of these cells. The transcriptome of untreated birch cells and those treated by sodium nitroprusside (SNP were analyzed using the Solexa sequencing. Data were collected by sequencing cDNA libraries of birch cells, which had a long period to adapt to the suspension culture conditions before SNP-treated cells and untreated cells were sampled. Among the 34,100 UniGenes detected, BLASTX search revealed that 20,631 genes showed significant (E-values≤10-5 sequence similarity with proteins from the NR-database. Numerous expressed sequence tags (i.e., 1374 were identified as differentially expressed between the 12 h SNP-treated cells and control cells samples: 403 up-regulated and 971 down-regulated. From this, we specifically examined a core set of NO-related transcripts. The altered expression levels of several transcripts, as determined by transcriptome analysis, was confirmed by qRT-PCR. The results of transcriptome analysis, gene expression quantification, the content of triterpenoid and activities of defensive enzymes elucidated NO has a significant effect on many processes including triterpenoid production, carbohydrate metabolism and cell wall biosynthesis.

  12. Pathway aberrations of murine melanoma cells observed in Paired-End diTag transcriptomes

    Directory of Open Access Journals (Sweden)

    Liu Edison

    2007-06-01

    Full Text Available Abstract Background Melanoma is the major cause of skin cancer deaths and melanoma incidence doubles every 10 to 20 years. However, little is known about melanoma pathway aberrations. Here we applied the robust Gene Identification Signature Paired End diTag (GIS-PET approach to investigate the melanoma transcriptome and characterize the global pathway aberrations. Methods GIS-PET technology directly links 5' mRNA signatures with their corresponding 3' signatures to generate, and then concatenate, PETs for efficient sequencing. We annotated PETs to pathways of KEGG database and compared the murine B16F1 melanoma transcriptome with three non-melanoma murine transcriptomes (Melan-a2 melanocytes, E14 embryonic stem cells, and E17.5 embryo. Gene expression levels as represented by PET counts were compared across melanoma and melanocyte libraries to identify the most significantly altered pathways and investigate the expression levels of crucial cancer genes. Results Melanin biosynthesis genes were solely expressed in the cells of melanocytic origin, indicating the feasibility of using the PET approach for transcriptome comparison. The most significantly altered pathways were metabolic pathways, including upregulated pathways: purine metabolism, aminophosphonate metabolism, tyrosine metabolism, selenoamino acid metabolism, galactose utilization, nitrobenzene degradation, and bisphenol A degradation; and downregulated pathways: oxidative phosphorylation, ATPase synthesis, TCA cycle, pyruvate metabolism, and glutathione metabolism. The downregulated pathways concurrently indicated a slowdown of mitochondrial activities. Mitochondrial permeability was also significantly altered, as indicated by transcriptional activation of ATP/ADP, citrate/malate, Mg++, fatty acid and amino acid transporters, and transcriptional repression of zinc and metal ion transporters. Upregulation of cell cycle progression, MAPK, and PI3K/Akt pathways were more limited to certain

  13. Substituting complements

    NARCIS (Netherlands)

    G. Dari-Mattiacci; F. Parisi

    2006-01-01

    The presence of multiple sellers in the provision of (nonsubstitutable) complementary goods leads to outcomes that are worse than those generated by a monopoly (with a vertically integrated production of complements), a problem known in the economic literature as complementary oligopoly and recently

  14. Substituting complements

    NARCIS (Netherlands)

    G. Dari-Mattiacci; F. Parisi

    2009-01-01

    The presence of multiple sellers in the provision of (nonsubstitutable) complementary goods leads to outcomes that are worse than those generated by a monopoly (with a vertically integrated production of complements), a problem known in the economic literature as complementary oligopoly and recently

  15. Microinjection of Micrococcus luteus UV-endonuclease restores UV-induced unscheduled DNA synthesis in cells of 9 xeroderma pigmentosum complementation groups.

    NARCIS (Netherlands)

    A.J.R. de Jonge; W. Vermeulen (Wim); W. Keijzer; J.H.J. Hoeijmakers (Jan); D. Bootsma (Dirk)

    1985-01-01

    textabstractThe UV-induced unscheduled DNA synthesis (UDS) in cultured cells of excision-deficient xeroderma pigmentosum (XP) complementation groups A through I was assayed after injection of Micrococcus luteus UV-endonuclease using glass microneedles. In all complementation groups a restoration of

  16. T Cell Lipid Rafts and Complement Ligands for Diagnosis and Monitoring of SLE

    Science.gov (United States)

    2011-05-01

    osteoarthritis, antiphospholipid syndrome , cutaneous lupus, and undi! erentiated connective tissue diseases, were recruited during the period from June 2004...myositis, Sjögren’s syndrome , Lymphocyte-Bound Complement Activation Products as Biomarkers for Diagnosis of Systemic Lupus Erythematosus Chau-Ching Liu1...included mainly patients with Sjögren’s syndrome (n=24), rheumatoid arthritis (n=11), dermatomyositis (n=5), scleroderma (n=1) and primary Raynaud’s

  17. Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes

    Science.gov (United States)

    Bolisetty, Mohan; Kursawe, Romy; Sun, Lili; Sivakamasundari, V.; Kycia, Ina

    2017-01-01

    Blood glucose levels are tightly controlled by the coordinated action of at least four cell types constituting pancreatic islets. Changes in the proportion and/or function of these cells are associated with genetic and molecular pathophysiology of monogenic, type 1, and type 2 (T2D) diabetes. Cellular heterogeneity impedes precise understanding of the molecular components of each islet cell type that govern islet (dys)function, particularly the less abundant delta and gamma/pancreatic polypeptide (PP) cells. Here, we report single-cell transcriptomes for 638 cells from nondiabetic (ND) and T2D human islet samples. Analyses of ND single-cell transcriptomes identified distinct alpha, beta, delta, and PP/gamma cell-type signatures. Genes linked to rare and common forms of islet dysfunction and diabetes were expressed in the delta and PP/gamma cell types. Moreover, this study revealed that delta cells specifically express receptors that receive and coordinate systemic cues from the leptin, ghrelin, and dopamine signaling pathways implicating them as integrators of central and peripheral metabolic signals into the pancreatic islet. Finally, single-cell transcriptome profiling revealed genes differentially regulated between T2D and ND alpha, beta, and delta cells that were undetectable in paired whole islet analyses. This study thus identifies fundamental cell-type–specific features of pancreatic islet (dys)function and provides a critical resource for comprehensive understanding of islet biology and diabetes pathogenesis. PMID:27864352

  18. Effect of IL-4 on altered expression of complement activation regulators in rat pancreatic cells during severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Cheng Zhang; Chun-Lin Ge; Ren-Xuan Guo; San-Guang He

    2005-01-01

    AIM: To investigate the effect of IL-4 on the altered expression of complement activation regulators in pancreas and pancreatic necrosis during experimental severe acute pancreatitis (SAP).METHODS: SAP model of rats was established by retrograde injection of 5% sodium taurocholate (1 mL/kg)into the pancreatic duct. We immunohistochemically assayed the expression of three complement activation regulators: decay accelerating factor (DAF; CD55), 20ku homologous restriction factor (HRF20; CD59) and membrane cofactor protein (MCP; CD46), in the pancreatic acinar cells of rats at 0, 3, 6, 12, and 24 h after the induction of SAP model. Meanwhile the levels of amylase and lipase were determined, and morphological examination was performed. Then, 61 rats were randomly divided into three groups. Group A (n = 21) received notreatment after the SAP model was established; group B (n = 20) was given IL-4 (8 μg/animal) intraperitoneally 0.5 h before the SAP model was established; group C (n = 20) was given IL-4 (8 μg/animal) intraperitoneally 0.5 h after the SAP model was established. Plasma amylase and lipase, extent of pancreatic necrosis and expression of complement activation regulators were investigated 6 h after the induction of SAP model.RESULTS: Three complement activation regulators were all expressed in pancreatic acinar cells. MCP was not found on the basolateral surface as reported. Contrary to the gradually increasing plasma level of amylase and lipase, expression of complement activation regulators decreased after SAP model was set up. At the same time, the severity of pancreatic necrosis was enhanced.A strong negative correlation was found between the expression of MCP, DAF, CD59 in pancreatic acinar cells and the severity of pancreatic necrosis (r = -0.748, -0.827,-0.723; P<0.01). In the second series of experiments,no matter when the treatment of IL-4 was given (before or after the induction of SAP model), the serum level of amylase or lipase Was decreased

  19. Distinct and shared transcriptomes are regulated by microphthalmia-associated transcription factor isoforms in mast cells.

    Science.gov (United States)

    Shahlaee, Amir H; Brandal, Stephanie; Lee, Youl-Nam; Jie, Chunfa; Takemoto, Clifford M

    2007-01-01

    The Microphthalmia-associated transcription factor (Mitf) is an essential basic helix-loop-helix leucine zipper transcription factor for mast cell development. Mice deficient in Mitf harbor a severe mast cell deficiency, and Mitf-mutant mast cells cultured ex vivo display a number of functional defects. Therefore, an understanding of the genetic program regulated by Mitf may provide important insights into mast cell differentiation. Multiple, distinct isoforms of Mitf have been identified in a variety of cell types; we found that Mitf-a, Mitf-e, and Mitf-mc were the major isoforms expressed in mast cells. To determine the physiologic function of Mitf in mast cells, we restored expression of these isoforms in primary mast cells from Mitf(-/-) mice. We found that these isoforms restored granular morphology and integrin-mediated migration. By microarray analysis, proteases, signaling molecules, cell surface receptor, and transporters comprised the largest groups of genes up-regulated by all isoforms. Furthermore, we found that isoforms also regulated distinct genes sets, suggesting separable biological activities. This work defines the transcriptome regulated by Mitf in mast cells and supports its role as master regulator of mast cell differentiation. Expression of multiple isoforms of this transcription factor may provide for redundancy of biological activities while also allowing diversity of function.

  20. Complement regulates conventional DC-mediated NK-cell activation by inducing TGF-β1 in Gr-1+ myeloid cells.

    Science.gov (United States)

    Qing, Xiaoping; Koo, Gloria C; Salmon, Jane E

    2012-07-01

    Complement activation modulates DC-mediated T-cell activation, but whether complement affects DC-mediated priming of NK cells is unknown. Here, we demonstrated that conventional DCs (cDCs) from C3(-/-) and C5aR(-/-) mice are hyperresponsive to polyI:C, a TLR3 ligand, leading to enhanced NK-cell activation. We found that cDCs lack C5a receptor (C5aR) and do not respond to C5a directly. Depletion of Gr-1(+) myeloid cells augments polyI:C-induced cDC activation in WT but not in C3(-/-) or C5aR(-/-) mice, indicating that the effect of complement activation on cDCs is indirectly mediated through C5aR-expressing Gr-1(+) myeloid cells. We further demonstrated that the mechanism by which Gr-1(+) myeloid cells regulate the activity of cDCs involves C5a-dependent TGF-β1 production in Gr-1(+) myeloid cells. C5a enhances and blocking C5aR decreases TGF-β1 production in cultured bone marrow Gr-1(+) CD11b(+) cells. C5aR deficiency is associated with reduced circulating TGF-β1 levels, while depleting Gr-1(+) myeloid cells abrogates this difference between WT and C5aR(-/-) mice. Lastly, we showed that enhanced cDC-NK-cell activity in C3(-/-) mice led to delayed melanoma tumor growth. Thus, complement activation indirectly regulates cDC-NK-cell activation in response to inflammatory stimuli such as TLR3 by promoting TGF-β1 production in Gr-1(+) myeloid cells at steady state.

  1. Elucidation of how cancer cells avoid acidosis through comparative transcriptomic data analysis.

    Directory of Open Access Journals (Sweden)

    Kun Xu

    Full Text Available The rapid growth of cancer cells fueled by glycolysis produces large amounts of protons in cancer cells, which tri mechanisms to transport them out, hence leading to increased acidity in their extracellular environments. It has been well established that the increased acidity will induce cell death of normal cells but not cancer cells. The main question we address here is: how cancer cells deal with the increased acidity to avoid the activation of apoptosis. We have carried out a comparative analysis of transcriptomic data of six solid cancer types, breast, colon, liver, two lung (adenocarcinoma, squamous cell carcinoma and prostate cancers, and proposed a model of how cancer cells utilize a few mechanisms to keep the protons outside of the cells. The model consists of a number of previously, well or partially, studied mechanisms for transporting out the excess protons, such as through the monocarboxylate transporters, V-ATPases, NHEs and the one facilitated by carbonic anhydrases. In addition we propose a new mechanism that neutralizes protons through the conversion of glutamate to γ-aminobutyrate, which consumes one proton per reaction. We hypothesize that these processes are regulated by cancer related conditions such as hypoxia and growth factors and by the pH levels, making these encoded processes not available to normal cells under acidic conditions.

  2. Microglia, Alzheimer's Disease, and Complement

    Directory of Open Access Journals (Sweden)

    Helen Crehan

    2012-01-01

    Full Text Available Microglia, the immune cell of the brain, are implicated in cascades leading to neuronal loss and cognitive decline in Alzheimer’s disease (AD. Recent genome-wide association studies have indicated a number of risk factors for the development of late-onset AD. Two of these risk factors are an altered immune response and polymorphisms in complement receptor 1. In view of these findings, we discuss how complement signalling in the AD brain and microglial responses in AD intersect. Dysregulation of the complement cascade, either by changes in receptor expression, enhanced activation of different complement pathways or imbalances between complement factor production and complement cascade inhibitors may all contribute to the involvement of complement in AD. Altered complement signalling may reduce the ability of microglia to phagocytose apoptotic cells and clear amyloid beta peptides, modulate the expression by microglia of complement components and receptors, promote complement factor production by plaque-associated cytokines derived from activated microglia and astrocytes, and disrupt complement inhibitor production. The evidence presented here indicates that microglia in AD are influenced by complement factors to adopt protective or harmful phenotypes and the challenge ahead lies in understanding how this can be manipulated to therapeutic advantage to treat late onset AD.

  3. Elucidating fish oil-induced milk fat depression in dairy sheep: Milk somatic cell transcriptome analysis

    Science.gov (United States)

    Suárez-Vega, Aroa; Toral, Pablo G.; Gutiérrez-Gil, Beatriz; Hervás, Gonzalo; Arranz, Juan José; Frutos, Pilar

    2017-01-01

    In this study, RNA sequencing was used to obtain a comprehensive profile of the transcriptomic changes occurring in the mammary gland of lactating sheep suffering from fish oil-induced milk fat depression (FO-MFD). The milk somatic cell transcriptome analysis of four control and four FO-MFD ewes generated an average of 42 million paired-end reads per sample. In both conditions, less than 220 genes constitute approximately 89% of the total counts. These genes, which are considered as core genes, were mainly involved in cytoplasmic ribosomal proteins and electron transport chain pathways. In total, 117 genes were upregulated, and 96 genes were downregulated in FO-MFD samples. Functional analysis of the latter indicated a downregulation of genes involved in the SREBP signaling pathway (e.g., ACACA, ACSL, and ACSS) and Gene Ontology terms related to lipid metabolism and lipid biosynthetic processes. Integrated interpretation of upregulated genes indicated enrichment in genes encoding plasma membrane proteins and proteins regulating protein kinase activity. Overall, our results indicate that FO-MFD is associated with the downregulation of key genes involved in the mammary lipogenesis process. In addition, the results also suggest that this syndrome may be related to upregulation of other genes implicated in signal transduction and codification of transcription factors. PMID:28378756

  4. FcγReceptors and the complement system in T cell activation

    NARCIS (Netherlands)

    Jong, Judith Maria Hendrika de

    2007-01-01

    Dendritic Cells (DC) are the major Antigen Presenting Cells (APC) of the immune system that are involved in initiation of CD4+ and CD8+ T cell responses, as DC display many receptors involved in antigen uptake, including several types of FcgammaR. However, other APC, like B cells and macrophages als

  5. CD8+ T cells complement antibodies in protecting against yellow fever virus.

    Science.gov (United States)

    Bassi, Maria R; Kongsgaard, Michael; Steffensen, Maria A; Fenger, Christina; Rasmussen, Michael; Skjødt, Karsten; Finsen, Bente; Stryhn, Anette; Buus, Søren; Christensen, Jan P; Thomsen, Allan R

    2015-02-01

    The attenuated yellow fever (YF) vaccine (YF-17D) was developed in the 1930s, yet little is known about the protective mechanisms underlying its efficiency. In this study, we analyzed the relative contribution of cell-mediated and humoral immunity to the vaccine-induced protection in a murine model of YF-17D infection. Using different strains of knockout mice, we found that CD4(+) T cells, B cells, and Abs are required for full clinical protection of vaccinated mice, whereas CD8(+) T cells are dispensable for long-term survival after intracerebral challenge. However, by analyzing the immune response inside the infected CNS, we observed an accelerated T cell influx into the brain after intracerebral challenge of vaccinated mice, and this T cell recruitment correlated with improved virus control in the brain. Using mice deficient in B cells we found that, in the absence of Abs, YF vaccination can still induce some antiviral protection, and in vivo depletion of CD8(+) T cells from these animals revealed a pivotal role for CD8(+) T cells in controlling virus replication in the absence of a humoral response. Finally, we demonstrated that effector CD8(+) T cells also contribute to viral control in the presence of circulating YF-specific Abs. To our knowledge, this is the first time that YF-specific CD8(+) T cells have been demonstrated to possess antiviral activity in vivo.

  6. Genome wide transcriptome analysis of dendritic cells identifies genes with altered expression in psoriasis.

    Directory of Open Access Journals (Sweden)

    Kata Filkor

    Full Text Available Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS or peptidoglycan (PGN induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs upon PGN induced tolerance. Using SAGE-Seq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (Kegg analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified

  7. Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration.

    Science.gov (United States)

    Cao, Jingli; Navis, Adam; Cox, Ben D; Dickson, Amy L; Gemberling, Matthew; Karra, Ravi; Bagnat, Michel; Poss, Kenneth D

    2016-01-15

    In contrast to mammals, adult zebrafish have a high capacity to regenerate damaged or lost myocardium through proliferation of cardiomyocytes spared from damage. The epicardial sheet covering the heart is activated by injury and aids muscle regeneration through paracrine effects and as a multipotent cell source, and has received recent attention as a target in cardiac repair strategies. Although it is recognized that epicardium is required for muscle regeneration and itself has high regenerative potential, the extent of cellular heterogeneity within epicardial tissue is largely unexplored. Here, we performed transcriptome analysis on dozens of epicardial lineage cells purified from zebrafish harboring a transgenic reporter for the pan-epicardial gene tcf21. Hierarchical clustering analysis suggested the presence of at least three epicardial cell subsets defined by expression signatures. We validated many new pan-epicardial and epicardial markers by alternative expression assays. Additionally, we explored the function of the scaffolding protein and main component of caveolae, caveolin 1 (cav1), which was present in each epicardial subset. In BAC transgenic zebrafish, cav1 regulatory sequences drove strong expression in ostensibly all epicardial cells and in coronary vascular endothelial cells. Moreover, cav1 mutant zebrafish generated by genome editing showed grossly normal heart development and adult cardiac anatomy, but displayed profound defects in injury-induced cardiomyocyte proliferation and heart regeneration. Our study defines a new platform for the discovery of epicardial lineage markers, genetic tools, and mechanisms of heart regeneration.

  8. A survey of human brain transcriptome diversity at the single cell level.

    Science.gov (United States)

    Darmanis, Spyros; Sloan, Steven A; Zhang, Ye; Enge, Martin; Caneda, Christine; Shuer, Lawrence M; Hayden Gephart, Melanie G; Barres, Ben A; Quake, Stephen R

    2015-06-09

    The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain.

  9. Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells.

    Science.gov (United States)

    Watson, Bonnie S; Bedair, Mohamed F; Urbanczyk-Wochniak, Ewa; Huhman, David V; Yang, Dong Sik; Allen, Stacy N; Li, Wensheng; Tang, Yuhong; Sumner, Lloyd W

    2015-04-01

    Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4'-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4'-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously.

  10. Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, prochlorococcus.

    Science.gov (United States)

    Zinser, Erik R; Lindell, Debbie; Johnson, Zackary I; Futschik, Matthias E; Steglich, Claudia; Coleman, Maureen L; Wright, Matthew A; Rector, Trent; Steen, Robert; McNulty, Nathan; Thompson, Luke R; Chisholm, Sallie W

    2009-01-01

    The marine cyanobacterium Prochlorococcus MED4 has the smallest genome and cell size of all known photosynthetic organisms. Like all phototrophs at temperate latitudes, it experiences predictable daily variation in available light energy which leads to temporal regulation and partitioning of key cellular processes. To better understand the tempo and choreography of this minimal phototroph, we studied the entire transcriptome of the cell over a simulated daily light-dark cycle, and placed it in the context of diagnostic physiological and cell cycle parameters. All cells in the culture progressed through their cell cycles in synchrony, thus ensuring that our measurements reflected the behavior of individual cells. Ninety percent of the annotated genes were expressed, and 80% had cyclic expression over the diel cycle. For most genes, expression peaked near sunrise or sunset, although more subtle phasing of gene expression was also evident. Periodicities of the transcripts of genes involved in physiological processes such as in cell cycle progression, photosynthesis, and phosphorus metabolism tracked the timing of these activities relative to the light-dark cycle. Furthermore, the transitions between photosynthesis during the day and catabolic consumption of energy reserves at night- metabolic processes that share some of the same enzymes--appear to be tightly choreographed at the level of RNA expression. In-depth investigation of these patterns identified potential regulatory proteins involved in balancing these opposing pathways. Finally, while this analysis has not helped resolve how a cell with so little regulatory capacity, and a 'deficient' circadian mechanism, aligns its cell cycle and metabolism so tightly to a light-dark cycle, it does provide us with a valuable framework upon which to build when the Prochlorococcus proteome and metabolome become available.

  11. Transcriptomic profiling of microglia reveals signatures of cell activation and immune response, during experimental cerebral malaria

    Science.gov (United States)

    Capuccini, Barbara; Lin, Jingwen; Talavera-López, Carlos; Khan, Shahid M.; Sodenkamp, Jan; Spaccapelo, Roberta; Langhorne, Jean

    2016-01-01

    Cerebral malaria is a pathology involving inflammation in the brain. There are many immune cell types activated during this process, but there is little information on the response of microglia, in this severe complication. We examined microglia by genome wide transcriptomic analysis in a model of experimental cerebral malaria (ECM), in which C57BL/6 mice are infected with Plasmodium berghei ANKA. Thousands of transcripts were differentially expressed in microglia at two different time points during infection. Proliferation of microglia was a dominant feature before the onset of ECM, and supporting this, we observed an increase in numbers of these cells in the brain. When cerebral malaria symptoms were manifest, genes involved in immune responses and chemokine production were upregulated, which were possibly driven by Type I Interferon. Consistent with this hypothesis, in vitro culture of a microglial cell line with Interferon-β, but not infected red blood cells, resulted in production of several of the chemokines shown to be upregulated in the gene expression analysis. It appears that these responses are associated with ECM, as microglia from mice infected with a mutant P. berghei parasite (ΔDPAP3), which does not cause ECM, did not show the same level of activation or proliferation. PMID:27991544

  12. Long-range Transcriptome Sequencing Reveals Cancer Cell Growth Regulatory Chimeric mRNA

    Directory of Open Access Journals (Sweden)

    Roberto Plebani

    2012-11-01

    Full Text Available mRNA chimeras from chromosomal translocations often play a role as transforming oncogenes. However, cancer transcriptomes also contain mRNA chimeras that may play a role in tumor development, which arise as transcriptional or post-transcriptional events. To identify such chimeras, we developed a deterministic screening strategy for long-range sequence analysis. High-throughput, long-read sequencing was then performed on cDNA libraries from major tumor histotypes and corresponding normal tissues. These analyses led to the identification of 378 chimeras, with an unexpectedly high frequency of expression (≈2 x 10-5 of all mRNA. Functional assays in breast and ovarian cancer cell lines showed that a large fraction of mRNA chimeras regulates cell replication. Strikingly, chimeras were shown to include both positive and negative regulators of cell growth, which functioned as such in a cell-type-specific manner. Replication-controlling chimeras were found to be expressed by most cancers from breast, ovary, colon, uterus, kidney, lung, and stomach, suggesting a widespread role in tumor development.

  13. Characterisation of equine satellite cell transcriptomic profile response to β-hydroxy-β-methylbutyrate (HMB).

    Science.gov (United States)

    Szcześniak, Katarzyna A; Ciecierska, Anna; Ostaszewski, Piotr; Sadkowski, Tomasz

    2016-10-01

    β-Hydroxy-β-methylbutyrate (HMB) is a popular ergogenic aid used by human athletes and as a supplement to sport horses, because of its ability to aid muscle recovery, improve performance and body composition. Recent findings suggest that HMB may stimulate satellite cells and affect expressions of genes regulating skeletal muscle cell growth. Despite the scientific data showing benefits of HMB supplementation in horses, no previous study has explained the mechanism of action of HMB in this species. The aim of this study was to reveal the molecular background of HMB action on equine skeletal muscle by investigating the transcriptomic profile changes induced by HMB in equine satellite cells in vitro. Upon isolation from the semitendinosus muscle, equine satellite cells were cultured until the 2nd day of differentiation. Differentiating cells were incubated with HMB for 24 h. Total cellular RNA was isolated, amplified, labelled and hybridised to microarray slides. Microarray data validation was performed with real-time quantitative PCR. HMB induced differential expressions of 361 genes. Functional analysis revealed that the main biological processes influenced by HMB in equine satellite cells were related to muscle organ development, protein metabolism, energy homoeostasis and lipid metabolism. In conclusion, this study demonstrated for the first time that HMB has the potential to influence equine satellite cells by controlling global gene expression. Genes and biological processes targeted by HMB in equine satellite cells may support HMB utility in improving growth and regeneration of equine skeletal muscle; however, the overall role of HMB in horses remains equivocal and requires further proteomic, biochemical and pharmacokinetic studies.

  14. Global irradiation effects, stem cell genes and rare transcripts in the planarian transcriptome.

    Science.gov (United States)

    Galloni, Mireille

    2012-01-01

    Stem cells are the closest relatives of the totipotent primordial cell, which is able to spawn millions of daughter cells and hundreds of cell types in multicellular organisms. Stem cells are involved in tissue homeostasis and regeneration, and may play a major role in cancer development. Among animals, planarians host a model stem cell type, called the neoblast, which essentially confers immortality. Gaining insights into the global transcriptional landscape of these exceptional cells takes an unprecedented turn with the advent of Next Generation Sequencing methods. Two Digital Gene Expression transcriptomes of Schmidtea mediterranea planarians, with or without neoblasts lost through irradiation, were produced and analyzed. Twenty one bp NlaIII tags were mapped to transcripts in the Schmidtea and Dugesia taxids. Differential representation of tags in normal versus irradiated animals reflects differential gene expression. Canonical and non-canonical tags were included in the analysis, and comparative studies with human orthologs were conducted. Transcripts fell into 3 categories: invariant (including housekeeping genes), absent in irradiated animals (potential neoblast-specific genes, IRDOWN) and induced in irradiated animals (potential cellular stress response, IRUP). Different mRNA variants and gene family members were recovered. In the IR-DOWN class, almost all of the neoblast-specific genes previously described were found. In irradiated animals, a larger number of genes were induced rather than lost. A significant fraction of IRUP genes behaved as if transcript versions of different lengths were produced. Several novel potential neoblast-specific genes have been identified that varied in relative abundance, including highly conserved as well as novel proteins without predicted orthologs. Evidence for a large body of antisense transcripts, for example regulated antisense for the Smed-piwil1 gene, and evidence for RNA shortening in irradiated animals is presented

  15. Role of SLAM in NKT cell development revealed by transgenic complementation in NOD mice.

    Science.gov (United States)

    Jordan, Margaret A; Fletcher, Julie M; Jose, Roby; Chowdhury, Shahead; Gerlach, Nicole; Allison, Janette; Baxter, Alan G

    2011-04-01

    Allelic variation of SLAM expression on CD4(+)CD8(+) thymocytes has been proposed to play a major role in NKT cell development. In this article, this hypothesis is tested by the production of subcongenic mouse strains and Slamf1 transgenic lines. The long isoform of the C57BL/6 allele of Slamf1 was transgenically expressed on CD4(+)CD8(+) thymocytes under control of an hCD2 minigene. NOD.Nkrp1b.Tg(Slamf1)1 mice, which had a 2-fold increase in SLAM protein expression on CD4(+)CD8(+) thymocytes, had a 2-fold increase in numbers of thymic NKT cells. The additional thymic NKT cells in NOD.Nkrp1b.Tg(Slamf1)1 mice were relatively immature, with a similar subset distribution to those of congenic NOD.Nkrp1b.Nkt1 and NOD.Nkrp1b.Slamf1 mice, which also express increased levels of SLAM on CD4(+)CD8(+) thymocytes and produce larger numbers of NKT cells. Transgenic enhancement of SLAM expression also increased IL-4 and IL-17 production in response to TCR-mediated stimulation. Paradoxically, NOD.Nkrp1b.Tg(Slamf1)2 mice, which had a 7-fold increase in SLAM expression, showed no significant increase in NKT cells numbers; on the contrary, at high transgene copy number, SLAM expression levels correlated inversely with NKT cell numbers, consistent with a contribution to negative selection. These data confirm a role for SLAM in controlling NKT cell development and are consistent with a role in both positive and negative thymic selection of NKT cells.

  16. Multichannel fluorescence spinning disk microscopy reveals early endogenous CD4 T cell recruitment in contact sensitivity via complement.

    Science.gov (United States)

    Norman, M Ursula; Hulliger, Sara; Colarusso, Pina; Kubes, Paul

    2008-01-01

    Contact sensitivity (CS) is one of the primary in vivo models of T cell-mediated inflammation. The presence of CS-initiating CD4 T lymphocytes at the time of challenge is essential for transfer and full development of the late phase CS inflammatory response. From this observation investigators have speculated that early recruitment of CD4 T cells to the site of challenge must occur. Moreover, there must be rapid synthesis/release and disappearance of an important mediator during the first hours after hapten challenge. Using spinning disk confocal microscopy, we observed the very early effector events of the immune response. Simultaneous, real-time visualization of predominant neutrophil and extremely rare CD4 T cell trafficking in the challenged skin vasculature was noted (one rolling CD4 T cell for every 10-18 rolling and adherent neutrophils). We demonstrate that neutrophil adhesion during the early CS response was reduced in C5a receptor-deficient (C5aR-/-) mice or leukotriene B4 receptor antagonist-treated mice, whereas CD4 T cell recruitment was only inhibited in C5aR-/- mice. In line with these observations, leukocyte infiltration and the associated tissue damage were significantly reduced in C5aR-/- mice but not in leukotriene B4 receptor antagonist-treated wild-type mice 24 h after challenge. C5a receptor expression on T cells and not on tissue resident cells was important for the development of a CS response. Thus, by using spinning disk confocal microscopy we visualized the early events of an adaptive immune response and identified the rare but essential recruitment of CD4 T cells via the complement pathway.

  17. Transcriptomic and proteomic analysis of human hepatic stellate cells treated with natural taurine.

    Science.gov (United States)

    Liang, Jian; Deng, Xin; Wu, Fa-Sheng; Tang, Yan-Fang

    2013-05-01

    The aim of this study was to investigate the differential expression of genes and proteins between natural taurine (NTau)‑treated hepatic stellate cells (HSCs) and control cells as well as the underlying mechanism of NTau in inhibiting hepatic fibrosis. A microculture tetrazolium (MTT) assay was used to analyze the proliferation of NTau‑treated HSCs. Flow cytometry was performed to compare the apoptosis rate between NTau-treated and non‑treated HSCs. Proteomic analysis using a combination of 2-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) was conducted to identify the differentially expressed proteins. Microarray analysis was performed to investigate the differential expression of genes and real-time polymerase chain reaction (PCR) was used to validate the results. The experimental findings obtained demonstrated that NTau decreased HSC proliferation, resulting in an increased number of cells in the G0/G1 phase and a reduced number of cells in the S phase. Flow cytometric analysis showed that NTau-treated HSCs had a significantly increased rate of apoptosis when compared with the non‑treated control group. A total of 15 differentially expressed proteins and 658 differentially expressed genes were identified by 2DE and MS, and microarray analysis, respectively. Gene ontology (GO) functional analysis indicated that these genes and proteins were enriched in the function clusters and pathways related to cell proliferation, cellular apoptosis and oxidation. The transcriptome and proteome analyses of NTau-treated HSCs demonstrated that NTau is able to significantly inhibit cell proliferation and promote cell apoptosis, highlighting its potential therapeutic benefits in the treatment of hepatic fibrosis.

  18. Human embryonic and induced pluripotent stem cell research trends: complementation and diversification of the field.

    Science.gov (United States)

    Kobold, Sabine; Guhr, Anke; Kurtz, Andreas; Löser, Peter

    2015-05-12

    Research in human induced pluripotent stem cells (hiPSCs) is rapidly developing and there are expectations that this research may obviate the need to use human embryonic stem cells (hESCs), the ethics of which has been a subject of controversy for more than 15 years. In this study, we investigated approximately 3,400 original research papers that reported an experimental use of these types of human pluripotent stem cells (hPSCs) and were published from 2008 to 2013. We found that research into both cell types was conducted independently and further expanded, accompanied by a growing intersection of both research fields. Moreover, an in-depth analysis of papers that reported the use of both cell types indicates that hESCs are still being used as a "gold standard," but in a declining proportion of publications. Instead, the expanding research field is diversifying and hESC and hiPSC lines are increasingly being used in more independent research and application areas.

  19. Transcriptomic analysis of the dialogue between Pseudorabies virus and porcine epithelial cells during infection

    Directory of Open Access Journals (Sweden)

    Chardon Patrick

    2008-03-01

    Full Text Available Abstract Background Transcriptomic approaches are relevant for studying virus-host cell dialogues to better understand the physiopathology of infection and the immune response at the cellular level. Pseudorabies virus (PrV, a porcine Alphaherpesvirus, is a good model for such studies in pig. Since PrV displays a strong tropism for mucous epithelial cells, we developed a kinetics study of PrV infection in the porcine PK15 epithelial cell line. To identify as completely as possible, viral and cellular genes regulated during infection, we simultaneously analyzed PrV and cellular transcriptome modifications using two microarrays i.e. a laboratory-made combined SLA/PrV microarray, consisting of probes for all PrV genes and for porcine genes contained in the Swine Leukocyte Antigen (SLA complex, and the porcine generic Qiagen-NRSP8 oligonucleotide microarray. We confirmed the differential expression of a selected set of genes by qRT-PCR and flow cytometry. Results An increase in the number of differentially expressed cellular genes and PrV genes especially from 4 h post-infection (pi was observed concomitantly with the onset of viral progeny while no early global cellular shutoff was recorded. Many cellular genes were down-regulated from 4 h pi and their number increased until 12 h pi. UL41 transcripts encoding the virion host shutoff protein were first detected as differentially expressed at 8 h pi. The viral gene UL49.5 encoding a TAP inhibitor protein was differentially expressed as soon as 2 h pi, indicating that viral evasion via TAP inhibition may start earlier than the cellular gene shutoff. We found that many biological processes are altered during PrV infection. Indeed, several genes involved in the SLA class I antigenic presentation pathway (SLA-Ia, TAP1, TAP2, PSMB8 and PSMB9, were down-regulated, thus contributing to viral immune escape from this pathway and other genes involved in apoptosis, nucleic acid metabolism, cytoskeleton signaling

  20. A single cell complementation class is common to several cases of cytochrome c oxidase-defective Leigh's syndrome.

    Science.gov (United States)

    Munaro, M; Tiranti, V; Sandonà, D; Lamantea, E; Uziel, G; Bisson, R; Zeviani, M

    1997-02-01

    A generalized defect of complex IV (cytochrome C oxidase, COX) is frequently found in subacute necrotizing encephalomyelopathy (Leigh's syndrome), the most common mitochondrial disorder in infancy. We previously demonstrated the nuclear origin of the COX defect in one case, by fusing nuclear DNA-less cytoplasts derived from normal fibroblasts with mitochondrial DNA (mtDNA)-less transformant fibroblasts derived from a patient with COX-defective [COX(-)] Leigh's syndrome. The resulting cybrid line showed a specific and serve COX(-) phenotype. Conversely, in the present study, we demonstrated that a COX(+) phenotype could be restored in hybrids obtained by fusing COX(-) transformant fibroblasts of seven additional Leigh's syndrome patients with mtDNA-less, COX(-) tumor-derived rho degree cells. Both these results are explained by the presence of a mutation in a nuclear gene. In a second set of experiments, in order to demonstrate whether COX(-) Leigh's syndrome is due to a defect in the same gene, or in different genes, we tested several hybrids derived by fusing our original COX(-) cell line with each of the remaining seven cell lines. COX activity was evaluated in situ by histochemical techniques and in cell extracts by a spectrophotometric assay. No COX complementers were found among the resulting hybrid lines. This result demonstrates that all our cases were genetically homogeneous, and suggests that a major nuclear disease locus is associated with several, perhaps most, of the cases of infantile COX(-) Leigh's syndrome. This information should make it easier to identify the gene responsible.

  1. Visualizing double-stranded RNA distribution and dynamics in living cells by dsRNA binding-dependent fluorescence complementation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiaofei [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036 (China); Deng, Ping; Cui, Hongguang [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada); Wang, Aiming, E-mail: aiming.wang@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3 (Canada)

    2015-11-15

    Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings the split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.

  2. A versatile complementation assay for cell-to-cell and long distance movements by cucumber mosaic virus based agro-infiltration.

    Science.gov (United States)

    Shen, Yan; Zhao, Xiaohui; Yao, Min; Li, Chun; Miriam, Karwitha; Zhang, Xue; Tao, Xiaorong

    2014-09-22

    Microinjection, bombardment or tobamovirus and potexvirus based assay has been developed to identify the putative movement protein (MP) or to characterize plasmodesma-mediated macromolecular transport. In this study, we developed a versatile complementation assay for the cell-to-cell and long distance movements of macromolecules by agro-infiltration based on the infectious clones of cucumber mosaic virus (CMV). The movement-deficient CMV reporter was constructed by replacing the MP on RNA 3 with ER targeted GFP. The ectopic expression of CMV MP was able to efficiently move the RNA3-MP::erGFP reporter from the original cell to neighboring cells, whereas CMV MP-M5 mutant was unable to initiate the movement. Importantly, the presence of CMV RNA1 and RNA2 can dramatically amplify the movement signals once the RNA3-MP::erGFP reporter moves out of the original cell. The appropriate observation time for this movement complementation assay was at 48-72 hours post infiltration (hpi), whereas the optimal incubation temperature was between 25 and 28 °C. The ectopic co-expression of MPs from other virus genera, NSm from tomato spotted wilt tospovirus (TSWV) or NSvc4 from rice stripe tenuivirus (RSV), could also facilitate the movement of the RNA3::erGFP reporter from the original cell into other cells. The chimeric mutant virus created by substituting the MP of CMV RNA3 with NSm from TSWV or NSvc4 from RSV move systemically in Nicotiana benthamiana plants by agro-infiltration. This agro-infiltration complementation assay is simple, efficient and reliable. Our approach provides an alternative and powerful tool with great potentials in identifying putative movement protein and characterizing macromolecular trafficking.

  3. Targeting the Human Complement Membrane Attack Complex to Selectively Kill Prostate Cancer Cells

    Science.gov (United States)

    2013-10-01

    tract through the urethra. It must also shield the sperm from immune destruction within the vaginal tract while not eliminating cells within the...first of which plays a role in enhancing B cell immunity. iC3b’s other receptor binding partners, CR3 and CR4, have roles in clearance of pathogens by... Nature 444: 213–216. 25. Wiesmann, C., K. J. Katschke, J. Yin, K. Y. Helmy, M. Steffek, W. J. Fairbrother, S. A. McCallum, L. Embuscado, L. DeForge, P

  4. Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation.

    Science.gov (United States)

    Song, Hongbin; He, Chun; Knaak, Christian; Guthridge, Joel M; Holers, V Michael; Tomlinson, Stephen

    2003-06-01

    In a strategy to specifically target complement inhibitors to sites of complement activation and disease, recombinant fusion proteins consisting of a complement inhibitor linked to a C3 binding region of complement receptor (CR) 2 were prepared and characterized. Natural ligands for CR2 are C3 breakdown products deposited at sites of complement activation. Fusion proteins were prepared consisting of a human CR2 fragment linked to either the N terminus or C terminus of soluble forms of the membrane complement inhibitors decay accelerating factor (DAF) or CD59. The targeted complement inhibitors bound to C3-opsonized cells, and all were significantly more effective (up to 20-fold) than corresponding untargeted inhibitors at protecting target cells from complement. CR2 fusion proteins also inhibited CR3-dependent adhesion of U937 cells to C3 opsonized erythrocytes, indicating a second potential anti-inflammatory mechanism of CR2 fusion proteins, since CR3 is involved in endothelial adhesion and diapedesis of leukocytes at inflammatory sites. Finally, the in vivo validity of the targeting strategy was confirmed by the demonstration that CR2-DAF, but not soluble DAF, targets to the kidney in mouse models of lupus nephritis that are associated with renal complement deposition.

  5. CD8+ T Cells Complement Antibodies in Protecting against Yellow Fever Virus

    DEFF Research Database (Denmark)

    Bassi, Maria R; Kongsgaard, Michael; Steffensen, Maria A

    2015-01-01

    The attenuated yellow fever (YF) vaccine (YF-17D) was developed in the 1930s, yet little is known about the protective mechanisms underlying its efficiency. In this study, we analyzed the relative contribution of cell-mediated and humoral immunity to the vaccine-induced protection in a murine model...

  6. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells

    Directory of Open Access Journals (Sweden)

    Zhao Zhixin

    2011-05-01

    Full Text Available Abstract Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA. ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and

  7. Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states

    Science.gov (United States)

    Jang, Sumin; Choubey, Sandeep; Furchtgott, Leon; Zou, Ling-Nan; Doyle, Adele; Menon, Vilas; Loew, Ethan B; Krostag, Anne-Rachel; Martinez, Refugio A; Madisen, Linda; Levi, Boaz P; Ramanathan, Sharad

    2017-01-01

    The complexity of gene regulatory networks that lead multipotent cells to acquire different cell fates makes a quantitative understanding of differentiation challenging. Using a statistical framework to analyze single-cell transcriptomics data, we infer the gene expression dynamics of early mouse embryonic stem (mES) cell differentiation, uncovering discrete transitions across nine cell states. We validate the predicted transitions across discrete states using flow cytometry. Moreover, using live-cell microscopy, we show that individual cells undergo abrupt transitions from a naïve to primed pluripotent state. Using the inferred discrete cell states to build a probabilistic model for the underlying gene regulatory network, we further predict and experimentally verify that these states have unique response to perturbations, thus defining them functionally. Our study provides a framework to infer the dynamics of differentiation from single cell transcriptomics data and to build predictive models of the gene regulatory networks that drive the sequence of cell fate decisions during development. DOI: http://dx.doi.org/10.7554/eLife.20487.001 PMID:28296635

  8. The interaction between circulating complement proteins and cutaneous microvascular endothelial cells in the development of childhood Henoch-Schonlein Purpura.

    Directory of Open Access Journals (Sweden)

    Yao-Hsu Yang

    Full Text Available In addition to IgA, the deposition of complement (C3 in dermal vessels is commonly found in Henoch-Schönlein purpura (HSP. The aim of this study is to elucidate the role of circulating complement proteins in the pathogenesis of childhood HSP.Plasma levels of C3a, C4a, C5a, and Bb in 30 HSP patients and 30 healthy controls were detected by enzyme-linked immunosorbent assay (ELISA. The expression of C3a receptor (C3aR, C5a receptor (CD88, E-selectin, intercellular adhesion molecule 1 (ICAM-1, C3, C5, interleukin (IL-8, monocyte chemotactic protein (MCP-1, and RANTES by human dermal microvascular endothelial cells (HMVEC-d was evaluated either by flow cytometry or by ELISA.At the acute stage, HSP patients had higher plasma levels of C3a (359.5 ± 115.3 vs. 183.3 ± 94.1 ng/ml, p < 0.0001, C5a (181.4 ± 86.1 vs. 33.7 ± 26.3 ng/ml, p < 0.0001, and Bb (3.7 ± 2.6 vs. 1.0 ± 0.6 μg/ml, p < 0.0001, but not C4a than healthy controls. Although HSP patient-derived acute phase plasma did not alter the presentation of C3aR and CD88 on HMVEC-d, it enhanced the production of endothelial C3 and C5. Moreover, C5a was shown in vitro to up-regulate the expression of IL-8, MCP-1, E-selectin, and ICAM-1 by HMVEC-d with a dose-dependent manner.In HSP, the activation of the complement system in part through the alternative pathway may have resulted in increased plasma levels of C3a and C5a, which, especially C5a, may play a role in the disease pathogenesis by activating endothelium of cutaneous small vessels.

  9. Generation of embryos directly from embryonic stem cells by tetraploid embryo complementation reveals a role for GATA factors in organogenesis.

    Science.gov (United States)

    Duncan, S A

    2005-12-01

    Gene targeting in ES (embryonic stem) cells has been used extensively to study the role of proteins during embryonic development. In the traditional procedure, this requires the generation of chimaeric mice by introducing ES cells into blastocysts and allowing them to develop to term. Once chimaeric mice are produced, they are bred into a recipient mouse strain to establish germline transmission of the allele of interest. Although this approach has been used very successfully, the breeding cycles involved are time consuming. In addition, genes that are essential for organogenesis often have roles in the formation of extra-embryonic tissues that are essential for early stages of post-implantation development. For example, mice lacking the GATA transcription factors, GATA4 or GATA6, arrest during gastrulation due to an essential role for these factors in differentiation of extra-embryonic endoderm. This lethality has frustrated the study of these factors during the development of organs such as the liver and heart. Extraembryonic defects can, however, be circumvented by generating clonal mouse embryos directly from ES cells by tetraploid complementation. Here, we describe the usefulness and efficacy of this approach using GATA factors as an example.

  10. Identification of thalidomide-specific transcriptomics and proteomics signatures during differentiation of human embryonic stem cells.

    Science.gov (United States)

    Meganathan, Kesavan; Jagtap, Smita; Wagh, Vilas; Winkler, Johannes; Gaspar, John Antonydas; Hildebrand, Diana; Trusch, Maria; Lehmann, Karola; Hescheler, Jürgen; Schlüter, Hartmut; Sachinidis, Agapios

    2012-01-01

    Embryonic development can be partially recapitulated in vitro by differentiating human embryonic stem cells (hESCs). Thalidomide is a developmental toxicant in vivo and acts in a species-dependent manner. Besides its therapeutic value, thalidomide also serves as a prototypical model to study teratogenecity. Although many in vivo and in vitro platforms have demonstrated its toxicity, only a few test systems accurately reflect human physiology. We used global gene expression and proteomics profiling (two dimensional electrophoresis (2DE) coupled with Tandem Mass spectrometry) to demonstrate hESC differentiation and thalidomide embryotoxicity/teratogenecity with clinically relevant dose(s). Proteome analysis showed loss of POU5F1 regulatory proteins PKM2 and RBM14 and an over expression of proteins involved in neuronal development (such as PAK2, PAFAH1B2 and PAFAH1B3) after 14 days of differentiation. The genomic and proteomic expression pattern demonstrated differential expression of limb, heart and embryonic development related transcription factors and biological processes. Moreover, this study uncovered novel possible mechanisms, such as the inhibition of RANBP1, that participate in the nucleocytoplasmic trafficking of proteins and inhibition of glutathione transferases (GSTA1, GSTA2), that protect the cell from secondary oxidative stress. As a proof of principle, we demonstrated that a combination of transcriptomics and proteomics, along with consistent differentiation of hESCs, enabled the detection of canonical and novel teratogenic intracellular mechanisms of thalidomide.

  11. Identification of thalidomide-specific transcriptomics and proteomics signatures during differentiation of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kesavan Meganathan

    Full Text Available Embryonic development can be partially recapitulated in vitro by differentiating human embryonic stem cells (hESCs. Thalidomide is a developmental toxicant in vivo and acts in a species-dependent manner. Besides its therapeutic value, thalidomide also serves as a prototypical model to study teratogenecity. Although many in vivo and in vitro platforms have demonstrated its toxicity, only a few test systems accurately reflect human physiology. We used global gene expression and proteomics profiling (two dimensional electrophoresis (2DE coupled with Tandem Mass spectrometry to demonstrate hESC differentiation and thalidomide embryotoxicity/teratogenecity with clinically relevant dose(s. Proteome analysis showed loss of POU5F1 regulatory proteins PKM2 and RBM14 and an over expression of proteins involved in neuronal development (such as PAK2, PAFAH1B2 and PAFAH1B3 after 14 days of differentiation. The genomic and proteomic expression pattern demonstrated differential expression of limb, heart and embryonic development related transcription factors and biological processes. Moreover, this study uncovered novel possible mechanisms, such as the inhibition of RANBP1, that participate in the nucleocytoplasmic trafficking of proteins and inhibition of glutathione transferases (GSTA1, GSTA2, that protect the cell from secondary oxidative stress. As a proof of principle, we demonstrated that a combination of transcriptomics and proteomics, along with consistent differentiation of hESCs, enabled the detection of canonical and novel teratogenic intracellular mechanisms of thalidomide.

