WorldWideScience

Sample records for cells transcriptomics complements

  1. RNA-seq and microarray complement each other in transcriptome profiling

    Directory of Open Access Journals (Sweden)

    Kogenaru Sunitha

    2012-11-01

    Full Text Available Abstract Background RNA-seq and microarray are the two popular methods employed for genome-wide transcriptome profiling. Current comparison studies have shown that transcriptome quantified by these two methods correlated well. However, none of them have addressed if they complement each other, considering the strengths and the limitations inherent with them. The pivotal requirement to address this question is the knowledge of a well known data set. In this regard, HrpX regulome from pathogenic bacteria serves as an ideal choice as the target genes of HrpX transcription factor are well studied due to their central role in pathogenicity. Results We compared the performance of RNA-seq and microarray in their ability to detect known HrpX target genes by profiling the transcriptome from the wild-type and the hrpX mutant strains of γ-Proteobacterium Xanthomonas citri subsp. citri. Our comparative analysis indicated that gene expression levels quantified by RNA-seq and microarray well-correlated both at absolute as well as relative levels (Spearman correlation-coefficient, rs > 0.76. Further, the expression levels quantified by RNA-seq and microarray for the significantly differentially expressed genes (DEGs also well-correlated with qRT-PCR based quantification (rs = 0.58 to 0.94. Finally, in addition to the 55 newly identified DEGs, 72% of the already known HrpX target genes were detected by both RNA-seq and microarray, while, the remaining 28% could only be detected by either one of the methods. Conclusions This study has significantly advanced our understanding of the regulome of the critical transcriptional factor HrpX. RNA-seq and microarray together provide a more comprehensive picture of HrpX regulome by uniquely identifying new DEGs. Our study demonstrated that RNA-seq and microarray complement each other in transcriptome profiling.

  2. Complement

    Science.gov (United States)

    ... may have lower-than-normal levels of the complement proteins C3 and C4 . Complement activity varies throughout the body. ... Elsevier Saunders; 2013:chap 8. Read More Cirrhosis Complement component 3 (C3) Complement component 4 Glomerulonephritis Hepatitis Hereditary angioedema Kidney ...

  3. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses.

    Directory of Open Access Journals (Sweden)

    Guido Moll

    Full Text Available Infusion of human third-party mesenchymal stromal cells (MSCs appears to be a promising therapy for acute graft-versus-host disease (aGvHD. To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46 and DAF (CD55, but were protected from complement lysis via expression of protectin (CD59. Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.

  4. The complement system of elasmobranches revealed by liver transcriptome analysis of a hammerhead shark, Sphyrna zygaena.

    Science.gov (United States)

    Goshima, Masayuki; Sekiguchi, Reo; Matsushita, Misao; Nonaka, Masaru

    2016-08-01

    Comprehensive studies of the complement genes in basal vertebrates have revealed that cyclostomes have apparently primitive complement systems whereas bony fish have well-developed complement systems comparable to those of mammals. Here we have performed liver transcriptome analysis of a hammerhead shark, Sphyrna zygaeana, to elucidate the early history of vertebrate complement evolution. Identified genes were; one C1qB, one C1r, one C1s, one MASP-1/-3, one MASP-2, two factor B/C2, one C3, three C4, one C5, one C6, one C7, one C8A, three C8B, one C8G, one C9, two factor I and one S protein. No MBL, ficolin, C1qA or C1qC were found. These results indicate that the lectin, classical, alternative and lytic pathways were established in the common ancestor of jawed vertebrates. In addition to the absence of MBL and ficolin, the MASP transcripts lacked the serine protease domain, suggesting that the lectin pathway was lost in the hammerhead shark lineage. PMID:26987526

  5. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.

    Science.gov (United States)

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T; Sorensen, Staci A; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-02-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. We constructed a cellular taxonomy of one cortical region, primary visual cortex, in adult mice on the basis of single-cell RNA sequencing. We identified 49 transcriptomic cell types, including 23 GABAergic, 19 glutamatergic and 7 non-neuronal types. We also analyzed cell type-specific mRNA processing and characterized genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we found that some of our transcriptomic cell types displayed specific and differential electrophysiological and axon projection properties, thereby confirming that the single-cell transcriptomic signatures can be associated with specific cellular properties.

  6. Transcriptomic dissection of tongue squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Schwartz Joel L

    2008-02-01

    Full Text Available Abstract Background The head and neck/oral squamous cell carcinoma (HNOSCC is a diverse group of cancers, which develop from many different anatomic sites and are associated with different risk factors and genetic characteristics. The oral tongue squamous cell carcinoma (OTSCC is one of the most common types of HNOSCC. It is significantly more aggressive than other forms of HNOSCC, in terms of local invasion and spread. In this study, we aim to identify specific transcriptomic signatures that associated with OTSCC. Results Genome-wide transcriptomic profiles were obtained for 53 primary OTSCCs and 22 matching normal tissues. Genes that exhibit statistically significant differences in expression between OTSCCs and normal were identified. These include up-regulated genes (MMP1, MMP10, MMP3, MMP12, PTHLH, INHBA, LAMC2, IL8, KRT17, COL1A2, IFI6, ISG15, PLAU, GREM1, MMP9, IFI44, CXCL1, and down-regulated genes (KRT4, MAL, CRNN, SCEL, CRISP3, SPINK5, CLCA4, ADH1B, P11, TGM3, RHCG, PPP1R3C, CEACAM7, HPGD, CFD, ABCA8, CLU, CYP3A5. The expressional difference of IL8 and MMP9 were further validated by real-time quantitative RT-PCR and immunohistochemistry. The Gene Ontology analysis suggested a number of altered biological processes in OTSCCs, including enhancements in phosphate transport, collagen catabolism, I-kappaB kinase/NF-kappaB signaling cascade, extracellular matrix organization and biogenesis, chemotaxis, as well as suppressions of superoxide release, hydrogen peroxide metabolism, cellular response to hydrogen peroxide, keratinization, and keratinocyte differentiation in OTSCCs. Conclusion In summary, our study provided a transcriptomic signature for OTSCC that may lead to a diagnosis or screen tool and provide the foundation for further functional validation of these specific candidate genes for OTSCC.

  7. T Cell Transcriptomes Describe Patient Subtypes in Systemic Lupus Erythematosus.

    Directory of Open Access Journals (Sweden)

    Sean J Bradley

    Full Text Available T cells regulate the adaptive immune response and have altered function in autoimmunity. Systemic Lupus Erythematosus (SLE has great diversity of presentation and treatment response. Peripheral blood component gene expression affords an efficient platform to investigate SLE immune dysfunction and help guide diagnostic biomarker development for patient stratification.Gene expression in peripheral blood T cell samples for 14 SLE patients and 4 controls was analyzed by high depth sequencing. Unbiased clustering of genes and samples revealed novel patterns related to disease etiology. Functional annotation of these genes highlights pathways and protein domains involved in SLE manifestation.We found transcripts for hundreds of genes consistently altered in SLE T cell samples, for which DAVID analysis highlights induction of pathways related to mitochondria, nucleotide metabolism and DNA replication. Fewer genes had reduced mRNA expression, and these were linked to signaling, splicing and transcriptional activity. Gene signatures associated with the presence of dsDNA antibodies, low complement levels and nephritis were detected. T cell gene expression also indicates the presence of several patient subtypes, such as having only a minimal expression phenotype, male type, or severe with or without induction of genes related to membrane protein production.Unbiased transcriptome analysis of a peripheral blood component provides insight on autoimmune pathophysiology and patient variability. We present an open source workflow and richly annotated dataset to support investigation of T cell biology, develop biomarkers for patient stratification and perhaps help indicate a source of SLE immune dysfunction.

  8. Complement-dependent transport of antigen into B cell follicles

    DEFF Research Database (Denmark)

    Gonzalez, Santiago F.; Lukacs-Kornek, Veronika; Kuligowski, Michael P.;

    2010-01-01

    Since the original proposal by Fearon and Locksley (Fearon and Locksley. 1996. Science 272: 50-53) that the complement system linked innate and adaptive immunity, there has been a rapid expansion of studies on this topic. With the advance of intravital imaging, a number of recent papers revealed ...... opsonization of influenza and uptake by macrophages, and the capture of virus by dendritic cells residing in the medullary compartment of peripheral lymph nodes....

  9. Validation of noise models for single-cell transcriptomics

    NARCIS (Netherlands)

    Grün, Dominic; Kester, Lennart; van Oudenaarden, Alexander

    2014-01-01

    Single-cell transcriptomics has recently emerged as a powerful technology to explore gene expression heterogeneity among single cells. Here we identify two major sources of technical variability: sampling noise and global cell-to-cell variation in sequencing efficiency. We propose noise models to co

  10. Complement activation by tubular cells is mediated by properdin binding

    NARCIS (Netherlands)

    Gaarkeuken, E.M.; Siezenga, M.A.; Zuidwijk, K.; Kooten, C. van; Rabelink, T.J.; Daha, M.R.; Berger, S.P.

    2008-01-01

    Activation of filtered complement products on the brush border of the tubular epithelium is thought to be a key factor underlying proteinuria-induced tubulointerstitial injury. However, the mechanism of tubular complement activation is still unclear. Recent studies on mechanisms of complement activa

  11. From single-cell transcriptomics to single-molecule counting

    OpenAIRE

    Islam, Saiful

    2013-01-01

    RNA-sequencing (RNA-seq) technology has been progressing so fast in the last few years and made it possible to perform transcriptome analysis at single-cell level that was even unimaginable a few years before. Nowadays, the importance of gene expression analysis at the single-cell level is increasingly appreciated for the study of complex heterogeneous tissue. Also, in order to solve the obscure and no consensus definition of cell types, the single-cell gene expression analysis ap...

  12. Complement activation in the context of stem cells and tissue repair

    Institute of Scientific and Technical Information of China (English)

    Ingrid; U; Schraufstatter; Sophia; K; Khaldoyanidi; Richard; G; DiScipio

    2015-01-01

    The complement pathway is best known for its role in immune surveillance and inflammation. However,its ability of opsonizing and removing not only pathogens,but also necrotic and apoptotic cells,is a phylogenetically ancient means of initiating tissue repair. The means and mechanisms of complement-mediated tissue repair are discussed in this review. There is increasing evidence that complement activation contributes to tissue repair at several levels. These range from the chemo-attraction of stem and progenitor cells to areas of complement activation,to increased survival of various cell types in the presence of split products of complement,and to the production of trophic factors by cells activated by the anaphylatoxins C3 a and C5 a. This repair aspect of complement biology has not found sufficient appreciation until recently. The following will examine this aspect of complement biology with an emphasis on the anaphylatoxins C3 a and C5 a.

  13. Complement activation and complement receptors on follicular dendritic cells are critical for the function of a targeted adjuvant.

    Science.gov (United States)

    Mattsson, Johan; Yrlid, Ulf; Stensson, Anneli; Schön, Karin; Karlsson, Mikael C I; Ravetch, Jeffrey V; Lycke, Nils Y

    2011-10-01

    A detailed understanding of how activation of innate immunity can be exploited to generate more effective vaccines is critically required. However, little is known about how to target adjuvants to generate safer and better vaccines. In this study, we describe an adjuvant that, through complement activation and binding to follicular dendritic cells (FDC), dramatically enhances germinal center (GC) formation, which results in greatly augmented Ab responses. The nontoxic CTA1-DD adjuvant hosts the ADP-ribosylating CTA1 subunit from cholera toxin and a dimer of the D fragment from Staphylococcus aureus protein A. We found that T cell-dependent, but not -independent, responses were augmented by CTA1-DD. GC reactions and serum Ab titers were both enhanced in a dose-dependent manner. This effect required complement activation, a property of the DD moiety. Deposition of CTA1-DD to the FDC network appeared to occur via the conduit system and was dependent on complement receptors on the FDC. Hence, Cr2(-/-) mice failed to augment GC reactions and exhibited dramatically reduced Ab responses, whereas Ribi adjuvant demonstrated unperturbed adjuvant function in these mice. Noteworthy, the adjuvant effect on priming of specific CD4 T cells was found to be intact in Cr2(-/-) mice, demonstrating that the CTA1-DD host both complement-dependent and -independent adjuvant properties. This is the first demonstration, to our knowledge, of an adjuvant that directly activates complement, enabling binding of the adjuvant to the FDC, which subsequently strongly promoted the GC reaction, leading to augmented serum Ab titers and long-term memory development. PMID:21880985

  14. Inefficient complement system clearance of Trypanosoma cruzi metacyclic trypomastigotes enables resistant strains to invade eukaryotic cells.

    Directory of Open Access Journals (Sweden)

    Igor Cestari

    Full Text Available The complement system is the main arm of the vertebrate innate immune system against pathogen infection. For the protozoan Trypanosoma cruzi, the causative agent of Chagas disease, subverting the complement system and invading the host cells is crucial to succeed in infection. However, little attention has focused on whether the complement system can effectively control T. cruzi infection. To address this question, we decided to analyse: 1 which complement pathways are activated by T. cruzi using strains isolated from different hosts, 2 the capacity of these strains to resist the complement-mediated killing at nearly physiological conditions, and 3 whether the complement system could limit or control T. cruzi invasion of eukaryotic cells. The complement activating molecules C1q, C3, mannan-binding lectin and ficolins bound to all strains analysed; however, C3b and C4b deposition assays revealed that T. cruzi activates mainly the lectin and alternative complement pathways in non-immune human serum. Strikingly, we detected that metacyclic trypomastigotes of some T. cruzi strains were highly susceptible to complement-mediated killing in non-immune serum, while other strains were resistant. Furthermore, the rate of parasite invasion in eukaryotic cells was decreased by non-immune serum. Altogether, these results establish that the complement system recognizes T. cruzi metacyclic trypomastigotes, resulting in killing of susceptible strains. The complement system, therefore, acts as a physiological barrier which resistant strains have to evade for successful host infection.

  15. Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1

    Science.gov (United States)

    Ellegård, Rada; Crisci, Elisa; Andersson, Jonas; Shankar, Esaki M.; Nyström, Sofia; Hinkula, Jorma

    2015-01-01

    Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection. PMID:26157174

  16. Complement-mediated enhancement of HIV-1 infection in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Nielsen, S D; Sørensen, A M; Schønning, Kristian;

    1997-01-01

    3 isolates and found only a minor effect on antigen production (median enhancement 1.2-fold, range 0.6-1.5). Furthermore, addition of HIV-specific antibodies in combination with complement resulted in enhanced antigen production in 2/3 sera tested. However, the combination of complement...... and antibodies resulted in only a minor increase in enhancement of HIV infection compared to that obtained with complement alone. Finally, we found evidence of complement-mediated enhancement of HIV infection in resting PBMC. In conclusion, we demonstrated that complement-mediated enhancement of HIV infection......We investigated if complement-mediated enhancement of HIV infection occurs in peripheral blood mononuclear cells (PBMC). In 7 experiments, we evaluated the effect of human complement on HIVIIIB infection in vitro. We measured HIV antigen production on day 4 and found that pre-incubation of HIV...

  17. Binding of Streptococcus pneumoniae endopeptidase O (PepO) to complement component C1q modulates the complement attack and promotes host cell adherence.

    Science.gov (United States)

    Agarwal, Vaibhav; Sroka, Magdalena; Fulde, Marcus; Bergmann, Simone; Riesbeck, Kristian; Blom, Anna M

    2014-05-30

    The Gram-positive species Streptococcus pneumoniae is a human pathogen causing severe local and life-threatening invasive diseases associated with high mortality rates and death. We demonstrated recently that pneumococcal endopeptidase O (PepO) is a ubiquitously expressed, multifunctional plasminogen and fibronectin-binding protein facilitating host cell invasion and evasion of innate immunity. In this study, we found that PepO interacts directly with the complement C1q protein, thereby attenuating the classical complement pathway and facilitating pneumococcal complement escape. PepO binds both free C1q and C1 complex in a dose-dependent manner based on ionic interactions. Our results indicate that recombinant PepO specifically inhibits the classical pathway of complement activation in both hemolytic and complement deposition assays. This inhibition is due to direct interaction of PepO with C1q, leading to a strong activation of the classical complement pathway, and results in consumption of complement components. In addition, PepO binds the classical complement pathway inhibitor C4BP, thereby regulating downstream complement activation. Importantly, pneumococcal surface-exposed PepO-C1q interaction mediates bacterial adherence to host epithelial cells. Taken together, PepO facilitates C1q-mediated bacterial adherence, whereas its localized release consumes complement as a result of its activation following binding of C1q, thus representing an additional mechanism of human complement escape by this versatile pathogen.

  18. Genome-wide transcriptome analysis of 150 cell samples†

    Science.gov (United States)

    Russom, Aman; Xiao, Wenzhong; Wilhelmy, Julie; Wang, Shenglong; Heath, Joe Don; Kurn, Nurith; Tompkins, Ronald G.; Davis, Ronald W.; Toner, Mehmet

    2013-01-01

    A major challenge in molecular biology is interrogating the human transcriptome on a genome wide scale when only a limited amount of biological sample is available for analysis. Current methodologies using microarray technologies for simultaneously monitoring mRNA transcription levels require nanogram amounts of total RNA. To overcome the sample size limitation of current technologies, we have developed a method to probe the global gene expression in biological samples as small as 150 cells, or the equivalent of approximately 300 pg total RNA. The new method employs microfluidic devices for the purification of total RNA from mammalian cells and ultra-sensitive whole transcriptome amplification techniques. We verified that the RNA integrity is preserved through the isolation process, accomplished highly reproducible whole transcriptome analysis, and established high correlation between repeated isolations of 150 cells and the same cell culture sample. We validated the technology by demonstrating that the combined microfluidic and amplification protocol is capable of identifying biological pathways perturbed by stimulation, which are consistent with the information recognized in bulk-isolated samples. PMID:20023796

  19. Genome-wide transcriptome analysis of 150 cell samples.

    Science.gov (United States)

    Irimia, Daniel; Mindrinos, Michael; Russom, Aman; Xiao, Wenzhong; Wilhelmy, Julie; Wang, Shenglong; Heath, Joe Don; Kurn, Nurith; Tompkins, Ronald G; Davis, Ronald W; Toner, Mehmet

    2009-01-01

    A major challenge in molecular biology is interrogating the human transcriptome on a genome wide scale when only a limited amount of biological sample is available for analysis. Current methodologies using microarray technologies for simultaneously monitoring mRNA transcription levels require nanogram amounts of total RNA. To overcome the sample size limitation of current technologies, we have developed a method to probe the global gene expression in biological samples as small as 150 cells, or the equivalent of approximately 300 pg total RNA. The new method employs microfluidic devices for the purification of total RNA from mammalian cells and ultra-sensitive whole transcriptome amplification techniques. We verified that the RNA integrity is preserved through the isolation process, accomplished highly reproducible whole transcriptome analysis, and established high correlation between repeated isolations of 150 cells and the same cell culture sample. We validated the technology by demonstrating that the combined microfluidic and amplification protocol is capable of identifying biological pathways perturbed by stimulation, which are consistent with the information recognized in bulk-isolated samples.

  20. Transcriptome Analysis of the Innate Immunity-Related Complement System in Spleen Tissue of Ctenopharyngodon idella Infected with Aeromonas hydrophila

    Science.gov (United States)

    Dang, Yunfei; Xu, Xiaoyan; Shen, Yubang; Hu, Moyan; Zhang, Meng; Li, Lisen; Lv, Liqun; Li, Jiale

    2016-01-01

    The grass carp (Ctenopharyngodon idella) is an important commercial farmed herbivorous fish species in China, but is susceptible to Aeromonas hydrophila infections. In the present study, we performed de novo RNA-Seq sequencing of spleen tissue from specimens of a disease-resistant family, which were given intra-peritoneal injections containing PBS with or without a dose of A. hydrophila. The fish were sampled from the control group at 0 h, and from the experimental group at 4, 8, 12, 24, 48 and 72 h. 122.18 million clean reads were obtained from the normalized cDNA libraries; these were assembled into 425,260 contigs and then 191,795 transcripts. Of those, 52,668 transcripts were annotated with the NCBI Nr database, and 41,347 of the annotated transcripts were assigned into 90 functional groups. 20,569 unigenes were classified into six main categories, including 38 secondary KEGG pathways. 2,992 unigenes were used in the analysis of differentially expressed genes (DEGs). 89 of the putative DEGs were related to the immune system and 41 of them were involved in the complement and coagulation cascades pathway. This study provides insights into the complement and complement-related pathways involved in innate immunity, through expression profile analysis of the genomic resources in C. idella. We conclude that complement and complement-related genes play important roles during defense against A. hydrophila infection. The immune response is activated at 4 h after the bacterial injections, indicating that the complement pathways are activated at the early stage of bacterial infection. The study has improved our understanding of the immune response mechanisms in C. idella to bacterial pathogens. PMID:27383749

  1. Transcriptome Analysis of the Innate Immunity-Related Complement System in Spleen Tissue of Ctenopharyngodon idella Infected with Aeromonas hydrophila.

    Directory of Open Access Journals (Sweden)

    Yunfei Dang

    Full Text Available The grass carp (Ctenopharyngodon idella is an important commercial farmed herbivorous fish species in China, but is susceptible to Aeromonas hydrophila infections. In the present study, we performed de novo RNA-Seq sequencing of spleen tissue from specimens of a disease-resistant family, which were given intra-peritoneal injections containing PBS with or without a dose of A. hydrophila. The fish were sampled from the control group at 0 h, and from the experimental group at 4, 8, 12, 24, 48 and 72 h. 122.18 million clean reads were obtained from the normalized cDNA libraries; these were assembled into 425,260 contigs and then 191,795 transcripts. Of those, 52,668 transcripts were annotated with the NCBI Nr database, and 41,347 of the annotated transcripts were assigned into 90 functional groups. 20,569 unigenes were classified into six main categories, including 38 secondary KEGG pathways. 2,992 unigenes were used in the analysis of differentially expressed genes (DEGs. 89 of the putative DEGs were related to the immune system and 41 of them were involved in the complement and coagulation cascades pathway. This study provides insights into the complement and complement-related pathways involved in innate immunity, through expression profile analysis of the genomic resources in C. idella. We conclude that complement and complement-related genes play important roles during defense against A. hydrophila infection. The immune response is activated at 4 h after the bacterial injections, indicating that the complement pathways are activated at the early stage of bacterial infection. The study has improved our understanding of the immune response mechanisms in C. idella to bacterial pathogens.

  2. Transcriptome Analysis of the Innate Immunity-Related Complement System in Spleen Tissue of Ctenopharyngodon idella Infected with Aeromonas hydrophila.

    Science.gov (United States)

    Dang, Yunfei; Xu, Xiaoyan; Shen, Yubang; Hu, Moyan; Zhang, Meng; Li, Lisen; Lv, Liqun; Li, Jiale

    2016-01-01

    The grass carp (Ctenopharyngodon idella) is an important commercial farmed herbivorous fish species in China, but is susceptible to Aeromonas hydrophila infections. In the present study, we performed de novo RNA-Seq sequencing of spleen tissue from specimens of a disease-resistant family, which were given intra-peritoneal injections containing PBS with or without a dose of A. hydrophila. The fish were sampled from the control group at 0 h, and from the experimental group at 4, 8, 12, 24, 48 and 72 h. 122.18 million clean reads were obtained from the normalized cDNA libraries; these were assembled into 425,260 contigs and then 191,795 transcripts. Of those, 52,668 transcripts were annotated with the NCBI Nr database, and 41,347 of the annotated transcripts were assigned into 90 functional groups. 20,569 unigenes were classified into six main categories, including 38 secondary KEGG pathways. 2,992 unigenes were used in the analysis of differentially expressed genes (DEGs). 89 of the putative DEGs were related to the immune system and 41 of them were involved in the complement and coagulation cascades pathway. This study provides insights into the complement and complement-related pathways involved in innate immunity, through expression profile analysis of the genomic resources in C. idella. We conclude that complement and complement-related genes play important roles during defense against A. hydrophila infection. The immune response is activated at 4 h after the bacterial injections, indicating that the complement pathways are activated at the early stage of bacterial infection. The study has improved our understanding of the immune response mechanisms in C. idella to bacterial pathogens. PMID:27383749

  3. Single-cell Transcriptome Study as Big Data.

    Science.gov (United States)

    Yu, Pingjian; Lin, Wei

    2016-02-01

    The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies. PMID:26876720

  4. Single-cell Transcriptome Study as Big Data

    Institute of Scientific and Technical Information of China (English)

    Pingjian Yu; Wei Lin

    2016-01-01

    The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteris-tics of scRNA-seq data and primary objectives of single-cell studies.

  5. Single-cell Transcriptome Study as Big Data

    Science.gov (United States)

    Yu, Pingjian; Lin, Wei

    2016-01-01

    The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies. PMID:26876720

  6. Complement modulation of T cell immune responses during homeostasis and disease.

    Science.gov (United States)

    Clarke, Elizabeth V; Tenner, Andrea J

    2014-11-01

    The complement system is an ancient and critical effector mechanism of the innate immune system as it senses, kills, and clears infectious and/or dangerous particles and alerts the immune system to the presence of the infection and/or danger. Interestingly, an increasing number of reports have demonstrated a clear role for complement in the adaptive immune system as well. Of note, a number of recent studies have identified previously unknown roles for complement proteins, receptors, and regulators in T cell function. Here, we will review recent data demonstrating the influence of complement proteins C1q, C3b/iC3b, C3a (and C3aR), and C5a (and C5aR) and complement regulators DAF (CD55) and CD46 (MCP) on T cell function during homeostasis and disease. Although new concepts are beginning to emerge in the field of complement regulation of T cell function, future experiments should focus on whether complement is interacting directly with the T cell or is having an indirect effect on T cell function via APCs, the cytokine milieu, or downstream complement activation products. Importantly, the identification of the pivotal molecular pathways in the human systems will be beneficial in the translation of concepts derived from model systems to therapeutic targeting for treatment of human disorders.

  7. Transcriptomic response of goat mammary epithelial cells to Mycoplasma agalactiae challenge – a preliminary study

    DEFF Research Database (Denmark)

    Ogorevc, Jernej; Mihevc, Sonja Prpar; Hedegaard, Jakob;

    2015-01-01

    Mycoplasma agalactiae (Ma) is one of the main aetiological agents of intramammary infections in small ruminants, causing contagious agalactia. To better understand the underlying disease patterns a primary goat mammary epithelial cell (pgMEC) culture was established from the mammary tissue...... and challenged with Ma. High-throughput mRNA sequencing was performed to reveal differentially expressed genes (DEG) at different time-points (3 h, 12 h, and 24 h) post infection (PI). The pathway enrichment analysis of the DEG showed that infection significantly affected pathways associated with immune response...... of the complement system and apoptosis pathways, and expression of genes coding for antimicrobial molecules and peptides. In our study we attempted to interpret the detected transcriptomic changes in a biological context and infer mammary infection resistance candidate genes, interesting for further validation...

  8. Nuclear RNA sequencing of the mouse erythroid cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Jennifer A Mitchell

    Full Text Available In addition to protein coding genes a substantial proportion of mammalian genomes are transcribed. However, most transcriptome studies investigate steady-state mRNA levels, ignoring a considerable fraction of the transcribed genome. In addition, steady-state mRNA levels are influenced by both transcriptional and posttranscriptional mechanisms, and thus do not provide a clear picture of transcriptional output. Here, using deep sequencing of nuclear RNAs (nucRNA-Seq in parallel with chromatin immunoprecipitation sequencing (ChIP-Seq of active RNA polymerase II, we compared the nuclear transcriptome of mouse anemic spleen erythroid cells with polymerase occupancy on a genome-wide scale. We demonstrate that unspliced transcripts quantified by nucRNA-seq correlate with primary transcript frequencies measured by RNA FISH, but differ from steady-state mRNA levels measured by poly(A-enriched RNA-seq. Highly expressed protein coding genes showed good correlation between RNAPII occupancy and transcriptional output; however, genome-wide we observed a poor correlation between transcriptional output and RNAPII association. This poor correlation is due to intergenic regions associated with RNAPII which correspond with transcription factor bound regulatory regions and a group of stable, nuclear-retained long non-coding transcripts. In conclusion, sequencing the nuclear transcriptome provides an opportunity to investigate the transcriptional landscape in a given cell type through quantification of unspliced primary transcripts and the identification of nuclear-retained long non-coding RNAs.

  9. Enhancement of antibody-dependent mechanisms of tumor cell lysis by a targeted activator of complement.

    Science.gov (United States)

    Imai, Masaki; Ohta, Rieko; Varela, Juan C; Song, Hongbin; Tomlinson, Stephen

    2007-10-01

    Complement inhibitors expressed on tumor cells provide a hindrance to the therapeutic efficacy of some monoclonal antibodies (mAb). We investigated a novel strategy to overwhelm complement inhibitor activity and amplify complement activation on tumor cells. The C3-binding domain of human complement receptor 2 (CR2; CD21) was linked to the complement-activating Fc region of human IgG1 (CR2-Fc), and the ability of the construct to target and amplify complement deposition on tumor cells was investigated. CR2 binds C3 activation fragments, and CR2-Fc targeted tumor cells by binding to C3 initially deposited by a tumor-specific antibody. Complement deposition on Du145 cells (human prostate cancer cell line) and anti-MUC1 mAb-mediated complement-dependent lysis of Du145 cells were significantly enhanced by CR2-Fc. Anti-MUC1 antibody-dependent cell-mediated cytotoxicity of Du145 by human peripheral blood mononuclear cells was also significantly enhanced by CR2-Fc in both the presence and the absence of complement. Radiolabeled CR2-Fc targeted to s.c. Du145 tumors in nude mice treated with anti-MUC1 mAb, validating the targeting strategy in vivo. A metastatic model was used to investigate the effect of CR2-Fc in a therapeutic paradigm. Administration of CR2-Fc together with mAb therapy significantly improved long-term survival of nude mice challenged with an i.v. injection of EL4 cells. The data show that CR2-Fc enhances the therapeutic efficacy of antibody therapy, and the construct may provide particular benefits under conditions of limiting antibody concentration or low tumor antigen density. PMID:17909064

  10. Enhancement of antibody-dependent mechanisms of tumor cell lysis by a targeted activator of complement.

    Science.gov (United States)

    Imai, Masaki; Ohta, Rieko; Varela, Juan C; Song, Hongbin; Tomlinson, Stephen

    2007-10-01

    Complement inhibitors expressed on tumor cells provide a hindrance to the therapeutic efficacy of some monoclonal antibodies (mAb). We investigated a novel strategy to overwhelm complement inhibitor activity and amplify complement activation on tumor cells. The C3-binding domain of human complement receptor 2 (CR2; CD21) was linked to the complement-activating Fc region of human IgG1 (CR2-Fc), and the ability of the construct to target and amplify complement deposition on tumor cells was investigated. CR2 binds C3 activation fragments, and CR2-Fc targeted tumor cells by binding to C3 initially deposited by a tumor-specific antibody. Complement deposition on Du145 cells (human prostate cancer cell line) and anti-MUC1 mAb-mediated complement-dependent lysis of Du145 cells were significantly enhanced by CR2-Fc. Anti-MUC1 antibody-dependent cell-mediated cytotoxicity of Du145 by human peripheral blood mononuclear cells was also significantly enhanced by CR2-Fc in both the presence and the absence of complement. Radiolabeled CR2-Fc targeted to s.c. Du145 tumors in nude mice treated with anti-MUC1 mAb, validating the targeting strategy in vivo. A metastatic model was used to investigate the effect of CR2-Fc in a therapeutic paradigm. Administration of CR2-Fc together with mAb therapy significantly improved long-term survival of nude mice challenged with an i.v. injection of EL4 cells. The data show that CR2-Fc enhances the therapeutic efficacy of antibody therapy, and the construct may provide particular benefits under conditions of limiting antibody concentration or low tumor antigen density.

  11. Transcriptome changes during intestinal cell differentiation

    DEFF Research Database (Denmark)

    Tadjali, Mehrdad; Seidelin, Jakob B; Olsen, Jørgen Lillelund;

    2002-01-01

    The expression of 18149 genes have been analysed during the differentiation of the human intestinal cell line Caco-2. cDNA probes from undifferentiated and differentiated Caco-2 cells were separately hybridised to EST DNAs spotted in an array on a nylon membrane. A remarkable change in the transc......The expression of 18149 genes have been analysed during the differentiation of the human intestinal cell line Caco-2. cDNA probes from undifferentiated and differentiated Caco-2 cells were separately hybridised to EST DNAs spotted in an array on a nylon membrane. A remarkable change...

  12. Molecular response of chorioretinal endothelial cells to complement injury: implications for macular degeneration.

    Science.gov (United States)

    Zeng, Shemin; Whitmore, S Scott; Sohn, Elliott H; Riker, Megan J; Wiley, Luke A; Scheetz, Todd E; Stone, Edwin M; Tucker, Budd A; Mullins, Robert F

    2016-02-01

    Age-related macular degeneration (AMD) is a common, blinding disease of the elderly in which macular photoreceptor cells, retinal pigment epithelium and choriocapillaris endothelial cells ultimately degenerate. Recent studies have found that degeneration of the choriocapillaris occurs early in this disease and that endothelial cell drop-out is concomitant with increased deposition of the complement membrane attack complex (MAC) at the choroidal endothelium. However, the impact of MAC injury to choroidal endothelial cells is poorly understood. To model this event in vitro, and to study the downstream consequences of MAC injury, endothelial cells were exposed to complement from human serum, compared to heat-inactivated serum, which lacks complement components. Cells exposed to complement components in human serum showed increased labelling with antibodies directed against the MAC, time- and dose-dependent cell death, as assessed by lactate dehydrogenase assay and increased permeability. RNA-Seq analysis following complement injury revealed increased expression of genes associated with angiogenesis including matrix metalloproteinase (MMP)-3 and -9, and VEGF-A. The MAC-induced increase in MMP9 RNA expression was validated using C5-depleted serum compared to C5-reconstituted serum. Increased levels of MMP9 were also established, using western blot and zymography. These data suggest that, in addition to cell lysis, complement attack on choroidal endothelial cells promotes an angiogenic phenotype in surviving cells.

  13. Transcriptome Landscapes of Mammalian Embryonic Cells

    NARCIS (Netherlands)

    Brinkhof, B.

    2015-01-01

    This thesis describes research on gene expression profiles from different embryonic stages and cell types to identify genes involved in pluripotency or differentiation in bovine and porcine cells. The results are compared with data from other mammals. RNA expression profiles of morula and blastocyst

  14. Complement-Opsonized HIV-1 Overcomes Restriction in Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Wilfried Posch

    2015-06-01

    Full Text Available DCs express intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. Thus, DCs are productively infected only at very low levels with HIV-1, and this non-permissiveness of DCs is suggested to go along with viral evasion. We now illustrate that complement-opsonized HIV-1 (HIV-C efficiently bypasses SAMHD1 restriction and productively infects DCs including BDCA-1 DCs. Efficient DC infection by HIV-C was also observed using single-cycle HIV-C, and correlated with a remarkable elevated SAMHD1 T592 phosphorylation but not SAMHD1 degradation. If SAMHD1 phosphorylation was blocked using a CDK2-inhibitor HIV-C-induced DC infection was also significantly abrogated. Additionally, we found a higher maturation and co-stimulatory potential, aberrant type I interferon expression and signaling as well as a stronger induction of cellular immune responses in HIV-C-treated DCs. Collectively, our data highlight a novel protective mechanism mediated by complement opsonization of HIV to effectively promote DC immune functions, which might be in the future exploited to tackle HIV infection.

  15. Transcriptome and microRNome of Theileria annulata Host Cells

    KAUST Repository

    Rchiad, Zineb

    2016-06-01

    Tropical Theileriosis is a parasitic disease of calves with a profound economic impact caused by Theileria annulata, an apicomplexan parasite of the genus Theileria. Transmitted by Hyalomma ticks, T. annulata infects and transforms bovine lymphocytes and macrophages into a cancer-like phenotype characterized by all six hallmarks of cancer. In the current study we investigate the transcriptional landscape of T. annulata-infected lymphocytes to define genes and miRNAs regulated by host cell transformation using next generation sequencing. We also define genes and miRNAs differentially expressed as a result of the attenuation of a T.annulata-infected macrophage cell line used as a vaccine. By comparing the transcriptional landscape of one attenuated and two transformed cell lines we identify four genes that we propose as key factors in transformation and virulence of the T. annulata host cells. We also identify miR- 126-5p as a key regulator of infected cells proliferation, adhesion, survival and invasiveness. In addition to the host cell trascriptome we studied T. annulata transcriptome and identified the role of ROS and TGF-β2 in controlling parasite gene expression. Moreover, we have used the deep parasite ssRNA-seq data to refine the available T. annulata annotation. Taken together, this study provides the full list of host cell’s genes and miRNAs transcriptionally perturbed after infection with T. annulata and after attenuation and describes genes and miRNAs never identified before as players in this type of host cell transformation. Moreover, this study provides the first database for the transcriptome of T. annulata and its host cells using next generation sequencing.

  16. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  17. Retinal pigment epithelial cells upregulate expression of complement factors after co-culture with activated T cells

    DEFF Research Database (Denmark)

    Juel, Helene Bæk; Kaestel, Charlotte; Folkersen, Lasse;

    2011-01-01

    In this study we examined the effect of T cell-derived cytokines on retinal pigment epithelial (RPE) cells with respect to expression of complement components. We used an in vitro co-culture system in which CD3/CD28-activated human T cells were separated from the human RPE cell line (ARPE-19......) by a membrane. Differential gene expression in the RPE cells of complement factor genes was identified using gene arrays, and selected gene transcripts were validated by q-RT-PCR. Protein expression was determined by ELISA and immunoblotting. Co-culture with activated T cells increased RPE mRNA and/or protein...... expression of complement components C3, factors B, H, H-like 1, CD46, CD55, CD59, and clusterin, in a dose-dependent manner. Soluble factors derived from activated T cells are capable of increasing expression of complement components in RPE cells. This is important for the further understanding...

  18. Role of CD59 in T cell activation induced by non-lethal complement attack

    Institute of Scientific and Technical Information of China (English)

    HAN Gen-cheng; BAI Yun; JIANG Man; LI Wan-ling; ZHU Xi-hua

    2001-01-01

    To study the mechanism ofT-cell activation induced by non-lethal complement attack and the role of CD59 in this process. Methods: Human CD59 and its transmembrane counterpart CD59TM cDNA were transfected into murine thymoma EL-4 cells. Activation and proliferation of EL-4 transfectants were observed with MTT assay.Results: Both CD59 and CD59 TM cDNA expressed on EL-4 cells effectively inhibited complement-mediated membrane damage. Cross-linking of CD59 with antibody induced activation of CD59/EL-4 cells but not CD59TM/EL-4cells. This effect was inhibited by Herbimycin A, a special protein tyrosine kinase (PTK) inhibitor. Non-lethal complement attack induced CD59/EL-4 but not CD59TM/EL-4 cell to proliferate, and this reaction was not blocked by Herbimycin A. Conclusion: CD59 takes part in T cell activation induced by non-lethal complement attack. The mechanisms of T cell activation induced by non-lethal complement attack are different from those by cross-linking of CD59.

  19. Complementation of a DNA repair defect in xeroderma pigmentosum cells by transfer of human chromosome 9

    International Nuclear Information System (INIS)

    Complementation of the repair defect in xeroderma pigmentosum cells of complementation group A was achieved by the transfer of human chromosome 9. A set of mouse-human hybrid cell lines, each containing a single Ecogpt-marked human chromosome, was used as a source of donor chromosomes. Chromosome transfer to XPTG-1 cells, a hypoxanthine/guanine phosphoribosyltransferase-deficient mutant of simian virus 40-transformed complementation group A cells, was achieved by microcell fusion and selection for Ecogpt. Chromosome-transfer clones of XPTG-1 cells, each containing a different human donor chromosome, were analyzed for complementation of sensitivity to UV irradiation. Among all the clones, increased levels of resistance to UV was observed only in clones containing chromosome 9. Since our recipient cell line XPTG-1 is hypoxanthine/guanine phosphoribosyltransferase deficient, cultivation of Ecogpt+ clones in medium containing 6-thioguanine permits selection of cells for loss of the marker and, by inference, transferred chromosome 9. Clones isolated for growth in 6-thioguanine, which have lost the Ecogpt-marked chromosome, exhibited a UV-sensitive phenotype, confirming the presence of the repair gene(s) for complementation group A on chromosome 9

  20. Single-Cell Transcriptome Analyses Reveal Signals to Activate Dormant Neural Stem Cells

    OpenAIRE

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary

    2015-01-01

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133+/GFAP− ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133+/GFAP− quiescent cells were enriched...

  1. Spontaneous complement activation on human B cells results in localized membrane depolarization and the clustering of complement receptor type 2 and C3 fragments

    DEFF Research Database (Denmark)

    Løbner, Morten; Leslie, Robert G Q; Prodinger, Wolfgang M;

    2009-01-01

    While our previous studies have demonstrated that complement activation induced by complement receptors type 2 (CR2/CD21) and 1 (CR1/CD35) results in C3-fragment deposition and membrane attack complex (MAC) formation in human B cells, the consequences of these events for B-cell functions remain u......-fragment patches and membrane depolarization, as well as redistribution of lipid rafts to these areas. We propose that these events may play a role in the regulation of B-cell signalling and cross-talk with T cells....

  2. Transcriptome analysis of mouse stem cells and early embryos.

    Directory of Open Access Journals (Sweden)

    Alexei A Sharov

    2003-12-01

    Full Text Available Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine.

  3. Investigating cell death mechanisms in Amyotrophic lateral sclerosis using transcriptomics

    Directory of Open Access Journals (Sweden)

    Paul Roy Heath

    2013-12-01

    Full Text Available Amyotrophic lateral sclerosis is a motor neuron disease characterised by degeneration and loss of upper and lower motor neurons from the motor cortex, brainstem and spinal cord although evidence is suggesting that there is further involvement of other cell types in the surrounding tissue. Transcriptomic analysis by gene expression profiling using microarray technology has enabled the determination of patterns of cell death in the degenerating tissues. This work has examined gene expression at the level of the tissue and individual cell types in both sporadic and familial forms of the disease. In addition, further studies have examined the differential vulnerability of neuronal cells in different regions of the central nervous system. Model systems have also provided further information to help unravel the mechanisms that lead to death of the motor neurons in disease and also provided novel insights. In this review we shall describe the methods that have been used in these investigations and describe how they have contributed to our knowledge of the cell death mechanisms in ALS.

  4. Genetic complementation of human muscle cells via directed stem cell fusion.

    Science.gov (United States)

    Gonçalves, Manuel A F V; Swildens, Jim; Holkers, Maarten; Narain, Anjali; van Nierop, Gijsbert P; van de Watering, Marloes J M; Knaän-Shanzer, Shoshan; de Vries, Antoine A F

    2008-04-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the X chromosome-linked DMD gene, which encodes the sarcolemma-stabilizing protein-dystrophin. Initial attempts at DMD therapy deployed muscle progenitor cells from healthy donors. The utilization of these cells is, however, hampered by their immunogenicity, while those from DMD patients are scarce and display limited ex vivo replication. Nonmuscle cells with myogenic capacity may offer valuable alternatives especially if, to allow autologous transplantation, they are amenable to genetic intervention. As a paradigm for therapeutic gene transfer by heterotypic cell fusion we are investigating whether human mesenchymal stem cells (hMSCs) can serve as donors of recombinant DMD genes for recipient human muscle cells. Here, we show that forced MyoD expression in hMSCs greatly increases their tendency to participate in human myotube formation turning them into improved DNA delivery vehicles. Efficient loading of hMSCs with recombinant DMD was achieved through a new tropism-modified high-capacity adenoviral (hcAd) vector directing striated muscle-specific synthesis of full-length dystrophin. This study introduces the principle of genetic complementation of gene-defective cells via directed cell fusion and provides an initial framework to test whether transient MyoD synthesis in autologous, gene-corrected hMSCs increases their potential for treating DMD and, possibly, other muscular dystrophies.

  5. Complement and Antibody-mediated Enhancement of Red Blood Cell Invasion and Growth of Malaria Parasites.

    Science.gov (United States)

    Biryukov, Sergei; Angov, Evelina; Landmesser, Mary E; Spring, Michele D; Ockenhouse, Christian F; Stoute, José A

    2016-07-01

    Plasmodium falciparum malaria is a deadly pathogen. The invasion of red blood cells (RBCs) by merozoites is a target for vaccine development. Although anti-merozoite antibodies can block invasion in vitro, there is no efficacy in vivo. To explain this discrepancy we hypothesized that complement activation could enhance RBC invasion by binding to the complement receptor 1 (CR1). Here we show that a monoclonal antibody directed against the merozoite and human polyclonal IgG from merozoite vaccine recipients enhanced RBC invasion in a complement-dependent manner and that soluble CR1 inhibited this enhancement. Sialic acid-independent strains, that presumably are able to bind to CR1 via a native ligand, showed less complement-dependent enhancement of RBC invasion than sialic acid-dependent strains that do not utilize native CR1 ligands. Confocal fluorescent microscopy revealed that complement-dependent invasion resulted in aggregation of CR1 at the RBC surface in contact with the merozoite. Finally, total anti-P. berghei IgG enhanced parasite growth and C3 deficiency decreased parasite growth in mice. These results demonstrate, contrary to current views, that complement activation in conjunction with antibodies can paradoxically aid parasites invade RBCs and should be considered in future design and testing of merozoite vaccines. PMID:27333049

  6. Role of complement receptor 1 (CR1; CD35) on epithelial cells: A model for understanding complement-mediated damage in the kidney.

    Science.gov (United States)

    Java, Anuja; Liszewski, M Kathryn; Hourcade, Dennis E; Zhang, Fan; Atkinson, John P

    2015-10-01

    The regulators of complement activation gene cluster encodes a group of proteins that have evolved to control the amplification of complement at the critical step of C3 activation. Complement receptor 1 (CR1) is the most versatile of these inhibitors with both receptor and regulatory functions. While expressed on most peripheral blood cells, the only epithelial site of expression in the kidney is by the podocyte. Its expression by this cell population has aroused considerable speculation as to its biologic function in view of many complement-mediated renal diseases. The goal of this investigation was to assess the role of CR1 on epithelial cells. To this end, we utilized a Chinese hamster ovary cell model system. Among our findings, CR1 reduced C3b deposition by ∼ 80% during classical pathway activation; however, it was an even more potent regulator (>95% reduction in C3b deposition) of the alternative pathway. This inhibition was primarily mediated by decay accelerating activity. The deposited C4b and C3b were progressively cleaved with a t½ of ∼ 30 min to C4d and C3d, respectively, by CR1-dependent cofactor activity. CR1 functioned intrinsically (i.e, worked only on the cell on which it was expressed). Moreover, CR1 efficiently and stably bound but didn't internalize C4b/C3b opsonized immune complexes. Our studies underscore the potential importance of CR1 on an epithelial cell population as both an intrinsic complement regulator and an immune adherence receptor. These results provide a framework for understanding how loss of CR1 expression on podocytes may contribute to complement-mediated damage in the kidney.

  7. Interspecific complementation between mouse and Chinese hamster cell mutants hypersensitive to ionizing radiation

    International Nuclear Information System (INIS)

    Interspecific and intraspecific hybrids were formed between mouse and Chinese hamster cell mutants hypersensitive to ionizing radiation and their radiosensitivities were examined. Chinese hamster cell mutants irs1, irs2 and irs3 and mouse mammary carcinoma cell mutants SX9 and SX10 have been found to belong to five different complementation groups. A radiosensitive mouse lymphoma cell line L5178Y-S has been demonstrated to be different from the X-ray sensitive mouse cell mutants M10 and LX830, both of which are derived from L5178Y cells, in their complementation groups. L5178Y-S is also distinct from SX9 and SX10. (author)

  8. A Transcriptomic Signature of Mouse Liver Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Adam M. Passman

    2016-01-01

    Full Text Available Liver progenitor cells (LPCs can proliferate extensively, are able to differentiate into hepatocytes and cholangiocytes, and contribute to liver regeneration. The presence of LPCs, however, often accompanies liver disease and hepatocellular carcinoma (HCC, indicating that they may be a cancer stem cell. Understanding LPC biology and establishing a sensitive, rapid, and reliable method to detect their presence in the liver will assist diagnosis and facilitate monitoring of treatment outcomes in patients with liver pathologies. A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of muscle and embryonic stem cell lines, embryonic and developed liver (DL, and HCC. Three gene clusters distinguishing LPCs from other liver cell types were identified. Pathways overrepresented in these clusters denote the proliferative nature of LPCs and their association with HCC. Our analysis also revealed 26 novel markers, LPC markers, including Mcm2 and Ltbp3, and eight known LPC markers, including M2pk and Ncam. These markers specified the presence of LPCs in pathological liver tissue by qPCR and correlated with LPC abundance determined using immunohistochemistry. These results showcase the value of global transcript profiling to identify pathways and markers that may be used to detect LPCs in injured or diseased liver.

  9. Effect of interleukin-4 on the synthesis of the third component of complement by pulmonary epithelial cells.

    OpenAIRE

    Christian-Ritter, K. K.; Hill, L. D.; Hoie, E. B.; Zach, T. L.

    1994-01-01

    Complement activation in the lung is important in a variety of physiological and pathological conditions. The third component of complement, C3, is the pivotal constituent of the complement cascade. C3 is produced in the lung by several cell types including pulmonary epithelial cells. Because pulmonary epithelial cells and T lymphocytes may interact within the lung to regulate local immune responses, we examined the effect of a T lymphocyte-derived cytokine, interleukin-4 (IL-4) on C3 product...

  10. Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells

    OpenAIRE

    Kemper, Claudia; Cardone, John; Le Friec, Gaelle; Vantourout, Pierre; Roberts, Andrew; Fuchs, Anja; Jackson, Ian; Suddason, Tesha; Lord, Graham; Atkinson, John Petterson; Cope, Andrew; Hayday, Adrian C.

    2010-01-01

    Abstract This study reveals a novel form of immunoregulation: engagement on CD4+ T cells of the complement regulator CD46 promotes TH1 effector potential, but as interleukin-2 (IL-2) accumulates, "switches" cells toward a regulatory phenotype, attenuating IL-2 production via the transcriptional regulator ICER/CREM, and upregulating IL-10 following interaction of the CD46-tail with SPAKinase. Activated CD4+ T cells produce CD46 ligands, and blocking CD46 inhibits IL-10 production. F...

  11. Parallel WGA and WTA for Comparative Genome and Transcriptome NGS Analysis Using Tiny Cell Numbers.

    Science.gov (United States)

    Korfhage, Christian; Fricke, Evelyn; Meier, Andreas

    2015-07-01

    Genomic DNA determines how and when the transcriptome is changed by a trigger or environmental change and how cellular metabolism is influenced. Comparative genome and transcriptome analysis of the same cell sample links a defined genome with all changes in the bases, structure, or numbers of the transcriptome. However, comparative genome and transcriptome analysis using next-generation sequencing (NGS) or real-time PCR is often limited by the small amount of sample available. In mammals, the amount of DNA and RNA in a single cell is ∼10 picograms, but deep analysis of the genome and transcriptome currently requires several hundred nanograms of nucleic acids for library preparation for NGS sequencing. Consequently, accurate whole-genome amplification (WGA) and whole-transcriptome amplification (WTA) is required for such quantitative analysis. This unit describes how the genome and the transcriptome of a tiny number of cells can be amplified in a highly parallel and comparable process. Protocols for quality control of amplified DNA and application of amplified DNA for NGS are included.

  12. Painting factor H onto mesenchymal stem cells protects the cells from complement- and neutrophil-mediated damage.

    Science.gov (United States)

    Li, Yan; Qiu, Wen; Zhang, Lingjun; Fung, John; Lin, Feng

    2016-09-01

    Mesenchymal stem cells (MSCs) are undergoing intensive testing in clinical trials as a promising new therapy for many inflammatory diseases and for regenerative medicine, but further optimization of current MSC-based therapies is required. In this study, we found that in addition to direct complement-mediated attack through the assembly of membrane attack complexes (MACs) that we and others have recently reported, of the released complement activation products, C5a, but not C3a, activates neutrophils in the blood to further damage MSCs through oxidative burst. In addition, we have developed a simple method for painting factor H, a native complement inhibitor, onto MSCs to locally inhibit complement activation on MSCs. MSCs painted with factor H are protected from both MAC- and neutrophil-mediated attack and are significantly more effective in inhibiting antigen-specific T cell responses than the mock-painted MSCs both in vitro and in vivo. PMID:27343468

  13. Alternative pathway of complement activation by stimulated T lymphocytes. II. Elevation of cytotoxic potential against complement receptor-carrying cell lines.

    Science.gov (United States)

    Ramos, O F; Sármay, G; Eggertsen, G; Nilsson, B; Klein, E; Gergely, J

    1987-07-01

    Exposure of lectin-stimulated (concanavalin A, phytohemagglutinin and pokeweed mitogen) blood lymphocytes to human serum or to purified C3 increased their cytotoxic capacity towards complement receptor positive targets such as Raji and Daudi cells. The lysis of complement receptor-negative lymphoblastoid cell lines was not influenced. The lytic capacity of lymphocytes exposed to 12-O-tetradecanoylphorbol 13-acetate was not elevated by human serum. Lectin-stimulated lymphocytes were previously shown to activate and bind C3. The results using lymphocytes activated in different ways and targets with or without complement receptor expression suggest that the C3b deposited on lymphocytes binds to the complement receptor on the targets. This contact elevates the avidity between the two cells as indicated also by the increased frequency of the lymphocyte-target conjugates. On the basis of immune adherence the C3 fragment bound on the lymphocytes was identified as C3b. The increase of the conjugate formation and cytotoxicity was abrogated when the target cells, Raji, were pre-exposed to purified C3d which occupy the CR2 receptor. The majority of lymphocytes responsible for the cytotoxicity were CD8+. PMID:3111863

  14. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.

    Science.gov (United States)

    Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J

    2014-03-01

    Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states.

  15. Revealing fosfomycin primary effect on Staphylococcus aureus transcriptome: modulation of cell envelope biosynthesis and phosphoenolpyruvate induced starvation

    Directory of Open Access Journals (Sweden)

    Gruden Kristina

    2010-06-01

    Full Text Available Abstract Background Staphylococcus aureus is a highly adaptable human pathogen and there is a constant search for effective antibiotics. Fosfomycin is a potent irreversible inhibitor of MurA, an enolpyruvyl transferase that uses phosphoenolpyruvate as substrate. The goal of this study was to identify the pathways and processes primarily affected by fosfomycin at the genome-wide transcriptome level to aid development of new drugs. Results S. aureus ATCC 29213 cells were treated with sub-MIC concentrations of fosfomycin and harvested at 10, 20 and 40 minutes after treatment. S. aureus GeneChip statistical data analysis was complemented by gene set enrichment analysis. A visualization tool for mapping gene expression data into biological pathways was developed in order to identify the metabolic processes affected by fosfomycin. We have shown that the number of significantly differentially expressed genes in treated cultures increased with time and with increasing fosfomycin concentration. The target pathway - peptidoglycan biosynthesis - was upregulated following fosfomycin treatment. Modulation of transport processes, cofactor biosynthesis, energy metabolism and nucleic acid biosynthesis was also observed. Conclusions Several pathways and genes downregulated by fosfomycin have been identified, in contrast to previously described cell wall active antibiotics, and was explained by starvation response induced by phosphoenolpyruvate accumulation. Transcriptomic profiling, in combination with meta-analysis, has been shown to be a valuable tool in determining bacterial response to a specific antibiotic.

  16. Dysregulation of complement system and CD4+ T cell activation pathways implicated in allergic response.

    Directory of Open Access Journals (Sweden)

    Alexessander Couto Alves

    Full Text Available Allergy is a complex disease that is likely to involve dysregulated CD4+ T cell activation. Here we propose a novel methodology to gain insight into how coordinated behaviour emerges between disease-dysregulated pathways in response to pathophysiological stimuli. Using peripheral blood mononuclear cells of allergic rhinitis patients and controls cultured with and without pollen allergens, we integrate CD4+ T cell gene expression from microarray data and genetic markers of allergic sensitisation from GWAS data at the pathway level using enrichment analysis; implicating the complement system in both cellular and systemic response to pollen allergens. We delineate a novel disease network linking T cell activation to the complement system that is significantly enriched for genes exhibiting correlated gene expression and protein-protein interactions, suggesting a tight biological coordination that is dysregulated in the disease state in response to pollen allergen but not to diluent. This novel disease network has high predictive power for the gene and protein expression of the Th2 cytokine profile (IL-4, IL-5, IL-10, IL-13 and of the Th2 master regulator (GATA3, suggesting its involvement in the early stages of CD4+ T cell differentiation. Dissection of the complement system gene expression identifies 7 genes specifically associated with atopic response to pollen, including C1QR1, CFD, CFP, ITGB2, ITGAX and confirms the role of C3AR1 and C5AR1. Two of these genes (ITGB2 and C3AR1 are also implicated in the network linking complement system to T cell activation, which comprises 6 differentially expressed genes. C3AR1 is also significantly associated with allergic sensitisation in GWAS data.

  17. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis.

    Directory of Open Access Journals (Sweden)

    Nancy A Turner

    Full Text Available BACKGROUND: Vascular endothelial cells (ECs express and release protein components of the complement pathways, as well as secreting and anchoring ultra-large von Willebrand factor (ULVWF multimers in long string-like structures that initiate platelet adhesion during hemostasis and thrombosis. The alternative complement pathway (AP is an important non-antibody-requiring host defense system. Thrombotic microangiopathies can be associated with defective regulation of the AP (atypical hemolytic-uremic syndrome or with inadequate cleavage by ADAMTS-13 of ULVWF multimeric strings secreted by/anchored to ECs (thrombotic thrombocytopenic purpura. Our goal was to determine if EC-anchored ULVWF strings caused the assembly and activation of AP components, thereby linking two essential defense mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We quantified gene expression of these complement components in cultured human umbilical vein endothelial cells (HUVECs by real-time PCR: C3 and C5; complement factor (CF B, CFD, CFP, CFH and CFI of the AP; and C4 of the classical and lectin (but not alternative complement pathways. We used fluorescent microscopy, monospecific antibodies against complement components, fluorescent secondary antibodies, and the analysis of >150 images to quantify the attachment of HUVEC-released complement proteins to ULVWF strings secreted by, and anchored to, the HUVECs (under conditions of ADAMTS-13 inhibition. We found that HUVEC-released C4 did not attach to ULVWF strings, ruling out activation of the classical and lectin pathways by the strings. In contrast, C3, FB, FD, FP and C5, FH and FI attached to ULVWF strings in quantitative patterns consistent with assembly of the AP components into active complexes. This was verified when non-functional FB blocked the formation of AP C3 convertase complexes (C3bBb on ULVWF strings. CONCLUSIONS/SIGNIFICANCE: AP components are assembled and activated on EC-secreted/anchored ULVWF multimeric

  18. Complement driven by conformational

    NARCIS (Netherlands)

    Gros, P.; Milder, F.J.; Janssen, B.J.C.

    2008-01-01

    Complement in mammalian plasma recognizes pathogenic, immunogenic and apoptotic cell surfaces, promotes inflammatory responses and marks particles for cell lysis, phagocytosis and B‑cell stimulation. At the heart of the complement system are two large proteins, complement component C3 and protease f

  19. Exploitation of the complement system by oncogenic Kaposi's sarcoma-associated herpesvirus for cell survival and persistent infection.

    Directory of Open Access Journals (Sweden)

    Myung-Shin Lee

    2014-09-01

    Full Text Available During evolution, herpesviruses have developed numerous, and often very ingenious, strategies to counteract efficient host immunity. Specifically, Kaposi's sarcoma-associated herpesvirus (KSHV eludes host immunity by undergoing a dormant stage, called latency wherein it expresses a minimal number of viral proteins to evade host immune activation. Here, we show that during latency, KSHV hijacks the complement pathway to promote cell survival. We detected strong deposition of complement membrane attack complex C5b-9 and the complement component C3 activated product C3b on Kaposi's sarcoma spindle tumor cells, and on human endothelial cells latently infected by KSHV, TIME-KSHV and TIVE-LTC, but not on their respective uninfected control cells, TIME and TIVE. We further showed that complement activation in latently KSHV-infected cells was mediated by the alternative complement pathway through down-regulation of cell surface complement regulatory proteins CD55 and CD59. Interestingly, complement activation caused minimal cell death but promoted the survival of latently KSHV-infected cells grown in medium depleted of growth factors. We found that complement activation increased STAT3 tyrosine phosphorylation (Y705 of KSHV-infected cells, which was required for the enhanced cell survival. Furthermore, overexpression of either CD55 or CD59 in latently KSHV-infected cells was sufficient to inhibit complement activation, prevent STAT3 Y705 phosphorylation and abolish the enhanced survival of cells cultured in growth factor-depleted condition. Together, these results demonstrate a novel mechanism by which an oncogenic virus subverts and exploits the host innate immune system to promote viral persistent infection.

  20. Induced Resistance to Ofatumumab Mediated Cell Clearance Mechanisms, Including Complement Dependent Cytotoxicity, in Chronic Lymphocytic Leukemia

    OpenAIRE

    Baig, Nisar A.; Taylor, Ronald P.; Lindorfer, Margaret A.; Church, Amy K.; LaPlant, Betsy R.; Pettinger, Adam M.; Shanafelt, Tait D.; Nowakowski, Grzegorz S.; Zent, Clive S.

    2014-01-01

    Ofatumumab (OFA), a human CD20 targeting mAb, kills B-lymphocytes utilizing the innate immune system including complement dependent cytotoxicity (CDC). The efficacy of OFA in patients with chronic lymphocytic leukemia (CLL) is limited by drug resistance, which is not well characterized. To better understand mechanisms of resistance, we prospectively studied CLL cells isolated from blood samples collected before and after in vivo exposure to the initial dose of OFA therapy in 25 patients under...

  1. The Embryotrophic Activity of Oviductal Cell-derived Complement C3b and iC3b, a Novel Function of Complement Protein in Reproduction

    OpenAIRE

    Lee, YL; Lee, KF; Lee, WM; Luk, JM; Yeung, WSB; Xu, JS; He, QY; Chiu, JF

    2004-01-01

    The oviduct-derived embryotrophic factor, ETF-3, enhances the development of trophectoderm and the hatching process of treated embryos. Monoclonal anti-ETF-3 antibody that abolishes the embryotrophic activity of ETF-3 recognized a 115-kDa protein from the conditioned medium of immortalized human oviductal cells. Mass spectrometry analysis showed that the protein was complement C3. Western blot analysis using an antibody against C3 confirmed the cross-reactivities between anti-C3 antibody with...

  2. Cellular characterization of cells from the Fanconi anemia complementation group, FA-D1/BRCA2

    Energy Technology Data Exchange (ETDEWEB)

    Godthelp, Barbara C. [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands); Buul, Paul P.W. van [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands); Jaspers, Nicolaas G.J. [Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000 DR Rotterdam (Netherlands); Elghalbzouri-Maghrani, Elhaam [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands); Duijn-Goedhart, Annemarie van [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands); Arwert, Fre [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Amsterdam (Netherlands); Joenje, Hans [Department of Clinical Genetics and Human Genetics, Free University Medical Center, Amsterdam (Netherlands); Zdzienicka, Malgorzata Z. [Department of Toxicogenetics, Leiden University Medical Center, Building 2, Postzone S-6-P, P.O. Box 9600, 2300 RC, Leiden (Netherlands) and Department of Molecular Cell Genetics, Collegium Medicum, N.Copernicus University, Bydgoszcz (Poland)]. E-mail: M.Z.Zdzienicka@LUMC.nl

    2006-10-10

    Fanconi anemia (FA) is an inherited cancer-susceptibility disorder, characterized by genomic instability and hypersensitivity to DNA cross-linking agents. The discovery of biallelic BRCA2 mutations in the FA-D1 complementation group allows for the first time to study the characteristics of primary BRCA2-deficient human cells. FANCD1/BRCA2-deficient fibroblasts appeared hypersensitive to mitomycin C (MMC), slightly sensitive to methyl methane sulfonate (MMS), and like cells derived from other FA complementation groups, not sensitive to X-ray irradiation. However, unlike other FA cells, FA-D1 cells were slightly sensitive to UV irradiation. Despite the observed lack of X-ray sensitivity in cell survival, significant radioresistant DNA synthesis (RDS) was observed in the BRCA2-deficient fibroblasts but also in the FANCA-deficient fibroblasts, suggesting an impaired S-phase checkpoint. FA-D1/BRCA2 cells displayed greatly enhanced levels of spontaneous as well as MMC-induced chromosomal aberrations (Canada), similar to cells deficient in homologous recombination (HR) and non-D1 FA cells. In contrast to Brca2-deficient rodent cells, FA-D1/BRCA2 cells showed normal sister chromatid exchange (SCE) levels, both spontaneous as well as after MMC treatment. Hence, these data indicate that human cells with biallelic BRCA2 mutations display typical features of both FA- and HR-deficient cells, which suggests that FANCD1/BRCA2 is part of the integrated FA/BRCA DNA damage response pathway but also controls other functions outside the FA pathway.

  3. SPONGIOTIC DERMATITIS WITH A MIXED INFLAMMATORY INFILTRATE OF LYMPHOCYTES, ANTIGEN PRESENTING CELLS, IMMUNOGLOBULINS AND COMPLEMENT

    Directory of Open Access Journals (Sweden)

    Abreu Velez Ana Maria

    2011-04-01

    Full Text Available Background: The clinical and histological presentation of spongiotic dermatitis and its inflammatory infiltrates warrant further investigation. In this case documentation of a patient with cutaneous spongiotic reactivity, we aim to characterize antigen presenting cells, as well as the skin-specific cutaneous lymphocyte antigen population by multiple techniques. Case report: A 30 year old Caucasian female presented with a two week history of blistering and erosions around the vaginal, rectal and axillary areas. Material and Methods: We utilized hematoxylin and eosin histology, direct immunofluorescence, immunohistochemistry and confocal microscopy methods to evaluate the immune reaction patterns of the cutaneous inflammatory cells. Results: In the primary histologic areas of spongiotic dermatitis, a mixed population of B and T lymphocytes was seen. Ki-67 antigen proliferative index staining was accentuated in these areas, correlating with the presence of large numbers of epidermal and dermal antigen presenting cells. Among the antigen presenting cell population, we detected strong positivities with CD1a, Factor XIIIa, myeloid/hystoid antigen, S100, HAM-56, and CD68. Interestingly, immunoglobulins G, D and M and Complement factors C1q and C3 were also strongly expressed in antigen presenting cell areas, including positivity within the spongiotic epidermis and around dermal vessels. Conclusions: We document a heterogeneous population of B and T lymphocytes and the presence of multiple classes of antigen presenting cells, immunoglobulins and complement in and surrounding histologically spongiotic areas; these findings further correlated with increased levels of expression of Ki-67.

  4. Intracellular Complement Activation Sustains T Cell Homeostasis and Mediates Effector Differentiation

    OpenAIRE

    Liszewski, M. Kathryn; Kolev, Martin; Le Friec, Gaelle; Leung, Marilyn; Bertram, Paula G.; Fara, Antonella F.; Subias, Marta; Pickering, Matthew C.; Drouet, Christian; Meri, Seppo; Arstila, T. Petteri; Pekkarinen, Pirkka T.; Ma, Margaret; Cope, Andrew; Reinheckel, Thomas

    2013-01-01

    Summary Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generate...

  5. Bimolecular Fluorescence Complementation to Assay the Interactions of Ubiquitylation Enzymes in Living Yeast Cells.

    Science.gov (United States)

    Blaszczak, Ewa; Prigent, Claude; Rabut, Gwenaël

    2016-01-01

    Ubiquitylation is a versatile posttranslational protein modification catalyzed through the concerted action of ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s). These enzymes form transient complexes with each other and their modification substrates and determine the nature of the ubiquitin signals attached to their substrates. One challenge in the field of protein ubiquitylation is thus to identify the E2-E3 pairs that function in the cell. In this chapter, we describe the use of bimolecular fluorescence complementation to assay E2-E3 interactions in living cells, using budding yeast as a model organism. PMID:27613039

  6. Complementation of a methotrexate uptake defect in Chinese hamster ovary cells by DNA-mediated gene transfer.

    OpenAIRE

    Underhill, T M; Flintoff, W F

    1989-01-01

    A methotrexate-resistant Chinese hamster ovary cell line deficient in methotrexate uptake has been complemented to methotrexate sensitivity by transfection with DNA isolated from either wild-type Chinese hamster ovary or human G2 cells. Primary and secondary transfectants regained the ability to take up methotrexate in a manner similar to that of wild-type cells, and in the case of those transfected with human DNA, to contain human-specific DNA sequences. The complementation by DNA-mediated g...

  7. Draft De Novo Transcriptome of the Rat Kangaroo Potorous tridactylus as a Tool for Cell Biology.

    Science.gov (United States)

    Udy, Dylan B; Voorhies, Mark; Chan, Patricia P; Lowe, Todd M; Dumont, Sophie

    2015-01-01

    The rat kangaroo (long-nosed potoroo, Potorous tridactylus) is a marsupial native to Australia. Cultured rat kangaroo kidney epithelial cells (PtK) are commonly used to study cell biological processes. These mammalian cells are large, adherent, and flat, and contain large and few chromosomes-and are thus ideal for imaging intra-cellular dynamics such as those of mitosis. Despite this, neither the rat kangaroo genome nor transcriptome have been sequenced, creating a challenge for probing the molecular basis of these cellular dynamics. Here, we present the sequencing, assembly and annotation of the draft rat kangaroo de novo transcriptome. We sequenced 679 million reads that mapped to 347,323 Trinity transcripts and 20,079 Unigenes. We present statistics emerging from transcriptome-wide analyses, and analyses suggesting that the transcriptome covers full-length sequences of most genes, many with multiple isoforms. We also validate our findings with a proof-of-concept gene knockdown experiment. We expect that this high quality transcriptome will make rat kangaroo cells a more tractable system for linking molecular-scale function and cellular-scale dynamics.

  8. Complement proteins C7 and CFH control the stemness of liver cancer cells via LSF-1.

    Science.gov (United States)

    Seol, Hyang Sook; Lee, Sang Eun; Song, Joon Seon; Rhee, Je-Keun; Singh, Shree Ram; Chang, Suhwan; Jang, Se Jin

    2016-03-01

    Tumor-initiating cells are important for the formation and maintenance of tumor bulks in various tumors. To identify surface markers of liver tumor-initiating cells, we performed primary tumorsphere culture and analyzed the expression of cluster of differentiation (CD) antigen genes using NanoString. Interestingly, we found significant upregulation of the complement proteins (p = 1.60 × 10(-18)), including C7 and CFH. Further studies revealed that C7 and CFH are required to maintain stemness in liver cancer cells. Knockdown of C7 and CFH expression abrogated tumorsphere formation and induced differentiation, whereas overexpression stimulated stemness factor expression as well as in vivo cell growth. Mechanistically, by studying C7 and CFH-dependent LSF-1 expression and its direct role on stemness factor transcription, we found that LSF-1 is involved in this regulation. Taken together, our data demonstrate the unprecedented role of complement proteins on the maintenance of stemness in liver tumor-initiating cells.

  9. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells.

    Science.gov (United States)

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary; Zhu, Hongwen; Zhang, Jun; Liu, Jie; Liu, Hailiang; deVellis, Jean; Horvath, Steve; Sun, Yi Eve; Li, Siguang

    2015-05-21

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation. PMID:26000486

  10. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance

    DEFF Research Database (Denmark)

    Fort, Alexandre; Hashimoto, Kosuke; Yamada, Daisuke;

    2014-01-01

    on nuclear and retrotransposon-derived transcripts. We have performed deep profiling of the nuclear and cytoplasmic transcriptomes of human and mouse stem cells, identifying a class of previously undetected stem cell-specific transcripts. We show that long terminal repeat (LTR)-derived transcripts contribute...

  11. Competence Classification of Cumulus and Granulosa Cell Transcriptome in Embryos Matched by Morphology and Female Age

    DEFF Research Database (Denmark)

    Borup, Rehannah; Thuesen, Lea Langhoff; Andersen, Claus Yding;

    2016-01-01

    OBJECTIVE: By focussing on differences in the mural granulosa cell (MGC) and cumulus cell (CC) transcriptomes from follicles resulting in competent (live birth) and non-competent (no pregnancy) oocytes the study aims on defining a competence classifier expression profile in the two cellular...

  12. The complement inhibitor FUT-175 suppresses T cell autoreactivity in experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Li, Qing; Nacion, Kristine; Bu, Hong; Lin, Feng

    2009-08-01

    Several recent studies have shown that interacting antigen presenting cells and/or T cells produced complement activation products C5a and C3a, are integrally involved in T-cell activation, and promote the generation of myelin oligodendrocyte glycoprotein (MOG(35-55))-specific interferon-gamma and interleukin-17-producing T cells in experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis. In this study, we tested whether FUT-175, a clinical pharmaceutical that has been shown to inhibit the formation of C3/C5 convertases, can attenuate myelin-specific T-cell responses, as well as disease severity in experimental autoimmune encephalomyelitis. In vitro, FUT-175 inhibited local C5a/C3a production by antigen presenting cell-T-cell complexes and attenuated MOG(35-55)-specific Th1 and Th17 responses with little nonspecific cytotoxicity. In vivo administration of FUT-175 delayed experimental autoimmune encephalomyelitis disease onset, lowered clinical scores, decreased central nervous system inflammation, and reduced demyelination. The FUT-175-treated mice exhibited decreased numbers of MOG(35-55)-specific interferon-gamma- and interleukin-17-producing T cells. In addition, results from the FUT-175 treatment of naive recipients of adoptively transferred splenocytes from MOG(35-55)-immunized mice suggested that the effect of FUT-175 was on MOG-specific cellular responses and not on anti-MOG antibodies. These results argue that complement regulators, which inhibit C5a/C3a production, may have therapeutic efficacy in multiple sclerosis and in other clinical conditions in which T cells drive disease pathogenesis. PMID:19608865

  13. Reciprocal complementation of the tumoricidal effects of radiation and natural killer cells.

    Directory of Open Access Journals (Sweden)

    Kai-Lin Yang

    Full Text Available The tumor microenvironment is a key determinant for radio-responsiveness. Immune cells play an important role in shaping tumor microenvironments; however, there is limited understanding of how natural killer (NK cells can enhance radiation effects. This study aimed to assess the mechanism of reciprocal complementation of radiation and NK cells on tumor killing. Various tumor cell lines were co-cultured with human primary NK cells or NK cell line (NK-92 for short periods and then exposed to irradiation. Cell proliferation, apoptosis and transwell assays were performed to assess apoptotic efficacy and cell viability. Western blot analysis and immunoprecipitation methods were used to determine XIAP (X-linked inhibitor of apoptosis protein and Smac (second mitochondria-derived activator of caspase expression and interaction in tumor cells. Co-culture did not induce apoptosis in tumor cells, but a time- and dose-dependent enhancing effect was found when co-cultured cells were irradiated. A key role for caspase activation via perforin/granzyme B (Grz B after cell-cell contact was determined, as the primary radiation enhancing effect. The efficacy of NK cell killing was attenuated by upregulation of XIAP to bind caspase-3 in tumor cells to escape apoptosis. Knockdown of XIAP effectively potentiated NK cell-mediated apoptosis. Radiation induced Smac released from mitochondria and neutralized XIAP and therefore increased the NK killing. Our findings suggest NK cells in tumor microenvironment have direct radiosensitization effect through Grz B injection while radiation enhances NK cytotoxicity through triggering Smac release.

  14. Complement Test

    Science.gov (United States)

    ... activity) of complement proteins in the blood. Complement components may be measured individually or together to determine whether the system is functioning normally. C3 and C4 are the most frequently measured complement ...

  15. Functional analysis of membrane-bound complement regulatory protein on T-cell immune response in ginbuna crucian carp.

    Science.gov (United States)

    Nur, Indriyani; Abdelkhalek, Nevien K; Motobe, Shiori; Nakamura, Ryota; Tsujikura, Masakazu; Somamoto, Tomonori; Nakao, Miki

    2016-02-01

    Complements have long been considered to be a pivotal component in innate immunity. Recent researches, however, highlight novel roles of complements in T-cell-mediated adaptive immunity. Membrane-bound complement regulatory protein CD46, a costimulatory protein for T cells, is a key molecule for T-cell immunomodulation. Teleost CD46-like molecule, termed Tecrem, has been newly identified in common carp and shown to function as a complement regulator. However, it remains unclear whether Tecrem is involved in T-cell immune response. We investigated Tecrem function related to T-cell responses in ginbuna crucian carp. Ginbuna Tecrem (gTecrem) proteins were detected by immunoprecipitation using anti-common carp Tecrem monoclonal antibody (mAb) and were ubiquitously expressed on blood cells including CD8α(+) and CD4(+) lymphocytes. gTecrem expression on leucocyte surface was enhanced after stimulation with the T-cell mitogen, phytohaemagglutinin (PHA). Coculture with the anti-Tecrem mAb significantly inhibited the proliferative activity of PHA-stimulated peripheral blood lymphocytes, suggesting that cross-linking of Tecrems on T-cells interferes with a signal transduction pathway for T-cell activation. These findings indicate that Tecrem may act as a T-cell moderator and imply that the complement system in teleost, as well as mammals, plays an important role for linking adaptive and innate immunity.