  12. Transcriptomic profiling of human hippocampal progenitor cells treated with antidepressants and its application in drug repositioning

    Science.gov (United States)

    Powell, Timothy R; Murphy, Tytus; Lee, Sang H; Price, Jack; Thuret, Sandrine; Breen, Gerome

    2017-01-01

    Current pharmacological treatments for major depressive disorder (MDD) are ineffective in a significant proportion of patients, and the identification of new antidepressant compounds has been difficult. ‘Connectivity mapping’ is a method that can be used to identify drugs that elicit similar downstream effects on mRNA levels when compared to current treatments, and thus may point towards possible repositioning opportunities. We investigated genome-wide transcriptomic changes to human hippocampal progenitor cells treated with therapeutically relevant concentrations of a tricyclic antidepressant (nortriptyline) and a selective serotonin reuptake inhibitor (escitalopram). We identified mRNA changes common to both drugs to create an ‘antidepressant mRNA signature’. We used this signature to probe the Library of Integrated Network-based Cellular Signatures (LINCS) and to identify other compounds that elicit similar changes to mRNA in neural progenitor cells. Results from LINCS revealed that the tricyclic antidepressant clomipramine elicited mRNA changes most similar to our mRNA signature, and we identified W-7 and vorinostat as functionally relevant drug candidates, which may have repositioning potential. Our results are encouraging and represent the first attempt to use connectivity mapping for drug repositioning in MDD. PMID:28208023

  13. Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis

    Directory of Open Access Journals (Sweden)

    Gabet Yankel

    2010-09-01

    Full Text Available Abstract Background Prostate cancer (PCa cells preferentially metastasize to bone at least in part by acquiring osteomimetic properties. Runx2, an osteoblast master transcription factor, is aberrantly expressed in PCa cells, and promotes their metastatic phenotype. The transcriptional programs regulated by Runx2 have been extensively studied during osteoblastogenesis, where it activates or represses target genes in a context-dependent manner. However, little is known about the gene regulatory networks influenced by Runx2 in PCa cells. We therefore investigated genome wide mRNA expression changes in PCa cells in response to Runx2. Results We engineered a C4-2B PCa sub-line called C4-2B/Rx2dox, in which Doxycycline (Dox treatment stimulates Runx2 expression from very low to levels observed in other PCa cells. Transcriptome profiling using whole genome expression array followed by in silico analysis indicated that Runx2 upregulated a multitude of genes with prominent cancer associated functions. They included secreted factors (CSF2, SDF-1, proteolytic enzymes (MMP9, CST7, cytoskeleton modulators (SDC2, Twinfilin, SH3PXD2A, intracellular signaling molecules (DUSP1, SPHK1, RASD1 and transcription factors (Sox9, SNAI2, SMAD3 functioning in epithelium to mesenchyme transition (EMT, tissue invasion, as well as homing and attachment to bone. Consistent with the gene expression data, induction of Runx2 in C4-2B cells enhanced their invasiveness. It also promoted cellular quiescence by blocking the G1/S phase transition during cell cycle progression. Furthermore, the cell cycle block was reversed as Runx2 levels declined after Dox withdrawal. Conclusions The effects of Runx2 in C4-2B/Rx2dox cells, as well as similar observations made by employing LNCaP, 22RV1 and PC3 cells, highlight multiple mechanisms by which Runx2 promotes the metastatic phenotype of PCa cells, including tissue invasion, homing to bone and induction of high bone turnover. Runx2 is

  14. Natural autoantibodies and complement promote the uptake of a self antigen, human thyroglobulin, by B cells and the proliferation of thyroglobulin-reactive CD4(+) T cells in healthy individuals

    DEFF Research Database (Denmark)

    Nielsen, C H; Leslie, R G; Jepsen, B S

    2001-01-01

    thyroglobulin (Tg) by human peripheral B cells in reconstituted whole blood. Significant binding of fluorescein isothiocyanate-conjugated-Tg to B cells was observed, and absorption of Tg-reactive antibodies from serum markedly reduced this uptake, as did inactivation of serum complement or blockade...... was strongly inhibited by complement inactivation and by immunoabsorption of Tg-reactive antibodies. Furthermore, this T cell response was abrogated by depletion of B cells from the PBMC culture. These data imply that uptake of complement-opsonized Tg / anti-Tg complexes and subsequent presentation of Tg by B...... of complement receptor types 1 (CR1, CD35) and 2 (CR2, CD21). T cell responsiveness to Tg was examined in a preparation of peripheral blood mononuclear cells (PBMC) cultured in the presence of autologous serum. A subset of CD4(+) T cells exhibited a dose-dependent proliferative response to Tg, which...

  15. Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Sylvie Maubant

    Full Text Available The canonical Wnt/β-catenin pathway is activated in triple-negative breast cancer (TNBC. The activation of this pathway leads to the expression of specific target genes depending on the cell/tissue context. Here, we analyzed the transcriptome of two different TNBC cell lines to define a comprehensive list of Wnt target genes. The treatment of cells with Wnt3a for 6h up-regulated the expression (fold change > 1.3 of 59 genes in MDA-MB-468 cells and 241 genes in HCC38 cells. Thirty genes were common to both cell lines. Beta-catenin may also be a transcriptional repressor and we found that 18 and 166 genes were down-regulated in response to Wnt3a treatment for 6h in MDA-MB-468 and HCC38 cells, respectively, of which six were common to both cell lines. Only half of the activated and the repressed transcripts have been previously described as Wnt target genes. Therefore, our study reveals 137 novel genes that may be positively regulated by Wnt3a and 104 novel genes that may be negatively regulated by Wnt3a. These genes are involved in the Wnt pathway itself, and also in TGFβ, p53 and Hedgehog pathways. Thorough characterization of these novel potential Wnt target genes may reveal new regulators of the canonical Wnt pathway. The comparison of our list of Wnt target genes with those published in other cellular contexts confirms the notion that Wnt target genes are tissue-, cell line- and treatment-specific. Genes up-regulated in Wnt3a-stimulated cell lines were more strongly expressed in TNBC than in luminal A breast cancer samples. These genes were also overexpressed, but to a much lesser extent, in HER2+ and luminal B tumors. We identified 72 Wnt target genes higher expressed in TNBCs (17 with a fold change >1.3 which may reflect the chronic activation of the canonical Wnt pathway that occurs in TNBC tumors.

  16. Ataxia-telangiectasia group D complementing gene (ATDC promotes lung cancer cell proliferation by activating NF-κB pathway.

    Directory of Open Access Journals (Sweden)

    Zhong-Ping Tang

    Full Text Available Previous studies suggested Ataxia-telangiectasia group D complementing gene (ATDC as an oncogene in many types of cancer. However, its expression and biological functions in non-small cell lung cancer (NSCLC remain unclear. Herein, we investigated its expression pattern in 109 cases of human NSCLC samples by immunohistochemistry and found that ATDC was overexpressed in 62 of 109 NSCLC samples (56.88%. ATDC overexpression correlated with histological type (p<0.0001, tumor status (p = 0.0227 and histological differentiation (p = 0.0002. Next, we overexpressed ATDC in normal human bronchial epithelial cell line HBE and depleted its expression in NSCLC cell lines A549 and H1299. MTT and colony formation assay showed that ATDC overexpression promoted cell proliferation while its depletion inhibited cell growth. Furthermore, cell cycle analysis showed that ATDC overexpression decreased the percentage of cells in G1 phase and increased the percentage of cells in S phase, while ATDC siRNA treatment increased the G1 phase percentage and decreased the S phase percentage. Further study revealed that ATDC overexpression could up-regulate cyclin D1 and c-Myc expression in HBE cells while its depletion down-regulated cyclin D1 and c-Myc expression in A549 and H1299 cells. In addition, ATDC overexpression was also associated with an increased proliferation index, cyclin D1 and c-Myc expression in human NSCLC samples. Further experiments demonstrated that ATDC up-regulated cyclin D1 and c-Myc expression independent of wnt/β-catenin or p53 signaling pathway. Interestingly, ATDC overexpression increased NF-κB reporter luciferase activity and p-IκB protein level. Correspondingly, NF-κB inhibitor blocked the effect of ATDC on up-regulation of cyclin D1 and c-Myc. In conclusion, we demonstrated that ATDC could promote lung cancer proliferation through NF-κB induced up-regulation of cyclin D1 and c-Myc.

  17. Research Resource: The Dexamethasone Transcriptome in Hypothalamic Embryonic Neural Stem Cells.

    Science.gov (United States)

    Frahm, Krystle A; Peffer, Melanie E; Zhang, Janie Y; Luthra, Soumya; Chakka, Anish B; Couger, Matthew B; Chandran, Uma R; Monaghan, A Paula; DeFranco, Donald B

    2016-01-01

    Exposure to excess glucocorticoids during fetal development has long-lasting physiological and behavioral consequences, although the mechanisms are poorly understood. The impact of prenatal glucocorticoids exposure on stress responses in juvenile and adult offspring implicates the developing hypothalamus as a target of adverse prenatal glucocorticoid action. Therefore, primary cultures of hypothalamic neural-progenitor/stem cells (NPSCs) derived from mouse embryos (embryonic day 14.5) were used to identify the glucocorticoid transcriptome in both males and females. NPSCs were treated with vehicle or the synthetic glucocorticoid dexamethasone (dex; 100nM) for 4 hours and total RNA analyzed using RNA-Sequencing. Bioinformatic analysis demonstrated that primary hypothalamic NPSC cultures expressed relatively high levels of a number of genes regulating stem cell proliferation and hypothalamic progenitor function. Interesting, although these cells express glucocorticoid receptors (GRs), only low levels of sex-steroid receptors are expressed, which suggested that sex-specific differentially regulated genes identified are mediated by genetic and not hormonal influences. We also identified known or novel GR-target coding and noncoding genes that are either regulated equivalently in male and female NPSCs or differential responsiveness in one sex. Using gene ontology analysis, the top functional network identified was cell proliferation and using bromodeoxyuridine (BrdU) incorporation observed a reduction in proliferation of hypothalamic NPSCs after dexamethasone treatment. Our studies provide the first characterization and description of glucocorticoid-regulated pathways in male and female embryonically derived hypothalamic NPSCs and identified GR-target genes during hypothalamic development. These findings may provide insight into potential mechanisms responsible for the long-term consequences of fetal glucocorticoid exposure in adulthood.

  18. Bimolecular Complementation to Visualize Filovirus VP40-Host Complexes in Live Mammalian Cells: Toward the Identification of Budding Inhibitors

    Directory of Open Access Journals (Sweden)

    Yuliang Liu

    2011-01-01

    Full Text Available Virus-host interactions play key roles in promoting efficient egress of many RNA viruses, including Ebola virus (EBOV or “e” and Marburg virus (MARV or “m”. Late- (L- domains conserved in viral matrix proteins recruit specific host proteins, such as Tsg101 and Nedd4, to facilitate the budding process. These interactions serve as attractive targets for the development of broad-spectrum budding inhibitors. A major gap still exists in our understanding of the mechanism of filovirus budding due to the difficulty in detecting virus-host complexes and mapping their trafficking patterns in the natural environment of the cell. To address this gap, we used a bimolecular complementation (BiMC approach to detect, localize, and follow the trafficking patterns of eVP40-Tsg101 complexes in live mammalian cells. In addition, we used the BiMC approach along with a VLP budding assay to test small molecule inhibitors identified by in silico screening for their ability to block eVP40 PTAP-mediated interactions with Tsg101 and subsequent budding of eVP40 VLPs. We demonstrated the potential broad spectrum activity of a lead candidate inhibitor by demonstrating its ability to block PTAP-dependent binding of HIV-1 Gag to Tsg101 and subsequent egress of HIV-1 Gag VLPs.

  19. Ratiometric bioluminescence indicators for monitoring cyclic adenosine 3',5'-monophosphate in live cells based on luciferase-fragment complementation.

    Science.gov (United States)

    Takeuchi, Masaki; Nagaoka, Yasutaka; Yamada, Toshimichi; Takakura, Hideo; Ozawa, Takeaki

    2010-11-15

    Bioluminescent indicators for cyclic 3',5'-monophosphate AMP (cAMP) are powerful tools for noninvasive detection with high sensitivity. However, the absolute photon counts are affected substantially by adenosine 5'-triphosphate (ATP) and d-luciferin concentrations, limiting temporal analysis in live cells. This report describes a genetically encoded bioluminescent indicator for detecting intracellular cAMP based on complementation of split fragments of two-color luciferase mutants originated from click beetles. A cAMP binding domain of protein kinase A was connected with an engineered carboxy-terminal fragment of luciferase, of which ends were connected with amino-terminal fragments of green luciferase and red luciferase. We demonstrated that the ratio of green to red bioluminescence intensities was less influenced by the changes of ATP and d-luciferin concentrations. We also showed an applicability of the bioluminescent indicator for time-course and quantitative assessments of intracellular cAMP in living cells and mice. The bioluminescent indicator will enable quantitative analysis and imaging of spatiotemporal dynamics of cAMP in opaque and autofluorescent living subjects.

  20. Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq.

    Science.gov (United States)

    Macaulay, Iain C; Teng, Mabel J; Haerty, Wilfried; Kumar, Parveen; Ponting, Chris P; Voet, Thierry

    2016-11-01

    Parallel sequencing of a single cell's genome and transcriptome provides a powerful tool for dissecting genetic variation and its relationship with gene expression. Here we present a detailed protocol for G&T-seq, a method for separation and parallel sequencing of genomic DNA and full-length polyA(+) mRNA from single cells. We provide step-by-step instructions for the isolation and lysis of single cells; the physical separation of polyA(+) mRNA from genomic DNA using a modified oligo-dT bead capture and the respective whole-transcriptome and whole-genome amplifications; and library preparation and sequence analyses of these amplification products. The method allows the detection of thousands of transcripts in parallel with the genetic variants captured by the DNA-seq data from the same single cell. G&T-seq differs from other currently available methods for parallel DNA and RNA sequencing from single cells, as it involves physical separation of the DNA and RNA and does not require bespoke microfluidics platforms. The process can be implemented manually or through automation. When performed manually, paired genome and transcriptome sequencing libraries from eight single cells can be produced in ∼3 d by researchers experienced in molecular laboratory work. For users with experience in the programming and operation of liquid-handling robots, paired DNA and RNA libraries from 96 single cells can be produced in the same time frame. Sequence analysis and integration of single-cell G&T-seq DNA and RNA data requires a high level of bioinformatics expertise and familiarity with a wide range of informatics tools.

  1. Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration.

    Science.gov (United States)

    Smid, Marcel; Rodríguez-González, F Germán; Sieuwerts, Anieta M; Salgado, Roberto; Prager-Van der Smissen, Wendy J C; Vlugt-Daane, Michelle van der; van Galen, Anne; Nik-Zainal, Serena; Staaf, Johan; Brinkman, Arie B; van de Vijver, Marc J; Richardson, Andrea L; Fatima, Aquila; Berentsen, Kim; Butler, Adam; Martin, Sancha; Davies, Helen R; Debets, Reno; Gelder, Marion E Meijer-Van; van Deurzen, Carolien H M; MacGrogan, Gaëtan; Van den Eynden, Gert G G M; Purdie, Colin; Thompson, Alastair M; Caldas, Carlos; Span, Paul N; Simpson, Peter T; Lakhani, Sunil R; Van Laere, Steven; Desmedt, Christine; Ringnér, Markus; Tommasi, Stefania; Eyford, Jorunn; Broeks, Annegien; Vincent-Salomon, Anne; Futreal, P Andrew; Knappskog, Stian; King, Tari; Thomas, Gilles; Viari, Alain; Langerød, Anita; Børresen-Dale, Anne-Lise; Birney, Ewan; Stunnenberg, Hendrik G; Stratton, Mike; Foekens, John A; Martens, John W M

    2016-09-26

    A recent comprehensive whole genome analysis of a large breast cancer cohort was used to link known and novel drivers and substitution signatures to the transcriptome of 266 cases. Here, we validate that subtype-specific aberrations show concordant expression changes for, for example, TP53, PIK3CA, PTEN, CCND1 and CDH1. We find that CCND3 expression levels do not correlate with amplification, while increased GATA3 expression in mutant GATA3 cancers suggests GATA3 is an oncogene. In luminal cases the total number of substitutions, irrespective of type, associates with cell cycle gene expression and adverse outcome, whereas the number of mutations of signatures 3 and 13 associates with immune-response specific gene expression, increased numbers of tumour-infiltrating lymphocytes and better outcome. Thus, while earlier reports imply that the sheer number of somatic aberrations could trigger an immune-response, our data suggests that substitutions of a particular type are more effective in doing so than others.

  2. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation

    Directory of Open Access Journals (Sweden)

    Treuner-Lange Anke

    2010-04-01

    Full Text Available Abstract Background Myxococcus xanthus is a Gram negative bacterium that can differentiate into metabolically quiescent, environmentally resistant spores. Little is known about the mechanisms involved in differentiation in part because sporulation is normally initiated at the culmination of a complex starvation-induced developmental program and only inside multicellular fruiting bodies. To obtain a broad overview of the sporulation process and to identify novel genes necessary for differentiation, we instead performed global transcriptome analysis of an artificial chemically-induced sporulation process in which addition of glycerol to vegetatively growing liquid cultures of M. xanthus leads to rapid and synchronized differentiation of nearly all cells into myxospore-like entities. Results Our analyses identified 1 486 genes whose expression was significantly regulated at least two-fold within four hours of chemical-induced differentiation. Most of the previously identified sporulation marker genes were significantly upregulated. In contrast, most genes that are required to build starvation-induced multicellular fruiting bodies, but which are not required for sporulation per se, were not significantly regulated in our analysis. Analysis of functional gene categories significantly over-represented in the regulated genes, suggested large rearrangements in core metabolic pathways, and in genes involved in protein synthesis and fate. We used the microarray data to identify a novel operon of eight genes that, when mutated, rendered cells unable to produce viable chemical- or starvation-induced spores. Importantly, these mutants displayed no defects in building fruiting bodies, suggesting these genes are necessary for the core sporulation process. Furthermore, during the starvation-induced developmental program, these genes were expressed in fruiting bodies but not in peripheral rods, a subpopulation of developing cells which do not sporulate

  3. Single cell subtractive transcriptomics for identification of cell-specifically expressed candidate genes of pyrrolizidine alkaloid biosynthesis.

    Science.gov (United States)

    Sievert, Christian; Beuerle, Till; Hollmann, Julien; Ober, Dietrich

    2015-09-01

    Progress has recently been made in the elucidation of pathways of secondary metabolism. However, because of its diversity, genetic information concerning biosynthetic details is still missing for many natural products. This is also the case for the biosynthesis of pyrrolizidine alkaloids. To close this gap, we tested strategies using tissues that express this pathway in comparison to tissues in which this pathway is not expressed. As many pathways of secondary metabolism are known to be induced by jasmonates, the pyrrolizidine alkaloid-producing species Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale of the Boraginales order were treated with methyl jasmonate. An effect on pyrrolizidine alkaloid levels and on transcript levels of homospermidine synthase, the first specific enzyme of pyrrolizidine alkaloid biosynthesis, was not detectable. Therefore, a method was developed by making use of the often observed cell-specific production of secondary compounds. H. indicum produces pyrrolizidine alkaloids exclusively in the shoot. Homospermidine synthase is expressed only in the cells of the lower leaf epidermis and the epidermis of the stem. Suggesting that the whole pathway of pyrrolizidine alkaloid biosynthesis might be localized in these cells, we have isolated single cells of the upper and lower epidermis by laser-capture microdissection. The resulting cDNA preparations have been used in a subtractive transcriptomic approach. Quantitative real-time polymerase chain reaction has shown that the resulting library is significantly enriched for homospermidine-synthase-coding transcripts providing a valuable source for the identification of further genes involved in pyrrolizidine alkaloid biosynthesis.

  4. Transient correction of excision repair defects in fibroblasts of 9 xeroderma pigmentosum complementation groups by microinjection of crude human cell extract.

    NARCIS (Netherlands)

    W. Vermeulen (Wim); P. Osseweijer; A.J.R. de Jonge; J.H.J. Hoeijmakers (Jan)

    1986-01-01

    textabstractCrude extracts from human cells were microinjected into the cytoplasm of cultured fibroblasts from 9 excision-deficient xeroderma pigmentosum (XP) complementation groups. The level of UV-induced unscheduled DNA synthesis (UDS) was measured to determine the effect of the extract on the re

  5. Combination of autoantibodies against different histone proteins influences complement-dependent phagocytosis of necrotic cell material by polymorphonuclear leukocytes in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Gullstrand, Birgitta; Lefort, Malin H; Tydén, Helena

    2012-01-01

    Polymorphonuclear leukocytes (PMN) with autoantibody-coated engulfed necrotic cell material (NC) are frequently seen in systemic lupus erythematosus (SLE). We evaluated the roles of complement, different antihistone antibodies (anti-H ab), and oxidative burst in the phagocytosis of NC by PMN...

  6. Long-term reduction of T-cell intracellular antigens reveals a transcriptome associated with extracellular matrix and cell adhesion components.

    Directory of Open Access Journals (Sweden)

    Mario Núñez

    Full Text Available Knockdown of T-cell intracellular antigens TIA1 and TIAR contributes to a cellular phenotype characterised by uncontrolled proliferation and tumorigenesis. Massive-scale poly(A+ RNA sequencing of TIA1 or TIAR-knocked down HeLa cells reveals transcriptome signatures comprising genes and functional categories potentially able to modulate several aspects of membrane dynamics associated with extracellular matrix and focal/cell adhesion events. The transcriptomic heterogeneity is the result of differentially expressed genes and RNA isoforms generated by alternative splicing and/or promoter usage. These results suggest a role for TIA proteins in the regulation and/or modulation of cellular homeostasis related to focal/cell adhesion, extracellular matrix and membrane and cytoskeleton dynamics.

  7. Transcriptome Profiling Reveals Degree of Variability in Induced Pluripotent Stem Cell Lines: Impact for Human Disease Modeling.

    Science.gov (United States)

    Schuster, Jens; Halvardson, Jonatan; Pilar Lorenzo, Laureanne; Ameur, Adam; Sobol, Maria; Raykova, Doroteya; Annerén, Göran; Feuk, Lars; Dahl, Niklas

    2015-10-01

    Induced pluripotent stem cell (iPSC) technology has become an important tool for disease modeling. Insufficient data on the variability among iPSC lines derived from a single somatic parental cell line have in practice led to generation and analysis of several, usually three, iPSC sister lines from each parental cell line. We established iPSC lines from a human fibroblast line (HDF-K1) and used transcriptome sequencing to investigate the variation among three sister lines (iPSC-K1A, B, and C). For comparison, we analyzed the transcriptome of an iPSC line (iPSC-K5B) derived from a different fibroblast line (HDF-K5), a human embryonic stem cell (ESC) line (ESC-HS181), as well as the two parental fibroblast lines. All iPSC lines fulfilled stringent criteria for pluripotency. In an unbiased cluster analysis, all stem cell lines (four iPSCs and one ESC) clustered together as opposed to the parental fibroblasts. The transcriptome profiles of the three iPSC sister lines were indistinguishable from each other, and functional pathway analysis did not reveal any significant hits. In contrast, the expression profiles of the ESC line and the iPSC-K5B line were distinct from that of the sister lines iPSC-K1A, B, and C. Differentiation to embryoid bodies and subsequent analysis of germ layer markers in the five stem cell clones confirmed that the distribution of their expression profiles was retained. Taken together, our observations stress the importance of using iPSCs of different parental origin rather than several sister iPSC lines to distinguish disease-associated mechanisms from genetic background effects in disease modeling.

  8. Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation.

    Directory of Open Access Journals (Sweden)

    Elisa Monaco

    Full Text Available Bone-marrow mesenchymal stem cells (BMSC are considered the gold standard for use in tissue regeneration among mesenchymal stem cells (MSC. The abundance and ease of harvest make the adipose-derived stem cells (ASC an attractive alternative to BMSC. The aim of the present study was to compare the transcriptome of ASC and BMSC, respectively isolated from subcutaneous adipose tissue and femur of 3 adult pigs, during in vitro osteogenic and adipogenic differentiation for up to four weeks. At 0, 2, 7, and 21 days of differentiation RNA was extracted for microarray analysis. A False Discovery Rate ≤0.05 for overall interactions effect and P<0.001 between comparisons were used to determine differentially expressed genes (DEG. Ingenuity Pathway Analysis and DAVID performed the functional analysis of the DEG. Functional analysis of highest expressed genes in MSC and genes more expressed in MSC vs. fully differentiated tissues indicated low immunity and high angiogenic capacity. Only 64 genes were differentially expressed between ASC and BMSC before differentiation. The functional analysis uncovered a potential larger angiogenic, osteogenic, migration, and neurogenic capacity in BMSC and myogenic capacity in ASC. Less than 200 DEG were uncovered between ASC and BMSC during differentiation. Functional analysis also revealed an overall greater lipid metabolism in ASC, while BMSC had a greater cell growth and proliferation. The time course transcriptomic comparison between differentiation types uncovered <500 DEG necessary to determine cell fate. The functional analysis indicated that osteogenesis had a larger cell proliferation and cytoskeleton organization with a crucial role of G-proteins. Adipogenesis was driven by PPAR signaling and had greater angiogenesis, lipid metabolism, migration, and tumorigenesis capacity. Overall the data indicated that the transcriptome of the two MSC is relatively similar across the conditions studied. In addition

  9. Complement in health and disease.

    Science.gov (United States)

    Carroll, Maria V; Sim, Robert B

    2011-09-16

    The complement system consists of about 35-40 proteins and glycoproteins present in blood plasma or on cell surfaces. Its main biological function is to recognise "foreign" particles and macromolecules, and to promote their elimination either by opsonisation or lysis. Although historically complement has been studied as a system for immune defence against bacteria, it has an important homeostatic role in which it recognises damaged or altered "self" components. Thus complement has major roles in both immune defence against microorganisms, and in clearance of damaged or "used" host components. Since complement proteins opsonise or lyse cells, complement can damage healthy host cells and tissues. The system is regulated by many endogenous regulatory proteins. Regulation is sometimes imperfect and both too much and too little complement activation is associated with many diseases. Excessive or inappropriate activation can cause tissue damage in diseases such as rheumatoid arthritis, age-related macular degeneration (AMD), multiple sclerosis, ischemia-reperfusion injury (e.g. ischemic stroke). Insufficient complement activity is associated with susceptibility to infection (mainly bacterial) and development of autoimmune disease, like SLE (systemic lupus erythematosus).

  10. Genome-wide protein-protein interaction screening by protein-fragment complementation assay (PCA) in living cells.

    Science.gov (United States)

    Rochette, Samuel; Diss, Guillaume; Filteau, Marie; Leducq, Jean-Baptiste; Dubé, Alexandre K; Landry, Christian R

    2015-01-01

    Proteins are the building blocks, effectors and signal mediators of cellular processes. A protein's function, regulation and localization often depend on its interactions with other proteins. Here, we describe a protocol for the yeast protein-fragment complementation assay (PCA), a powerful method to detect direct and proximal associations between proteins in living cells. The interaction between two proteins, each fused to a dihydrofolate reductase (DHFR) protein fragment, translates into growth of yeast strains in presence of the drug methotrexate (MTX). Differential fitness, resulting from different amounts of reconstituted DHFR enzyme, can be quantified on high-density colony arrays, allowing to differentiate interacting from non-interacting bait-prey pairs. The high-throughput protocol presented here is performed using a robotic platform that parallelizes mating of bait and prey strains carrying complementary DHFR-fragment fusion proteins and the survival assay on MTX. This protocol allows to systematically test for thousands of protein-protein interactions (PPIs) involving bait proteins of interest and offers several advantages over other PPI detection assays, including the study of proteins expressed from their endogenous promoters without the need for modifying protein localization and for the assembly of complex reporter constructs.

  11. Protein engineering to target complement evasion in cancer.

    Science.gov (United States)

    Carter, Darrick; Lieber, André

    2014-01-21

    The complement system is composed of soluble factors in plasma that enhance or "complement" immune-mediated killing through innate and adaptive mechanisms. Activation of complement causes recruitment of immune cells; opsonization of coated cells; and direct killing of affected cells through a membrane attack complex (MAC). Tumor cells up-regulate complement inhibitory factors - one of several strategies to evade the immune system. In many cases as the tumor progresses, dramatic increases in complement inhibitory factors are found on these cells. This review focuses on the classic complement pathway and the role of major complement inhibitory factors in cancer immune evasion as well as on how current protein engineering efforts are being employed to increase complement fixing or to reverse complement resistance leading to better therapeutic outcomes in oncology. Strategies discussed include engineering of antibodies to enhance complement fixation, antibodies that neutralize complement inhibitory proteins as well as engineered constructs that specifically target inhibition of the complement system.

  12. The relative toxicity of metal salts to immune hemolysis in a mixture of antibody-secreting spleen cells, sheep red blood cells and complement.

    Science.gov (United States)

    Seko, Y; Koyama, T; Ichiki, A; Sugamata, M; Miura, T

    1982-05-01

    The relative toxicity of metal salts was examined using a mixture of antibody-secreting spleen cells, sheep red blood cells and complement. The amount of immune hemolysis in the mixture was reduced by mercuric chloride, methylmercuric chloride and nickel chloride at concentrations of 14 microM or more, by sodium selenite and zinc chloride at 140 microM or more, and by sodium selenate, cadmium chloride, cadmium acetate, chromic chloride and beryllium chloride at 1400 microM. On the other hand, the amount of immune hemolysis was increased by both cadmium chloride anc cadmium acetate at concentrations of 14 and 140 microM. Mercuric chloride, methylmercuric chloride and nickel chloride were assumed to inhibit the antibody secretion of antibody-forming spleen cells.

  13. Insight into the maintenance of odontogenic potential in mouse dental mesenchymal cells based on transcriptomic analysis

    Directory of Open Access Journals (Sweden)

    Yunfei Zheng

    2016-02-01

    Full Text Available Background. Mouse dental mesenchymal cells (mDMCs from tooth germs of cap or later stages are frequently used in the context of developmental biology or whole-tooth regeneration due to their odontogenic potential. In vitro-expanded mDMCs serve as an alternative cell source considering the difficulty in obtaining primary mDMCs; however, cultured mDMCs fail to support tooth development as a result of functional failures of specific genes or pathways. The goal of this study was to identify the genes that maintain the odontogenic potential of mDMCs in culture. Methods. We examined the odontogenic potential of freshly isolated versus cultured mDMCs from the lower first molars of embryonic day 14.5 mice. The transcriptome of mDMCs was detected using RNA sequencing and the data were validated by qRT-PCR. Differential expression analysis and pathway analysis were conducted to identify the genes that contribute to the loss of odontogenic potential. Results. Cultured mDMCs failed to develop into well-structured tooth when they were recombined with dental epithelium. Compared with freshly isolated mDMCs, we found that 1,004 genes were upregulated and 948 were downregulated in cultured mDMCs. The differentially expressed genes were clustered in the biological processes and signaling pathways associated with tooth development. Following in vitro culture, genes encoding a wide array of components of MAPK, TGF-β/BMP, and Wnt pathways were significantly downregulated. Moreover, the activities of Bdnf, Vegfα, Bmp2, and Bmp7 were significantly inhibited in cultured mDMCs. Supplementation of VEGFα, BMP2, and BMP7 restored the expression of a subset of downregulated genes and induced mDMCs to form dentin-like structures in vivo. Conclusions. Vegfα, Bmp2, and Bmp7 play a role in the maintenance of odontogenic potential in mDMCs.

  14. Complement Component 3 Regulates IFN-α Production by Plasmacytoid Dendritic Cells following TLR7 Activation by a Plant Virus-like Nanoparticle.

    Science.gov (United States)

    Lebel, Marie-Ève; Langlois, Marie-Pierre; Daudelin, Jean-François; Tarrab, Esther; Savard, Pierre; Leclerc, Denis; Lamarre, Alain

    2017-01-01

    The increasing use of plant viruses for the development of new vaccines and immunotherapy approaches poses questions regarding the mechanism by which the mammalian immune system recognizes these viruses. For example, although natural Abs (NA) and complement are key components of the innate immune system involved in the opsonization, phagocytosis, and destruction of microorganisms infecting mammals, their implication in plant virus recognition and immunogenicity is not well defined. In this study, we address the involvement of NA and the complement system in the activation of innate immunity through engagement of TLR7 with papaya mosaic virus (PapMV)-like nanoparticles. We demonstrate that NA, although binding to PapMV, are not involved in its recognition by the immune system. On the other hand, C3 strongly binds to PapMV nanoparticles and its depletion significantly reduces PapMV's interaction with immune cells. Unexpectedly, however, we observed increased immune cell activation following administration of PapMV to complement-depleted mice. TLR7 activation by PapMV in the absence of C3 induced higher IFN-α production, resulting in superior immune cell activation and increased immunotherapeutic properties. In conclusion, in this study we established the involvement of the complement system in the recognition and the phagocytosis of PapMV nanoparticles and identified an unsuspected role for C3 in regulating the production of IFN-α following TLR7 activation.

  15. Complement activation pathways associated with islet cell surface antibody (ICSA derived from child patients with insulin-dependent diabetes mellitus (IDDM.

    Directory of Open Access Journals (Sweden)

    Okada,Soji

    1991-06-01

    Full Text Available We studied the pathways of complement activation associated with the islet cell surface antibody (ICSA obtained from sera of 7 patients (age less than 15 years with insulin dependent diabetes mellitus (IDDM. The target cells were 51CR labelled rat islet cells and the complement source was human AB serum. Complement-dependent antibody mediated cytotoxicity (CAMC activity was obtained using the percentage of cytotoxicity. CAMC activity of untreated sera was significantly inhibited by treating with EGTA or EDTA (p less than 0.001. The CAMC activity of EDTA-treated sera was significantly lower than that of EGTA-treated sera (p less than 0.001. In the inactivated human AB serum, it was lower than that of EGTA-treated sera (p less than 0.05, but not different from that of EDTA-treated sera. These results show that the complement activation associated with ICSA in patients occurred not only via the classical pathway but also via the alternative pathway.

  16. Selective cytotoxicity of murine monoclonal antibody LAM2 against human small-cell carcinoma in the presence of human complement: possible use for in vitro elimination of tumor cells from bone marrow.

    Science.gov (United States)

    Stahel, R A; Mabry, M; Sabbath, K; Speak, J A; Bernal, S D

    1985-05-15

    LAM2 is a murine IgM monoclonal antibody (MAb) which binds strongly to the cell membrane of human lung small-cell carcinoma (SCC) and squamous-cell carcinoma but not to normal bone-marrow cells. The cytotoxicity of this antibody in the presence of human complement was investigated in vitro by chromium release and clonogenic assays. The optimal treatment conditions included incubation with antibody for 30 min at 37 degrees C followed by 3 additions of human complement 30 min apart. Cell lysis ranged from 94 to 98% in 4 SCC cell lines at antibody dilutions of 1:100: a lower level of lysis (60%) occurred in a lung squamous-cell carcinoma cell line. The cytotoxic effect was strictly complement-dependent. No cytotoxic effect was seen with other human cell lines including lung adenocarcinoma, lung large-cell carcinoma, myeloid leukemia, and lymphoblastic leukemia. No lysis was seen with nucleated marrow cells from healthy volunteers. Normal marrow cells in excess did not inhibit SCC cell lysis. Incubation with antibody and complement resulted in a 100-fold reduction of colony formation of SCC cells, but did not reduce the number of colonies of marrow-cell precursors, including CFU-GEMM, BFU-E, and CFU-C. The selective cytotoxicity of LAM2 antibody to SCC, but not to normal bone-marrow cells, suggests that this antibody may be useful for the in vitro elimination of SCC cells from the bone marrow.

  17. Comparative transcriptional profiling analysis of the two daughter cells from tobacco zygote reveals the transcriptome differences in the apical and basal cells

    Directory of Open Access Journals (Sweden)

    Hu Tian-Xiang

    2010-08-01

    Full Text Available Abstract Background In angiosperm, after the first asymmetric zygotic cell division, the apical and basal daughter cells follow distinct development pathways. Global transcriptome analysis of these two cells is essential in understanding their developmental differences. However, because of the difficulty to isolate the in vivo apical and basal cells of two-celled proembryo from ovule and ovary in higher plants, the transcriptome analysis of them hasn't been reported. Results In this study, we developed a procedure for isolating the in vivo apical and basal cells of the two-celled proembryo from tobacco (Nicotiana tabacum, and then performed a comparative transcriptome analysis of the two cells by suppression subtractive hybridization (SSH combined with macroarray screening. After sequencing, we identified 797 differentially expressed ESTs corresponding to 299 unigenes. Library sequence analysis successfully identified tobacco homologies of genes involved in embryogenesis and seed development. By quantitative real-time PCR, we validated the differential expression of 40 genes, with 6 transcripts of them specifically expressed in the apical or basal cell. Expression analysis also revealed some transcripts displayed cell specific activation in one of the daughter cells after zygote division. These differential expressions were further validated by in situ hybridization (ISH. Tissue expression pattern analysis also revealed some potential roles of these candidate genes in development. Conclusions The results show that some differential or specific transcripts in the apical and basal cells of two-celled proembryo were successfully isolated, and the identification of these transcripts reveals that these two daughter cells possess distinct transcriptional profiles after zygote division. Further functional work on these differentially or specifically expressed genes will promote the elucidation of molecular mechanism controlling early embryogenesis.

  18. Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells

    Directory of Open Access Journals (Sweden)

    Kuang Lin-Yun

    2008-10-01

    Full Text Available Abstract Background The investigation of protein-protein interactions is important for characterizing protein function. Bimolecular fluorescence complementation (BiFC has recently gained interest as a relatively easy and inexpensive method to visualize protein-protein interactions in living cells. BiFC uses "split YFP" tags on proteins to detect interactions: If the tagged proteins interact, they may bring the two split fluorophore components together such that they can fold and reconstitute fluorescence. The sites of interaction can be monitored using epifluorescence or confocal microscopy. However, "conventional" BiFC can investigate interactions only between two proteins at a time. There are instances when one may wish to offer a particular "bait" protein to several "prey" proteins simultaneously. Preferential interaction of the bait protein with one of the prey proteins, or different sites of interaction between the bait protein and multiple prey proteins, may thus be observed. Results We have constructed a series of gene expression vectors, based upon the pSAT series of vectors, to facilitate the practice of multi-color BiFC. The bait protein is tagged with the C-terminal portion of CFP (cCFP, and prey proteins are tagged with the N-terminal portions of either Venus (nVenus or Cerulean (nCerulean. Interaction of cCFP-tagged proteins with nVenus-tagged proteins generates yellow fluorescence, whereas interaction of cCFP-tagged proteins with nCerulean-tagged proteins generates blue fluorescence. Additional expression of mCherry indicates transfected cells and sub-cellular structures. Using this system, we have determined in both tobacco BY-2 protoplasts and in onion epidermal cells that Agrobacterium VirE2 protein interacts with the Arabidopsis nuclear transport adapter protein importin α-1 in the cytoplasm, whereas interaction of VirE2 with a different importin α isoform, importin α-4, occurs predominantly in the nucleus. Conclusion Multi

  19. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee [Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Choi, Hyeong-Jwa [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4, 75 Nowon gil Nowon-Gu, Seoul, 139-706 (Korea, Republic of); Na, Tae-Young [College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-741 (Korea, Republic of); Nemeno, Judee Grace E.; Lee, Jeong Ik [Regenerative Medicine Laboratory, Department of Veterinary Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 143-701 (Korea, Republic of); Yoon, Taek Joon [Department of Food and Nutrition, Yuhan College, Bucheon, Gyeonggi-do, 422-749 (Korea, Republic of); Choi, In-Soo [Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Lee, Minyoung [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4, 75 Nowon gil Nowon-Gu, Seoul, 139-706 (Korea, Republic of); Lee, Jae-Seon [Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 400-712 (Korea, Republic of); Kang, Young-Sun, E-mail: kangys1967@naver.com [Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of)

    2015-08-07

    Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3{sup +} apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver of SIGN-R1 KO mice, followed by a significant increase of CD11b{sup +} cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1{sup +} macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver.

  20. Analysis and interpretation of transcriptomic data obtained from extended Warburg effect genes in patients with clear cell renal cell carcinoma

    Science.gov (United States)

    Sanders, Edward; Diehl, Svenja

    2015-01-01

    Background Many cancers adopt a metabolism that is characterized by the well-known Warburg effect (aerobic glycolysis). Recently, numerous attempts have been made to treat cancer by targeting one or more gene products involved in this pathway without notable success. This work outlines a transcriptomic approach to identify genes that are highly perturbed in clear cell renal cell carcinoma (CCRCC). Methods We developed a model of the extended Warburg effect and outlined the model using Cytoscape. Following this, gene expression fold changes (FCs) for tumor and adjacent normal tissue from patients with CCRCC (GSE6344) were mapped on to the network. Gene expression values with FCs of greater than two were considered as potential targets for treatment of CCRCC. Results The Cytoscape network includes glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP), the TCA cycle, the serine/glycine pathway, and partial glutaminolysis and fatty acid synthesis pathways. Gene expression FCs for nine of the 10 CCRCC patients in the GSE6344 data set were consistent with a shift to aerobic glycolysis. Genes involved in glycolysis and the synthesis and transport of lactate were over-expressed, as was the gene that codes for the kinase that inhibits the conversion of pyruvate to acetyl-CoA. Interestingly, genes that code for unique proteins involved in gluconeogenesis were strongly under-expressed as was also the case for the serine/glycine pathway. These latter two results suggest that the role attributed to the M2 isoform of pyruvate kinase (PKM2), frequently the principal isoform of PK present in cancer: i.e. causing a buildup of glucose metabolites that are shunted into branch pathways for synthesis of key biomolecules, may not be operative in CCRCC. The fact that there was no increase in the expression FC of any gene in the PPP is consistent with this hypothesis. Literature protein data generally support the transcriptomic findings. Conclusions A number of key genes have

  1. In situ dimerization of multiple wild type and mutant zinc transporters in live cells using bimolecular fluorescence complementation.

    Science.gov (United States)

    Lasry, Inbal; Golan, Yarden; Berman, Bluma; Amram, Noy; Glaser, Fabian; Assaraf, Yehuda G

    2014-03-14

    Zinc transporters (ZnTs) facilitate zinc efflux and zinc compartmentalization, thereby playing a key role in multiple physiological processes and pathological disorders, presumed to be modulated by transporter dimerization. We recently proposed that ZnT2 homodimerization is the underlying basis for the dominant negative effect of a novel heterozygous G87R mutation identified in women producing zinc-deficient milk. To provide direct visual evidence for the in situ dimerization and function of multiple normal and mutant ZnTs, we applied here the bimolecular fluorescence complementation (BiFC) technique, which enables direct visualization of specific protein-protein interactions. BiFC is based upon reconstitution of an intact fluorescent protein including YFP when its two complementary, non-fluorescent N- and C-terminal fragments (termed YN and YC) are brought together by a pair of specifically interacting proteins. Homodimerization of ZnT1, -2, -3, -4, and -7 was revealed by high subcellular fluorescence observed upon co-transfection of non-fluorescent ZnT-YC and ZnT-YN; this homodimer fluorescence localized in the characteristic compartments of each ZnT. The validity of the BiFC assay in ZnT dimerization was further corroborated when high fluorescence was obtained upon co-transfection of ZnT5-YC and ZnT6-YN, which are known to form heterodimers. We further show that BiFC recapitulated the pathogenic role that ZnT mutations play in transient neonatal zinc deficiency. Zinquin, a fluorescent zinc probe applied along with BiFC, revealed the in situ functionality of ZnT dimers. Hence, the current BiFC-Zinquin technique provides the first in situ evidence for the dimerization and function of wild type and mutant ZnTs in live cells.

  2. Systemic lupus erythematosus and primary fibromyalgia can be distinguished by testing for cell-bound complement activation products

    Science.gov (United States)

    Wallace, Daniel J; Silverman, Stuart L; Conklin, John; Barken, Derren; Dervieux, Thierry

    2016-01-01

    Objective We sought to establish the performance of cell-bound complement activation products (CB-CAPs) as a diagnostic tool to distinguish primary fibromyalgia (FM) from systemic lupus erythematosus (SLE). Methods A total of 75 SLE and 75 primary FM adult subjects who fulfilled appropriate classification criteria were enrolled prospectively. CB-CAPs (erythrocyte-C4d (EC4d) and B-lymphocyte-C4d (BC4d)) were determined by flow cytometry. Antinuclear antibodies (ANAs) were determined using indirect immunofluorescence while other autoantibodies were determined by solid-phase assays. The CB-CAPs in a multi-analyte assay with algorithm (MAAA) relied on two consecutive tiers of analysis that was reported as an overall positive or negative assessment. Test performance was assessed using sensitivity, specificity, positive and negative likelihood ratio (LR). Results ANAs yielded 80% positives for SLE and 33% positives for FM. High CB-CAP expression (EC4d >14 units or BC4d >60 units) was 43% sensitive and 96% specific for SLE. The CB-CAPs in MAAA assessment was evaluable in 138 of the 150 subjects enrolled (92%) and yielded 60% sensitivity (CI 95% 48% to 72%) for SLE with no FM patient testing positive (100% specificity). A positive test result was associated with a strong positive LR for SLE (>24, CI 95%; 6 to 102), while a negative test result was associated with a moderate negative LR (0.40; CI 95% 0.30 to 0.54). Conclusion Our data indicate that CB-CAPs in MAAA can distinguish FM from SLE. PMID:26870391

  3. Characterization of Lgr5+ progenitor cell transcriptomes in the apical and basal turns of the mouse cochlea

    Science.gov (United States)

    Zhang, Shasha; Chen, Yan; Zhang, Xiaoli; Wang, Lei; Tang, Mingliang; Shi, Haibo; Bird, Phillip I.; Li, Huawei; Chai, Renjie

    2016-01-01

    Lgr5+ supporting cells (SCs) are enriched hair cell (HC) progenitors in the cochlea, and several studies have shown a difference in the proliferation and HC regeneration ability of SCs between the apical and basal turns. However, the detailed differences between the transcriptomes of the apical and basal Lgr5+ SCs have not yet been investigated. We found that when isolated by FACS, Lgr5+ cells from the apex generated significantly more HCs and had significantly higher proliferation and mitotic HC regeneration ability compared to those from the base. Next, we used microarray analysis to determine the transcriptome expression profiles of Lgr5+ progenitors from the apex and the base. We first analyzed the genes that were enriched and differentially expressed in Lgr5+ progenitors from the apex and the base. Then we analyzed the cell cycle genes and the transcription factors that might regulate the proliferation and differentiation of Lgr5+ progenitors. Lastly, to further analyze the role of differentially expressed genes and to gain an overall view of the gene network in cochlear HC regeneration, we created a protein-protein interaction network. Our datasets suggest the possible genes that might regulate the proliferation and HC regeneration ability of Lgr5+ progenitors, and these genes might provide new therapeutic targets for HC regeneration in the future. PMID:27070092

  4. Complement component C5a Promotes Expression of IL-22 and IL-17 from Human T cells and its Implication in Age-related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Klein Michael L

    2011-07-01

    Full Text Available Abstract Background Age related macular degeneration (AMD is the leading cause of irreversible blindness in elderly populations worldwide. Inflammation, among many factors, has been suggested to play an important role in AMD pathogenesis. Recent studies have demonstrated a strong genetic association between AMD and complement factor H (CFH, the down-regulatory factor of complement activation. Elevated levels of complement activating molecules including complement component 5a (C5a have been found in the serum of AMD patients. Our aim is to study whether C5a can impact human T cells and its implication in AMD. Methods Human peripheral blood mononuclear cells (PBMCs were isolated from the blood of exudative form of AMD patients using a Ficoll gradient centrifugation protocol. Intracellular staining and enzyme-linked immunosorbent assays were used to measure protein expression. Apoptotic cells were detected by staining of cells with the annexin-V and TUNEL technology and analyzed by a FACS Caliber flow cytometer. SNP genotyping was analyzed by TaqMan genotyping assay using the Real-time PCR system 7500. Results We show that C5a promotes interleukin (IL-22 and IL-17 expression by human CD4+ T cells. This effect is dependent on B7, IL-1β and IL-6 expression from monocytes. We have also found that C5a could protect human CD4+ cells from undergoing apoptosis. Importantly, consistent with a role of C5a in promoting IL-22 and IL-17 expression, significant elevation in IL-22 and IL-17 levels was found in AMD patients as compared to non-AMD controls. Conclusions Our results support the notion that C5a may be one of the factors contributing to the elevated serum IL-22 and IL-17 levels in AMD patients. The possible involvement of IL-22 and IL-17 in the inflammation that contributes to AMD may herald a new approach to treat AMD.