  16. Complement receptor type 2 mediates infection of the human CD4-negative Raji B-cell line with opsonized HIV.

    Science.gov (United States)

    Boyer, V; Delibrias, C; Noraz, N; Fischer, E; Kazatchkine, M D; Desgranges, C

    1992-12-01

    Opsonization of the HTLV-RF and HTLV-IIIB strains of HIV-1 with normal human HIV seronegative serum under conditions that allow complement activation resulted in the productive infection of cells of the Raji B lymphoblastoid cell line. Under the same experimental conditions, no infection of Raji cells was observed with unopsonized virus. Infection of Raji cells with complement-opsonized HIV-1 was totally suppressed by preblocking the function of CR2 (the C3dg receptor, CD21) on the cells with a monoclonal anti-CR2 antibody cross-linked with rabbit F(ab')2 anti-mouse immunoglobulin antibodies. Infection of Raji cells occurred independently of CD4 since the cells lacked the expression of CD4 antigen and of CD4 transcripts. Thus, Raji cells may be infected with complement-opsonized HIV independently of CD4 and in the absence of antibodies. By mediating and/or enhancing HIV infection, complement and complement receptors contribute to extend the range of target cells to the virus and may increase infection in patients with a low viral load. PMID:1281336

  17. Novel function of complement C3d as an autologous helper T-cell target.

    Science.gov (United States)

    Knopf, Paul M; Rivera, Daniel S; Hai, Si-Han; McMurry, Julie; Martin, William; De Groot, Anne S

    2008-01-01

    The C3d fragment of complement component C3 has been shown to enhance immune responses to antigens that lack T-cell epitopes such as bacterial polysaccharides. C3d binds to the B-cell complement receptor 2 (CR2 or CD21); this binding serves as a co-activation signal to the B cell when the polysaccharide antigen portion binds simultaneously to the B-cell receptor (surface Ig). Bringing together receptor-associated signal transduction molecules CD19 and Igalpha/beta, respectively, results in a lower threshold of activation. Paradoxically, C3d has also been shown to enhance antibody titers in the CD21 knockout (KO) mouse model as well as increase Th1 and Th2 cytokine secretion, suggesting that that an auxiliary CR2-independent pathway of immune activation may exist. We hypothesized that in addition to its molecular adjuvant property that enhances signal 1 during B-cell activation (co-signal 1), C3d also contains T-cell epitopes that are able to stimulate autoreactive C3d peptide-specific helper T cells which we term 'co-signal 2'. Using the EpiMatrix T-cell epitope-mapping algorithm, we identified 11 putative T-cell epitopes in C3d, a very high epitope density for a 302 amino-acid sequence. Eight of these epitope candidates were synthesized and shown to bind a variety of class II HLA-DR molecules of different haplotypes, and to stimulate C3d peptide-specific T cells to secrete pro-inflammatory cytokines in vitro. Further, we demonstrate a C3d-peptide specific increase in CD4(+) intracellular IFN-gamma(+) T cells in peripheral blood mononuclear cells (PBMCs) exposed to C3d peptides in vitro. We believe that the discovery of these autologous T cells autoreactive for C3d provides evidence supporting the 'co-signal 2' hypothesis and may offer a novel explanation of the CD21 KO paradox. PMID:18180801

  18. Comparison of American mink embryonic stem and induced pluripotent stem cell transcriptomes

    DEFF Research Database (Denmark)

    Menzorov, Aleksei G; Matveeva, Natalia M.; Markakis, Marios Nektarios;

    2015-01-01

    BACKGROUND: Recently fibroblasts of many mammalian species have been reprogrammed to pluripotent state using overexpression of several transcription factors. This technology allows production of induced pluripotent stem (iPS) cells with properties similar to embryonic stem (ES) cells....... The completeness of reprogramming process is well studied in such species as mouse and human but there is not enough data on other species. We produced American mink (Neovison vison) ES and iPS cells and compared these cells using transcriptome analysis. RESULTS: We report the generation of 10 mink ES and 22 i...... with cell types representing all three germ layers. Transcriptome analysis of mink embryonic fibroblasts (EF), two ES and two iPS cell lines allowed us to identify 11831 assembled contigs which were annotated. These led to a number of 6891 unique genes. Of these 3201 were differentially expressed between...

  19. Cell-specific transcriptomic analyses of three-dimensional shoot development in the moss Physcomitrella patens.

    Science.gov (United States)

    Frank, Margaret H; Scanlon, Michael J

    2015-08-01

    Haploid moss gametophytes harbor distinct stem cell types, including tip cells that divide in single planes to generate filamentous protonemata, and bud cells that divide in three planes to yield axial gametophore shoots. This transition from filamentous to triplanar growth occurs progressively during the moss life cycle, and is thought to mirror evolution of the first terrestrial plants from Charophycean green algal ancestors. The innovation of morphologically complex plant body plans facilitated colonization of the vertical landscape, and enabled development of complex vegetative and reproductive plant morphologies. Despite its profound evolutionary significance, the molecular programs involved in this transition from filamentous to triplanar meristematic plant growth are poorly understood. In this study, we used single-cell type transcriptomics to identify more than 4000 differentially expressed genes that distinguish uniplanar protonematal tip cells from multiplanar gametophore bud cells in the moss Physcomitrella patens. While the transcriptomes of both tip and bud cells show molecular signatures of proliferative cells, the bud cell transcriptome exhibits a wider variety of genes with significantly increased transcript abundances. Our data suggest that combined expression of genes involved in shoot patterning and asymmetric cell division accompanies the transition from uniplanar to triplanar meristematic growth in moss.

  20. Transcriptomic microarray analysis of BoMac cells after infection with bovine foamy virus

    NARCIS (Netherlands)

    Rola-Luszczak, M.; Materniak, M.; Pluta, A.; Hulst, M.M.; Kuz'mak, J.

    2014-01-01

    Bovine foamy virus (BFV) infections are highly prevalent among cattle worldwide. However, relatively little is known about the impact of this virus on the host immune system. In our study, we focused on a bovine macrophage cell line (BoMac) and examined changes in the BoMac transcriptome after in vi

  1. Modulation of human B cell immunoglobulin secretion by the C3b component of complement.

    Science.gov (United States)

    Tsokos, G C; Berger, M; Balow, J E

    1984-02-01

    The human C3b component of complement was found to inhibit the differentiation of human B lymphocytes into immunoglobulin-secreting cells in vitro. Pokeweed mitogen (PWM)-induced plaque-forming cell (PFC) responses were inhibited by C3-coated zymosan particles and by purified human C3b. C3b inhibited the PWM-driven responses in a dose-dependent fashion, and it was necessary for C3b to be present in the early phases of the cultures. C3b acted directly on B cells rather than on helper T cells because it inhibited the PFC responses of MNC depleted of T cells and subsequently stimulated with a T cell-independent Epstein Barr virus mitogen. Furthermore, C3b failed to stimulate the generation of suppressor lymphocytes and/or monocytes that might have been responsible for the inhibition of B cell responses. Our results indicate that C3b or its fragments exert negative modulatory effects on human B lymphocyte responses. PMID:6228593

  2. Selective lysis of early embryonic cells by the alternative pathway of complement--a possible mechanism for programmed cell death in embryogenesis.

    Science.gov (United States)

    Kircheis, R; Kircheis, L; Oshima, H; Kohchi, C; Soma, G; Mizuno, D

    1996-01-01

    Early embryonic cells and early mouse embryos were shown to activate the alternative pathway of complement, and to be highly sensitive to complement-mediated cytolysis (Kircheis et al, In Vivo 9: 85-98, 1995). Under further development embryonic cells become resistant. The induction of resistance to the alternative pathway of complement correlates with: a) altered splicing of Cr2-transcript and b) changes in the acidic glycolipids under differentiation. Early embryonic cells have low amounts of sialic acid-containing glycolipids or express mainly GM3. The induction of differentiation changes the glycolipid pattern leading to an increase in membrane-bound sialic acid. The importance of membrane-bound sialic acid in the restriction of complement activation is demonstrated by increased sensitivity to complement after pre-treatment of cells with neuraminidase. The results indicate that there is target-specific lysis of early embryonic cells by the alternative pathway of complement. Early embryonic cells activate the alternative pathway of complement by expressing activators and low levels of membrane-bound sialic acid. Induction of differentiation changes the glycolipid pattern, leading to an increase in membrane-bound sialic acid sufficient to restrict complement-activation on the cell surface. PMID:8839785

  3. Repair of ultraviolet radiation damage in xeroderma pigmentosum cells belonging to complementation group F

    International Nuclear Information System (INIS)

    DNA-repair characteristics of xeroderma pigmentosum belonging to complementation group F were investigated. The cells exhibited an intermediate level of repair as measured in terms of (1) disappearance of T4 endonuclease-V-susceptible sites from DNA, (2) formation of ultraviolet-induced strand breaks in DNA, and (3) ultraviolet-induced unscheduled DNA synthesis during post-irradiation incubation. The impaired ability of XP3YO to perform unscheduled DNA synthesis was restored, to half the normal level, by the concomitant treatment with T4 endonuclease V and ultraviolet-inactivated Sendai virus. It is suggested that xeroderma pigmentosum cells of group F may be defective, at least in part, in the incision step of excision repair. (orig.)

  4. Sundanese Complementation

    Science.gov (United States)

    Kurniawan, Eri

    2013-01-01

    The focus of this thesis is the description and analysis of clausal complementation in Sundanese, an Austronesian language spoken in Indonesia. The thesis examined a range of clausal complement types in Sundanese, which consists of (i) "yen/(wi)rehna" "that" complements, (ii) "pikeun" "for" complements,…

  5. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection.

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2016-04-01

    Full Text Available Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and

  6. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM deficient blastocysts.

    Directory of Open Access Journals (Sweden)

    Duancheng Wen

    Full Text Available Tetraploid complementation is often used to produce mice from embryonic stem cells (ESCs by injection of diploid (2n ESCs into tetraploid (4n blastocysts (ESC-derived mice. This method has also been adapted to mouse cloning and the derivation of mice from induced pluripotent stem (iPS cells. However, the underlying mechanism(s of the tetraploid complementation remains largely unclear. Whether this approach can give rise to completely ES cell-derived mice is an open question, and has not yet been unambiguously proven. Here, we show that mouse tetraploid blastocysts can be classified into two groups, according to the presence or absence of an inner cell mass (ICM. We designate these as type a (presence of ICM at blastocyst stage or type b (absence of ICM. ESC lines were readily derived from type a blastocysts, suggesting that these embryos retain a pluripotent epiblast compartment; whereas the type b blastocysts possessed very low potential to give rise to ESC lines, suggesting that they had lost the pluripotent epiblast. When the type a blastocysts were used for tetraploid complementation, some of the resulting mice were found to be 2n/4n chimeric; whereas when type b blastocysts were used as hosts, the resulting mice are all completely ES cell-derived, with the newborn pups displaying a high frequency of abdominal hernias. Our results demonstrate that completely ES cell-derived mice can be produced using ICM-deficient 4n blastocysts, and provide evidence that the exclusion of tetraploid cells from the fetus in 2n/4n chimeras can largely be attributed to the formation of ICM-deficient blastocysts.

  7. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM) deficient blastocysts.

    Science.gov (United States)

    Wen, Duancheng; Saiz, Nestor; Rosenwaks, Zev; Hadjantonakis, Anna-Katerina; Rafii, Shahin

    2014-01-01

    Tetraploid complementation is often used to produce mice from embryonic stem cells (ESCs) by injection of diploid (2n) ESCs into tetraploid (4n) blastocysts (ESC-derived mice). This method has also been adapted to mouse cloning and the derivation of mice from induced pluripotent stem (iPS) cells. However, the underlying mechanism(s) of the tetraploid complementation remains largely unclear. Whether this approach can give rise to completely ES cell-derived mice is an open question, and has not yet been unambiguously proven. Here, we show that mouse tetraploid blastocysts can be classified into two groups, according to the presence or absence of an inner cell mass (ICM). We designate these as type a (presence of ICM at blastocyst stage) or type b (absence of ICM). ESC lines were readily derived from type a blastocysts, suggesting that these embryos retain a pluripotent epiblast compartment; whereas the type b blastocysts possessed very low potential to give rise to ESC lines, suggesting that they had lost the pluripotent epiblast. When the type a blastocysts were used for tetraploid complementation, some of the resulting mice were found to be 2n/4n chimeric; whereas when type b blastocysts were used as hosts, the resulting mice are all completely ES cell-derived, with the newborn pups displaying a high frequency of abdominal hernias. Our results demonstrate that completely ES cell-derived mice can be produced using ICM-deficient 4n blastocysts, and provide evidence that the exclusion of tetraploid cells from the fetus in 2n/4n chimeras can largely be attributed to the formation of ICM-deficient blastocysts.

  8. Complement bound to tumor target cells enhances their sensitivity to macrophage-mediated killing

    Energy Technology Data Exchange (ETDEWEB)

    Bara, S.; Lint, T.F.

    1986-03-05

    Tumor cells are known to be susceptible to destruction by a variety of immune effector mechanisms including complement (C) and activated macrophages (M theta). The authors have chosen to study the interaction of these two effector systems by examining the effects of bound mouse C on the antibody-independent M theta-mediated lysis of the P815 mouse mastocytoma cell line. Hemolytically active normal mouse serum (NMS) was used to deposit C on tumor targets by an alternative pathway mechanism in the absence of added antibody. C3 was quantitated on the P815 cells by a cellular enzyme-linked immunosorbant assay. C. parvum-activated macrophages produced tumor cytolysis which was measured in a serum-free 16 hour /sup 51/Cr-release assay. Target cells which had been incubated with NMS for 30 min at 37/sup 0/C demonstrated a 30% increase in specific /sup 51/Cr-release at a 1:1 effector to target (E:T) ratio, as compared to targets incubated with heat-inactivated (56/sup 0/C, 30 min) NMS. The treatment of target cells with NMS alone did not cause lysis. At higher E:T ratios specific /sup 51/Cr-release approached a maximum level which was not increased further by C treatment of the target cells. However, at low E:T ratios, NMS increased the specific /sup 51/Cr-release in a dose-dependent fashion; this increase was abrogated by 10 mM EDTA. The kinetics of lysis of C-treated P815 cells by activated M theta does not differ from that of control P815 cells. These results indicate that target-bound C may enhance M theta-mediated killing of tumor cells.

  9. Investigating evolutionary perspective of carcinogenesis with single-cell transcriptome analysis

    Institute of Scientific and Technical Information of China (English)

    Xi Zhang; Cheng Zhang; Zhongjun Li; Jiangjian Zhong; Leslie P. Weiner; Jiang F. Zhong

    2013-01-01

    We developed phase-switch microfluidic devices for molecular profiling of a large number of single cells. Whole genome microarrays and RNA-sequencing are commonly used to determine the expression levels of genes in cell lysates (a physical mix of millions of cells) for inferring gene functions. However, cellular heterogeneity becomes an inherent noise in the measurement of gene expression. The unique molecular characteristics of individual cells, as well as the temporal and quantitative information of gene expression in cells, are lost when averaged among all cells in cell lysates. Our single-cell technology overcomes this limitation and enables us to obtain a large number of single-cell transcriptomes from a population of cells. A collection of single-cell molecular profiles allows us to study carcinogenesis from an evolutionary perspective by treating cancer as a diverse population of cells with abnormal molecular characteristics. Because a cancer cellpopulation contains cells at various stages of development toward drug resistance, clustering similar single-cell molecular profiles could reveal how drug-resistant sub-clones evolve during cancer treatment. Here, we discuss how single-celltranscriptome analysis technology could enable the study of carcinogenesis from an evolutionary perspective and the development of drug-resistance in leukemia. The single-cell transcriptome analysis reported here could have a direct and significant impact on current cancer treatments and future personalized cancer therapies.

  10. Rapid alternative to the clonogenic assay for measuring antibody and complement-mediated killing of tumor cells

    International Nuclear Information System (INIS)

    A study of the methods used to quantitate killing of tumor cells by antibody and complement has highlighted a number of problems. Using leukemia as a model, the authors have found that the release of 51Cr from labeled tumor cells treated with antibody and complement can be an equivocal measure of cell viability. Combined with its restricted sensitivity (less than a 2 log range of cell killing) this makes this widely used assay of questionable value for detecting small numbers of viable cells, or for identifying subpopulations of complement-resistant cells. As an alternative a [125I]iododeoxyuridine uptake assay has been developed, that combines the simplicity and rapidity of the 51Cr release technique with the sensitivity of a clonogenic assay. This method eliminates the problem of spontaneous isotope release, inherent in prelabeling assays, and variability from experiment to experiment can be avoided by including a viable cell standard curve within each assay. The sensitivity of the 125IUdR uptake method, which can be completed within a day, is similar to that of a 10 day methylcellulose cloning assay and was capable of detecting the presence of a minor subpopulation of complement-resistant tumor cells

  11. Arthropathic group A streptococcal cell walls require specific antibody for activation of human complement by both the classical and alternative pathways.

    OpenAIRE

    Eisenberg, R A; Schwab, J. H.

    1986-01-01

    The induction of acute arthritis in rats by a single intraperitoneal injection of group A streptococcal cell wall is associated with the activation of complement. We have therefore investigated the interaction of arthropathic peptidoglycan-polysaccharide complex of streptococcal cell walls and human complement. The incubation of cell wall in normal human serum results in the formation of complexes of cell wall and the C3 and C4 components of complement. Using agammaglobulinemic serum, we have...

  12. Entry of Francisella tularensis into Murine B Cells: The Role of B Cell Receptors and Complement Receptors.

    Directory of Open Access Journals (Sweden)

    Lenka Plzakova

    Full Text Available Francisella tularensis, the etiological agent of tularemia, is an intracellular pathogen that dominantly infects and proliferates inside phagocytic cells but can be seen also in non-phagocytic cells, including B cells. Although protective immunity is known to be almost exclusively associated with the type 1 pathway of cellular immunity, a significant role of B cells in immune responses already has been demonstrated. Whether their role is associated with antibody-dependent or antibody-independent B cell functions is not yet fully understood. The character of early events during B cell-pathogen interaction may determine the type of B cell response regulating the induction of adaptive immunity. We used fluorescence microscopy and flow cytometry to identify the basic requirements for the entry of F. tularensis into B cells within in vivo and in vitro infection models. Here, we present data showing that Francisella tularensis subsp. holarctica strain LVS significantly infects individual subsets of murine peritoneal B cells early after infection. Depending on a given B cell subset, uptake of Francisella into B cells is mediated by B cell receptors (BCRs with or without complement receptor CR1/2. However, F. tularensis strain FSC200 ΔiglC and ΔftdsbA deletion mutants are defective in the ability to enter B cells. Once internalized into B cells, F. tularensis LVS intracellular trafficking occurs along the endosomal pathway, albeit without significant multiplication. The results strongly suggest that BCRs alone within the B-1a subset can ensure the internalization process while the BCRs on B-1b and B-2 cells need co-signaling from the co receptor containing CR1/2 to initiate F. tularensis engulfment. In this case, fluidity of the surface cell membrane is a prerequisite for the bacteria's internalization. The results substantially underline the functional heterogeneity of B cell subsets in relation to F. tularensis.

  13. Transcriptomic Analysis of Persistent Infection with Foot-and-Mouth Disease Virus in Cattle Suggests Impairment of Apoptosis and Cell-Mediated Immunity in the Nasopharynx.

    Science.gov (United States)

    Eschbaumer, Michael; Stenfeldt, Carolina; Smoliga, George R; Pacheco, Juan M; Rodriguez, Luis L; Li, Robert W; Zhu, James; Arzt, Jonathan

    2016-01-01

    In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV) infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vaccine, 10 non-vaccinated) were challenged with FMDV A24 Cruzeiro, and the gene expression profiles of nasopharyngeal tissues collected between 21 and 35 days after challenge were compared between 11 persistently infected carriers and 7 non-carriers. Carriers and non-carriers were further compared to 2 naïve animals that had been neither vaccinated nor challenged. At a controlled false-discovery rate of 10% and a minimum difference in expression of 50%, 648 genes were differentially expressed between FMDV carriers and non-carriers, and most (467) had higher expression in carriers. Among these, genes associated with cellular proliferation and the immune response-such as chemokines, cytokines and genes regulating T and B cells-were significantly overrepresented. Differential gene expression was significantly correlated between non-vaccinated and vaccinated animals (biological correlation +0.97), indicating a similar transcriptome profile across these groups. Genes related to prostaglandin E2 production and the induction of regulatory T cells were overexpressed in carriers. In contrast, tissues from non-carrier animals expressed higher levels of complement regulators and pro-apoptotic genes that could promote virus clearance. Based on these findings, we propose a working hypothesis for FMDV persistence in nasopharyngeal tissues of cattle, in which the virus may be maintained by an impairment of apoptosis and the local suppression of cell-mediated antiviral immunity by inducible regulatory T cells. PMID:27643611

  14. Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors.

    Science.gov (United States)

    Mitra, A K; Mukherjee, U K; Harding, T; Jang, J S; Stessman, H; Li, Y; Abyzov, A; Jen, J; Kumar, S; Rajkumar, V; Van Ness, B

    2016-05-01

    Multiple myeloma (MM) is characterized by significant genetic diversity at subclonal levels that have a defining role in the heterogeneity of tumor progression, clinical aggressiveness and drug sensitivity. Although genome profiling studies have demonstrated heterogeneity in subclonal architecture that may ultimately lead to relapse, a gene expression-based prediction program that can identify, distinguish and quantify drug response in sub-populations within a bulk population of myeloma cells is lacking. In this study, we performed targeted transcriptome analysis on 528 pre-treatment single cells from 11 myeloma cell lines and 418 single cells from 8 drug-naïve MM patients, followed by intensive bioinformatics and statistical analysis for prediction of proteasome inhibitor sensitivity in individual cells. Using our previously reported drug response gene expression profile signature at the single-cell level, we developed an R Statistical analysis package available at https://github.com/bvnlabSCATTome, SCATTome (single-cell analysis of targeted transcriptome), that restructures the data obtained from Fluidigm single-cell quantitative real-time-PCR analysis run, filters missing data, performs scaling of filtered data, builds classification models and predicts drug response of individual cells based on targeted transcriptome using an assortment of machine learning methods. Application of SCATT should contribute to clinically relevant analysis of intratumor heterogeneity, and better inform drug choices based on subclonal cellular responses. PMID:26710886

  15. Transcriptome profiling of whole blood cells identifies PLEK2 and C1QB in human melanoma.

    Directory of Open Access Journals (Sweden)

    Yuchun Luo

    Full Text Available Developing analytical methodologies to identify biomarkers in easily accessible body fluids is highly valuable for the early diagnosis and management of cancer patients. Peripheral whole blood is a "nucleic acid-rich" and "inflammatory cell-rich" information reservoir and represents systemic processes altered by the presence of cancer cells.We conducted transcriptome profiling of whole blood cells from melanoma patients. To overcome challenges associated with blood-based transcriptome analysis, we used a PAXgene™ tube and NuGEN Ovation™ globin reduction system. The combined use of these systems in microarray resulted in the identification of 78 unique genes differentially expressed in the blood of melanoma patients. Of these, 68 genes were further analyzed by quantitative reverse transcriptase PCR using blood samples from 45 newly diagnosed melanoma patients (stage I to IV and 50 healthy control individuals. Thirty-nine genes were verified to be differentially expressed in blood samples from melanoma patients. A stepwise logit analysis selected eighteen 2-gene signatures that distinguish melanoma from healthy controls. Of these, a 2-gene signature consisting of PLEK2 and C1QB led to the best result that correctly classified 93.3% melanoma patients and 90% healthy controls. Both genes were upregulated in blood samples of melanoma patients from all stages. Further analysis using blood fractionation showed that CD45(- and CD45(+ populations were responsible for the altered expression levels of PLEK2 and C1QB, respectively.The current study provides the first analysis of whole blood-based transcriptome biomarkers for malignant melanoma. The expression of PLEK2, the strongest gene to classify melanoma patients, in CD45(- subsets illustrates the importance of analyzing whole blood cells for biomarker studies. The study suggests that transcriptome profiling of blood cells could be used for both early detection of melanoma and monitoring of patients

  16. Autoantibodies against complement C1q specifically target C1q bound on early apoptotic cells.

    Science.gov (United States)

    Bigler, Cornelia; Schaller, Monica; Perahud, Iryna; Osthoff, Michael; Trendelenburg, Marten

    2009-09-01

    Autoantibodies against complement C1q (anti-C1q) are frequently found in patients with systemic lupus erythematosus (SLE). They strongly correlate with the occurrence of severe lupus nephritis, suggesting a pathogenic role in SLE. Because anti-C1q are known to recognize a neoepitope on bound C1q, but not on fluid-phase C1q, the aim of this study was to clarify the origin of anti-C1q by determining the mechanism that renders C1q antigenic. We investigated anti-C1q from serum and purified total IgG of patients with SLE and hypocomplementemic urticarial vasculitis as well as two monoclonal human anti-C1q Fab from a SLE patient generated by phage display. Binding characteristics, such as their ability to recognize C1q bound on different classes of Igs, on immune complexes, and on cells undergoing apoptosis, were analyzed. Interestingly, anti-C1q did not bind to C1q bound on Igs or immune complexes. Neither did we observe specific binding of anti-C1q to C1q bound on late apoptotic/necrotic cells when compared with binding in the absence of C1q. However, as shown by FACS analysis and confocal microscopy, anti-C1q specifically targeted C1q bound on early apoptotic cells. Anti-C1q were found to specifically target C1q bound on cells undergoing apoptosis. Our observations suggest that early apoptotic cells are a major target of the autoimmune response in SLE and provide a direct link between human SLE, apoptosis, and C1q. PMID:19648280

  17. HCMV Displays a Unique Transcriptome of Immunomodulatory Genes in Primary Monocyte-Derived Cell Types

    Science.gov (United States)

    Van Damme, Ellen; Thys, Kim; Tuefferd, Marianne; Van Hove, Carl; Aerssens, Jeroen; Van Loock, Marnix

    2016-01-01

    Human cytomegalovirus (HCMV) is a betaherpesvirus which rarely presents problems in healthy individuals, yet may result in severe morbidity in immunocompromised patients and in immune-naïve neonates. HCMV has a large 235 kb genome with a coding capacity of at least 165 open reading frames (ORFs). This large genome allows complex gene regulation resulting in different sets of transcripts during lytic and latent infection. While latent virus mainly resides within monocytes and CD34+ progenitor cells, reactivation to lytic infection is driven by differentiation towards terminally differentiated myeloid dendritic cells and macrophages. Consequently, it has been suggested that macrophages and dendritic cells contribute to viral spread in vivo. Thus far only limited knowledge is available on the expression of HCMV genes in terminally differentiated myeloid primary cells and whether or not the virus exhibits a different set of lytic genes in primary cells compared with lytic infection in NHDF fibroblasts. To address these questions, we used Illumina next generation sequencing to determine the HCMV transcriptome in macrophages and dendritic cells during lytic infection and compared it to the transcriptome in NHDF fibroblasts. Here, we demonstrate unique expression profiles in macrophages and dendritic cells which significantly differ from the transcriptome in fibroblasts mainly by modulating the expression of viral transcripts involved in immune modulation, cell tropism and viral spread. In a head to head comparison between macrophages and dendritic cells, we observed that factors involved in viral spread and virion composition are differentially regulated suggesting that the plasticity of the virion facilitates the infection of surrounding cells. Taken together, this study provides the full transcript expression analysis of lytic HCMV genes in monocyte-derived type 1 and type 2 macrophages as well as in monocyte-derived dendritic cells. Thereby underlining the potential

  18. A novel MCPH1 isoform complements the defective chromosome condensation of human MCPH1-deficient cells.

    Directory of Open Access Journals (Sweden)

    Ioannis Gavvovidis

    Full Text Available Biallelic mutations in MCPH1 cause primary microcephaly (MCPH with the cellular phenotype of defective chromosome condensation. MCPH1 encodes a multifunctional protein that notably is involved in brain development, regulation of chromosome condensation, and DNA damage response. In the present studies, we detected that MCPH1 encodes several distinct transcripts, including two major forms: full-length MCPH1 (MCPH1-FL and a second transcript lacking the six 3' exons (MCPH1Δe9-14. Both variants show comparable tissue-specific expression patterns, demonstrate nuclear localization that is mediated independently via separate NLS motifs, and are more abundant in certain fetal than adult organs. In addition, the expression of either isoform complements the chromosome condensation defect found in genetically MCPH1-deficient or MCPH1 siRNA-depleted cells, demonstrating a redundancy of both MCPH1 isoforms for the regulation of chromosome condensation. Strikingly however, both transcripts are regulated antagonistically during cell-cycle progression and there are functional differences between the isoforms with regard to the DNA damage response; MCPH1-FL localizes to phosphorylated H2AX repair foci following ionizing irradiation, while MCPH1Δe9-14 was evenly distributed in the nucleus. In summary, our results demonstrate here that MCPH1 encodes different isoforms that are differentially regulated at the transcript level and have different functions at the protein level.

  19. Effect of rosemary polyphenols on human colon cancer cells: transcriptomic profiling and functional enrichment analysis

    OpenAIRE

    Valdés, Alberto; García-Cañas, Virginia; Rocamora-Reverte, Lourdes; Gómez-Martínez, Ángeles; Ferragut, José Antonio; Cifuentes, Alejandro

    2012-01-01

    In this work, the effect of rosemary extracts rich on polyphenols obtained using pressurized fluids was investigated on the gene expression of human SW480 and HT29 colon cancer cells. The application of transcriptomic profiling and functional enrichment analysis was done via two computational approaches, Ingenuity Pathway Analysis and Gene Set Enrichment Analysis. These two approaches were used for functional enrichment analysis as a previous step for a reliable interpretation of the data obt...

  20. Transcriptomic analysis of the ion channelome of human platelets and megakaryocytic cell lines

    OpenAIRE

    Wright, Joy R.; Amisten, Stefan; Alison H Goodall; Mahaut-Smith, Martyn P

    2016-01-01

    Ion channels have crucial roles in all cell types and represent important therapeutic targets. Approximately 20 ion channels have been reported in human platelets; however, no systematic study has been undertaken to define the platelet channelome. These membrane proteins need only be expressed at low copy number to influence function and may not be detected using proteomic or transcriptomic microar-ray approaches. In our recent work, quantitative real-time PCR (qPCR) provided key evidence tha...

  1. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation

    OpenAIRE

    Chen, Xiaoying; Zhang, Kunshan; Zhou, Liqiang; Gao, Xinpei; Wang, Junbang; Yao, Yinan; He, Fei; Luo, Yuping; Yu, Yongchun; Li, Siguang; Cheng, Liming; Sun, Yi E.

    2016-01-01

    The mammalian brain is heterogeneous, containing billions of neurons and trillions of synapses forming various neural circuitries, through which sense, movement, thought, and emotion arise. The cellular heterogeneity of the brain has made it difficult to study the molecular logic of neural circuitry wiring, pruning, activation, and plasticity, until recently, transcriptome analyses with single cell resolution makes decoding of gene regulatory networks underlying aforementioned circuitry prope...

  2. Exploring the Innate Immune System: Using Complement-Medicated Cell Lysis in the Classroom

    Science.gov (United States)

    Fuller, Kevin G.

    2008-01-01

    The protein complement pathway comprises an important part of the innate immunity. The use of serum to demonstrate complement-mediated destruction across a series of bacterial dilutions allows an instructor to introduce a number of important biological concepts such as bacterial growth, activation cascades, and adaptive versus innate immunity.

  3. OM-FBA: Integrate Transcriptomics Data with Flux Balance Analysis to Decipher the Cell Metabolism.

    Science.gov (United States)

    Guo, Weihua; Feng, Xueyang

    2016-01-01

    Constraint-based metabolic modeling such as flux balance analysis (FBA) has been widely used to simulate cell metabolism. Thanks to its simplicity and flexibility, numerous algorithms have been developed based on FBA and successfully predicted the phenotypes of various biological systems. However, their phenotype predictions may not always be accurate in FBA because of using the objective function that is assumed for cell metabolism. To overcome this challenge, we have developed a novel computational framework, namely omFBA, to integrate multi-omics data (e.g. transcriptomics) into FBA to obtain omics-guided objective functions with high accuracy. In general, we first collected transcriptomics data and phenotype data from published database (e.g. GEO database) for different microorganisms such as Saccharomyces cerevisiae. We then developed a "Phenotype Match" algorithm to derive an objective function for FBA that could lead to the most accurate estimation of the known phenotype (e.g. ethanol yield). The derived objective function was next correlated with the transcriptomics data via regression analysis to generate the omics-guided objective function, which was next used to accurately simulate cell metabolism at unknown conditions. We have applied omFBA in studying sugar metabolism of S. cerevisiae and found that the ethanol yield could be accurately predicted in most of the cases tested (>80%) by using transcriptomics data alone, and revealed valuable metabolic insights such as the dynamics of flux ratios. Overall, omFBA presents a novel platform to potentially integrate multi-omics data simultaneously and could be incorporated with other FBA-derived tools by replacing the arbitrary objective function with the omics-guided objective functions. PMID:27100883

  4. Complement activation on B lymphocytes opsonized with rituximab or ofatumumab produces substantial changes in membrane structure preceding cell lysis

    NARCIS (Netherlands)

    Beum, Paul V.; Lindorfer, Margaret A.; Beurskens, Frank; Stukenberg, P. Todd; Lokhorst, Henk M.; Pawluczkowycz, Andrew W.; Parren, Paul W. H. I.; van de Winkel, Jan G. J.; Taylor, Ronald P.

    2008-01-01

    Binding of the CD20 mAb rituximab (RTX) to B lymphocytes in normal human serum (NHS) activates complement (C) and promotes C3b deposition on or in close proximity to cell-bound RTX. Based on spinning disk confocal microscopy analyses, we report the first real-time visualization of C3b deposition and

  5. The role of Kupffer cells in complement activation in D-Galactosamine/lipopolysaccharide-induced hepatic injury of rats.

    OpenAIRE

    Matsuo, Ryuichi; Ukida, Minoru; Nishikawa, Yoshiyuki; Omori, Nobuhiko; Tsuji, Takao

    1992-01-01

    To investigate the role of Kupffer cells in complement activation, we used a rat model of acute hepatic injury induced by D-Galactosamine (GalN) and lipopolysaccharide (LPS). In in vivo study, minimal histological changes were observed after i.p. GalN (200 mg/kg) single administration. Complement hemolytic activity (CH 50) decreased to 70% of its initial value 2-3 h after i.p. LPS (1.5 mg/kg) single administration. Massive hepatic necrosis was induced by simultaneous administration of GalN an...

  6. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation.

    Science.gov (United States)

    Chen, Xiaoying; Zhang, Kunshan; Zhou, Liqiang; Gao, Xinpei; Wang, Junbang; Yao, Yinan; He, Fei; Luo, Yuping; Yu, Yongchun; Li, Siguang; Cheng, Liming; Sun, Yi E

    2016-03-01

    The mammalian brain is heterogeneous, containing billions of neurons and trillions of synapses forming various neural circuitries, through which sense, movement, thought, and emotion arise. The cellular heterogeneity of the brain has made it difficult to study the molecular logic of neural circuitry wiring, pruning, activation, and plasticity, until recently, transcriptome analyses with single cell resolution makes decoding of gene regulatory networks underlying aforementioned circuitry properties possible. Here we report success in performing both electrophysiological and whole-genome transcriptome analyses on single human neurons in culture. Using Weighted Gene Coexpression Network Analyses (WGCNA), we identified gene clusters highly correlated with neuronal maturation judged by electrophysiological characteristics. A tight link between neuronal maturation and genes involved in ubiquitination and mitochondrial function was revealed. Moreover, we identified a list of candidate genes, which could potentially serve as biomarkers for neuronal maturation. Coupled electrophysiological recording and single cell transcriptome analysis will serve as powerful tools in the future to unveil molecular logics for neural circuitry functions. PMID:26883038

  7. Profiling of Sox4-dependent transcriptome in skin links tumour suppression and adult stem cell activation

    Directory of Open Access Journals (Sweden)

    Miguel Foronda

    2015-12-01

    Full Text Available Adult stem cells (ASCs reside in specific niches in a quiescent state in adult mammals. Upon specific cues they become activated and respond by self-renewing and differentiating into newly generated specialised cells that ensure appropriate tissue fitness. ASC quiescence also serves as a tumour suppression mechanism by hampering cellular transformation and expansion (White AC et al., 2014. Some genes restricted to early embryonic development and adult stem cell niches are often potent modulators of stem cell quiescence, and derailed expression of these is commonly associated to cancer (Vervoort SJ et al., 2013. Among them, it has been shown that recommissioned Sox4 expression facilitates proliferation, survival and migration of malignant cells. By generating a conditional Knockout mouse model in stratified epithelia (Sox4cKO mice, we demonstrated a delayed plucking-induced Anagen in the absence of Sox4. Skin global transcriptome analysis revealed a prominent defect in the induction of transcriptional networks that control hair follicle stem cell (HFSC activation such as those regulated by Wnt/Ctnnb1, Shh, Myc or Sox9, cell cycle and DNA damage response-associated pathways. Besides, Sox4cKO mice are resistant to skin carcinogenesis, thus linking Sox4 to both normal and pathological HFSC activation (Foronda M et al., 2014. Here we provide additional details on the analysis of Sox4-regulated transcriptome in Telogen and Anagen skin. The raw and processed microarray data is deposited in GEO under GSE58155.

  8. Single prokaryotic cell isolation and total transcript amplification protocol for transcriptomic analysis.

    Science.gov (United States)

    Kang, Yun; McMillan, Ian; Norris, Michael H; Hoang, Tung T

    2015-07-01

    Until recently, transcriptome analyses of single cells have been confined to eukaryotes. The information obtained from single-cell transcripts can provide detailed insight into spatiotemporal gene expression, and it could be even more valuable if expanded to prokaryotic cells. Transcriptome analysis of single prokaryotic cells is a recently developed and powerful tool. Here we describe a procedure that allows amplification of the total transcript of a single prokaryotic cell for in-depth analysis. This is performed by using a laser-capture microdissection instrument for single-cell isolation, followed by reverse transcription via Moloney murine leukemia virus, degradation of chromosomal DNA with McrBC and DpnI restriction enzymes, single-stranded cDNA (ss-cDNA) ligation using T4 polynucleotide kinase and CircLigase, and polymerization of ss-cDNA to double-stranded cDNA (ds-cDNA) by Φ29 polymerase. This procedure takes ∼5 d, and sufficient amounts of ds-cDNA can be obtained from single-cell RNA template for further microarray analysis.

  9. Transcriptome changes and cAMP oscillations in an archaeal cell cycle

    Directory of Open Access Journals (Sweden)

    Soppa Jörg

    2007-06-01

    Full Text Available Abstract Background The cell cycle of all organisms includes mass increase by a factor of two, replication of the genetic material, segregation of the genome to different parts of the cell, and cell division into two daughter cells. It is tightly regulated and typically includes cell cycle-specific oscillations of the levels of transcripts, proteins, protein modifications, and signaling molecules. Until now cell cycle-specific transcriptome changes have been described for four eukaryotic species ranging from yeast to human, but only for two prokaryotic species. Similarly, oscillations of small signaling molecules have been identified in very few eukaryotic species, but not in any prokaryote. Results A synchronization procedure for the archaeon Halobacterium salinarum was optimized, so that nearly 100% of all cells divide in a time interval that is 1/4th of the generation time of exponentially growing cells. The method was used to characterize cell cycle-dependent transcriptome changes using a genome-wide DNA microarray. The transcript levels of 87 genes were found to be cell cycle-regulated, corresponding to 3% of all genes. They could be clustered into seven groups with different transcript level profiles. Cluster-specific sequence motifs were detected around the start of the genes that are predicted to be involved in cell cycle-specific transcriptional regulation. Notably, many cell cycle genes that have oscillating transcript levels in eukaryotes are not regulated on the transcriptional level in H. salinarum. Synchronized cultures were also used to identify putative small signaling molecules. H. salinarum was found to contain a basal cAMP concentration of 200 μM, considerably higher than that of yeast. The cAMP concentration is shortly induced directly prior to and after cell division, and thus cAMP probably is an important signal for cell cycle progression. Conclusion The analysis of cell cycle-specific transcriptome changes of H. salinarum

  10. Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes

    International Nuclear Information System (INIS)

    Prostate cancer cells in primary tumors have been typed CD10-/CD13-/CD24hi/CD26+/CD38lo/CD44-/CD104-. This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. CD26+ cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types

  11. Transcriptome analysis of phycocyanin inhibitory effects on SKOV-3 cell proliferation.

    Science.gov (United States)

    Ying, Jun; Wang, Jian; Ji, Huijuan; Lin, Chaoqing; Pan, Ruowang; Zhou, Li; Song, Yulong; Zhang, Enyong; Ren, Ping; Chen, Jishun; Liu, Qian; Xu, Teng; Yi, Huiguang; Li, Jinsong; Bao, Qiyu; Hu, Yunliang; Li, Peizhen

    2016-07-01

    Phycocyanin (PC) from Spirulina platensis has inhibitory effects on tumor cell growth. In this research, the transcriptome study was designed to investigate the underlying molecular mechanisms of PC inhibition on human ovarian cancer cell SKOV-3 proliferation. The PC IC50 was 216.6μM and 163.8μM for 24h and 48h exposure, respectively, as determined by CCK-8 assay. The morphological changes of SKOV-3 cells after PC exposure were recorded using HE staining. Cells arrested in G2/M stages as determined by flow cytometry. The transcriptome analysis showed that 2031 genes (with > three-fold differences) were differentially expressed between the untreated and the PC-treated cells, including 1065 up-regulated and 966 down-regulated genes. Gene ontology and KEGG pathway analysis identified 18 classical pathways that were remarkably enriched, such as neurotrophin signaling pathway, VEGF signaling pathway and P53 signaling pathway. qPCR results further showed that PTPN12, S100A2, RPL26, and LAMA3 increased while HNRNPA1P10 decreased in PC-treated cells. Molecules and genes in those pathways may be potential targets to develop treatments for ovarian cancer. PMID:26995654

  12. Transcriptomic comparisons between cultured human adipose tissue-derived pericytes and mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Lindolfo da Silva Meirelles

    2016-03-01

    Full Text Available Mesenchymal stromal cells (MSCs, sometimes called mesenchymal stem cells, are cultured cells able to give rise to mature mesenchymal cells such as adipocytes, osteoblasts, and chondrocytes, and to secrete a wide range of trophic and immunomodulatory molecules. Evidence indicates that pericytes, cells that surround and maintain physical connections with endothelial cells in blood vessels, can give rise to MSCs (da Silva Meirelles et al., 2008 [1]; Caplan and Correa, 2011 [2]. We have compared the transcriptomes of highly purified, human adipose tissue pericytes subjected to culture-expansion in pericyte medium or MSC medium, with that of human adipose tissue MSCs isolated with traditional methods to test the hypothesis that their transcriptomes are similar (da Silva Meirelles et al., 2015 [3]. Here, we provide further information and analyses of microarray data from three pericyte populations cultured in pericyte medium, three pericyte populations cultured in MSC medium, and three adipose tissue MSC populations deposited in the Gene Expression Omnibus under accession number GSE67747.

  13. Immune response to snake envenoming and treatment with antivenom; complement activation, cytokine production and mast cell degranulation.

    Directory of Open Access Journals (Sweden)

    Shelley F Stone

    Full Text Available BACKGROUND: Snake bite is one of the most neglected public health issues in poor rural communities worldwide. In addition to the clinical effects of envenoming, treatment with antivenom frequently causes serious adverse reactions, including hypersensitivity reactions (including anaphylaxis and pyrogenic reactions. We aimed to investigate the immune responses to Sri Lankan snake envenoming (predominantly by Russell's viper and antivenom treatment. METHODOLOGY/PRINCIPAL FINDINGS: Plasma concentrations of Interleukin (IL-6, IL-10, tumor necrosis factor α (TNFα, soluble TNF receptor I (sTNFRI, anaphylatoxins (C3a, C4a, C5a; markers of complement activation, mast cell tryptase (MCT, and histamine were measured in 120 Sri Lankan snakebite victims, both before and after treatment with antivenom. Immune mediator concentrations were correlated with envenoming features and the severity of antivenom-induced reactions including anaphylaxis. Envenoming was associated with complement activation and increased cytokine concentrations prior to antivenom administration, which correlated with non-specific systemic symptoms of envenoming but not with coagulopathy or neurotoxicity. Typical hypersensitivity reactions to antivenom occurred in 77/120 patients (64%, satisfying criteria for a diagnosis of anaphylaxis in 57/120 (48%. Pyrogenic reactions were observed in 32/120 patients (27%. All patients had further elevations in cytokine concentrations, but not complement activation, after the administration of antivenom, whether a reaction was noted to occur or not. Patients with anaphylaxis had significantly elevated concentrations of MCT and histamine. CONCLUSIONS/SIGNIFICANCE: We have demonstrated that Sri Lankan snake envenoming is characterized by significant complement activation and release of inflammatory mediators. Antivenom treatment further enhances the release of inflammatory mediators in all patients, with anaphylactic reactions characterised by high

  14. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells.

    Science.gov (United States)

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-12-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results

  15. Complement in hemolytic anemia.

    Science.gov (United States)

    Brodsky, Robert A

    2015-01-01

    Complement is increasingly being recognized as an important driver of human disease, including many hemolytic anemias. Paroxysmal nocturnal hemoglobinuria (PNH) cells are susceptible to hemolysis because of a loss of the complement regulatory proteins CD59 and CD55. Patients with atypical hemolytic uremic syndrome (aHUS) develop a thrombotic microangiopathy (TMA) that in most cases is attributable to mutations that lead to activation of the alternative pathway of complement. For optimal therapy, it is critical, but often difficult, to distinguish aHUS from other TMAs, such as thrombotic thrombocytopenic purpura; however, novel bioassays are being developed. In cold agglutinin disease (CAD), immunoglobulin M autoantibodies fix complement on the surface of red cells, resulting in extravascular hemolysis by the reticuloendothelial system. Drugs that inhibit complement activation are increasingly being used to treat these diseases. This article discusses the pathophysiology, diagnosis, and therapy for PNH, aHUS, and CAD.

  16. Radiation-responsive transcriptome analysis in human lymphoid cells

    International Nuclear Information System (INIS)

    Ionising radiation (IR) causes DNA (deoxyribonucleic acid) injury and activates intracellular signal pathways including the regulation of DNA repair and cell cycle. However, the further knowledge of molecular events involved in radiation exposure is essential to more comprehensively understand the effects of irradiation. Therefore, the gene expressions of mRNA (messenger ribonucleic acid) by X-ray irradiation in human B lymphoblasts cell line (IM-9) using a microarray were investigated. The mRNA expressions of 65 genes were shown to be up-regulated at >2.0-fold in irradiated cells (4 Gy) when compared with non-irradiated cells (0 Gy) by microarray analysis. Among 65 genes, a large number of genes were up-regulated with an X-ray dose-dependent change. These results indicate that the up-regulation of their mRNAs is the effects of irradiation and may be due to biological dosimetric markers for the evaluation of radiation exposure in the future. (authors)

  17. Transcriptomic profiling of primary alveolar epithelial cell differentiation in human and rat

    Directory of Open Access Journals (Sweden)

    Crystal N. Marconett

    2014-12-01

    Full Text Available Cell-type specific gene regulation is a key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how changes in transcriptional activation during alveolar epithelial cell (AEC differentiation determine phenotype. We performed transcriptomic profiling using in vitro differentiation of human and rat primary AEC. This model recapitulates in vitro an in vivo process in which AEC transition from alveolar type 2 (AT2 cells to alveolar type 1 (AT1 cells during normal maintenance and regeneration following lung injury. Here we describe in detail the quality control, preprocessing, and normalization of microarray data presented within the associated study (Marconett et al., 2013. We also include R code for reproducibility of the referenced data and easily accessible processed data tables.

  18. Complement mediated signaling on pulmonary CD103(+ dendritic cells is critical for their migratory function in response to influenza infection.

    Directory of Open Access Journals (Sweden)

    Matheswaran Kandasamy

    2013-01-01

    Full Text Available Trafficking of lung dendritic cells (DCs to the draining lymph node (dLN is a crucial step for the initiation of T cell responses upon pathogen challenge. However, little is known about the factors that regulate lung DC migration to the dLN. In this study, using a model of influenza infection, we demonstrate that complement component C3 is critically required for efficient emigration of DCs from the lung to the dLN. C3 deficiency affect lung DC-mediated viral antigen transport to the dLN, resulting in severely compromised priming of virus-specific T cell responses. Consequently, C3-deficient mice lack effector T cell response in the lungs that affected viral clearance and survival. We further show that direct signaling by C3a and C5a through C3aR and C5aR respectively expressed on lung DCs is required for their efficient trafficking. However, among lung DCs, only CD103(+ DCs make a significant contribution to lung C5a levels and exclusively produce high levels of C3 and C5 during influenza infection. Collectively, our findings show that complement has a profound impact on immune regulation by controlling tissue DC trafficking and highlights a potential utility for complement as an adjuvant in novel vaccine strategies.

  19. Dynamics of the transcriptome response of cultured human embryonic stem cells to ionizing radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Mykyta V., E-mail: sokolovm@mail.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States); Panyutin, Irina V., E-mail: ipanyutinv@mail.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States); Panyutin, Igor G., E-mail: igorp@helix.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States); Neumann, Ronald D., E-mail: rneumann@mail.nih.gov [Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (United States)

    2011-05-10

    One of the key consequences of exposure of human cells to genotoxic agents is the activation of DNA damage responses (DDR). While the mechanisms underpinning DDR in fully differentiated somatic human cells have been studied extensively, molecular signaling events and pathways involved in DDR in pluripotent human embryonic stem cells (hESC) remain largely unexplored. We studied changes in the human genome-wide transcriptome of H9 hESC line following exposures to 1 Gy of gamma-radiation at 2 h and 16 h post-irradiation. Quantitative real-time PCR was performed to verify the expression data for a subset of genes. In parallel, the cell growth, DDR kinetics, and expression of pluripotency markers in irradiated hESC were monitored. The changes in gene expression in hESC after exposure to ionizing radiation (IR) are substantially different from those observed in somatic human cell lines. Gene expression patterns at 2 h post-IR showed almost an exclusively p53-dependent, predominantly pro-apoptotic, signature with a total of only 30 up-regulated genes. In contrast, the gene expression patterns at 16 h post-IR showed 354 differentially expressed genes, mostly involved in pro-survival pathways, such as increased expression of metallothioneins, ubiquitin cycle, and general metabolism signaling. Cell growth data paralleled trends in gene expression changes. DDR in hESC followed the kinetics reported for human somatic differentiated cells. The expression of pluripotency markers characteristic of undifferentiated hESC was not affected by exposure to IR during the time course of our analysis. Our data on dynamics of transcriptome response of irradiated hESCs may provide a valuable tool to screen for markers of IR exposure of human cells in their most naive state; thus unmasking the key elements of DDR; at the same time, avoiding the complexity of interpreting distinct cell type-dependent genotoxic stress responses of terminally differentiated cells.

  20. Genome-scale transcriptome analysis in response to nitric oxide in birch cells: implications of the triterpene biosynthetic pathway.

    Science.gov (United States)

    Zeng, Fansuo; Sun, Fengkun; Li, Leilei; Liu, Kun; Zhan, Yaguang

    2014-01-01

    Evidence supporting nitric oxide (NO) as a mediator of plant biochemistry continues to grow, but its functions at the molecular level remains poorly understood and, in some cases, controversial. To study the role of NO at the transcriptional level in Betula platyphylla cells, we conducted a genome-scale transcriptome analysis of these cells. The transcriptome of untreated birch cells and those treated by sodium nitroprusside (SNP) were analyzed using the Solexa sequencing. Data were collected by sequencing cDNA libraries of birch cells, which had a long period to adapt to the suspension culture conditions before SNP-treated cells and untreated cells were sampled. Among the 34,100 UniGenes detected, BLASTX search revealed that 20,631 genes showed significant (E-values≤10-5) sequence similarity with proteins from the NR-database. Numerous expressed sequence tags (i.e., 1374) were identified as differentially expressed between the 12 h SNP-treated cells and control cells samples: 403 up-regulated and 971 down-regulated. From this, we specifically examined a core set of NO-related transcripts. The altered expression levels of several transcripts, as determined by transcriptome analysis, was confirmed by qRT-PCR. The results of transcriptome analysis, gene expression quantification, the content of triterpenoid and activities of defensive enzymes elucidated NO has a significant effect on many processes including triterpenoid production, carbohydrate metabolism and cell wall biosynthesis.

  1. Genome-scale transcriptome analysis in response to nitric oxide in birch cells: implications of the triterpene biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Fansuo Zeng

    Full Text Available Evidence supporting nitric oxide (NO as a mediator of plant biochemistry continues to grow, but its functions at the molecular level remains poorly understood and, in some cases, controversial. To study the role of NO at the transcriptional level in Betula platyphylla cells, we conducted a genome-scale transcriptome analysis of these cells. The transcriptome of untreated birch cells and those treated by sodium nitroprusside (SNP were analyzed using the Solexa sequencing. Data were collected by sequencing cDNA libraries of birch cells, which had a long period to adapt to the suspension culture conditions before SNP-treated cells and untreated cells were sampled. Among the 34,100 UniGenes detected, BLASTX search revealed that 20,631 genes showed significant (E-values≤10-5 sequence similarity with proteins from the NR-database. Numerous expressed sequence tags (i.e., 1374 were identified as differentially expressed between the 12 h SNP-treated cells and control cells samples: 403 up-regulated and 971 down-regulated. From this, we specifically examined a core set of NO-related transcripts. The altered expression levels of several transcripts, as determined by transcriptome analysis, was confirmed by qRT-PCR. The results of transcriptome analysis, gene expression quantification, the content of triterpenoid and activities of defensive enzymes elucidated NO has a significant effect on many processes including triterpenoid production, carbohydrate metabolism and cell wall biosynthesis.

  2. Pathway aberrations of murine melanoma cells observed in Paired-End diTag transcriptomes

    Directory of Open Access Journals (Sweden)

    Liu Edison

    2007-06-01

    Full Text Available Abstract Background Melanoma is the major cause of skin cancer deaths and melanoma incidence doubles every 10 to 20 years. However, little is known about melanoma pathway aberrations. Here we applied the robust Gene Identification Signature Paired End diTag (GIS-PET approach to investigate the melanoma transcriptome and characterize the global pathway aberrations. Methods GIS-PET technology directly links 5' mRNA signatures with their corresponding 3' signatures to generate, and then concatenate, PETs for efficient sequencing. We annotated PETs to pathways of KEGG database and compared the murine B16F1 melanoma transcriptome with three non-melanoma murine transcriptomes (Melan-a2 melanocytes, E14 embryonic stem cells, and E17.5 embryo. Gene expression levels as represented by PET counts were compared across melanoma and melanocyte libraries to identify the most significantly altered pathways and investigate the expression levels of crucial cancer genes. Results Melanin biosynthesis genes were solely expressed in the cells of melanocytic origin, indicating the feasibility of using the PET approach for transcriptome comparison. The most significantly altered pathways were metabolic pathways, including upregulated pathways: purine metabolism, aminophosphonate metabolism, tyrosine metabolism, selenoamino acid metabolism, galactose utilization, nitrobenzene degradation, and bisphenol A degradation; and downregulated pathways: oxidative phosphorylation, ATPase synthesis, TCA cycle, pyruvate metabolism, and glutathione metabolism. The downregulated pathways concurrently indicated a slowdown of mitochondrial activities. Mitochondrial permeability was also significantly altered, as indicated by transcriptional activation of ATP/ADP, citrate/malate, Mg++, fatty acid and amino acid transporters, and transcriptional repression of zinc and metal ion transporters. Upregulation of cell cycle progression, MAPK, and PI3K/Akt pathways were more limited to certain

  3. An integrative genomic and transcriptomic analysis reveals potential targets associated with cell proliferation in uterine leiomyomas

    DEFF Research Database (Denmark)

    Cirilo, Priscila Daniele Ramos; Marchi, Fábio Albuquerque; Barros Filho, Mateus de Camargo;

    2013-01-01

    integrated analysis identified the top 30 significant genes (P<0.01), which comprised genes associated with cancer, whereas the protein-protein interaction analysis indicated a strong association between FANCA and BRCA1. Functional in silico analysis revealed target molecules for drugs involved in cell...... transcriptomic approach indicated that FGFR1 and IGFBP5 amplification, as well as the consequent up-regulation of the protein products, plays an important role in the aetiology of ULs and thus provides data for potential drug therapies development to target genes associated with cellular proliferation in ULs....

  4. Plasticity of airway epithelial cell transcriptome in response to flagellin.

    Directory of Open Access Journals (Sweden)

    Joan G Clark

    Full Text Available Airway epithelial cells (AEC are critical components of the inflammatory and immune response during exposure to pathogens. AECs in monolayer culture and differentiated epithelial cells in air-liquid interface (ALI represent two distinct and commonly used in vitro models, yet differences in their response to pathogens have not been investigated. In this study, we compared the transcriptional effects of flagellin on AECs in monolayer culture versus ALI culture using whole-genome microarrays and RNA sequencing. We exposed monolayer and ALI AEC cultures to flagellin in vitro and analyzed the transcriptional response by microarray and RNA-sequencing. ELISA and RT-PCR were used to validate changes in select candidates. We found that AECs cultured in monolayer and ALI have strikingly different transcriptional states at baseline. When challenged with flagellin, monolayer AEC cultures greatly increased transcription of numerous genes mapping to wounding response, immunity and inflammatory response. In contrast, AECs in ALI culture had an unexpectedly muted response to flagellin, both in number of genes expressed and relative enrichment of inflammatory and immune pathways. We conclude that in vitro culturing methods have a dramatic effect on the transcriptional profile of AECs at baseline and after stimulation with flagellin. These differences suggest that epithelial responses to pathogen challenges are distinctly different in culture models of intact and injured epithelium.

  5. Plasticity of airway epithelial cell transcriptome in response to flagellin.

    Science.gov (United States)

    Clark, Joan G; Kim, Kyoung-Hee; Basom, Ryan S; Gharib, Sina A

    2015-01-01

    Airway epithelial cells (AEC) are critical components of the inflammatory and immune response during exposure to pathogens. AECs in monolayer culture and differentiated epithelial cells in air-liquid interface (ALI) represent two distinct and commonly used in vitro models, yet differences in their response to pathogens have not been investigated. In this study, we compared the transcriptional effects of flagellin on AECs in monolayer culture versus ALI culture using whole-genome microarrays and RNA sequencing. We exposed monolayer and ALI AEC cultures to flagellin in vitro and analyzed the transcriptional response by microarray and RNA-sequencing. ELISA and RT-PCR were used to validate changes in select candidates. We found that AECs cultured in monolayer and ALI have strikingly different transcriptional states at baseline. When challenged with flagellin, monolayer AEC cultures greatly increased transcription of numerous genes mapping to wounding response, immunity and inflammatory response. In contrast, AECs in ALI culture had an unexpectedly muted response to flagellin, both in number of genes expressed and relative enrichment of inflammatory and immune pathways. We conclude that in vitro culturing methods have a dramatic effect on the transcriptional profile of AECs at baseline and after stimulation with flagellin. These differences suggest that epithelial responses to pathogen challenges are distinctly different in culture models of intact and injured epithelium. PMID:25668187

  6. Complement protein C1q induces maturation of human dendritic cells

    DEFF Research Database (Denmark)

    Cosmor, E; Bajtay, Z; Sándor, N;

    2007-01-01

    in the absence of antibodies, we undertook to investigate whether this complement protein has an impact on various functions of human DCs. Maturation of monocyte-derived immature DCs (imMDCs) cultured on immobilized C1q was followed by monitoring expression of CD80, CD83, CD86, MHCII and CCR7. The functional...

  7. Transcriptome analysis of genes responding to NNV infection in Asian seabass epithelial cells.

    Science.gov (United States)

    Liu, Peng; Wang, Le; Kwang, Jimmy; Yue, Gen Hua; Wong, Sek-Man

    2016-07-01

    Asian seabass is an important food fish in Southeast Asia. Viral nervous necrosis (VNN) disease, triggered by nervous necrosis virus (NNV) infection, has caused mass mortality of Asian seabass larvae, resulting in enormous economic losses in the Asian seabass industry. In order to better understand the complex molecular interaction between Asian seabass and NNV, we investigated the transcriptome profiles of Asian seabass epithelial cells, which play an essential role in immune regulation, after NNV infection. Using the next generation sequencing (NGS) technology, we sequenced mRNA from eight samples (6, 12, 24, 48 h post-inoculation) of mock and NNV-infected Asian seabass epithelial cell line, respectively. Clean reads were de novo assembled into a transcriptome consisting of 89026 transcripts with a N50 of 2617 bp. Furthermore, 251 differentially expressed genes (DEGs) in response to NNV infection were identified. Top DEGs include protein asteroid homolog 1-like (ASTE1), receptor-transporting protein 3 (RTP3), heat shock proteins 30 (HSP30) and 70 (HSP70), Viperin, interferon regulatory factor 3 (IRF3) and other genes related to innate immunity. Our data suggest that abundant and diverse genes corresponding to NNV infection. The results of this study could also offer vital information not only for identification of novel genes involved in Asian seabass-NNV interaction, but also for our understanding of the molecular mechanism of Asian seabass' response to viral infection. In addition, 24807 simple sequence repeats (SSRs) were detected in the assembled transcriptome, providing valuable resources for studying genetic variations and accelerating quantitative trait loci (QTL) mapping for disease resistance in Asian seabass in the future. PMID:27109582

  8. Silica Induced Suppression of the Production of Third and Fifth Components of the Complement System by Human Lung Cells In Vitro

    NARCIS (Netherlands)

    Rothman, Barbara L.; Contrino, Josephine; Merrow, Martha; Despins, Alan; Kennedy, Thomas; Kreutzer, Donald L.

    1994-01-01

    Although investigations to date have demonstrated the ability of the monocyte/macrophage to synthesize complement components, only a limited number of studies on complement synthesis by nonhepatic tissue cells have been reported. To begin to fill this gap in our knowledge we have recently evaluated

  9. Haemolytic complement activity, C3 and FactorB consumption in serum from chickens divergently selected for antibody responses to sheep red blood cells

    NARCIS (Netherlands)

    Parmentier, H.K.; Baelmans, R.; Nieuwland, M.G.B.; Dorny, P.; Demey, F.

    2002-01-01

    Antibody responses, serum complement haemolytic activity, and complement component C3 and Factor B consumption were studied in chickens divergently selected for high and low antibody responses to sheep red blood cells, and in a randombred control line. Significantly higher total and IgG antibody res

  10. Microinjection of Micrococcus luteus UV-endonuclease restores UV-induced unscheduled DNA synthesis in cells of 9 xeroderma pigmentosum complementation groups.

    NARCIS (Netherlands)

    A.J.R. de Jonge; W. Vermeulen (Wim); W. Keijzer; J.H.J. Hoeijmakers (Jan); D. Bootsma (Dirk)

    1985-01-01

    textabstractThe UV-induced unscheduled DNA synthesis (UDS) in cultured cells of excision-deficient xeroderma pigmentosum (XP) complementation groups A through I was assayed after injection of Micrococcus luteus UV-endonuclease using glass microneedles. In all complementation groups a restoration of

  11. Elucidation of how cancer cells avoid acidosis through comparative transcriptomic data analysis.

    Directory of Open Access Journals (Sweden)

    Kun Xu

    Full Text Available The rapid growth of cancer cells fueled by glycolysis produces large amounts of protons in cancer cells, which tri mechanisms to transport them out, hence leading to increased acidity in their extracellular environments. It has been well established that the increased acidity will induce cell death of normal cells but not cancer cells. The main question we address here is: how cancer cells deal with the increased acidity to avoid the activation of apoptosis. We have carried out a comparative analysis of transcriptomic data of six solid cancer types, breast, colon, liver, two lung (adenocarcinoma, squamous cell carcinoma and prostate cancers, and proposed a model of how cancer cells utilize a few mechanisms to keep the protons outside of the cells. The model consists of a number of previously, well or partially, studied mechanisms for transporting out the excess protons, such as through the monocarboxylate transporters, V-ATPases, NHEs and the one facilitated by carbonic anhydrases. In addition we propose a new mechanism that neutralizes protons through the conversion of glutamate to γ-aminobutyrate, which consumes one proton per reaction. We hypothesize that these processes are regulated by cancer related conditions such as hypoxia and growth factors and by the pH levels, making these encoded processes not available to normal cells under acidic conditions.

  12. Transcriptomic changes in human renal proximal tubular cells revealed under hypoxic conditions by RNA sequencing.

    Science.gov (United States)

    Yu, Wenmin; Li, Yiping; Wang, Zhi; Liu, Lei; Liu, Jing; Ding, Fengan; Zhang, Xiaoyi; Cheng, Zhengyuan; Chen, Pingsheng; Dou, Jun

    2016-09-01

    Chronic hypoxia often occurs among patients with chronic kidney disease (CKD). Renal proximal tubular cells may be the primary target of a hypoxic insult. However, the underlying transcriptional mechanisms remain undefined. In this study, we revealed the global changes in gene expression in HK‑2 human renal proximal tubular cells under hypoxic and normoxic conditions. We analyzed the transcriptome of HK‑2 cells exposed to hypoxia for 24 h using RNA sequencing. A total of 279 differentially expressed genes was examined, as these genes could potentially explain the differences in HK‑2 cells between hypoxic and normoxic conditions. Moreover, 17 genes were validated by qPCR, and the results were highly concordant with the RNA seqencing results. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to better understand the functions of these differentially expressed genes. The upregulated genes appeared to be significantly enriched in the pathyway of extracellular matrix (ECM)-receptor interaction, and in paticular, the pathway of renal cell carcinoma was upregulated under hypoxic conditions. The downregulated genes were enriched in the signaling pathway related to antigen processing and presentation; however, the pathway of glutathione metabolism was downregulated. Our analysis revealed numerous novel transcripts and alternative splicing events. Simultaneously, we also identified a large number of single nucleotide polymorphisms, which will be a rich resource for future marker development. On the whole, our data indicate that transcriptome analysis provides valuable information for a more in depth understanding of the molecular mechanisms in CKD and renal cell carcinoma. PMID:27432315

  13. Secretion of the C3 component of complement by peritoneal cells cultured with encapsulated Cryptococcus neoformans.

    OpenAIRE

    Blackstock, R; Murphy, J W

    1997-01-01

    Two isolates of Cryptococcus neoformans were identified as being widely divergent in pathogenic potential after intratracheal infection of mice. These isolates differed in their ability to upregulate capsule synthesis when grown under tissue culture conditions, and this property correlated with virulence. We postulated that differential capsule synthesis may cause differential stimulation of macrophages to produce products such as complement components. To test this hypothesis, heat-killed ye...

  14. TNF Regulates Essential Alternative Complement Pathway Components and Impairs Activation of Protein C in Human Glomerular Endothelial Cells.

    Science.gov (United States)

    Sartain, Sarah E; Turner, Nancy A; Moake, Joel L

    2016-01-15

    Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy with severe renal injury secondary to an overactive alternative complement pathway (AP). aHUS episodes are often initiated or recur during inflammation. We investigated gene expression of the surface complement regulatory proteins (CD55, CD59, CD46, and CD141 [thrombomodulin]) and AP components in human glomerular microvascular endothelial cells (GMVECs) and in HUVECs, a frequently used investigational model of endothelial cells. Surface complement regulatory proteins were also quantified by flow cytometry. All experiments were done with and without exposure to IL-1β or TNF. Without cytokine stimulation, we found that GMVECs had greater AP activation than did HUVECs. With TNF stimulation, THBD gene expression and corresponding CD141 surface presence in HUVECs and GMVECs were reduced, and gene expression of complement components C3 (C3) and factor B (CFB) was increased. Consequently, AP activation, measured by Ba production, was increased, and conversion of protein C (PC) to activated PC by CD141-bound thrombin was decreased, in GMVECs and HUVECs exposed to TNF. IL-1β had similar, albeit lesser, effects on HUVEC gene expression, and it only slightly affected GMVEC gene expression. To our knowledge, this is the first detailed study of the expression/display of AP components and surface regulatory proteins in GMVECs with and without cytokine stimulation. In aHUS patients with an underlying overactive AP, additional stimulation of the AP and inhibition of activated PC-mediated anticoagulation in GMVECs by the inflammatory cytokine TNF are likely to provoke episodes of renal failure. PMID:26673143

  15. Effect of IL-4 on altered expression of complement activation regulators in rat pancreatic cells during severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Cheng Zhang; Chun-Lin Ge; Ren-Xuan Guo; San-Guang He

    2005-01-01

    AIM: To investigate the effect of IL-4 on the altered expression of complement activation regulators in pancreas and pancreatic necrosis during experimental severe acute pancreatitis (SAP).METHODS: SAP model of rats was established by retrograde injection of 5% sodium taurocholate (1 mL/kg)into the pancreatic duct. We immunohistochemically assayed the expression of three complement activation regulators: decay accelerating factor (DAF; CD55), 20ku homologous restriction factor (HRF20; CD59) and membrane cofactor protein (MCP; CD46), in the pancreatic acinar cells of rats at 0, 3, 6, 12, and 24 h after the induction of SAP model. Meanwhile the levels of amylase and lipase were determined, and morphological examination was performed. Then, 61 rats were randomly divided into three groups. Group A (n = 21) received notreatment after the SAP model was established; group B (n = 20) was given IL-4 (8 μg/animal) intraperitoneally 0.5 h before the SAP model was established; group C (n = 20) was given IL-4 (8 μg/animal) intraperitoneally 0.5 h after the SAP model was established. Plasma amylase and lipase, extent of pancreatic necrosis and expression of complement activation regulators were investigated 6 h after the induction of SAP model.RESULTS: Three complement activation regulators were all expressed in pancreatic acinar cells. MCP was not found on the basolateral surface as reported. Contrary to the gradually increasing plasma level of amylase and lipase, expression of complement activation regulators decreased after SAP model was set up. At the same time, the severity of pancreatic necrosis was enhanced.A strong negative correlation was found between the expression of MCP, DAF, CD59 in pancreatic acinar cells and the severity of pancreatic necrosis (r = -0.748, -0.827,-0.723; P<0.01). In the second series of experiments,no matter when the treatment of IL-4 was given (before or after the induction of SAP model), the serum level of amylase or lipase Was decreased

  16. Substituting complements

    NARCIS (Netherlands)

    G. Dari-Mattiacci; F. Parisi

    2006-01-01

    The presence of multiple sellers in the provision of (nonsubstitutable) complementary goods leads to outcomes that are worse than those generated by a monopoly (with a vertically integrated production of complements), a problem known in the economic literature as complementary oligopoly and recently

  17. Substituting complements

    NARCIS (Netherlands)

    G. Dari-Mattiacci; F. Parisi

    2009-01-01

    The presence of multiple sellers in the provision of (nonsubstitutable) complementary goods leads to outcomes that are worse than those generated by a monopoly (with a vertically integrated production of complements), a problem known in the economic literature as complementary oligopoly and recently

  18. Transcriptome analysis reveals a classical interferon signature induced by IFNλ4 in human primary cells

    DEFF Research Database (Denmark)

    Lauber, Chris; Vieyres, Gabrielle; Terczynska-Dyla, Ewa;

    2015-01-01

    4 could be a tissue-specific regulation of an unknown subset of genes. To address both tissue and subtype specificity in the interferon response, we treated primary human hepatocytes and airway epithelial cells with IFNα, IFNλ3 or IFNλ4 and assessed interferon mediated gene regulation using...... transcriptome sequencing. Our data show a surprisingly similar response to all three subtypes of interferon. We also addressed the tissue specificity of the response, and identified a subset of tissue-specific genes. However, the interferon response is robust in both tissues with the majority of the identified...... genes being regulated in hepatocytes as well as airway epithelial cells. Thus we provide an in-depth analysis of the liver interferon response seen over an array of interferon subtypes and compare it to the response in the lung epithelium....

  19. Single neuron transcriptome analysis can reveal more than cell type classification: Does it matter if every neuron is unique?

    Science.gov (United States)

    Harbom, Lise J; Chronister, William D; McConnell, Michael J

    2016-02-01

    A recent single cell mRNA sequencing study by Dueck et al. compares neuronal transcriptomes to the transcriptomes of adipocytes and cardiomyocytes. Single cell omic approaches such as those used by the authors are at the leading edge of molecular and biophysical measurement. Many groups are currently employing single cell sequencing approaches to understand cellular heterogeneity in cancer and during normal development. These single cell approaches also are beginning to address long-standing questions regarding nervous system diversity. Beyond an innate interest in cataloging cell type diversity in the brain, single cell neuronal diversity has important implications for neurotypic neural circuit function and for neurological disease. Herein, we review the authors' methods and findings, which most notably include evidence of unique expression profiles in some single neurons. PMID:26749010

  20. Scrapie pathogenesis: the role of complement C1q in scrapie agent uptake by conventional dendritic cells.

    Science.gov (United States)

    Flores-Langarica, Adriana; Sebti, Yasmine; Mitchell, Daniel A; Sim, Robert B; MacPherson, Gordon G

    2009-02-01

    Mice lacking complement components show delayed development of prion disease following peripheral inoculation. The delay could relate to reduced scrapie prion protein (PrP(Sc)) accumulation on follicular dendritic cells (DCs). However conventional DCs (cDCs) play a crucial role in the early pathogenesis of prion diseases and complement deficiency could result in decreased PrP(Sc) uptake by cDCs in the periphery. To explore this possibility, we cultured murine splenic or gut-associated lymph node cDCs with scrapie-infected whole brain homogenate in the presence or absence of complement. Uptake decreased significantly if the serum in the cultures was heat-inactivated. Because heat inactivation primarily denatures C1q, we used serum from C1q(-/-) mice and showed that PrP(Sc) uptake was markedly decreased. PrP(Sc) internalization was saturable and temperature-dependent, suggesting receptor-mediated uptake. Furthermore, uptake characteristics differed from fluid-phase endocytosis. Immunofluorescence showed colocalization of C1q and PrP(Sc), suggesting interaction between these molecules. We evaluated the expression of several complement receptors on cDCs and confirmed that cDCs that take up PrP(Sc) express one of the C1q receptors, calreticulin. Our results show that C1q participates in PrP(Sc) uptake by cDCs, revealing a critical role for cDCs in initial prion capture, an event that takes place before the PrP(Sc) accumulation within the follicular DC network. PMID:19155476

  1. Transcriptome and proteome characterization of surface ectoderm cells differentiated from human iPSCs.

    Science.gov (United States)

    Qu, Ying; Zhou, Bo; Yang, Wei; Han, Bingchen; Yu-Rice, Yi; Gao, Bowen; Johnson, Jeffery; Svendsen, Clive N; Freeman, Michael R; Giuliano, Armando E; Sareen, Dhruv; Cui, Xiaojiang

    2016-01-01

    Surface ectoderm (SE) cells give rise to structures including the epidermis and ectodermal associated appendages such as hair, eye, and the mammary gland. In this study, we validate a protocol that utilizes BMP4 and the γ-secretase inhibitor DAPT to induce SE differentiation from human induced pluripotent stem cells (hiPSCs). hiPSC-differentiated SE cells expressed markers suggesting their commitment to the SE lineage. Computational analyses using integrated quantitative transcriptomic and proteomic profiling reveal that TGFβ superfamily signaling pathways are preferentially activated in SE cells compared with hiPSCs. SE differentiation can be enhanced by selectively blocking TGFβ-RI signaling. We also show that SE cells and neural ectoderm cells possess distinct gene expression patterns and signaling networks as indicated by functional Ingenuity Pathway Analysis. Our findings advance current understanding of early human SE cell development and pave the way for modeling of SE-derived tissue development, studying disease pathogenesis, and development of regenerative medicine approaches. PMID:27550649

  2. Complement receptor 2, natural antibodies and innate immunity: Inter-relationships in B cell selection and activation.

    Science.gov (United States)

    Holers, V Michael; Kulik, Liudmila

    2007-01-01

    Complement receptor type 2 (CR2) is a receptor that serves as an important interface between the complement system and adaptive immunity. Recent studies have shown that CR2 is also centrally involved in innate immunity, and one key area is the development of potentially pathogenic natural antibodies that target neo-epitopes revealed in ischemic tissue undergoing reperfusion. Mice lacking either total immunoglobulins or CR2 alone are protected from the development of ischemia-reperfusion injury, and this effect can be reversed by introducing CR2-sufficient B-1 cells or by transferring polyclonal natural IgM antibody from wild type mice as well as monoclonal antibodies that recognize phospholipids, DNA or non-muscle myosin. We will report at the XXI ICW an additional membrane-associated protein to which pathogenic IgM antibodies are directed. Whether B cells producing these natural antibodies are differentially selected in CR2-deficient mice is as yet not well understood, and the complement-related mechanism(s) whereby this differential repertoire selection process could occur have yet to be explored in any detail. In addition to this important role in innate immunity, CR2 can also act as a receptor for other components or activators of innate immunity. One such component is interferon-alpha, an anti-viral cytokine that binds CR2 and induces a component of its mRNA signature in B cells through this receptor. Other potential CR2 ligands are DNA and DNA-containing complexes such as chromatin. The biologic role of these CR2 interactions with interferon-alpha and DNA-containing complexes is not well understood, but may be important in the development of the autoimmune disease systemic lupus erythematosus that is characterized by enhanced interferon-alpha levels and loss of self tolerance to DNA-containing self antigens. PMID:16876864

  3. Genome wide transcriptome analysis of dendritic cells identifies genes with altered expression in psoriasis.

    Directory of Open Access Journals (Sweden)

    Kata Filkor

    Full Text Available Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS or peptidoglycan (PGN induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs upon PGN induced tolerance. Using SAGE-Seq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (Kegg analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified

  4. Transcriptome analysis of bone marrow mesenchymal stromal cells from patients with primary myelofibrosis

    Directory of Open Access Journals (Sweden)

    Christophe Martinaud

    2015-09-01

    Full Text Available Primary myelofibrosis (PMF is a clonal myeloproliferative neoplasm whose severity and treatment complexity are attributed to the presence of bone marrow (BM fibrosis and alterations of stroma impairing the production of normal blood cells. Despite the recently discovered mutations including the JAK2V617F mutation in about half of patients, the primitive event responsible for the clonal proliferation is still unknown. In the highly inflammatory context of PMF, the presence of fibrosis associated with a neoangiogenesis and an osteosclerosis concomitant to the myeloproliferation and to the increase number of circulating hematopoietic progenitors suggests that the crosstalk between hematopoietic and stromal cells is deregulated in the PMF BM microenvironmental niches. Within these niches, mesenchymal stromal cells (BM-MSC play a hematopoietic supportive role in the production of growth factors and extracellular matrix which regulate the proliferation, differentiation, adhesion and migration of hematopoietic stem/progenitor cells. A transcriptome analysis of BM-MSC in PMF patients will help to characterize their molecular alterations and to understand their involvement in the hematopoietic stem/progenitor cell deregulation that features PMF.

  5. Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration.

    Science.gov (United States)

    Cao, Jingli; Navis, Adam; Cox, Ben D; Dickson, Amy L; Gemberling, Matthew; Karra, Ravi; Bagnat, Michel; Poss, Kenneth D

    2016-01-15

    In contrast to mammals, adult zebrafish have a high capacity to regenerate damaged or lost myocardium through proliferation of cardiomyocytes spared from damage. The epicardial sheet covering the heart is activated by injury and aids muscle regeneration through paracrine effects and as a multipotent cell source, and has received recent attention as a target in cardiac repair strategies. Although it is recognized that epicardium is required for muscle regeneration and itself has high regenerative potential, the extent of cellular heterogeneity within epicardial tissue is largely unexplored. Here, we performed transcriptome analysis on dozens of epicardial lineage cells purified from zebrafish harboring a transgenic reporter for the pan-epicardial gene tcf21. Hierarchical clustering analysis suggested the presence of at least three epicardial cell subsets defined by expression signatures. We validated many new pan-epicardial and epicardial markers by alternative expression assays. Additionally, we explored the function of the scaffolding protein and main component of caveolae, caveolin 1 (cav1), which was present in each epicardial subset. In BAC transgenic zebrafish, cav1 regulatory sequences drove strong expression in ostensibly all epicardial cells and in coronary vascular endothelial cells. Moreover, cav1 mutant zebrafish generated by genome editing showed grossly normal heart development and adult cardiac anatomy, but displayed profound defects in injury-induced cardiomyocyte proliferation and heart regeneration. Our study defines a new platform for the discovery of epicardial lineage markers, genetic tools, and mechanisms of heart regeneration.