  5. Glioma cells on the run – the migratory transcriptome of 10 human glioma cell lines

    Directory of Open Access Journals (Sweden)

    Holz David

    2008-01-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is the most common primary intracranial tumor and despite recent advances in treatment regimens, prognosis for affected patients remains poor. Active cell migration and invasion of GBM cells ultimately lead to ubiquitous tumor recurrence and patient death. To further understand the genetic mechanisms underlying the ability of glioma cells to migrate, we compared the matched transcriptional profiles of migratory and stationary populations of human glioma cells. Using a monolayer radial migration assay, motile and stationary cell populations from seven human long term glioma cell lines and three primary GBM cultures were isolated and prepared for expression analysis. Results Gene expression signatures of stationary and migratory populations across all cell lines were identified using a pattern recognition approach that integrates a priori knowledge with expression data. Principal component analysis (PCA revealed two discriminating patterns between migrating and stationary glioma cells: i global down-regulation and ii global up-regulation profiles that were used in a proband-based rule function implemented in GABRIEL to find subsets of genes having similar expression patterns. Genes with up-regulation pattern in migrating glioma cells were found to be overexpressed in 75% of human GBM biopsy specimens compared to normal brain. A 22 gene signature capable of classifying glioma cultures based on their migration rate was developed. Fidelity of this discovery algorithm was assessed by validation of the invasion candidate gene, connective tissue growth factor (CTGF. siRNA mediated knockdown yielded reduced in vitro migration and ex vivo invasion; immunohistochemistry on glioma invasion tissue microarray confirmed up-regulation of CTGF in invasive glioma cells. Conclusion Gene expression profiling of migratory glioma cells induced to disperse in vitro affords discovery of genomic signatures; selected

  6. Combining proteomics and transcriptome sequencing to identify active plant-cell-wall-degrading enzymes in a leaf beetle

    Directory of Open Access Journals (Sweden)

    Kirsch Roy

    2012-11-01

    Full Text Available Abstract Background The primary plant cell wall is a complex mixture of polysaccharides and proteins encasing living plant cells. Among these polysaccharides, cellulose is the most abundant and useful biopolymer present on earth. These polysaccharides also represent a rich source of energy for organisms which have evolved the ability to degrade them. A growing body of evidence suggests that phytophagous beetles, mainly species from the superfamilies Chrysomeloidea and Curculionoidea, possess endogenous genes encoding complex and diverse families of so-called plant cell wall degrading enzymes (PCWDEs. The presence of these genes in phytophagous beetles may have been a key element in their success as herbivores. Here, we combined a proteomics approach and transcriptome sequencing to identify PCWDEs present in larval gut contents of the mustard leaf beetle, Phaedon cochleariae. Results Using a two-dimensional proteomics approach, we recovered 11 protein bands, isolated using activity assays targeting cellulose-, pectin- and xylan-degrading enzymes. After mass spectrometry analyses, a total of 13 proteins putatively responsible for degrading plant cell wall polysaccharides were identified; these proteins belong to three glycoside hydrolase (GH families: GH11 (xylanases, GH28 (polygalacturonases or pectinases, and GH45 (β-1,4-glucanases or cellulases. Additionally, highly stable and proteolysis-resistant host plant-derived proteins from various pathogenesis-related protein (PRs families as well as polygalacturonase-inhibiting proteins (PGIPs were also identified from the gut contents proteome. In parallel, transcriptome sequencing revealed the presence of at least 19 putative PCWDE transcripts encoded by the P. cochleariae genome. All of these were specifically expressed in the insect gut rather than the rest of the body, and in adults as well as larvae. The discrepancy observed in the number of putative PCWDEs between transcriptome and proteome

  7. Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration

    NARCIS (Netherlands)

    M. Smid (Marcel); F.G. Rodriguez-Gonzalez (F. German); A.M. Sieuwerts (Anieta); R. Salgado (Roberto); W.J.C. Prager-van der Smissen (Wendy); Vlugt-Daane, M.V.D. (Michelle Van Der); A. van Galen (Anne); S. Nik-Zainal (Serena); J. Staaf (Johan); A.B. Brinkman (Arie B.); M.J. Vijver (Marc ); A.L. Richardson (Andrea); A. Fatima (Aquila); Berentsen, K. (Kim); A. Butler (Adam); S. Martin (Sandra); H. Davies (Helen); J.E.M.A. Debets (Reno); M.E.M.-V. Gelder (Marion E. Meijer-Van); C.H.M. van Deurzen (Carolien); Macgrogan, G. (Gaëtan); Van Den Eynden, G.G.G.M. (Gert G. G. M.); C.A. Purdie (Colin A.); A.M. Thompson (Alastair M.); C. Caldas (Carlos); P.N. Span (Paul); Simpson, P.T. (Peter T.); S. Lakhani (Sunil); S.J. van Laere (Steven); C. Desmedt (Christine); Ringnér, M. (Markus); Tommasi, S. (Stefania); Eyford, J. (Jorunn); A. Broeks (Annegien); A. Vincent-Salomon (Anne); Futreal, P.A. (P. Andrew); S. Knappskog (Stian); King, T. (Tari); G. Thomas (Gilles); Viari, A. (Alain); Langerød, A. (Anita); A.-L. Borresen-Dale (Anne-Lise); E. Birney (Ewan); H. Stunnenberg (Henk); M.R. Stratton (Michael); J.A. Foekens (John); J.W.M. Martens (John)

    2016-01-01

    textabstractA recent comprehensive whole genome analysis of a large breast cancer cohort was used to link known and novel drivers and substitution signatures to the transcriptome of 266 cases. Here, we validate that subtype-specific aberrations show concordant expression changes for, for example, TP

  8. Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration

    NARCIS (Netherlands)

    Smid, M.; Rodriguez-Gonzalez, F.G.; Sieuwerts, A.M.; Salgado, R.; Smissen, W.J. Prager-Van der; Vlugt-Daane, M.V.; Galen, A. van; Nik-Zainal, S.; Staaf, J.; Brinkman, A.B.; Vijver, M.J. van de; Richardson, A.L.; Fatima, A.; Berentsen, K.; Butler, A.; Martin, S.; Davies, H.R.; Debets, R.; Gelder, M.E. Meijer-van; Deurzen, C.H. van; MacGrogan, G.; Eynden, G.G. Van den; Purdie, C.; Thompson, A.M.; Caldas, C.; Span, P.N; Simpson, P.T.; Lakhani, S.R.; Laere, S. van; Desmedt, C.; Ringner, M.; Tommasi, S.; Eyford, J.; Broeks, A.; Vincent-Salomon, A.; Futreal, P.A.; Knappskog, S.; King, T.; Thomas, G; Viari, A.; Langerod, A.; Borresen-Dale, A.L.; Birney, E.; Stunnenberg, H.G.; Stratton, M.; Foekens, J.A.; Martens, J.W.M.

    2016-01-01

    A recent comprehensive whole genome analysis of a large breast cancer cohort was used to link known and novel drivers and substitution signatures to the transcriptome of 266 cases. Here, we validate that subtype-specific aberrations show concordant expression changes for, for example, TP53, PIK3CA,

  9. High-protein and high-carbohydrate breakfasts differentially change the transcriptome of human blood cells

    NARCIS (Netherlands)

    Erk, M.J. van; Blom, W.A.M.; Ommen, B. van; Hendriks, H.F.J.

    2006-01-01

    Background: Application of transcriptomics technology in human nutrition intervention studies would allow for genome-wide screening of the effects of specific diets or nutrients and result in biomarker profiles. Objective: The aim was to evaluate the potential of gene expression profiling in blood c

  10. De novo assembly of a cotyledon-enriched transcriptome map of Vicia faba (L. for transfer cell research

    Directory of Open Access Journals (Sweden)

    Kiruba Shankari eArun Chinnappa

    2015-04-01

    Full Text Available Vicia faba (L. is an important cool-season grain legume species used widely in agriculture but also in plant physiology research, particularly as an experimental model to study transfer cell (TC development. Adaxial epidermal cells of isolated cotyledons can be induced to form functional TCs, thus providing a valuable experimental system to investigate genetic regulation of TC development. The genome of V. faba is exceedingly large (ca. 13 Gb, however, and limited genomic information is available for this species. To provide a resource for transcript profiling of epidermal TC development, we have undertaken de novo assembly of a cotyledon-enriched transcriptome map for V. faba. Illumina paired-end sequencing of total RNA pooled from different tissues and different stages, including isolated cotyledons induced to form TCs, generated 69.5M reads, of which 65.8M were used for assembly following trimming and quality control. Assembly using a De-Bruijn graph-based approach within CLC Genomics Workbench v6.1 generated 21,297 contigs, of which 80.6% were successfully annotated against GO terms. The assembly was validated against known V. faba cDNAs held in GenBank, including transcripts previously identified as being specifically expressed in epidermal cells across TC trans-differentiation. This cotyledon-enriched transcriptome map therefore provides a valuable tool for future transcript profiling of epidermal TC development, and also enriches the genetic resources available for this important legume crop species.

  11. Comparative cell-specific transcriptomics reveals differentiation of C4 photosynthesis pathways in switchgrass and other C4 lineages.

    Science.gov (United States)

    Rao, Xiaolan; Lu, Nan; Li, Guifen; Nakashima, Jin; Tang, Yuhong; Dixon, Richard A

    2016-03-01

    Almost all C4 plants require the co-ordination of the adjacent and fully differentiated cell types, mesophyll (M) and bundle sheath (BS). The C4 photosynthetic pathway operates through two distinct subtypes based on how malate is decarboxylated in BS cells; through NAD-malic enzyme (NAD-ME) or NADP-malic enzyme (NADP-ME). The diverse or unique cell-specific molecular features of M and BS cells from separate C4 subtypes of independent lineages remain to be determined. We here provide an M/BS cell type-specific transcriptome data set from the monocot NAD-ME subtype switchgrass (Panicum virgatum). A comparative transcriptomics approach was then applied to compare the M/BS mRNA profiles of switchgrass, monocot NADP-ME subtype C4 plants maize and Setaria viridis, and dicot NAD-ME subtype Cleome gynandra. We evaluated the convergence in the transcript abundance of core components in C4 photosynthesis and transcription factors to establish Kranz anatomy, as well as gene distribution of biological functions, in these four independent C4 lineages. We also estimated the divergence between NAD-ME and NADP-ME subtypes of C4 photosynthesis in the two cell types within C4 species, including differences in genes encoding decarboxylating enzymes, aminotransferases, and metabolite transporters, and differences in the cell-specific functional enrichment of RNA regulation and protein biogenesis/homeostasis. We suggest that C4 plants of independent lineages in both monocots and dicots underwent convergent evolution to establish C4 photosynthesis, while distinct C4 subtypes also underwent divergent processes for the optimization of M and BS cell co-ordination. The comprehensive data sets in our study provide a basis for further research on evolution of C4 species.

  12. From transcriptomic to protein level changes in TDP-43 and FUS loss-of-function cell models.

    Science.gov (United States)

    Colombrita, Claudia; Onesto, Elisa; Buratti, Emanuele; de la Grange, Pierre; Gumina, Valentina; Baralle, Francisco E; Silani, Vincenzo; Ratti, Antonia

    2015-12-01

    The full definition of the physiological RNA targets regulated by TDP-43 and FUS RNA-binding proteins (RBPs) represents an important issue in understanding the pathogenic mechanisms associated to these two proteins in amyotrophic lateral sclerosis and frontotemporal dementia. In the last few years several high-throughput screenings have generated a plethora of data, which are difficult to compare due to the different experimental designs and models explored. In this study by using the Affymetrix Exon Arrays, we were able to assess and compare the effects of both TDP-43 and FUS loss-of-function on the whole transcriptome using the same human neuronal SK-N-BE cell model. We showed that TDP-43 and FUS depletion induces splicing and gene expression changes mainly distinct for the two RBPs, although they may regulate common pathways, including neuron differentiation and cytoskeleton organization as evidenced by functional annotation analysis. In particular, TDP-43 and FUS were found to regulate splicing and expression of genes related to neuronal (SEPT6, SULT4A1, TNIK) and RNA metabolism (DICER, ELAVL3/HuC, POLDIP3). Our extended analysis at protein level revealed that these changes have also impact on the protein isoform ratio and content, not always in a direct correlation with transcriptomic data. Contrarily to a loss-of-function mechanism, we showed that mutant TDP-43 proteins maintained their splicing activity in human ALS fibroblasts and experimental cell lines. Our findings further contribute to define the biological functions of these two RBPs in physiological and disease state, strongly encouraging the evaluation of the identified transcriptomic changes at protein level in neuronal experimental models.

  13. Embryonic stem cells derived from in vivo or in vitro-generated murine blastocysts display similar transcriptome and differentiation potential.

    Directory of Open Access Journals (Sweden)

    Rhodel K Simbulan

    Full Text Available The use of assisted reproductive technologies (ART such as in vitro fertilization (IVF has resulted in the birth of more than 5 million children. While children conceived by these technologies are generally healthy, there is conflicting evidence suggesting an increase in adult-onset complications like glucose intolerance and high blood pressure in IVF children. Animal models indicate similar potential risks. It remains unclear what molecular mechanisms may be operating during in vitro culture to predispose the embryo to these diseases. One of the limitations faced by investigators is the paucity of the material in the preimplantation embryo to test for molecular analysis. To address this problem, we generated mouse embryonic stem cells (mESC from blastocysts conceived after natural mating (mESCFB or after IVF, using optimal (KSOM + 5% O2; mESCKAA and suboptimal (Whitten's Medium, + 20% O2, mESCWM conditions. All three groups of embryos showed similar behavior during both derivation and differentiation into their respective mESC lines. Unsupervised hierarchical clustering of microarray data showed that blastocyst culture does not affect the transcriptome of derived mESCs. Transcriptomic changes previously observed in the inner cell mass (ICM of embryos derived in the same conditions were not present in mESCs, regardless of method of conception or culture medium, suggesting that mESC do not fully maintain a memory of the events occurring prior to their derivation. We conclude that the fertilization method or culture media used to generate blastocysts does not affect differentiation potential, morphology and transcriptome of mESCs.

  14. Generation of an induced pluripotent stem cell line that mimics the disease phenotypes from a patient with Fanconi anemia by conditional complementation

    Directory of Open Access Journals (Sweden)

    Sumitha Prameela Bharathan

    2017-04-01

    Full Text Available Generation of Fanconi anemia (FA patient-specific induced pluripotent stem cells (iPSCs has been reported to be technically challenging due to the defects in the FA-pathway in the patients' somatic cells. By inducible complementation of FA-pathway, we successfully reprogrammed the fibroblasts of an FA patient to iPSCs. CSCR19i-indCFANCA, one of the iPSC lines generated by the inducible complementation of FA-pathway, was extensively characterized for its pluripotency and karyotype. In the absence of doxycycline (DOX and FANCA expression, this line showed the cellular phenotypes of FA, suggesting it is an excellent tool for FA disease modeling and drug screening.

  15. Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells

    Directory of Open Access Journals (Sweden)

    Looft C

    2011-01-01

    Full Text Available Abstract Background The bi-directional communication between the oocyte and its companion cumulus cells (CCs is crucial for development and functions of both cell types. Transcripts that are exclusively expressed either in oocytes or CCs and molecular mechanisms affected due to removal of the communication axis between the two cell types is not investigated at a larger scale. The main objectives of this study were: 1. To identify transcripts exclusively expressed either in oocyte or CCs and 2. To identify those which are differentially expressed when the oocyte is cultured with or without its companion CCs and vice versa. Results We analyzed transcriptome profile of different oocyte and CC samples using Affymetrix GeneChip Bovine Genome array containing 23000 transcripts. Out of 13162 genes detected in germinal vesicle (GV oocytes and their companion CCs, 1516 and 2727 are exclusively expressed in oocytes and CCs, respectively, while 8919 are expressed in both. Similarly, of 13602 genes detected in metaphase II (MII oocytes and CCs, 1423 and 3100 are exclusively expressed in oocytes and CCs, respectively, while 9079 are expressed in both. A total of 265 transcripts are differentially expressed between oocytes cultured with (OO + CCs and without (OO - CCs CCs, of which 217 and 48 are over expressed in the former and the later groups, respectively. Similarly, 566 transcripts are differentially expressed when CCs mature with (CCs + OO or without (CCs - OO their enclosed oocytes. Of these, 320 and 246 are over expressed in CCs + OO and CCs - OO, respectively. While oocyte specific transcripts include those involved in transcription (IRF6, POU5F1, MYF5, MED18, translation (EIF2AK1, EIF4ENIF1 and CCs specific ones include those involved in carbohydrate metabolism (HYAL1, PFKL, PYGL, MPI, protein metabolic processes (IHH, APOA1, PLOD1, steroid biosynthetic process (APOA1, CYP11A1, HSD3B1, HSD3B7. Similarly, while transcripts over expressed in OO + CCs

  16. Genetic and phenotypic heterogeneity in disorders of peroxisome biogenesis--a complementation study involving cell lines from 19 patients.

    Science.gov (United States)

    Roscher, A A; Hoefler, S; Hoefler, G; Paschke, E; Paltauf, F; Moser, A; Moser, H

    1989-07-01

    Disorders of peroxisomal biogenesis include the Zellweger syndrome, neonatal adrenoleukodystrophy, infantile Refsum syndrome, and hyperpipecolic acidemia. These names were assigned before the recognition of the peroxisomal defect and the distinction between phenotypes is uncertain. Recent studies have identified at least four complementation groups, and indicate the presence of at least that number of distinct genotypes. The purpose of the present study was to examine the relationship between genotype and phenotype. We studied cultured skin fibroblasts from 19 patients in whom deficiency of peroxisomes had been established. Complementation analysis was performed with the criterion of complementation being the restoration of the capacity to synthesize plasmalogens when fibroblasts from two patients were fused. Six complementation groups were identified, and consisted of one 13 member group, one two member group, and four groups comprising single cases. The phenotype of each group was examined with respect to age of survival, clinical manifestations, and biochemical alterations. The 13 member group included patients with all of the four currently designated phenotypic entities, while the most common phenotype (Zellweger syndrome) was distributed among five of the six groups. We conclude that the currently used clinical categories do not represent distinct genotypes. Apparently different genes code for a similar phenotype and one defective gene may lead to variant phenotypes. Definitive classification and understanding of these disorders await definition of the specific biochemical defect in each of the genotypes.

  17. Transcriptomic profiling of human embryonic stem cells upon cell cycle manipulation during pluripotent state dissolution.

    Science.gov (United States)

    Gonzales, Kevin Andrew Uy; Liang, Hongqing

    2015-12-01

    While distinct cell cycle structures have been known to correlate with pluripotent or differentiated cell states [1], there is no evidence on how the cell cycle machinery directly contributes to human embryonic stem cell (hESC) pluripotency. We established a determinant role of cell cycle machineries on the pluripotent state by demonstrating that the specific perturbation of the S and G2 phases can prevent pluripotent state dissolution (PSD) [2]. Active mechanisms in these phases, such as the DNA damage checkpoint and Cyclin B1, promote the pluripotent state [2]. To understand the mechanisms behind the effect on PSD by these pathways in hESCs, we performed comprehensive gene expression analysis by time-course microarray experiments. From these datasets, we observed expression changes in genes involved in the TGFβ signaling pathway, which has a well-established role in hESC maintenance [3], [4], [5]. The microarray data have been deposited in NCBI's Gene Expression Omnibus (GEO) and can be accessed through GEO Series accession numbers GSE62062 and GSE63215.

  18. RNA Detection in Live Bacterial Cells Using Fluorescent Protein Complementation Triggered by Interaction of Two RNA Aptamers with Two RNA-Binding Peptides

    Directory of Open Access Journals (Sweden)

    Charles R. Cantor

    2011-03-01

    Full Text Available Many genetic and infectious diseases can be targeted at the RNA level as RNA is more accessible than DNA. We seek to develop new approaches for detection and tracking RNA in live cells, which is necessary for RNA-based diagnostics and therapy. We recently described a method for RNA visualization in live bacterial cells based on fluorescent protein complementation [1-3]. The RNA is tagged with an RNA aptamer that binds an RNA-binding protein with high affinity. This RNA-binding protein is expressed as two split fragments fused to the fragments of a split fluorescent protein. In the presence of RNA the fragments of the RNA-binding protein bind the aptamer and bring together the fragments of the fluorescent protein, which results in its re-assembly and fluorescence development [1-3]. Here we describe a new version of the RNA labeling method where fluorescent protein complementation is triggered by paired interactions of two different closely-positioned RNA aptamers with two different RNA-binding viral peptides. The new method, which has been developed in bacteria as a model system, uses a smaller ribonucleoprotein complementation complex, as compared with the method using split RNA-binding protein, and it can potentially be applied to a broad variety of RNA targets in both prokaryotic and eukaryotic cells. We also describe experiments exploring background fluorescence in these RNA detection systems and conditions that improve the signal-to-background ratio.

  19. Transcriptomic Analysis of the Innate Antiviral Immune Response in Porcine Intestinal Epithelial Cells: Influence of Immunobiotic Lactobacilli

    Science.gov (United States)

    Albarracin, Leonardo; Kobayashi, Hisakazu; Iida, Hikaru; Sato, Nana; Nochi, Tomonori; Aso, Hisashi; Salva, Susana; Alvarez, Susana; Kitazawa, Haruki; Villena, Julio

    2017-01-01

    Lactobacillus rhamnosus CRL1505 and Lactobacillus plantarum CRL1506 are immunobiotic strains able to increase protection against viral intestinal infections as demonstrated in animal models and humans. To gain insight into the host–immunobiotic interaction, the transcriptomic response of porcine intestinal epithelial (PIE) cells to the challenge with viral molecular associated pattern poly(I:C) and the changes in the transcriptomic profile induced by the immunobiotics strains CRL1505 and CRL1506 were investigated in this work. By using microarray technology and reverse transcription PCR, we obtained a global overview of the immune genes involved in the innate antiviral immune response in PIE cells. Stimulation of PIE cells with poly(I:C) significantly increased the expression of IFN-α and IFN-β, several interferon-stimulated genes, cytokines, chemokines, adhesion molecules, and genes involved in prostaglandin biosynthesis. It was also determined that lactobacilli differently modulated immune gene expression in poly(I:C)-challenged PIE cells. Most notable changes were found in antiviral factors (IFN-α, IFN-β, NPLR3, OAS1, OASL, MX2, and RNASEL) and cytokines/chemokines (IL-1β, IL-6, CCL4, CCL5, and CXCL10) that were significantly increased in lactobacilli-treated PIE cells. Immunobiotics reduced the expression of IL-15 and RAE1 genes that mediate poly(I:C) inflammatory damage. In addition, lactobacilli treatments increased the expression PLA2G4A, PTGES, and PTGS2 that are involved in prostaglandin E2 biosynthesis. L. rhamnosus CRL1505 and L. plantarum CRL1506 showed quantitative and qualitative differences in their capacities to modulate the innate antiviral immune response in PIE cells, which would explain the higher capacity of the CRL1505 strain when compared to CRL1506 to protect against viral infection and inflammatory damage in vivo. These results provided valuable information for the deeper understanding of the host–immunobiotic interaction and their

  20. De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data

    NARCIS (Netherlands)

    Grün, Dominic; Muraro, Mauro J; Boisset, Jean-Charles; Wiebrands, Kay; Lyubimova, Anna; Dharmadhikari, Gitanjali; van den Born, Maaike; van Es, Johan; Jansen, Erik; Clevers, Hans; de Koning, Eelco J P; van Oudenaarden, Alexander

    2016-01-01

    Adult mitotic tissues like the intestine, skin, and blood undergo constant turnover throughout the life of an organism. Knowing the identity of the stem cell is crucial to understanding tissue homeostasis and its aberrations upon disease. Here we present a computational method for the derivation of

  1. The Lymantria dispar IPLB-Ld652Y Cell Line Transcriptome Comprises Diverse Virus-Associated Transcripts

    Directory of Open Access Journals (Sweden)

    Michael E. Sparks

    2011-11-01

    Full Text Available The enhanced viral susceptibility of the gypsy moth (Lymantria dispar-derived IPLB-Ld652Y cell line has made it a popular in vitro system for studying virus-related phenomena in the Lepidoptera. Using both single-pass EST sequencing and 454-based pyrosequencing, a transcriptomic library of 14,368 putatively unique transcripts (PUTs was produced comprising 8,476,050 high-quality, informative bases. The gene content of the IPLB-Ld652Y transcriptome was broadly assessed via comparison with the NCBI non‑redundant protein database, and more detailed functional annotation was inferred by comparison to the Swiss-Prot subset of UniProtKB. In addition to L. dispar cellular transcripts, a diverse array of both RNA and DNA virus-associated transcripts was identified within the dataset, suggestive of a high level of viral expression and activity in IPLB-Ld652Y cells. These sequence resources will provide a sound basis for developing testable experimental hypotheses by insect virologists, and suggest a number of avenues for potential research.

  2. Transcriptomic profile induced in bone marrow mesenchymal stromal cells after interaction with multiple myeloma cells: implications in myeloma progression and myeloma bone disease

    Science.gov (United States)

    Garcia-Gomez, Antonio; Las Rivas, Javier De; Ocio, Enrique M.; Díaz-Rodríguez, Elena; Montero, Juan C.; Martín, Montserrat; Blanco, Juan F.; Sanchez-Guijo, Fermín M.; Pandiella, Atanasio; San Miguel, Jesús F.; Garayoa, Mercedes

    2014-01-01

    Despite evidence about the implication of the bone marrow (BM) stromal microenvironment in multiple myeloma (MM) cell growth and survival, little is known about the effects of myelomatous cells on BM stromal cells. Mesenchymal stromal cells (MSCs) from healthy donors (dMSCs) or myeloma patients (pMSCs) were co-cultured with the myeloma cell line MM.1S, and the transcriptomic profile of MSCs induced by this interaction was analyzed. Deregulated genes after co-culture common to both d/pMSCs revealed functional involvement in tumor microenvironment cross-talk, myeloma growth induction and drug resistance, angiogenesis and signals for osteoclast activation and osteoblast inhibition. Additional genes induced by co-culture were exclusively deregulated in pMSCs and predominantly associated to RNA processing, the ubiquitine-proteasome pathway, cell cycle regulation, cellular stress and non-canonical Wnt signaling. The upregulated expression of five genes after co-culture (CXCL1, CXCL5 and CXCL6 in d/pMSCs, and Neuregulin 3 and Norrie disease protein exclusively in pMSCs) was confirmed, and functional in vitro assays revealed putative roles in MM pathophysiology. The transcriptomic profile of pMSCs co-cultured with myeloma cells may better reflect that of MSCs in the BM of myeloma patients, and provides new molecular insights to the contribution of these cells to MM pathophysiology and to myeloma bone disease. PMID:25268740

  3. Complement system in zebrafish.

    Science.gov (United States)

    Zhang, Shicui; Cui, Pengfei

    2014-09-01

    Zebrafish is recently emerging as a model species for the study of immunology and human diseases. Complement system is the humoral backbone of the innate immune defense, and our knowledge as such in zebrafish has dramatically increased in the recent years. This review summarizes the current research progress of zebrafish complement system. The global searching for complement components in genome database, together with published data, has unveiled the existence of all the orthologues of mammalian complement components identified thus far, including the complement regulatory proteins and complement receptors, in zebrafish. Interestingly, zebrafish complement components also display some distinctive features, such as prominent levels of extrahepatic expression and isotypic diversity of the complement components. Future studies should focus on the following issues that would be of special importance for understanding the physiological role of complement components in zebrafish: conclusive identification of complement genes, especially those with isotypic diversity; analysis and elucidation of function and mechanism of complement components; modulation of innate and adaptive immune response by complement system; and unconventional roles of complement-triggered pathways.

  4. Complement the hemostatic system: an intimate relationship.

    Science.gov (United States)

    Weitz, Ilene Ceil

    2014-05-01

    The complement system is important part of our innate immune system and interacts directly with the hemostatic system. Disorders of complement activation or dysregulation resulting in excess complement generation, such as Paroxysmal Nocturnal Hemoglobinuria (PNH), atypical Hemolytic uremic Syndrome (aHUS) and antiphospholipid syndrome (APLS) have been associated with significant thrombophilia. Terminal Complement (C5b-9) deposition on endothelial and tumor cell membranes has also been reported in a variety of cancer. Recent developments in complement inhibition have given us new insights into the mechanism of thrombosis in these disorders.

  5. The Complement System in Liver Diseases

    Institute of Scientific and Technical Information of China (English)

    Xuebin Qin; Bin Gao

    2006-01-01

    The complement system plays an important role in mediating both acquired and innate responses to defend against microbial infection, and in disposing immunoglobins and apoptotic cells. The liver (mainly hepatocytes) is responsible for biosynthesis of about 80-90% of plasma complement components and expresses a variety of complement receptors.Recent evidence from several studies suggests that the complement system is also involved in the pathogenesis of a variety of liver disorders including liver injury and repair, fibrosis, viral hepatitis, alcoholic liver disease, and liver ischemia/reperfusion injury. In this review, we will discuss the potential role of the complement system in the pathogenesis of liver diseases.

  6. An integrative genomic and transcriptomic analysis reveals potential targets associated with cell proliferation in uterine leiomyomas

    DEFF Research Database (Denmark)

    Cirilo, Priscila Daniele Ramos; Marchi, Fábio Albuquerque; Barros Filho, Mateus de Camargo;

    2013-01-01

    proliferation, including FGFR1 and IGFBP5. Transcriptional and protein analyses showed that FGFR1 (P = 0.006 and P... and transcriptomic approach indicated that FGFR1 and IGFBP5 amplification, as well as the consequent up-regulation of the protein products, plays an important role in the aetiology of ULs and thus provides data for potential drug therapies development to target genes associated with cellular proliferation in ULs....

  7. De novo assembly of a genome-wide transcriptome map of Vicia faba (L.) for transfer cell research.

    Science.gov (United States)

    Arun-Chinnappa, Kiruba S; McCurdy, David W

    2015-01-01

    Vicia faba (L.) is an important cool-season grain legume species used widely in agriculture but also in plant physiology research, particularly as an experimental model to study transfer cell (TC) development. TCs are specialized nutrient transport cells in plants, characterized by invaginated wall ingrowths with amplified plasma membrane surface area enriched with transporter proteins that facilitate nutrient transfer. Many TCs are formed by trans-differentiation from differentiated cells at apoplasmic/symplasmic boundaries in nutrient transport. Adaxial epidermal cells of isolated cotyledons can be induced to form functional TCs, thus providing a valuable experimental system to investigate genetic regulation of TC trans-differentiation. The genome of V. faba is exceedingly large (ca. 13 Gb), however, and limited genomic information is available for this species. To provide a resource for future transcript profiling of epidermal TC differentiation, we have undertaken de novo assembly of a genome-wide transcriptome map for V. faba. Illumina paired-end sequencing of total RNA pooled from different tissues and different stages, including isolated cotyledons induced to form epidermal TCs, generated 69.5 M reads, of which 65.8 M were used for assembly following trimming and quality control. Assembly using a De-Bruijn graph-based approach generated 21,297 contigs, of which 80.6% were successfully annotated against GO terms. The assembly was validated against known V. faba cDNAs held in GenBank, including transcripts previously identified as being specifically expressed in epidermal cells across TC trans-differentiation. This genome-wide transcriptome map therefore provides a valuable tool for future transcript profiling of epidermal TC trans-differentiation, and also enriches the genetic resources available for this important legume crop species.

  8. The role of complement receptor type 1 (CR1, CD35) in determining the cellular distribution of opsonized immune complexes between whole blood cells: kinetic analysis of the buffering capacity of erythrocytes

    DEFF Research Database (Denmark)

    Nielsen, C H; Matthiesen, S H; Lyng, I;

    1997-01-01

    Erythrocytes (E) express complement receptor, type 1 (CR1, CD35), by which they bind opsonized immune complexes (IC) in competition with leucocytes expressing higher numbers of CR1 as well as other complement- and Fc-receptors. This may prevent inappropriate activation of phagocytic cells. We...

  9. Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease.

    Science.gov (United States)

    Wes, Paul D; Holtman, Inge R; Boddeke, Erik W G M; Möller, Thomas; Eggen, Bart J L

    2016-02-01

    Genome-wide expression profiling technology has resulted in detailed transcriptome data for a wide range of tissues, conditions and diseases. In neuroscience, expression datasets were mostly generated using whole brain tissue samples, resulting in data from a mixture of cell types, including glial cells and neurons. Over the past few years, a rapidly increasing number of expression profiling studies using isolated microglial cell populations have been reported. In these studies, the microglia transcriptome was compared to other cell types, such as other brain cells and peripheral tissue macrophages, and related to aging and neurodegenerative conditions. A commonality found in many of these studies was that microglia possess distinct gene expression signatures. This repertoire of selectively-expressed microglial genes highlight functions beyond immune responses, such as synaptic modulation and neurotrophic support, and open up avenues to explore as-yet-unexpected roles. These data provide improved understanding of disease pathology, and complement not only the aforementioned whole brain tissue transcriptome studies, but also genome- and epigenome-wide association studies. In this review, insights obtained from isolated microglia transcriptome studies are presented, and compared to studies using other genome-wide approaches. The relation of microglia to other tissue macrophages and glial cell populations, as well as the role of microglia in the aging brain and in neurodegenerative conditions, will be discussed. Many more of these types of studies are expected in the near future, hopefully leading to the identification of novel genes and targets for neurodegenerative conditions.

  10. Transcriptome complexity in a genome-reduced bacterium

    DEFF Research Database (Denmark)

    Güell, Marc; van Noort, Vera; Yus, Eva;

    2009-01-01

    To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previously...

  11. Transcriptomics in ecotoxicology.

    Science.gov (United States)

    Schirmer, Kristin; Fischer, Beat B; Madureira, Danielle J; Pillai, Smitha

    2010-06-01

    The emergence of analytical tools for high-throughput screening of biomolecules has revolutionized the way in which toxicologists explore the impact of chemicals or other stressors on organisms. One of the most developed and routinely applied high-throughput analysis approaches is transcriptomics, also often referred to as gene expression profiling. The transcriptome represents all RNA molecules, including the messenger RNA (mRNA), which constitutes the building blocks for translating DNA into amino acids to form proteins. The entirety of mRNA is a mirror of the genes that are actively expressed in a cell or an organism at a given time. This in turn allows one to deduce how organisms respond to changes in the external environment. In this article we explore how transcriptomics is currently applied in ecotoxicology and highlight challenges and trends.

  12. Regulatory components of the alternative complement pathway in endothelial cell cytoplasm, factor H and factor I, are not packaged in Weibel-Palade bodies.

    Directory of Open Access Journals (Sweden)

    Nancy A Turner

    Full Text Available It was recently reported that factor H, a regulatory component of the alternative complement pathway, is stored with von Willebrand factor (VWF in the Weibel-Palade bodies of endothelial cells. If this were to be the case, it would have therapeutic importance for patients with the atypical hemolytic-uremic syndrome that can be caused either by a heterozygous defect in the factor H gene or by the presence of an autoantibody against factor H. The in vivo Weibel-Palade body secretagogue, des-amino-D-arginine vasopressin (DDAVP, would be expected to increase transiently the circulating factor H levels, in addition to increasing the circulating levels of VWF. We describe experiments demonstrating that factor H is released from endothelial cell cytoplasm without a secondary storage site. These experiments showed that factor H is not stored with VWF in endothelial cell Weibel-Palade bodies, and is not secreted in response in vitro in response to the Weibel-Palade body secretagogue, histamine. Furthermore, the in vivo Weibel-Palade body secretagogue, DDAVP does not increase the circulating factor H levels concomitantly with DDAVP-induced increased VWF. Factor I, a regulatory component of the alternative complement pathway that is functionally related to factor H, is also located in endothelial cell cytoplasm, and is also not present in endothelial cell Weibel-Palade bodies. Our data demonstrate that the factor H and factor I regulatory proteins of the alternative complement pathway are not stored in Weibel-Palade bodies. DDAVP induces the secretion into human plasma of VWF--but not factor H.

  13. Regulatory components of the alternative complement pathway in endothelial cell cytoplasm, factor H and factor I, are not packaged in Weibel-Palade bodies.

    Science.gov (United States)

    Turner, Nancy A; Sartain, Sarah E; Hui, Shiu-Ki; Moake, Joel L

    2015-01-01

    It was recently reported that factor H, a regulatory component of the alternative complement pathway, is stored with von Willebrand factor (VWF) in the Weibel-Palade bodies of endothelial cells. If this were to be the case, it would have therapeutic importance for patients with the atypical hemolytic-uremic syndrome that can be caused either by a heterozygous defect in the factor H gene or by the presence of an autoantibody against factor H. The in vivo Weibel-Palade body secretagogue, des-amino-D-arginine vasopressin (DDAVP), would be expected to increase transiently the circulating factor H levels, in addition to increasing the circulating levels of VWF. We describe experiments demonstrating that factor H is released from endothelial cell cytoplasm without a secondary storage site. These experiments showed that factor H is not stored with VWF in endothelial cell Weibel-Palade bodies, and is not secreted in response in vitro in response to the Weibel-Palade body secretagogue, histamine. Furthermore, the in vivo Weibel-Palade body secretagogue, DDAVP does not increase the circulating factor H levels concomitantly with DDAVP-induced increased VWF. Factor I, a regulatory component of the alternative complement pathway that is functionally related to factor H, is also located in endothelial cell cytoplasm, and is also not present in endothelial cell Weibel-Palade bodies. Our data demonstrate that the factor H and factor I regulatory proteins of the alternative complement pathway are not stored in Weibel-Palade bodies. DDAVP induces the secretion into human plasma of VWF--but not factor H.

  14. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures

    Directory of Open Access Journals (Sweden)

    Schriemer David C

    2010-11-01

    Full Text Available Abstract Background Papaver somniferum (opium poppy is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. Results A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. Conclusions The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a

  15. Comparison of the transcriptomic profile of hepatic human induced pluripotent stem like cells cultured in plates and in a 3D microscale dynamic environment.

    Science.gov (United States)

    Leclerc, Eric; Kimura, Keiichi; Shinohara, Marie; Danoy, Mathieu; Le Gall, Morgane; Kido, Taketomo; Miyajima, Atsushi; Fujii, Teruo; Sakai, Yasuyuki

    2017-01-01

    We have compared the transcriptomic profiles of human induced pluripotent stem cells after their differentiation in hepatocytes like cells in plates and microfluidic biochips. The biochips provided a 3D and dynamic support during the cell differentiation when compared to the 2D static cultures in plates. The microarray have demonstrated the up regulation of important pathway related to liver development and maturation during the culture in biochips. Furthermore, the results of the transcriptomic profile, coupled with immunostaining, and RTqPCR analysis have shown typical biomarkers illustrating the presence of responders of biliary like cells, hepatocytes like cells, and endothelial like cells. However, the overall tissue still presented characteristic of immature and foetal patterns. Nevertheless, the biochip culture provided a specific micro-environment in which a complex multicellular differentiation toward liver could be oriented.

  16. Evaluation of the chicken transcriptome by SAGE of B cells and the DT40 cell line

    Directory of Open Access Journals (Sweden)

    Soeldenwagner Manuel

    2004-12-01

    Full Text Available Abstract Background The understanding of whole genome sequences in higher eukaryotes depends to a large degree on the reliable definition of transcription units including exon/intron structures, translated open reading frames (ORFs and flanking untranslated regions. The best currently available chicken transcript catalog is the Ensembl build based on the mappings of a relatively small number of full length cDNAs and ESTs to the genome as well as genome sequence derived in silico gene predictions. Results We use Long Serial Analysis of Gene Expression (LongSAGE in bursal lymphocytes and the DT40 cell line to verify the quality and completeness of the annotated transcripts. 53.6% of the more than 38,000 unique SAGE tags (unitags match to full length bursal cDNAs, the Ensembl transcript build or the genome sequence. The majority of all matching unitags show single matches to the genome, but no matches to the genome derived Ensembl transcript build. Nevertheless, most of these tags map close to the 3' boundaries of annotated Ensembl transcripts. Conclusions These results suggests that rather few genes are missing in the current Ensembl chicken transcript build, but that the 3' ends of many transcripts may not have been accurately predicted. The tags with no match in the transcript sequences can now be used to improve gene predictions, pinpoint the genomic location of entirely missed transcripts and optimize the accuracy of gene finder software.

  17. Complement and autoimmunity.

    Science.gov (United States)

    Ballanti, Eleonora; Perricone, Carlo; Greco, Elisabetta; Ballanti, Marta; Di Muzio, Gioia; Chimenti, Maria Sole; Perricone, Roberto

    2013-07-01

    The complement system is a component of the innate immune system. Its main function was initially believed to be limited to the recognition and elimination of pathogens through direct killing or stimulation of phagocytosis. However, in recent years, the immunoregulatory functions of the complement system were demonstrated and it was determined that the complement proteins play an important role in modulating adaptive immunity and in bridging innate and adaptive responses. When the delicate mechanisms that regulate this sophisticated enzymatic system are unbalanced, the complement system may cause damage, mediating tissue inflammation. Dysregulation of the complement system has been involved in the pathogenesis and clinical manifestations of several autoimmune diseases, such as systemic lupus erythematosus, vasculitides, Sjögren's syndrome, antiphospholipid syndrome, systemic sclerosis, dermatomyositis, and rheumatoid arthritis. Complement deficiencies have been associated with an increased risk to develop autoimmune disorders. Because of its functions, the complement system is an attractive therapeutic target for a wide range of diseases. Up to date, several compounds interfering with the complement cascade have been studied in experimental models for autoimmune diseases. The main therapeutic strategies are inhibition of complement activation components, inhibition of complement receptors, and inhibition of membrane attack complex. At present, none of the available agents was proven to be both safe and effective for treatment of autoimmune diseases in humans. Nonetheless, data from preclinical studies and initial clinical trials suggest that the modulation of the complement system could constitute a viable strategy for the treatment of autoimmune conditions in the decades to come.

  18. Transcriptome and proteome dynamics of a light-dark synchronized bacterial cell cycle.

    Directory of Open Access Journals (Sweden)

    Jacob R Waldbauer

    Full Text Available BACKGROUND: Growth of the ocean's most abundant primary producer, the cyanobacterium Prochlorococcus, is tightly synchronized to the natural 24-hour light-dark cycle. We sought to quantify the relationship between transcriptome and proteome dynamics that underlie this obligate photoautotroph's highly choreographed response to the daily oscillation in energy supply. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA-sequencing transcriptomics and mass spectrometry-based quantitative proteomics, we measured timecourses of paired mRNA-protein abundances for 312 genes every 2 hours over a light-dark cycle. These temporal expression patterns reveal strong oscillations in transcript abundance that are broadly damped at the protein level, with mRNA levels varying on average 2.3 times more than the corresponding protein. The single strongest observed protein-level oscillation is in a ribonucleotide reductase, which may reflect a defense strategy against phage infection. The peak in abundance of most proteins also lags that of their transcript by 2-8 hours, and the two are completely antiphase for some genes. While abundant antisense RNA was detected, it apparently does not account for the observed divergences between expression levels. The redirection of flux through central carbon metabolism from daytime carbon fixation to nighttime respiration is associated with quite small changes in relative enzyme abundances. CONCLUSIONS/SIGNIFICANCE: Our results indicate that expression responses to periodic stimuli that are common in natural ecosystems (such as the diel cycle can diverge significantly between the mRNA and protein levels. Protein expression patterns that are distinct from those of cognate mRNA have implications for the interpretation of transcriptome and metatranscriptome data in terms of cellular metabolism and its biogeochemical impact.

  19. Quantitative proteomics and transcriptomics reveals metabolic differences in attracting and non-attracting human-in-mouse glioma stem cell xenografts and stromal cells

    Directory of Open Access Journals (Sweden)

    Norelle C. Wildburger

    2015-09-01

    Full Text Available Bone marrow-derived human mesenchymal stem cells (BM-hMSCs show promise as cell-based delivery vehicles for anti-glioma therapeutics, due to innate tropism for gliomas. However, in clinically relevant human-in-mouse glioma stem cell xenograft models, BM-hMSCs tropism is variable. We compared the proteomic profile of cancer and stromal cells in GSCXs that attract BM-hMSCs (“attractors” with those to do not (“non-attractors” to identify pathways that may modulate BM-hMSC homing, followed by targeted transcriptomics. The results provide the first link between fatty acid metabolism, glucose metabolism, ROS, and N-glycosylation patterns in attractors. Reciprocal expression of these pathways in the stromal cells suggests microenvironmental cross-talk.

  20. Molecules Great and Small: The Complement System.

    Science.gov (United States)

    Mathern, Douglas R; Heeger, Peter S

    2015-09-04

    The complement cascade, traditionally considered an effector arm of innate immunity required for host defense against pathogens, is now recognized as a crucial pathogenic mediator of various kidney diseases. Complement components produced by the liver and circulating in the plasma undergo activation through the classical and/or mannose-binding lectin pathways to mediate anti-HLA antibody-initiated kidney transplant rejection and autoantibody-initiated GN, the latter including membranous glomerulopathy, antiglomerular basement membrane disease, and lupus nephritis. Inherited and/or acquired abnormalities of complement regulators, which requisitely limit restraint on alternative pathway complement activation, contribute to the pathogenesis of the C3 nephropathies and atypical hemolytic uremic syndrome. Increasing evidence links complement produced by endothelial cells and/or tubular cells to the pathogenesis of kidney ischemia-reperfusion injury and progressive kidney fibrosis. Data emerging since the mid-2000s additionally show that immune cells, including T cells and antigen-presenting cells, produce alternative pathway complement components during cognate interactions. The subsequent local complement activation yields production of the anaphylatoxins C3a and C5a, which bind to their respective receptors (C3aR and C5aR) on both partners to augment effector T-cell proliferation and survival, while simultaneously inhibiting regulatory T-cell induction and function. This immune cell-derived complement enhances pathogenic alloreactive T-cell immunity that results in transplant rejection and likely contributes to the pathogenesis of other T cell-mediated kidney diseases. C5a/C5aR ligations on neutrophils have additionally been shown to contribute to vascular inflammation in models of ANCA-mediated renal vasculitis. New translational immunology efforts along with the development of pharmacologic agents that block human complement components and receptors now permit

  1. Role of Complement in Autoimmune Hemolytic Anemia.

    Science.gov (United States)

    Berentsen, Sigbjørn

    2015-09-01

    The classification of autoimmune hemolytic anemias and the complement system are reviewed. In autoimmune hemolytic anemia of the warm antibody type, complement-mediated cell lysis is clinically relevant in a proportion of the patients but is hardly essential for hemolysis in most patients. Cold antibody-mediated autoimmune hemolytic anemias (primary cold agglutinin disease, secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria) are entirely complement-mediated disorders. In cold agglutinin disease, efficient therapies have been developed in order to target the pathogenic B-cell clone, but complement modulation remains promising in some clinical situations. No established therapy exists for secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria, and the possibility of therapeutic complement inhibition is interesting. Currently, complement modulation is not clinically documented in any autoimmune hemolytic anemia. The most relevant candidate drugs and possible target levels of action are discussed.

  2. The Long Noncoding RNA Transcriptome of Dictyostelium discoideum Development

    Directory of Open Access Journals (Sweden)

    Rafael D. Rosengarten

    2017-02-01

    Full Text Available Dictyostelium discoideum live in the soil as single cells, engulfing bacteria and growing vegetatively. Upon starvation, tens of thousands of amoebae enter a developmental program that includes aggregation, multicellular differentiation, and sporulation. Major shifts across the protein-coding transcriptome accompany these developmental changes. However, no study has presented a global survey of long noncoding RNAs (ncRNAs in D. discoideum. To characterize the antisense and long intergenic noncoding RNA (lncRNA transcriptome, we analyzed previously published developmental time course samples using an RNA-sequencing (RNA-seq library preparation method that selectively depletes ribosomal RNAs (rRNAs. We detected the accumulation of transcripts for 9833 protein-coding messenger RNAs (mRNAs, 621 lncRNAs, and 162 putative antisense RNAs (asRNAs. The noncoding RNAs were interspersed throughout the genome, and were distinct in expression level, length, and nucleotide composition. The noncoding transcriptome displayed a temporal profile similar to the coding transcriptome, with stages of gradual change interspersed with larger leaps. The transcription profiles of some noncoding RNAs were strongly correlated with known differentially expressed coding RNAs, hinting at a functional role for these molecules during development. Examining the mitochondrial transcriptome, we modeled two novel antisense transcripts. We applied yet another ribosomal depletion method to a subset of the samples to better retain transfer RNA (tRNA transcripts. We observed polymorphisms in tRNA anticodons that suggested a post-transcriptional means by which D. discoideum compensates for codons missing in the genomic complement of tRNAs. We concluded that the prevalence and characteristics of long ncRNAs indicate that these molecules are relevant to the progression of molecular and cellular phenotypes during development.

  3. Role of Complement in Autoimmune Hemolytic Anemia

    OpenAIRE

    Berentsen, Sigbjørn

    2015-01-01

    Summary The classification of autoimmune hemolytic anemias and the complement system are reviewed. In autoimmune hemolytic anemia of the warm antibody type, complement-mediated cell lysis is clinically relevant in a proportion of the patients but is hardly essential for hemolysis in most patients. Cold antibody-mediated autoimmune hemolytic anemias (primary cold agglutinin disease, secondary cold agglutinin syndrome and paroxysmal cold hemoglobinuria) are entirely complement-mediated disorder...

  4. Complement's participation in acquired immunity

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Leslie, Robert Graham Quinton

    2002-01-01

    of the B cell receptor for antigen (BCR), a complex composed of the iC3b/C3d fragment-binding complement type 2 receptor (CR2, CD21) and its signaling element CD19 and the IgG-binding receptor FcgammaRIIb (CD32). The positive or negative outcome of signaling through this triad is determined by the context...... in which antigen is seen, be it alone or in association with natural or induced antibodies and/or C3-complement fragments. The aim of this review is to describe the present status of our understanding of complement's participation in acquired immunity and the regulation of autoimmune responses....

  5. 454 Transcriptome sequencing suggests a role for two-component signalling in cellularization and differentiation of barley endosperm transfer cells.

    Directory of Open Access Journals (Sweden)

    Johannes Thiel

    Full Text Available BACKGROUND: Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs. Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. PRINCIPAL FINDINGS: 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and

  6. Integration of Proteomics and Transcriptomics Data Sets for the Analysis of a Lymphoma B-Cell Line in the Context of the Chromosome-Centric Human Proteome Project.