  6. Mice generated from tetraploid complementation competent iPS cells show similar developmental features as those from ES cells but are prone to tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Man Tong; Hua-Jun Wu; Zhi-Kun Li; Fanyi Zeng; Liu Wang; Xiu-Jie Wang; Jia-Hao Sha; Qi Zhou; Zhuo Lv; Lei Liu; Hui Zhu; Qin-Yuan Zheng; Xiao-Yang Zhao; Wei Li; Yi-Bo Wu; Hai-Jiang Zhang

    2011-01-01

    Dear Editor,Ever since the creation of induced pluripotent cells (iPSCs) from adult somatic cells by the ectopic expression of defined transcription factors [1,2],whether iPS cells are equivalent to embryonic stem cells (ESCs) in function and safety aspects has been a major concern regarding their potential applications.Previously,we and others have demonstrated that fully reprogrammed iPSCs were capable of producing full-term mice via the tetraploid complementation method [3-5],yet a thorough postnatal development evaluation of iPS mice is still lacking.

  7. Complementation of radiation-sensitive Ataxia telangiectasia cells after transfection of cDNA expression libraries and cosmid clones from wildtype cells

    International Nuclear Information System (INIS)

    In this Ph.D.-thesis, phenotypic complementation of AT-cells (AT5BIVA) by transfection of cDNA-expression-libraries was adressed: After stable transfection of cDNA-expression-libraries G418 resistant clones were selected for enhanced radioresistance by a fractionated X-ray selection. One surviving transfectant clone (clone 514) exhibited enhanced radiation resistance in dose-response experiments and further X-ray selections. Cell cycle analysis revealed complementation of untreated and irradiated 514-cells in cell cycle progression. The rate of DNA synthesis, however, is not diminished after irradiation but shows the reverse effect. A transfected cDNA-fragment (AT500-cDNA) was isolated from the genomic DNA of 514-cells and proved to be an unknown DNA sequence. A homologous sequence could be detected in genomic DNA from human cell lines, but not in DNA from other species. The cDNA-sequence could be localized to human chromosome 11. In human cells the cDNA sequence is part of two large mRNAs. 4 different cosmid clones containing high molecular genomic DNA from normal human cells could be isolated from a library, each hybridizing to the AT500-cDNA. After stable transfection into AT-cells, one cosmid-clone was able to confer enhanced radiation resistance both in X-ray selections and dose-response experiments. The results indicate that the cloned cDNA-fragment is based on an unknown gene from human chromosome 11 which partially complements the radiosensitivity and the defective cell cycle progression in AT5BIVA cells. (orig.)

  8. Integrated metabolomics and transcriptomics reveal enhanced specialized metabolism in Medicago truncatula root border cells.

    Science.gov (United States)

    Watson, Bonnie S; Bedair, Mohamed F; Urbanczyk-Wochniak, Ewa; Huhman, David V; Yang, Dong Sik; Allen, Stacy N; Li, Wensheng; Tang, Yuhong; Sumner, Lloyd W

    2015-04-01

    Integrated metabolomics and transcriptomics of Medicago truncatula seedling border cells and root tips revealed substantial metabolic differences between these distinct and spatially segregated root regions. Large differential increases in oxylipin-pathway lipoxygenases and auxin-responsive transcript levels in border cells corresponded to differences in phytohormone and volatile levels compared with adjacent root tips. Morphological examinations of border cells revealed the presence of significant starch deposits that serve as critical energy and carbon reserves, as documented through increased β-amylase transcript levels and associated starch hydrolysis metabolites. A substantial proportion of primary metabolism transcripts were decreased in border cells, while many flavonoid- and triterpenoid-related metabolite and transcript levels were increased dramatically. The cumulative data provide compounding evidence that primary and secondary metabolism are differentially programmed in border cells relative to root tips. Metabolic resources normally destined for growth and development are redirected toward elevated accumulation of specialized metabolites in border cells, resulting in constitutively elevated defense and signaling compounds needed to protect the delicate root cap and signal motile rhizobia required for symbiotic nitrogen fixation. Elevated levels of 7,4'-dihydroxyflavone were further increased in border cells of roots exposed to cotton root rot (Phymatotrichopsis omnivora), and the value of 7,4'-dihydroxyflavone as an antimicrobial compound was demonstrated using in vitro growth inhibition assays. The cumulative and pathway-specific data provide key insights into the metabolic programming of border cells that strongly implicate a more prominent mechanistic role for border cells in plant-microbe signaling, defense, and interactions than envisioned previously.

  9. Comprehensive transcriptomic and proteomic characterization of human mesenchymal stem cells reveals source specific cellular markers.

    Science.gov (United States)

    Billing, Anja M; Ben Hamidane, Hisham; Dib, Shaima S; Cotton, Richard J; Bhagwat, Aditya M; Kumar, Pankaj; Hayat, Shahina; Yousri, Noha A; Goswami, Neha; Suhre, Karsten; Rafii, Arash; Graumann, Johannes

    2016-01-01

    Mesenchymal stem cells (MSC) are multipotent cells with great potential in therapy, reflected by more than 500 MSC-based clinical trials registered with the NIH. MSC are derived from multiple tissues but require invasive harvesting and imply donor-to-donor variability. Embryonic stem cell-derived MSC (ESC-MSC) may provide an alternative, but how similar they are to ex vivo MSC is unknown. Here we performed an in depth characterization of human ESC-MSC, comparing them to human bone marrow-derived MSC (BM-MSC) as well as human embryonic stem cells (hESC) by transcriptomics (RNA-seq) and quantitative proteomics (nanoLC-MS/MS using SILAC). Data integration highlighted and validated a central role of vesicle-mediated transport and exosomes in MSC biology and also demonstrated, through enrichment analysis, their versatility and broad application potential. Particular emphasis was placed on comparing profiles between ESC-MSC and BM-MSC and assessing their equivalency. Data presented here shows that differences between ESC-MSC and BM-MSC are similar in magnitude to those reported for MSC of different origin and the former may thus represent an alternative source for therapeutic applications. Finally, we report an unprecedented coverage of MSC CD markers, as well as membrane associated proteins which may benefit immunofluorescence-based applications and contribute to a refined molecular description of MSC. PMID:26857143

  10. Long-range Transcriptome Sequencing Reveals Cancer Cell Growth Regulatory Chimeric mRNA

    Directory of Open Access Journals (Sweden)

    Roberto Plebani

    2012-11-01

    Full Text Available mRNA chimeras from chromosomal translocations often play a role as transforming oncogenes. However, cancer transcriptomes also contain mRNA chimeras that may play a role in tumor development, which arise as transcriptional or post-transcriptional events. To identify such chimeras, we developed a deterministic screening strategy for long-range sequence analysis. High-throughput, long-read sequencing was then performed on cDNA libraries from major tumor histotypes and corresponding normal tissues. These analyses led to the identification of 378 chimeras, with an unexpectedly high frequency of expression (≈2 x 10-5 of all mRNA. Functional assays in breast and ovarian cancer cell lines showed that a large fraction of mRNA chimeras regulates cell replication. Strikingly, chimeras were shown to include both positive and negative regulators of cell growth, which functioned as such in a cell-type-specific manner. Replication-controlling chimeras were found to be expressed by most cancers from breast, ovary, colon, uterus, kidney, lung, and stomach, suggesting a widespread role in tumor development.

  11. Global irradiation effects, stem cell genes and rare transcripts in the planarian transcriptome.

    Science.gov (United States)

    Galloni, Mireille

    2012-01-01

    Stem cells are the closest relatives of the totipotent primordial cell, which is able to spawn millions of daughter cells and hundreds of cell types in multicellular organisms. Stem cells are involved in tissue homeostasis and regeneration, and may play a major role in cancer development. Among animals, planarians host a model stem cell type, called the neoblast, which essentially confers immortality. Gaining insights into the global transcriptional landscape of these exceptional cells takes an unprecedented turn with the advent of Next Generation Sequencing methods. Two Digital Gene Expression transcriptomes of Schmidtea mediterranea planarians, with or without neoblasts lost through irradiation, were produced and analyzed. Twenty one bp NlaIII tags were mapped to transcripts in the Schmidtea and Dugesia taxids. Differential representation of tags in normal versus irradiated animals reflects differential gene expression. Canonical and non-canonical tags were included in the analysis, and comparative studies with human orthologs were conducted. Transcripts fell into 3 categories: invariant (including housekeeping genes), absent in irradiated animals (potential neoblast-specific genes, IRDOWN) and induced in irradiated animals (potential cellular stress response, IRUP). Different mRNA variants and gene family members were recovered. In the IR-DOWN class, almost all of the neoblast-specific genes previously described were found. In irradiated animals, a larger number of genes were induced rather than lost. A significant fraction of IRUP genes behaved as if transcript versions of different lengths were produced. Several novel potential neoblast-specific genes have been identified that varied in relative abundance, including highly conserved as well as novel proteins without predicted orthologs. Evidence for a large body of antisense transcripts, for example regulated antisense for the Smed-piwil1 gene, and evidence for RNA shortening in irradiated animals is presented

  12. CD8+ T Cells Complement Antibodies in Protecting against Yellow Fever Virus

    DEFF Research Database (Denmark)

    Bassi, Maria R; Kongsgaard, Michael; Steffensen, Maria A;

    2015-01-01

    can still induce some antiviral protection, and in vivo depletion of CD8(+) T cells from these animals revealed a pivotal role for CD8(+) T cells in controlling virus replication in the absence of a humoral response. Finally, we demonstrated that effector CD8(+) T cells also contribute to viral......The attenuated yellow fever (YF) vaccine (YF-17D) was developed in the 1930s, yet little is known about the protective mechanisms underlying its efficiency. In this study, we analyzed the relative contribution of cell-mediated and humoral immunity to the vaccine-induced protection in a murine model...... of YF-17D infection. Using different strains of knockout mice, we found that CD4(+) T cells, B cells, and Abs are required for full clinical protection of vaccinated mice, whereas CD8(+) T cells are dispensable for long-term survival after intracerebral challenge. However, by analyzing the immune...

  13. Transcriptomic and proteomic analysis of human hepatic stellate cells treated with natural taurine.

    Science.gov (United States)

    Liang, Jian; Deng, Xin; Wu, Fa-Sheng; Tang, Yan-Fang

    2013-05-01

    The aim of this study was to investigate the differential expression of genes and proteins between natural taurine (NTau)‑treated hepatic stellate cells (HSCs) and control cells as well as the underlying mechanism of NTau in inhibiting hepatic fibrosis. A microculture tetrazolium (MTT) assay was used to analyze the proliferation of NTau‑treated HSCs. Flow cytometry was performed to compare the apoptosis rate between NTau-treated and non‑treated HSCs. Proteomic analysis using a combination of 2-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) was conducted to identify the differentially expressed proteins. Microarray analysis was performed to investigate the differential expression of genes and real-time polymerase chain reaction (PCR) was used to validate the results. The experimental findings obtained demonstrated that NTau decreased HSC proliferation, resulting in an increased number of cells in the G0/G1 phase and a reduced number of cells in the S phase. Flow cytometric analysis showed that NTau-treated HSCs had a significantly increased rate of apoptosis when compared with the non‑treated control group. A total of 15 differentially expressed proteins and 658 differentially expressed genes were identified by 2DE and MS, and microarray analysis, respectively. Gene ontology (GO) functional analysis indicated that these genes and proteins were enriched in the function clusters and pathways related to cell proliferation, cellular apoptosis and oxidation. The transcriptome and proteome analyses of NTau-treated HSCs demonstrated that NTau is able to significantly inhibit cell proliferation and promote cell apoptosis, highlighting its potential therapeutic benefits in the treatment of hepatic fibrosis.

  14. Transcriptomic and proteomic analysis of human hepatic stellate cells treated with natural taurine.

    Science.gov (United States)

    Liang, Jian; Deng, Xin; Wu, Fa-Sheng; Tang, Yan-Fang

    2013-05-01

    The aim of this study was to investigate the differential expression of genes and proteins between natural taurine (NTau)‑treated hepatic stellate cells (HSCs) and control cells as well as the underlying mechanism of NTau in inhibiting hepatic fibrosis. A microculture tetrazolium (MTT) assay was used to analyze the proliferation of NTau‑treated HSCs. Flow cytometry was performed to compare the apoptosis rate between NTau-treated and non‑treated HSCs. Proteomic analysis using a combination of 2-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) was conducted to identify the differentially expressed proteins. Microarray analysis was performed to investigate the differential expression of genes and real-time polymerase chain reaction (PCR) was used to validate the results. The experimental findings obtained demonstrated that NTau decreased HSC proliferation, resulting in an increased number of cells in the G0/G1 phase and a reduced number of cells in the S phase. Flow cytometric analysis showed that NTau-treated HSCs had a significantly increased rate of apoptosis when compared with the non‑treated control group. A total of 15 differentially expressed proteins and 658 differentially expressed genes were identified by 2DE and MS, and microarray analysis, respectively. Gene ontology (GO) functional analysis indicated that these genes and proteins were enriched in the function clusters and pathways related to cell proliferation, cellular apoptosis and oxidation. The transcriptome and proteome analyses of NTau-treated HSCs demonstrated that NTau is able to significantly inhibit cell proliferation and promote cell apoptosis, highlighting its potential therapeutic benefits in the treatment of hepatic fibrosis. PMID:23525364

  15. Transcriptomic analysis of the dialogue between Pseudorabies virus and porcine epithelial cells during infection

    Directory of Open Access Journals (Sweden)

    Chardon Patrick

    2008-03-01

    Full Text Available Abstract Background Transcriptomic approaches are relevant for studying virus-host cell dialogues to better understand the physiopathology of infection and the immune response at the cellular level. Pseudorabies virus (PrV, a porcine Alphaherpesvirus, is a good model for such studies in pig. Since PrV displays a strong tropism for mucous epithelial cells, we developed a kinetics study of PrV infection in the porcine PK15 epithelial cell line. To identify as completely as possible, viral and cellular genes regulated during infection, we simultaneously analyzed PrV and cellular transcriptome modifications using two microarrays i.e. a laboratory-made combined SLA/PrV microarray, consisting of probes for all PrV genes and for porcine genes contained in the Swine Leukocyte Antigen (SLA complex, and the porcine generic Qiagen-NRSP8 oligonucleotide microarray. We confirmed the differential expression of a selected set of genes by qRT-PCR and flow cytometry. Results An increase in the number of differentially expressed cellular genes and PrV genes especially from 4 h post-infection (pi was observed concomitantly with the onset of viral progeny while no early global cellular shutoff was recorded. Many cellular genes were down-regulated from 4 h pi and their number increased until 12 h pi. UL41 transcripts encoding the virion host shutoff protein were first detected as differentially expressed at 8 h pi. The viral gene UL49.5 encoding a TAP inhibitor protein was differentially expressed as soon as 2 h pi, indicating that viral evasion via TAP inhibition may start earlier than the cellular gene shutoff. We found that many biological processes are altered during PrV infection. Indeed, several genes involved in the SLA class I antigenic presentation pathway (SLA-Ia, TAP1, TAP2, PSMB8 and PSMB9, were down-regulated, thus contributing to viral immune escape from this pathway and other genes involved in apoptosis, nucleic acid metabolism, cytoskeleton signaling

  16. Complementation of the xeroderma pigmentosum DNA repair synthesis defect with Escherichia coli UvrABC proteins in a cell-free system.

    OpenAIRE

    Hansson, J; Grossman, L; Lindahl, T; Wood, R D

    1990-01-01

    A newly developed cell-free system was used to study DNA repair synthesis carried out by extracts from human cell lines in vitro. Extracts from a normal human lymphoid cell line and from cell lines established from individuals with hereditary dysplastic nevus syndrome perform damage-dependent repair synthesis in plasmid DNA treated with cis- or trans-diamminedichloro-platinum(II) or irradiated with ultraviolet light. Cell extracts of xeroderma pigmentosum origin (complementation groups A, C, ...

  17. N-formylpeptide and complement C5a receptors are expressed in liver cells and mediate hepatic acute phase gene regulation

    OpenAIRE

    1995-01-01

    Although the classical chemotactic receptor for complement anaphylatoxin C5a has been associated with polymorphonuclear and mononuclear phagocytes, several recent studies have indicated that this receptor is expressed on nonmyeloid cells including human endothelial cells, vascular smooth muscle cells, bronchial and alveolar epithelial cells, hepatocytes, and in the human hepatoma cell line HepG2. In this study, we examined the possibility that other members of the chemotactic receptor family ...

  18. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells

    Directory of Open Access Journals (Sweden)

    Zhao Zhixin

    2011-05-01

    Full Text Available Abstract Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA. ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and

  19. Bimolecular Fluorescence Complementation (BiFC) Analysis of Protein-Protein Interactions and Assessment of Subcellular Localization in Live Cells.

    Science.gov (United States)

    Pratt, Evan P S; Owens, Jake L; Hockerman, Gregory H; Hu, Chang-Deng

    2016-01-01

    Bimolecular fluorescence complementation (BiFC) is a fluorescence imaging technique used to visualize protein-protein interactions (PPIs) in live cells and animals. One unique application of BiFC is to reveal subcellular localization of PPIs. The superior signal-to-noise ratio of BiFC in comparison with fluorescence resonance energy transfer or bioluminescence resonance energy transfer enables its wide applications. Here, we describe how confocal microscopy can be used to detect and quantify PPIs and their subcellular localization. We use basic leucine zipper transcription factor proteins as an example to provide a step-by-step BiFC protocol using a Nikon A1 confocal microscope and NIS-Elements imaging software. The protocol given below can be readily adapted for use with other confocal microscopes or imaging software. PMID:27515079

  20. Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis

    Directory of Open Access Journals (Sweden)

    Gabet Yankel

    2010-09-01

    Full Text Available Abstract Background Prostate cancer (PCa cells preferentially metastasize to bone at least in part by acquiring osteomimetic properties. Runx2, an osteoblast master transcription factor, is aberrantly expressed in PCa cells, and promotes their metastatic phenotype. The transcriptional programs regulated by Runx2 have been extensively studied during osteoblastogenesis, where it activates or represses target genes in a context-dependent manner. However, little is known about the gene regulatory networks influenced by Runx2 in PCa cells. We therefore investigated genome wide mRNA expression changes in PCa cells in response to Runx2. Results We engineered a C4-2B PCa sub-line called C4-2B/Rx2dox, in which Doxycycline (Dox treatment stimulates Runx2 expression from very low to levels observed in other PCa cells. Transcriptome profiling using whole genome expression array followed by in silico analysis indicated that Runx2 upregulated a multitude of genes with prominent cancer associated functions. They included secreted factors (CSF2, SDF-1, proteolytic enzymes (MMP9, CST7, cytoskeleton modulators (SDC2, Twinfilin, SH3PXD2A, intracellular signaling molecules (DUSP1, SPHK1, RASD1 and transcription factors (Sox9, SNAI2, SMAD3 functioning in epithelium to mesenchyme transition (EMT, tissue invasion, as well as homing and attachment to bone. Consistent with the gene expression data, induction of Runx2 in C4-2B cells enhanced their invasiveness. It also promoted cellular quiescence by blocking the G1/S phase transition during cell cycle progression. Furthermore, the cell cycle block was reversed as Runx2 levels declined after Dox withdrawal. Conclusions The effects of Runx2 in C4-2B/Rx2dox cells, as well as similar observations made by employing LNCaP, 22RV1 and PC3 cells, highlight multiple mechanisms by which Runx2 promotes the metastatic phenotype of PCa cells, including tissue invasion, homing to bone and induction of high bone turnover. Runx2 is

  1. Identification of thalidomide-specific transcriptomics and proteomics signatures during differentiation of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kesavan Meganathan

    Full Text Available Embryonic development can be partially recapitulated in vitro by differentiating human embryonic stem cells (hESCs. Thalidomide is a developmental toxicant in vivo and acts in a species-dependent manner. Besides its therapeutic value, thalidomide also serves as a prototypical model to study teratogenecity. Although many in vivo and in vitro platforms have demonstrated its toxicity, only a few test systems accurately reflect human physiology. We used global gene expression and proteomics profiling (two dimensional electrophoresis (2DE coupled with Tandem Mass spectrometry to demonstrate hESC differentiation and thalidomide embryotoxicity/teratogenecity with clinically relevant dose(s. Proteome analysis showed loss of POU5F1 regulatory proteins PKM2 and RBM14 and an over expression of proteins involved in neuronal development (such as PAK2, PAFAH1B2 and PAFAH1B3 after 14 days of differentiation. The genomic and proteomic expression pattern demonstrated differential expression of limb, heart and embryonic development related transcription factors and biological processes. Moreover, this study uncovered novel possible mechanisms, such as the inhibition of RANBP1, that participate in the nucleocytoplasmic trafficking of proteins and inhibition of glutathione transferases (GSTA1, GSTA2, that protect the cell from secondary oxidative stress. As a proof of principle, we demonstrated that a combination of transcriptomics and proteomics, along with consistent differentiation of hESCs, enabled the detection of canonical and novel teratogenic intracellular mechanisms of thalidomide.

  2. Human embryonic and induced pluripotent stem cell research trends: complementation and diversification of the field.

    Science.gov (United States)

    Kobold, Sabine; Guhr, Anke; Kurtz, Andreas; Löser, Peter

    2015-05-12

    Research in human induced pluripotent stem cells (hiPSCs) is rapidly developing and there are expectations that this research may obviate the need to use human embryonic stem cells (hESCs), the ethics of which has been a subject of controversy for more than 15 years. In this study, we investigated approximately 3,400 original research papers that reported an experimental use of these types of human pluripotent stem cells (hPSCs) and were published from 2008 to 2013. We found that research into both cell types was conducted independently and further expanded, accompanied by a growing intersection of both research fields. Moreover, an in-depth analysis of papers that reported the use of both cell types indicates that hESCs are still being used as a "gold standard," but in a declining proportion of publications. Instead, the expanding research field is diversifying and hESC and hiPSC lines are increasingly being used in more independent research and application areas.

  3. Depression of Complement Regulatory Factors in Rat and Human Renal Grafts Is Associated with the Progress of Acute T-Cell Mediated Rejection.

    Directory of Open Access Journals (Sweden)

    Kazuaki Yamanaka

    Full Text Available The association of complement with the progression of acute T cell mediated rejection (ATCMR is not well understood. We investigated the production of complement components and the expression of complement regulatory proteins (Cregs in acute T-cell mediated rejection using rat and human renal allografts.We prepared rat allograft and syngeneic graft models of renal transplantation. The expression of Complement components and Cregs was assessed in the rat grafts using quantitative real-time PCR (qRT-PCR and immunofluorescent staining. We also administered anti-Crry and anti-CD59 antibodies to the rat allograft model. Further, we assessed the relationship between the expression of membrane cofactor protein (MCP by immunohistochemical staining in human renal grafts and their clinical course.qRT-PCR results showed that the expression of Cregs, CD59 and rodent-specific complement regulator complement receptor 1-related gene/protein-y (Crry, was diminished in the rat allograft model especially on day 5 after transplantation in comparison with the syngeneic model. In contrast, the expression of complement components and receptors: C3, C3a receptor, C5a receptor, Factor B, C9, C1q, was increased, but not the expression of C4 and C5, indicating a possible activation of the alternative pathway. When anti-Crry and anti-CD59 mAbs were administered to the allograft, the survival period for each group was shortened. In the human ATCMR cases, the group with higher MCP expression in the grafts showed improved serum creatinine levels after the ATCMR treatment as well as a better 5-year graft survival rate.We conclude that the expression of Cregs in allografts is connected with ATCMR. Our results suggest that controlling complement activation in renal grafts can be a new strategy for the treatment of ATCMR.

  4. The potential role of cell surface complement regulators and circulating CD4+ CD25+ T-cells in the development of autoimmune myasthenia gravis

    OpenAIRE

    Hamdoon, Mohamed Nasreldin Thabit; Fattouh, Mona; El-din, Asmaa Nasr; Elnady, Hassan M.

    2016-01-01

    Introduction CD4+CD25+ regulatory T-lymphocytes (T-regs) and regulators of complement activity (RCA) involving CD55 and CD59 play an important role in the prevention of autoimmune diseases. However, their role in the pathogenesis of human autoimmune myasthenia gravis (MG) remains unclear. This study aimed to determine the frequency of peripheral blood T-regs and CD4+ T-helper (T-helper) cells and the red blood cells (RBCs) level of expression of CD55 and CD59 in MG patients. Methods Fourteen ...

  5. Transcriptomic signatures of transfer cells in early developing nematode feeding cells of Arabidopsis focused on auxin and ethylene signalling.

    Directory of Open Access Journals (Sweden)

    Javier eCabrera

    2014-03-01

    Full Text Available Phyto-endoparasitic nematodes induce specialized feeding cells (NFCs in their hosts, termed syncytia and giant cells (GCs for cyst and root-knot nematodes, respectively. They differ in their ontogeny and global transcriptional signatures, but both develop cell wall ingrowths to facilitate high rates of apoplastic/symplastic solute exchange showing transfer cell (TC characteristics. Regulatory signals for TC differentiation are not still well known. The two-component signalling system (2CS and reactive oxygen species are proposed as inductors of TC identity, while, 2CSs-related genes are not major contributors to differential gene expression in early developing NFCs. Additionally, transcriptomic and functional studies have assigned a major role to auxin and ethylene as regulatory signals on early developing TCs. Genes encoding proteins with similar functions expressed in both early developing NFCs and typical TCs are putatively involved in upstream or downstream responses mediated by auxin and ethylene. Yet, no function directly associated to the TCs identity of NFCs, such as the formation of cell wall ingrowths is described for most of them. Thus we reviewed similarities between transcriptional changes observed during the early stages of NFCs formation and those described during differentiation of TCs to hypothesize about putative signals leading to TC-like differentiation of NFCs with particular emphasis on auxin an ethylene.

  6. Research Resource: The Dexamethasone Transcriptome in Hypothalamic Embryonic Neural Stem Cells.

    Science.gov (United States)

    Frahm, Krystle A; Peffer, Melanie E; Zhang, Janie Y; Luthra, Soumya; Chakka, Anish B; Couger, Matthew B; Chandran, Uma R; Monaghan, A Paula; DeFranco, Donald B

    2016-01-01

    Exposure to excess glucocorticoids during fetal development has long-lasting physiological and behavioral consequences, although the mechanisms are poorly understood. The impact of prenatal glucocorticoids exposure on stress responses in juvenile and adult offspring implicates the developing hypothalamus as a target of adverse prenatal glucocorticoid action. Therefore, primary cultures of hypothalamic neural-progenitor/stem cells (NPSCs) derived from mouse embryos (embryonic day 14.5) were used to identify the glucocorticoid transcriptome in both males and females. NPSCs were treated with vehicle or the synthetic glucocorticoid dexamethasone (dex; 100nM) for 4 hours and total RNA analyzed using RNA-Sequencing. Bioinformatic analysis demonstrated that primary hypothalamic NPSC cultures expressed relatively high levels of a number of genes regulating stem cell proliferation and hypothalamic progenitor function. Interesting, although these cells express glucocorticoid receptors (GRs), only low levels of sex-steroid receptors are expressed, which suggested that sex-specific differentially regulated genes identified are mediated by genetic and not hormonal influences. We also identified known or novel GR-target coding and noncoding genes that are either regulated equivalently in male and female NPSCs or differential responsiveness in one sex. Using gene ontology analysis, the top functional network identified was cell proliferation and using bromodeoxyuridine (BrdU) incorporation observed a reduction in proliferation of hypothalamic NPSCs after dexamethasone treatment. Our studies provide the first characterization and description of glucocorticoid-regulated pathways in male and female embryonically derived hypothalamic NPSCs and identified GR-target genes during hypothalamic development. These findings may provide insight into potential mechanisms responsible for the long-term consequences of fetal glucocorticoid exposure in adulthood.

  7. Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation.

    Science.gov (United States)

    Song, Hongbin; He, Chun; Knaak, Christian; Guthridge, Joel M; Holers, V Michael; Tomlinson, Stephen

    2003-06-01

    In a strategy to specifically target complement inhibitors to sites of complement activation and disease, recombinant fusion proteins consisting of a complement inhibitor linked to a C3 binding region of complement receptor (CR) 2 were prepared and characterized. Natural ligands for CR2 are C3 breakdown products deposited at sites of complement activation. Fusion proteins were prepared consisting of a human CR2 fragment linked to either the N terminus or C terminus of soluble forms of the membrane complement inhibitors decay accelerating factor (DAF) or CD59. The targeted complement inhibitors bound to C3-opsonized cells, and all were significantly more effective (up to 20-fold) than corresponding untargeted inhibitors at protecting target cells from complement. CR2 fusion proteins also inhibited CR3-dependent adhesion of U937 cells to C3 opsonized erythrocytes, indicating a second potential anti-inflammatory mechanism of CR2 fusion proteins, since CR3 is involved in endothelial adhesion and diapedesis of leukocytes at inflammatory sites. Finally, the in vivo validity of the targeting strategy was confirmed by the demonstration that CR2-DAF, but not soluble DAF, targets to the kidney in mouse models of lupus nephritis that are associated with renal complement deposition. PMID:12813023

  8. Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation.

    Science.gov (United States)

    Song, Hongbin; He, Chun; Knaak, Christian; Guthridge, Joel M; Holers, V Michael; Tomlinson, Stephen

    2003-06-01

    In a strategy to specifically target complement inhibitors to sites of complement activation and disease, recombinant fusion proteins consisting of a complement inhibitor linked to a C3 binding region of complement receptor (CR) 2 were prepared and characterized. Natural ligands for CR2 are C3 breakdown products deposited at sites of complement activation. Fusion proteins were prepared consisting of a human CR2 fragment linked to either the N terminus or C terminus of soluble forms of the membrane complement inhibitors decay accelerating factor (DAF) or CD59. The targeted complement inhibitors bound to C3-opsonized cells, and all were significantly more effective (up to 20-fold) than corresponding untargeted inhibitors at protecting target cells from complement. CR2 fusion proteins also inhibited CR3-dependent adhesion of U937 cells to C3 opsonized erythrocytes, indicating a second potential anti-inflammatory mechanism of CR2 fusion proteins, since CR3 is involved in endothelial adhesion and diapedesis of leukocytes at inflammatory sites. Finally, the in vivo validity of the targeting strategy was confirmed by the demonstration that CR2-DAF, but not soluble DAF, targets to the kidney in mouse models of lupus nephritis that are associated with renal complement deposition.

  9. Transcriptome-Based Analysis of Molecular Pathways for Clusterin Functions in Kidney Cells.

    Science.gov (United States)

    Dairi, Ghida; Guan, Qiunong; Roshan-Moniri, Mani; Collins, Colin C; Ong, Christopher J; Gleave, Martin E; Nguan, Christopher Y C; Du, Caigan

    2016-12-01

    Clusterin (CLU) is a chaperone-like protein and plays a protective role against renal ischemia-reperfusion injury (IRI); however, the molecular pathways for its functions in the kidney are not fully understood. This study was designed to investigate CLU-mediating pathways in kidney cells by using bioinformatics analysis. CLU null renal tubular epithelial cells (TECs) expressing human CLU cDNA (TEC-CLU(hCLU) ) or empty vector (TEC-CLU(-/-) ) were exposed to normoxia or hypoxia (1% O2 ). Transcriptome profiling with a significant twofold change was performed using SurePrint G3 Mouse Gene Expression 8 × 60 K microarray, and the signaling pathways was ranked by using Ingenuity pathway analysis. Here, we showed that compared to CLU null controls, ectopic expression of human CLU in CLU null kidney cells promoted cell growth but inhibited migration in normoxia, and enhanced cell survival in hypoxia. CLU expression affected expression of 3864 transcripts (1893 up-regulated) in normoxia and 3670 transcripts (1925 up-regulated) in hypoxia. CLU functions in normoxia were associated mostly with AKT2/PPP2R2B-dependent PI3K/AKT, PTEN, VEGF, and ERK/MAPK signaling and as well with GSK3B-mediated cell cycle progression. In addition to unfolded protein response (UPR) and/or endoplasmic reticulum (ER) stress, CLU-enhanced cell survival in hypoxia was also associated with PIK3CD/MAPK1-dependent PI3K/AKT, HIF-α, PTEN, VEGF, and ERK/MAPK signaling. In conclusion, our data showed that CLU functions in kidney cells were mainly mediated in a cascade manner by PI3K/AKT, PTEN, VEGF, and ERK/MAPK signaling, and specifically by activation of UPR/ER stress in hypoxia, providing new insights into the protective role of CLU in the kidney. J. Cell. Physiol. 231: 2628-2638, 2016. © 2016 Wiley Periodicals, Inc. PMID:27155085

  10. Systems Analysis of the Complement-Induced Priming Phase of Liver Regeneration.

    Science.gov (United States)

    Min, Jun S; DeAngelis, Robert A; Reis, Edimara S; Gupta, Shakti; Maurya, Mano R; Evans, Charles; Das, Arun; Burant, Charles; Lambris, John D; Subramaniam, Shankar

    2016-09-15

    Liver regeneration is a well-orchestrated process in the liver that allows mature hepatocytes to reenter the cell cycle to proliferate and replace lost or damaged cells. This process is often impaired in fatty or diseased livers, leading to cirrhosis and other deleterious phenotypes. Prior research has established the role of the complement system and its effector proteins in the progression of liver regeneration; however, a detailed mechanistic understanding of the involvement of complement in regeneration is yet to be established. In this study, we have examined the role of the complement system during the priming phase of liver regeneration through a systems level analysis using a combination of transcriptomic and metabolomic measurements. More specifically, we have performed partial hepatectomy on mice with genetic deficiency in C3, the major component of the complement cascade, and collected their livers at various time points. Based on our analysis, we show that the C3 cascade activates c-fos and promotes the TNF-α signaling pathway, which then activates acute-phase genes such as serum amyloid proteins and orosomucoids. The complement activation also regulates the efflux and the metabolism of cholesterol, an important metabolite for cell cycle and proliferation. Based on our systems level analysis, we provide an integrated model for the complement-induced priming phase of liver regeneration. PMID:27511733

  11. Imaging of mRNA-protein interactions in live cells using novel mCherry trimolecular fluorescence complementation systems.

    Directory of Open Access Journals (Sweden)

    Juan Yin

    Full Text Available Live cell imaging of mRNA-protein interactions makes it possible to study posttranscriptional processes of cellular and viral gene expression under physiological conditions. In this study, red color mCherry-based trimolecular fluorescence complementation (TriFC systems were constructed as new tools for visualizing mRNA-protein interaction in living cells using split mCherry fragments and HIV REV-RRE and TAT-TAR peptide-RNA interaction pairs. The new mCherry TriFC systems were successfully used to image RNA-protein interactions such as that between influenza viral protein NS1 and the 5' UTR of influenza viral mRNAs NS, M, and NP. Upon combination of an mCherry TriFC system with a Venus TriFC system, multiple mRNA-protein interactions could be detected simultaneously in the same cells. Then, the new mCherry TriFC system was used for imaging of interactions between influenza A virus mRNAs and some of adapter proteins in cellular TAP nuclear export pathway in live cells. Adapter proteins Aly and UAP56 were found to associate with three kinds of viral mRNAs. Another adapter protein, splicing factor 9G8, only interacted with intron-containing spliced M2 mRNA. Co-immunoprecipitation assays with influenza A virus-infected cells confirmed these interactions. This study provides long-wavelength-spectrum TriFC systems as new tools for visualizing RNA-protein interactions in live cells and help to understand the nuclear export mechanism of influenza A viral mRNAs.

  12. The interaction between circulating complement proteins and cutaneous microvascular endothelial cells in the development of childhood Henoch-Schonlein Purpura.

    Directory of Open Access Journals (Sweden)

    Yao-Hsu Yang

    Full Text Available In addition to IgA, the deposition of complement (C3 in dermal vessels is commonly found in Henoch-Schönlein purpura (HSP. The aim of this study is to elucidate the role of circulating complement proteins in the pathogenesis of childhood HSP.Plasma levels of C3a, C4a, C5a, and Bb in 30 HSP patients and 30 healthy controls were detected by enzyme-linked immunosorbent assay (ELISA. The expression of C3a receptor (C3aR, C5a receptor (CD88, E-selectin, intercellular adhesion molecule 1 (ICAM-1, C3, C5, interleukin (IL-8, monocyte chemotactic protein (MCP-1, and RANTES by human dermal microvascular endothelial cells (HMVEC-d was evaluated either by flow cytometry or by ELISA.At the acute stage, HSP patients had higher plasma levels of C3a (359.5 ± 115.3 vs. 183.3 ± 94.1 ng/ml, p < 0.0001, C5a (181.4 ± 86.1 vs. 33.7 ± 26.3 ng/ml, p < 0.0001, and Bb (3.7 ± 2.6 vs. 1.0 ± 0.6 μg/ml, p < 0.0001, but not C4a than healthy controls. Although HSP patient-derived acute phase plasma did not alter the presentation of C3aR and CD88 on HMVEC-d, it enhanced the production of endothelial C3 and C5. Moreover, C5a was shown in vitro to up-regulate the expression of IL-8, MCP-1, E-selectin, and ICAM-1 by HMVEC-d with a dose-dependent manner.In HSP, the activation of the complement system in part through the alternative pathway may have resulted in increased plasma levels of C3a and C5a, which, especially C5a, may play a role in the disease pathogenesis by activating endothelium of cutaneous small vessels.

  13. The Complement C3a Receptor Contributes to Melanoma Tumorigenesis by Inhibiting Neutrophil and CD4+ T Cell Responses.