    Science.gov (United States)

    Díez, Paula; Droste, Conrad; Dégano, Rosa M; González-Muñoz, María; Ibarrola, Nieves; Pérez-Andrés, Martín; Garin-Muga, Alba; Segura, Víctor; Marko-Varga, Gyorgy; LaBaer, Joshua; Orfao, Alberto; Corrales, Fernando J; De Las Rivas, Javier; Fuentes, Manuel

    2015-09-04

    A comprehensive study of the molecular active landscape of human cells can be undertaken to integrate two different but complementary perspectives: transcriptomics, and proteomics. After the genome era, proteomics has emerged as a powerful tool to simultaneously identify and characterize the compendium of thousands of different proteins active in a cell. Thus, the Chromosome-centric Human Proteome Project (C-HPP) is promoting a full characterization of the human proteome combining high-throughput proteomics with the data derived from genome-wide expression profiling of protein-coding genes. Here we present a full proteomic profiling of a human lymphoma B-cell line (Ramos) performed using a nanoUPLC-LTQ-Orbitrap Velos proteomic platform, combined to an in-depth transcriptomic profiling of the same cell type. Data are available via ProteomeXchange with identifier PXD001933. Integration of the proteomic and transcriptomic data sets revealed a 94% overlap in the proteins identified by both -omics approaches. Moreover, functional enrichment analysis of the proteomic profiles showed an enrichment of several functions directly related to the biological and morphological characteristics of B-cells. In turn, about 30% of all protein-coding genes present in the whole human genome were identified as being expressed by the Ramos cells (stable average of 30% genes along all the chromosomes), revealing the size of the protein expression-set present in one specific human cell type. Additionally, the identification of missing proteins in our data sets has been reported, highlighting the power of the approach. Also, a comparison between neXtProt and UniProt database searches has been performed. In summary, our transcriptomic and proteomic experimental profiling provided a high coverage report of the expressed proteome from a human lymphoma B-cell type with a clear insight into the biological processes that characterized these cells. In this way, we demonstrated the usefulness of

  7. Transcriptome Profiling of Caco-2 Cancer Cell Line following Treatment with Extracts from Iodine-Biofortified Lettuce (Lactuca sativa L..

    Directory of Open Access Journals (Sweden)

    Aneta A Koronowicz

    Full Text Available Although iodization of salt is the most common method used to obtain iodine-enriched food, iodine deficiency disorders are still a global health problem and profoundly affect the quality of human life. Iodine is required for the synthesis of thyroid hormones, which are crucial regulators of human metabolism, cell growth, proliferation, apoptosis and have been reported to be involved in carcinogenesis. In this study, for the first time, we evaluated the effect of iodine-biofortified lettuce on transcriptomic profile of Caco-2 cancer cell line by applying the Whole Human Genome Microarray assay. We showed 1326 differentially expressed Caco-2 transcripts after treatment with iodine-biofortified (BFL and non-fortified (NFL lettuce extracts. We analysed pathways, molecular functions, biological processes and protein classes based on comparison between BFL and NFL specific genes. Iodine, which was expected to act as a free ion (KI-NFL or at least in part to be incorporated into lettuce macromolecules (BFL, differently regulated pathways of numerous transcription factors leading to different cellular effects. In this study we showed the inhibition of Caco-2 cells proliferation after treatment with BFL, but not potassium iodide (KI, and BFL-mediated induction of mitochondrial apoptosis and/or cell differentiation. Our results showed that iodine-biofortified plants can be effectively used by cells as an alternative source of this trace element. Moreover, the observed differences in action of both iodine sources may suggest a potential of BFL in cancer treatment.

  8. Transcriptome Profiling of Caco-2 Cancer Cell Line following Treatment with Extracts from Iodine-Biofortified Lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Koronowicz, Aneta A; Kopeć, Aneta; Master, Adam; Smoleń, Sylwester; Piątkowska, Ewa; Bieżanowska-Kopeć, Renata; Ledwożyw-Smoleń, Iwona; Skoczylas, Łukasz; Rakoczy, Roksana; Leszczyńska, Teresa; Kapusta-Duch, Joanna; Pysz, Mirosław

    2016-01-01

    Although iodization of salt is the most common method used to obtain iodine-enriched food, iodine deficiency disorders are still a global health problem and profoundly affect the quality of human life. Iodine is required for the synthesis of thyroid hormones, which are crucial regulators of human metabolism, cell growth, proliferation, apoptosis and have been reported to be involved in carcinogenesis. In this study, for the first time, we evaluated the effect of iodine-biofortified lettuce on transcriptomic profile of Caco-2 cancer cell line by applying the Whole Human Genome Microarray assay. We showed 1326 differentially expressed Caco-2 transcripts after treatment with iodine-biofortified (BFL) and non-fortified (NFL) lettuce extracts. We analysed pathways, molecular functions, biological processes and protein classes based on comparison between BFL and NFL specific genes. Iodine, which was expected to act as a free ion (KI-NFL) or at least in part to be incorporated into lettuce macromolecules (BFL), differently regulated pathways of numerous transcription factors leading to different cellular effects. In this study we showed the inhibition of Caco-2 cells proliferation after treatment with BFL, but not potassium iodide (KI), and BFL-mediated induction of mitochondrial apoptosis and/or cell differentiation. Our results showed that iodine-biofortified plants can be effectively used by cells as an alternative source of this trace element. Moreover, the observed differences in action of both iodine sources may suggest a potential of BFL in cancer treatment.

  9. Transcriptome and proteome analysis of tyrosine kinase inhibitor treated canine mast cell tumour cells identifies potentially kit signaling-dependent genes

    Directory of Open Access Journals (Sweden)

    Klopfleisch Robert

    2012-06-01

    Full Text Available Abstract Background Canine mast cell tumour proliferation depends to a large extent on the activity of KIT, a tyrosine kinase receptor. Inhibitors of the KIT tyrosine kinase have recently been introduced and successfully applied as a therapeutic agent for this tumour type. However, little is known on the downstream target genes of this signaling pathway and molecular changes after inhibition. Results Transcriptome analysis of the canine mast cell tumour cell line C2 treated for up to 72 hours with the tyrosine kinase inhibitor masitinib identified significant changes in the expression levels of approximately 3500 genes or 16% of the canine genome. Approximately 40% of these genes had increased mRNA expression levels including genes associated with the pro-proliferative pathways of B- and T-cell receptors, chemokine receptors, steroid hormone receptors and EPO-, RAS and MAP kinase signaling. Proteome analysis of C2 cells treated for 72 hours identified 24 proteins with changed expression levels, most of which being involved in gene transcription, e.g. EIA3, EIA4, TARDBP, protein folding, e.g. HSP90, UCHL3, PDIA3 and protection from oxidative stress, GSTT3, SELENBP1. Conclusions Transcriptome and proteome analysis of neoplastic canine mast cells treated with masitinib confirmed the strong important and complex role of KIT in these cells. Approximately 16% of the total canine genome and thus the majority of the active genes were significantly transcriptionally regulated. Most of these changes were associated with reduced proliferation and metabolism of treated cells. Interestingly, several pro-proliferative pathways were up-regulated, which may represent attempts of masitinib treated cells to activate alternative pro-proliferative pathways. These pathways may contain hypothetical targets for a combination therapy with masitinib to further improve its therapeutic effect.

  10. Control of the collective migration of enteric neural crest cells by the Complement anaphylatoxin C3a and N-cadherin.

    Science.gov (United States)

    Broders-Bondon, Florence; Paul-Gilloteaux, Perrine; Gazquez, Elodie; Heysch, Julie; Piel, Matthieu; Mayor, Roberto; Lambris, John D; Dufour, Sylvie

    2016-06-01

    We analyzed the cellular and molecular mechanisms governing the adhesive and migratory behavior of enteric neural crest cells (ENCCs) during their collective migration within the developing mouse gut. We aimed to decipher the role of the complement anaphylatoxin C3a during this process, because this well-known immune system attractant has been implicated in cephalic NCC co-attraction, a process controlling directional migration. We used the conditional Ht-PA-cre transgenic mouse model allowing a specific ablation of the N-cadherin gene and the expression of a fluorescent reporter in migratory ENCCs without affecting the central nervous system. We performed time-lapse videomicroscopy of ENCCs from control and N-cadherin mutant gut explants cultured on fibronectin (FN) and micropatterned FN-stripes with C3a or C3aR antagonist, and studied cell migration behavior with the use of triangulation analysis to quantify cell dispersion. We performed ex vivo gut cultures with or without C3aR antagonist to determine the effect on ENCC behavior. Confocal microscopy was used to analyze the cell-matrix adhesion properties. We provide the first demonstration of the localization of the complement anaphylatoxin C3a and its receptor on ENCCs during their migration in the embryonic gut. C3aR receptor inhibition alters ENCC adhesion and migration, perturbing directionality and increasing cell dispersion both in vitro and ex vivo. N-cadherin-null ENCCs do not respond to C3a co-attraction. These findings indicate that C3a regulates cell migration in a N-cadherin-dependent process. Our results shed light on the role of C3a in regulating collective and directional cell migration, and in ganglia network organization during enteric nervous system ontogenesis. The detection of an immune system chemokine in ENCCs during ENS development may also shed light on new mechanisms for gastrointestinal disorders.

  11. Complement-Dependent Lysis of Influenza A Virus-Infected Cells by Broadly Cross-Reactive Human Monoclonal Antibodies ▿

    Science.gov (United States)

    Terajima, Masanori; Cruz, John; Co, Mary Dawn T.; Lee, Jane-Hwei; Kaur, Kaval; Wilson, Patrick C.; Ennis, Francis A.

    2011-01-01

    We characterized human monoclonal antibodies (MAbs) cloned from influenza virus-infected patients and from influenza vaccine recipients by complement-dependent lysis (CDL) assay. Most MAbs active in CDL were neutralizing, but not all neutralizing MAbs can mediate CDL. Two of the three stalk-specific neutralizing MAbs tested were able to mediate CDL and were more cross-reactive to temporally distant H1N1 strains than the conventional hemagglutination-inhibiting and neutralizing MAbs. One of the stalk-specific MAbs was subtype cross-reactive to H1 and H2 hemagglutinins, suggesting a role for stalk-specific antibodies in protection against influenza illness, especially by a novel viral subtype which can cause pandemics. PMID:21994454

  12. Transcriptome profiling identifies genes and pathways deregulated upon floxuridine treatment in colorectal cancer cells harboring GOF mutant p53

    Directory of Open Access Journals (Sweden)

    Arindam Datta

    2016-06-01

    Full Text Available Mutation in TP53 is a common genetic alteration in human cancers. Certain tumor associated p53 missense mutants acquire gain-of-function (GOF properties and confer oncogenic phenotypes including enhanced chemoresistance. The colorectal cancers (CRC harboring mutant p53 are generally aggressive in nature and difficult to treat. To identify a potential gene expression signature of GOF mutant p53-driven acquired chemoresistance in CRC, we performed transcriptome profiling of floxuridine (FUdR treated SW480 cells expressing mutant p53R273H (GEO#: GSE77533. We obtained several genes differentially regulated between FUdR treated and untreated cells. Further, functional characterization and pathway analysis revealed significant enrichment of crucial biological processes and pathways upon FUdR treatment in SW480 cells. Our data suggest that in response to chemotherapeutics treatment, cancer cells with GOF mutant p53 can modulate key cellular pathways to withstand the cytotoxic effect of the drugs. The genes and pathways identified in the present study can be further validated and targeted for better chemotherapy response in colorectal cancer patients harboring mutant p53.

  13. Physiological and cell morphology adaptation of Bacillus subtilis at near-zero specific growth rates: a transcriptome analysis.

    Science.gov (United States)

    Overkamp, Wout; Ercan, Onur; Herber, Martijn; van Maris, Antonius J A; Kleerebezem, Michiel; Kuipers, Oscar P

    2015-02-01

    Nutrient scarcity is a common condition in nature, but the resulting extremely low growth rates (below 0.025 h(-1) ) are an unexplored research area in Bacillus subtilis. To understand microbial life in natural environments, studying the adaptation of B. subtilis to near-zero growth conditions is relevant. To this end, a chemostat modified for culturing an asporogenous B. subtilis sigF mutant strain at extremely low growth rates (also named a retentostat) was set up, and biomass accumulation, culture viability, metabolite production and cell morphology were analysed. During retentostat culturing, the specific growth rate decreased to a minimum of 0.00006 h(-1) , corresponding to a doubling time of 470 days. The energy distribution between growth and maintenance-related processes showed that a state of near-zero growth was reached. Remarkably, a filamentous cell morphology emerged, suggesting that cell separation is impaired under near-zero growth conditions. To evaluate the corresponding molecular adaptations to extremely low specific growth, transcriptome changes were analysed. These revealed that cellular responses to near-zero growth conditions share several similarities with those of cells during the stationary phase of batch growth. However, fundamental differences between these two non-growing states are apparent by their high viability and absence of stationary phase mutagenesis under near-zero growth conditions.

  14. Transcriptome profiling in Arabidopsis inflorescence stems grown under hypergravity in terms of cell walls and plant hormones

    Science.gov (United States)

    Tamaoki, D.; Karahara, I.; Nishiuchi, T.; De Oliveira, S.; Schreiber, L.; Wakasugi, T.; Yamada, K.; Yamaguchi, K.; Kamisaka, S.

    2009-07-01

    Land plants rely on lignified secondary cell walls in supporting their body weight on the Earth. Although gravity influences the formation of the secondary cell walls, the regulatory mechanism of their formation by gravity is not yet understood. We carried out a comprehensive analysis of gene expression in inflorescence stems of Arabidopsis thaliana L. using microarray (22 K) to identify genes whose expression is modulated under hypergravity condition (300 g). Total RNA was isolated from the basal region of inflorescence stems of plants grown for 24 h at 300 g or 1 g. Microarray analysis showed that hypergravity up-regulated the expression of 403 genes to more than 2-fold. Hypergravity up-regulated the genes responsible for the biosynthesis or modification of cell wall components such as lignin, xyloglucan, pectin and structural proteins. In addition, hypergravity altered the expression of genes related to the biosynthesis of plant hormones such as auxin and ethylene and that of genes encoding hormone-responsive proteins. Our transcriptome profiling indicates that hypergravity influences the formation of secondary cell walls by modulating the pattern of gene expression, and that auxin and/or ethylene play an important role in signaling hypergravity stimulus.

  15. Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation

    Institute of Scientific and Technical Information of China (English)

    Jing Jiang; Wenjian Lv; Xiaoying Ye; Lingbo Wang; Man Zhang; Hui Yang; Maja Okuka

    2013-01-01

    Induced pluripotent stem (iPS) cells generated using Yamanaka factors have great potential for use in autologous cell therapy.However,genomic abnormalities exist in human iPS cells,and most mouse iPS cells are not fully pluripotent,as evaluated by the tetraploid complementation assay (TCA); this is most likely associated with the DNA damage response (DDR) occurred in early reprogramming induced by Yamanaka factors.In contrast,nuclear transfer can faithfully reprogram somatic cells into embryonic stem (ES) cells that satisfy the TCA.We thus hypothesized that factors involved in oocyte-induced reprogramming may stabilize the somatic genome during reprogramming,and improve the quality of the resultant iPS cells.To test this hypothesis,we screened for factors that could decrease DDR signals during iPS cell induction.We determined that Zscan4,in combination with the Yamanaka factors,not only remarkably reduced the DDR but also markedly promoted the efficiency of iPS cell generation.The inclusion of Zscan4 stabilized the genomic DNA,resulting in p53 downregulation.Furthermore,Zscan4 also enhanced telomere lengthening as early as 3 days post-infection through a telomere recombination-based mechanism.As a result,iPS cells generated with addition of Zscan4 exhibited longer telomeres than classical iPS cells.Strikingly,more than 50%of iPS cell lines (11/19) produced via this "Zscan4 protocol" gave rise to live-borne all-iPS cell mice as determined by TCA,compared to 1/12 for lines produced using the classical Yamanaka factors.Our findings provide the first demonstration that maintaining genomic stability during reprogramming promotes the generation of high quality iPS cells.

  16. Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation.

    Science.gov (United States)

    Jiang, Jing; Lv, Wenjian; Ye, Xiaoying; Wang, Lingbo; Zhang, Man; Yang, Hui; Okuka, Maja; Zhou, Chikai; Zhang, Xuan; Liu, Lin; Li, Jinsong

    2013-01-01

    Induced pluripotent stem (iPS) cells generated using Yamanaka factors have great potential for use in autologous cell therapy. However, genomic abnormalities exist in human iPS cells, and most mouse iPS cells are not fully pluripotent, as evaluated by the tetraploid complementation assay (TCA); this is most likely associated with the DNA damage response (DDR) occurred in early reprogramming induced by Yamanaka factors. In contrast, nuclear transfer can faithfully reprogram somatic cells into embryonic stem (ES) cells that satisfy the TCA. We thus hypothesized that factors involved in oocyte-induced reprogramming may stabilize the somatic genome during reprogramming, and improve the quality of the resultant iPS cells. To test this hypothesis, we screened for factors that could decrease DDR signals during iPS cell induction. We determined that Zscan4, in combination with the Yamanaka factors, not only remarkably reduced the DDR but also markedly promoted the efficiency of iPS cell generation. The inclusion of Zscan4 stabilized the genomic DNA, resulting in p53 downregulation. Furthermore, Zscan4 also enhanced telomere lengthening as early as 3 days post-infection through a telomere recombination-based mechanism. As a result, iPS cells generated with addition of Zscan4 exhibited longer telomeres than classical iPS cells. Strikingly, more than 50% of iPS cell lines (11/19) produced via this "Zscan4 protocol" gave rise to live-borne all-iPS cell mice as determined by TCA, compared to 1/12 for lines produced using the classical Yamanaka factors. Our findings provide the first demonstration that maintaining genomic stability during reprogramming promotes the generation of high quality iPS cells.

  17. Complement: an overview for the clinician.

    Science.gov (United States)

    Varela, Juan Carlos; Tomlinson, Stephen

    2015-06-01

    The complement system is an essential component of the immune system. It is a highly integrative system and has a number of functions, including host defense, removal of injured cells and debris, modulation of metabolic and regenerative processes, and regulation of adaptive immunity. Complement is activated via different pathways and it is regulated tightly by several mechanisms to prevent host injury. Imbalance between complement activation and regulation can manifest in disease and injury to self. This article provides an outline of complement activation pathways, regulatory mechanisms, and normal physiologic functions of the system.

  18. Complement in autoimmune diseases.

    Science.gov (United States)

    Vignesh, Pandiarajan; Rawat, Amit; Sharma, Madhubala; Singh, Surjit

    2017-02-01

    The complement system is an ancient and evolutionary conserved element of the innate immune mechanism. It comprises of more than 20 serum proteins most of which are synthesized in the liver. These proteins are synthesized as inactive precursor proteins which are activated by appropriate stimuli. The activated forms of these proteins act as proteases and cleave other components successively in amplification pathways leading to exponential generation of final effectors. Three major pathways of complement pathways have been described, namely the classical, alternative and lectin pathways which are activated by different stimuli. However, all the 3 pathways converge on Complement C3. Cleavage of C3 and C5 successively leads to the production of the membrane attack complex which is final common effector. Excessive and uncontrolled activation of the complement has been implicated in the host of autoimmune diseases. But the complement has also been bemusedly described as the proverbial "double edged sword". On one hand, complement is the final effector of tissue injury in autoimmune diseases and on the other, deficiencies of some components of the complement can result in autoimmune diseases. Currently available tools such as enzyme based immunoassays for functional assessment of complement pathways, flow cytometry, next generation sequencing and proteomics-based approaches provide an exciting opportunity to study this ancient yet mysterious element of innate immunity.

  19. NF-κB and enhancer-binding CREB protein scaffolded by CREB-binding protein (CBP)/p300 proteins regulate CD59 protein expression to protect cells from complement attack.

    Science.gov (United States)

    Du, Yiqun; Teng, Xiaoyan; Wang, Na; Zhang, Xin; Chen, Jianfeng; Ding, Peipei; Qiao, Qian; Wang, Qingkai; Zhang, Long; Yang, Chaoqun; Yang, Zhangmin; Chu, Yiwei; Du, Xiang; Zhou, Xuhui; Hu, Weiguo

    2014-01-31

    The complement system can be activated spontaneously for immune surveillance or induced to clear invading pathogens, in which the membrane attack complex (MAC, C5b-9) plays a critical role. CD59 is the sole membrane complement regulatory protein (mCRP) that restricts MAC assembly. CD59, therefore, protects innocent host cells from attacks by the complement system, and host cells require the constitutive and inducible expression of CD59 to protect themselves from deleterious destruction by complement. However, the mechanisms that underlie CD59 regulation remain largely unknown. In this study we demonstrate that the widely expressed transcription factor Sp1 may regulate the constitutive expression of CD59, whereas CREB-binding protein (CBP)/p300 bridge NF-κB and CREB, which surprisingly functions as an enhancer-binding protein to induce the up-regulation of CD59 during in lipopolysaccharide (LPS)-triggered complement activation, thus conferring host defense against further MAC-mediated destruction. Moreover, individual treatment with LPS, TNF-α, and the complement activation products (sublytic MAC (SC5b-9) and C5a) could increase the expression of CD59 mainly by activating NF-κB and CREB signaling pathways. Together, our findings identify a novel gene regulation mechanism involving CBP/p300, NF-κB, and CREB; this mechanism suggests potential drug targets for controlling various complement-related human diseases.

  20. A tyrosine-rich cell surface protein in the diatom Amphora coffeaeformis identified through transcriptome analysis and genetic transformation.

    Directory of Open Access Journals (Sweden)

    Matthias T Buhmann

    Full Text Available Diatoms are single-celled eukaryotic microalgae that are ubiquitously found in almost all aquatic ecosystems, and are characterized by their intricately structured SiO2 (silica-based cell walls. Diatoms with a benthic life style are capable of attaching to any natural or man-made submerged surface, thus contributing substantially to both microbial biofilm communities and economic losses through biofouling. Surface attachment of diatoms is mediated by a carbohydrate- and protein- based glue, yet no protein involved in diatom underwater adhesion has been identified so far. In the present work, we have generated a normalized transcriptome database from the model adhesion diatom Amphora coffeaeformis. Using an unconventional bioinformatics analysis we have identified five proteins that exhibit unique amino acid sequences resembling the amino acid composition of the tyrosine-rich adhesion proteins from mussel footpads. Establishing the first method for the molecular genetic transformation of A. coffeaeformis has enabled investigations into the function of one of these proteins, AC3362, through expression as YFP fusion protein. Biochemical analysis and imaging by fluorescence microscopy revealed that AC3362 is not involved in adhesion, but rather plays a role in biosynthesis and/or structural stability of the cell wall. The methods established in the present study have paved the way for further molecular studies on the mechanisms of underwater adhesion and biological silica formation in the diatom A. coffeaeformis.

  1. De Novo Assembly of the Donkey White Blood Cell Transcriptome and a Comparative Analysis of Phenotype-Associated Genes between Donkeys and Horses.

    Science.gov (United States)

    Xie, Feng-Yun; Feng, Yu-Long; Wang, Hong-Hui; Ma, Yun-Feng; Yang, Yang; Wang, Yin-Chao; Shen, Wei; Pan, Qing-Jie; Yin, Shen; Sun, Yu-Jiang; Ma, Jun-Yu

    2015-01-01

    Prior to the mechanization of agriculture and labor-intensive tasks, humans used donkeys (Equus africanus asinus) for farm work and packing. However, as mechanization increased, donkeys have been increasingly raised for meat, milk, and fur in China. To maintain the development of the donkey industry, breeding programs should focus on traits related to these new uses. Compared to conventional marker-assisted breeding plans, genome- and transcriptome-based selection methods are more efficient and effective. To analyze the coding genes of the donkey genome, we assembled the transcriptome of donkey white blood cells de novo. Using transcriptomic deep-sequencing data, we identified 264,714 distinct donkey unigenes and predicted 38,949 protein fragments. We annotated the donkey unigenes by BLAST searches against the non-redundant (NR) protein database. We also compared the donkey protein sequences with those of the horse (E. caballus) and wild horse (E. przewalskii), and linked the donkey protein fragments with mammalian phenotypes. As the outer ear size of donkeys and horses are obviously different, we compared the outer ear size-associated proteins in donkeys and horses. We identified three ear size-associated proteins, HIC1, PRKRA, and KMT2A, with sequence differences among the donkey, horse, and wild horse loci. Since the donkey genome sequence has not been released, the de novo assembled donkey transcriptome is helpful for preliminary investigations of donkey cultivars and for genetic improvement.

  2. De Novo Assembly of the Donkey White Blood Cell Transcriptome and a Comparative Analysis of Phenotype-Associated Genes between Donkeys and Horses.

    Directory of Open Access Journals (Sweden)

    Feng-Yun Xie

    Full Text Available Prior to the mechanization of agriculture and labor-intensive tasks, humans used donkeys (Equus africanus asinus for farm work and packing. However, as mechanization increased, donkeys have been increasingly raised for meat, milk, and fur in China. To maintain the development of the donkey industry, breeding programs should focus on traits related to these new uses. Compared to conventional marker-assisted breeding plans, genome- and transcriptome-based selection methods are more efficient and effective. To analyze the coding genes of the donkey genome, we assembled the transcriptome of donkey white blood cells de novo. Using transcriptomic deep-sequencing data, we identified 264,714 distinct donkey unigenes and predicted 38,949 protein fragments. We annotated the donkey unigenes by BLAST searches against the non-redundant (NR protein database. We also compared the donkey protein sequences with those of the horse (E. caballus and wild horse (E. przewalskii, and linked the donkey protein fragments with mammalian phenotypes. As the outer ear size of donkeys and horses are obviously different, we compared the outer ear size-associated proteins in donkeys and horses. We identified three ear size-associated proteins, HIC1, PRKRA, and KMT2A, with sequence differences among the donkey, horse, and wild horse loci. Since the donkey genome sequence has not been released, the de novo assembled donkey transcriptome is helpful for preliminary investigations of donkey cultivars and for genetic improvement.

  3. Investigation of Gene Expression Profile of A549 Cells after Overexpression of GPC5 
by High Throughput Transcriptome Sequencing

    Directory of Open Access Journals (Sweden)

    Haitian ZHANG

    2016-08-01

    Full Text Available Background and objective Glypican-5 (GPC5 is an important tumor suppressor, while little is known about the impact of GPC5 on proliferation ability and gene expression in lung adenocarcinoma cell lines. Here, we stably overexpressed GPC5 in A549 cells and investigated the impact of cell proliferation ability and gene expression. Methods A549 cells that stably overexpressed GPC5 were constructed by lentivirus. Cell counter kit 8 (CCK8, colony formation, EdU assay were conducted to analyze cell proliferation ability, and transcriptome sequencing was utilized to investigate gene expression profile. Results CCK8 assay showed that compared with empty vector, overexpression of GPC5 significantly inhibited cell proliferation rate in A549 cells and the number of colony was also decreased (181±17 vs 278±23. EdU assay also confirmed the percentage of positive staining cells decreased after GPC5 overexpression. Transcriptome sequencing revealed that 2,108 genes were differentially expressed after GPC5 overexpression. Among these differentially expressed genes, 47 genes of the Gene Ontology item “positive regulation of cell proliferation” were downregulated. Conclusion Overexpression of GPC5 inhibited proliferation ability in lung adenocarcinoma A549 cells and genes with the function of “positive regulation of cell proliferation” were downregulated.

  4. Temporal network based analysis of cell specific vein graft transcriptome defines key pathways and hub genes in implantation injury.

    Directory of Open Access Journals (Sweden)

    Manoj Bhasin

    Full Text Available Vein graft failure occurs between 1 and 6 months after implantation due to obstructive intimal hyperplasia, related in part to implantation injury. The cell-specific and temporal response of the transcriptome to vein graft implantation injury was determined by transcriptional profiling of laser capture microdissected endothelial cells (EC and medial smooth muscle cells (SMC from canine vein grafts, 2 hours (H to 30 days (D following surgery. Our results demonstrate a robust genomic response beginning at 2 H, peaking at 12-24 H, declining by 7 D, and resolving by 30 D. Gene ontology and pathway analyses of differentially expressed genes indicated that implantation injury affects inflammatory and immune responses, apoptosis, mitosis, and extracellular matrix reorganization in both cell types. Through backpropagation an integrated network was built, starting with genes differentially expressed at 30 D, followed by adding upstream interactive genes from each prior time-point. This identified significant enrichment of IL-6, IL-8, NF-κB, dendritic cell maturation, glucocorticoid receptor, and Triggering Receptor Expressed on Myeloid Cells (TREM-1 signaling, as well as PPARα activation pathways in graft EC and SMC. Interactive network-based analyses identified IL-6, IL-8, IL-1α, and Insulin Receptor (INSR as focus hub genes within these pathways. Real-time PCR was used for the validation of two of these genes: IL-6 and IL-8, in addition to Collagen 11A1 (COL11A1, a cornerstone of the backpropagation. In conclusion, these results establish causality relationships clarifying the pathogenesis of vein graft implantation injury, and identifying novel targets for its prevention.

  5. Comparative transcriptome analysis in induced neural stem cells reveals defined neural cell identities in vitro and after transplantation into the adult rodent brain.

    Science.gov (United States)

    Hallmann, Anna-Lena; Araúzo-Bravo, Marcos J; Zerfass, Christina; Senner, Volker; Ehrlich, Marc; Psathaki, Olympia E; Han, Dong Wook; Tapia, Natalia; Zaehres, Holm; Schöler, Hans R; Kuhlmann, Tanja; Hargus, Gunnar

    2016-05-01

    Reprogramming technology enables the production of neural progenitor cells (NPCs) from somatic cells by direct transdifferentiation. However, little is known on how neural programs in these induced neural stem cells (iNSCs) differ from those of alternative stem cell populations in vitro and in vivo. Here, we performed transcriptome analyses on murine iNSCs in comparison to brain-derived neural stem cells (NSCs) and pluripotent stem cell-derived NPCs, which revealed distinct global, neural, metabolic and cell cycle-associated marks in these populations. iNSCs carried a hindbrain/posterior cell identity, which could be shifted towards caudal, partially to rostral but not towards ventral fates in vitro. iNSCs survived after transplantation into the rodent brain and exhibited in vivo-characteristics, neural and metabolic programs similar to transplanted NSCs. However, iNSCs vastly retained caudal identities demonstrating cell-autonomy of regional programs in vivo. These data could have significant implications for a variety of in vitro- and in vivo-applications using iNSCs.

  6. Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-κB cistrome to reprogram the prostate cancer cell transcriptome

    Science.gov (United States)

    Malinen, Marjo; Niskanen, Einari A.; Kaikkonen, Minna U.; Palvimo, Jorma J.

    2017-01-01

    Inflammatory processes and androgen signaling are critical for the growth of prostate cancer (PC), the most common cancer among males in Western countries. To understand the importance of potential interplay between pro-inflammatory and androgen signaling for gene regulation, we have interrogated the crosstalk between androgen receptor (AR) and NF-κB, a key transcriptional mediator of inflammatory responses, by utilizing genome-wide chromatin immunoprecipitation sequencing and global run-on sequencing in PC cells. Co-stimulation of LNCaP cells with androgen and pro-inflammatory cytokine TNFα invoked a transcriptome which was very distinct from that induced by either stimulation alone. The altered transcriptome that included gene programs linked to cell migration and invasiveness was orchestrated by significant remodeling of NF-κB and AR cistrome and enhancer landscape. Although androgen multiplied the NF-κB cistrome and TNFα restrained the AR cistrome, there was no general reciprocal tethering of the AR to the NF-κB on chromatin. Instead, redistribution of FOXA1, PIAS1 and PIAS2 contributed to the exposure of latent NF-κB chromatin-binding sites and masking of AR chromatin-binding sites. Taken together, concomitant androgen and pro-inflammatory signaling significantly remodels especially the NF-κB cistrome, reprogramming the PC cell transcriptome in fashion that may contribute to the progression of PC. PMID:27672034

  7. IL-4 and IL-13 induce protection from complement and melittin in endothelial cells despite initial loss of cytoplasmic proteins: membrane resealing impairs quantifying cytotoxicity with the lactate dehydrogenase permeability assay.

    Science.gov (United States)

    Benson, Barbara A; Vercellotti, Gregory M; Dalmasso, Agustin P

    2015-01-01

    Endothelial cell activation and injury by the terminal pathway of complement is important in various pathobiological processes, including xenograft rejection. Protection against injury by human complement can be induced in porcine endothelial cells (ECs) with IL-4 and IL-13 through metabolic activation. However, despite this resistance, the complement-treated ECs were found to lose membrane permeability control assessed with the small molecule calcein. Therefore, to define the apparent discrepancy of permeability changes vis-à-vis the protection from killing, we now investigated whether IL-4 and IL-13 influence the release of the large cytoplasmic protein lactate dehydrogenase (LDH) in ECs incubated with complement or the pore-forming protein melittin. Primary cultures of ECs were pre-treated with IL-4 or IL-13 and then incubated with human serum as source of antibody and complement or melittin. Cell death was assessed using neutral red. Membrane permeability was quantitated measuring LDH release. We found that IL-4-/IL-13-induced protection of ECs from killing by complement or melittin despite loss of LDH in amounts similar to control ECs. However, the cytokine-treated ECs that were protected from killing rapidly regained effective control of membrane permeability. Moreover, the viability of the protected ECs was maintained for at least 2 days. We conclude that the protection induced by IL-4/IL-13 in ECs against lethal attack by complement or melittin is effective and durable despite severe initial impairment of membrane permeability. The metabolic changes responsible for protection allow the cells to repair the membrane injury caused by complement or melittin.

  8. Genomic amplification of Fanconi anemia complementation group A (FancA) in head and neck squamous cell carcinoma (HNSCC): Cellular mechanisms of radioresistance and clinical relevance.

    Science.gov (United States)

    Hess, Julia; Unger, Kristian; Orth, Michael; Schötz, Ulrike; Schüttrumpf, Lars; Zangen, Verena; Gimenez-Aznar, Igor; Michna, Agata; Schneider, Ludmila; Stamp, Ramona; Selmansberger, Martin; Braselmann, Herbert; Hieber, Ludwig; Drexler, Guido A; Kuger, Sebastian; Klein, Diana; Jendrossek, Verena; Friedl, Anna A; Belka, Claus; Zitzelsberger, Horst; Lauber, Kirsten

    2017-02-01

    Radio (chemo) therapy is a crucial treatment modality for head and neck squamous cell carcinoma (HNSCC), but relapse is frequent, and the underlying mechanisms remain largely elusive. Therefore, novel biomarkers are urgently needed. Previously, we identified gains on 16q23-24 to be associated with amplification of the Fanconi anemia A (FancA) gene and to correlate with reduced progression-free survival after radiotherapy. Here, we analyzed the effects of FancA on radiation sensitivity in vitro, characterized the underlying mechanisms, and evaluated their clinical relevance. Silencing of FancA expression in HNSCC cell lines with genomic gains on 16q23-24 resulted in significantly impaired clonogenic survival upon irradiation. Conversely, overexpression of FancA in immortalized keratinocytes conferred increased survival accompanied by improved DNA repair, reduced accumulation of chromosomal translocations, but no hyperactivation of the FA/BRCA-pathway. Downregulation of interferon signaling as identified by microarray analyses, enforced irradiation-induced senescence, and elevated production of the senescence-associated secretory phenotype (SASP) appeared to be candidate mechanisms contributing to FancA-mediated radioresistance. Data of the TCGA HNSCC cohort confirmed the association of gains on 16q24.3 with FancA overexpression and impaired overall survival. Importantly, transcriptomic alterations similar to those observed upon FancA overexpression in vitro strengthened the clinical relevance. Overall, FancA amplification and overexpression appear to be crucial for radiotherapeutic failure in HNSCC.

  9. Role of complement in xenotransplantation.

    Science.gov (United States)

    Mollnes, Tom Eirik; Fiane, A E

    2002-01-01

    The xenotransplantation research is driven by the increasing gap between the number of patients with end-stage organ failure on waiting lists for transplantation and the supply of allografts. The lack of success in developing suitable artificial organs for permanent treatment of organ failure has further strengthened the need for xenotransplantation research. Pigs are now generally accepted to be the source animal of choice. Transplantation of pig organs to humans faces several barriers which have to be overcome before it comes to clinical application: (1) anatomical and physiological conditions; (2) immunological rejection mechanisms; (3) molecular compatibility between signal molecules of the two species; (4) risk of transmission of microorganisms, particularly pig endogenous retroviruses; and (5) legal and ethical aspects both with respect to the animal and the recipient. Here we will focus on the role of the complement system in the rejection of immediately vascularized pig-to-primate xenografts. The hyperacute rejection occurring within minutes after transplantation is mediated by binding of natural antibodies to the Galalpha(l-3)Gal epitope on the endothelial cells with subsequent complement activation. Whereas inhibition of complement activation protects against hyperacute rejection, the role of complement in the later rejection phases is less clarified.

  10. The transcriptome of corona radiata cells from individual MII oocytes that after ICSI developed to embryos selected for transfer: PCOS women compared to healthy women

    DEFF Research Database (Denmark)

    Wissing, Marie Louise; Sonne, Si Brask; Westergaard, David;

    2014-01-01

    individual oocytes developing into embryos selected for transfer. CRCs were isolated in a two-step denudation procedure, separating outer cumulus cells from the inner CRCs. Extracted RNA was amplified and transcriptome profiling was performed with Human Agilent® arrays. The transcriptomes of CRCs showed......-related genes and cell cycle pathways in PCOS CRCs could indicate a disturbed or delayed final maturation and differentiation of the CRCs in response to the human chorionic gonadotropin (hCG) surge. However, this had no effect on the in vitro development of the corresponding embryos. Future studies are needed....... It is controversial whether PCOS associate with diminished oocyte quality. The purpose of this study was to compare individual human CRC samples between PCOS patients and controls. All patients were stimulated by the long gonadotropin-releasing hormone (GnRH) agonist protocol. The CRC samples originated from...

  11. The transcriptome of corona radiata cells from individual MII oocytes that after ICSI developed to embryos selected for transfer: PCOS women compared to healthy women

    DEFF Research Database (Denmark)

    Wissing, Marie Louise; Sonne, Si Brask; Westergaard, David;

    2014-01-01

    . It is controversial whether PCOS associate with diminished oocyte quality. The purpose of this study was to compare individual human CRC samples between PCOS patients and controls. All patients were stimulated by the long gonadotropin-releasing hormone (GnRH) agonist protocol. The CRC samples originated from...... individual oocytes developing into embryos selected for transfer. CRCs were isolated in a two-step denudation procedure, separating outer cumulus cells from the inner CRCs. Extracted RNA was amplified and transcriptome profiling was performed with Human Agilent® arrays. The transcriptomes of CRCs showed...... no individual genes with significant differential expression between PCOS and controls, but gene set enrichment analysis identified several cell cycle- and DNA replication pathways overexpressed in PCOS CRCs (FDR

  12. Adaptive immune response to whole cell pertussis vaccine reflects vaccine quality : A possible complementation to the Pertussis Serological Potency test

    NARCIS (Netherlands)

    Hoonakker, M E; Verhagen, L M; van der Maas, L; Metz, B; Uittenbogaard, J P; van de Waterbeemd, B; van Els, C A C M; van Eden, W; Hendriksen, C F M; Sloots, A; Han, W G H

    2016-01-01

    Whole cell Bordetella pertussis (wP) vaccines are still used in many countries to protect against the respiratory disease pertussis. The potency of whole-cell pertussis vaccine lots is determined by an intracerebral challenge test (the Kendrick test). This test is criticized due to lack of immunolog

  13. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4⁺ T cells.

    Science.gov (United States)

    Arbore, Giuseppina; West, Erin E; Spolski, Rosanne; Robertson, Avril A B; Klos, Andreas; Rheinheimer, Claudia; Dutow, Pavel; Woodruff, Trent M; Yu, Zu Xi; O'Neill, Luke A; Coll, Rebecca C; Sher, Alan; Leonard, Warren J; Köhl, Jörg; Monk, Pete; Cooper, Matthew A; Arno, Matthew; Afzali, Behdad; Lachmann, Helen J; Cope, Andrew P; Mayer-Barber, Katrin D; Kemper, Claudia

    2016-06-17

    The NLRP3 inflammasome controls interleukin-1β maturation in antigen-presenting cells, but a direct role for NLRP3 in human adaptive immune cells has not been described. We found that the NLRP3 inflammasome assembles in human CD4(+) T cells and initiates caspase-1-dependent interleukin-1β secretion, thereby promoting interferon-γ production and T helper 1 (T(H)1) differentiation in an autocrine fashion. NLRP3 assembly requires intracellular C5 activation and stimulation of C5a receptor 1 (C5aR1), which is negatively regulated by surface-expressed C5aR2. Aberrant NLRP3 activity in T cells affects inflammatory responses in human autoinflammatory disease and in mouse models of inflammation and infection. Our results demonstrate that NLRP3 inflammasome activity is not confined to "innate immune cells" but is an integral component of normal adaptive T(H)1 responses.

  14. Expression of membrane complement regulators, CD46, CD55 and CD59, in mesothelial cells of patients on peritoneal dialysis therapy.

    Science.gov (United States)

    Sei, Yumi; Mizuno, Masashi; Suzuki, Yasuhiro; Imai, Masaki; Higashide, Keiko; Harris, Claire L; Sakata, Fumiko; Iguchi, Daiki; Fujiwara, Michitaka; Kodera, Yasuhiro; Maruyama, Shoichi; Matsuo, Seiichi; Ito, Yasuhiko

    2015-06-01

    We investigated the expression of membrane complement regulators (CRegs), CD46, CD55 and CD59 in human mesothelial cells, and correlated with clinical background and level of complement (C) activation products in peritoneal dialysis (PD) fluids (PDF) to clarify influence of the C activation system in PD patients. Expression of CRegs was assessed on primary cultures of mesothelial cells (HPMC) harvested from PD fluid of 31 PD patients. Because expression of CD55 but not CD46 and CD59 in mesothelial cells was significantly correlated to value of dialysate-to-plasma creatinine concentration ratio (D/P Cre) (p<0.005) as an indicator of peritoneal function, we focused on analysis of CD55 expression of HPMCs in comparison with levels of C activation products in the PDF of the PD patients, and their background factors. When comparing expression of the CRegs between systemic neutrophils and HPMC, no correlation was observed, supporting that change of CRegs' expression in HPMC was independently occurring in the peritoneum. Expression of CD55 protein in HPMC was closely correlated with expression at the mRNA level (p<0.0001) and was inversely correlated with levels of sC5b-9 (p<0.05), but not C3, C4, IL6 and CA125 in the PDF. Complications of diabetes, usage of icodextrin and residual renal function were not correlated with change of CD55 expression in HPMCs. Our data show that the process of PD therapy modifies expression of CD55 on peritoneal mesothelium and triggers local C activation. These findings support efforts to modify PD therapy to limit effects on activation and regulation of the C system.

  15. Transcriptome Analysis of CD4+ T Cells in Coeliac Disease Reveals Imprint of BACH2 and IFNγ Regulation.

    Directory of Open Access Journals (Sweden)

    Emma M Quinn

    Full Text Available Genetic studies have to date identified 43 genome wide significant coeliac disease susceptibility (CD loci comprising over 70 candidate genes. However, how altered regulation of such disease associated genes contributes to CD pathogenesis remains to be elucidated. Recently there has been considerable emphasis on characterising cell type specific and stimulus dependent genetic variants. Therefore in this study we used RNA sequencing to profile over 70 transcriptomes of CD4+ T cells, a cell type crucial for CD pathogenesis, in both stimulated and resting samples from individuals with CD and unaffected controls. We identified extensive transcriptional changes across all conditions, with the previously established CD gene IFNy the most strongly up-regulated gene (log2 fold change 4.6; P(adjusted = 2.40x10(-11 in CD4+ T cells from CD patients compared to controls. We show a significant correlation of differentially expressed genes with genetic studies of the disease to date (P(adjusted = 0.002, and 21 CD candidate susceptibility genes are differentially expressed under one or more of the conditions used in this study. Pathway analysis revealed significant enrichment of immune related processes. Co-expression network analysis identified several modules of coordinately expressed CD genes. Two modules were particularly highly enriched for differentially expressed genes (P<2.2x10(-16 and highlighted IFNy and the genetically associated transcription factor BACH2 which showed significantly reduced expression in coeliac samples (log2FC -1.75; P(adjusted = 3.6x10(-3 as key regulatory genes in CD. Genes regulated by BACH2 were very significantly over-represented among our differentially expressed genes (P<2.2x10(-16 indicating that reduced expression of this master regulator of T cell differentiation promotes a pro-inflammatory response and strongly corroborates genetic evidence that BACH2 plays an important role in CD pathogenesis.

  16. Time-Course Study of the Transcriptome of Peripheral Blood Mononuclear Cells (PBMCs) from Sheep Infected with Fasciola hepatica

    Science.gov (United States)

    Scheerlinck, Jean-Pierre; Ansell, Brendan R. E.; Hall, Ross S.; Gasser, Robin B.; Jex, Aaron R.

    2016-01-01

    Fasciola hepatica is a parasitic trematode that infects a wide range of mammalian hosts, including livestock and humans, in temperate and tropical regions globally. This trematode causes the disease fascioliasis, which consists of an acute phase (≤ 12 weeks) during which juvenile parasites migrate through the host liver tissues, and a chronic phase (> 12 weeks) following the establishment of adult parasites in the liver bile ducts. Few studies have explored the progression of the host response over the course of Fasciola infection in the same animals. In this study, we characterized transcriptomic changes in peripheral blood mononuclear cells (PBMCs) collected from sheep at three time points over the first eight weeks of infection relative to uninfected controls. In total, 183 and 76 genes were found to be differentially transcribed at two and eight weeks post-infection respectively. Functional and pathway analysis of differentially transcribed genes revealed changes related to T-cell activation that may underpin a Th2-biased immune response against this parasite. This first insight into the dynamics of host responses during the early stages of infection improves the understanding of the pathogenesis of acute fascioliasis, informs vaccine development and presents a set of PBMC markers with diagnostic potential. PMID:27438474

  17. The role of complement in AMD.

    Science.gov (United States)

    Zipfel, Peter F; Lauer, Nadine; Skerka, Christine

    2010-01-01

    Age related macular degeneration (AMD) is a common form of blindness in the western world and genetic variations of several complement genes, including the complement regulator Factor H, the central complement component C3, Factor B, C2, and also Factor I confer a risk for the disease. However deletion of a chromosomal segment in the Factor H gene cluster on human chromosome 1, which results in the deficiency of the terminal pathway regulator CFHR1, and of the putative complement regulator CFHR3 has a protective effect for development of AMD. The Factor H gene encodes two proteins Factor H and FHL1 which are derived from alternatively processed transcripts. In particular a sequence variation at position 402 of both Factor H and FHL1 is associated with a risk for AMD. A tyrosine residue at position 402 represents the protective and a histidine residue the risk variant. AMD is considered a chronic inflammatory disease, which can be caused by defective and inappropriate regulation of the continuously activated alternative complement pathway. This activation generates complement effector products and inflammatory mediators that stimulate further inflammatory reactions. Defective regulation can lead to formation of immune deposits, drusen and ultimately translate into damage of retinal pigment epithelial cells, rupture of the interface between these epithelial cells and the Bruch's membrane and vision loss. Here we describe the role of complement in the retina and summarize the current concept how defective or inappropriate local complement control contributes to inflammation and the pathophysiology of AMD.

  18. Autocrine Effects of Tumor-Derived Complement

    Directory of Open Access Journals (Sweden)

    Min Soon Cho

    2014-03-01

    Full Text Available We describe a role for the complement system in enhancing cancer growth. Cancer cells secrete complement proteins that stimulate tumor growth upon activation. Complement promotes tumor growth via a direct autocrine effect that is partially independent of tumor-infiltrating cytotoxic T cells. Activated C5aR and C3aR signal through the PI3K/AKT pathway in cancer cells, and silencing the PI3K or AKT gene in cancer cells eliminates the progrowth effects of C5aR and C3aR stimulation. In patients with ovarian or lung cancer, higher tumoral C3 or C5aR mRNA levels were associated with decreased overall survival. These data identify a role for tumor-derived complement proteins in promoting tumor growth, and they therefore have substantial clinical and therapeutic implications.

  19. The epidermal growth factor receptor is a regulator of epidermal complement component expression and complement activation

    DEFF Research Database (Denmark)

    Abu-Humaidan, Anas H A; Ananthoju, Nageshwar; Mohanty, Tirthankar;

    2014-01-01

    The complement system is activated in response to tissue injury. During wound healing, complement activation seems beneficial in acute wounds but may be detrimental in chronic wounds. We found that the epidermal expression of many complement components was only increased to a minor extent in skin...... wounds in vivo and in cultured keratinocytes after exposure to supernatant from stimulated mononuclear cells. In contrast, the epidermal expression of complement components was downregulated in ex vivo injured skin lacking the stimulation from infiltrating inflammatory cells but with intact injury......-induced epidermal growth factor receptor (EGFR)-mediated growth factor response. In cultured primary keratinocytes, stimulation with the potent EGFR ligand, TGF-α, yielded a significant downregulation of complement component expression. Indeed, EGFR inhibition significantly enhanced the induction of complement...

  20. Transcriptome atlas of eight liver cell types uncovers effects of histidine catabolites on rat liver regeneration

    Indian Academy of Sciences (India)

    C. F. Chang; J. Y. Fan; F. C. Zhang; J. Ma; C. S. Xu

    2010-12-01

    Eight liver cell types were isolated using the methods of Percoll density gradient centrifugation and immunomagnetic beads to explore effects of histidine catabolites on rat liver regeneration. Rat Genome 230 2.0 Array was used to detect the expression profiles of genes associated with metabolism of histidine and its catabolites for the above-mentioned eight liver cell types, and bioinformatic and systems biology approaches were employed to analyse the relationship between above genes and rat liver regeneration. The results showed that the urocanic acid (UA) was degraded from histidine in Kupffer cells, acts on Kupffer cells itself and dendritic cells to generate immune suppression by autocrine and paracrine modes. Hepatocytes, biliary epithelia cells, oval cells and dendritic cells can convert histidine to histamine, which can promote sinusoidal endothelial cells proliferation by GsM pathway, and promote the proliferation of hepatocytes and biliary epithelia cells by GqM pathway.

  1. Transcriptomic-Wide Discovery of Direct and Indirect HuR RNA Targets in Activated CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Patsharaporn Techasintana

    Full Text Available Due to poor correlation between steady state mRNA levels and protein product, purely transcriptomic profiling methods may miss genes posttranscriptionally regulated by RNA binding proteins (RBPs and microRNAs (miRNAs. RNA immunoprecipitation (RIP methods developed to identify in vivo targets of RBPs have greatly elucidated those mRNAs which may be regulated via transcript stability and translation. The RBP HuR (ELAVL1 and family members are major stabilizers of mRNA. Many labs have identified HuR mRNA targets; however, many of these analyses have been performed in cell lines and oftentimes are not independent biological replicates. Little is known about how HuR target mRNAs behave in conditional knock-out models. In the present work, we performed HuR RIP-Seq and RNA-Seq to investigate HuR direct and indirect targets using a novel conditional knock-out model of HuR genetic ablation during CD4+ T activation and Th2 differentiation. Using independent biological replicates, we generated a high coverage RIP-Seq data set (>160 million reads that was analyzed using bioinformatics methods specifically designed to find direct mRNA targets in RIP-Seq data. Simultaneously, another set of independent biological replicates were sequenced by RNA-Seq (>425 million reads to identify indirect HuR targets. These direct and indirect targets were combined to determine canonical pathways in CD4+ T cell activation and differentiation for which HuR plays an important role. We show that HuR may regulate genes in multiple canonical pathways involved in T cell activation especially the CD28 family signaling pathway. These data provide insights into potential HuR-regulated genes during T cell activation and immune mechanisms.

  2. Complement system part II: role in immunity

    Directory of Open Access Journals (Sweden)

    Nicolas S. Merle

    2015-05-01

    Full Text Available The complement system has been considered for a long time as a simple lytic system, aimed to kill bacteria infecting the host organism. Nowadays this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing a direct killing by C5b-9 membrane attack complex by triggering inflammatory responses with the anaphylatoxins C3a and C5a and helps the mounting of an adaptive immune response, involving antigen presenting cells, T- and B- lymphocytes. But it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Also examples will be discussed, where inadequate complement activation becomes a disease cause, including atypical hemolytic uremic syndrome (aHUS, C3 glomerulopathies (C3G and systemic lupus erythematosus (SLE. Age related macular degeneration (AMD and cancer will be described as examples showing that complement contributes to a large variety of diseases, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target.

  3. Complement System Part II: Role in Immunity

    Science.gov (United States)

    Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922

  4. Complement component C5a permits the coexistence of pathogenic Th17 cells and type I IFN in lupus.

    Science.gov (United States)

    Pawaria, Sudesh; Ramani, Kritika; Maers, Kelly; Liu, Youhua; Kane, Lawrence P; Levesque, Marc C; Biswas, Partha S

    2014-10-01

    Systemic lupus erythematosus (SLE) is a type I IFN (IFN-I)-driven autoimmune disorder with exaggerated B and Th cell responses. Th17 cells, a recently identified Th cell subset, have been strongly implicated in the pathogenesis of SLE. Because IFN-I suppresses the generation and expansion of Th17 cells in an IL-27-dependent manner, it is unclear how pathogenic Th17 cells are generated in SLE in the presence of an environment characterized by high IFN-I levels. In this study, we showed that activation of c5aR on murine macrophages blocked IFN-I-mediated IL-27 production, thus permitting the development of Th17 cells. C5aR activation on IFN-I-responsive macrophages inhibits IRF-1-mediated transactivation of IL-27 gene expression via the PI3K/Akt pathway. Consistently, C5aR-deficient mice exhibited increased IL-27 expression and fewer Th17 cells and consequently developed reduced lupus nephritis in comparison with wild-type mice. In support of these findings in mice, we found that C5a inhibited IFN-I-induced IL-27 production from macrophages of lupus subjects. Moreover, the level of serum C5a correlated with Th17 frequency in peripheral blood. Collectively, these data indicate an essential role for C5a in the generation of pathogenic Th17 responses in SLE. Thus, therapeutic strategies to block C5aR activation may be beneficial for controlling pathogenic Th17-mediated inflammation in SLE.

  5. Proteomics and Transcriptomics of BJAB Cells Expressing the Epstein-Barr Virus Noncoding RNAs EBER1 and EBER2.

    Directory of Open Access Journals (Sweden)

    Genaro Pimienta

    Full Text Available In Epstein-Barr virus (EBV latent infection, the EBV-encoded RNAs EBER1 and EBER2 accumulate in the host cell nucleus to ~10(6 copies. While the expression of EBERs in cell lines is associated with transformation, a mechanistic explanation of their roles in EBV latency remains elusive. To identify EBER-specific gene expression features, we compared the proteome and mRNA transcriptome from BJAB cells (an EBV-negative B lymphoma cell line stably transfected with an empty plasmid or with one carrying both EBER genes. We identified ~1800 proteins with at least 2 SILAC pair measurements, of which only 8 and 12 were up- and downregulated ≥ 2-fold, respectively. One upregulated protein was PIK3AP1, a B-cell specific protein adapter known to activate the PI3K-AKT signaling pathway, which regulates alternative splicing and translation in addition to its pro-survival effects. In the mRNA-seq data, the mRNA levels for some of the proteins changing in the SILAC data did not change. We instead observed isoform switch events. We validated the most relevant findings with biochemical assays. These corroborated the upregulation of PIK3AP1 and AKT activation in BJAB cells expressing high levels of both EBERs and EBNA1 (a surrogate of Burkitt's lymphoma EBV latency I relative to those expressing only EBNA1. The mRNA-seq data in these cells showed multiple upregulated oncogenes whose mRNAs are enriched for 3´-UTR AU-rich elements (AREs, such as ccl3, ccr7, il10, vegfa and zeb1. The CCL3, CCR7, IL10 and VEGFA proteins promote cell proliferation and are associated with EBV-mediated lymphomas. In EBV latency, ZEB1 represses the transcription of ZEBRA, an EBV lytic phase activation factor. We previously found that EBER1 interacts with AUF1 in vivo and proposed stabilization of ARE-containing mRNAs. Thus, the ~10(6 copies of EBER1 may promote not only cell proliferation due to an increase in the levels of ARE-containing genes like ccl3, ccr7, il10, and vegfa, but

  6. Proteomics and Transcriptomics of BJAB Cells Expressing the Epstein-Barr Virus Noncoding RNAs EBER1 and EBER2.

    Science.gov (United States)

    Pimienta, Genaro; Fok, Victor; Haslip, Maria; Nagy, Maria; Takyar, Seyedtaghi; Steitz, Joan A

    2015-01-01

    In Epstein-Barr virus (EBV) latent infection, the EBV-encoded RNAs EBER1 and EBER2 accumulate in the host cell nucleus to ~10(6) copies. While the expression of EBERs in cell lines is associated with transformation, a mechanistic explanation of their roles in EBV latency remains elusive. To identify EBER-specific gene expression features, we compared the proteome and mRNA transcriptome from BJAB cells (an EBV-negative B lymphoma cell line) stably transfected with an empty plasmid or with one carrying both EBER genes. We identified ~1800 proteins with at least 2 SILAC pair measurements, of which only 8 and 12 were up- and downregulated ≥ 2-fold, respectively. One upregulated protein was PIK3AP1, a B-cell specific protein adapter known to activate the PI3K-AKT signaling pathway, which regulates alternative splicing and translation in addition to its pro-survival effects. In the mRNA-seq data, the mRNA levels for some of the proteins changing in the SILAC data did not change. We instead observed isoform switch events. We validated the most relevant findings with biochemical assays. These corroborated the upregulation of PIK3AP1 and AKT activation in BJAB cells expressing high levels of both EBERs and EBNA1 (a surrogate of Burkitt's lymphoma EBV latency I) relative to those expressing only EBNA1. The mRNA-seq data in these cells showed multiple upregulated oncogenes whose mRNAs are enriched for 3´-UTR AU-rich elements (AREs), such as ccl3, ccr7, il10, vegfa and zeb1. The CCL3, CCR7, IL10 and VEGFA proteins promote cell proliferation and are associated with EBV-mediated lymphomas. In EBV latency, ZEB1 represses the transcription of ZEBRA, an EBV lytic phase activation factor. We previously found that EBER1 interacts with AUF1 in vivo and proposed stabilization of ARE-containing mRNAs. Thus, the ~10(6) copies of EBER1 may promote not only cell proliferation due to an increase in the levels of ARE-containing genes like ccl3, ccr7, il10, and vegfa, but also the

  7. Unbiased transcriptome signature of in vivo cell proliferation reveals pro- and antiproliferative gene networks.

    Science.gov (United States)

    Cohen, Meital; Vecsler, Manuela; Liberzon, Arthur; Noach, Meirav; Zlotorynski, Eitan; Tzur, Amit

    2013-09-15

    Different types of mature B-cell lymphocytes are overall highly similar. Nevertheless, some B cells proliferate intensively, while others rarely do. Here, we demonstrate that a simple binary classification of gene expression in proliferating vs. resting B cells can identify, with remarkable selectivity, global in vivo regulators of the mammalian cell cycle, many of which are also post-translationally regulated by the APC/C E3 ligase. Consequently, we discover a novel regulatory network between the APC/C and the E2F transcription factors and discuss its potential impact on the G1-S transition of the cell cycle. In addition, by focusing on genes whose expression inversely correlates with proliferation, we demonstrate the inherent ability of our approach to also identify in vivo regulators of cell differentiation, cell survival, and other antiproliferative processes. Relying on data sets of wt, non-transgenic animals, our approach can be applied to other cell lineages and human data sets.

  8. The statistical geometry of transcriptome divergence in cell-type evolution and cancer

    NARCIS (Netherlands)

    Liang, Cong; Forrest, Alistair R R; Wagner, Günter P; Clevers, J.C.

    2015-01-01

    In evolution, body plan complexity increases due to an increase in the number of individualized cell types. Yet, there is very little understanding of the mechanisms that produce this form of organismal complexity. One model for the origin of novel cell types is the sister cell-type model. According

  9. Complement activation and inhibition: a delicate balance

    DEFF Research Database (Denmark)

    Sjöberg, A P; Trouw, L A; Blom, A M

    2009-01-01

    Complement is part of the innate immune defence and not only recognizes microbes but also unwanted host molecules to enhance phagocytosis and clearance. This process of opsonisation must be tightly regulated to prevent immunopathology. Endogenous ligands such as dying cells, extracellular matrix...... proteins, pentraxins, amyloid deposits, prions and DNA, all bind the complement activator C1q, but also interact with complement inhibitors C4b-binding protein and factor H. This contrasts to the interaction between C1q and immune complexes, in which case no inhibitors bind, resulting in full complement...... activation. Disturbances to the complement regulation on endogenous ligands can lead to diseases such as age-related macular degeneration, neurological and rheumatic disorders. A thorough understanding of these processes might be crucial to developing new therapeutic strategies....

  10. Transcriptomic profiles of peripheral white blood cells in type II diabetes and racial differences in expression profiles

    Directory of Open Access Journals (Sweden)

    Mao Jinghe

    2011-12-01

    Full Text Available Abstract Background Along with obesity, physical inactivity, and family history of metabolic disorders, African American ethnicity is a risk factor for type 2 diabetes (T2D in the United States. However, little is known about the differences in gene expression and transcriptomic profiles of blood in T2D between African Americans (AA and Caucasians (CAU, and microarray analysis of peripheral white blood cells (WBCs from these two ethnic groups will facilitate our understanding of the underlying molecular mechanism in T2D and identify genetic biomarkers responsible for the disparities. Results A whole human genome oligomicroarray of peripheral WBCs was performed on 144 samples obtained from 84 patients with T2D (44 AA and 40 CAU and 60 healthy controls (28 AA and 32 CAU. The results showed that 30 genes had significant difference in expression between patients and controls (a fold change of 1.4 with a P value Conclusions These newly identified genetic markers in WBCs provide valuable information about the pathophysiology of T2D and can be used for diagnosis and pharmaceutical drug design. Our results also found that AA and CAU patients with T2D express genes and pathways differently.

  11. Integrated transcriptome analysis of human iPS cells derived from a fragile X syndrome patient during neuronal differentiation.

    Science.gov (United States)

    Lu, Ping; Chen, Xiaolong; Feng, Yun; Zeng, Qiao; Jiang, Cizhong; Zhu, Xianmin; Fan, Guoping; Xue, Zhigang

    2016-11-01

    Fragile X syndrome (FXS) patients carry the expansion of over 200 CGG repeats at the promoter of fragile X mental retardation 1 (FMR1), leading to decreased or absent expression of its encoded fragile X mental retardation protein (FMRP). However, the global transcriptional alteration by FMRP deficiency has not been well characterized at single nucleotide resolution, i.e., RNA-seq. Here, we performed in-vitro neuronal differentiation of human induced pluripotent stem (iPS) cells that were derived from fibroblasts of a FXS patient (FXS-iPSC). We then performed RNA-seq and examined the transcriptional misregulation at each intermediate stage during in-vitro differentiation of FXS-iPSC into neurons. After thoroughly analyzing the transcriptomic data and integrating them with those from other platforms, we found up-regulation of many genes encoding TFs for neuronal differentiation (WNT1, BMP4, POU3F4, TFAP2C, and PAX3), down-regulation of potassium channels (KCNA1, KCNC3, KCNG2, KCNIP4, KCNJ3, KCNK9, and KCNT1) and altered temporal regulation of SHANK1 and NNAT in FXS-iPSC derived neurons, indicating impaired neuronal differentiation and function in FXS patients. In conclusion, we demonstrated that the FMRP deficiency in FXS patients has significant impact on the gene expression patterns during development, which will help to discover potential targeting candidates for the cure of FXS symptoms.

  12. Adaptive immune response to whole cell pertussis vaccine reflects vaccine quality: A possible complementation to the Pertussis Serological Potency test.

    Science.gov (United States)

    Hoonakker, M E; Verhagen, L M; van der Maas, L; Metz, B; Uittenbogaard, J P; van de Waterbeemd, B; van Els, C A C M; van Eden, W; Hendriksen, C F M; Sloots, A; Han, W G H

    2016-08-17

    Whole cell Bordetella pertussis (wP) vaccines are still used in many countries to protect against the respiratory disease pertussis. The potency of whole-cell pertussis vaccine lots is determined by an intracerebral challenge test (the Kendrick test). This test is criticized due to lack of immunological relevance of the read-out after an intracerebral challenge with B. pertussis. The alternative in vivo test, which assesses specific antibody levels in serum after wP vaccination, is the Pertussis Serological Potency test (PSPT). Although the PSPT focuses on a parameter that contributes to protection, the protective immune mechanisms after wP vaccination includes more elements than specific antibody responses only. In this study, additional parameters were investigated, i.e. circulating pro-inflammatory cytokines, antibody specificity and T helper cell responses and it was evaluated whether they can be used as complementary readout parameters in the PSPT to assess wP lot quality. By deliberate manipulation of the vaccine preparation procedure, a panel of high, intermediate and low quality wP vaccines were made. The results revealed that these vaccines induced similar IL-6 and IP10 levels in serum 4h after vaccination (innate responses) and similar antibody levels directed against the entire bacterium. In contrast, the induced antibody specificity to distinct wP antigens differed after vaccination with high, intermediate and low quality wP vaccines. In addition, the magnitude of wP-induced Th cell responses (Th17, Th1 and Th2) was reduced after vaccination with a wP vaccine of low quality. T cell responses and antibody specificity are therefore correlates of qualitative differences in the investigated vaccines, while the current parameter of the PSPT alone was not sensitive enough to distinguish between vaccines of different qualities. This study demonstrates that assessment of the magnitude of Th cell responses and the antigen specificity of antibodies induced by w

  13. Vitamin D and the RNA transcriptome: more than mRNA regulation

    Directory of Open Access Journals (Sweden)

    Moray J Campbell

    2014-05-01

    Full Text Available The GRCh37.p13 primary assembly of the human genome contains 20805 protein coding mRNA, and 37147 non-protein coding genes and pseudogenes that as a result of RNA processing and editing generate 196501 gene transcripts. Given the size and diversity of the human transcriptome, it is timely to revisit what is known of VDR function in the regulation and targeting of transcription.Early transcriptomic studies using microarray approaches focused on the protein coding mRNA that were regulated by the VDR, usually following treatment with ligand. These studies quickly established the approxamte size, and surprising diversity of the VDR transcriptome, revealing it to be highly heterogenous and cell type and time dependent. With the discovery of microRNA, investigators also considered VDR regulation of these non-protein coding RNA. Again, cell and time dependency has emerged. Attempts to integrate mRNA and miRNA regulation patterns are beginning to reveal patterns of co-regulation and interaction that allow for greater control of mRNA expression, and the capacity to govern more complex cellular events. As the awareness of the diversity of non-coding RNA increases, it is evident that VDR actions are mediated through these molecules also. Key knowledge gaps remain over the VDR transcriptome. The causes for the cell and type dependent transcriptional heterogenetiy remain enigmatic. ChIP-Seq approaches have confirmed that VDR binding choices differ very significantly by cell type, but as yet the underlying causes distilling VDR binding choices are unclear. Similarly, it is clear that many of the VDR binding sites are non-canonical in nature but again the mechanisms underlying these interactions are unclear. Finally, although alternative splicing is clearly a very significant process in cellular transcriptional control, the lack of RNA-Seq data centered on VDR function are currently limiting the global assessment of the VDR transcriptome. VDR focused research

  14. Vascular cell transcriptomic changes to exercise training differ directionally along and between skeletal muscle arteriolar trees.

    Science.gov (United States)

    Laughlin, M Harold; Yang, Hsiao T; Tharp, Darla L; Rector, R Scott; Padilla, Jaume; Bowles, Douglas K

    2017-02-01

    EXT-induced arteriolar adaptations in skeletal muscle are heterogeneous because of spatial variations in muscle fiber type composition and fiber recruitment patterns during exercise. The purpose of this report is to summarize a series of experiments conducted to test the hypothesis that changes in vascular gene expression are signaled by alterations in shear stress resulting from increases in blood flow, muscle fiber type composition, and fiber recruitment patterns. We also report results from a follow-up study of Ankrd23, one gene whose expression was changed by EXT. We expected to see differences in magnitude of changes in gene expression along arteriolar trees and between/among arteriolar trees but similar directional changes. However, transcriptional profiles of arterioles/arteries from OLETF rats exposed to END or SIT reveal that EXT does not lead to similar directional changes in the transcriptome among arteriolar trees of different skeletal muscles or along arteriolar trees within a particular muscle. END caused the most changes in gene expression in 2A arterioles of soleus and white gastrocnemius with little to no changes in the FAs. Ingenuity Pathway Analysis across vessels revealed significant changes in gene expression in 18 pathways. EXT increased expression of some genes (Shc1, desert hedgehog protein (Dhh), adenylate cyclase 4 (Adcy4), G protein-binding protein, alpha (Gnat1), and Bcl2l1) in all arterioles examined, but decreased expression of ubiquitin D (Ubd) and cAMP response element modulator (Crem). Many contractile and/or structural protein genes were increased by SIT in the gastrocnemius FA, but the same genes exhibited decreased expression in red gastrocnemius arterioles. Ankrd23 mRNA levels increased with increasing branch order in the gastrocnemius arteriolar tree and were increased 19-fold in gastrocnemius muscle FA by SIT. Follow-up experiments indicate that Ankrd23 mRNA level was increased 14-fold in cannulated gastrocnemius FA when

  15. Finite Complements in English

    Institute of Scientific and Technical Information of China (English)

    Ronald W. Langacker

    2008-01-01

    This paper explores the conceptual basis of finite complimentation in English.It first considem the distinguishing property of a finite clause,namely grounding,effeeted by tense and the modals.Notions crucial for clausal grounding--including a reality conception and the striving for control at the effective and epistemic levelsalso figure in the semantic import of eomplementation.An essential feature of complement constructions is the involvement of multiple conceptualizers,each with their own conception of reality.The different types of complement and their grammatical markings can be characterized on this basis.Finite complements differ from other types by virtue of expressing an autonomous proposition capable of being apprehended by multiple conceptualizers,each from their own vantage point.Acognitive model representing phases in the striving for epistemic control provides a partial basis for the semantic description of predicates taking finite complements.The same model supports the description of both personal and impersonal complement constructions.

  16. Cross-species Transcriptomic Comparison of In Vitro and In Vivo Mammalian Neural Cells

    Science.gov (United States)

    LoVerso, Peter R.; Wachter, Christopher M.; Cui, Feng

    2015-01-01

    The mammalian brain is characterized by distinct classes of cells that differ in morphology, structure, signaling, and function. Dysregulation of gene expression in these cell populations leads to various neurological disorders. Neural cells often need to be acutely purified from animal brains for research, which requires complicated procedure and specific expertise. Primary culture of these cells in vitro is a viable alternative, but the differences in gene expression of cells grown in vitro and in vivo remain unclear. Here, we cultured three major neural cell classes of rat brain (ie, neurons, astrocytes, and oligodendrocyte precursor cells [OPCs]) obtained from commercial sources. We measured transcript abundance of these cell types by RNA sequencing (RNA-seq) and compared with their counterparts acutely purified from mouse brains. Cross-species RNA-seq data analysis revealed hundreds of genes that are differentially expressed between the cultured and acutely purified cells. Astrocytes have more such genes compared to neurons and OPCs, indicating that signaling pathways are greatly perturbed in cultured astrocytes. This dataset provides a powerful resource to demonstrate the similarities and differences of biological processes in mammalian neural cells grown in vitro and in vivo at the molecular level. PMID:26640375

  17. Transcriptomic response of goat mammary epithelial cells to Mycoplasma agalactiae challenge – a preliminary study

    DEFF Research Database (Denmark)

    Ogorevc, Jernej; Mihevc, Sonja Prpar; Hedegaard, Jakob

    2015-01-01

    Mycoplasma agalactiae (Ma) is one of the main aetiological agents of intramammary infections in small ruminants, causing contagious agalactia. To better understand the underlying disease patterns a primary goat mammary epithelial cell (pgMEC) culture was established from the mammary tissue......, steroid metabolism, fatty acid metabolism, apoptosis signalling, transcription regulation, and cell cycle regulation. Based on the results we suggest that mammary epithelial cells in vivo contribute to the immune system by the induced expression of cytokines and other chemotactic agents, activation...

  18. cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules.

    Directory of Open Access Journals (Sweden)

    Erik Limpens

    Full Text Available Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur and proximal region (where symbiosomes are mainly differentiating, as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital "in situ". This digital "in situ" offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.

  19. Decreased complement mediated binding of antibody//sup 3/-dsDNA immune complexes to the red blood cells of patients with systemic lupus erythematosus, rheumatoid arthritis, and hematologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.P.; Horgan, C.; Buschbacher, R.; Brunner, C.M.; Hess, C.E.; O' Brien, W.M.; Wanebo, H.J.

    1983-06-01

    The complement mediated binding of prepared antibody//sup 3/H-dsDNA immune complexes to the red blood cells obtained from a number of patient populations has been investigated. Patients with solid tumors have binding activity similar to that seen in a normal group of individuals. However, a significant fraction of patients with systemic lupus erythematosus, rheumatoid arthritis, and hematologic malignancies have lowered binding activity compared with normal subjects. Quantitative studies indicate the lowered activity probably arises due to a decrease in complement receptors on the respective red blood cells. The potential importance and implications of these findings are briefly discussed.

  20. Cell- and Tissue-Specific Transcriptome Analyses of Medicago truncatula Root Nodules

    NARCIS (Netherlands)

    Limpens, E.H.M.; Moling, S.; Hooiveld, G.J.; Pereira, P.A.; Bisseling, T.; Becker, J.D.; Küster, H.

    2013-01-01

    Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the mod

  1. PROTEIN ENGINEERING TO TARGET COMPLEMENT EVASION IN CANCER

    OpenAIRE

    Carter, Darrick; Lieber, André

    2013-01-01

    The complement system is composed of soluble factors in plasma that enhance or “complement” immune-mediated killing through innate and adaptive mechanisms. Activation of complement causes recruitment of immune cells; opsonization of coated cells; and direct killing of affected cells through a membrane attack complex (MAC). Tumor cells up-regulate complement inhibitory factors -one of several strategies to evade the immune system. In many cases as the tumor progresses, dramatic increases in co...

  2. Transcriptomic Analysis Of Purified Embryonic Neural Stem Cells From Zebrafish Embryos Reveals Signalling Pathways Involved In Glycine-dependent Neurogenesis

    Directory of Open Access Journals (Sweden)

    Eric eSAMARUT

    2016-03-01

    Full Text Available How is the initial set of neurons correctly established during the development of the vertebrate central nervous system? In the embryo, glycine and GABA are depolarizing due the immature chloride gradient, which is only reversed to become hyperpolarizing later in post-natal development. We previously showed that glycine regulates neurogenesis via paracrine signalling that promotes calcium transients in neural stem cells (NSCs and their differentiation into interneurons within the spinal cord of the zebrafish embryo. However, the subjacent molecular mechanisms are not yet understood. Our previous work suggests that early neuronal progenitors were not differentiating correctly in the developing spinal cord. As a result, we aimed at identifying the downstream molecular mechanisms involved specifically in NSCs during glycine-dependent embryonic neurogenesis. Using a gfap:GFP transgenic line, we successfully purified NSCs by fluorescence-activated cell sorting (FACS from whole zebrafish embryos and in embryos in which the glycine receptor was knocked down. The strength of this approach is that it focused on the NSC population while tackling the biological issue in an in vivo context in whole zebrafish embryos. After sequencing the transcriptome by RNA-sequencing, we analyzed the genes whose expression was changed upon disruption of glycine signalling and we confirmed the differential expression by independent RTqPCR assay. While over a thousand genes showed altered expression levels, through pathway analysis we identified 14 top candidate genes belonging to five different canonical signalling pathways (signalling by calcium, TGF-beta, sonic hedgehog, Wnt and p53-related apoptosis that are likely to mediate the promotion of neurogenesis by glycine.

  3. Transcriptome analysis of Enterococcus faecalis during mammalian infection shows cells undergo adaptation and exist in a stringent response state.

    Directory of Open Access Journals (Sweden)

    Kristi L Frank

    Full Text Available As both a commensal and a major cause of healthcare-associated infections in humans, Enterococcus faecalis is a remarkably adaptable organism. We investigated how E. faecalis adapts in a mammalian host as a pathogen by characterizing changes in the transcriptome during infection in a rabbit model of subdermal abscess formation using transcriptional microarrays. The microarray experiments detected 222 and 291 differentially regulated genes in E. faecalis OG1RF at two and eight hours after subdermal chamber inoculation, respectively. The profile of significantly regulated genes at two hours post-inoculation included genes involved in stress response, metabolism, nutrient acquisition, and cell surface components, suggesting genome-wide adaptation to growth in an altered environment. At eight hours post-inoculation, 88% of the differentially expressed genes were down-regulated and matched a transcriptional profile consistent with a (pppGpp-mediated stringent response. Subsequent subdermal abscess infections with E. faecalis mutants lacking the (pppGpp synthetase/hydrolase RSH, the small synthetase RelQ, or both enzymes, suggest that intracellular (pppGpp levels, but not stringent response activation, influence persistence in the model. The ability of cells to synthesize (pppGpp was also found to be important for growth in human serum and whole blood. The data presented in this report provide the first genome-wide insights on E. faecalis in vivo gene expression and regulation measured by transcriptional profiling during infection in a mammalian host and show that (pppGpp levels affect viability of E. faecalis in multiple conditions relevant to mammalian infection. The subdermal abscess model can serve as a novel experimental system for studying the E. faecalis stringent response in the context of the mammalian immune system.

  4. Viral mimicry of the complement system

    Indian Academy of Sciences (India)

    John Bernet; Jayati Mullick; Akhilesh K Singh; Arvind Sahu

    2003-04-01

    The complement system is a potent innate immune mechanism consisting of cascades of proteins which are designed to fight against and annul intrusion of all the foreign pathogens. Although viruses are smaller in size and have relatively simple structure, they are not immune to complement attack. Thus, activation of the complement system can lead to neutralization of cell-free viruses, phagocytosis of C3b-coated viral particles, lysis of virus-infected cells, and generation of inflammatory and specific immune responses. However, to combat host responses and succeed as pathogens, viruses not only have developed/adopted mechanisms to control complement, but also have turned these interactions to their own advantage. Important examples include poxviruses, herpesviruses, retroviruses, paramyxoviruses and picornaviruses. In this review, we provide information on the various complement evasion strategies that viruses have developed to thwart the complement attack of the host. A special emphasis is given on the interactions between the viral proteins that are involved in molecular mimicry and the complement system.

  5. Laboratory tests for disorders of complement and complement regulatory proteins.

    Science.gov (United States)

    Shih, Angela R; Murali, Mandakolathur R

    2015-12-01

    The complement pathway is a cascade of proteases that is involved in immune surveillance and innate immunity, as well as adaptive immunity. Dysfunction of the complement cascade may be mediated by aberrations in the pathways of activation, complement regulatory proteins, or complement deficiencies, and has been linked to a number of hematologic disorders, including paroxysmal noctural hemoglobinuria (PNH), hereditary angioedema (HAE), and atypical hemolytic-uremic syndrome (aHUS). Here, current laboratory tests for disorders of the complement pathway are reviewed, and their utility and limitations in hematologic disorders and systemic diseases are discussed. Current therapeutic advances targeting the complement pathway in treatment of complement-mediated hematologic disorders are also reviewed.

  6. Antibody-dependent NK cell activation is associated with late kidney allograft dysfunction and the complement-independent alloreactive potential of donor-specific antibodies

    Directory of Open Access Journals (Sweden)

    Tristan Legris

    2016-08-01

    Full Text Available Although kidney transplantation remains the best treatment for end-stage renal failure, it is limited by chronic humoral aggression of the graft vasculature by donor-specific antibodies (DSAs. The complement-independent mechanisms that lead to the antibody-mediated rejection (ABMR of kidney allografts remain poorly understood. Increasing lines of evidence have revealed the relevance of natural killer (NK cells as innate immune effectors of antibody-dependent cellular cytotoxicity, but few studies have investigated their alloreactive potential in the context of solid organ transplantation. Our study aimed to investigate the potential contribution of the antibody-dependent alloreactive function of NK cells to kidney graft dysfunction. We first conducted an observational study to investigate whether the cytotoxic function of NK cells is associated with chronic allograft dysfunction. The NK-Cellular Humoral Activation Test (NK-CHAT was designed to evaluate the recipient and antibody-dependent reactivity of NK cells against allogeneic target cells. The release of CD107a/Lamp1+ cytotoxic granules, resulting from the recognition of rituximab-coated B cells by NK cells, was analyzed in 148 kidney transplant recipients (KTRs, mean graft duration: 6.2 years. Enhanced ADCC responsiveness was associated with reduced graft function and identified as an independent risk factor predicting a decline in the estimated glomerular filtration rate (eGFR over a 1-year period (hazard ratio: 2.83. In a second approach, we used the NK-CHAT to reveal the cytotoxic potential of circulating alloantibodies in vitro. The level of CD16 engagement resulting from the in vitro recognition of serum-coated allogeneic B cells or splenic cells was further identified as a specific marker of DSA-induced ADCC. The NK-CHAT scoring of sera obtained from 40 patients at the time of transplant biopsy was associated with ABMR diagnosis. Our findings indicate that despite the administration

  7. Human β Cell Transcriptome Analysis Uncovers lncRNAs That Are Tissue-Specific, Dynamically Regulated, and Abnormally Expressed in Type 2 Diabetes

    Science.gov (United States)

    Morán, Ignasi; Akerman, İldem; van de Bunt, Martijn; Xie, Ruiyu; Benazra, Marion; Nammo, Takao; Arnes, Luis; Nakić, Nikolina; García-Hurtado, Javier; Rodríguez-Seguí, Santiago; Pasquali, Lorenzo; Sauty-Colace, Claire; Beucher, Anthony; Scharfmann, Raphael; van Arensbergen, Joris; Johnson, Paul R; Berry, Andrew; Lee, Clarence; Harkins, Timothy; Gmyr, Valery; Pattou, François; Kerr-Conte, Julie; Piemonti, Lorenzo; Berney, Thierry; Hanley, Neil A; Gloyn, Anna L; Sussel, Lori; Langman, Linda; Brayman, Kenneth L; Sander, Maike; McCarthy, Mark I.; Ravassard, Philippe; Ferrer, Jorge

    2012-01-01

    SUMMARY A significant portion of the genome is transcribed as long non-coding RNAs (lncRNAs), several of which are known to control gene expression. The repertoire and regulation of lncRNAs in disease-relevant tissues, however, has not been systematically explored. We report a comprehensive strand-specific transcriptome map of human pancreatic islets and β-cells, and uncover >1100 intergenic and antisense islet-cell lncRNA genes. We find islet lncRNAs that are dynamically regulated, and show that they are an integral component of the β-cell differentiation and maturation program. We sequenced the mouse islet transcriptome, and identify lncRNA orthologs that are regulated like their human counterparts. Depletion of HI-LNC25, a β-cell specific lncRNA, downregulated GLIS3 mRNA, thus exemplifying a gene regulatory function of islet lncRNAs. Finally, selected islet lncRNAs were dysregulated in type 2 diabetes or mapped to genetic loci underlying diabetes susceptibility. These findings reveal a new class of islet-cell genes relevant to β-cell programming and diabetes pathophysiology. PMID:23040067

  8. Effect of the methoxychlor metabolite HPTE on the rat ovarian granulosa cell transcriptome in vitro.

    Science.gov (United States)

    Harvey, Craig N; Esmail, Mahmoud; Wang, Qi; Brooks, Andrew I; Zachow, Rob; Uzumcu, Mehmet

    2009-07-01

    Ovarian granulosa cells play a central role in steroidogenesis, which is critical for female reproduction. Follicle-stimulating hormone (FSH) promotes cyclic adenosine monophosphate (cAMP)-mediated signaling to regulate granulosa cell steroidogenesis. We have shown previously that 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) inhibits FSH- and dibutyryl cAMP-stimulated steroidogenesis and affects the messenger RNA levels of steroidogenic pathway enzymes in rat granulosa cells. However, HPTE showed a differential effect in FSH- and cAMP-stimulated cells in that HPTE more completely blocked FSH- when compared to cAMP-driven steroidogenesis. The objective of this study was to analyze the effects of HPTE on global gene expression profiles in untreated granulosa cells and those challenged with FSH or cAMP. Granulosa cells from immature rats were cultured with 0, 1, 5, or 10 microM HPTE in the presence or absence of either 3 ng FSH/ml or 1mM cAMP for 48 h. Total RNA was isolated for real-time quantitative PCR and microarray analysis using the GeneChip Rat Genome 230 2.0 and ArrayAssist Microarray Suite. An investigation of changes in gene expression across all HPTE treatments showed that HPTE altered more genes in FSH- (approximately 670 genes) than in cAMP-stimulated cells (approximately 366 genes). Analysis confirmed that HPTE more effectively inhibited FSH- than cAMP-induced steroid pathway gene expression and steroidogenesis. Furthermore, expression patterns of novel genes regulating signal transduction, transport, cell cycle, adhesion, differentiation, motility and growth, apoptosis, development, and metabolism were all altered by HPTE. This study further established that HPTE exerts differential effects within the granulosa cell steroidogenic pathway and revealed that these effects include broader changes in gene expression.

  9. Laser capture microdissection in Ectocarpus siliculosus: the pathway to cell-specific transcriptomics in brown algae

    OpenAIRE

    Denis eSaint-Marcoux; Bernard eBilloud; Jane Alison Langdale; Bénédicte eCharrier

    2015-01-01

    Laser capture microdissection (LCM) facilitates the isolation of individual cells from tissue sections, and when combined with RNA amplification techniques, it is an extremely powerful tool for examining genome-wide expression profiles in specific cell-types. LCM has been widely used to address various biological questions in both animal and plant systems, however, no attempt has been made so far to transfer LCM technology to macroalgae. Macroalgae are a collection of widespread eukaryotes li...

  10. A next-generation sequencing approach to study the transcriptomic changes during the differentiation of physarum at the single-cell level.

    Science.gov (United States)

    Barrantes, Israel; Leipzig, Jeremy; Marwan, Wolfgang

    2012-01-01

    Physarum polycephalum is a unicellular eukaryote belonging to the amoebozoa group of organisms. The complex life cycle involves various cell types that differ in morphology, function, and biochemical composition. Sporulation, one step in the life cycle, is a stimulus-controlled differentiation response of macroscopic plasmodial cells that develop into fruiting bodies. Well-established Mendelian genetics and the occurrence of macroscopic cells with a naturally synchronous population of nuclei as source of homogeneous cell material for biochemical analyses make Physarum an attractive model organism for studying the regulatory control of cell differentiation. Here, we develop an approach using RNA-sequencing (RNA-seq), without needing to rely on a genome sequence as a reference, for studying the transcriptomic changes during stimulus-triggered commitment to sporulation in individual plasmodial cells. The approach is validated through the obtained expression patterns and annotations, and particularly the results from up- and downregulated genes, which correlate well with previous studies.

  11. Folic acid induces cell type-specific changes in the transcriptome of breast cancer cell lines: a proof-of-concept study.

    Science.gov (United States)

    Price, R Jordan; Lillycrop, Karen A; Burdge, Graham C

    2016-01-01

    The effect of folic acid (FA) on breast cancer (BC) risk is uncertain. We hypothesised that this uncertainty may be due, in part, to differential effects of FA between BC cells with different phenotypes. To test this we investigated the effect of treatment with FA concentrations within the range of unmetabolised FA reported in humans on the expression of the transcriptome of non-transformed (MCF10A) and cancerous (MCF7 and Hs578T) BC cells. The total number of transcripts altered was: MCF10A, seventy-five (seventy up-regulated); MCF7, twenty-four (fourteen up-regulated); and Hs578T, 328 (156 up-regulated). Only the cancer-associated gene TAGLN was altered by FA in all three cell lines. In MCF10A and Hs578T cells, FA treatment decreased pathways associated with apoptosis, cell death and senescence, but increased those associated with cell proliferation. The folate transporters SLC19A1, SLC46A1 and FOLR1 were differentially expressed between cell lines tested. However, the level of expression was not altered by FA treatment. These findings suggest that physiological concentrations of FA can induce cell type-specific changes in gene regulation in a manner that is consistent with proliferative phenotype. This has implications for understanding the role of FA in BC risk. In addition, these findings support the suggestion that differences in gene expression induced by FA may involve differential activities of folate transporters. Together these findings indicate the need for further studies of the effect of FA on BC.

  12. Differential remodeling of a T-cell transcriptome following CD8-versus CD3-induced signaling

    Institute of Scientific and Technical Information of China (English)

    S Hussain I Abidi; Tao Dong; Mai T Vuong; Vattipally B Sreenu; Sarah L Rowland-Jones; Edward J Evans; Simon J Davis

    2008-01-01

    CD8 engagement with class I major histocompatibility antigens greatly enhances T-cell activation,but it is not clear how this is achieved.We address the question of whether or not the antibody-mediated ligation of CD8 alone induces transcriptional remodeling in a T-cell clone,using serial analysis of gene expression.Even though it fails to induce overt phenotypic changes,we find that CD8 ligation profoundly alters transcription in the T-cell clone,at a scale comparable to that induced by antibody-mediated ligation of CD3.The character of the resulting changes is distinct,however,with the net effect ofCD8 ligation being substantially inhibitory.We speculate that ligating CD8 induces weak,T-cell receptor (TCR)-mediated inhibitory signals reminiscent of the effects of TCR antagonists.Our results imply that CD8 ligation alone is incapable of activating the T-cell clone because it fails to fully induce NFAT-dependent transcription.

  13. Integrative transcriptomic and proteomic analysis of osteocytic cells exposed to fluid flow reveals novel mechano-sensitive signaling pathways.

    Science.gov (United States)

    Govey, Peter M; Jacobs, Jon M; Tilton, Susan C; Loiselle, Alayna E; Zhang, Yue; Freeman, Willard M; Waters, Katrina M; Karin, Norman J; Donahue, Henry J

    2014-06-03

    Osteocytes, positioned within bone׳s porous structure, are subject to interstitial fluid flow upon whole bone loading. Such fluid flow is widely theorized to be a mechanical signal transduced by osteocytes, initiating a poorly understood cascade of signaling events mediating bone adaptation to mechanical load. The objective of this study was to examine the time course of flow-induced changes in osteocyte gene transcript and protein levels using high-throughput approaches. Osteocyte-like MLO-Y4 cells were subjected to 2h of oscillating fluid flow (1Pa peak shear stress) and analyzed following 0, 2, 8, and 24h post-flow incubation. Transcriptomic microarray analysis, followed by gene ontology pathway analysis, demonstrated fluid flow regulation of genes consistent with both known and unknown metabolic and inflammatory responses in bone. Additionally, two of the more highly up-regulated gene products - chemokines Cxcl1 and Cxcl2, supported by qPCR - have not previously been reported as responsive to fluid flow. Proteomic analysis demonstrated greatest up-regulation of the ATP-producing enzyme NDK, calcium-binding Calcyclin, and G protein-coupled receptor kinase 6. Finally, an integrative pathway analysis merging fold changes in transcript and protein levels predicted signaling nodes not directly detected at the sampled time points, including transcription factors c-Myc, c-Jun, and RelA/NF-κB. These results extend our knowledge of the osteocytic response to fluid flow, most notably up-regulation of Cxcl1 and Cxcl2 as possible paracrine agents for osteoblastic and osteoclastic recruitment. Moreover, these results demonstrate the utility of integrative, high-throughput approaches in place of a traditional candidate approach for identifying novel mechano-sensitive signaling molecules.

  14. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines

    Science.gov (United States)

    2013-12-01

    cadmium, and chromium in H4-II-E-C3 cells. Nickel, Cadmium, Chromium, Microarray, Gene Expression, Heavy Metals U U U SAR 12 Carol O’Brien 301-619... Reese SE (2010) Detection call algorithms for high-throughput gene expression microarray data. Brief Bioinform 11: 244–252. 30. Hochberg Y, Benjamini

  15. Transcriptome profile of one-month-old lambs’ granulosa cells after superstimulation

    Science.gov (United States)

    Wu, Yangsheng; Lin, Jiapeng; Li, Xiaolin; Han, Bing; Wang, Liqin; Liu, Mingjun; Huang, Juncheng

    2017-01-01

    Objective Superstimulatory treatment of one-month-old lambs can achieve synchronous development of numerous growing follicles. However, these growing follicles cannot complete maturation and ovulation. Oocyte maturation and competence are acquired during follicular development, in which granulosa cells play an essential role. Methods In this study, we applied RNA sequencing to analyze and compare gene expression between prepubertal and adult superstimulated follicle granulosa cells in sheep. Results There were more than 300 genes that significantly differed in expression. Among these differently expressed genes, many extracellular matrix genes (EGF containing Fibulin Like Extracellular Matrix Protein 1, pentraxin 3, adrenomedullin, and osteopontin) were significantly down-regulated in the superstimulated follicles. Ingenuity pathway and gene ontology analyses revealed that processes of axonal guidance, cell proliferation and DNA replication were expressed at higher levels in the prepubertal follicles. Epidermal growth factor, T-Box protein 2 and beta-estradiol upstream regulator were predicted to be active in prepubertal follicles. By comparison, tumor protein P53 and let-7 were most active in adult follicles. Conclusion These results may contribute to a better understanding of the mechanisms governing the development of granulosa cells in the growing follicle in prepubertal sheep. PMID:27189640

  16. Comparative DNA damage and transcriptomic effects of engineered nanoparticles in human lung cells in vitro

    Science.gov (United States)

    A series of six titanium dioxide and two cerium oxide engineered nanomaterials were assessed for their ability to induce cytotoxicity, reactive oxygen species (ROS), various types of DNA damage, and transcriptional changes in human respiratory BEAS-2B cells exposed in vitro at se...

  17. Targeted complement inhibition and microvasculature in transplants: a therapeutic perspective.

    Science.gov (United States)

    Khan, M A; Hsu, J L; Assiri, A M; Broering, D C

    2016-02-01

    Active complement mediators play a key role in graft-versus-host diseases, but little attention has been given to the angiogenic balance and complement modulation during allograft acceptance. The complement cascade releases the powerful proinflammatory mediators C3a and C5a anaphylatoxins, C3b, C5b opsonins and terminal membrane attack complex into tissues, which are deleterious if unchecked. Blocking complement mediators has been considered to be a promising approach in the modern drug discovery plan, and a significant number of therapeutic alternatives have been developed to dampen complement activation and protect host cells. Numerous immune cells, especially macrophages, develop both anaphylatoxin and opsonin receptors on their cell surface and their binding affects the macrophage phenotype and their angiogenic properties. This review discusses the mechanism that complement contributes to angiogenic injury, and the development of future therapeutic targets by antagonizing activated complement mediators to preserve microvasculature in rejecting the transplanted organ.

  18. Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines.

    Science.gov (United States)

    Permenter, Matthew G; Dennis, William E; Sutto, Thomas E; Jackson, David A; Lewis, John A; Stallings, Jonathan D

    2013-01-01

    Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies.

  19. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines

    Science.gov (United States)

    Permenter, Matthew G.; Dennis, William E.; Sutto, Thomas E.; Jackson, David A.; Lewis, John A.; Stallings, Jonathan D.

    2013-01-01

    Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies. PMID:24386269

  20. Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines.

    Directory of Open Access Journals (Sweden)

    Matthew G Permenter

    Full Text Available Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies.

  1. Properdin in complement activation and tissue injury.

    Science.gov (United States)

    Lesher, Allison M; Nilsson, Bo; Song, Wen-Chao

    2013-12-15

    The plasma protein properdin is the only known positive regulator of complement activation. Although regarded as an initiator of the alternative pathway of complement activation at the time of its discovery more than a half century ago, the role and mechanism of action of properdin in the complement cascade has undergone significant conceptual evolution since then. Despite the long history of research on properdin, however, new insight and unexpected findings on the role of properdin in complement activation, pathogen infection and host tissue injury are still being revealed by ongoing investigations. In this article, we provide a brief review on recent studies that shed new light on properdin biology, focusing on the following three topics: (1) its role as a pattern recognition molecule to direct and trigger complement activation, (2) its context-dependent requirement in complement activation on foreign and host cell surfaces, and (3) its involvement in alternative pathway complement-mediated immune disorders and considerations of properdin as a potential therapeutic target in human diseases.

  2. [BPO-Specific, complement-dependant cell-lysis of differently sensitized sheep red cells: evaluation of haptenic groups and their influence on IgM and IgG-induced lysis (author's transl)].

    Science.gov (United States)

    Wiedermann, G; Stemberger, H; Förster, O; Müller, M

    1976-04-01

    Sheep erythrocytes were coated with bencylpenicilloyl-(BPO)groups. Different incubation periods resulted in erythrocyte preparations with different hapten density. Complement dependent lysis induced by IgM or IgG antibodies was studied with the cell preparations. The calculation of hapten density on the erythrocyte surface was not possible by direct measurement of coupled radioactive BPO since more than 90% of radioactive material was found in the soluble supernatant after osmotic cell lysis and less than 10% was fixed to the cellular membrane. Measurement of membrane bound immunologically relevant BPO-groups was achieved, therefore, by comparison of the inhibitory capacity of the test cells with that of a standard cell preparation. The latter consisted of tannic acid treated erythrocytes coated with protein complexed radioactive BPO. Surface hapten density of the different target cell preparations varied between 1.9 x 10(5) and 4.8 10(5) BPO-groups per cell depending on the time of incubation. Complement dependent antibody mediated cell lysis was significantly reduced by reduction of haptenic sites per target cell, IgG induced lysis being much more affected than hemolysis induced by IgM antibodies. Statistical calculations led to the conclusion that 18,000 protein islets per cell bearing 4 or more BPO-groups are not sufficient for hemolysis induced by IgG antibodies. 48,000 protein islets with this hapten density are necessary for "optimal" sensitization. IgG antibodies must be apparently bound to the cell surface in bivalent form.