    Science.gov (United States)

    Nabizadeh, Jamileh A; Manthey, Helga D; Steyn, Frederik J; Chen, Weiyu; Widiapradja, Alexander; Md Akhir, Fazrena N; Boyle, Glen M; Taylor, Stephen M; Woodruff, Trent M; Rolfe, Barbara E

    2016-06-01

    The complement peptide C3a is a key component of the innate immune system and a major fragment produced following complement activation. We used a murine model of melanoma (B16-F0) to identify a hitherto unknown role for C3a-C3aR signaling in promoting tumor growth. The results show that the development and growth of B16-F0 melanomas is retarded in mice lacking C3aR, whereas growth of established melanomas can be arrested by C3aR antagonism. Flow cytometric analysis showed alterations in tumor-infiltrating leukocytes in the absence of C3aR. Specifically, neutrophils and CD4(+) T lymphocyte subpopulations were increased, whereas macrophages were reduced. The central role of neutrophils was confirmed by depletion experiments that reversed the tumor inhibitory effects observed in C3aR-deficient mice and returned tumor-infiltrating CD4(+) T cells to control levels. Analysis of the tumor microenvironment showed upregulation of inflammatory genes that may contribute to the enhanced antitumor response observed in C3aR-deficient mice. C3aR deficiency/inhibition was also protective in murine models of BRAF(V600E) mutant melanoma and colon and breast cancer, suggesting a tumor-promoting role for C3aR signaling in a range of tumor types. We propose that C3aR activation alters the tumor inflammatory milieu, thereby promoting tumor growth. Therapeutic inhibition of C3aR may therefore be an effective means to trigger an antitumor response in melanoma and other cancers. PMID:27183625

  14. Decay accelerating factor of complement is anchored to cells by a C-terminal glycolipid

    International Nuclear Information System (INIS)

    Membrane-associated decay accelerating factor (DAF) of human erythrocytes (E/sup hu/) was analyzed for a C-terminal glycolipid anchoring structure. Automated amino acid analysis of DAF following reductive radiomethylation revealed ethanolamine and glucosamine residues in proportions identical with those present in the E/sup hu/ acetylcholinesterase (AChE) anchor. Cleavage of radiomethylated 70-kilodalton (kDa) DAF with papain released the labeled ethanolamine and glucosamine and generated 61- and 55-kDa DAF products that retained all labeled Lys and labeled N-terminal Asp. Incubation of intact E/sup hu/ with phosphatidylinositol-specific phospholipase C (PI-PLC), which cleaves the anchors in trypanosome membrane form variant surface glycoproteins (mfVSGs) and murine thymocyte Thy-1 antigen, released 15% of the cell-associated DAF antigen. The released 67-kDa PI-PLC DAF derivative retained its ability to decay the classical C3 convertase C4b2a but was unable to membrane-incorporate and displayed physicochemical properties similar to urine DAF, a hydrophilic DAF form that can be isolated for urine. Nitrous acid deamination cleavage of E/sup hu/ DAF at glucosamine following labeling with the lipophilic photoreagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID) released the [125I]TID label in a parallel fashion as from [125I]TID-labeled AChE. Biosynthetic labeling of HeLa cells with [3H] ethanolamine resulted in rapid 3H incorporation into both 48-kDa pro-DAF and 72-kDa mature epithelial cell DAF. The findings indicate that DAF and AChE are anchored in E/sup hu/ by the same or a similar glycolipid structure and that, like VSGs, this structure is incorporated into DAF early in DAF biosynthesis prior to processing of pro-DAF in the Golgi

  15. Single cell subtractive transcriptomics for identification of cell-specifically expressed candidate genes of pyrrolizidine alkaloid biosynthesis.

    Science.gov (United States)

    Sievert, Christian; Beuerle, Till; Hollmann, Julien; Ober, Dietrich

    2015-09-01

    Progress has recently been made in the elucidation of pathways of secondary metabolism. However, because of its diversity, genetic information concerning biosynthetic details is still missing for many natural products. This is also the case for the biosynthesis of pyrrolizidine alkaloids. To close this gap, we tested strategies using tissues that express this pathway in comparison to tissues in which this pathway is not expressed. As many pathways of secondary metabolism are known to be induced by jasmonates, the pyrrolizidine alkaloid-producing species Heliotropium indicum, Symphytum officinale, and Cynoglossum officinale of the Boraginales order were treated with methyl jasmonate. An effect on pyrrolizidine alkaloid levels and on transcript levels of homospermidine synthase, the first specific enzyme of pyrrolizidine alkaloid biosynthesis, was not detectable. Therefore, a method was developed by making use of the often observed cell-specific production of secondary compounds. H. indicum produces pyrrolizidine alkaloids exclusively in the shoot. Homospermidine synthase is expressed only in the cells of the lower leaf epidermis and the epidermis of the stem. Suggesting that the whole pathway of pyrrolizidine alkaloid biosynthesis might be localized in these cells, we have isolated single cells of the upper and lower epidermis by laser-capture microdissection. The resulting cDNA preparations have been used in a subtractive transcriptomic approach. Quantitative real-time polymerase chain reaction has shown that the resulting library is significantly enriched for homospermidine-synthase-coding transcripts providing a valuable source for the identification of further genes involved in pyrrolizidine alkaloid biosynthesis. PMID:26057225

  16. Transcriptome changes during TNF-α promoted osteogenic differentiation of dental pulp stem cells (DPSCs).

    Science.gov (United States)

    Liu, Ya-Ke; Zhou, Zhen-Yu; Liu, Fan

    2016-08-01

    Dental pulp stem cells (DPSCs), due to the ease of isolation and their capacities of multi-lineage differentiation, are considered as attractive resources for regenerative medicine. In a previous study, we showed that TNF-α promoted the osteogenic differentiation of DPSCs via the NF-κB signaling pathway. However, the mechanisms of such differentiation were largely unknown. Here, we examined the gene expression profiles between undifferentiated, partially differentiated and fully differentiated DPSCs induced by TNF-α by performing the next-generation sequencing technique (RNA-Seq). Our results revealed a continuous transition of the transcriptome changes during TNF-α promoted osteogenic differentiation of DPSC. Bioinformatics analysis revealed a relatively general to specific transformation of the involved signaling pathways from the early to late stages of differentiation. Gene regulatory network analysis highlighted novel, key genes that are essential for osteogenic differentiation at different time points. These results were further validated by quantitative RT-PCR, confirming the high reliability of the RNA-Seq. Our data therefore will not only provide novel insights into the molecular mechanisms that drive the osteogenic differentiation of DPSCs, but also promote the studies of bone tissue engineering that utilizes DPSCs as a crucial resource. PMID:27237976

  17. Transcriptomics and functional genomics of ROS-induced cell death regulation by RADICAL-INDUCED CELL DEATH1.

    Directory of Open Access Journals (Sweden)

    Mikael Brosché

    2014-02-01

    Full Text Available Plant responses to changes in environmental conditions are mediated by a network of signaling events leading to downstream responses, including changes in gene expression and activation of cell death programs. Arabidopsis thaliana RADICAL-INDUCED CELL DEATH1 (RCD1 has been proposed to regulate plant stress responses by protein-protein interactions with transcription factors. Furthermore, the rcd1 mutant has defective control of cell death in response to apoplastic reactive oxygen species (ROS. Combining transcriptomic and functional genomics approaches we first used microarray analysis in a time series to study changes in gene expression after apoplastic ROS treatment in rcd1. To identify a core set of cell death regulated genes, RCD1-regulated genes were clustered together with other array experiments from plants undergoing cell death or treated with various pathogens, plant hormones or other chemicals. Subsequently, selected rcd1 double mutants were constructed to further define the genetic requirements for the execution of apoplastic ROS induced cell death. Through the genetic analysis we identified WRKY70 and SGT1b as cell death regulators functioning downstream of RCD1 and show that quantitative rather than qualitative differences in gene expression related to cell death appeared to better explain the outcome. Allocation of plant energy to defenses diverts resources from growth. Recently, a plant response termed stress-induced morphogenic response (SIMR was proposed to regulate the balance between defense and growth. Using a rcd1 double mutant collection we show that SIMR is mostly independent of the classical plant defense signaling pathways and that the redox balance is involved in development of SIMR.

  18. Transcriptomics and functional genomics of ROS-induced cell death regulation by RADICAL-INDUCED CELL DEATH1.

    Science.gov (United States)

    Brosché, Mikael; Blomster, Tiina; Salojärvi, Jarkko; Cui, Fuqiang; Sipari, Nina; Leppälä, Johanna; Lamminmäki, Airi; Tomai, Gloria; Narayanasamy, Shaman; Reddy, Ramesha A; Keinänen, Markku; Overmyer, Kirk; Kangasjärvi, Jaakko

    2014-02-01

    Plant responses to changes in environmental conditions are mediated by a network of signaling events leading to downstream responses, including changes in gene expression and activation of cell death programs. Arabidopsis thaliana RADICAL-INDUCED CELL DEATH1 (RCD1) has been proposed to regulate plant stress responses by protein-protein interactions with transcription factors. Furthermore, the rcd1 mutant has defective control of cell death in response to apoplastic reactive oxygen species (ROS). Combining transcriptomic and functional genomics approaches we first used microarray analysis in a time series to study changes in gene expression after apoplastic ROS treatment in rcd1. To identify a core set of cell death regulated genes, RCD1-regulated genes were clustered together with other array experiments from plants undergoing cell death or treated with various pathogens, plant hormones or other chemicals. Subsequently, selected rcd1 double mutants were constructed to further define the genetic requirements for the execution of apoplastic ROS induced cell death. Through the genetic analysis we identified WRKY70 and SGT1b as cell death regulators functioning downstream of RCD1 and show that quantitative rather than qualitative differences in gene expression related to cell death appeared to better explain the outcome. Allocation of plant energy to defenses diverts resources from growth. Recently, a plant response termed stress-induced morphogenic response (SIMR) was proposed to regulate the balance between defense and growth. Using a rcd1 double mutant collection we show that SIMR is mostly independent of the classical plant defense signaling pathways and that the redox balance is involved in development of SIMR. PMID:24550736

  19. Bimolecular Complementation to Visualize Filovirus VP40-Host Complexes in Live Mammalian Cells: Toward the Identification of Budding Inhibitors

    Directory of Open Access Journals (Sweden)

    Yuliang Liu

    2011-01-01

    Full Text Available Virus-host interactions play key roles in promoting efficient egress of many RNA viruses, including Ebola virus (EBOV or “e” and Marburg virus (MARV or “m”. Late- (L- domains conserved in viral matrix proteins recruit specific host proteins, such as Tsg101 and Nedd4, to facilitate the budding process. These interactions serve as attractive targets for the development of broad-spectrum budding inhibitors. A major gap still exists in our understanding of the mechanism of filovirus budding due to the difficulty in detecting virus-host complexes and mapping their trafficking patterns in the natural environment of the cell. To address this gap, we used a bimolecular complementation (BiMC approach to detect, localize, and follow the trafficking patterns of eVP40-Tsg101 complexes in live mammalian cells. In addition, we used the BiMC approach along with a VLP budding assay to test small molecule inhibitors identified by in silico screening for their ability to block eVP40 PTAP-mediated interactions with Tsg101 and subsequent budding of eVP40 VLPs. We demonstrated the potential broad spectrum activity of a lead candidate inhibitor by demonstrating its ability to block PTAP-dependent binding of HIV-1 Gag to Tsg101 and subsequent egress of HIV-1 Gag VLPs.

  20. Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation.

    Directory of Open Access Journals (Sweden)

    Elisa Monaco

    Full Text Available Bone-marrow mesenchymal stem cells (BMSC are considered the gold standard for use in tissue regeneration among mesenchymal stem cells (MSC. The abundance and ease of harvest make the adipose-derived stem cells (ASC an attractive alternative to BMSC. The aim of the present study was to compare the transcriptome of ASC and BMSC, respectively isolated from subcutaneous adipose tissue and femur of 3 adult pigs, during in vitro osteogenic and adipogenic differentiation for up to four weeks. At 0, 2, 7, and 21 days of differentiation RNA was extracted for microarray analysis. A False Discovery Rate ≤0.05 for overall interactions effect and P<0.001 between comparisons were used to determine differentially expressed genes (DEG. Ingenuity Pathway Analysis and DAVID performed the functional analysis of the DEG. Functional analysis of highest expressed genes in MSC and genes more expressed in MSC vs. fully differentiated tissues indicated low immunity and high angiogenic capacity. Only 64 genes were differentially expressed between ASC and BMSC before differentiation. The functional analysis uncovered a potential larger angiogenic, osteogenic, migration, and neurogenic capacity in BMSC and myogenic capacity in ASC. Less than 200 DEG were uncovered between ASC and BMSC during differentiation. Functional analysis also revealed an overall greater lipid metabolism in ASC, while BMSC had a greater cell growth and proliferation. The time course transcriptomic comparison between differentiation types uncovered <500 DEG necessary to determine cell fate. The functional analysis indicated that osteogenesis had a larger cell proliferation and cytoskeleton organization with a crucial role of G-proteins. Adipogenesis was driven by PPAR signaling and had greater angiogenesis, lipid metabolism, migration, and tumorigenesis capacity. Overall the data indicated that the transcriptome of the two MSC is relatively similar across the conditions studied. In addition

  1. Transcriptomic analysis of cultured whale skin cells exposed to hexavalent chromium [Cr(VI)].

    Science.gov (United States)

    Pabuwal, Vagmita; Boswell, Mikki; Pasquali, Amanda; Wise, Sandra S; Kumar, Suresh; Shen, Yingjia; Garcia, Tzintzuni; Lacerte, Carolyne; Wise, John Pierce; Wise, John Pierce; Warren, Wesley; Walter, Ronald B

    2013-06-15

    Hexavalent chromium Cr(VI) is known to produce cytotoxic effects in humans and is a highly toxic environmental contaminant. Interestingly, it has been shown that free ranging sperm whales (Phyester macrocephalus) may have exceedingly high levels of Cr in their skin. Also, it has been demonstrated that skin cells from whales appear more resistant to both cytotoxicity and clastogenicity upon Cr exposure compared to human cells. However, the molecular genetic mechanisms employed in whale skin cells that might lead to Cr tolerance are unknown. In an effort to understand the underlying mechanisms of Cr(VI) tolerance and to illuminate global gene expression patterns modulated by Cr, we exposed whale skin cells in culture to varying levels of Cr(VI) (i.e., 0.0, 0.5, 1.0 and 5.0 μg/cm²) followed by short read (100 bp) next generation RNA sequencing (RNA-seq). RNA-seq reads from all exposures (≈280 million reads) were pooled to generate a de novo reference transcriptome assembly. The resulting whale reference assembly had 11K contigs and an N50 of 2954 bp. Using the reads from each dose (0.0, 0.5, 1.0 and 5.0 μg/cm²) we performed RNA-seq based gene expression analysis that identified 35 up-regulated genes and 19 down-regulated genes. The experimental results suggest that low dose exposure to Cr (1.0 μg/cm²) serves to induce up-regulation of oxidative stress response genes, DNA repair genes and cell cycle regulator genes. However, at higher doses (5.0 μg/cm²) the DNA repair genes appeared down-regulated while other genes that were induced suggest the initiation of cytotoxicity. The set of genes identified that show regulatory modulation at different Cr doses provide specific candidates for further studies aimed at determination of how whales exhibit resistance to Cr toxicity and what role(s) reactive oxygen species (ROS) may play in this process. PMID:23584427

  2. Transient correction of excision repair defects in fibroblasts of 9 xeroderma pigmentosum complementation groups by microinjection of crude human cell extract.

    NARCIS (Netherlands)

    W. Vermeulen (Wim); P. Osseweijer; A.J.R. de Jonge; J.H.J. Hoeijmakers (Jan)

    1986-01-01

    textabstractCrude extracts from human cells were microinjected into the cytoplasm of cultured fibroblasts from 9 excision-deficient xeroderma pigmentosum (XP) complementation groups. The level of UV-induced unscheduled DNA synthesis (UDS) was measured to determine the effect of the extract on the re

  3. Combination of autoantibodies against different histone proteins influences complement-dependent phagocytosis of necrotic cell material by polymorphonuclear leukocytes in systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Gullstrand, Birgitta; Lefort, Malin H; Tydén, Helena;

    2012-01-01

    Polymorphonuclear leukocytes (PMN) with autoantibody-coated engulfed necrotic cell material (NC) are frequently seen in systemic lupus erythematosus (SLE). We evaluated the roles of complement, different antihistone antibodies (anti-H ab), and oxidative burst in the phagocytosis of NC by PMN...

  4. Transcriptome-wide studies of prostate cancer cell lines in the context of medical radiation

    International Nuclear Information System (INIS)

    The use of radiotherapy in addition to chemotherapy and surgical removal is the most powerful instrument in the fight against malignant tumors in cancer medicine. After cardiovascular diseases, cancer is the second leading cause of death in the western world, in which prostate cancer is the most frequent male cancer. Despite continuous technological improvements in radiological instruments and prognosis, it may occur a recurrence up to many years after radiotherapy due to a high resistance capability of individual malignant cells of the locally occurring tumor. Although modern radiation biology has studied many aspects of the resistance mechanisms, questions are largely unanswered especially in regards to prognostic terms and time response of tumor cells to ionizing radiation. As cellular models four prostate cancer cell lines with different radiation sensitivities (PC3, DuCaP, DU-145, RWPE-1) were cultured and tested for their ability to survive after exposure to ionizing radiation by a trypane blue and MTT viability assay. The proliferative capacity of the four cell lines was determined using a colony formation assay. The PC3 cell line (radiation-resistant) and the DuCaP cell line (radiation-sensitive) showed the maximal differences in terms of radiation sensitivity. Based on these results the two cell lines were selected to allow identification of potential prognostic marker for predicting the effectiveness of radiation therapy via their transcriptome-wide gene expression. Furthermore, a time series experiment with the radiation-resistant PC3 cell line was performed. At 8 different time points, during the period from 00:00 - 42:53 (hh:mm) after exposure with 1 Gy, the mRNA was quantified by next generation sequencing to investigate the dynamic behavior of time-delayed gene expression and to discover resistance mechanisms. Of 10,966 expressed genes 730 were significant differentially expressed, determined by setting a fold change threshold in conjunction with a P

  5. Anti-PEG IgM and complement system are required for the association of second doses of PEGylated liposomes with splenic marginal zone B cells.

    Science.gov (United States)

    Shimizu, Taro; Mima, Yu; Hashimoto, Yosuke; Ukawa, Masami; Ando, Hidenori; Kiwada, Hiroshi; Ishida, Tatsuhiro

    2015-10-01

    The accelerated blood clearance (ABC) phenomenon makes it crucial to use PEGylated liposomes and micelles to deliver drugs. The ABC phenomenon is an immune response against an initial dose of PEGylated liposome, which causes subsequent doses to be rapidly cleared by macrophages in the liver. We recently found that in the early phase of the ABC phenomenon, subsequent doses of PEGylated liposomes were associated with splenic marginal zone (MZ)-B cells and were transported from the MZ to the follicle (FO). In this study, we investigated the underlying mechanisms behind the association of subsequent doses of PEGylated liposomes with MZ-B cells in the spleen. Serum factors, anti-PEG IgM and complement system, were crucial to the association of PEGylated liposomes with MZ-B cells, while the sensitization of MZ-B cells by the first dose of PEGylated liposomes was not significant. It was the complement receptors (CRs) on the MZ-B cells, rather than either the PEG-specific B-cell receptors or the IgM Fc receptors, that were the main contributors to the association between PEGylated liposomes and MZ-B cells. It appeared that anti-PEG IgM would bind to PEGylated liposomes and causes subsequent complement activation, resulting in the formation of immune complexes of PEGylated liposome-anti-PEG IgM-complement. The MZ-B cells then recognized these immune complexes via their CRs. Such an association via CRs might have triggered the transport of the immune complex by MZ-B cells to the FO in the spleen. The information obtained in this study might be useful in the development of an efficient antigen delivery system to usher PEGylated nanoparticles into FO dendritic cells. PMID:26095176

  6. Complement mediates human immunodeficiency virus type 1 infection of a human T cell line in a CD4- and antibody-independent fashion.

    Science.gov (United States)

    Boyer, V; Desgranges, C; Trabaud, M A; Fischer, E; Kazatchkine, M D

    1991-05-01

    Incubation of the human T cell lymphotropic virus (HTLV)-IIIB and HTLV-RF strains of human immunodeficiency virus type 1 (HIV-1) with normal seronegative human serum under conditions that allow complement activation resulted in enhancement of infection of the MT2 human T cell line cultured in the presence of low amounts of virus. Infection of MT2 cells was assessed by measuring reverse transcriptase activity in supernatants at day 9 of culture. Complement activation by viral suspensions occurred through the alternative pathway. Opsonization of HTLV-RF viral particles with complement was sufficient to allow a productive infection to occur in cells exposed to suboptimal amounts of virus. Infection of MT2 cells with suboptimal amounts of serum-opsonized HIV-1 was suppressed by blocking the C3dg receptor (CR2, CD21) on MT2 cells with monoclonal anti-CR2 antibody and rabbit F(ab')2 anti-mouse immunoglobulin antibodies. Blocking of the gp120-binding site on CD4 under similar experimental conditions had no inhibitory effect on infection of MT2 cells with opsonized virus. Opsonization of HIV-1 with seronegative serum also resulted in a CR2-mediated enhancement of the infection of normal peripheral blood mononuclear cells and T lymphocytes. These results indicate that complement in the absence of antibody may enhance infection of C3 receptor-bearing T cells with HIV-1, and that the interaction of opsonized virus with the CR2 receptor may result by itself in the infection of target T cells in a CD4- and antibody-independent fashion. PMID:1827139

  7. The relative toxicity of metal salts to immune hemolysis in a mixture of antibody-secreting spleen cells, sheep red blood cells and complement.

    Science.gov (United States)

    Seko, Y; Koyama, T; Ichiki, A; Sugamata, M; Miura, T

    1982-05-01

    The relative toxicity of metal salts was examined using a mixture of antibody-secreting spleen cells, sheep red blood cells and complement. The amount of immune hemolysis in the mixture was reduced by mercuric chloride, methylmercuric chloride and nickel chloride at concentrations of 14 microM or more, by sodium selenite and zinc chloride at 140 microM or more, and by sodium selenate, cadmium chloride, cadmium acetate, chromic chloride and beryllium chloride at 1400 microM. On the other hand, the amount of immune hemolysis was increased by both cadmium chloride anc cadmium acetate at concentrations of 14 and 140 microM. Mercuric chloride, methylmercuric chloride and nickel chloride were assumed to inhibit the antibody secretion of antibody-forming spleen cells.

  8. Selective cytotoxicity of murine monoclonal antibody LAM2 against human small-cell carcinoma in the presence of human complement: possible use for in vitro elimination of tumor cells from bone marrow.

    Science.gov (United States)

    Stahel, R A; Mabry, M; Sabbath, K; Speak, J A; Bernal, S D

    1985-05-15

    LAM2 is a murine IgM monoclonal antibody (MAb) which binds strongly to the cell membrane of human lung small-cell carcinoma (SCC) and squamous-cell carcinoma but not to normal bone-marrow cells. The cytotoxicity of this antibody in the presence of human complement was investigated in vitro by chromium release and clonogenic assays. The optimal treatment conditions included incubation with antibody for 30 min at 37 degrees C followed by 3 additions of human complement 30 min apart. Cell lysis ranged from 94 to 98% in 4 SCC cell lines at antibody dilutions of 1:100: a lower level of lysis (60%) occurred in a lung squamous-cell carcinoma cell line. The cytotoxic effect was strictly complement-dependent. No cytotoxic effect was seen with other human cell lines including lung adenocarcinoma, lung large-cell carcinoma, myeloid leukemia, and lymphoblastic leukemia. No lysis was seen with nucleated marrow cells from healthy volunteers. Normal marrow cells in excess did not inhibit SCC cell lysis. Incubation with antibody and complement resulted in a 100-fold reduction of colony formation of SCC cells, but did not reduce the number of colonies of marrow-cell precursors, including CFU-GEMM, BFU-E, and CFU-C. The selective cytotoxicity of LAM2 antibody to SCC, but not to normal bone-marrow cells, suggests that this antibody may be useful for the in vitro elimination of SCC cells from the bone marrow.

  9. Genome-wide protein-protein interaction screening by protein-fragment complementation assay (PCA) in living cells.

    Science.gov (United States)

    Rochette, Samuel; Diss, Guillaume; Filteau, Marie; Leducq, Jean-Baptiste; Dubé, Alexandre K; Landry, Christian R

    2015-01-01

    Proteins are the building blocks, effectors and signal mediators of cellular processes. A protein's function, regulation and localization often depend on its interactions with other proteins. Here, we describe a protocol for the yeast protein-fragment complementation assay (PCA), a powerful method to detect direct and proximal associations between proteins in living cells. The interaction between two proteins, each fused to a dihydrofolate reductase (DHFR) protein fragment, translates into growth of yeast strains in presence of the drug methotrexate (MTX). Differential fitness, resulting from different amounts of reconstituted DHFR enzyme, can be quantified on high-density colony arrays, allowing to differentiate interacting from non-interacting bait-prey pairs. The high-throughput protocol presented here is performed using a robotic platform that parallelizes mating of bait and prey strains carrying complementary DHFR-fragment fusion proteins and the survival assay on MTX. This protocol allows to systematically test for thousands of protein-protein interactions (PPIs) involving bait proteins of interest and offers several advantages over other PPI detection assays, including the study of proteins expressed from their endogenous promoters without the need for modifying protein localization and for the assembly of complex reporter constructs.

  10. Protein engineering to target complement evasion in cancer.

    Science.gov (United States)

    Carter, Darrick; Lieber, André

    2014-01-21

    The complement system is composed of soluble factors in plasma that enhance or "complement" immune-mediated killing through innate and adaptive mechanisms. Activation of complement causes recruitment of immune cells; opsonization of coated cells; and direct killing of affected cells through a membrane attack complex (MAC). Tumor cells up-regulate complement inhibitory factors - one of several strategies to evade the immune system. In many cases as the tumor progresses, dramatic increases in complement inhibitory factors are found on these cells. This review focuses on the classic complement pathway and the role of major complement inhibitory factors in cancer immune evasion as well as on how current protein engineering efforts are being employed to increase complement fixing or to reverse complement resistance leading to better therapeutic outcomes in oncology. Strategies discussed include engineering of antibodies to enhance complement fixation, antibodies that neutralize complement inhibitory proteins as well as engineered constructs that specifically target inhibition of the complement system.

  11. Complement activation pathways associated with islet cell surface antibody (ICSA derived from child patients with insulin-dependent diabetes mellitus (IDDM.

    Directory of Open Access Journals (Sweden)

    Okada,Soji

    1991-06-01

    Full Text Available We studied the pathways of complement activation associated with the islet cell surface antibody (ICSA obtained from sera of 7 patients (age less than 15 years with insulin dependent diabetes mellitus (IDDM. The target cells were 51CR labelled rat islet cells and the complement source was human AB serum. Complement-dependent antibody mediated cytotoxicity (CAMC activity was obtained using the percentage of cytotoxicity. CAMC activity of untreated sera was significantly inhibited by treating with EGTA or EDTA (p less than 0.001. The CAMC activity of EDTA-treated sera was significantly lower than that of EGTA-treated sera (p less than 0.001. In the inactivated human AB serum, it was lower than that of EGTA-treated sera (p less than 0.05, but not different from that of EDTA-treated sera. These results show that the complement activation associated with ICSA in patients occurred not only via the classical pathway but also via the alternative pathway.

  12. Resistance to Streptozotocin-Induced Autoimmune Diabetes in Absence of Complement C3: Myeloid-Derived Suppressor Cells Play a Role.

    Directory of Open Access Journals (Sweden)

    Xiaogang Gao

    Full Text Available The contribution of complement to the development of autoimmune diabetes has been proposed recently. The underlying mechanisms, however, remain poorly understood. We hypothesize that myeloid-derived suppressor cells (MDSC, which act as regulators in autoimmunity, play a role in resistance to diabetes in absence of complement C3. Indeed, MDSC number was increased significantly in STZ-treated C3-/- mice. These cells highly expressed arginase I and inducible nitric oxide synthase (iNOS. Importantly, depletion of MDSC led to the occurrence of overt diabetes in C3-/- mice after STZ. Furthermore, C3-/- MDSC actively suppressed diabetogenic T cell proliferation and prevented/delayed the development of diabetes in arginase and/or iNOS-dependent manner. Both Tregs and transforming growth factor-β (TGF-β are crucial for MDSC induction in STZ-treated C3-/- mice as depletion of Tregs or blocking TGF-β bioactivity dramatically decreased MDSC number. These findings indicate that MDSC are implicated in resistance to STZ-induced diabetes in the absence of complement C3, which may be helpful for understanding of mechanisms underlying preventive effects of complement deficiency on autoimmune diseases.

  13. Complement's participation in acquired immunity

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Leslie, Robert Graham Quinton

    2002-01-01

    B cell receptor for antigen (BCR), a complex composed of the iC3b/C3d fragment-binding complement type 2 receptor (CR2, CD21) and its signaling element CD19 and the IgG-binding receptor FcgammaRIIb (CD32). The positive or negative outcome of signaling through this triad is determined by the context...... in which antigen is seen, be it alone or in association with natural or induced antibodies and/or C3-complement fragments. The aim of this review is to describe the present status of our understanding of complement's participation in acquired immunity and the regulation of autoimmune responses.......The preliminary evidence for the involvement of complement in promoting primary humoral responses dates back over a quarter of a century. However, it is only in the course of the past decade or so that the detailed mechanisms underlying complement's influence have been characterized in depth. It is...

  14. Transcriptomic comparison between Brassica oleracea and rice (Oryza sativa) reveals diverse modulations on cell death in response to Sclerotinia sclerotiorum

    Science.gov (United States)

    Mei, Jiaqin; Ding, Yijuan; Li, Yuehua; Tong, Chaobo; Du, Hai; Yu, Yang; Wan, Huafan; Xiong, Qing; Yu, Jingyin; Liu, Shengyi; Li, Jiana; Qian, Wei

    2016-01-01

    Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a devastating disease of Brassica crops, but not in rice. The leaves of a rice line, a partial resistant (R) and a susceptible (S) Brassica oleracea pool that bulked from a resistance-segregating F2 population were employed for transcriptome sequencing before and after inoculation by S. sclerotiorum for 6 and 12 h. Distinct transcriptome profiles were revealed between B. oleracea and rice in response to S. sclerotiorum. Enrichment analyses of GO and KEGG indicated an enhancement of antioxidant activity in the R B. oleracea and rice, and histochemical staining exhibited obvious lighter reactive oxygen species (ROS) accumulation and cell death in rice and the R B. oleracea as compared to that in the S B. oleracea. Significant enhancement of Ca2+ signalling, a positive regulator of ROS and cell death, were detected in S B. oleracea after inoculation, while it was significantly repressed in the R B. oleracea group. Obvious difference was detected between two B. oleracea groups for WRKY transcription factors, particularly for those regulating cell death. These findings suggest diverse modulations on cell death in host in response to S. sclerotiorum. Our study provides useful insight into the resistant mechanism to S. sclerotiorum. PMID:27647523

  15. A curated transcriptome dataset collection to investigate the functional programming of human hematopoietic cells in early life.

    Science.gov (United States)

    Rahman, Mahbuba; Boughorbel, Sabri; Presnell, Scott; Quinn, Charlie; Cugno, Chiara; Chaussabel, Damien; Marr, Nico

    2016-01-01

    Compendia of large-scale datasets made available in public repositories provide an opportunity to identify and fill gaps in biomedical knowledge. But first, these data need to be made readily accessible to research investigators for interpretation. Here we make available a collection of transcriptome datasets to investigate the functional programming of human hematopoietic cells in early life. Thirty two datasets were retrieved from the NCBI Gene Expression Omnibus (GEO) and loaded in a custom web application called the Gene Expression Browser (GXB), which was designed for interactive query and visualization of integrated large-scale data. Quality control checks were performed. Multiple sample groupings and gene rank lists were created allowing users to reveal age-related differences in transcriptome profiles, changes in the gene expression of neonatal hematopoietic cells to a variety of immune stimulators and modulators, as well as during cell differentiation. Available demographic, clinical, and cell phenotypic information can be overlaid with the gene expression data and used to sort samples. Web links to customized graphical views can be generated and subsequently inserted in manuscripts to report novel findings. GXB also enables browsing of a single gene across projects, thereby providing new perspectives on age- and developmental stage-specific expression of a given gene across the human hematopoietic system. This dataset collection is available at: http://developmentalimmunology.gxbsidra.org/dm3/geneBrowser/list. PMID:27347375

  16. Choroidal neovascularization is inhibited via an intraocular decrease of inflammatory cells in mice lacking complement component C3

    OpenAIRE

    Xue Tan; Katsuhito Fujiu; Ichiro Manabe; Junko Nishida; Reiko Yamagishi; Ryozo Nagai; Yasuo Yanagi

    2015-01-01

    In early age-related macular degeneration (AMD), complement component C3 can be observed in drusen, which is the accumulation of material beneath the retinal pigment epithelium. The complement pathways, via the activation of C3, can upregulate the expression of cytokines and their receptors and the recruitment of inflammatory leukocytes, both of which play an important role in the development of choroidal neovascularization (CNV) in exudative AMD. Laser-induced CNV lesions were found to be si...

  17. Glioma cells on the run – the migratory transcriptome of 10 human glioma cell lines

    Directory of Open Access Journals (Sweden)

    Holz David

    2008-01-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is the most common primary intracranial tumor and despite recent advances in treatment regimens, prognosis for affected patients remains poor. Active cell migration and invasion of GBM cells ultimately lead to ubiquitous tumor recurrence and patient death. To further understand the genetic mechanisms underlying the ability of glioma cells to migrate, we compared the matched transcriptional profiles of migratory and stationary populations of human glioma cells. Using a monolayer radial migration assay, motile and stationary cell populations from seven human long term glioma cell lines and three primary GBM cultures were isolated and prepared for expression analysis. Results Gene expression signatures of stationary and migratory populations across all cell lines were identified using a pattern recognition approach that integrates a priori knowledge with expression data. Principal component analysis (PCA revealed two discriminating patterns between migrating and stationary glioma cells: i global down-regulation and ii global up-regulation profiles that were used in a proband-based rule function implemented in GABRIEL to find subsets of genes having similar expression patterns. Genes with up-regulation pattern in migrating glioma cells were found to be overexpressed in 75% of human GBM biopsy specimens compared to normal brain. A 22 gene signature capable of classifying glioma cultures based on their migration rate was developed. Fidelity of this discovery algorithm was assessed by validation of the invasion candidate gene, connective tissue growth factor (CTGF. siRNA mediated knockdown yielded reduced in vitro migration and ex vivo invasion; immunohistochemistry on glioma invasion tissue microarray confirmed up-regulation of CTGF in invasive glioma cells. Conclusion Gene expression profiling of migratory glioma cells induced to disperse in vitro affords discovery of genomic signatures; selected

  18. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice

    International Nuclear Information System (INIS)

    Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3+ apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver of SIGN-R1 KO mice, followed by a significant increase of CD11b+ cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1+ macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver

  19. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee [Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Choi, Hyeong-Jwa [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4, 75 Nowon gil Nowon-Gu, Seoul, 139-706 (Korea, Republic of); Na, Tae-Young [College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-741 (Korea, Republic of); Nemeno, Judee Grace E.; Lee, Jeong Ik [Regenerative Medicine Laboratory, Department of Veterinary Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 143-701 (Korea, Republic of); Yoon, Taek Joon [Department of Food and Nutrition, Yuhan College, Bucheon, Gyeonggi-do, 422-749 (Korea, Republic of); Choi, In-Soo [Department of Infectious Diseases, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Lee, Minyoung [Division of Radiation Effect, Korea Institute of Radiological and Medical Sciences, 215-4, 75 Nowon gil Nowon-Gu, Seoul, 139-706 (Korea, Republic of); Lee, Jae-Seon [Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, 400-712 (Korea, Republic of); Kang, Young-Sun, E-mail: kangys1967@naver.com [Department of Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of); Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701 (Korea, Republic of)

    2015-08-07

    Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3{sup +} apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver of SIGN-R1 KO mice, followed by a significant increase of CD11b{sup +} cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1{sup +} macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver.

  20. Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells

    Directory of Open Access Journals (Sweden)

    Kuang Lin-Yun

    2008-10-01

    Full Text Available Abstract Background The investigation of protein-protein interactions is important for characterizing protein function. Bimolecular fluorescence complementation (BiFC has recently gained interest as a relatively easy and inexpensive method to visualize protein-protein interactions in living cells. BiFC uses "split YFP" tags on proteins to detect interactions: If the tagged proteins interact, they may bring the two split fluorophore components together such that they can fold and reconstitute fluorescence. The sites of interaction can be monitored using epifluorescence or confocal microscopy. However, "conventional" BiFC can investigate interactions only between two proteins at a time. There are instances when one may wish to offer a particular "bait" protein to several "prey" proteins simultaneously. Preferential interaction of the bait protein with one of the prey proteins, or different sites of interaction between the bait protein and multiple prey proteins, may thus be observed. Results We have constructed a series of gene expression vectors, based upon the pSAT series of vectors, to facilitate the practice of multi-color BiFC. The bait protein is tagged with the C-terminal portion of CFP (cCFP, and prey proteins are tagged with the N-terminal portions of either Venus (nVenus or Cerulean (nCerulean. Interaction of cCFP-tagged proteins with nVenus-tagged proteins generates yellow fluorescence, whereas interaction of cCFP-tagged proteins with nCerulean-tagged proteins generates blue fluorescence. Additional expression of mCherry indicates transfected cells and sub-cellular structures. Using this system, we have determined in both tobacco BY-2 protoplasts and in onion epidermal cells that Agrobacterium VirE2 protein interacts with the Arabidopsis nuclear transport adapter protein importin α-1 in the cytoplasm, whereas interaction of VirE2 with a different importin α isoform, importin α-4, occurs predominantly in the nucleus. Conclusion Multi

  1. Combining proteomics and transcriptome sequencing to identify active plant-cell-wall-degrading enzymes in a leaf beetle

    Directory of Open Access Journals (Sweden)

    Kirsch Roy

    2012-11-01

    Full Text Available Abstract Background The primary plant cell wall is a complex mixture of polysaccharides and proteins encasing living plant cells. Among these polysaccharides, cellulose is the most abundant and useful biopolymer present on earth. These polysaccharides also represent a rich source of energy for organisms which have evolved the ability to degrade them. A growing body of evidence suggests that phytophagous beetles, mainly species from the superfamilies Chrysomeloidea and Curculionoidea, possess endogenous genes encoding complex and diverse families of so-called plant cell wall degrading enzymes (PCWDEs. The presence of these genes in phytophagous beetles may have been a key element in their success as herbivores. Here, we combined a proteomics approach and transcriptome sequencing to identify PCWDEs present in larval gut contents of the mustard leaf beetle, Phaedon cochleariae. Results Using a two-dimensional proteomics approach, we recovered 11 protein bands, isolated using activity assays targeting cellulose-, pectin- and xylan-degrading enzymes. After mass spectrometry analyses, a total of 13 proteins putatively responsible for degrading plant cell wall polysaccharides were identified; these proteins belong to three glycoside hydrolase (GH families: GH11 (xylanases, GH28 (polygalacturonases or pectinases, and GH45 (β-1,4-glucanases or cellulases. Additionally, highly stable and proteolysis-resistant host plant-derived proteins from various pathogenesis-related protein (PRs families as well as polygalacturonase-inhibiting proteins (PGIPs were also identified from the gut contents proteome. In parallel, transcriptome sequencing revealed the presence of at least 19 putative PCWDE transcripts encoded by the P. cochleariae genome. All of these were specifically expressed in the insect gut rather than the rest of the body, and in adults as well as larvae. The discrepancy observed in the number of putative PCWDEs between transcriptome and proteome

  2. Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration

    NARCIS (Netherlands)

    M. Smid (Marcel); F.G. Rodriguez-Gonzalez (F. German); A.M. Sieuwerts (Anieta); R. Salgado (Roberto); W.J.C. Prager-van der Smissen (Wendy); Vlugt-Daane, M.V.D. (Michelle Van Der); A. van Galen (Anne); S. Nik-Zainal (Serena); J. Staaf (Johan); A.B. Brinkman (Arie B.); M.J. Vijver (Marc ); A.L. Richardson (Andrea); A. Fatima (Aquila); Berentsen, K. (Kim); A. Butler (Adam); S. Martin (Sandra); H. Davies (Helen); J.E.M.A. Debets (Reno); M.E.M.-V. Gelder (Marion E. Meijer-Van); C.H.M. van Deurzen (Carolien); Macgrogan, G. (Gaëtan); Van Den Eynden, G.G.G.M. (Gert G. G. M.); C.A. Purdie (Colin A.); A.M. Thompson (Alastair M.); C. Caldas (Carlos); P.N. Span (Paul); Simpson, P.T. (Peter T.); S. Lakhani (Sunil); S.J. van Laere (Steven); C. Desmedt (Christine); Ringnér, M. (Markus); Tommasi, S. (Stefania); Eyford, J. (Jorunn); A. Broeks (Annegien); A. Vincent-Salomon (Anne); Futreal, P.A. (P. Andrew); S. Knappskog (Stian); King, T. (Tari); G. Thomas (Gilles); Viari, A. (Alain); Langerød, A. (Anita); A.-L. Borresen-Dale (Anne-Lise); E. Birney (Ewan); H. Stunnenberg (Henk); M.R. Stratton (Michael); J.A. Foekens (John); J.W.M. Martens (John)

    2016-01-01

    textabstractA recent comprehensive whole genome analysis of a large breast cancer cohort was used to link known and novel drivers and substitution signatures to the transcriptome of 266 cases. Here, we validate that subtype-specific aberrations show concordant expression changes for, for example, TP

  3. High-protein and high-carbohydrate breakfasts differentially change the transcriptome of human blood cells

    NARCIS (Netherlands)

    Erk, M.J. van; Blom, W.A.M.; Ommen, B. van; Hendriks, H.F.J.

    2006-01-01

    Background: Application of transcriptomics technology in human nutrition intervention studies would allow for genome-wide screening of the effects of specific diets or nutrients and result in biomarker profiles. Objective: The aim was to evaluate the potential of gene expression profiling in blood c

  4. conformational complexity of complement component C3

    NARCIS (Netherlands)

    Janssen, B.J.C.

    2007-01-01

    The complement system is an important part of the immune system and critical for the elimination of pathogens. In mammals the complement system consists of an intricate set of about 35 soluble and cell-surface plasma proteins. Central to complement is component C3, a large protein of 1,641 residues.

  5. De novo assembly of a cotyledon-enriched transcriptome map of Vicia faba (L. for transfer cell research

    Directory of Open Access Journals (Sweden)

    Kiruba Shankari eArun Chinnappa

    2015-04-01

    Full Text Available Vicia faba (L. is an important cool-season grain legume species used widely in agriculture but also in plant physiology research, particularly as an experimental model to study transfer cell (TC development. Adaxial epidermal cells of isolated cotyledons can be induced to form functional TCs, thus providing a valuable experimental system to investigate genetic regulation of TC development. The genome of V. faba is exceedingly large (ca. 13 Gb, however, and limited genomic information is available for this species. To provide a resource for transcript profiling of epidermal TC development, we have undertaken de novo assembly of a cotyledon-enriched transcriptome map for V. faba. Illumina paired-end sequencing of total RNA pooled from different tissues and different stages, including isolated cotyledons induced to form TCs, generated 69.5M reads, of which 65.8M were used for assembly following trimming and quality control. Assembly using a De-Bruijn graph-based approach within CLC Genomics Workbench v6.1 generated 21,297 contigs, of which 80.6% were successfully annotated against GO terms. The assembly was validated against known V. faba cDNAs held in GenBank, including transcripts previously identified as being specifically expressed in epidermal cells across TC trans-differentiation. This cotyledon-enriched transcriptome map therefore provides a valuable tool for future transcript profiling of epidermal TC development, and also enriches the genetic resources available for this important legume crop species.

  6. T lymphocyte expression of complement receptor 2 (CR2/CD21): a role in adhesive cell-cell interactions and dysregulation in a patient with systemic lupus erythematosus (SLE).

    Science.gov (United States)

    Levy, E; Ambrus, J; Kahl, L; Molina, H; Tung, K; Holers, V M

    1992-11-01

    Complement receptor 2 (CR2, CD21), the receptor for both the C3d,g portion of human complement component C3 and the Epstein-Barr virus, has been recently described on peripheral T cells. By using dual stain flow cytometric analysis, we have also observed that a peripheral T lymphocyte subpopulation of normal healthy donors bears CR2 in a range varying from 1.1 to 23.2% (mean 12.6%) of total CD3+ cells. T lymphocytes from nine patients with inactive SLE expressed CR2 in a similar range. Three patients with active SLE were also studied. One of them, having neuropathy and glomerulonephritis, displayed an expansion of the CR2 T cell subpopulation which reached as much as 89% of total CD3+ cells. To examine potential functional roles of T cell CR2, cells from a Jurkat-derived CR2 expressing T cell line were found to bind in vitro to human CR2-, complement-coated K562 cell targets in a CR2- and complement-dependent fashion. Based on these studies, we hypothesize that CR2 might act to increase adherence of T cells to nucleated target cells bearing C3d,g, a function which may be relevant to cytotoxicity or other T cell activities requiring cell-cell interaction. PMID:1424280

  7. Systemic lupus erythematosus and primary fibromyalgia can be distinguished by testing for cell-bound complement activation products

    Science.gov (United States)

    Wallace, Daniel J; Silverman, Stuart L; Conklin, John; Barken, Derren; Dervieux, Thierry

    2016-01-01

    Objective We sought to establish the performance of cell-bound complement activation products (CB-CAPs) as a diagnostic tool to distinguish primary fibromyalgia (FM) from systemic lupus erythematosus (SLE). Methods A total of 75 SLE and 75 primary FM adult subjects who fulfilled appropriate classification criteria were enrolled prospectively. CB-CAPs (erythrocyte-C4d (EC4d) and B-lymphocyte-C4d (BC4d)) were determined by flow cytometry. Antinuclear antibodies (ANAs) were determined using indirect immunofluorescence while other autoantibodies were determined by solid-phase assays. The CB-CAPs in a multi-analyte assay with algorithm (MAAA) relied on two consecutive tiers of analysis that was reported as an overall positive or negative assessment. Test performance was assessed using sensitivity, specificity, positive and negative likelihood ratio (LR). Results ANAs yielded 80% positives for SLE and 33% positives for FM. High CB-CAP expression (EC4d >14 units or BC4d >60 units) was 43% sensitive and 96% specific for SLE. The CB-CAPs in MAAA assessment was evaluable in 138 of the 150 subjects enrolled (92%) and yielded 60% sensitivity (CI 95% 48% to 72%) for SLE with no FM patient testing positive (100% specificity). A positive test result was associated with a strong positive LR for SLE (>24, CI 95%; 6 to 102), while a negative test result was associated with a moderate negative LR (0.40; CI 95% 0.30 to 0.54). Conclusion Our data indicate that CB-CAPs in MAAA can distinguish FM from SLE. PMID:26870391

  8. Embryonic stem cells derived from in vivo or in vitro-generated murine blastocysts display similar transcriptome and differentiation potential.

    Directory of Open Access Journals (Sweden)

    Rhodel K Simbulan

    Full Text Available The use of assisted reproductive technologies (ART such as in vitro fertilization (IVF has resulted in the birth of more than 5 million children. While children conceived by these technologies are generally healthy, there is conflicting evidence suggesting an increase in adult-onset complications like glucose intolerance and high blood pressure in IVF children. Animal models indicate similar potential risks. It remains unclear what molecular mechanisms may be operating during in vitro culture to predispose the embryo to these diseases. One of the limitations faced by investigators is the paucity of the material in the preimplantation embryo to test for molecular analysis. To address this problem, we generated mouse embryonic stem cells (mESC from blastocysts conceived after natural mating (mESCFB or after IVF, using optimal (KSOM + 5% O2; mESCKAA and suboptimal (Whitten's Medium, + 20% O2, mESCWM conditions. All three groups of embryos showed similar behavior during both derivation and differentiation into their respective mESC lines. Unsupervised hierarchical clustering of microarray data showed that blastocyst culture does not affect the transcriptome of derived mESCs. Transcriptomic changes previously observed in the inner cell mass (ICM of embryos derived in the same conditions were not present in mESCs, regardless of method of conception or culture medium, suggesting that mESC do not fully maintain a memory of the events occurring prior to their derivation. We conclude that the fertilization method or culture media used to generate blastocysts does not affect differentiation potential, morphology and transcriptome of mESCs.

  9. Transcriptomic profiling of human embryonic stem cells upon cell cycle manipulation during pluripotent state dissolution.

    Science.gov (United States)

    Gonzales, Kevin Andrew Uy; Liang, Hongqing

    2015-12-01

    While distinct cell cycle structures have been known to correlate with pluripotent or differentiated cell states [1], there is no evidence on how the cell cycle machinery directly contributes to human embryonic stem cell (hESC) pluripotency. We established a determinant role of cell cycle machineries on the pluripotent state by demonstrating that the specific perturbation of the S and G2 phases can prevent pluripotent state dissolution (PSD) [2]. Active mechanisms in these phases, such as the DNA damage checkpoint and Cyclin B1, promote the pluripotent state [2]. To understand the mechanisms behind the effect on PSD by these pathways in hESCs, we performed comprehensive gene expression analysis by time-course microarray experiments. From these datasets, we observed expression changes in genes involved in the TGFβ signaling pathway, which has a well-established role in hESC maintenance [3], [4], [5]. The microarray data have been deposited in NCBI's Gene Expression Omnibus (GEO) and can be accessed through GEO Series accession numbers GSE62062 and GSE63215.

  10. Transcriptome dynamics and molecular cross-talk between bovine oocyte and its companion cumulus cells

    Directory of Open Access Journals (Sweden)

    Looft C

    2011-01-01

    Full Text Available Abstract Background The bi-directional communication between the oocyte and its companion cumulus cells (CCs is crucial for development and functions of both cell types. Transcripts that are exclusively expressed either in oocytes or CCs and molecular mechanisms affected due to removal of the communication axis between the two cell types is not investigated at a larger scale. The main objectives of this study were: 1. To identify transcripts exclusively expressed either in oocyte or CCs and 2. To identify those which are differentially expressed when the oocyte is cultured with or without its companion CCs and vice versa. Results We analyzed transcriptome profile of different oocyte and CC samples using Affymetrix GeneChip Bovine Genome array containing 23000 transcripts. Out of 13162 genes detected in germinal vesicle (GV oocytes and their companion CCs, 1516 and 2727 are exclusively expressed in oocytes and CCs, respectively, while 8919 are expressed in both. Similarly, of 13602 genes detected in metaphase II (MII oocytes and CCs, 1423 and 3100 are exclusively expressed in oocytes and CCs, respectively, while 9079 are expressed in both. A total of 265 transcripts are differentially expressed between oocytes cultured with (OO + CCs and without (OO - CCs CCs, of which 217 and 48 are over expressed in the former and the later groups, respectively. Similarly, 566 transcripts are differentially expressed when CCs mature with (CCs + OO or without (CCs - OO their enclosed oocytes. Of these, 320 and 246 are over expressed in CCs + OO and CCs - OO, respectively. While oocyte specific transcripts include those involved in transcription (IRF6, POU5F1, MYF5, MED18, translation (EIF2AK1, EIF4ENIF1 and CCs specific ones include those involved in carbohydrate metabolism (HYAL1, PFKL, PYGL, MPI, protein metabolic processes (IHH, APOA1, PLOD1, steroid biosynthetic process (APOA1, CYP11A1, HSD3B1, HSD3B7. Similarly, while transcripts over expressed in OO + CCs

  11. A high-resolution transcriptome map of cell cycle reveals novel connections between periodic genes and cancer.

    Science.gov (United States)

    Dominguez, Daniel; Tsai, Yi-Hsuan; Gomez, Nicholas; Jha, Deepak Kumar; Davis, Ian; Wang, Zefeng

    2016-08-01

    Progression through the cell cycle is largely dependent on waves of periodic gene expression, and the regulatory networks for these transcriptome dynamics have emerged as critical points of vulnerability in various aspects of tumor biology. Through RNA-sequencing of human cells during two continuous cell cycles (>2.3 billion paired reads), we identified over 1 000 mRNAs, non-coding RNAs and pseudogenes with periodic expression. Periodic transcripts are enriched in functions related to DNA metabolism, mitosis, and DNA damage response, indicating these genes likely represent putative cell cycle regulators. Using our set of periodic genes, we developed a new approach termed "mitotic trait" that can classify primary tumors and normal tissues by their transcriptome similarity to different cell cycle stages. By analyzing >4 000 tumor samples in The Cancer Genome Atlas (TCGA) and other expression data sets, we found that mitotic trait significantly correlates with genetic alterations, tumor subtype and, notably, patient survival. We further defined a core set of 67 genes with robust periodic expression in multiple cell types. Proteins encoded by these genes function as major hubs of protein-protein interaction and are mostly required for cell cycle progression. The core genes also have unique chromatin features including increased levels of CTCF/RAD21 binding and H3K36me3. Loss of these features in uterine and kidney cancers is associated with altered expression of the core 67 genes. Our study suggests new chromatin-associated mechanisms for periodic gene regulation and offers a predictor of cancer patient outcomes. PMID:27364684

  12. Natural autoantibodies and complement promote the uptake of a self antigen, human thyroglobulin, by B cells and the proliferation of thyroglobulin-reactive CD4(+) T cells in healthy individuals

    DEFF Research Database (Denmark)

    Nielsen, C H; Leslie, R G; Jepsen, B S;

    2001-01-01

    of complement receptor types 1 (CR1, CD35) and 2 (CR2, CD21). T cell responsiveness to Tg was examined in a preparation of peripheral blood mononuclear cells (PBMC) cultured in the presence of autologous serum. A subset of CD4(+) T cells exhibited a dose-dependent proliferative response to Tg, which...

  13. Complement receptor type 1 (CR1, CD35) is a potent inhibitor of B-cell functions in rheumatoid arthritis patients.

    Science.gov (United States)

    Kremlitzka, Mariann; Polgár, Anna; Fülöp, Lívia; Kiss, Emese; Poór, Gyula; Erdei, Anna

    2013-01-01

    The involvement of B cells, complement activation and subsequent immune complex deposition has all been implicated in the pathogenesis of rheumatoid arthritis (RA). Although the reduced expression of complement receptor 1 (CR1, CD35) and 2 (CR2, CD21) on the B cells of RA patients has been known for a long time, their exact role in B-cell tolerance and autoimmunity is not yet fully understood. To get a deeper insight into the possible mechanisms, we studied the expression and function of CR1 and CR2 on various subsets of B cells of healthy donors and RA patients at various stages of the disease by FACS analysis, (3)H-thymidine incorporation and ELISA. We found that CD19(+)CD27(-) naive B cells up-regulate the expression of the inhibitory CR1 during differentiation to CD19(+)CD27(+) memory B cells both in healthy donors and in RA patients, whereas the expression of the activatory CR2 is down-regulated. This clearly demonstrates that the expression of these two antagonistic complement receptors is regulated differentially during the development of human B cells, a phenomenon which may influence the maintenance of peripheral B-cell tolerance. Our functional studies show that after clustering CR1 both by its natural ligand and To5 mAb, the inhibitory function of CD35 is maintained in RA patients, despite its significantly reduced expression compared with healthy individuals. Besides blocking B-cell receptor-induced proliferation, CR1 inhibits the differentiation of B cells to plasmablasts and their immunoglobulin production. Since the reduced expression of CR1 in RA patients does not affect its inhibitory function, this receptor might serve as a new target for therapeutical interventions. PMID:22962438

  14. Complement component 4

    Science.gov (United States)

    ... may have lower-than-normal levels of the complement proteins C3 and C4 . Complement activity varies throughout the body. ... Saunders; 2013:chap 6. Read More Cirrhosis Complement Complement component 3 (C3) Glomerulonephritis Hepatitis Hereditary angioedema Kidney transplant Lupus nephritis ...

  15. The Lymantria dispar IPLB-Ld652Y Cell Line Transcriptome Comprises Diverse Virus-Associated Transcripts

    Directory of Open Access Journals (Sweden)

    Michael E. Sparks

    2011-11-01

    Full Text Available The enhanced viral susceptibility of the gypsy moth (Lymantria dispar-derived IPLB-Ld652Y cell line has made it a popular in vitro system for studying virus-related phenomena in the Lepidoptera. Using both single-pass EST sequencing and 454-based pyrosequencing, a transcriptomic library of 14,368 putatively unique transcripts (PUTs was produced comprising 8,476,050 high-quality, informative bases. The gene content of the IPLB-Ld652Y transcriptome was broadly assessed via comparison with the NCBI non‑redundant protein database, and more detailed functional annotation was inferred by comparison to the Swiss-Prot subset of UniProtKB. In addition to L. dispar cellular transcripts, a diverse array of both RNA and DNA virus-associated transcripts was identified within the dataset, suggestive of a high level of viral expression and activity in IPLB-Ld652Y cells. These sequence resources will provide a sound basis for developing testable experimental hypotheses by insect virologists, and suggest a number of avenues for potential research.

  16. A YAC contig encompassing the XRCC5 (Ku80) DNA repair gene and complementation of defective cells by YAC protoplast fusion

    Energy Technology Data Exchange (ETDEWEB)

    Blunt, T.; Priestley, A.; Hafezparast, M.; McMillan, T. [Univ. of Sussex, Brighton (United Kingdom)] [and others

    1995-11-20

    The Chinese hamster ovary xrs mutants are sensitive to ionizing radiation, defective in DNA double-strand break rejoining, and unable to carry out V(D)J recombination effectively. Recently, the gene defective in these mutants, XRCC5, has been shown to encode Ku80, a component of the Ku protein and DNA-dependent protein kinase. We present here a YAC contig involving 25 YACs mapping to the region 2q33-q34, which encompasses the XRCC5 gene. Eight new markers for this region of chromosome 2 are identified. YACs encoding the Ku80 gene were transferred to xrs cells by protoplast fusion, and complementation of all the defective phenotypes has been obtained with two YACs. We discuss the advantages and disadvantages of this approach as a strategy for cloning human genes complementing defective rodent cell lines. 44 refs., 2 figs., 4 tabs.

  17. RNA Detection in Live Bacterial Cells Using Fluorescent Protein Complementation Triggered by Interaction of Two RNA Aptamers with Two RNA-Binding Peptides

    Directory of Open Access Journals (Sweden)

    Charles R. Cantor

    2011-03-01

    Full Text Available Many genetic and infectious diseases can be targeted at the RNA level as RNA is more accessible than DNA. We seek to develop new approaches for detection and tracking RNA in live cells, which is necessary for RNA-based diagnostics and therapy. We recently described a method for RNA visualization in live bacterial cells based on fluorescent protein complementation [1-3]. The RNA is tagged with an RNA aptamer that binds an RNA-binding protein with high affinity. This RNA-binding protein is expressed as two split fragments fused to the fragments of a split fluorescent protein. In the presence of RNA the fragments of the RNA-binding protein bind the aptamer and bring together the fragments of the fluorescent protein, which results in its re-assembly and fluorescence development [1-3]. Here we describe a new version of the RNA labeling method where fluorescent protein complementation is triggered by paired interactions of two different closely-positioned RNA aptamers with two different RNA-binding viral peptides. The new method, which has been developed in bacteria as a model system, uses a smaller ribonucleoprotein complementation complex, as compared with the method using split RNA-binding protein, and it can potentially be applied to a broad variety of RNA targets in both prokaryotic and eukaryotic cells. We also describe experiments exploring background fluorescence in these RNA detection systems and conditions that improve the signal-to-background ratio.

  18. Genetic and phenotypic heterogeneity in disorders of peroxisome biogenesis--a complementation study involving cell lines from 19 patients.

    Science.gov (United States)

    Roscher, A A; Hoefler, S; Hoefler, G; Paschke, E; Paltauf, F; Moser, A; Moser, H

    1989-07-01

    Disorders of peroxisomal biogenesis include the Zellweger syndrome, neonatal adrenoleukodystrophy, infantile Refsum syndrome, and hyperpipecolic acidemia. These names were assigned before the recognition of the peroxisomal defect and the distinction between phenotypes is uncertain. Recent studies have identified at least four complementation groups, and indicate the presence of at least that number of distinct genotypes. The purpose of the present study was to examine the relationship between genotype and phenotype. We studied cultured skin fibroblasts from 19 patients in whom deficiency of peroxisomes had been established. Complementation analysis was performed with the criterion of complementation being the restoration of the capacity to synthesize plasmalogens when fibroblasts from two patients were fused. Six complementation groups were identified, and consisted of one 13 member group, one two member group, and four groups comprising single cases. The phenotype of each group was examined with respect to age of survival, clinical manifestations, and biochemical alterations. The 13 member group included patients with all of the four currently designated phenotypic entities, while the most common phenotype (Zellweger syndrome) was distributed among five of the six groups. We conclude that the currently used clinical categories do not represent distinct genotypes. Apparently different genes code for a similar phenotype and one defective gene may lead to variant phenotypes. Definitive classification and understanding of these disorders await definition of the specific biochemical defect in each of the genotypes.

  19. Transcriptomic analysis of responses to cytopathic bovine viral diarrhea virus-1 (BVDV-1) infection in MDBK cells.

    Science.gov (United States)

    Villalba, Melina; Fredericksen, Fernanda; Otth, Carola; Olavarría, Víctor

    2016-03-01

    The bovine viral diarrhea virus (BVDV) is responsible for significant economic losses in the dairy and cattle industry; however, little is known about the protective and pathological responses of hosts to infection. The present study determined the principal molecular markers implicated in viral infection through meta-transcriptomic analysis using MDBK cells infected for two hours with a field isolate of BVDV-1. While several immune regulator genes were induced, genes involved in cell signaling, metabolic processes, development, and integrity were down-regulated, suggesting an isolation of infected cells from cell-to-cell interactions and responses to external signals. Analysis through RT-qPCR confirmed the expression of more than one hundred markers. Interestingly, there was a significant up-regulation of two negative NF-κB regulators, IER3 and TNFAIP3, indicating a possible blocking of this signaling pathway mediated by BVDV-1 infection. Additionally, several genes involved in the metabolism of reactive oxygen species were down-regulated, suggesting increased oxidative stress. Notably, a number of genes involved in cellular growth and development were also regulated during infection, including MTHFD1L, TGIF1, and Brachyury. Moreover, there was an increased expression of the genes β-catenin, caprin-2, GSK3β, and MMP-7, all of which are crucial to the Wnt signaling pathway that is implicated in the embryonic development of a variety of organisms. This meta-transcriptomic analysis provides the first data towards understanding the infection mechanisms of cytopathic BVDV-1 and the putative molecular relationship between viral and host components. PMID:26919728

  20. Next generation transcriptomics and genomics elucidate biological complexity of microglia in health and disease.

    Science.gov (United States)

    Wes, Paul D; Holtman, Inge R; Boddeke, Erik W G M; Möller, Thomas; Eggen, Bart J L

    2016-02-01

    Genome-wide expression profiling technology has resulted in detailed transcriptome data for a wide range of tissues, conditions and diseases. In neuroscience, expression datasets were mostly generated using whole brain tissue samples, resulting in data from a mixture of cell types, including glial cells and neurons. Over the past few years, a rapidly increasing number of expression profiling studies using isolated microglial cell populations have been reported. In these studies, the microglia transcriptome was compared to other cell types, such as other brain cells and peripheral tissue macrophages, and related to aging and neurodegenerative conditions. A commonality found in many of these studies was that microglia possess distinct gene expression signatures. This repertoire of selectively-expressed microglial genes highlight functions beyond immune responses, such as synaptic modulation and neurotrophic support, and open up avenues to explore as-yet-unexpected roles. These data provide improved understanding of disease pathology, and complement not only the aforementioned whole brain tissue transcriptome studies, but also genome- and epigenome-wide association studies. In this review, insights obtained from isolated microglia transcriptome studies are presented, and compared to studies using other genome-wide approaches. The relation of microglia to other tissue macrophages and glial cell populations, as well as the role of microglia in the aging brain and in neurodegenerative conditions, will be discussed. Many more of these types of studies are expected in the near future, hopefully leading to the identification of novel genes and targets for neurodegenerative conditions.

  1. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures

    Directory of Open Access Journals (Sweden)

    Schriemer David C

    2010-11-01

    Full Text Available Abstract Background Papaver somniferum (opium poppy is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. Results A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. Conclusions The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a

  2. Single-cell transcriptomics and functional target validation of brown adipocytes show their complex roles in metabolic homeostasis.

    Science.gov (United States)

    Spaethling, Jennifer M; Sanchez-Alavez, Manuel; Lee, JaeHee; Xia, Feng C; Dueck, Hannah; Wang, Wenshan; Fisher, Stephen A; Sul, Jai-Yoon; Seale, Patrick; Kim, Junhyong; Bartfai, Tamas; Eberwine, James

    2016-01-01

    Brown adipocytes (BAs) are specialized for adaptive thermogenesis and, upon sympathetic stimulation, activate mitochondrial uncoupling protein (UCP)-1 and oxidize fatty acids to generate heat. The capacity for brown adipose tissue (BAT) to protect against obesity and metabolic disease is recognized, yet information about which signals activate BA, besides β3-adrenergic receptor stimulation, is limited. Using single-cell transcriptomics, we confirmed the presence of mRNAs encoding traditional BAT markers (i.e., UCP1, expressed in 100% of BAs Adrb3, expressed in 1000-fold) in their expression at both the mRNA and protein levels. We further identified mRNAs encoding novel markers, orphan GPCRs, and many receptors that bind the classic neurotransmitters, neuropeptides, chemokines, cytokines, and hormones. The transcriptome variability between BAs suggests a much larger range of responsiveness of BAT than previously recognized and that not all BAs function identically. We examined the in vivo functional expression of 12 selected receptors by microinjecting agonists into live mouse BAT and analyzing the metabolic response. In this manner, we expanded the number of known receptors on BAs at least 25-fold, while showing that the expression of classic BA markers is more complex and variable than previously thought. PMID:26304220

  3. Investigation of radiation-induced transcriptome profile of radioresistant non-small cell lung cancer A549 cells using RNA-seq.

    Directory of Open Access Journals (Sweden)

    Hee Jung Yang

    Full Text Available Radioresistance is a main impediment to effective radiotherapy for non-small cell lung cancer (NSCLC. Despite several experimental and clinical studies of resistance to radiation, the precise mechanism of radioresistance in NSCLC cells and tissues still remains unclear. This result could be explained by limitation of previous researches such as a partial understanding of the cellular radioresistance mechanism at a single molecule level. In this study, we aimed to investigate extensive radiation responses in radioresistant NSCLC cells and to identify radioresistance-associating factors. For the first time, using RNA-seq, a massive sequencing-based approach, we examined whole-transcriptome alteration in radioresistant NSCLC A549 cells under irradiation, and verified significant radiation-altered genes and their chromosome distribution patterns. Also, bioinformatic approaches (GO analysis and IPA were performed to characterize the radiation responses in radioresistant A549 cells. We found that epithelial-mesenchymal transition (EMT, migration and inflammatory processes could be meaningfully related to regulation of radiation responses in radioresistant A549 cells. Based on the results of bioinformatic analysis for the radiation-induced transcriptome alteration, we selected seven significant radiation-altered genes (SESN2, FN1, TRAF4, CDKN1A, COX-2, DDB2 and FDXR and then compared radiation effects in two types of NSCLC cells with different radiosensitivity (radioresistant A549 cells and radiosensitive NCI-H460 cells. Interestingly, under irradiation, COX-2 showed the most significant difference in mRNA and protein expression between A549 and NCI-H460 cells. IR-induced increase of COX-2 expression was appeared only in radioresistant A549 cells. Collectively, we suggest that COX-2 (also known as prostaglandin-endoperoxide synthase 2 (PTGS2 could have possibility as a putative biomarker for radioresistance in NSCLC cells.

  4. Transcriptome complexity in a genome-reduced bacterium

    DEFF Research Database (Denmark)

    Güell, Marc; van Noort, Vera; Yus, Eva;

    2009-01-01

    To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previousl...

  5. Integrative analysis of the transcriptome and targetome identifies the regulatory network of miR-16: an inhibitory role against the activation of hepatic stellate cells.

    Science.gov (United States)

    Pan, Qin; Guo, Canjie; Sun, Chao; Fan, Jiangao; Fang, Chunhua

    2014-01-01

    Hepatic stellate cell (HSC) activation is the critical event of liver fibrosis. Abnormality of miR-16 expression induces their activation. However, the action model of miR-16 remains to be elucidated because of its multiple-targeted manner. Here, we report that miR-16 restoration exerted a wide-range impact on transcriptome (2,082 differentially expressed transcripts) of activated HSCs. Integrative analysis of both targetome (1,195 targets) and transcriptome uncovered the miR-16 regulatory network based upon bio-molecular interaction databases (BIND, BioGrid, Tranfac, and KEGG), cross database searching with iterative algorithm, Dijkstra's algorithm with greedy method, etc. Eight targets in the targetome (Map2k1, Bmpr1b, Nf1, Pik3r3, Ppp2r1a, Prkca, Smad2, and Sos2) served as key regulatory network nodes that mediate miR-16 action. A set of TFs (Sp1, Jun, Crebl, Arnt, Fos, and Nf1) was recognized to be the functional layer of key nodes, which mapped the signal of miR-16 to transcriptome. In result, the comprehensive action of miR-16 abrogated transcriptomic characteristics that determined the phenotypes of activated HSCs, including active proliferation, ECM deposition, and apoptosis resistance. Therefore, a multi-layer regulatory network based upon the integration of targetome and transcriptome may underlie the global action of miR-16, which suggesting it plays an inhibitory role in HSC activation. PMID:25227104

  6. The Complement System in Liver Diseases

    Institute of Scientific and Technical Information of China (English)

    Xuebin Qin; Bin Gao

    2006-01-01

    The complement system plays an important role in mediating both acquired and innate responses to defend against microbial infection, and in disposing immunoglobins and apoptotic cells. The liver (mainly hepatocytes) is responsible for biosynthesis of about 80-90% of plasma complement components and expresses a variety of complement receptors.Recent evidence from several studies suggests that the complement system is also involved in the pathogenesis of a variety of liver disorders including liver injury and repair, fibrosis, viral hepatitis, alcoholic liver disease, and liver ischemia/reperfusion injury. In this review, we will discuss the potential role of the complement system in the pathogenesis of liver diseases.

  7. Transcriptomics in ecotoxicology.

    Science.gov (United States)

    Schirmer, Kristin; Fischer, Beat B; Madureira, Danielle J; Pillai, Smitha

    2010-06-01

    The emergence of analytical tools for high-throughput screening of biomolecules has revolutionized the way in which toxicologists explore the impact of chemicals or other stressors on organisms. One of the most developed and routinely applied high-throughput analysis approaches is transcriptomics, also often referred to as gene expression profiling. The transcriptome represents all RNA molecules, including the messenger RNA (mRNA), which constitutes the building blocks for translating DNA into amino acids to form proteins. The entirety of mRNA is a mirror of the genes that are actively expressed in a cell or an organism at a given time. This in turn allows one to deduce how organisms respond to changes in the external environment. In this article we explore how transcriptomics is currently applied in ecotoxicology and highlight challenges and trends.

  8. Complement gene variants in relation to autoantibodies to beta cell specific antigens and type 1 diabetes in the TEDDY Study.

    Science.gov (United States)

    Törn, Carina; Liu, Xiang; Hagopian, William; Lernmark, Åke; Simell, Olli; Rewers, Marian; Ziegler, Anette-G; Schatz, Desmond; Akolkar, Beena; Onengut-Gumuscu, Suna; Chen, Wei-Min; Toppari, Jorma; Mykkänen, Juha; Ilonen, Jorma; Rich, Stephen S; She, Jin-Xiong; Sharma, Ashok; Steck, Andrea; Krischer, Jeffrey

    2016-01-01

    A total of 15 SNPs within complement genes and present on the ImmunoChip were analyzed in The Environmental Determinants of Diabetes in the Young (TEDDY) study. A total of 5474 subjects were followed from three months of age until islet autoimmunity (IA: n = 413) and the subsequent onset of type 1 diabetes (n = 115) for a median of 73 months (IQR 54-91). Three SNPs within ITGAM were nominally associated (p C3 was significantly associated [HR 3.20; 95% CI 1.75-5.85; p = 0.0002, uncorrected] a significance that withstood Bonferroni correction since it was less than 0.000833 (0.05/60) in the HLA-specific analyses. SNPs within the complement genes may contribute to IA, the first step to type 1 diabetes, with at least one SNP in C3 significantly associated with clinically diagnosed type 1 diabetes. PMID:27306948

  9. Complement system in zebrafish.

    Science.gov (United States)

    Zhang, Shicui; Cui, Pengfei

    2014-09-01

    Zebrafish is recently emerging as a model species for the study of immunology and human diseases. Complement system is the humoral backbone of the innate immune defense, and our knowledge as such in zebrafish has dramatically increased in the recent years. This review summarizes the current research progress of zebrafish complement system. The global searching for complement components in genome database, together with published data, has unveiled the existence of all the orthologues of mammalian complement components identified thus far, including the complement regulatory proteins and complement receptors, in zebrafish. Interestingly, zebrafish complement components also display some distinctive features, such as prominent levels of extrahepatic expression and isotypic diversity of the complement components. Future studies should focus on the following issues that would be of special importance for understanding the physiological role of complement components in zebrafish: conclusive identification of complement genes, especially those with isotypic diversity; analysis and elucidation of function and mechanism of complement components; modulation of innate and adaptive immune response by complement system; and unconventional roles of complement-triggered pathways.

  10. IL-1α and complement cooperate in triggering local neutrophilic inflammation in response to adenovirus and eliminating virus-containing cells.

    Directory of Open Access Journals (Sweden)

    Nelson C Di Paolo

    2014-03-01

    Full Text Available Inflammation is a highly coordinated host response to infection, injury, or cell stress. In most instances, the inflammatory response is pro-survival and is aimed at restoring physiological tissue homeostasis and eliminating invading pathogens, although exuberant inflammation can lead to tissue damage and death. Intravascular injection of adenovirus (Ad results in virus accumulation in resident tissue macrophages that trigger activation of CXCL1 and CXCL2 chemokines via the IL-1α-IL-1RI signaling pathway. However, the mechanistic role and functional significance of this pathway in orchestrating cellular inflammatory responses to the virus in vivo remain unclear. Resident metallophilic macrophages expressing macrophage receptor with collagenous structure (MARCO+ in the splenic marginal zone (MZ play the principal role in trapping Ad from the blood. Here we show that intravascular Ad administration leads to the rapid recruitment of Ly-6G+7/4+ polymorphonuclear leukocytes (PMNs in the splenic MZ, the anatomical compartment that remains free of PMNs when these cells are purged from the bone marrow via a non-inflammatory stimulus. Furthermore, PMN recruitment in the splenic MZ resulted in elimination of virus-containing cells. IL-1α-IL-1RI signaling is only partially responsible for PMN recruitment in the MZ and requires CXCR2, but not CXCR1 signaling. We further found reduced recruitment of PMNs in the splenic MZ in complement C3-deficient mice, and that pre-treatment of IL-1α-deficient, but not wild-type mice, with complement inhibitor CR2-Crry (inhibits all complement pathways at C3 activation or CR2-fH (inhibits only the alternative complement activation pathway prior to Ad infection, abrogates PMN recruitment to the MZ and prevents elimination of MARCO+ macrophages from the spleen. Collectively, our study reveals a non-redundant role of the molecular factors of innate immunity--the chemokine-activating IL-1α-IL-1RI-CXCR2 axis and complement

  11. Quantitative proteomics and transcriptomics reveals metabolic differences in attracting and non-attracting human-in-mouse glioma stem cell xenografts and stromal cells

    Directory of Open Access Journals (Sweden)

    Norelle C. Wildburger

    2015-09-01

    Full Text Available Bone marrow-derived human mesenchymal stem cells (BM-hMSCs show promise as cell-based delivery vehicles for anti-glioma therapeutics, due to innate tropism for gliomas. However, in clinically relevant human-in-mouse glioma stem cell xenograft models, BM-hMSCs tropism is variable. We compared the proteomic profile of cancer and stromal cells in GSCXs that attract BM-hMSCs (“attractors” with those to do not (“non-attractors” to identify pathways that may modulate BM-hMSC homing, followed by targeted transcriptomics. The results provide the first link between fatty acid metabolism, glucose metabolism, ROS, and N-glycosylation patterns in attractors. Reciprocal expression of these pathways in the stromal cells suggests microenvironmental cross-talk.

  12. Transcriptome and proteome dynamics of a light-dark synchronized bacterial cell cycle.

    Directory of Open Access Journals (Sweden)

    Jacob R Waldbauer

    Full Text Available BACKGROUND: Growth of the ocean's most abundant primary producer, the cyanobacterium Prochlorococcus, is tightly synchronized to the natural 24-hour light-dark cycle. We sought to quantify the relationship between transcriptome and proteome dynamics that underlie this obligate photoautotroph's highly choreographed response to the daily oscillation in energy supply. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA-sequencing transcriptomics and mass spectrometry-based quantitative proteomics, we measured timecourses of paired mRNA-protein abundances for 312 genes every 2 hours over a light-dark cycle. These temporal expression patterns reveal strong oscillations in transcript abundance that are broadly damped at the protein level, with mRNA levels varying on average 2.3 times more than the corresponding protein. The single strongest observed protein-level oscillation is in a ribonucleotide reductase, which may reflect a defense strategy against phage infection. The peak in abundance of most proteins also lags that of their transcript by 2-8 hours, and the two are completely antiphase for some genes. While abundant antisense RNA was detected, it apparently does not account for the observed divergences between expression levels. The redirection of flux through central carbon metabolism from daytime carbon fixation to nighttime respiration is associated with quite small changes in relative enzyme abundances. CONCLUSIONS/SIGNIFICANCE: Our results indicate that expression responses to periodic stimuli that are common in natural ecosystems (such as the diel cycle can diverge significantly between the mRNA and protein levels. Protein expression patterns that are distinct from those of cognate mRNA have implications for the interpretation of transcriptome and metatranscriptome data in terms of cellular metabolism and its biogeochemical impact.

  13. Transcriptome Analysis of Piperlongumine-Treated Human Pancreatic Cancer Cells Reveals Involvement of Oxidative Stress and Endoplasmic Reticulum Stress Pathways.

    Science.gov (United States)

    Dhillon, Harsharan; Mamidi, Sujan; McClean, Phillip; Reindl, Katie M

    2016-06-01

    Piperlongumine (PL), an alkaloid obtained from long peppers, displays antitumorigenic properties for a variety of human cell- and animal-based models. The aim of this study was to identify the underlying molecular mechanisms for PL anticancer effects on human pancreatic cancer cells. RNA sequencing (RNA-seq) was used to identify the effects of PL on the transcriptome of MIA PaCa-2 human pancreatic cancer cells. PL treatment of pancreatic cancer cells resulted in differential expression of 683 mRNA transcripts with known protein functions, 351 of which were upregulated and 332 of which were downregulated compared to control-treated cells. Transcripts associated with oxidative stress, endoplasmic reticulum (ER) stress, and unfolded protein response pathways were significantly overexpressed with PL treatment. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to validate the RNA-seq results, which included upregulation of HO-1, IRE1α, cytochrome c, and ASNS. The results provide key insight into the mechanisms by which PL alters cancer cell physiology and identify that activation of oxidative stress and ER stress pathways is a critical avenue for PL anticancer effects. PMID:27119744

  14. Transcriptome Profiling of Caco-2 Cancer Cell Line following Treatment with Extracts from Iodine-Biofortified Lettuce (Lactuca sativa L..