  3. Apobec-1 Complementation Factor (A1CF Inhibits Epithelial-Mesenchymal Transition and Migration of Normal Rat Kidney Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Liyuan Huang

    2016-02-01

    Full Text Available Apobec-1 complementation factor (A1CF is a member of the heterogeneous nuclear ribonucleoproteins (hnRNP family, which participates in site-specific posttranscriptional RNA editing of apolipoprotein B (apoB transcript. The posttranscriptional editing of apoB mRNA by A1CF in the small intestine is required for lipid absorption. Apart from the intestine, A1CF mRNA is also reported to be highly expressed in the kidneys. However, it is remained unknown about the functions of A1CF in the kidneys. The aim of this paper is to explore the potential functions of A1CF in the kidneys. Our results demonstrated that in C57BL/6 mice A1CF was weakly expressed in embryonic kidneys from E15.5dpc while strongly expressed in mature kidneys after birth, and it mainly existed in the tubules of inner cortex. More importantly, we identified A1CF negatively regulated the process of epithelial-mesenchymal transition (EMT in kidney tubular epithelial cells. Our results found ectopic expression of A1CF up-regulated the epithelial markers E-cadherin, and down-regulated the mesenchymal markers vimentin and α-smooth muscle actin (α-SMA in NRK52e cells. In addition, knockdown of A1CF enhanced EMT contrary to the overexpression effect. Notably, the two A1CF variants led to the similar trend in the EMT process. Taken together, these data suggest that A1CF may be an antagonistic factor to the EMT process of kidney tubular epithelial cells.

  4. Different impact of excision repair cross-complementation group 1 on survival in male and female patients with inoperable non-small-cell lung cancer treated with carboplatin and gemcitabine

    DEFF Research Database (Denmark)

    Holm, Bente; Mellemgaard, Anders; Skov, Torsten;

    2009-01-01

    PURPOSE: The excision repair cross-complementation group 1 (ERCC1) status was assessed in patients receiving carboplatin and gemcitabine for inoperable non-small-cell lung cancer (NSCLC). We analyzed the association between the ERCC1 status and the overall survival after the chemotherapy. PATIENTS...

  5. Association of Polymorphisms in X-Ray Repair Cross Complementing 1 Gene and Risk of Esophageal Squamous Cell Carcinoma in a Chinese Population

    Directory of Open Access Journals (Sweden)

    Yu-Xia Yun

    2015-01-01

    Full Text Available Objectives. To investigate the association between three single nucleotide polymorphisms (SNPs in the X-ray repair cross complementing 1 gene (XRCC1 and the risk of esophageal squamous cell carcinoma (ESCC in Chinese population. Methods. A case-control study including 381 primary ESCC patients recruited from hospital and 432 normal controls matched with patients by age and gender from Chinese Han population was conducted. The genotypes of three XRCC1 polymorphisms at −77T>C (T-77C, codon 194 (Arg194Trp, and codon 399 (Arg399Gln were studied by means of polymerase chain reaction-restriction fragment length polymorphism techniques (PCR-RFLP. Unconditional logistic regression model and haplotype analysis were used to estimate associations of these three SNPs in XRCC1 gene with ESCC risk. Results. Polymorphisms at these three sites in XRCC1 gene were not found to be associated with risk for developing ESCC; however the haplotype Ccodon 194Gcodon 399C-77T>C was significantly associated with reduced risk of ESCC (OR: 0.62, 95% CI: 0.40–0.96 upon haplotype analysis. Conclusion. These results suggested that the gene-gene interactions might play vital roles in the progression on esophageal cancer in Chinese Han population and it would be necessary to confirm these findings in a large and multiethnic population.

  6. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Sonali; Rao, A.L.N., E-mail: arao@ucr.edu

    2014-09-15

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER.

  7. Transcriptome analysis of soybean leaf abscission identifies transcriptional regulators of organ polarity and cell fate

    Directory of Open Access Journals (Sweden)

    Joonyup eKim

    2016-02-01

    Full Text Available Abscission, organ separation, is a developmental process that is modulated by endogenous and environmental factors. To better understand the molecular events underlying the progression of abscission in soybean, an agriculturally important legume, we performed RNA sequencing (RNA-seq of RNA isolated from the leaf abscission zones (LAZ and petioles (Non-AZ, NAZ after treating stem/petiole explants with ethylene for 0, 12, 24, 48, and 72 h. As expected, expression of several families of cell wall modifying enzymes and many pathogenesis-related (PR genes specifically increased in the LAZ as abscission progressed. Here, we focus on the 5,206 soybean genes we identified as encoding transcription factors (TFs. Of the 5,206 TFs, 1,088 were differentially up- or down-regulated more than 8-fold in the LAZ over time, and, within this group, 188 of the TFs were differentially regulated more than 8-fold in the LAZ relative to the NAZ. These 188 abscission-specific TFs include several TFs containing domains for homeobox, MYB, Zinc finger, bHLH, AP2, NAC, WRKY, YABBY, and auxin-related motifs. To discover the connectivity among the TFs and highlight developmental processes that support organ separation, the 188 abscission-specific TFs were then clustered based on a >4-fold up- or down-regulation in two consecutive time points (i.e., 0 h and 12 h, 12 h and 24 h, 24 h and 48 h, or 48 h and 72 h. By requiring a sustained change in expression over two consecutive time intervals and not just one or several time intervals, we could better tie changes in TFs to a particular process or phase of abscission. The greatest number of TFs clustered into the 0 h and 12 h group. Transcriptional network analysis for these abscission-specific TFs indicated that most of these TFs are known as key determinants in the maintenance of organ polarity, lateral organ growth and cell fate. The abscission-specific expression of these TFs prior to the onset of abscission and their

  8. Transcriptome Analysis of Soybean Leaf Abscission Identifies Transcriptional Regulators of Organ Polarity and Cell Fate.

    Science.gov (United States)

    Kim, Joonyup; Yang, Jinyoung; Yang, Ronghui; Sicher, Richard C; Chang, Caren; Tucker, Mark L

    2016-01-01

    Abscission, organ separation, is a developmental process that is modulated by endogenous and environmental factors. To better understand the molecular events underlying the progression of abscission in soybean, an agriculturally important legume, we performed RNA sequencing (RNA-seq) of RNA isolated from the leaf abscission zones (LAZ) and petioles (Non-AZ, NAZ) after treating stem/petiole explants with ethylene for 0, 12, 24, 48, and 72 h. As expected, expression of several families of cell wall modifying enzymes and many pathogenesis-related (PR) genes specifically increased in the LAZ as abscission progressed. Here, we focus on the 5,206 soybean genes we identified as encoding transcription factors (TFs). Of the 5,206 TFs, 1,088 were differentially up- or down-regulated more than eight-fold in the LAZ over time, and, within this group, 188 of the TFs were differentially regulated more than eight-fold in the LAZ relative to the NAZ. These 188 abscission-specific TFs include several TFs containing domains for homeobox, MYB, Zinc finger, bHLH, AP2, NAC, WRKY, YABBY, and auxin-related motifs. To discover the connectivity among the TFs and highlight developmental processes that support organ separation, the 188 abscission-specific TFs were then clustered based on a >four-fold up- or down-regulation in two consecutive time points (i.e., 0 and 12 h, 12 and 24 h, 24 and 48 h, or 48 and 72 h). By requiring a sustained change in expression over two consecutive time intervals and not just one or several time intervals, we could better tie changes in TFs to a particular process or phase of abscission. The greatest number of TFs clustered into the 0 and 12 h group. Transcriptional network analysis for these abscission-specific TFs indicated that most of these TFs are known as key determinants in the maintenance of organ polarity, lateral organ growth, and cell fate. The abscission-specific expression of these TFs prior to the onset of abscission and their functional

  9. Transcriptome analysis reveals a classical interferon signature induced by IFNλ4 in human primary cells

    DEFF Research Database (Denmark)

    Lauber, Chris; Vieyres, Gabrielle; Terczynska-Dyla, Ewa

    2015-01-01

    The IFNL4 gene is negatively associated with spontaneous and treatment-induced clearance of hepatitis C virus infection. The activity of IFNλ4 has an important causal role in the pathogenesis, but the molecular details are not fully understood. One possible reason for the detrimental effect of IF...... genes being regulated in hepatocytes as well as airway epithelial cells. Thus we provide an in-depth analysis of the liver interferon response seen over an array of interferon subtypes and compare it to the response in the lung epithelium....

  10. Transcriptomic Analysis of Aflatoxin B1-Regulated Genes in Rat Hepatic Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    杨柳; 季静; 李光辉; 李君文; 陈招立; 王海勇

    2014-01-01

    Aflatoxins are the most popular hepatotoxicants. Chronic exposure to aflatoxins leads to a wide variety of liver diseases, such as hepatocellular carcinoma. In this study, we analyzed the genome wide expression profiles of aflatoxin B1-induced rat hepatic epithelial cells. The expression of 325, 184 and 199 special genes was altered when exposed to 0.03, 0.1 and 0.2 μmol/L aflatoxin B1 respectively, and 239 genes were commonly expressed. After the functional analysis on these dose-special genes, we determined several key pathways related to hepatotoxicity, such as TGF-beta signaling pathway, tight junction, adherens junction, the regulation of actin cytoskeleton, ErbB signaling pathway, p53 signaling pathway, pathways in cancer and axon guidance. Common genes were mainly associated with focal adhesion, ECM-receptor interaction, and cell adhesion molecules. Gene ontology annotations showed a good concordance with these pathways. The quantitative real-time polymerase chain reaction(PCR) analysis of selected genes showed similar patterns in microarrays. The toxicogenomic study provides a better understanding of molecular mechanisms of aflatoxins.

  11. Transcriptome analysis of tetraploid cells identifies cyclin D2 as a facilitator of adaptation to genome doubling in the presence of p53.

    Science.gov (United States)

    Potapova, Tamara A; Seidel, Christopher W; Box, Andrew C; Rancati, Giulia; Li, Rong

    2016-10-15

    Tetraploidization, or genome doubling, is a prominent event in tumorigenesis, primarily because cell division in polyploid cells is error-prone and produces aneuploid cells. This study investigates changes in gene expression evoked in acute and adapted tetraploid cells and their effect on cell-cycle progression. Acute polyploidy was generated by knockdown of the essential regulator of cytokinesis anillin, which resulted in cytokinesis failure and formation of binucleate cells, or by chemical inhibition of Aurora kinases, causing abnormal mitotic exit with formation of single cells with aberrant nuclear morphology. Transcriptome analysis of these acute tetraploid cells revealed common signatures of activation of the tumor-suppressor protein p53. Suppression of proliferation in these cells was dependent on p53 and its transcriptional target, CDK inhibitor p21. Rare proliferating tetraploid cells can emerge from acute polyploid populations. Gene expression analysis of single cell-derived, adapted tetraploid clones showed up-regulation of several p53 target genes and cyclin D2, the activator of CDK4/6/2. Overexpression of cyclin D2 in diploid cells strongly potentiated the ability to proliferate with increased DNA content despite the presence of functional p53. These results indicate that p53-mediated suppression of proliferation of polyploid cells can be averted by increased levels of oncogenes such as cyclin D2, elucidating a possible route for tetraploidy-mediated genomic instability in carcinogenesis.

  12. Transcriptomic analysis of host immune and cell death responses associated with the influenza A virus PB1-F2 protein.

    Directory of Open Access Journals (Sweden)

    Ronan Le Goffic

    2011-08-01

    Full Text Available Airway inflammation plays a major role in the pathogenesis of influenza viruses and can lead to a fatal outcome. One of the challenging objectives in the field of influenza research is the identification of the molecular bases associated to the immunopathological disorders developed during infection. While its precise function in the virus cycle is still unclear, the viral protein PB1-F2 is proposed to exert a deleterious activity within the infected host. Using an engineered recombinant virus unable to express PB1-F2 and its wild-type homolog, we analyzed and compared the pathogenicity and host response developed by the two viruses in a mouse model. We confirmed that the deletion of PB1-F2 renders the virus less virulent. The global transcriptomic analyses of the infected lungs revealed a potent impact of PB1-F2 on the response developed by the host. Thus, after two days post-infection, PB1-F2 invalidation severely decreased the number of genes activated by the host. PB1-F2 expression induced an increase in the number and level of expression of activated genes linked to cell death, inflammatory response and neutrophil chemotaxis. When generating interactive gene networks specific to PB1-F2, we identified IFN-γ as a central regulator of PB1-F2-regulated genes. The enhanced cell death of airway-recruited leukocytes was evidenced using an apoptosis assay, confirming the pro-apoptotic properties of PB1-F2. Using a NF-kB luciferase adenoviral vector, we were able to quantify in vivo the implication of NF-kB in the inflammation mediated by the influenza virus infection; we found that PB1-F2 expression intensifies the NF-kB activity. Finally, we quantified the neutrophil recruitment within the airways, and showed that this type of leukocyte is more abundant during the infection of the wild-type virus. Collectively, these data demonstrate that PB1-F2 strongly influences the early host response during IAV infection and provides new insights into the

  13. Transcriptome analysis of human primary endothelial cells (HUVEC) from umbilical cords of gestational diabetic mothers reveals candidate sites for an epigenetic modulation of specific gene expression.

    Science.gov (United States)

    Ambra, R; Manca, S; Palumbo, M C; Leoni, G; Natarelli, L; De Marco, A; Consoli, A; Pandolfi, A; Virgili, F

    2014-01-01

    Within the complex pathological picture associated to diabetes, high glucose (HG) has "per se" effects on cells and tissues that involve epigenetic reprogramming of gene expression. In fetal tissues, epigenetic changes occur genome-wide and are believed to induce specific long term effects. Human umbilical vein endothelial cells (HUVEC) obtained at delivery from gestational diabetic women were used to study the transcriptomic effects of chronic hyperglycemia in fetal vascular cells using Affymetrix microarrays. In spite of the small number of samples analyzed (n=6), genes related to insulin sensing and extracellular matrix reorganization were found significantly affected by HG. Quantitative PCR analysis of gene promoters identified a significant differential DNA methylation in TGFB2. Use of Ea.hy926 endothelial cells confirms data on HUVEC. Our study corroborates recent evidences suggesting that epigenetic reprogramming of gene expression occurs with persistent HG and provides a background for future investigations addressing genomic consequences of chronic HG.

  14. Transcriptomic Analysis Reveals Novel Mechanistic Insight into Murine Biological Responses to Multi-Walled Carbon Nanotubes in Lungs and Cultured Lung Epithelial Cells

    DEFF Research Database (Denmark)

    Poulsen, Sarah Søs; Jacobsen, Nicklas R.; Labib, Sarah

    2013-01-01

    responses of multiwalled carbon nanotubes (MWCNT) to those in vitro in cultured lung epithelial cells (FE1) at the global transcriptomic level. Primary size, surface area and other properties of MWCNT-XNRI -7 (Mitsui7) were characterized using DLS, SEM and TEM. Mice were exposed via a single intratracheal...... instillation to 18, 54, or 162 mu g of Mitsui7/mouse. FE1 cells were incubated with 12.5, 25 and 100 mu g/ml of Mitsui7. Tissue and cell samples were collected at 24 hours post-exposure. DNA microarrays were employed to establish mechanistic differences and similarities between the two models. Microarray...... at the pathway-level, the specific genes altered under these pathways were different, suggesting that the underlying mechanisms of responses are different in cells in culture and the lung tissue. Our results suggest that careful consideration should be given in selecting relevant endpoints when substituting...

  15. CD55 is a key complement regulatory protein that counteracts complement-mediated inactivation of Newcastle Disease Virus.

    Science.gov (United States)

    Rangaswamy, Udaya S; Cotter, Christopher R; Cheng, Xing; Jin, Hong; Chen, Zhongying

    2016-08-01

    Newcastle disease virus (NDV) is being developed as an oncolytic virus for virotherapy. In this study we analysed the regulation of complement-mediated inactivation of a recombinant NDV in different host cells. NDV grown in human cells was less sensitive to complement-mediated virus inactivation than NDV grown in embryonated chicken eggs. Additionally, NDV produced from HeLa-S3 cells is more resistant to complement than NDV from 293F cells, which correlated with higher expression and incorporation of complement regulatory proteins (CD46, CD55 and CD59) into virions from HeLa-S3 cells. Further analysis of the recombinant NDVs individually expressing the three CD molecules showed that CD55 is the most potent in counteracting complement-mediated virus inactivation. The results provide important information on selecting NDV manufacture substrate to mitigate complement-mediated virus inactivation.

  16. Teratogen screening using transcriptome profiling of differentiating human embryonic stem cells.

    Science.gov (United States)

    Mayshar, Yoav; Yanuka, Ofra; Benvenisty, Nissim

    2011-06-01

    Teratogens are substances that may cause defects in normal embryonic development while not necessarily being toxic in adults. Identification of possible teratogenic compounds has been historically beset by the species-specific nature of the teratogen response. To examine teratogenic effects on early human development we performed non-biased expression profiling of differentiating human embryonic and induced pluripotent stem cells treated with several drugs--ethanol, lithium, retinoic acid (RA), caffeine and thalidomide, which is known to be highly species specific. Our results point to the potency of specific teratogens and their affected tissues and pathways. Specifically, we could show that ethanol caused dramatic increase in endodermal differentiation, RA caused misregulation of neural development and thalidomide affected both these processes. We thus propose this method as a valuable addition to currently available animal screening approaches.

  17. Transcriptomes analysis of Aeromonas molluscorum Av27 cells exposed to tributyltin (TBT): Unravelling the effects from the molecular level to the organism.

    Science.gov (United States)

    Cruz, Andreia; Rodrigues, Raquel; Pinheiro, Miguel; Mendo, Sónia

    2015-08-01

    Aeromonas molluscorum Av27 cells were exposed to 0, 5 and 50 μM of TBT and the respective transcriptomes were obtained by pyrosequencing. Gene Ontology revealed that exposure to 5 μM TBT results in a higher number of repressed genes in contrast with 50 μM of TBT, where the number of over-expressed genes is greater. At both TBT concentrations, higher variations in gene expression were found in the functional categories associated with enzymatic activities, transport/binding and oxidation-reduction. A number of proteins are affected by TBT, such as the acriflavin resistance protein, several transcription-related proteins, several Hsps, ABC transporters, CorA and ZntB and other outer membrane efflux proteins, all of these involved in cellular metabolic processes, important to maintain overall cell viability. Using the STRING tool, several proteins with unknown function were related with others involved in degradation processes, such as the pyoverdine chromophore biosynthetic protein, that has been described as playing a role in the Sn-C cleavage of organotins. This approach has allowed a better understanding of the molecular effects of exposure of bacterial cells to TBT. Furthermore it contributes to the knowledge of the functional genomic aspects of bacteria exposed to this pollutant. Furthermore, the transcriptomic data gathered, and now publically available, constitute a valuable resource for comparative genome analysis.

  18. Methods to determine the transcriptomes of trypanosomes in mixtures with mammalian cells: the effects of parasite purification and selective cDNA amplification.

    Directory of Open Access Journals (Sweden)

    Julius Mulindwa

    2014-04-01

    Full Text Available Patterns of gene expression in cultured Trypanosoma brucei bloodstream and procyclic forms have been extensively characterized, and some comparisons have been made with trypanosomes grown to high parasitaemias in laboratory rodents. We do not know, however, to what extent these transcriptomes resemble those in infected Tsetse flies - or in humans or cattle, where parasitaemias are substantially lower. For clinical and field samples it is difficult to characterize parasite gene expression because of the large excess of host cell RNA. We have here examined two potential solutions to this problem for bloodstream form trypanosomes, assaying transcriptomes by high throughput cDNA sequencing (RNASeq. We first purified the parasites from blood of infected rats. We found that a red blood cell lysis procedure affected the transcriptome substantially more than purification using a DEAE cellulose column, but that too introduced significant distortions and variability. As an alternative, we specifically amplified parasite sequences from a mixture containing a 1000-fold excess of human RNA. We first purified polyadenylated RNA, then made trypanosome-specific cDNA by priming with a spliced leader primer. Finally, the cDNA was amplified using nested primers. The amplification procedure was able to produce samples in which 20% of sequence reads mapped to the trypanosome genome. Synthesis of the second cDNA strand with a spliced leader primer, followed by amplification, is sufficiently reproducible to allow comparison of different samples so long as they are all treated in the same way. However, SL priming distorted the abundances of the cDNA products and definitely cannot be used, by itself, to measure absolute mRNA levels. The amplification method might be suitable for clinical samples with low parasitaemias, and could also be adapted for other Kinetoplastids and to samples from infected vectors.

  19. Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina

    Directory of Open Access Journals (Sweden)

    Caruso Marco

    2012-02-01

    Full Text Available Abstract Background Reproductive biology in citrus is still poorly understood. Although in recent years several efforts have been made to study pollen-pistil interaction and self-incompatibility, little information is available about the molecular mechanisms regulating these processes. Here we report the identification of candidate genes involved in pollen-pistil interaction and self-incompatibility in clementine (Citrus clementina Hort. ex Tan.. These genes have been identified comparing the transcriptomes of laser-microdissected stylar canal cells (SCC isolated from two genotypes differing for self-incompatibility response ('Comune', a self-incompatible cultivar and 'Monreal', a self- compatible mutation of 'Comune'. Results The transcriptome profiling of SCC indicated that the differential regulation of few specific, mostly uncharacterized transcripts is associated with the breakdown of self-incompatibility in 'Monreal'. Among them, a novel F-box gene showed a drastic up-regulation both in laser microdissected stylar canal cells and in self-pollinated whole styles with stigmas of 'Comune' in concomitance with the arrest of pollen tube growth. Moreover, we identify a non-characterized gene family as closely associated to the self-incompatibility genetic program activated in 'Comune'. Three different aspartic-acid rich (Asp-rich protein genes, located in tandem in the clementine genome, were over-represented in the transcriptome of 'Comune'. These genes are tightly linked to a DELLA gene, previously found to be up-regulated in the self-incompatible genotype during pollen-pistil interaction. Conclusion The highly specific transcriptome survey of the stylar canal cells identified novel genes which have not been previously associated with self-pollen rejection in citrus and in other plant species. Bioinformatic and transcriptional analyses suggested that the mutation leading to self-compatibility in 'Monreal' affected the expression of non

  20. Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing

    Directory of Open Access Journals (Sweden)

    Cannon Charles H

    2011-07-01

    Full Text Available Abstract Background Acacia auriculiformis × Acacia mangium hybrids are commercially important trees for the timber and pulp industry in Southeast Asia. Increasing pulp yield while reducing pulping costs are major objectives of tree breeding programs. The general monolignol biosynthesis and secondary cell wall formation pathways are well-characterized but genes in these pathways are poorly characterized in Acacia hybrids. RNA-seq on short-read platforms is a rapid approach for obtaining comprehensive transcriptomic data and to discover informative sequence variants. Results We sequenced transcriptomes of A. auriculiformis and A. mangium from non-normalized cDNA libraries synthesized from pooled young stem and inner bark tissues using paired-end libraries and a single lane of an Illumina GAII machine. De novo assembly produced a total of 42,217 and 35,759 contigs with an average length of 496 bp and 498 bp for A. auriculiformis and A. mangium respectively. The assemblies of A. auriculiformis and A. mangium had a total length of 21,022,649 bp and 17,838,260 bp, respectively, with the largest contig 15,262 bp long. We detected all ten monolignol biosynthetic genes using Blastx and further analysis revealed 18 lignin isoforms for each species. We also identified five contigs homologous to R2R3-MYB proteins in other plant species that are involved in transcriptional regulation of secondary cell wall formation and lignin deposition. We searched the contigs against public microRNA database and predicted the stem-loop structures of six highly conserved microRNA families (miR319, miR396, miR160, miR172, miR162 and miR168 and one legume-specific family (miR2086. Three microRNA target genes were predicted to be involved in wood formation and flavonoid biosynthesis. By using the assemblies as a reference, we discovered 16,648 and 9,335 high quality putative Single Nucleotide Polymorphisms (SNPs in the transcriptomes of A. auriculiformis and A. mangium

  1. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.

    Science.gov (United States)

    Hess, Christoph; Kemper, Claudia

    2016-08-16

    Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings.

  2. Prosteatotic and Protective Components in a Unique Model of Fatty Liver: Gut Microbiota and Suppressed Complement System

    Science.gov (United States)

    Liu, Long; Zhao, Xing; Wang, Qian; Sun, Xiaoxian; Xia, Lili; Wang, Qianqian; Yang, Biao; Zhang, Yihui; Montgomery, Sean; Meng, He; Geng, Tuoyu; Gong, Daoqing

    2016-01-01

    Goose can develop severe hepatic steatosis without overt injury, thus it may serve as a unique model for uncovering how steatosis-related injury is prevented. To identify the markedly prosteatotic and protective mechanisms, we performed an integrated analysis of liver transcriptomes and gut microbial metagenomes using samples collected from overfed and normally-fed geese at different time points. The results indicated that the fatty liver transcriptome, initially featuring a ‘metabolism’ pathway, was later joined by ‘cell growth and death’ and ‘immune diseases’ pathways. Gut microbiota played a synergistic role in the liver response as microbial and hepatic genes affected by overfeeding shared multiple pathways. Remarkably, the complement system, an inflammatory component, was comprehensively suppressed in fatty liver, which was partially due to increased blood lactic acid from enriched Lactobacillus. Data from in vitro studies suggested that lactic acid suppressed TNFα via the HNF1α/C5 pathway. In conclusion, gut microbes and their hosts respond to excess energy influx as an organic whole, severe steatosis and related tolerance of goose liver may be partially attributable to gut microbiotic products and suppressed complement system, and lactic acid from gut microbiota participates in the suppression of hepatic TNFα/inflammation through the HNF1α/C5 pathway. PMID:27550859

  3. Transcriptome and proteome analysis of antibody-producing mouse myeloma NS0 cells cultivated at different cell densities in perfusion culture.

    Science.gov (United States)

    Krampe, Britta; Swiderek, Halina; Al-Rubeai, Mohamed

    2008-07-01

    A combined gene and protein expression profiling was performed to gain a deeper insight into the intracellular response of the antibody-producing GS-NS0 cell line in continuous perfusion culture. Growth rate, production rate, metabolic activity and viability declined with increasing cell density, dilution rate and time. Transcriptome and proteome analyses of cells at three different densities revealed 53 genes and 47 proteins as having significantly altered expression levels at HCD (high cell density). The results showed an increased up-regulation of genes/proteins involved in cellular energy production with increasing cell density. Furthermore, the intensified process triggered a cellular response to external stress stimuli, revealed by an overexpression of the genes/proteins implicated in cell-cycle arrest [e.g. Rb1 (retinoblastoma 1 gene) and Cdkn1b (cyclin-dependent kinase inhibitor 1B gene)] and in the induction of pro-apoptotic genes/proteins [e.g. Tnfrsf (tumour necrosis factor receptor superfamily gene), Nfkappa bia (gene coding for nuclear factor-kappaB inhibitor), HSP60 (heat-shock protein of molecular mass 60 kDa) and heterogeneous nuclear ribonucleoprotein K]. Interestingly, we observed a down-regulation of the transcription factor interferon regulatory factor 4 involved in the unfolded-protein-response process and protein disulfide-isomerase family members responsible for protein folding and assembly. Additionally, subunits of proteasome complex were highly expressed at HCD. Microarray, real-time quantitative reverse-transcription PCR and Western-blot analyses demonstrated a consistent trend of decrease in IgG heavy-chain level with increasing cell density. HSP60, which inhibits apoptosis by complexing with pro-apoptotic proteins such as Bax and Bak, was repressed at HCD. Overall, the data suggested that the balance among several factors involved in energy metabolism might be essential for fine-tuning the cell choice between survival and apoptosis

  4. Differentiated neuroprogenitor cells incubated with human or canine adenovirus, or lentiviral vectors have distinct transcriptome profiles.

    Directory of Open Access Journals (Sweden)

    Stefania Piersanti

    Full Text Available Several studies have demonstrated the potential for vector-mediated gene transfer to the brain. Helper-dependent (HD human (HAd and canine (CAV-2 adenovirus, and VSV-G-pseudotyped self-inactivating HIV-1 vectors (LV effectively transduce human brain cells and their toxicity has been partly analysed. However, their effect on the brain homeostasis is far from fully defined, especially because of the complexity of the central nervous system (CNS. With the goal of dissecting the toxicogenomic signatures of the three vectors for human neurons, we transduced a bona fide human neuronal system with HD-HAd, HD-CAV-2 and LV. We analysed the transcriptional response of more than 47,000 transcripts using gene chips. Chip data showed that HD-CAV-2 and LV vectors activated the innate arm of the immune response, including Toll-like receptors and hyaluronan circuits. LV vector also induced an IFN response. Moreover, HD-CAV-2 and LV vectors affected DNA damage pathways--but in opposite directions--suggesting a differential response of the p53 and ATM pathways to the vector genomes. As a general response to the vectors, human neurons activated pro-survival genes and neuron morphogenesis, presumably with the goal of re-establishing homeostasis. These data are complementary to in vivo studies on brain vector toxicity and allow a better understanding of the impact of viral vectors on human neurons, and mechanistic approaches to improve the therapeutic impact of brain-directed gene transfer.

  5. Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage

    Directory of Open Access Journals (Sweden)

    Ben W. Dulken

    2017-01-01

    Full Text Available Neural stem cells (NSCs in the adult mammalian brain serve as a reservoir for the generation of new neurons, oligodendrocytes, and astrocytes. Here, we use single-cell RNA sequencing to characterize adult NSC populations and examine the molecular identities and heterogeneity of in vivo NSC populations. We find that cells in the NSC lineage exist on a continuum through the processes of activation and differentiation. Interestingly, rare intermediate states with distinct molecular profiles can be identified and experimentally validated, and our analysis identifies putative surface markers and key intracellular regulators for these subpopulations of NSCs. Finally, using the power of single-cell profiling, we conduct a meta-analysis to compare in vivo NSCs and in vitro cultures, distinct fluorescence-activated cell sorting strategies, and different neurogenic niches. These data provide a resource for the field and contribute to an integrative understanding of the adult NSC lineage.

  6. Complement and thrombosis in the antiphospholipid syndrome.

    Science.gov (United States)

    Oku, Kenji; Nakamura, Hiroyuki; Kono, Michihiro; Ohmura, Kazumasa; Kato, Masaru; Bohgaki, Toshiyuki; Horita, Tetsuya; Yasuda, Shinsuke; Amengual, Olga; Atsumi, Tatsuya

    2016-10-01

    The involvement of complement activation in the pathophysiology of antiphospholipid syndrome (APS) was first reported in murine models of antiphospholipid antibody (aPL)-related pregnancy morbidities. We previously reported that complement activation is prevalent and may function as a source of procoagulant cell activation in the sera of APS patients. Recently, autoantibodies against C1q, a component of complement 1, were reported to be correlated with complement activation in systemic lupus erythematosus. These antibodies target neoepitopes of deformed C1q bound to various molecules (i.e., anionic phospholipids) and induce accelerated complement activation. We found that anti-C1q antibodies are more frequently detected in primary APS patients than in control patients and in refractory APS patients with repeated thrombotic events. The titer of anti-C1q antibodies was significantly higher in refractory APS patients than in APS patients without flare. The binding of C1q to anionic phospholipids may be associated with the surge in complement activation in patients with anti-C1q antibodies when triggered by 'second-hit' biological stressors such as infection. Such stressors will induce overexpression of anionic phospholipids, with subsequent increases in deformed C1q that is targeted by anti-C1q antibodies.

  7. Integrative analysis of circadian transcriptome and metabolic network reveals the role of de novo purine synthesis in circadian control of cell cycle.

    Science.gov (United States)

    Li, Ying; Li, Guang; Görling, Benjamin; Luy, Burkhard; Du, Jiulin; Yan, Jun

    2015-02-01

    Metabolism is the major output of the circadian clock in many organisms. We developed a computational method to integrate both circadian gene expression and metabolic network. Applying this method to zebrafish circadian transcriptome, we have identified large clusters of metabolic genes containing mostly genes in purine and pyrimidine metabolism in the metabolic network showing similar circadian phases. Our metabolomics analysis found that the level of inosine 5'-monophosphate (IMP), an intermediate metabolite in de novo purine synthesis, showed significant circadian oscillation in larval zebrafish. We focused on IMP dehydrogenase (impdh), a rate-limiting enzyme in de novo purine synthesis, with three circadian oscillating gene homologs: impdh1a, impdh1b and impdh2. Functional analysis revealed that impdh2 contributes to the daily rhythm of S phase in the cell cycle while impdh1a contributes to ocular development and pigment synthesis. The three zebrafish homologs of impdh are likely regulated by different circadian transcription factors. We propose that the circadian regulation of de novo purine synthesis that supplies crucial building blocks for DNA replication is an important mechanism conferring circadian rhythmicity on the cell cycle. Our method is widely applicable to study the impact of circadian transcriptome on metabolism in complex organisms.

  8. Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells.

    Directory of Open Access Journals (Sweden)

    Soraya Rumbo-Feal

    Full Text Available Acinetobacterbaumannii has emerged as a dangerous opportunistic pathogen, with many strains able to form biofilms and thus cause persistent infections. The aim of the present study was to use high-throughput sequencing techniques to establish complete transcriptome profiles of planktonic (free-living and sessile (biofilm forms of A. baumannii ATCC 17978 and thereby identify differences in their gene expression patterns. Collections of mRNA from planktonic (both exponential and stationary phase cultures and sessile (biofilm cells were sequenced. Six mRNA libraries were prepared following the mRNA-Seq protocols from Illumina. Reads were obtained in a HiScanSQ platform and mapped against the complete genome to describe the complete mRNA transcriptomes of planktonic and sessile cells. The results showed that the gene expression pattern of A. baumannii biofilm cells was distinct from that of planktonic cells, including 1621 genes over-expressed in biofilms relative to stationary phase cells and 55 genes expressed only in biofilms. These differences suggested important changes in amino acid and fatty acid metabolism, motility, active transport, DNA-methylation, iron acquisition, transcriptional regulation, and quorum sensing, among other processes. Disruption or deletion of five of these genes caused a significant decrease in biofilm formation ability in the corresponding mutant strains. Among the genes over-expressed in biofilm cells were those in an operon involved in quorum sensing. One of them, encoding an acyl carrier protein, was shown to be involved in biofilm formation as demonstrated by the significant decrease in biofilm formation by the corresponding knockout strain. The present work serves as a basis for future studies examining the complex network systems that regulate bacterial biofilm formation and maintenance.

  9. Assessing reprogramming by chimera formation and tetraploid complementation.

    Science.gov (United States)

    Li, Xin; Xia, Bao-long; Li, Wei; Zhou, Qi

    2015-01-01

    Pluripotent stem cells can be evaluated by pluripotent markers expression, embryoid body aggregation, teratoma formation, chimera contribution and even more, tetraploid complementation. Whether iPS cells in general are functionally equivalent to normal ESCs is difficult to establish. Here, we present the detailed procedure for chimera formation and tetraploid complementation, the most stringent criterion, to assessing pluripotency.

  10. Old age and the associated impairment of bones' adaptation to loading are associated with transcriptomic changes in cellular metabolism, cell-matrix interactions and the cell cycle.

    Science.gov (United States)

    Galea, Gabriel L; Meakin, Lee B; Harris, Marie A; Delisser, Peter J; Lanyon, Lance E; Harris, Stephen E; Price, Joanna S

    2017-01-30

    In old animals, bone's ability to adapt its mass and architecture to functional load-bearing requirements is diminished, resulting in bone loss characteristic of osteoporosis. Here we investigate transcriptomic changes associated with this impaired adaptive response. Young adult (19-week-old) and aged (19-month-old) female mice were subjected to unilateral axial tibial loading and their cortical shells harvested for microarray analysis between 1h and 24h following loading (36 mice per age group, 6 mice per loading group at 6 time points). In non-loaded aged bones, down-regulated genes are enriched for MAPK, Wnt and cell cycle components, including E2F1. E2F1 is the transcription factor most closely associated with genes down-regulated by ageing and is down-regulated at the protein level in osteocytes. Genes up-regulated in aged bone are enriched for carbohydrate metabolism, TNFα and TGFβ superfamily components. Loading stimulates rapid and sustained transcriptional responses in both age groups. However, genes related to proliferation are predominantly up-regulated in the young and down-regulated in the aged following loading, whereas those implicated in bioenergetics are down-regulated in the young and up-regulated in the aged. Networks of inter-related transcription factors regulated by E2F1 are loading-responsive in both age groups. Loading regulates genes involved in similar signalling cascades in both age groups, but these responses are more sustained in the young than aged. From this we conclude that cells in aged bone retain the capability to sense and transduce loading-related stimuli, but their ability to translate acute responses into functionally relevant outcomes is diminished.

  11. The relative merits of therapies being developed to tackle inappropriate (‘self’-directed) complement activation

    OpenAIRE

    Antwi-Baffour, Samuel; Kyeremeh, Ransford; Adjei, Jonathan Kofi; Aryeh, Claudia; Kpentey, George

    2016-01-01

    The complement system is an enzyme cascade that helps defend against infection. Many complement proteins occur in serum as inactive enzyme precursors or reside on cell surfaces. Complement components have many biologic functions and their activation can eventually damage the plasma membranes of cells and some bacteria. Although a direct link between complement activation and autoimmune diseases has not been found, there is increasing evidence that complement activation significantly contribut...

  12. The role of complement in the acquired immune response

    DEFF Research Database (Denmark)

    Nielsen, C H; Fischer, E M; Leslie, R G

    2000-01-01

    Studies over the past three decades have clearly established a central role for complement in the promotion of a humoral immune response. The primary function of complement, in this regard, is to opsonize antigen or immune complexes for uptake by complement receptor type 2 (CR2, CD21) expressed...... on B cells, follicular dendritic cells (FDC) and some T cells. A variety of mechanisms appear to be involved in complement-mediated promotion of the humoral response. These include: enhancement of antigen (Ag) uptake and processing by both Ag-specific and non-specific B cells for presentation...... participate in intercellular bridging. Finally, current studies suggest that CR2 may also play a role in the determination of B-cell tolerance towards self-antigens and thereby hold the key to the previously observed correlation between deficiencies of the early complement components and autoimmune disease....

  13. Transcriptomic Analysis of Mouse Cochlear Supporting Cell Maturation Reveals Large-Scale Changes in Notch Responsiveness Prior to the Onset of Hearing

    Science.gov (United States)

    Maass, Juan C.; Gu, Rende; Cai, Tiantian; Wan, Ying-Wooi; Cantellano, Silvia C.; Asprer, Joanna S. T.; Zhang, Hongyuan; Jen, Hsin-I; Edlund, Renée K.; Liu, Zhandong; Groves, Andrew K.

    2016-01-01

    Neonatal mouse cochlear supporting cells have a limited ability to divide and trans-differentiate into hair cells, but this ability declines rapidly in the two weeks after birth. This decline is concomitant with the morphological and functional maturation of the organ of Corti prior to the onset of hearing. However, despite this association between maturation and loss of regenerative potential, little is known of the molecular changes that underlie these events. To identify these changes, we used RNA-seq to generate transcriptional profiles of purified cochlear supporting cells from 1- and 6-day-old mice. We found many significant changes in gene expression during this period, many of which were related to regulation of proliferation, differentiation of inner ear components and the maturation of the organ of Corti prior to the onset of hearing. One example of a change in regenerative potential of supporting cells is their robust production of hair cells in response to a blockade of the Notch signaling pathway at the time of birth, but a complete lack of response to such blockade just a few days later. By comparing our supporting cell transcriptomes to those of supporting cells cultured in the presence of Notch pathway inhibitors, we show that the transcriptional response to Notch blockade disappears almost completely in the first postnatal week. Our results offer some of the first molecular insights into the failure of hair cell regeneration in the mammalian cochlea. PMID:27918591

  14. Role of complement and complement regulatory proteins in the complications of diabetes.

    Science.gov (United States)

    Ghosh, Pamela; Sahoo, Rupam; Vaidya, Anand; Chorev, Michael; Halperin, Jose A

    2015-06-01

    It is well established that the organ damage that complicates human diabetes is caused by prolonged hyperglycemia, but the cellular and molecular mechanisms by which high levels of glucose cause tissue damage in humans are still not fully understood. The prevalent hypothesis explaining the mechanisms that may underlie the pathogenesis of diabetes complications includes overproduction of reactive oxygen species, increased flux through the polyol pathway, overactivity of the hexosamine pathway causing intracellular formation of advanced glycation end products, and activation of protein kinase C isoforms. In addition, experimental and clinical evidence reported in past decades supports a strong link between the complement system, complement regulatory proteins, and the pathogenesis of diabetes complications. In this article, we summarize the body of evidence that supports a role for the complement system and complement regulatory proteins in the pathogenesis of diabetic vascular complications, with specific emphasis on the role of the membrane attack complex (MAC) and of CD59, an extracellular cell membrane-anchored inhibitor of MAC formation that is inactivated by nonenzymatic glycation. We discuss a pathogenic model of human diabetic complications in which a combination of CD59 inactivation by glycation and hyperglycemia-induced complement activation increases MAC deposition, activates pathways of intracellular signaling, and induces the release of proinflammatory, prothrombotic cytokines and growth factors. Combined, complement-dependent and complement-independent mechanisms induced by high glucose promote inflammation, proliferation, and thrombosis as characteristically seen in the target organs of diabetes complications.

  15. In vitro complement activation, adherence to red blood cells and induction of mononuclear cell cytokine production by four strains of Aggregatibacter actinomycetemcomitans with different fimbriation and expression of leukotoxin

    DEFF Research Database (Denmark)

    Damgaard, C; Reinholdt, J; Palarasah, Y

    2017-01-01

    . The JP2 clone variant HK 2092, selectively lacking LtxA production, induced higher production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-10 by MNCs than did the other three strains, while the four strains induced similar production of IL-12p70. RBCs facilitated the HK 2092-induced...... production of TNF-α and IL-1β, and IL-6 was enhanced by RBCs, and this facilitation could be counteracted by blockade of complement receptor 3 (CD11b/CD18). CONCLUSION: Our data suggest that the JP2 clone of A. actinomycetemcomitans, most closely resembled by the variant HK 1651, activates complement well...... with human whole blood cells in the presence of autologous serum, and assessed for RBC adherence by flow cytometry and for capacity to induce cytokine production by cytometric bead array analysis. The levels of IgG to A. actinomycetemcomitans serotype b were quantified by ELISA, as was consumption...

  16. Partial complementation of a DNA ligase I deficiency by DNA ligase III and its impact on cell survival and telomere stability in mammalian cells.

    Science.gov (United States)

    Le Chalony, Catherine; Hoffschir, Françoise; Gauthier, Laurent R; Gross, Julia; Biard, Denis S; Boussin, François D; Pennaneach, Vincent

    2012-09-01

    DNA ligase I (LigI) plays a central role in the joining of strand interruptions during replication and repair. In our current study, we provide evidence that DNA ligase III (LigIII) and XRCC1, which form a complex that functions in single-strand break repair, are required for the proliferation of mammalian LigI-depleted cells. We show from our data that in cells with either dysfunctional LigI activity or depleted of this enzyme, both LigIII and XRCC1 are retained on the chromatin and accumulate at replication foci. We also demonstrate that the LigI and LigIII proteins cooperate to inhibit sister chromatid exchanges but that only LigI prevents telomere sister fusions. Taken together, these results suggest that in cells with dysfunctional LigI, LigIII contributes to the ligation of replication intermediates but not to the prevention of telomeric instability.

  17. Neuroprotection from complement-mediated inflammatory damage.

    Science.gov (United States)

    Kulkarni, Amod P; Kellaway, Laurie A; Lahiri, Debomoy K; Kotwal, Girish J

    2004-12-01

    Several neurodegenerative disorders, such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease, are associated with inflammatory damage. The complex process of neuroinflammation involves various components of the immune system and the central nervous system. Particularly, brain astrocytes and microglial cells generate several inflammatory mediators like cytokines, leukotrienes, superoxide radicals, eicasonoids, and the components of the complement cascade. Complement plays an important role in the etiology of most of the neuroinflammatory disorders. To prevent long-term dysfunction inflammation in the central nervous system must be modulated with neuroprotective agents such as nonsteroidal anti-inflammatory drugs, steroids, phenolic thiazoles, nitrones, catechins, nitric oxide synthetase inhibitors, flavonoids, and phosphodiesterase inhibitors. Few drugs are found to be effective and their therapeutic benefit is hampered by side effects. Most of the neuroprotective agents are free radical scavengers and many inhibit only one or two aspects of inflammation. The complement inhibitory activity of most of these agents is either unknown or not established. Thus, there is doubt regarding their therapeutic value in most of the inflammatory disorders in which complement plays a major role. In this context the role of a multifunctional protein, vaccinia virus complement control protein (VCP), is quite significant as it may play a pivotal role in the treatment of several neuroinflammatory disorders. VCP is known to inhibit both complement pathways involved in inflammation. It is also known to inhibit cytokines and chemokines in inflammation. Our recent studies on rats demonstrate that VCP administration inhibits macrophage infiltration, reduces spinal cord destruction, and improves motor skills associated with spinal cord injury, establishing VCP as a strong candidate for neuroprotection. Thus, complement inhibitors such as VCP can serve as neuroprotective

  18. Cell type-specific transcriptome analysis reveals a major role for Zeb1 and miR-200b in mouse inner ear morphogenesis.

    Directory of Open Access Journals (Sweden)

    Ronna Hertzano

    2011-09-01

    Full Text Available Cellular heterogeneity hinders the extraction of functionally significant results and inference of regulatory networks from wide-scale expression profiles of complex mammalian organs. The mammalian inner ear consists of the auditory and vestibular systems that are each composed of hair cells, supporting cells, neurons, mesenchymal cells, other epithelial cells, and blood vessels. We developed a novel protocol to sort auditory and vestibular tissues of newborn mouse inner ears into their major cellular components. Transcriptome profiling of the sorted cells identified cell type-specific expression clusters. Computational analysis detected transcription factors and microRNAs that play key roles in determining cell identity in the inner ear. Specifically, our analysis revealed the role of the Zeb1/miR-200b pathway in establishing epithelial and mesenchymal identity in the inner ear. Furthermore, we detected a misregulation of the ZEB1 pathway in the inner ear of Twirler mice, which manifest, among other phenotypes, malformations of the auditory and vestibular labyrinth. The association of misregulation of the ZEB1/miR-200b pathway with auditory and vestibular defects in the Twirler mutant mice uncovers a novel mechanism underlying deafness and balance disorders. Our approach can be employed to decipher additional complex regulatory networks underlying other hearing and balance mouse mutants.

  19. Transcriptome signature in young children with acute otitis media due to non-typeable Haemophilus influenzae.

    Science.gov (United States)

    Liu, Keyi; Chen, Linlin; Kaur, Ravinder; Pichichero, Michael E

    2013-06-01

    Non-typeable Haemophilus influenzae (NTHi) causes acute otitis media (AOM) in young children. In our recent paper in Microbes and Infection we described the transcriptome signature elicited from PBMCs at onset of AOM caused by Streptococcus pneumoniae. In the current study we found very different results with NTHi AOM infections; 5.1% of 29 187 genes were differentially regulated by more than 2-fold at the onset of AOM compared with the pre-infection healthy state in the same children. Among the 1487 transcripts, 100 genes associated with the immune defense response were specifically analyzed. About half of the differentially regulated genes associated with antibacterial activity and the cell-mediated immune response were activated and half were suppressed. The important signatures for NTHi in children suggested that the balance of the immune response was toward suppression. Moreover, 90% of the genes associated with a pro-inflammatory cytokine response were down-regulated. The genes associated with the classic complement pathway were down-regulated, although the alternative complement pathway genes were up-regulated. These results provide the first human transcriptome data identifying gene expression in the immune response to be predominantly down-regulated at the onset of AOM due to NTHi.

  20. Initiation and Regulation of Complement during Hemolytic Transfusion Reactions

    Directory of Open Access Journals (Sweden)

    Sean R. Stowell

    2012-01-01

    Full Text Available Hemolytic transfusion reactions represent one of the most common causes of transfusion-related mortality. Although many factors influence hemolytic transfusion reactions, complement activation represents one of the most common features associated with fatality. In this paper we will focus on the role of complement in initiating and regulating hemolytic transfusion reactions and will discuss potential strategies aimed at mitigating or favorably modulating complement during incompatible red blood cell transfusions.

  1. Material properties in complement activation

    DEFF Research Database (Denmark)

    Moghimi, S. Moein; Andersen, Alina Joukainen; Ahmadvand, Davoud;

    2011-01-01

    Uncontrolled complement activation can induce many inflammatory and life threatening conditions. Accordingly, the role of complement in initiation of adverse reactions to polymers and nanoparticulate drug carriers is receiving increasing attention and has prompted extensive ‘structure......-immune performance’ relationship studies in nanomedicine research at many fronts. The interaction between nanomaterials and the complement system is complex and regulated by inter-related factors that include nanoscale size, morphology and surface characteristics. Each of these parameters may affect complement...... activation differently and through different sensing molecules and initiation pathways. The importance of material properties in triggering complement is considered and mechanistic aspects discussed. Mechanistic understanding of complement events could provide rational approaches for improved material design...

  2. Inhibition of Complement Retards Ankylosing Spondylitis Progression

    Science.gov (United States)

    Yang, Chaoqun; Ding, Peipei; Wang, Qingkai; Zhang, Long; Zhang, Xin; Zhao, Jianquan; Xu, Enjie; Wang, Na; Chen, Jianfeng; Yang, Guang; Hu, Weiguo; Zhou, Xuhui

    2016-01-01

    Ankylosing spondylitis (AS) is a chronic axial spondyloarthritis (SpA) resulting in back pain and progressive spinal ankyloses. Currently, there are no effective therapeutics targeting AS largely due to elusive pathogenesis mechanisms, even as potential candidates such as HLA-B27 autoantigen have been identified. Herein, we employed a proteoglycan (PG)-induced AS mouse model together with clinical specimens, and found that the complement system was substantially activated in the spinal bone marrow, accompanied by a remarkable proportion alteration of neutrophils and macrophage in bone marrow and spleen, and by the significant increase of TGF-β1 in serum. The combined treatment with a bacteria-derived complement inhibitor Efb-C (C-terminal of extracellular fibrinogen-binding protein of Staphylococcus aureus) remarkably retarded the progression of mouse AS by reducing osteoblast differentiation. Furthermore, we demonstrated that two important modulators involved in AS disease, TGF-β1 and RANKL, were elevated upon in vitro complement attack in osteoblast and/or osteoclast cells. These findings further unravel that complement activation is closely related with the pathogenesis of AS, and suggest that complement inhibition may hold great potential for AS therapy. PMID:27698377

  3. Developmental transcriptome of Aplysia californica'

    KAUST Repository

    Heyland, Andreas

    2010-12-06

    Genome-wide transcriptional changes in development provide important insight into mechanisms underlying growth, differentiation, and patterning. However, such large-scale developmental studies have been limited to a few representatives of Ecdysozoans and Chordates. Here, we characterize transcriptomes of embryonic, larval, and metamorphic development in the marine mollusc Aplysia californica and reveal novel molecular components associated with life history transitions. Specifically, we identify more than 20 signal peptides, putative hormones, and transcription factors in association with early development and metamorphic stages-many of which seem to be evolutionarily conserved elements of signal transduction pathways. We also characterize genes related to biomineralization-a critical process of molluscan development. In summary, our experiment provides the first large-scale survey of gene expression in mollusc development, and complements previous studies on the regulatory mechanisms underlying body plan patterning and the formation of larval and juvenile structures. This study serves as a resource for further functional annotation of transcripts and genes in Aplysia, specifically and molluscs in general. A comparison of the Aplysia developmental transcriptome with similar studies in the zebra fish Danio rerio, the fruit fly Drosophila melanogaster, the nematode Caenorhabditis elegans, and other studies on molluscs suggests an overall highly divergent pattern of gene regulatory mechanisms that are likely a consequence of the different developmental modes of these organisms. © 2010 Wiley-Liss, Inc., A Wiley Company.

  4. Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for Ca(2+)i-independent excitation-transcription coupling.

    Science.gov (United States)

    Koltsova, Svetlana V; Trushina, Yulia; Haloui, Mounsif; Akimova, Olga A; Tremblay, Johanne; Hamet, Pavel; Orlov, Sergei N

    2012-01-01

    Stimulus-dependent elevation of intracellular Ca(2+) ([Ca(2+)](i)) affects the expression of numerous genes--a phenomenon known as excitation-transcription coupling. Recently, we found that increases in [Na(+)](i) trigger c-Fos expression via a novel Ca(2+) (i)-independent pathway. In the present study, we identified ubiquitous and tissue-specific [Na(+)](i)/[K(+)](i)-sensitive transcriptomes by comparative analysis of differentially expressed genes in vascular smooth muscle cells from rat aorta (RVSMC), the human adenocarcinoma cell line HeLa, and human umbilical vein endothelial cells (HUVEC). To augment [Na(+)](i) and reduce [K(+)](i), cells were treated for 3 hrs with the Na(+),K(+)-ATPase inhibitor ouabain or placed for the same time in the K(+)-free medium. Employing Affymetrix-based technology, we detected changes in expression levels of 684, 737 and 1839 transcripts in HeLa, HUVEC and RVSMC, respectively, that were highly correlated between two treatments (p0.62). Among these Na(+) (i)/K(+) (i)-sensitive genes, 80 transcripts were common for all three types of cells. To establish if changes in gene expression are dependent on increases in [Ca(2+)](i), we performed identical experiments in Ca(2+)-free media supplemented with extracellular and intracellular Ca(2+) chelators. Surprisingly, this procedure elevated rather than decreased the number of ubiquitous and cell-type specific Na(+) (i)/K(+) (i)-sensitive genes. Among the ubiquitous Na(+) (i)/K(+) (i)-sensitive genes whose expression was regulated independently of the presence of Ca(2+) chelators by more than 3-fold, we discovered several transcription factors (Fos, Jun, Hes1, Nfkbia), interleukin-6, protein phosphatase 1 regulatory subunit, dual specificity phosphatase (Dusp8), prostaglandin-endoperoxide synthase 2, cyclin L1, whereas expression of metallopeptidase Adamts1, adrenomedulin, Dups1, Dusp10 and Dusp16 was detected exclusively in Ca(2+)-depleted cells. Overall, our findings indicate that Ca(2

  5. Peripheral challenge with a viral mimic upregulates expression of the complement genes in the hippocampus.

    Science.gov (United States)

    Michalovicz, Lindsay T; Lally, Brent; Konat, Gregory W

    2015-08-15

    Peripheral challenge with a viral mimetic, polyinosinic-polycytidylic acid (PIC) induces hippocampal hyperexcitability in mice. Here, we characterized this hippocampal response through a whole genome transcriptome analysis. Intraperitoneal injection of PIC resulted in temporal dysregulation of 625 genes in the hippocampus, indicating an extensive genetic reprogramming. The bioinformatics analysis of these genes revealed the complement pathway to be the most significantly activated. The gene encoding complement factor B (CfB) exhibited the highest response, and its upregulation was commensurate with the development of hyperexcitability. Collectively, these results suggest that the induction of hippocampal hyperexcitability may be mediated by the alternative complement cascades.

  6. CLL Exosomes Modulate the Transcriptome and Behaviour of Recipient Stromal Cells and Are Selectively Enriched in miR-202-3p.

    Directory of Open Access Journals (Sweden)

    Mosavar Farahani

    Full Text Available Bi-directional communication with the microenvironment is essential for homing and survival of cancer cells with implications for disease biology and behaviour. In chronic lymphocytic leukemia (CLL, the role of the microenvironment on malignant cell behaviour is well described. However, how CLL cells engage and recruit nurturing cells is poorly characterised. Here we demonstrate that CLL cells secrete exosomes that are nanovesicles originating from the fusion of multivesicular bodies with the plasma membrane, to shuttle proteins, lipids, microRNAs (miR and mRNAs to recipient cells. We characterise and confirm the size (50-100 nm and identity of the CLL-derived exosomes by Electron microscopy (EM, Atomic force microscopy (AFM, flow cytometry and western blotting using both exosome- and CLL-specific markers. Incubation of CLL-exosomes, derived either from cell culture supernatants or from patient plasma, with human stromal cells shows that they are readily taken up into endosomes, and induce expression of genes such as c-fos and ATM as well as enhance proliferation of recipient HS-5 cells. Furthermore, we show that CLL exosomes encapsulate abundant small RNAs and are enriched in certain miRs and specifically hsa-miR-202-3p. We suggest that such specific packaging of miR-202-3p into exosomes results in enhanced expression of 'suppressor of fused' (Sufu, a Hedgehog (Hh signalling intermediate, in the parental CLL cells. Thus, our data show that CLL cells secrete exosomes that alter the transcriptome and behaviour of recipient cells. Such communication with microenvironment is likely to have an important role in CLL disease biology.

  7. Low dose irradiation of thyroid cells reveals a unique transcriptomic and epigenetic signature in RET/PTC-positive cells

    Energy Technology Data Exchange (ETDEWEB)

    Abou-El-Ardat, Khalil, E-mail: kabouela@sckcen.be [Radiobiology Unit, Molecular and Cellular Biology, GKD Building, Studiecentrum voor Kernenergie - Centre d' Etude de l' Energie Nucleaire (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Universiteit Gent, 9000 Ghent (Belgium); Monsieurs, Pieter [Radiobiology Unit, Molecular and Cellular Biology, GKD Building, Studiecentrum voor Kernenergie - Centre d' Etude de l' Energie Nucleaire (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); Anastasov, Natasa; Atkinson, Mike [Department of Radiation Sciences, Helmholtz Zentrum Muenchen, Munich (Germany); Derradji, Hanane [Radiobiology Unit, Molecular and Cellular Biology, GKD Building, Studiecentrum voor Kernenergie - Centre d' Etude de l' Energie Nucleaire (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); De Meyer, Tim [Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Universiteit Gent, 9000 Ghent (Belgium); Department of Applied Mathematics, Biometrics and Process Control, Faculty of Bioscience Engineering, Universiteit Gent, 9000 Ghent (Belgium); Bekaert, Sofie [Clinical Research Center, Faculty for Medicine and Health Sciences, Universiteit Gent, 185 De Pintelaan, 9000 Ghent (Belgium); Van Criekinge, Wim [Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Universiteit Gent, 9000 Ghent (Belgium); and others

    2012-03-01

    The high doses of radiation received in the wake of the Chernobyl incident and the atomic bombing of Hiroshima and Nagasaki have been linked to the increased appearance of thyroid cancer in the children living in the vicinity of the site. However, the data gathered on the effect of low doses of radiation on the thyroid remain limited. We have examined the genome wide transcriptional response of a culture of TPC-1 human cell line of papillary thyroid carcinoma origin with a RET/PTC1 translocation to various doses (0.0625, 0.5, and 4 Gy) of X-rays and compared it to response of thyroids with a RET/PTC3 translocation and against wild-type mouse thyroids irradiated with the same doses using Affymetrix microarrays. We have found considerable overlap at a high dose of 4 Gy in both RET/PTC-positive systems but no common genes at 62.5 mGy. In addition, the response of RET/PTC-positive system at all doses was distinct from the response of wild-type thyroids with both systems signaling down different pathways. Analysis of the response of microRNAs in TPC-1 cells revealed a radiation-responsive signature of microRNAs in addition to dose-responsive microRNAs. Our results point to the fact that a low dose of X-rays seems to have a significant proliferative effect on normal thyroids. This observation should be studied further as opposed to its effect on RET/PTC-positive thyroids which was subtle, anti-proliferative and system-dependent.

  8. Complementation analysis of ataxia-telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, N.G.; Painter, R.B.; Paterson, M.C.; Kidson, C.; Inoue, T.

    1985-01-01

    In a number of laboratories genetic analysis of ataxia-telangiectasia (AT) has been performed by studying the expression of the AT phenotype in fused somatic cells or mixtures of cell-free extracts from different patients. Complementation of the defective response to ionizing radiation was observed frequently, considering four different parameters for radiosensitivity in AT. The combined results from studies on cultured fibroblasts or lymphoblastoid cells from 17 unrelated families revealed the presence of at least four and possibly nine complementation groups. These findings suggest that there is an extensive genetic heterogeneity in AT. More extensive studies are needed for an integration of these data and to provide a set of genetically characterized cell strains for future research of the AT genetic defect.

  9. Complement system in lung disease.

    Science.gov (United States)

    Pandya, Pankita H; Wilkes, David S

    2014-10-01

    In addition to its established contribution to innate immunity, recent studies have suggested novel roles for the complement system in the development of various lung diseases. Several studies have demonstrated that complement may serve as a key link between innate and adaptive immunity in a variety of pulmonary conditions. However, the specific contributions of complement to lung diseases based on innate and adaptive immunity are just beginning to emerge. Elucidating the role of complement-mediated immune regulation in these diseases will help to identify new targets for therapeutic interventions.

  10. Transcriptional signatures of somatic neoblasts and germline cells in Macrostomum lignano.

    Science.gov (United States)

    Grudniewska, Magda; Mouton, Stijn; Simanov, Daniil; Beltman, Frank; Grelling, Margriet; de Mulder, Katrien; Arindrarto, Wibowo; Weissert, Philipp M; van der Elst, Stefan; Berezikov, Eugene

    2016-12-20

    The regeneration-capable flatworm Macrostomum lignano is a powerful model organism to study the biology of stem cells in vivo. As a flatworm amenable to transgenesis, it complements the historically used planarian flatworm models, such as Schmidtea mediterranea. However, information on the transcriptome and markers of stem cells in M. lignano is limited. We generated a de novo transcriptome assembly and performed the first comprehensive characterization of gene expression in the proliferating cells of M. lignano, represented by somatic stem cells, called neoblasts, and germline cells. Knockdown of a selected set of neoblast genes, including Mlig-ddx39, Mlig-rrm1, Mlig-rpa3, Mlig-cdk1, and Mlig-h2a, confirmed their crucial role for the functionality of somatic neoblasts during homeostasis and regeneration. The generated M. lignano transcriptome assembly and gene expression signatures of somatic neoblasts and germline cells will be a valuable resource for future molecular studies in M. lignano.

  11. The Expression Profile of Complement Components in Podocytes.

    Science.gov (United States)

    Li, Xuejuan; Ding, Fangrui; Zhang, Xiaoyan; Li, Baihong; Ding, Jie

    2016-03-30

    Podocytes are critical for maintaining the glomerular filtration barrier and are injured in many renal diseases, especially proteinuric kidney diseases. Recently, reports suggested that podocytes are among the renal cells that synthesize complement components that mediate glomerular diseases. Nevertheless, the profile and extent of complement component expression in podocytes remain unclear. This study examined the expression profile of complement in podocytes under physiological conditions and in abnormal podocytes induced by multiple stimuli. In total, 23/32 complement component components were detected in podocyte by conventional RT-PCR. Both primary cultured podocytes and immortalized podocytes expressed the complement factors C1q, C1r, C2, C3, C7, MASP, CFI, DAF, CD59, C4bp, CD46, Protein S, CR2, C1qR, C3aR, C5aR, and Crry (17/32), whereas C4, CFB, CFD, C5, C6, C8, C9, MBL1, and MBL2 (9/32) complement factors were not expressed. C3, Crry, and C1q-binding protein were detected by tandem mass spectrometry. Podocyte complement gene expression was affected by several factors (puromycin aminonucleoside (PAN), angiotensin II (Ang II), interleukin-6 (IL-6), and transforming growth factor-β (TGF-β)). Representative complement components were detected using fluorescence confocal microscopy. In conclusion, primary podocytes express various complement components at the mRNA and protein levels. The complement gene expressions were affected by several podocyte injury factors.

  12. Integrative transcriptomics-based identification of cryptic drivers of taxol-resistance genes in ovarian carcinoma cells: Analysis of the androgen receptor.

    Science.gov (United States)

    Sun, Nian-Kang; Huang, Shang-Lang; Lu, Hsing-Pang; Chang, Ting-Chang; Chao, Chuck C-K

    2015-09-29

    A systematic analysis of the genes involved in taxol resistance (txr) has never been performed. In the present study, we created txr ovarian carcinoma cell lines to identify the genes involved in chemoresistance. Transcriptome analysis revealed 1,194 overexpressed genes in txr cells. Among the upregulated genes, more than 12 cryptic transcription factors were identified using MetaCore analysis (including AR, C/EBPβ, ERα, HNF4α, c-Jun/AP-1, c-Myc, and SP-1). Notably, individual silencing of these transcription factors (except HNF4`)sensitized txr cells to taxol. The androgen receptor (AR) and its target genes were selected for further analysis. Silencing AR using RNA interference produced a 3-fold sensitization to taxol in txr cells, a response similar to that produced by silencing abcb1. AR silencing also downregulated the expression of prominent txr gene candidates (including abcb1, abcb6, abcg2, bmp5, fat3, fgfr2, h1f0, srcrb4d, and tmprss15). In contrast, AR activation using the agonist DHT upregulated expression of the target genes. Individually silencing seven out of nine (78%) AR-regulated txr genes sensitized txr cells to taxol. Inhibition of AKT and JNK cellular kinases using chemical inhibitors caused a dramatic suppression of AR expression. These results indicate that the AR represents a critical driver of gene expression involved in txr.

  13. RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae

    Science.gov (United States)

    Dong, Yachen; Hu, Jingjin; Fan, Linlin; Chen, Qihe

    2017-01-01

    As a typical harmful inhibitor in cellulosic hydrolyzates, acetic acid not only hinders bioethanol production, but also induces cell death in Saccharomyces cerevisiae. Herein, we conducted both transcriptomic and metabolomic analyses to investigate the global responses under acetic acid stress at different stages. There were 295 up-regulated and 427 down-regulated genes identified at more than two time points during acetic acid treatment (150 mM, pH 3.0). These differentially expressed genes (DEGs) were mainly involved in intracellular homeostasis, central metabolic pathway, transcription regulation, protein folding and stabilization, ubiquitin-dependent protein catabolic process, vesicle-mediated transport, protein synthesis, MAPK signaling pathways, cell cycle, programmed cell death, etc. The interaction network of all identified DEGs was constructed to speculate the potential regulatory genes and dominant pathways in response to acetic acid. The transcriptional changes were confirmed by metabolic profiles and phenotypic analysis. Acetic acid resulted in severe acidification in both cytosol and mitochondria, which was different from the effect of extracellular pH. Additionally, the imbalance of intracellular acetylation was shown to aggravate cell death under this stress. Overall, this work provides a novel and comprehensive understanding of stress responses and programmed cell death induced by acetic acid in yeast. PMID:28209995

  14. The complement system in teleost fish: progress of post-homolog-hunting researches.

    Science.gov (United States)

    Nakao, Miki; Tsujikura, Masakazu; Ichiki, Satoko; Vo, Tam K; Somamoto, Tomonori

    2011-12-01

    Studies on the complement system of bony fish are now finishing a stage of homologue-hunting identification of the components, unveiling existence of almost all the orthologues of mammalian complement components in teleost. Genomic and transcriptomic data for several teleost species have contributed much for the homologue-hunting research progress. Only an exception is identification of orthologues of mammalian complement regulatory proteins and complement receptors. It is of particular interest that teleost complement components often exist as multiple isoforms with possible functional divergence. This review summarizes research progress of teleost complement system following the molecular identification and sequence analysis of the components. The findings of extensive expression analyses of the complement components with special emphasis of their prominent extrahepatic expression, acute-phase response to immunostimulation and various microbial infections, and ontogenic development including maternal transfer are discussed to infer teleost-specific functions of the complement system. Importance of the protein level characterization of the complement components is also emphasized, especially for understanding of the isotypic diversity of the components, a unique feature of teleost complement system.

  15. Protein ultrastructure and the nanoscience of complement activation.

    Science.gov (United States)

    Vorup-Jensen, Thomas; Boesen, Thomas

    2011-09-16

    The complement system constitutes an important barrier to infection of the human body. Over more than four decades structural properties of the proteins of the complement system have been investigated with X-ray crystallography, electron microscopy, small-angle scattering, and atomic force microscopy. Here, we review the accumulated evidence that the nm-scaled dimensions and conformational changes of these proteins support functions of the complement system with regard to tissue distribution, molecular crowding effects, avidity binding, and conformational regulation of complement activation. In the targeting of complement activation to the surfaces of nanoparticulate material, such as engineered nanoparticles or fragments of the microbial cell wall, these processes play intimately together. This way the complement system is an excellent example where nanoscience may serve to unravel the molecular biology of the immune response.

  16. Evolution of the complement system.

    Science.gov (United States)

    Nonaka, Masaru

    2014-01-01

    The mammalian complement system constitutes a highly sophisticated body defense machinery comprising more than 30 components. Research into the evolutionary origin of the complement system has identified a primitive version composed of the central component C3 and two activation proteases Bf and MASP in cnidaria. This suggests that the complement system was established in the common ancestor of eumetazoa more than 500 million years ago. The original activation mechanism of the original complement system is believed to be close to the mammalian lectin and alternative activation pathways, and its main role seems to be opsonization and induction of inflammation. This primitive complement system has been retained by most deuterostomes without major change until the appearance of jawed vertebrates. At this stage, duplication of the C3, Bf and MASP genes as well as recruitment of membrane attack components added the classical and lytic pathways to the primitive complement system, converting it to the modern complement system. In contrast, the complement system was lost multiple times independently in the protostome lineage.

  17. Complement evasion by Staphylococcus aureus

    NARCIS (Netherlands)

    Jongerius, I.

    2010-01-01

    The complement system is the first line of defense against invading microorganisms. Activation of the complement system results in the coverage of bacteria with C3b, resulting in phagocytosis, and formation of C5a which is important for chemotaxis of neutrophils towards the site of infection. Staphy

  18. Complementing the sugar code: role of GAGs and sialic acid in complement regulation

    Directory of Open Access Journals (Sweden)

    Alex eLangford-Smith

    2015-02-01

    Full Text Available Sugar molecules play a vital role on both microbial and mammalian cells, where they are involved in cellular communication, govern microbial virulence and modulate host immunity and inflammatory responses. The complement cascade, as part of a host’s innate immune system, is a potent weapon against invading bacteria but has to be tightly regulated to prevent inappropriate attack and damage to host tissues. A number of complement regulators, such as factor H and properdin, interact with sugar molecules, such as glycosaminoglycans and sialic acid, on host and pathogen membranes and direct the appropriate complement response by either promoting the binding of complement activators or inhibitors. The binding of these complement regulators to sugar molecules can vary from location to location, due to their different specificities and because distinct structural and functional subpopulations of sugars are found in different human organs, such as the brain, kidney and eye. This review will cover recent studies that have provided important new insights into the role of glycosaminoglycans and sialic acid in complement regulation and how sugar recognition may be compromised in disease

  19. Advances in Swine Transcriptomics

    Directory of Open Access Journals (Sweden)

    Christopher K. Tuggle , Yanfang Wang, Oliver Couture

    2007-01-01

    Full Text Available The past five years have seen a tremendous rise in porcine transcriptomic data. Available porcine Expressed Sequence Tags (ESTs have expanded greatly, with over 623,000 ESTs deposited in Genbank. ESTs have been used to expand the pig-human comparative maps, but such data has also been used in many ways to understand pig gene expression. Several methods have been used to identify genes differentially expressed (DE in specific tissues or cell types under different treatments. These include open screening methods such as suppression subtractive hybridization, differential display, serial analysis of gene expression, and EST sequence frequency, as well as closed methods that measure expression of a defined set of sequences such as hybridization to membrane arrays and microarrays. The use of microarrays to begin large-scale transcriptome analysis has been recently reported, using either specialized or broad-coverage arrays. This review covers published results using the above techniques in the pig, as well as unpublished data provided by the research community, and reports on unpublished Affymetrix data from our group. Published and unpublished bioinformatics efforts are discussed, including recent work by our group to integrate two broad-coverage microarray platforms. We conclude by predicting experiments that will become possible with new anticipated tools and data, including the porcine genome sequence. We emphasize that the need for bioinformatics infrastructure to efficiently store and analyze the expanding amounts of gene expression data is critical, and that this deficit has emerged as a limiting factor for acceleration of genomic understanding in the pig.

  20. Complement and membrane-bound complement regulatory proteins as biomarkers and therapeutic targets for autoimmune inflammatory disorders, RA and SLE.

    Science.gov (United States)

    Das, Nibhriti

    2015-11-01

    Complement system is a major effecter system of the innate immunity that bridges with adaptive immunity. The system consists of about 40 humoral and cell surface proteins that include zymogens, receptors and regulators. The zymogens get activated in a cascade fashion by antigen-antibody complex, antigen alone or by polymannans, respectively, by the classical, alternative and mannose binding lectin (MBL) pathways. The ongoing research on complement regulators and complement receptors suggest key role of these proteins in the initiation, regulation and effecter mechanisms of the innate and adaptive immunity. Although, the complement system provides the first line of defence against the invading pathogens, its aberrant uncontrolled activation causes extensive self tissue injury. A large number of humoral and cell surface complement regulatory protein keep the system well-regulated in healthy individuals. Complement profiling had brought important information on the pathophysiology of several infectious and chronic inflammatory disorders. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases that affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This brief review discusses on the complement system, its functions and its importance as biomarkers and therapeutic targets for autoimmune diseases with focus on SLE and RA.

  1. Complement receptor expression and activation of the complement cascade on B lymphocytes from patients with systemic lupus erythematosus (SLE)

    DEFF Research Database (Denmark)

    Marquart, H V; Svendsen, Anders Jørgen; Rasmussen, J M;

    1995-01-01

    It has previously been reported that the expression of the complement receptors, CR1 on erythrocytes and blood leucocytes and CR2 on B cells, is reduced in patients with SLE, and that the reduced expression of CR1 on erythrocytes is related to disease activity. We have earlier demonstrated...... that normal B cells are capable of activating the alternative pathway (AP) of complement in a CR2-dependent fashion. In this study we have investigated whether disturbances in this activity may be related to the altered phenotype of SLE B cells. Flow cytometry was used to measure expression of complement...... activation by B cells in homologous serum. Finally, we demonstrated an inverse relationship between SLE disease activity index (SLEDAI) and the expression of complement receptor 2 (CR2) on SLE B cells. Thus, determination of CR2 on B cells may emerge as an additional laboratory tool in the assessment of SLE...

  2. Integrative investigation of metabolic and transcriptomic data

    Directory of Open Access Journals (Sweden)

    Önsan Z İlsen

    2006-04-01

    Full Text Available Abstract Background New analysis methods are being developed to integrate data from transcriptome, proteome, interactome, metabolome, and other investigative approaches. At the same time, existing methods are being modified to serve the objectives of systems biology and permit the interpretation of the huge datasets currently being generated by high-throughput methods. Results Transcriptomic and metabolic data from chemostat fermentors were collected with the aim of investigating the relationship between these two data sets. The variation in transcriptome data in response to three physiological or genetic perturbations (medium composition, growth rate, and specific gene deletions was investigated using linear modelling, and open reading-frames (ORFs whose expression changed significantly in response to these perturbations were identified. Assuming that the metabolic profile is a function of the transcriptome profile, expression levels of the different ORFs were used to model the metabolic variables via Partial Least Squares (Projection to Latent Structures – PLS using PLS toolbox in Matlab. Conclusion The experimental design allowed the analyses to discriminate between the effects which the growth medium, dilution rate, and the deletion of specific genes had on the transcriptome and metabolite profiles. Metabolite data were modelled as a function of the transcriptome to determine their congruence. The genes that are involved in central carbon metabolism of yeast cells were found to be the ORFs with the most significant contribution to the model.

  3. Web services for transcriptomics

    NARCIS (Netherlands)

    Neerincx, P.

    2009-01-01

    Transcriptomics is part of a family of disciplines focussing on high throughput molecular biology experiments. In the case of transcriptomics, scientists study the expression of genes resulting in transcripts. These transcripts can either perform a biological function themselves or function as messe

  4. Subtractive transcriptome analysis of leaf and rhizome reveals differentially expressed transcripts in Panax sokpayensis.

    Science.gov (United States)

    Gurung, Bhusan; Bhardwaj, Pardeep K; Talukdar, Narayan C

    2016-11-01

    In the present study, suppression subtractive hybridization (SSH) strategy was used to identify rare and differentially expressed transcripts in leaf and rhizome tissues of Panax sokpayensis. Out of 1102 randomly picked clones, 513 and 374 high quality expressed sequenced tags (ESTs) were generated from leaf and rhizome subtractive libraries, respectively. Out of them, 64.92 % ESTs from leaf and 69.26 % ESTs from rhizome SSH libraries were assembled into different functional categories, while others were of unknown function. In particular, ESTs encoding galactinol synthase 2, ribosomal RNA processing Brix domain protein, and cell division cycle protein 20.1, which are involved in plant growth and development, were most abundant in the leaf SSH library. Other ESTs encoding protein KIAA0664 homologue, ubiquitin-activating enzyme e11, and major latex protein, which are involved in plant immunity and defense response, were most abundant in the rhizome SSH library. Subtractive ESTs also showed similarity with genes involved in ginsenoside biosynthetic pathway, namely farnesyl pyrophosphate synthase, squalene synthase, and dammarenediol synthase. Expression profiles of selected ESTs validated the quality of libraries and confirmed their differential expression in the leaf, stem, and rhizome tissues. In silico comparative analyses revealed that around 13.75 % of unigenes from the leaf SSH library were not represented in the available leaf transcriptome of Panax ginseng. Similarly, around 18.12, 23.75, 25, and 6.25 % of unigenes from the rhizome SSH library were not represented in available root/rhizome transcriptomes of P. ginseng, Panax notoginseng, Panax quinquefolius, and Panax vietnamensis, respectively, indicating a major fraction of novel ESTs. Therefore, these subtractive transcriptomes provide valuable resources for gene discovery in P. sokpayensis and would complement the available transcriptomes from other Panax species.

  5. Keeping It All Going-Complement Meets Metabolism.

    Science.gov (United States)

    Kolev, Martin; Kemper, Claudia

    2017-01-01

    The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work performed specifically in the last five decades identified complement also as a critical instructor of adaptive immunity-indicating that complement's function is likely broader than initially anticipated-the dominant opinion among researchers and clinicians was that the key complement functions were in principle defined. However, there is now a growing realization that complement activity goes well beyond "classic" immune functions and that this system is also required for normal (neuronal) development and activity and general cell and tissue integrity and homeostasis. Furthermore, the recent discovery that complement activation is not confined to the extracellular space but occurs within cells led to the surprising understanding that complement is involved in the regulation of basic processes of the cell, particularly those of metabolic nature-mostly via novel crosstalks between complement and intracellular sensor, and effector, pathways that had been overlooked because of their spatial separation. These paradigm shifts in the field led to a renaissance in complement research and provide new platforms to now better understand the molecular pathways underlying the wide-reaching effects of complement functions in immunity and beyond. In this review, we will cover the current knowledge about complement's emerging relationship with the cellular metabolism machinery with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions. We will also

  6. A Sample-to-Sequence Protocol for Genus Targeted Transcriptomic Profiling: Application to Marine Synechococcus

    Science.gov (United States)

    Pitt, Frances D.; Millard, Andrew; Ostrowski, Martin; Dervish, Suat; Mazard, Sophie; Paulsen, Ian T.; Zubkov, Mikhail V.; Scanlan, David J.

    2016-01-01

    Recent studies using whole community metagenomic and metatranscriptomic approaches are revealing important new insights into the functional potential and activity of natural marine microbial communities. Here, we complement these approaches by describing a complete ocean sample-to-sequence protocol, specifically designed to target a single bacterial genus for purposes of both DNA and RNA profiling using fluorescence activated cell sorting (FACS). The importance of defining and understanding the effects of a sampling protocol are critical if we are to gain meaningful data from environmental surveys. Rigorous pipeline trials with a cultured isolate, Synechococcus sp. BL107 demonstrate that water filtration has a well-defined but limited impact on the transcriptomic profile of this organism, whilst sample storage and multiple rounds of cell sorting have almost no effect on the resulting RNA sequence profile. Attractively, the means to replicate the sampling strategy is within the budget and expertise of most researchers.

  7. A Sample-to-Sequence Protocol for Genus Targeted Transcriptomic Profiling: Application to Marine Synechococcus

    Directory of Open Access Journals (Sweden)

    Frances Diana Pitt

    2016-10-01

    Full Text Available Recent studies using whole community metagenomic and metatranscriptomic approaches are revealing important new insights into the functional potential and activity of natural marine microbial communities. Here, we complement these approaches by describing a complete ocean sample-to-sequence protocol, specifically designed to target a single bacterial genus for purposes of both DNA and RNA profiling using fluorescence activated cell sorting. The importance of defining and understanding the effects of a sampling protocol are critical if we are to gain meaningful data from environmental surveys. Rigorous pipeline trials with a cultured isolate, Synechococcus sp. BL107 demonstrate that water filtration has a well-defined but limited impact on the transcriptomic profile of this organism, whilst sample storage and multiple rounds of cell sorting have almost no effect on the resulting RNA sequence profile. Attractively, the means to replicate the sampling strategy is within the budget and expertise of most researchers.

  8. The transcriptome of the human mast cell leukemia cells HMC-1.2: an approach to identify specific changes in the gene expression profile in KitD816V systemic mastocytosis.

    Science.gov (United States)

    Haenisch, B; Herms, S; Molderings, G J

    2013-05-01

    To circumvent the costly isolation procedure associated with tissue mast cells, human mast cell lines such as HMC-1 are employed in mastocytosis research, but their relation to mutated mast cells in systemic mastocytosis has not been investigated systematically. In the present study, we determined the transcriptome of HMC-1.2 cells and compared the expression data with those reported in the literature for normal human resting lung and tonsillar mast cells as well as leukocytes from peripheral blood and mononuclear cells from bone marrow aspirates of patients with D816 V-positive systemic mastocytosis. Our results suggest that HMC-1.2 cells are an appropriate model for the investigation of this variant of systemic mast cell activation disease. The data confirm previous suggestions that the pathologically increased activity of mast cells in patients with D816 V-positive systemic mastocytosis can be deduced from the detection of mutation-related changes in the gene expression profile in leukocytes from peripheral blood and in mononuclear cells from bone marrow aspirates. Thus, mutation-related changes of the expression profile can serve as surrogates (besides clustering of mast cells, expression of CD25, and increased release of tryptase) for the presence of the mutation D816 V in tyrosine kinase Kit in patients with systemic mastocytosis according to the WHO criteria. Whether this also holds true for systemic mast cell activation disease caused by other mutations in Kit or other mast cell activity-related genes is a subject for future studies.

  9. Complement Evasion by Pathogenic Leptospira.

    Science.gov (United States)

    Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva

    2016-01-01

    Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira, have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.

  10. Novel Evasion Mechanisms of the Classical Complement Pathway.

    Science.gov (United States)

    Garcia, Brandon L; Zwarthoff, Seline A; Rooijakkers, Suzan H M; Geisbrecht, Brian V

    2016-09-15

    Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules.

  11. Transcriptomic analysis of persistent infection with foot-and-mouth disease virus in cattle suggests impairment of cell-mediated immunity in the nasopharynx

    Science.gov (United States)

    In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV) infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vac...

  12. Effect of Temperature Downshift on the Transcriptomic Responses of Chinese Hamster Ovary Cells Using Recombinant Human Tissue Plasminogen Activator Production Culture.

    Science.gov (United States)

    Bedoya-López, Andrea; Estrada, Karel; Sanchez-Flores, Alejandro; Ramírez, Octavio T; Altamirano, Claudia; Segovia, Lorenzo; Miranda-Ríos, Juan; Trujillo-Roldán, Mauricio A; Valdez-Cruz, Norma A

    2016-01-01

    Recombinant proteins are widely used as biopharmaceuticals, but their production by mammalian cell culture is expensive. Hence, improvement of bioprocess productivity is greatly needed. A temperature downshift (TDS) from 37°C to 28-34°C is an effective strategy to expand the productive life period of cells and increase their productivity (qp). Here, TDS in Chinese hamster ovary (CHO) cell cultures, initially grown at 37°C and switched to 30°C during the exponential growth phase, resulted in a 1.6-fold increase in the qp of recombinant human tissue plasminogen activator (rh-tPA). The transcriptomic response using next-generation sequencing (NGS) was assessed to characterize the cellular behavior associated with TDS. A total of 416 (q > 0.8) and 3,472 (q > 0.9) differentially expressed transcripts, with more than a 1.6-fold change at 24 and 48 h post TDS, respectively, were observed in cultures with TDS compared to those at constant 37°C. In agreement with the extended cell survival resulting from TDS, transcripts related to cell growth arrest that controlled cell proliferation without the activation of the DNA damage response, were differentially expressed. Most upregulated genes were related to energy metabolism in mitochondria, mitochondrial biogenesis, central metabolism, and avoidance of apoptotic cell death. The gene coding for rh-tPA was not differentially expressed, but fluctuations were detected in the transcripts encoding proteins involved in the secretory machinery, particularly in glycosylation. Through NGS the dynamic processes caused by TDS were assessed in this biological system.

  13. RNA-seq based transcriptome analysis of hepatitis E virus (HEV) and hepatitis B virus (HBV) replicon transfected Huh-7 cells.

    Science.gov (United States)

    Jagya, Neetu; Varma, Satya Pavan Kumar; Thakral, Deepshi; Joshi, Prashant; Durgapal, Hemlata; Panda, Subrat Kumar

    2014-01-01

    Pathogenesis of hepatitis B virus (HBV) and hepatitis E virus (HEV) infection is as varied as they appear similar; while HBV causes an acute and/or chronic liver disease and hepatocellular carcinoma, HEV mostly causes an acute self-limiting disease. In both infections, host responses are crucial in disease establishment and/or virus clearance. In the wake of worsening prognosis described during HEV super-infection over chronic HBV hepatitis, we investigated the host responses by studying alterations in gene expression in liver cells (Huh-7 cell line) by transfection with HEV replicon only (HEV-only), HBV replicon only (HBV-only) and both HBV and HEV replicons (HBV+HEV). Virus replication was validated by strand-specific real-time RT-PCR for HEV and HBsAg ELISA of the culture supernatants for HBV. Indirect immunofluorescence for the respective viral proteins confirmed infection. Transcription profiling was carried out by RNA Sequencing (RNA-Seq) analysis of the poly-A enriched RNA from the transfected cells. Averages of 600 million bases within 5.6 million reads were sequenced in each sample and ∼15,800 genes were mapped with at least one or more reads. A total of 461 genes in HBV+HEV, 408 in HBV-only and 306 in HEV-only groups were differentially expressed as compared to mock transfection control by two folds (preplicon transfected RNA-Seq based transcriptome analysis to understand the host responses against HEV and HBV.

  14. Complement system in dermatological diseases – fire under the skin

    Directory of Open Access Journals (Sweden)

    Jaana Helena Panelius

    2015-01-01

    Full Text Available The complement system plays a key role in several dermatological diseases. Overactivation, deficiency or abnormality of the control proteins are often related to a skin disease. Autoimmune mechanisms with autoantibodies and a cytotoxic effect of the complement membrane attack complex (MAC on epidermal or vascular cells can cause direct tissue damage and inflammation e.g. in SLE, phospholipid antibody syndrome and bullous skin diseases like pemphigoid. By evading complement attack, some microbes like borrelia spirochetes and staphylococci can persist in the skin and cause prolonged symptoms. In this review we present the most important skin diseases connected to abnormalities in the function of the complement system. Drugs having an effect on the complement system are also briefly described. On one hand, drugs with free hydroxyl on amino groups (e.g. hydralazine, procainamide could interact with C4A, C4B or C3 and cause an SLE-like disease. On the other hand, progress in studies on complement has led to novel anti-complement drugs (recombinant C1 inhibitor and anti-C5 antibody, eculizumab that could alleviate symptoms in diseases associated with excessive complement activation.The main theme of the manuscript is to show how relevant the complement system is as an immune effector system in contributing to tissue injury and inflammation in a broad range of skin disorders.

  15. Complement inhibitors to treat IgM-mediated autoimmune hemolysis.

    Science.gov (United States)

    Wouters, Diana; Zeerleder, Sacha

    2015-11-01

    Complement activation in autoimmune hemolytic anemia may exacerbate extravascular hemolysis and may occasionally result in intravascular hemolysis. IgM autoantibodies as characteristically found in cold autoantibody autoimmune hemolytic anemia, in cold agglutinin disease but also in a considerable percentage of patients with warm autoantibodies are very likely to activate complement in vivo. Therapy of IgM-mediated autoimmune hemolytic anemia mainly aims to decrease autoantibody production. However, most of these treatments require time to become effective and will not stop immediate ongoing complement-mediated hemolysis nor prevent hemolysis of transfused red blood cells. Therefore pharmacological inhibition of the complement system might be a suitable approach to halt or at least attenuate ongoing hemolysis and improve the recovery of red blood cell transfusion in autoimmune hemolytic anemia. In recent years, several complement inhibitors have become available in the clinic, some of them with proven efficacy in autoimmune hemolytic anemia. In the present review, we give a short introduction on the pathogenesis of autoimmune hemolytic anemia, followed by an overview on the complement system with a special focus on its regulation. Finally, we will discuss complement inhibitors with regard to their potential efficacy to halt or attenuate hemolysis in complement-mediated autoimmune hemolytic anemia.

  16. How antibodies use complement to regulate antibody responses.

    Science.gov (United States)

    Sörman, Anna; Zhang, Lu; Ding, Zhoujie; Heyman, Birgitta

    2014-10-01

    Antibodies, forming immune complexes with their specific antigen, can cause complete suppression or several 100-fold enhancement of the antibody response. Immune complexes containing IgG and IgM may activate complement and in such situations also complement components will be part of the immune complex. Here, we review experimental data on how antibodies via the complement system upregulate specific antibody responses. Current data suggest that murine IgG1, IgG2a, and IgG2b upregulate antibody responses primarily via Fc-receptors and not via complement. In contrast, IgM and IgG3 act via complement and require the presence of complement receptors 1 and 2 (CR1/2) expressed on both B cells and follicular dendritic cells. Complement plays a crucial role for antibody responses not only to antigen complexed to antibodies, but also to antigen administered alone. Lack of C1q, but not of Factor B or MBL, severely impairs antibody responses suggesting involvement of the classical pathway. In spite of this, normal antibody responses are found in mice lacking several activators of the classical pathway (complement activating natural IgM, serum amyloid P component (SAP), specific intracellular adhesion molecule-grabbing non-integrin R1 (SIGN-R1) or C-reactive protein. Possible explanations to these observations will be discussed.

  17. Heat differentiated complement factor profiling.

    Science.gov (United States)

    Hamsten, Carl; Skattum, Lillemor; Truedsson, Lennart; von Döbeln, Ulrika; Uhlén, Mathias; Schwenk, Jochen M; Hammarström, Lennart; Nilsson, Peter; Neiman, Maja

    2015-08-03

    Complement components and their cascade of reactions are important defense mechanisms within both innate and adaptive immunity. Many complement deficient patients still remain undiagnosed because of a lack of high throughput screening tools. Aiming towards neonatal proteome screening for immunodeficiencies, we used a multiplex profiling approach with antibody bead arrays to measure 9 complement proteins in serum and dried blood spots. Several complement components have been described as heat sensitive, thus their heat-dependent detectability was investigated. Using sera from 16 patients with complement deficiencies and 23 controls, we confirmed that the proteins C1q, C2, C3, C6, C9 and factor H were positively affected by heating, thus the identification of deficient patients was improved when preheating samples. Measurements of C7, C8 and factor I were negatively affected by heating and non-heated samples should be used in analysis of these components. In addition, a proof of concept study demonstrated the feasibility of labeling eluates from dried blood spots to perform a subsequent correct classification of C2-deficiencies. Our study demonstrates the potential of using multiplexed single binder assays for screening of complement components that open possibilities to expand such analysis to other forms of deficiencies.

  18. Transcriptome Dynamics of Developing Photoreceptors in Three-Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod Differentiation Revealing Cell Surface Markers and Gene Networks.

    Science.gov (United States)

    Kaewkhaw, Rossukon; Kaya, Koray Dogan; Brooks, Matthew; Homma, Kohei; Zou, Jizhong; Chaitankar, Vijender; Rao, Mahendra; Swaroop, Anand

    2015-12-01

    The derivation of three-dimensional (3D) stratified neural retina from pluripotent stem cells has permitted investigations of human photoreceptors. We have generated a H9 human embryonic stem cell subclone that carries a green fluorescent protein (GFP) reporter under the control of the promoter of cone-rod homeobox (CRX), an established marker of postmitotic photoreceptor precursors. The CRXp-GFP reporter replicates endogenous CRX expression in vitro when the H9 subclone is induced to form self-organizing 3D retina-like tissue. At day 37, CRX+ photoreceptors appear in the basal or middle part of neural retina and migrate to apical side by day 67. Temporal and spatial patterns of retinal cell type markers recapitulate the predicted sequence of development. Cone gene expression is concomitant with CRX, whereas rod differentiation factor neural retina leucine zipper protein (NRL) is first observed at day 67. At day 90, robust expression of NRL and its target nuclear receptor NR2E3 is evident in many CRX+ cells, while minimal S-opsin and no rhodopsin or L/M-opsin is present. The transcriptome profile, by RNA-seq, of developing human photoreceptors is remarkably concordant with mRNA and immunohistochemistry data available for human fetal retina although many targets of CRX, including phototransduction genes, exhibit a significant delay in expression. We report on temporal changes in gene signatures, including expression of cell surface markers and transcription factors; these expression changes should assist in isolation of photoreceptors at distinct stages of differentiation and in delineating coexpression networks. Our studies establish the first global expression database of developing human photoreceptors, providing a reference map for functional studies in retinal cultures.

  19. Transcriptome Profiling of the Green Alga Spirogyra pratensis (Charophyta) Suggests an Ancestral Role for Ethylene in Cell Wall Metabolism, Photosynthesis, and Abiotic Stress Responses1[OPEN

    Science.gov (United States)

    2016-01-01

    It is well known that ethylene regulates a diverse set of developmental and stress-related processes in angiosperms, yet its roles in early-diverging embryophytes and algae are poorly understood. Recently, it was shown that ethylene functions as a hormone in the charophyte green alga Spirogyra pratensis. Since land plants evolved from charophytes, this implies conservation of ethylene as a hormone in green plants for at least 450 million years. However, the physiological role of ethylene in charophyte algae has remained unknown. To gain insight into ethylene responses in Spirogyra, we used mRNA sequencing to measure changes in gene expression over time in Spirogyra filaments in response to an ethylene treatment. Our analyses show that at the transcriptional level, ethylene predominantly regulates three processes in Spirogyra: (1) modification of the cell wall matrix by expansins and xyloglucan endotransglucosylases/hydrolases, (2) down-regulation of chlorophyll biosynthesis and photosynthesis, and (3) activation of abiotic stress responses. We confirmed that the photosynthetic capacity and chlorophyll content were reduced by an ethylene treatment and that several abiotic stress conditions could stimulate cell elongation in an ethylene-dependent manner. We also found that the Spirogyra transcriptome harbors only 10 ethylene-responsive transcription factor (ERF) homologs, several of which are regulated by ethylene. These results provide an initial understanding of the hormonal responses induced by ethylene in Spirogyra and help to reconstruct the role of ethylene in ancestral charophytes prior to the origin of land plants. PMID:27489312

  20. Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo and exocytosis.

    Directory of Open Access Journals (Sweden)

    Jorge Corbacho

    Full Text Available BACKGROUND: Mature-fruit abscission (MFA in fleshy-fruit is a genetically controlled process with mechanisms that, contrary to immature-fruit abscission, has not been fully characterized. Here, we use pyrosequencing to characterize the transcriptomes of melon abscission zone (AZ at three stages during AZ-cell separation in order to understand MFA control at an early stage of AZ-activation. PRINCIPAL FINDINGS: The results show that by early induction of MFA, the melon AZ exhibits major gene induction, while by late induction of MFA, melon AZ shows major gene repression. Although some genes displayed similar regulation in both early and late induction of abscission, such as EXT1-EXT4, EGase1, IAA2, ERF1, AP2D15, FLC, MADS2, ERAF17, SAP5 and SCL13 genes, the majority had different expression patterns. This implies that time-specific events occur during MFA, and emphasizes the value of characterizing multiple time-specific abscission transcriptomes. Analysis of gene-expression from these AZs reveal that a sequential induction of cell-wall-degrading genes is associated with the upregulation of genes involved in endo and exocytosis, and a shift in plant-hormone metabolism and signaling genes during MFA. This is accompanied by transcriptional activity of small-GTPases and synthaxins together with tubulins, dynamins, V-type ATPases and kinesin-like proteins potentially involved in MFA signaling. Early events are potentially controlled by down-regulation of MADS-box, AP2/ERF and Aux/IAA transcription-factors, and up-regulation of homeobox, zinc finger, bZIP, and WRKY transcription-factors, while late events may be controlled by up-regulation of MYB transcription-factors. SIGNIFICANCE: Overall, the data provide a comprehensive view on MFA in fleshy-fruit, identifying candidate genes and pathways associated with early induction of MFA. Our comprehensive gene-expression profile will be very useful for elucidating gene regulatory networks of the MFA in

  1. 太阳能与市电互补LED照明控制系统研究%STUDY ON LED ILLUMINATION CONTROL SYSTEM USING SOLAR CELL COMPLEMENTED BY COMMERCIAL POWER

    Institute of Scientific and Technical Information of China (English)

    王秀玲; 张嘉英; 吴武臣

    2011-01-01

    提出一种基于PIC16F877A为控制核心的太阳能与市电互补LED照明系统.介绍系统的组成和工作原理、系统控制器和直流LED负载,分析了系统的工作状态和程序控制流程.结合现有小区草坪灯、路灯的实际供电情况,提出了太阳能和市电互补照明的设计思想,在实际中具有良好开发和应用前景.%In this paper an LED illumination system based on PIC16F877A as its control core and using solar cell complemented by commercial power is presented. The system compositions, working principle, system controller and dc LED load are introduced, the working states of the system and the program control flow are analysed as well. Based on actual power supply condition at present for streetlights and lawn lights in residence districts,a design idea of solar cell complemented by commercial power is presented. The system has good practical development and application prospects.

  2. Protease-dependent mechanisms of complement evasion by bacterial pathogens.

    Science.gov (United States)

    Potempa, Michal; Potempa, Jan

    2012-09-01

    The human immune system has evolved a variety of mechanisms for the primary task of neutralizing and eliminating microbial intruders. As the first line of defense, the complement system is responsible for rapid recognition and opsonization of bacteria, presentation to phagocytes and bacterial cell killing by direct lysis. All successful human pathogens have mechanisms of circumventing the antibacterial activity of the complement system and escaping this stage of the immune response. One of the ways in which pathogens achieve this is the deployment of proteases. Based on the increasing number of recent publications in this area, it appears that proteolytic inactivation of the antibacterial activities of the complement system is a common strategy of avoiding targeting by this arm of host innate immune defense. In this review, we focus on those bacteria that deploy proteases capable of degrading complement system components into non-functional fragments, thus impairing complement-dependent antibacterial activity and facilitating pathogen survival inside the host.

  3. The Role of Complement in Antibody Therapy for Infectious Diseases.

    Science.gov (United States)

    Wibroe, Peter P; Helvig, Shen Y; Moein Moghimi, S

    2014-04-01

    The complement system is part of the innate immune system, eliciting central immunoregulatory functions. Detection of foreign surfaces is either achieved through complement-specific patternrecognition molecules or mediated by antigen recognition of antibodies. Immunoglobulin A (IgA), IgG, and IgM all have the potential to initiate a complement response, with the efficiency and response development closely related to the antibody isotype, multimeric state, and degree of glycosylation. A group of serum proteins constitutes the central effector functions of complement, thus allowing direct cell lysis, opsonization, and inflammation. These effector functions can be used in antibody therapies, especially against infectious diseases, as the target membranes lack complement regulatory proteins. The relative contribution of each function and the interplay with direct antibody-mediated clearance is not fully exploited, thus suggesting an option for further rational optimization of antibody therapies.

  4. Complement sentences - complementizers of causative-manipulative verbs

    Directory of Open Access Journals (Sweden)

    Alanović Milivoj B.

    2015-01-01

    Full Text Available This paper presents the key structural and semantic features of the complement sentences that have the primary function of direct or indirect objects of one type of causative verbs - causative-manipulative verbs. Since the syntactic literature frequently discusses the structural characteristics of the complement sentences, the main objective of this article is focused on the semantic diversity of this type of sentences. The goal of the article is to determine the dependence of the realized meaning of a sentence on the semantic type of the main verb. Although the conjunction da is a typical subordinator of these sentences, a series of communicative verbs allows the use of complement sentences with interrogative adverbs and pronouns in the function of conjunctions. [Projekat Ministarstva nauke Republike Srbije, br.178004: Standardni srpski jezik - sintaksička, semantička i pragmatička istraživanja

  5. The relative merits of therapies being developed to tackle inappropriate ('self'-directed) complement activation.

    Science.gov (United States)

    Antwi-Baffour, Samuel; Kyeremeh, Ransford; Adjei, Jonathan Kofi; Aryeh, Claudia; Kpentey, George

    2016-12-01

    The complement system is an enzyme cascade that helps defend against infection. Many complement proteins occur in serum as inactive enzyme precursors or reside on cell surfaces. Complement components have many biologic functions and their activation can eventually damage the plasma membranes of cells and some bacteria. Although a direct link between complement activation and autoimmune diseases has not been found, there is increasing evidence that complement activation significantly contributes to the pathogenesis of a large number of inflammatory diseases that may have autoimmune linkage. The inhibition of complement may therefore be very important in a variety of autoimmune diseases since their activation may be detrimental to the individual involved. However, a complete and long-term inhibition of complement may have some contra side effects such as increased susceptibility to infection. The site of complement activation will, however, determine the type of inhibitor to be used, its route of application and dosage level. Compared with conventional drugs, complement inhibitors may be the best option for treatment of autoimmune diseases. The review takes a critical look at the relative merits of therapies being developed to tackle inappropriate complement activation that are likely to result in sporadic autoimmune diseases or worsen already existing one. It covers the complement system, general aspects of complement inhibition therapy, therapeutic strategies and examples of complement inhibitors. It concludes by highlighting on the possibility that a better inhibitor of complement activation when found will help provide a formidable treatment for autoimmune diseases as well as preventing one.

  6. Keeping It All Going—Complement Meets Metabolism

    Science.gov (United States)

    Kolev, Martin; Kemper, Claudia

    2017-01-01

    The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work performed specifically in the last five decades identified complement also as a critical instructor of adaptive immunity—indicating that complement’s function is likely broader than initially anticipated—the dominant opinion among researchers and clinicians was that the key complement functions were in principle defined. However, there is now a growing realization that complement activity goes well beyond “classic” immune functions and that this system is also required for normal (neuronal) development and activity and general cell and tissue integrity and homeostasis. Furthermore, the recent discovery that complement activation is not confined to the extracellular space but occurs within cells led to the surprising understanding that complement is involved in the regulation of basic processes of the cell, particularly those of metabolic nature—mostly via novel crosstalks between complement and intracellular sensor, and effector, pathways that had been overlooked because of their spatial separation. These paradigm shifts in the field led to a renaissance in complement research and provide new platforms to now better understand the molecular pathways underlying the wide-reaching effects of complement functions in immunity and beyond. In this review, we will cover the current knowledge about complement’s emerging relationship with the cellular metabolism machinery with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions

  7. Transcriptomic assay of CD8+ T cells in treatment-naive HIV, HCV-mono-infected and HIV/HCV-co-infected Chinese.

    Directory of Open Access Journals (Sweden)

    Jin Zhao

    Full Text Available BACKGROUND: Co-infection with HIV and HCV is very common. It is estimated that over 5 million people are co-infected with HIV and HCV worldwide. Accumulated evidence shows that each virus alters the course of infection of the other one. CD8+ T cells play a crucial role in the eradication of viruses and infected target cells. To the best of our knowledge, no one has investigated the gene expression profiles in HIV/HCV-co-infected individuals. METHODOLOGY: Genome-wide transcriptomes of CD8+ T cells from HIV/HCV-co-infected or mono-infected treatment-naïve individuals were analyzed by microarray assays. Pairwise comparisons were performed and differentially expressed genes were identified followed by quantitative real-time PCR (qRT-PCR validation. Directed Acyclic Graphs (DAG from Web-based Gene SeT AnaLysis Toolkit (WebGestalt and DAVID bioinformatics resources 6.7 (the Database for Annotation, Visualization, and Integrated Discovery were used to discover the Gene Ontology (GO categories with significantly enriched gene numbers. The enriched Kyoto Encyclopedia of Genes and Genomes (KEGG pathways were also obtained by using WebGestalt software. RESULTS AND CONCLUSIONS: A total of 110, 24 and 72 transcript IDs were shown to be differentially expressed (> 2-fold and p<0.05 in comparisons between HCV- and HIV-mono-infected groups, HIV/HCV-co-infected and HIV-mono-infected groups, and HIV/HCV-co-infected and HCV-mono-infected groups, respectively. In qRT-PCR assay, most of the genes showed similar expressing profiles with the observation in microarray assays. Further analysis revealed that genes involved in cell proliferation, differentiation, transcriptional regulation and cytokine responses were significantly altered. These data offer new insights into HIV/HCV co-infections, and may help to identify new markers for the management and treatment of HIV/HCV co-infections.

  8. Transcriptome complexity in a genome-reduced bacterium.

    Science.gov (United States)

    Güell, Marc; van Noort, Vera; Yus, Eva; Chen, Wei-Hua; Leigh-Bell, Justine; Michalodimitrakis, Konstantinos; Yamada, Takuji; Arumugam, Manimozhiyan; Doerks, Tobias; Kühner, Sebastian; Rode, Michaela; Suyama, Mikita; Schmidt, Sabine; Gavin, Anne-Claude; Bork, Peer; Serrano, Luis

    2009-11-27

    To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previously undescribed, mostly noncoding transcripts, 89 of them in antisense configuration to known genes. We identified 341 operons, of which 139 are polycistronic; almost half of the latter show decaying expression in a staircase-like manner. Under various conditions, operons could be divided into 447 smaller transcriptional units, resulting in many alternative transcripts. Frequent antisense transcripts, alternative transcripts, and multiple regulators per gene imply a highly dynamic transcriptome, more similar to that of eukaryotes than previously thought.

  9. The complement cascade in kidney disease: from sideline to center stage.

    Science.gov (United States)

    McCaughan, Jennifer A; O'Rourke, Declan M; Courtney, Aisling E

    2013-09-01

    Activation of the complement pathway is implicated in the pathogenesis of many kidney diseases. The pathologic and clinical features of these diseases are determined in part by the mechanism and location of complement activation within the kidney parenchyma. This review describes the physiology, action, and control of the complement cascade and explains the role of complement overactivation and dysregulation in kidney disease. There have been recent advances in the understanding of the effects of upregulation of the complement cascade after kidney transplantation. Complement plays an important role in initiating and propagating damage to transplanted kidneys in ischemia-reperfusion injury, antibody-mediated rejection, and cell-mediated rejection. Complement-targeting therapies presently are in development, and the first direct complement medication for kidney disease was licensed in 2011. The potential therapeutic targets for anticomplement drugs in kidney disease are described. Clinical and experimental studies are ongoing to identify further roles for complement-targeting therapy.

  10. Force Dynamics of Verb Complementation

    Directory of Open Access Journals (Sweden)

    Jacek Woźny

    2015-12-01

    Full Text Available Force Dynamics of Verb Complementation The concepts of motion and force are both extensively discussed in cognitive linguistics literature. But they are discussed separately. The first usually in the context of ‘motion situations’ (Talmy, Slobin, Zlatev, the other as part of the Force Dynamics framework, which was developed by Talmy. The aim of this paper is twofold: first, to argue that the concepts of force and motion should not be isolated but considered as two inseparable parts of force-motion events. The second goal is to prove that the modified Force Dynamics (force-motion framework can be used for precise characterization of the verb complementation patterns. To this end, a random sample of 50 sentences containing the verb ‘went’ is analyzed, demonstrating the differences between the categories of intensive and intransitive complementation with respect to the linguistically coded parameters of force and motion.

  11. Next-generation transcriptome assembly

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey A.; Wang, Zhong

    2011-09-01

    Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalog of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies-along with some perspectives on transcriptome assembly in the near future.

  12. Transcriptome Encyclopedia of Early Human Development.

    Science.gov (United States)

    Sahakyan, Anna; Plath, Kathrin

    2016-05-01

    Our understanding of human pre-implantation development is limited by the availability of human embryos and cannot completely rely on mouse studies. Petropoulos et al. now provide an extensive transcriptome analysis of a large number of human pre-implantation embryos at single-cell resolution, revealing previously unrecognized features unique to early human development.

  13. Analysis of tandem E-box motifs within human Complement receptor 2 (CR2/CD21) promoter reveals cell specific roles for RP58, E2A, USF and localized chromatin accessibility.

    Science.gov (United States)

    Cruickshank, Mark N; Dods, James; Taylor, Rhonda L; Karimi, Mahdad; Fenwick, Emily J; Quail, Elizabeth A; Rea, Alexander J; Holers, V Michael; Abraham, Lawrence J; Ulgiati, Daniela

    2015-07-01

    Complement receptor 2 (CR2/CD21) plays an important role in the generation of normal B cell immune responses. As transcription appears to be the prime mechanism via which surface CR2/CD21 expression is controlled, understanding transcriptional regulation of this gene will have broader implications to B cell biology. Here we report opposing, cell-context specific control of CR2/CD21 promoter activity by tandem E-box elements, spaced 22 bp apart and within 70 bp of the transcription initiation site. We have identified E2A and USF transcription factors as binding to the distal and proximal E-box sites respectively in CR2-positive B-cells, at a site that is hypersensitive to restriction enzyme digestion compared to non-expressing K562 cells. However, additional unidentified proteins have also been found to bind these functionally important elements. By utilizing a proteomics approach we have identified a repressor protein, RP58, binding the distal E-box motif. Co-transfection experiments using RP58 overexpression constructs demonstrated a specific 10-fold repression of CR2/CD21 transcriptional activity mediated through the distal E-box repressor element. Taken together, our results indicate that repression of the CR2/CD21 promoter can occur through one of the E-box motifs via recruitment of RP58 and other factors to bring about a silenced chromatin context within CR2/CD21 non-expressing cells.

  14. Early intra-articular complement activation in ankle fractures

    DEFF Research Database (Denmark)

    Schmal, Hagen; Salzmann, Gian M; Niemeyer, Philipp;

    2014-01-01

    osteochondritis dissecans (OCD) of the ankle. All fractures needed external fixation during which joint effusions were collected. Fluid analysis was done by ELISA measuring aggrecan, bFGF, IL-1 β, IGF-1, and the complement components C3a, C5a, and C5b-9. The time periods between occurrence of fracture...... and OCD patients, bFGF, IGF-1, and all complement components were significantly higher concentrated in ankle joints with fractures (P Complement activation and inflammatory cell infiltration characterize the joint biology following acute ankle fractures....

  15. Acidosis activation of the proton-sensing GPR4 receptor stimulates vascular endothelial cell inflammatory responses revealed by transcriptome analysis.

    Directory of Open Access Journals (Sweden)

    Lixue Dong

    Full Text Available Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-κB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2 and stress response genes such as ATF3 and DDIT3 (CHOP. Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-κB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be

  16. Expression of complement C5a receptor and the viability of 4T1 tumor cells following agonist–antagonist treatment

    Directory of Open Access Journals (Sweden)

    Nurneqman Nashreq Kosni

    2016-01-01

    Conclusion: This experiment shows the presence of C5a receptor on 4T1 cell line. We believe that the antagonist peptide is eligible to be used widely in cancer immunotherapy field; but in vivo studies need to be carried out first in the future, as it will determine how these drugs affect the tumor cell growth.

  17. Characterisation of Caenorhabditis elegans sperm transcriptome and proteome

    OpenAIRE

    Ma, Xuan; Zhu, Yingjie; Li, Chunfang; Xue, Peng; Zhao, Yanmei; Chen, Shilin; Yang, Fuquan; Miao, Long

    2014-01-01

    Background Although sperm is transcriptionally and translationally quiescent, complex populations of RNAs, including mRNAs and non-coding RNAs, exist in sperm. Previous microarray analysis of germ cell mutants identified hundreds of sperm genes in Caenorhabditis elegans. To take a more comprehensive view on C. elegans sperm genes, here, we isolate highly pure sperm cells and employ high-throughput technologies to obtain sperm transcriptome and proteome. Results First, sperm transcriptome cons...

  18. The lectin pathway of complement

    DEFF Research Database (Denmark)

    Ballegaard, Vibe Cecilie Diederich; Haugaard, Anna Karen; Garred, P;

    2014-01-01

    The pattern recognition molecules of the lectin complement pathway are important components of the innate immune system with known functions in host-virus interactions. This paper summarizes current knowledge of how these intriguing molecules, including mannose-binding lectin (MBL), Ficolin-1, -2...

  19. Complement: Alive and Kicking Nanomedicines

    DEFF Research Database (Denmark)

    Andersen, Alina Joukainen; Hashemi, S.H.; Andresen, Thomas Lars;

    2009-01-01

    Administration of liposome- and polymer-based clinical nanomedicines, as well as many other proposed multifunctional nanoparticles, often triggers hypersensitivity reactions without the involvement of IgE. These anaphylactic reactions are believed to be secondary to activation of the complement s...

  20. Peripheral challenge with a viral mimic upregulates expression of the complement genes in the hippocampus

    OpenAIRE

    Michalovicz, Lindsay T.; Lally, Brent; Konat, Gregory W.

    2015-01-01

    Peripheral challenge with a viral mimetic, polyinosinic-polycytidylic acid (PIC) induces hippocampal hyperexcitability in mice. Here, we characterized this hippocampal response through a whole genome transcriptome analysis. Intraperitoneal injection of PIC resulted in temporal dysregulation of 625 genes in the hippocampus, indicating an extensive genetic reprogramming. The bioinformatics analysis of these genes revealed the complement pathway to be the most significantly activated. The gene e...

  1. Changes in the transcriptome of the human endometrial Ishikawa cancer cell line induced by estrogen, progesterone, tamoxifen, and mifepristone (RU486 as detected by RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    Karin Tamm-Rosenstein

    Full Text Available BACKGROUND: Estrogen (E2 and progesterone (P4 are key players in the maturation of the human endometrium. The corresponding steroid hormone modulators, tamoxifen (TAM and mifepristone (RU486 are widely used in breast cancer therapy and for contraception purposes, respectively. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression profiling of the human endometrial Ishikawa cancer cell line treated with E2 and P4 for 3 h and 12 h, and TAM and RU486 for 12 h, was performed using RNA-sequencing. High levels of mRNA were detected for genes, including PSAP, ATP5G2, ATP5H, and GNB2L1 following E2 or P4 treatment. A total of 82 biomarkers for endometrial biology were identified among E2 induced genes, and 93 among P4 responsive genes. Identified biomarkers included: EZH2, MDK, MUC1, SLIT2, and IL6ST, which are genes previously associated with endometrial receptivity. Moreover, 98.8% and 98.6% of E2 and P4 responsive genes in Ishikawa cells, respectively, were also detected in two human mid-secretory endometrial biopsy samples. TAM treatment exhibited both antagonistic and agonistic effects of E2, and also regulated a subset of genes independently. The cell cycle regulator cyclin D1 (CCND1 showed significant up-regulation following treatment with TAM. RU486 did not appear to act as a pure antagonist of P4 and a functional analysis of RU486 response identified genes related to adhesion and apoptosis, including down-regulated genes associated with cell-cell contacts and adhesion as CTNND1, JUP, CDH2, IQGAP1, and COL2A1. CONCLUSIONS: Significant changes in gene expression by the Ishikawa cell line were detected after treatments with E2, P4, TAM, and RU486. These transcriptome data provide valuable insight into potential biomarkers related to endometrial receptivity, and also facilitate an understanding of the molecular changes that take place in the endometrium in the early stages of breast cancer treatment and contraception usage.

  2. Generation of mast cells from mouse fetus: analysis of differentiation and functionality, and transcriptome profiling using next generation sequencer.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fukuishi

    Full Text Available While gene knockout technology can reveal the roles of proteins in cellular functions, including in mast cells, fetal death due to gene manipulation frequently interrupts experimental analysis. We generated mast cells from mouse fetal liver (FLMC, and compared the fundamental functions of FLMC with those of bone marrow-derived mouse mast cells (BMMC. Under electron microscopy, numerous small and electron-dense granules were observed in FLMC. In FLMC, the expression levels of a subunit of the FcεRI receptor and degranulation by IgE cross-linking were comparable with BMMC. By flow cytometry we observed surface expression of c-Kit prior to that of FcεRI on FLMC, although on BMMC the expression of c-Kit came after FcεRI. The surface expression levels of Sca-1 and c-Kit, a marker of putative mast cell precursors, were slightly different between bone marrow cells and fetal liver cells, suggesting that differentiation stage or cell type are not necessarily equivalent between both lineages. Moreover, this indicates that phenotypically similar mast cells may not have undergone an identical process of differentiation. By comprehensive analysis using the next generation sequencer, the same frequency of gene expression was observed for 98.6% of all transcripts in both cell types. These results indicate that FLMC could represent a new and useful tool for exploring mast cell differentiation, and may help to elucidate the roles of individual proteins in the function of mast cells where gene manipulation can induce embryonic lethality in the mid to late stages of pregnancy.

  3. 21 CFR 866.4100 - Complement reagent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... Complement reagent. (a) Identification. A complement reagent is a device that consists of complement,...

  4. Complement in neuroinflammation: Studies in leprosy and Amyotrophic Lateral Sclerosis

    OpenAIRE

    Bahia El Idrissi, N.

    2017-01-01

    The complement system is a part of the innate immunity, and plays an important role in host immunity and inflammation. We previously identified the terminal membrane attack complex (MAC) of the complement system as a key determinant of neurodegeneration and demonstrated that its inhibition is neuroprotective. Besides being part of a mechanism of defence to invading pathogens, MAC has the capacity to cause damage to self-cells and is consequently implicated in many diseases. I describe studies...

  5. Gene expression profiling of MYC-driven tumor signatures in porcine liver stem cells by transcriptome sequencing

    Science.gov (United States)

    It is now well-established that cancer stem cells (CSCs) drive tumor growth and that the cancer gene, c-Myc, plays a critical role in converting cells to CSCs. However, little is known about the genes that are induced and regulated by c-Myc to generate tumors, and, in particular, tumors of the live...

  6. Transcriptome analysis of basal and luminal tumor-initiating cells in ErbB2-driven breast cancer

    Directory of Open Access Journals (Sweden)

    Nicholas Borcherding

    2015-06-01

    Full Text Available Breast cancer is the leading cause of cancer-related mortality for females worldwide [1]. Improving early screening strategies and understanding the events that lead to tumor initiation have led to demonstrable improvements in clinical outcome. Our previous work revealed a variance in the tumorigenic capacity between different mammary epithelial cell populations in an MMTV-ErbB2 mouse model. In order to greater understand how different mammary epithelial cells influence the tumorigenic capacity in ErbB2-induced breast cancer, we transplanted different cell populations from pre-neoplastic MMTV-ErbB2 female mice into recipient mice for tumorigenic study. We found that different mammary epithelial cells bear different tumorigenic potentials even when induced by the same ErbB2 proto-oncogene. To understand the difference in tumors formed from different epithelial cells, we performed gene expression profiling using these tumors (GSE64487. Several genes were further validated using real-time reverse transcription polymerase chain reaction (RT-PCR. Here we provide further details on the experimental methods and microarray analysis. This data provides a resource to further understanding how different mammary cell populations can initiate ErbB2-driven tumors and the role of these cell populations as putative tumor-initiating cells (TICs.

  7. Transcriptome-wide studies of prostate cancer cell lines in the context of medical radiation; Transkriptomweite Untersuchungen von Prostata-Krebszelllinien im Kontext medizinischer Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, Paul

    2012-06-26

    The use of radiotherapy in addition to chemotherapy and surgical removal is the most powerful instrument in the fight against malignant tumors in cancer medicine. After cardiovascular diseases, cancer is the second leading cause of death in the western world, in which prostate cancer is the most frequent male cancer. Despite continuous technological improvements in radiological instruments and prognosis, it may occur a recurrence up to many years after radiotherapy due to a high resistance capability of individual malignant cells of the locally occurring tumor. Although modern radiation biology has studied many aspects of the resistance mechanisms, questions are largely unanswered especially in regards to prognostic terms and time response of tumor cells to ionizing radiation. As cellular models four prostate cancer cell lines with different radiation sensitivities (PC3, DuCaP, DU-145, RWPE-1) were cultured and tested for their ability to survive after exposure to ionizing radiation by a trypane blue and MTT viability assay. The proliferative capacity of the four cell lines was determined using a colony formation assay. The PC3 cell line (radiation-resistant) and the DuCaP cell line (radiation-sensitive) showed the maximal differences in terms of radiation sensitivity. Based on these results the two cell lines were selected to allow identification of potential prognostic marker for predicting the effectiveness of radiation therapy via their transcriptome-wide gene expression. Furthermore, a time series experiment with the radiation-resistant PC3 cell line was performed. At 8 different time points, during the period from 00:00 - 42:53 (hh:mm) after exposure with 1 Gy, the mRNA was quantified by next generation sequencing to investigate the dynamic behavior of time-delayed gene expression and to discover resistance mechanisms. Of 10,966 expressed genes 730 were significant differentially expressed, determined by setting a fold change threshold in conjunction with a P

  8. Tumor-Derived Tissue Factor Aberrantly Activates Complement and Facilitates Lung Tumor Progression via Recruitment of Myeloid-Derived Suppressor Cells

    OpenAIRE

    Xiao Han; Haoran Zha; Fei Yang; Bo Guo; Bo Zhu

    2017-01-01

    The initiator of extrinsic coagulation, tissue factor (TF), and its non-coagulant isoform alternatively spliced TF (asTF) are closely associated with tumor development. In the tumor microenvironment, the role of TF-induced coagulation in tumor progression remains to be fully elucidated. Using TF-knockdown lung tumor cells, we showed that TF is the dominant component of procoagulant activity but is dispensable in the cellular biology of tumor cells. In a xenograft model, using immunohistochemi...

  9. Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation

    DEFF Research Database (Denmark)

    Nielsen, Christoffer T; Østergaard, Ole; Stener, Line

    2012-01-01

    To quantify immunoglobulin and C1q on circulating cell-derived microparticles (MPs) in patients with systemic lupus erythematosus (SLE) and to determine whether immunoglobulin and C1q levels are correlated with clinical and serologic parameters.......To quantify immunoglobulin and C1q on circulating cell-derived microparticles (MPs) in patients with systemic lupus erythematosus (SLE) and to determine whether immunoglobulin and C1q levels are correlated with clinical and serologic parameters....

  10. Complement activation promotes muscle inflammation during modified muscle use

    Science.gov (United States)

    Frenette, J.; Cai, B.; Tidball, J. G.

    2000-01-01

    Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.

  11. Complement factor B expression profile in a spontaneous uveitis model.

    Science.gov (United States)

    Zipplies, Johanna K; Kirschfink, Michael; Amann, Barbara; Hauck, Stefanie M; Stangassinger, Manfred; Deeg, Cornelia A

    2010-12-01

    Equine recurrent uveitis serves as a spontaneous model for human autoimmune uveitis. Unpredictable relapses and ongoing inflammation in the eyes of diseased horses as well as in humans lead to destruction of the retina and finally result in blindness. However, the molecular mechanisms leading to inflammation and retinal degeneration are not well understood. An initial screening for differentially regulated proteins in sera of uveitic cases compared to healthy controls revealed an increase of the alternative pathway complement component factor B in ERU cases. To determine the activation status of the complement system, sera were subsequently examined for complement split products. We could demonstrate a significant higher concentration of the activation products B/Ba, B/Bb, Bb neoantigen, iC3b and C3d in uveitic condition compared to healthy controls, whereas for C5b-9 no differences were detected. Additionally, we investigated complement activation directly in the retina by immunohistochemistry, since it is the main target organ of this autoimmune disease. Interestingly, infiltrating cells co-expressed activated factor Bb neoantigen, complement split product C3d as well as CD68, a macrophage marker. In this study, we could demonstrate activation of the complement system both systemically as well as in the eye, the target organ of spontaneous recurrent uveitis. Based on these novel findings, we postulate a novel role for macrophages in connection with complement synthesis at the site of inflammation.

  12. CD54/intercellular adhesion molecule 1 and major histocompatibility complex II signaling induces B cells to express interleukin 2 receptors and complements help provided through CD40 ligation

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    ) dependent to demonstrate the relative roles of CD54, MHC II, and CD40 signaling in the events leading to the induction of B cell proliferation and responsiveness to IL-2. Paraformaldehyde-fixed activated Th1-induced expression of IL-2R alpha, IL-2R beta, and B7, and upregulated MHC II and CD54 on B cells....... Anti-CD54 and MHC II mAbs as well as a CD8 alpha-CD40 ligand (L) soluble construct inhibited both the T-dependent induction of Ig secretion, and B cell phenotypic changes. We then compared the effects of activated Th1 cells with that of cross-linking these molecules. Cross-linking of CD54 and MHC II...... resulted in the upregulated expression of MHC II and of CD54 and B7, respectively, analogous to the effect of fixed activated Th1 cells. B7 expression was further enhanced by co-cross-linking CD54 and MHC II. Cross-linking of CD40 achieved comparable effects. Strikingly, cross-linking ligation of CD54...

  13. Binding of complement inhibitor C4b-binding protein to a highly virulent Streptococcus pyogenes M1 strain is mediated by protein H and enhances adhesion to and invasion of endothelial cells.

    Science.gov (United States)

    Ermert, David; Weckel, Antonin; Agarwal, Vaibhav; Frick, Inga-Maria; Björck, Lars; Blom, Anna M

    2013-11-08

    Streptococcus pyogenes AP1, a strain of the highly virulent M1 serotype, uses exclusively protein H to bind the complement inhibitor C4b-binding protein (C4BP). We found a strong correlation between the ability of AP1 and its isogenic mutants lacking protein H to inhibit opsonization with complement C3b and binding of C4BP. C4BP bound to immobilized protein H or AP1 bacteria retained its cofactor activity for degradation of (125)I-C4b. Furthermore, C4b deposited from serum onto AP1 bacterial surfaces was processed into C4c/C4d fragments, which did not occur on strains unable to bind C4BP. Recombinant C4BP mutants, which (i) lack certain CCP domains or (ii) have mutations in single aa as well as (iii) mutants with additional aa between different CCP domains were used to determine that the binding is mainly mediated by a patch of positively charged amino acid residues at the interface of domains CCP1 and CCP2. Using recombinant protein H fragments, we narrowed down the binding site to the N-terminal domain A. With a peptide microarray, we identified one single 18-amino acid-long peptide comprising residues 92-109, which specifically bound C4BP. Biacore was used to determine KD = 6 × 10(-7) M between protein H and a single subunit of C4BP. C4BP binding also correlated with elevated levels of adhesion and invasion to endothelial cells. Taken together, we identified the molecular basis of C4BP-protein H interaction and found that it is not only important for decreased opsonization but also for invasion of endothelial cells by S. pyogenes.

  14. Complementation of a defect in the asparagine-linked glycosylation of a mouse FM3A mutant G258 cell line by spheroplast fusion of a human mega YAC clone 923f5.

    Science.gov (United States)

    Masuda, Takahisa; Moriya, Masayuki; Kataoka, Kensuke; Nishikawa, Yoshihisa

    2012-01-01

    Mouse G258 mutant stopped both cell growth and the synthesis of lipid-linked oligosaccharide at the Man(3)GlcNAc(2)-P-P-Dolichol at a restricted temperature with a single gene mutation. To clarify the lesion in the G258 mutant, we isolated human genomic DNA transformants of the G258 mutant, which recovered from both defects by way of cell hybridization with X-ray irradiated HeLa cells. We detected a common 1.3-kb product by inter-human specific sequence in the L1 (L1Hs) PCR in the transformants (Kataoka et al., Somat. Cell Mol. Genet., 24, 235-243 (1998)). In the present study, we screened a human mega yeast artificial chromosome (YAC) library by PCR with primers designed according to the 1.3-kb DNA, and selected YAC clone 923f5. Moreover, we found by spheroplast fusion that YAC clone 923f5 complemented both defects of the G258 mutant. Since the human counterpart of the yeast ALG11 gene is localized in the region, the G258 mutant might have a defect in the mouse ALG11 gene.

  15. Global transcriptomic analysis of model human cell lines exposed to surface-modified gold nanoparticles: the effect of surface chemistry

    Science.gov (United States)

    Grzincic, E. M.; Yang, J. A.; Drnevich, J.; Falagan-Lotsch, P.; Murphy, C. J.

    2015-01-01

    Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected.Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how

  16. Understanding the Role of Host Hemocytes in a Squid/Vibrio Symbiosis Using Transcriptomics and Proteomics

    Directory of Open Access Journals (Sweden)

    Andrew J. Collins

    2012-05-01

    Full Text Available The symbiosis between the squid, Euprymna scolopes, and the bacterium, Vibrio fischeri, serves as a model for understanding interactions between beneficial bacteria and animal hosts. The establishment and maintenance of the association is highly specific and depends on the selection of V. fischeri and exclusion of non-symbiotic bacteria from the environment. Current evidence suggests that the host’s cellular innate immune system, in the form of macrophage-like hemocytes, helps to mediate host tolerance of V. fischeri. To begin to understand the role of hemocytes in this association, we analyzed these cells by high-throughput 454 transcriptomic and liquid chromatography/ tandem mass spectrometry (LC-MS/MS proteomic analyses. 454 high-throughput sequencing produced 650,686 reads totaling 279.9 Mb while LC-MS/MS analyses of circulating hemocytes putatively identified 702 unique proteins. Several receptors involved with the recognition of microbial associated molecular patterns (MAMPs were identified. Among these was a complete open reading frame (ORF to a putative peptidoglycan recognition protein (EsPGRP5 that has conserved residues for amidase activity. Assembly of the hemocyte transcriptome showed EsPGRP5 had high coverage, suggesting it is among the 5% most abundant transcripts in circulating hemocytes. Other transcripts and proteins identified included members of the conserved NFκB signaling pathway, putative members of the complement pathway, the carbohydrate binding protein galectin, and cephalotoxin. Quantitative PCR of complement-related genes, cephalotoxin, EsPGRP5, and a nitric oxide synthase showed differential expression in circulating hemocytes isolated from adult squid with colonized light organs compared to those for which the symbionts were removed. These data suggest that the presence of the symbiont influences gene expression of the cellular innate immune system of the host.

  17. Blood Transcriptomics and Metabolomics for Personalized Medicine

    Science.gov (United States)

    2015-10-31

    progress in human immunology , where transcriptomics of isolated cell populations provided necessary information [15–17]. Nonetheless, a review on “blood...databases are biased towards cancer , under- representing the immunology in white blood cells. Second, many path- ways are based on tissues other than blood...metabolomics in oncology: a review . Clin Cancer Res 2009;15. [52] Armitage EG. Metabolomics in cancer biomarker discovery: current trends and fu- ture

  18. Genetic control of the alternative pathway of complement in humans and age-related macular degeneration.

    Science.gov (United States)

    Hecker, Laura A; Edwards, Albert O; Ryu, Euijung; Tosakulwong, Nirubol; Baratz, Keith H; Brown, William L; Charbel Issa, Peter; Scholl, Hendrik P; Pollok-Kopp, Beatrix; Schmid-Kubista, Katharina E; Bailey, Kent R; Oppermann, Martin

    2010-01-01

    Activation of the alternative pathway of complement is implicated in common neurodegenerative diseases including age-related macular degeneration (AMD). We explored the impact of common variation in genes encoding proteins of the alternative pathway on complement activation in human blood and in AMD. Genetic variation across the genes encoding complement factor H (CFH), factor B (CFB) and component 3 (C3) was determined. The influence of common haplotypes defining transcriptional and translational units on complement activation in blood was determined in a quantitative genomic association study. Individual haplotypes in CFH and CFB were associated with distinct and novel effects on plasma levels of precursors, regulators and activation products of the alternative pathway of complement in human blood. Further, genetic variation in CFH thought to influence cell surface regulation of complement did not alter plasma complement levels in human blood. Plasma markers of chronic activation (split-products Ba and C3d) and an activating enzyme (factor D) were elevated in AMD subjects. Most of the elevation in AMD was accounted for by the genetic variation controlling complement activation in human blood. Activation of the alternative pathway of complement in blood is under genetic control and increases with age. The genetic variation associated with increased activation of complement in human blood also increased the risk of AMD. Our data are consistent with a disease model in which genetic variation in the complement system increases the risk of AMD by a combination of systemic complement activation and abnormal regulation of complement activation in local tissues.

  19. MicroRNA transcriptome analysis identifies miR-365 as a novel negative regulator of cell proliferation in Zmpste24-deficient mouse embryonic fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xing-dong [Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808 (China); Institute of Biochemistry & Molecular Biology, Guangdong Medical College, Zhanjiang 524023 (China); Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan 523808 (China); Institute of Laboratory Medicine, Guangdong Medical College, Dongguan, Guangdong 523808 (China); Jung, Hwa Jin [Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Gombar, Saurabh [Departments of Systems Biology, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Park, Jung Yoon [Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Zhang, Chun-long; Zheng, Huiling [Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808 (China); Institute of Biochemistry & Molecular Biology, Guangdong Medical College, Zhanjiang 524023 (China); Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan 523808 (China); Ruan, Jie; Li, Jiang-bin [Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808 (China); Institute of Biochemistry & Molecular Biology, Guangdong Medical College, Zhanjiang 524023 (China); Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan 523808 (China); Institute of Laboratory Medicine, Guangdong Medical College, Dongguan, Guangdong 523808 (China); Kaeberlein, Matt [Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808 (China); Department of Pathology, University of Washington, Seattle, WA 98195 (United States); and others

    2015-07-15

    Highlights: • A comprehensive miRNA transcriptome of MEFs from Zmpste24{sup −/−} and control mice. • Identification of miR-365 as a down-regulated miRNA in Zmpste24{sup −/−} MEFs. • Characterization of miR-365 as a modulator of cellular growth in part by targeting Rasd1. - Abstract: Zmpste24 is a metalloproteinase responsible for the posttranslational processing and cleavage of prelamin A into mature laminA. Zmpste24{sup −/−} mice display a range of progeroid phenotypes overlapping with mice expressing progerin, an altered version of lamin A associated with Hutchinson-Gilford progeria syndrome (HGPS). Increasing evidence has demonstrated that miRNAs contribute to the regulation of normal aging process, but their roles in progeroid disorders remain poorly understood. Here we report the miRNA transcriptomes of mouse embryonic fibroblasts (MEFs) established from wild type (WT) and Zmpste24{sup −/−} progeroid mice using a massively parallel sequencing technology. With data from 19.5 × 10{sup 6} reads from WT MEFs and 16.5 × 10{sup 6} reads from Zmpste24{sup −/−} MEFs, we discovered a total of 306 known miRNAs expressed in MEFs with a wide dynamic range of read counts ranging from 10 to over 1 million. A total of 8 miRNAs were found to be significantly down-regulated, with only 2 miRNAs upregulated, in Zmpste24{sup −/−} MEFs as compared to WT MEFs. Functional studies revealed that miR-365, a significantly down-regulated miRNA in Zmpste24{sup −/−} MEFs, modulates cellular growth phenotypes in MEFs. Overexpression of miR-365 in Zmpste24{sup −/−} MEFs increased cellular proliferation and decreased the percentage of SA-β-gal-positive cells, while inhibition of miR-365 function led to an increase of SA-β-gal-positive cells in WT MEFs. Furthermore, we identified Rasd1, a member of the Ras superfamily of small GTPases, as a functional target of miR-365. While expression of miR-365 suppressed Rasd1 3′ UTR luciferase-reporter activity

  20. Complement Activation Alters Platelet Function

    Science.gov (United States)

    2015-12-01

    Award Number: W81XWH-12-1-0523 TITLE: Complement Activation Alters Platelet Function PRINCIPAL INVESTIGATOR: George Tsokos, M.D. CONTRACTING...Activation Alters Platelet Function 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0523 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) George Tsokos, M.D...a decreased level of disease. Further studies will expand upon these observations better outlining the function of platelets in the injury associated

  1. Complement evasion by Plasmodium falciparum

    OpenAIRE

    Holopainen, Saila

    2008-01-01

    Patologian oppiaine Malaria remains one of the major health problems in many tropical countries, especially in sub-Saharan Africa. Among the most characteristic features of the malaria pathogens, protozoan parasites of the genus Plasmodium, is their ability to evade the immune defences of the host for extended periods of time. The complement system (C) is an essential part of the innate system in the first line of defense. It consists of over 30 soluble or membrane-bound components. C...

  2. Diurnal Rhythms Result in Significant Changes in the Cellular Protein Complement in the Cyanobacterium Cyanothece 51142

    Energy Technology Data Exchange (ETDEWEB)

    Stockel, Jana; Jacobs, Jon M.; Elvitigala, Thanura R.; Liberton, Michelle L.; Welsh, Eric A.; Polpitiya, Ashoka D.; Gritsenko, Marina A.; Nicora, Carrie D.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.

    2011-02-22

    Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ,30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for,5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms.

  3. Diurnal Rhythms Result in Significant Changes in the Cellular Protein Complement in the Cyanobacterium Cyanothece 51142

    Science.gov (United States)

    Elvitigala, Thanura R.; Liberton, Michelle; Welsh, Eric A.; Polpitiya, Ashoka D.; Gritsenko, Marina A.; Nicora, Carrie D.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.

    2011-01-01

    Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ∼30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for ∼5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms. PMID:21364985

  4. Diurnal rhythms result in significant changes in the cellular protein complement in the cyanobacterium Cyanothece 51142.

    Directory of Open Access Journals (Sweden)

    Jana Stöckel

    Full Text Available Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ∼30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for ∼5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms.

  5. Diurnal rhythms result in significant changes in the cellular protein complement in the cyanobacterium Cyanothece 51142.

    Science.gov (United States)

    Stöckel, Jana; Jacobs, Jon M; Elvitigala, Thanura R; Liberton, Michelle; Welsh, Eric A; Polpitiya, Ashoka D; Gritsenko, Marina A; Nicora, Carrie D; Koppenaal, David W; Smith, Richard D; Pakrasi, Himadri B

    2011-02-22

    Cyanothece sp. ATCC 51142 is a diazotrophic cyanobacterium notable for its ability to perform oxygenic photosynthesis and dinitrogen fixation in the same single cell. Previous transcriptional analysis revealed that the existence of these incompatible cellular processes largely depends on tightly synchronized expression programs involving ∼30% of genes in the genome. To expand upon current knowledge, we have utilized sensitive proteomic approaches to examine the impact of diurnal rhythms on the protein complement in Cyanothece 51142. We found that 250 proteins accounting for ∼5% of the predicted ORFs from the Cyanothece 51142 genome and 20% of proteins detected under alternating light/dark conditions exhibited periodic oscillations in their abundances. Our results suggest that altered enzyme activities at different phases during the diurnal cycle can be attributed to changes in the abundance of related proteins and key compounds. The integration of global proteomics and transcriptomic data further revealed that post-transcriptional events are important for temporal regulation of processes such as photosynthesis in Cyanothece 51142. This analysis is the first comprehensive report on global quantitative proteomics in a unicellular diazotrophic cyanobacterium and uncovers novel findings about diurnal rhythms.

  6. Lessons learned from mice deficient in lectin complement pathway molecules

    DEFF Research Database (Denmark)

    Genster, Ninette Benthien; Takahashi, Minoru; Sekine, Hideharu;

    2014-01-01

    The lectin pathway of the complement system is initiated when the pattern-recognition molecules, mannose-binding lectin (MBL), ficolins or collectin-11, bind to invading pathogens or damaged host cells. This leads to activation of MBL/ficolin/collectin-11 associated serine proteases (MASPs), which...... in turn activate downstream complement components, ultimately leading to elimination of the pathogen. Mice deficient in the key molecules of lectin pathway of complement have been generated in order to build knowledge of the molecular mechanisms of the lectin pathway in health and disease. Despite...... in complement activation, pathogen infection, coagulation, host tissue injury and developmental biology have been revealed by in vivo investigations. This review provides an overview of the mice deficient in lectin pathway molecules and highlights some of the most important findings that have resulted from...

  7. Activation of human complement by immunoglobulin G antigranulocyte antibody.

    Science.gov (United States)

    Rustagi, P K; Currie, M S; Logue, G L

    1982-01-01

    The ability of antigranulocyte antibody to fix the third component of complement (C3) to the granulocyte surface was investigated by an assay that quantitates the binding of monoclonal anti-C3 antibody to paraformaldehyde-fixed cells preincubated with Felty's syndrome serum in the presence of human complement. The sera from 7 of 13 patients with Felty's syndrome bound two to three times as much C3 to granulocytes as sera from patients with uncomplicated rheumatoid arthritis. The complement-activating ability of Felty's syndrome serum seemed to reside in the monomeric IgG-containing serum fraction. For those sera capable of activating complement, the amount of C3 fixed to granulocytes was proportional to the amount of granulocyte-binding IgG present in the serum. Thus, complement fixation appeared to be a consequence of the binding of antigranulocyte antibody to the cell surface. These studies suggest a role for complement-mediated injury in the pathophysiology of immune granulocytopenia, as has been demonstrated for immune hemolytic anemia and immune thrombocytopenia. PMID:7174786

  8. Transcriptome analysis of Bacillus thuringiensis spore life, germination and cell outgrowth in a vegetable-based food model.

    Science.gov (United States)

    Bassi, Daniela; Colla, Francesca; Gazzola, Simona; Puglisi, Edoardo; Delledonne, Massimo; Cocconcelli, Pier Sandro

    2016-05-01

    Toxigenic species belonging to Bacillus cereus sensu lato, including Bacillus thuringiensis, cause foodborne outbreaks thanks to their capacity to survive as spores and to grow in food matrixes. The goal of this work was to assess by means of a genome-wide transcriptional assay, in the food isolate B. thuringiensis UC10070, the gene expression behind the process of spore germination and consequent outgrowth in a vegetable-based food model. Scanning electron microscopy and Energy Dispersive X-ray microanalysis were applied to select the key steps of B. thuringiensis UC10070 cell cycle to be analyzed with DNA-microarrays. At only 40 min from heat activation, germination started rapidly and in less than two hours spores transformed in active growing cells. A total of 1646 genes were found to be differentially expressed and modulated during the entire B. cereus life cycle in the food model, with most of the significant genes belonging to transport, transcriptional regulation and protein synthesis, cell wall and motility and DNA repair groups. Gene expression studies revealed that toxin-coding genes nheC, cytK and hblC were found to be expressed in vegetative cells growing in the food model.

  9. Role of complement in glomerular diseases.

    Science.gov (United States)

    Mao, Song; Zhang, Jianhua

    2016-01-01

    The complement system, composed of nearly 30 proteins, is a key regulator of immunity. The complement system is critical for protecting hosts from invading pathogens. Dysregulation of this system is associated with susceptibility to infection and various autoimmune diseases. Furthermore, complement activation due to the defective regulation of the alternative pathway will induce glomerular diseases. Anti-complement therapy has been applied in various glomerular diseases. Signaling pathways might be very important in the pathogenesis of glomerular diseases. This review will give a relatively complete signaling pathway flowchart for complement and a comprehensive understanding of the underlying role of complement in glomerular diseases.

  10. The Escherichia coli transcriptome linked to growth fitness

    Directory of Open Access Journals (Sweden)

    Bei-Wen Ying

    2016-03-01

    Full Text Available A series of Escherichia coli strains with varied genomic sequences were subjected to high-density microarray analyses to elucidate the fitness-correlated transcriptomes. Fitness, which is commonly evaluated by the growth rate during the exponential phase, is not only determined by the genome but is also linked to growth conditions, e.g., temperature. We previously reported genetic and environmental contributions to E. coli transcriptomes and evolutionary transcriptome changes in thermal adaptation. Here, we describe experimental details on how to prepare microarray samples that truly represent the growth fitness of the E. coli cells. A step-by-step record of sample preparation procedures that correspond to growing cells and transcriptome data sets that are deposited at the GEO database (GSE33212, GSE52770, GSE61739 are also provided for reference.

  11. Transcriptome differentiation along the dorso-ventral axis in laser-captured microdissected rat hippocampal granular cell layer

    DEFF Research Database (Denmark)

    Christensen, T.; Bisgaard, C.F.; Nielsen, Henrik Bjørn

    2010-01-01

    -related behaviors. Based on such findings our aim was to investigate the molecular differentiation along the dorso-ventral axis of the hippocampal granular cell layer of the rat dentate gyrus. Homogeneous isolation of this specific area was performed by laser-capture microdissection and Illumina microarray chips......Several findings suggest a functional and anatomical differentiation along the dorso-ventral axis of the hippocampus. Lesion studies in rats have indicated that the dorsal hippocampus preferentially plays a role in spatial learning and memory, while the ventral hippocampus is involved in anxiety...... and ventral granular cell layer with a false discovery rate below 5% and with a relative change in gene expression level of 20% or more. From this pool of genes 45 genes were more than two-fold regulated, 13 genes being dorsally enriched and 32 genes being ventrally enriched. Moreover, cluster analysis based...

  12. The impact of methylmercury on 1,25-dihydroxyvitamin D3-induced transcriptomic responses in dolphin skin cells.

    Science.gov (United States)

    Ellis, Blake C; Gattoni-Celli, Sebastiano; Kindy, Mark S

    2010-01-01

    The Atlantic bottlenose dolphin has been the focus of much attention owing to the considerable impact of environmental stress on its health and the associated implications for human health. Here, we used skin cells from the dolphin to investigate the protective role of the vitamin D pathway against environmental stressors. We previously reported that dolphin skin cells respond to 1,25-dihydroxyvitamin D3 (1,25D3), the bioactive metabolite of vitamin D3, by upregulation of the vitamin D receptor (VDR) and expression of several genes. Methylmercury is a highly bioaccumulative environmental stressor of relevance to the dolphin. We currently report that in dolphin cells sublethal concentrations of methylmercury compromise the ability of 1,25D3 to upregulate VDR, to transactivate a vitamin D-sensitive promoter, and to express specific target genes. These results help elucidate the effects of vitamin D and methylmercury on innate immunity in dolphin skin and potentially in human skin as well, considering similarities in the vitamin D pathway between the two species.

  13. Anguillid herpesvirus 1 transcriptome

    NARCIS (Netherlands)

    Beurden, van S.J.; Gatherer, D.; Kerr, K.; Galbraith, J.; Herzyk, P.; Peeters, B.P.H.; Rottier, P.J.M.; Engelsma, M.Y.; Davidson, A.J.

    2012-01-01

    We used deep sequencing of poly(A) RNA to characterize the transcriptome of an economically important eel virus, anguillid herpesvirus 1 (AngHV1), at a stage during the lytic life cycle when infectious virus was being produced. In contrast to the transcription of mammalian herpesviruses, the overall

  14. The complement system and adverse pregnancy outcomes.

    Science.gov (United States)

    Regal, Jean F; Gilbert, Jeffrey S; Burwick, Richard M

    2015-09-01

    Adverse pregnancy outcomes significantly contribute to morbidity and mortality for mother and child, with lifelong health consequences for both. The innate and adaptive immune system must be regulated to insure survival of the fetal allograft, and the complement system is no exception. An intact complement system optimizes placental development and function and is essential to maintain host defense and fetal survival. Complement regulation is apparent at the placental interface from early pregnancy with some degree of complement activation occurring normally throughout gestation. However, a number of pregnancy complications including early pregnancy loss, fetal growth restriction, hypertensive disorders of pregnancy and preterm birth are associated with excessive or misdirected complement activation, and are more frequent in women with inherited or acquired complement system disorders or complement gene mutations. Clinical studies employing complement biomarkers in plasma and urine implicate dysregulated complement activation in components of each of the adverse pregnancy outcomes. In addition, mechanistic studies in rat and mouse models of adverse pregnancy outcomes address the complement pathways or activation products of importance and allow critical analysis of the pathophysiology. Targeted complement therapeutics are already in use to control adverse pregnancy outcomes in select situations. A clearer understanding of the role of the complement system in both normal pregnancy and complicated or failed pregnancy will allow a rational approach to future therapeutic strategies for manipulating complement with the goal of mitigating adverse pregnancy outcomes, preserving host defense, and improving long term outcomes for both mother and child.