    Directory of Open Access Journals (Sweden)

    Aneta A Koronowicz

    Full Text Available Although iodization of salt is the most common method used to obtain iodine-enriched food, iodine deficiency disorders are still a global health problem and profoundly affect the quality of human life. Iodine is required for the synthesis of thyroid hormones, which are crucial regulators of human metabolism, cell growth, proliferation, apoptosis and have been reported to be involved in carcinogenesis. In this study, for the first time, we evaluated the effect of iodine-biofortified lettuce on transcriptomic profile of Caco-2 cancer cell line by applying the Whole Human Genome Microarray assay. We showed 1326 differentially expressed Caco-2 transcripts after treatment with iodine-biofortified (BFL and non-fortified (NFL lettuce extracts. We analysed pathways, molecular functions, biological processes and protein classes based on comparison between BFL and NFL specific genes. Iodine, which was expected to act as a free ion (KI-NFL or at least in part to be incorporated into lettuce macromolecules (BFL, differently regulated pathways of numerous transcription factors leading to different cellular effects. In this study we showed the inhibition of Caco-2 cells proliferation after treatment with BFL, but not potassium iodide (KI, and BFL-mediated induction of mitochondrial apoptosis and/or cell differentiation. Our results showed that iodine-biofortified plants can be effectively used by cells as an alternative source of this trace element. Moreover, the observed differences in action of both iodine sources may suggest a potential of BFL in cancer treatment.

  15. 454 Transcriptome sequencing suggests a role for two-component signalling in cellularization and differentiation of barley endosperm transfer cells.

    Directory of Open Access Journals (Sweden)

    Johannes Thiel

    Full Text Available BACKGROUND: Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs. Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. PRINCIPAL FINDINGS: 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and

  16. Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome

    Directory of Open Access Journals (Sweden)

    Eric eRuelland

    2014-11-01

    Full Text Available Basal phosphoinositide-dependent phospholipase C (PI-PLC activity controls gene expression in Arabidopsis suspension cells and seedlings. PI-PLC catalyzes the production of phosphorylated inositol and diacylglycerol (DAG from phosphoinositides. It is not known how PI-PLC regulates the transcriptome although the action of DAG-kinase (DGK on DAG immediately downstream from PI-PLC is responsible for some of the regulation. We previously established a list of genes whose expression is affected in the presence of PI-PLC inhibitors. Here this list of genes was used as a signature in similarity searches of curated plant hormone response transcriptome data. The strongest correlations obtained with the inhibited PI-PLC signature were with salicylic acid (SA treatments. We confirm here that in Arabidopsis suspension cells SA treatment leads to an increase in phosphoinositides, then demonstrate that SA leads to a significant 20% decrease in phosphatidic acid, indicative of a decrease in PI-PLC products. Previous sets of microarray data were re-assessed. The SA response of one set of genes was dependent on phosphoinositides. Alterations in the levels of a second set of genes, mostly SA-repressed genes, could be related to decreases in PI-PLC products that occur in response to SA action. Together, the two groups of genes comprise at least 40% of all SA-responsive genes. Overall these two groups of genes are distinct in the functional categories of the proteins they encode, their promoter cis-elements and their regulation by DGK or phospholipase D. SA-regulated genes dependent on phosphoinositides are typical SA response genes while those with an SA response that is possibly dependent on PI-PLC products are less SA-specific. We propose a model in which SA inhibits PI-PLC activity and alters levels of PI-PLC products and substrates, thereby regulating gene expression divergently.

  17. Complement component 3 deficiency prolongs MHC-II disparate skin allograft survival by increasing the CD4+ CD25+ regulatory T cells population

    Science.gov (United States)

    Zheng, Quan-you; Liang, Shen-ju; Li, Gui-qing; Lv, Yan-bo; Li, You; Tang, Ming; Zhang, Kun; Xu, Gui-lian; Zhang, Ke-qin

    2016-01-01

    Recent reports suggest that complement system contributes to allograft rejection. However, its underlying mechanism is poorly understood. Herein, we investigate the role of complement component 3 (C3) in a single MHC-II molecule mismatched murine model of allograft rejection using C3 deficient mice (C3−/−) as skin graft donors or recipients. Compared with C3+/+ B6 allografts, C3−/− B6 grafts dramatically prolonged survival in MHC-II molecule mismatched H-2bm12 B6 recipients, indicating that C3 plays a critical role in allograft rejection. Compared with C3+/+ allografts, both Th17 cell infiltration and Th1/Th17 associated cytokine mRNA levels were clearly reduced in C3−/− allografts. Moreover, C3−/− allografts caused attenuated Th1/Th17 responses, but increased CD4+CD25+Foxp3+ regulatory T (Treg) cell expression markedly in local intragraft and H-2bm12 recipients. Depletion of Treg cells by anti-CD25 monoclonal antibody (mAb) negated the survival advantages conferred by C3 deficiency. Our results indicate for the first time that C3 deficiency can prolong MHC-II molecule mismatched skin allograft survival, which is further confirmed to be associated with increased CD4+ CD25+ Treg cell population expansion and attenuated Th1/Th17 response. PMID:27641978

  18. Complement component 3 deficiency prolongs MHC-II disparate skin allograft survival by increasing the CD4(+) CD25(+) regulatory T cells population.

    Science.gov (United States)

    Zheng, Quan-You; Liang, Shen-Ju; Li, Gui-Qing; Lv, Yan-Bo; Li, You; Tang, Ming; Zhang, Kun; Xu, Gui-Lian; Zhang, Ke-Qin

    2016-01-01

    Recent reports suggest that complement system contributes to allograft rejection. However, its underlying mechanism is poorly understood. Herein, we investigate the role of complement component 3 (C3) in a single MHC-II molecule mismatched murine model of allograft rejection using C3 deficient mice (C3(-/-)) as skin graft donors or recipients. Compared with C3(+/+) B6 allografts, C3(-/-) B6 grafts dramatically prolonged survival in MHC-II molecule mismatched H-2(bm12) B6 recipients, indicating that C3 plays a critical role in allograft rejection. Compared with C3(+/+) allografts, both Th17 cell infiltration and Th1/Th17 associated cytokine mRNA levels were clearly reduced in C3(-/-) allografts. Moreover, C3(-/-) allografts caused attenuated Th1/Th17 responses, but increased CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cell expression markedly in local intragraft and H-2(bm12) recipients. Depletion of Treg cells by anti-CD25 monoclonal antibody (mAb) negated the survival advantages conferred by C3 deficiency. Our results indicate for the first time that C3 deficiency can prolong MHC-II molecule mismatched skin allograft survival, which is further confirmed to be associated with increased CD4(+) CD25(+) Treg cell population expansion and attenuated Th1/Th17 response. PMID:27641978

  19. Complementation of the UV-sensitive phenotype of a xeroderma pigmentosum human cell line by transfection with a cDNA clone library

    International Nuclear Information System (INIS)

    In previous work, a xeroderma pigmentosum cell line belonging to complementation group C was established by transformation with origin-defective simian virus 40. We now report the complementation of the UV sensitivity of this cell line by gene transfer. A human cDNA clone library constructed in a mammalian expression vector, and itself incorporated in a lambda phage vector, was introduced into the cells as a calcium phosphate precipitate. Following selection to G418 resistance, provided by the neo gene of the vector, transformants were selected for UV resistance. Twenty-one cell clones were obtained with UV-resistance levels typical of normal human fibroblasts. All transformants contained vector DNA sequences in their nuclei. Upon further propagation in the absence of selection for G418 resistance, about half of the primary transformants remained UV-resistant. Secondary transformants were generated by transfection with a partial digest of total chromosomal DNA from one of these stable transformants. This resulted in 15 G418-resistant clones, 2 of which exhibited a UV-resistant phenotype. The other primary clones lost UV resistance rapidly when subcultured in the absence of G418. Importantly, several retained UV resistance under G418 selection pressure. The acquisition of UV resistance by secondary transformants derived by transfection of DNA from a stable primary transformant, and the linkage between G418 and UV resistances in the unstable primary transformants, strongly suggests that the transformants acquired UV resistance through DNA-mediated gene transfer and not by reversion

  20. Transcriptome profiling of induced hair cells (iHCs) generated by combined expression of Gfi1, Pou4f3 and Atoh1 during embryonic stem cell differentiation.

    Science.gov (United States)

    Costa, Aida; Henrique, Domingos

    2015-12-01

    To gain new insights about the genetic networks controlling hair cell (HC) development, we previously developed a direct genetic programming strategy to generate an inexhaustible supply of HC-like cells (induced HCs, iHCs) in vitro, starting from mouse embryonic stem cells (ESC). We found that combined activity of three transcription factors, Gfi1, Pou4f3, and Atoh1, can program ESC-derived progenitors towards HC fate with efficiencies of 55%-80%. These iHCs express several HC markers and exhibit polarized structures that are highly reminiscent of the mechanosensitive hair bundles, with many microvilli-like stereocilia. Here, we describe the experimental design, methodology, and data validation for the microarray analysis used to characterize the transcriptome profile of iHCs at different stages of their differentiation. This approach based on FACS sorting and microarray analysis revealed a highly similar iHC transcriptome to that of endogenous HCs in vivo. The data obtained in this study is available in the Gene Expression Omnibus (GEO) database (accession number GSE60352). PMID:26697340

  1. Complement and autoimmunity.

    Science.gov (United States)

    Ballanti, Eleonora; Perricone, Carlo; Greco, Elisabetta; Ballanti, Marta; Di Muzio, Gioia; Chimenti, Maria Sole; Perricone, Roberto

    2013-07-01

    The complement system is a component of the innate immune system. Its main function was initially believed to be limited to the recognition and elimination of pathogens through direct killing or stimulation of phagocytosis. However, in recent years, the immunoregulatory functions of the complement system were demonstrated and it was determined that the complement proteins play an important role in modulating adaptive immunity and in bridging innate and adaptive responses. When the delicate mechanisms that regulate this sophisticated enzymatic system are unbalanced, the complement system may cause damage, mediating tissue inflammation. Dysregulation of the complement system has been involved in the pathogenesis and clinical manifestations of several autoimmune diseases, such as systemic lupus erythematosus, vasculitides, Sjögren's syndrome, antiphospholipid syndrome, systemic sclerosis, dermatomyositis, and rheumatoid arthritis. Complement deficiencies have been associated with an increased risk to develop autoimmune disorders. Because of its functions, the complement system is an attractive therapeutic target for a wide range of diseases. Up to date, several compounds interfering with the complement cascade have been studied in experimental models for autoimmune diseases. The main therapeutic strategies are inhibition of complement activation components, inhibition of complement receptors, and inhibition of membrane attack complex. At present, none of the available agents was proven to be both safe and effective for treatment of autoimmune diseases in humans. Nonetheless, data from preclinical studies and initial clinical trials suggest that the modulation of the complement system could constitute a viable strategy for the treatment of autoimmune conditions in the decades to come.

  2. Excision repair cross complementation group 1 is a chemotherapy-tolerating gene in cisplatin-based treatment for non-small cell lung cancer.

    Science.gov (United States)

    Wang, Shoufeng; Pan, Hong; Liu, Desen; Mao, Naiquan; Zuo, Chuantian; Li, Li; Xie, Tong; Huang, Dingming; Huang, Yaoyuan; Pan, Qi; Yang, Li; Wu, Junwei

    2015-02-01

    This study aimed to evaluate the biological functions of excision repair cross complementation goup 1 (ERCC1) in cell proliferation, cell cycle, invasion and cisplatin response of non-small cell lung cancer (NSCLC) cells. Firstly, ERCC1 gene was successfully transfected into H1299 cells by gene cloning and transfection techniques. Then, cell proliferation was determined with the cell growth curve and colony-forming assays. Flow cytometry (FCM) was employed to investigate the cell cycle distribution. The ability of cell invasion was estimated by means of Matrigel invasion assays. Response of NSCLC cells to cisplatin was detected utilizing MTT assays, and the intracellular drug concentrations were determined by the high performance liquid chromatography (HPLC) analysis. Expression of the two cell membrane proteins, P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP), was also evaluated utilizing FCM technique. By contrast, ERCC1 expression in the NSCLC A549 cells was silenced by small interfering RNA (siRNA) through RNAi technique. In addition, the cytotoxic effect of cisplatin on A549 cells was detected by MTT assays. In the present study, the results demonstrated that ERCC1 had no effect on cell proliferation, cell cycle and the ability of invasion, but showed significant impact on cisplatin response of the NSCLC H1299 cells. Furthermore, siRNA-induced suppression of ERCC1 evidently enhanced sensitivity to cisplatin of NSCLC A549 cells. Therefore, it is confirmed that ERCC1 is a chemotherapy-tolerating gene and a promising predictor in tailoring chemotherapy of NSCLC. PMID:25434755

  3. Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by Laser Capture Microdissection

    Directory of Open Access Journals (Sweden)

    Bonnet Agnes

    2011-08-01

    Full Text Available Abstract Background Successful achievement of early folliculogenesis is crucial for female reproductive function. The process is finely regulated by cell-cell interactions and by the coordinated expression of genes in both the oocyte and in granulosa cells. Despite many studies, little is known about the cell-specific gene expression driving early folliculogenesis. The very small size of these follicles and the mixture of types of follicles within the developing ovary make the experimental study of isolated follicular components very difficult. The recently developed laser capture microdissection (LCM technique coupled with microarray experiments is a promising way to address the molecular profile of pure cell populations. However, one main challenge was to preserve the RNA quality during the isolation of single cells or groups of cells and also to obtain sufficient amounts of RNA. Using a new LCM method, we describe here the separate expression profiles of oocytes and follicular cells during the first stages of sheep folliculogenesis. Results We developed a new tissue fixation protocol ensuring efficient single cell capture and RNA integrity during the microdissection procedure. Enrichment in specific cell types was controlled by qRT-PCR analysis of known genes: six oocyte-specific genes (SOHLH2, MAEL, MATER, VASA, GDF9, BMP15 and three granulosa cell-specific genes (KL, GATA4, AMH. A global gene expression profile for each follicular compartment during early developmental stages was identified here for the first time, using a bovine Affymetrix chip. Most notably, the granulosa cell dataset is unique to date. The comparison of oocyte vs. follicular cell transcriptomes revealed 1050 transcripts specific to the granulosa cell and 759 specific to the oocyte. Functional analyses allowed the characterization of the three main cellular events involved in early folliculogenesis and confirmed the relevance and potential of LCM-derived RNA. Conclusions

  4. Molecules Great and Small: The Complement System.

    Science.gov (United States)

    Mathern, Douglas R; Heeger, Peter S

    2015-09-01

    The complement cascade, traditionally considered an effector arm of innate immunity required for host defense against pathogens, is now recognized as a crucial pathogenic mediator of various kidney diseases. Complement components produced by the liver and circulating in the plasma undergo activation through the classical and/or mannose-binding lectin pathways to mediate anti-HLA antibody-initiated kidney transplant rejection and autoantibody-initiated GN, the latter including membranous glomerulopathy, antiglomerular basement membrane disease, and lupus nephritis. Inherited and/or acquired abnormalities of complement regulators, which requisitely limit restraint on alternative pathway complement activation, contribute to the pathogenesis of the C3 nephropathies and atypical hemolytic uremic syndrome. Increasing evidence links complement produced by endothelial cells and/or tubular cells to the pathogenesis of kidney ischemia-reperfusion injury and progressive kidney fibrosis. Data emerging since the mid-2000s additionally show that immune cells, including T cells and antigen-presenting cells, produce alternative pathway complement components during cognate interactions. The subsequent local complement activation yields production of the anaphylatoxins C3a and C5a, which bind to their respective receptors (C3aR and C5aR) on both partners to augment effector T-cell proliferation and survival, while simultaneously inhibiting regulatory T-cell induction and function. This immune cell-derived complement enhances pathogenic alloreactive T-cell immunity that results in transplant rejection and likely contributes to the pathogenesis of other T cell-mediated kidney diseases. C5a/C5aR ligations on neutrophils have additionally been shown to contribute to vascular inflammation in models of ANCA-mediated renal vasculitis. New translational immunology efforts along with the development of pharmacologic agents that block human complement components and receptors now permit

  5. "Stockpile" of Slight Transcriptomic Changes Determines the Indirect Genotoxicity of Low-Dose BPA in Thyroid Cells.

    Directory of Open Access Journals (Sweden)

    Immacolata Porreca

    Full Text Available Epidemiological and experimental data highlighted the thyroid-disrupting activity of bisphenol A (BPA. Although pivotal to identify the mechanisms of toxicity, direct low-dose BPA effects on thyrocytes have not been assessed. Here, we report the results of microarray experiments revealing that the transcriptome reacts dynamically to low-dose BPA exposure, adapting the changes in gene expression to the exposure duration. The response involves many genes, enriching specific pathways and biological functions mainly cell death/proliferation or DNA repair. Their expression is only slightly altered but, since they enrich specific pathways, this results in major effects as shown here for transcripts involved in the DNA repair pathway. Indeed, even though no phenotypic changes are induced by the treatment, we show that the exposure to BPA impairs the cell response to further stressors. We experimentally verify that prolonged exposure to low doses of BPA results in a delayed response to UV-C-induced DNA damage, due to impairment of p21-Tp53 axis, with the BPA-treated cells more prone to cell death and DNA damage accumulation. The present findings shed light on a possible mechanism by which BPA, not able to directly cause genetic damage at environmental dose, may exert an indirect genotoxic activity.

  6. “Stockpile” of Slight Transcriptomic Changes Determines the Indirect Genotoxicity of Low-Dose BPA in Thyroid Cells

    Science.gov (United States)

    Porreca, Immacolata; Ulloa Severino, Luisa; D’Angelo, Fulvio; Cuomo, Danila; Ceccarelli, Michele; Altucci, Lucia; Amendola, Elena; Nebbioso, Angela; Mallardo, Massimo

    2016-01-01

    Epidemiological and experimental data highlighted the thyroid-disrupting activity of bisphenol A (BPA). Although pivotal to identify the mechanisms of toxicity, direct low-dose BPA effects on thyrocytes have not been assessed. Here, we report the results of microarray experiments revealing that the transcriptome reacts dynamically to low-dose BPA exposure, adapting the changes in gene expression to the exposure duration. The response involves many genes, enriching specific pathways and biological functions mainly cell death/proliferation or DNA repair. Their expression is only slightly altered but, since they enrich specific pathways, this results in major effects as shown here for transcripts involved in the DNA repair pathway. Indeed, even though no phenotypic changes are induced by the treatment, we show that the exposure to BPA impairs the cell response to further stressors. We experimentally verify that prolonged exposure to low doses of BPA results in a delayed response to UV-C-induced DNA damage, due to impairment of p21-Tp53 axis, with the BPA-treated cells more prone to cell death and DNA damage accumulation. The present findings shed light on a possible mechanism by which BPA, not able to directly cause genetic damage at environmental dose, may exert an indirect genotoxic activity. PMID:26982218

  7. "Stockpile" of Slight Transcriptomic Changes Determines the Indirect Genotoxicity of Low-Dose BPA in Thyroid Cells.

    Science.gov (United States)

    Porreca, Immacolata; Ulloa Severino, Luisa; D'Angelo, Fulvio; Cuomo, Danila; Ceccarelli, Michele; Altucci, Lucia; Amendola, Elena; Nebbioso, Angela; Mallardo, Massimo; De Felice, Mario; Ambrosino, Concetta

    2016-01-01

    Epidemiological and experimental data highlighted the thyroid-disrupting activity of bisphenol A (BPA). Although pivotal to identify the mechanisms of toxicity, direct low-dose BPA effects on thyrocytes have not been assessed. Here, we report the results of microarray experiments revealing that the transcriptome reacts dynamically to low-dose BPA exposure, adapting the changes in gene expression to the exposure duration. The response involves many genes, enriching specific pathways and biological functions mainly cell death/proliferation or DNA repair. Their expression is only slightly altered but, since they enrich specific pathways, this results in major effects as shown here for transcripts involved in the DNA repair pathway. Indeed, even though no phenotypic changes are induced by the treatment, we show that the exposure to BPA impairs the cell response to further stressors. We experimentally verify that prolonged exposure to low doses of BPA results in a delayed response to UV-C-induced DNA damage, due to impairment of p21-Tp53 axis, with the BPA-treated cells more prone to cell death and DNA damage accumulation. The present findings shed light on a possible mechanism by which BPA, not able to directly cause genetic damage at environmental dose, may exert an indirect genotoxic activity. PMID:26982218

  8. A transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells

    Directory of Open Access Journals (Sweden)

    Giraudi Pablo

    2009-11-01

    Full Text Available Abstract Background The deposition of unconjugated bilirubin (UCB in selected regions of the brain results in irreversible neuronal damage, or Bilirubin Encephalopathy (BE. Although UCB impairs a large number of cellular functions in other tissues, the basic mechanisms of neurotoxicity have not yet been fully clarified. While cells can accumulate UCB by passive diffusion, cell protection may involve multiple mechanisms including the extrusion of the pigment as well as pro-survival homeostatic responses that are still unknown. Results Transcriptome changes induced by UCB exposure in SH-SY5Y neuroblastoma cell line were examined by high density oligonucleotide microarrays. Two-hundred and thirty genes were induced after 24 hours. A Gene Ontology (GO analysis showed that at least 50 genes were directly involved in the endoplasmic reticulum (ER stress response. Validation of selected ER stress genes is shown by quantitative RT-PCR. Analysis of XBP1 splicing and DDIT3/CHOP subcellular localization is presented. Conclusion These results show for the first time that UCB exposure induces ER stress response as major intracellular homeostasis in surviving neuroblastoma cells in vitro.

  9. Transcriptome profiling in Arabidopsis inflorescence stems grown under hypergravity in terms of cell walls and plant hormones

    Science.gov (United States)

    Tamaoki, D.; Karahara, I.; Nishiuchi, T.; De Oliveira, S.; Schreiber, L.; Wakasugi, T.; Yamada, K.; Yamaguchi, K.; Kamisaka, S.

    2009-07-01

    Land plants rely on lignified secondary cell walls in supporting their body weight on the Earth. Although gravity influences the formation of the secondary cell walls, the regulatory mechanism of their formation by gravity is not yet understood. We carried out a comprehensive analysis of gene expression in inflorescence stems of Arabidopsis thaliana L. using microarray (22 K) to identify genes whose expression is modulated under hypergravity condition (300 g). Total RNA was isolated from the basal region of inflorescence stems of plants grown for 24 h at 300 g or 1 g. Microarray analysis showed that hypergravity up-regulated the expression of 403 genes to more than 2-fold. Hypergravity up-regulated the genes responsible for the biosynthesis or modification of cell wall components such as lignin, xyloglucan, pectin and structural proteins. In addition, hypergravity altered the expression of genes related to the biosynthesis of plant hormones such as auxin and ethylene and that of genes encoding hormone-responsive proteins. Our transcriptome profiling indicates that hypergravity influences the formation of secondary cell walls by modulating the pattern of gene expression, and that auxin and/or ethylene play an important role in signaling hypergravity stimulus.

  10. Transcriptome profiling identifies genes and pathways deregulated upon floxuridine treatment in colorectal cancer cells harboring GOF mutant p53

    Directory of Open Access Journals (Sweden)

    Arindam Datta

    2016-06-01

    Full Text Available Mutation in TP53 is a common genetic alteration in human cancers. Certain tumor associated p53 missense mutants acquire gain-of-function (GOF properties and confer oncogenic phenotypes including enhanced chemoresistance. The colorectal cancers (CRC harboring mutant p53 are generally aggressive in nature and difficult to treat. To identify a potential gene expression signature of GOF mutant p53-driven acquired chemoresistance in CRC, we performed transcriptome profiling of floxuridine (FUdR treated SW480 cells expressing mutant p53R273H (GEO#: GSE77533. We obtained several genes differentially regulated between FUdR treated and untreated cells. Further, functional characterization and pathway analysis revealed significant enrichment of crucial biological processes and pathways upon FUdR treatment in SW480 cells. Our data suggest that in response to chemotherapeutics treatment, cancer cells with GOF mutant p53 can modulate key cellular pathways to withstand the cytotoxic effect of the drugs. The genes and pathways identified in the present study can be further validated and targeted for better chemotherapy response in colorectal cancer patients harboring mutant p53.

  11. Ligation of the functional domain of complement receptor type 2 (CR2, CD21) is relevant for complex formation in T cell lines.

    Science.gov (United States)

    Prodinger, W M; Larcher, C; Schwendinger, M; Dierich, M P

    1996-04-01

    We investigated the potential of CD21, the complement receptor type 2, to form receptor complexes with other membrane molecules on T cell lines. CD21 from T cell lines transformed with human T cell leukemia virus type I (MT2, HUT-102, C5.MJ, Mondi, and C91.PL) and T cell lines that were not virus transformed was analyzed by coprecipitation following cell lysis with digitonin. mAbs binding to functional and nonfunctional epitopes of CD21 and a polyclonal antiserum against its intracellular portion precipitated CD21, which was indistinguishable from CD21 on B cell lines. In contrast to B cells, where CD21 is complexed with CD19 and CD81 (target of anti-proliferative Ab 1) or, alternatively, with CD35 (CR1), no surface molecules could be coprecipitated with three of four mAbs from these T cell lines. Therefore, we assume that CD21 is not part of a preformed complex in T cell lines. OKB7, the only mAb directed against the functional C3d binding site, coprecipitated two proteins of 105 and 55 Mr with CD21 from MT2 and Mondi cells and from the T cell lines Jurkat E6-1 and SupT1. These bands were also recovered with CD21 precipitated from MT2 cells with C3d bound to Sepharose via the internal thioester, but were absent in CD21-expressing B cell lines. As C3d and OKB7 are functional ligands for B cells, we propose that upon ligation on T cells, CD21 associates with molecules of 105/55 Mr in the plasma membrane. Whether this is the first event of a signal delivered to the T cell is under current investigation. PMID:8786322

  12. Control of the collective migration of enteric neural crest cells by the Complement anaphylatoxin C3a and N-cadherin.

    Science.gov (United States)

    Broders-Bondon, Florence; Paul-Gilloteaux, Perrine; Gazquez, Elodie; Heysch, Julie; Piel, Matthieu; Mayor, Roberto; Lambris, John D; Dufour, Sylvie

    2016-06-01

    We analyzed the cellular and molecular mechanisms governing the adhesive and migratory behavior of enteric neural crest cells (ENCCs) during their collective migration within the developing mouse gut. We aimed to decipher the role of the complement anaphylatoxin C3a during this process, because this well-known immune system attractant has been implicated in cephalic NCC co-attraction, a process controlling directional migration. We used the conditional Ht-PA-cre transgenic mouse model allowing a specific ablation of the N-cadherin gene and the expression of a fluorescent reporter in migratory ENCCs without affecting the central nervous system. We performed time-lapse videomicroscopy of ENCCs from control and N-cadherin mutant gut explants cultured on fibronectin (FN) and micropatterned FN-stripes with C3a or C3aR antagonist, and studied cell migration behavior with the use of triangulation analysis to quantify cell dispersion. We performed ex vivo gut cultures with or without C3aR antagonist to determine the effect on ENCC behavior. Confocal microscopy was used to analyze the cell-matrix adhesion properties. We provide the first demonstration of the localization of the complement anaphylatoxin C3a and its receptor on ENCCs during their migration in the embryonic gut. C3aR receptor inhibition alters ENCC adhesion and migration, perturbing directionality and increasing cell dispersion both in vitro and ex vivo. N-cadherin-null ENCCs do not respond to C3a co-attraction. These findings indicate that C3a regulates cell migration in a N-cadherin-dependent process. Our results shed light on the role of C3a in regulating collective and directional cell migration, and in ganglia network organization during enteric nervous system ontogenesis. The detection of an immune system chemokine in ENCCs during ENS development may also shed light on new mechanisms for gastrointestinal disorders. PMID:27041467

  13. Control of the collective migration of enteric neural crest cells by the Complement anaphylatoxin C3a and N-cadherin.

    Science.gov (United States)

    Broders-Bondon, Florence; Paul-Gilloteaux, Perrine; Gazquez, Elodie; Heysch, Julie; Piel, Matthieu; Mayor, Roberto; Lambris, John D; Dufour, Sylvie

    2016-06-01

    We analyzed the cellular and molecular mechanisms governing the adhesive and migratory behavior of enteric neural crest cells (ENCCs) during their collective migration within the developing mouse gut. We aimed to decipher the role of the complement anaphylatoxin C3a during this process, because this well-known immune system attractant has been implicated in cephalic NCC co-attraction, a process controlling directional migration. We used the conditional Ht-PA-cre transgenic mouse model allowing a specific ablation of the N-cadherin gene and the expression of a fluorescent reporter in migratory ENCCs without affecting the central nervous system. We performed time-lapse videomicroscopy of ENCCs from control and N-cadherin mutant gut explants cultured on fibronectin (FN) and micropatterned FN-stripes with C3a or C3aR antagonist, and studied cell migration behavior with the use of triangulation analysis to quantify cell dispersion. We performed ex vivo gut cultures with or without C3aR antagonist to determine the effect on ENCC behavior. Confocal microscopy was used to analyze the cell-matrix adhesion properties. We provide the first demonstration of the localization of the complement anaphylatoxin C3a and its receptor on ENCCs during their migration in the embryonic gut. C3aR receptor inhibition alters ENCC adhesion and migration, perturbing directionality and increasing cell dispersion both in vitro and ex vivo. N-cadherin-null ENCCs do not respond to C3a co-attraction. These findings indicate that C3a regulates cell migration in a N-cadherin-dependent process. Our results shed light on the role of C3a in regulating collective and directional cell migration, and in ganglia network organization during enteric nervous system ontogenesis. The detection of an immune system chemokine in ENCCs during ENS development may also shed light on new mechanisms for gastrointestinal disorders.

  14. Transcriptome analysis of Emiliania huxleyi cells grown under different conditions using high-throughput sequencing data

    Science.gov (United States)

    Andreson, R.; Anlauf, H.; Mackinder, L.; Iglesias-Rodriguez, D.; LaRoche, J.; Lenhard, B.

    2012-04-01

    Coccolithophores are ideal for studying genes responsible for biomineralization processes due to relatively small genome sizes, ability to grow in culture, and as a natural model system for measuring expression of calcification-related genes in two life stages. As the Emiliania huxleyi has several annotated calcification-related proteins, we have concentrated on analyzing its genes and promoter areas. Many recent studies have focused primarily on transcriptome analysis of E. huxleyi using nutrient-limited conditions to get more information about up-regulated genes involved in biomineralization and calcification processes. Although there are more than 100,000 EST sequences for E. huxleyi available from these projects in public databases, that data is often insufficient to identify the exact position of transcription start site (TSS) to perform precise analysis (nucleotide content, motif search) of core promoters and regulatory mechanisms in immediate flanking areas. ESTs are not ideal for these kinds of analyses because the standard technologies of producing 5' EST libraries do not guarantee that the exact 5' end of the transcript will be captured. To determine the extent and accurate positions of 5' ends of transcripts and therefore the positions of core promoters, Cap analysis of gene expression (CAGE) sequencing method was used for sequencing RNA of E. huxleyi in both stages, calcifying and non-calcifying. As an additional info, gene expression levels of RNA for 21 samples were retrieved with whole transcriptome shotgun sequencing (RNA-Seq). The collections of reads these methods produced were used to map and annotate genes on several samples and measure the RNA expression levels in different conditions. Although there are not much data available for close organisms, it is possible to compare these results with other species to find conserved regulatory mechanisms between genes related to calcification. Visualization tools allowing browsing of annotated genes

  15. Transcriptome Analysis of B Cell Immune Functions in Periodontitis: Mucosal Tissue Responses to the Oral Microbiome in Aging.

    Science.gov (United States)

    Ebersole, Jeffrey L; Kirakodu, Sreenatha S; Novak, M John; Orraca, Luis; Martinez, Janis Gonzalez; Cunningham, Larry L; Thomas, Mark V; Stromberg, Arnold; Pandruvada, Subramanya N; Gonzalez, Octavio A

    2016-01-01

    Evidence has shown activation of T and B cells in gingival tissues in experimental models and in humans diagnosed with periodontitis. The results of this adaptive immune response are noted both locally and systemically with antigenic specificity for an array of oral bacteria, including periodontopathic species, e.g., Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. It has been recognized through epidemiological studies and clinical observations that the prevalence of periodontitis increases with age. This report describes our studies evaluating gingival tissue transcriptomes in humans and specifically exploiting the use of a non-human primate model of naturally occurring periodontitis to delineate gingival mucosal tissue gene expression profiles focusing on cells/genes critical for the development of humoral adaptive immune responses. Patterns of B cell and plasmacyte genes were altered in aging healthy gingival tissues. Substantial increases in a large number of genes reflecting antigen-dependent activation, B cell activation, B cell proliferation, and B cell differentiation/maturation were observed in periodontitis in adults and aged animals. Finally, evaluation of the relationship of these gene expression patterns with those of various tissue destructive molecules (MMP2, MMP9, CTSK, TNFα, and RANKL) showed a greater frequency of positive correlations in healthy tissues versus periodontitis tissues, with only MMP9 correlations similar between the two tissue types. These results are consistent with B cell response activities in healthy tissues potentially contributing to muting the effects of the tissue destructive biomolecules, whereas with periodontitis this relationship is adversely affected and enabling a progression of tissue destructive events. PMID:27486459

  16. Transcriptome Analysis of B Cell Immune Functions in Periodontitis: Mucosal Tissue Responses to the Oral Microbiome in Aging

    Science.gov (United States)

    Ebersole, Jeffrey L.; Kirakodu, Sreenatha S.; Novak, M. John; Orraca, Luis; Martinez, Janis Gonzalez; Cunningham, Larry L.; Thomas, Mark V.; Stromberg, Arnold; Pandruvada, Subramanya N.; Gonzalez, Octavio A.

    2016-01-01

    Evidence has shown activation of T and B cells in gingival tissues in experimental models and in humans diagnosed with periodontitis. The results of this adaptive immune response are noted both locally and systemically with antigenic specificity for an array of oral bacteria, including periodontopathic species, e.g., Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. It has been recognized through epidemiological studies and clinical observations that the prevalence of periodontitis increases with age. This report describes our studies evaluating gingival tissue transcriptomes in humans and specifically exploiting the use of a non-human primate model of naturally occurring periodontitis to delineate gingival mucosal tissue gene expression profiles focusing on cells/genes critical for the development of humoral adaptive immune responses. Patterns of B cell and plasmacyte genes were altered in aging healthy gingival tissues. Substantial increases in a large number of genes reflecting antigen-dependent activation, B cell activation, B cell proliferation, and B cell differentiation/maturation were observed in periodontitis in adults and aged animals. Finally, evaluation of the relationship of these gene expression patterns with those of various tissue destructive molecules (MMP2, MMP9, CTSK, TNFα, and RANKL) showed a greater frequency of positive correlations in healthy tissues versus periodontitis tissues, with only MMP9 correlations similar between the two tissue types. These results are consistent with B cell response activities in healthy tissues potentially contributing to muting the effects of the tissue destructive biomolecules, whereas with periodontitis this relationship is adversely affected and enabling a progression of tissue destructive events. PMID:27486459

  17. Complement-Dependent Lysis of Influenza A Virus-Infected Cells by Broadly Cross-Reactive Human Monoclonal Antibodies ▿

    Science.gov (United States)

    Terajima, Masanori; Cruz, John; Co, Mary Dawn T.; Lee, Jane-Hwei; Kaur, Kaval; Wilson, Patrick C.; Ennis, Francis A.

    2011-01-01

    We characterized human monoclonal antibodies (MAbs) cloned from influenza virus-infected patients and from influenza vaccine recipients by complement-dependent lysis (CDL) assay. Most MAbs active in CDL were neutralizing, but not all neutralizing MAbs can mediate CDL. Two of the three stalk-specific neutralizing MAbs tested were able to mediate CDL and were more cross-reactive to temporally distant H1N1 strains than the conventional hemagglutination-inhibiting and neutralizing MAbs. One of the stalk-specific MAbs was subtype cross-reactive to H1 and H2 hemagglutinins, suggesting a role for stalk-specific antibodies in protection against influenza illness, especially by a novel viral subtype which can cause pandemics. PMID:21994454

  18. Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation

    Institute of Scientific and Technical Information of China (English)

    Jing Jiang; Wenjian Lv; Xiaoying Ye; Lingbo Wang; Man Zhang; Hui Yang; Maja Okuka

    2013-01-01

    Induced pluripotent stem (iPS) cells generated using Yamanaka factors have great potential for use in autologous cell therapy.However,genomic abnormalities exist in human iPS cells,and most mouse iPS cells are not fully pluripotent,as evaluated by the tetraploid complementation assay (TCA); this is most likely associated with the DNA damage response (DDR) occurred in early reprogramming induced by Yamanaka factors.In contrast,nuclear transfer can faithfully reprogram somatic cells into embryonic stem (ES) cells that satisfy the TCA.We thus hypothesized that factors involved in oocyte-induced reprogramming may stabilize the somatic genome during reprogramming,and improve the quality of the resultant iPS cells.To test this hypothesis,we screened for factors that could decrease DDR signals during iPS cell induction.We determined that Zscan4,in combination with the Yamanaka factors,not only remarkably reduced the DDR but also markedly promoted the efficiency of iPS cell generation.The inclusion of Zscan4 stabilized the genomic DNA,resulting in p53 downregulation.Furthermore,Zscan4 also enhanced telomere lengthening as early as 3 days post-infection through a telomere recombination-based mechanism.As a result,iPS cells generated with addition of Zscan4 exhibited longer telomeres than classical iPS cells.Strikingly,more than 50%of iPS cell lines (11/19) produced via this "Zscan4 protocol" gave rise to live-borne all-iPS cell mice as determined by TCA,compared to 1/12 for lines produced using the classical Yamanaka factors.Our findings provide the first demonstration that maintaining genomic stability during reprogramming promotes the generation of high quality iPS cells.

  19. A tyrosine-rich cell surface protein in the diatom Amphora coffeaeformis identified through transcriptome analysis and genetic transformation.

    Directory of Open Access Journals (Sweden)

    Matthias T Buhmann

    Full Text Available Diatoms are single-celled eukaryotic microalgae that are ubiquitously found in almost all aquatic ecosystems, and are characterized by their intricately structured SiO2 (silica-based cell walls. Diatoms with a benthic life style are capable of attaching to any natural or man-made submerged surface, thus contributing substantially to both microbial biofilm communities and economic losses through biofouling. Surface attachment of diatoms is mediated by a carbohydrate- and protein- based glue, yet no protein involved in diatom underwater adhesion has been identified so far. In the present work, we have generated a normalized transcriptome database from the model adhesion diatom Amphora coffeaeformis. Using an unconventional bioinformatics analysis we have identified five proteins that exhibit unique amino acid sequences resembling the amino acid composition of the tyrosine-rich adhesion proteins from mussel footpads. Establishing the first method for the molecular genetic transformation of A. coffeaeformis has enabled investigations into the function of one of these proteins, AC3362, through expression as YFP fusion protein. Biochemical analysis and imaging by fluorescence microscopy revealed that AC3362 is not involved in adhesion, but rather plays a role in biosynthesis and/or structural stability of the cell wall. The methods established in the present study have paved the way for further molecular studies on the mechanisms of underwater adhesion and biological silica formation in the diatom A. coffeaeformis.

  20. Analysis of point mutations in an ultraviolet-irradiated shuttle vector plasmid propagated in cells from Japanese xeroderma pigmentosum patients in complementation groups A and F

    International Nuclear Information System (INIS)

    To assess the contribution to mutagenesis by human DNA repair defects, a UV-treated shuttle vector plasmid, pZ189, was passed through fibroblasts derived from Japanese xeroderma pigmentosum (XP) patients in two different DNA repair complementation groups (A and F). Patients with XP have clinical and cellular UV hypersensitivity, increased frequency of skin cancer, and defects in DNA repair. The XP DNA repair defects represented by complementation groups A (XP-A) and F (XP-F) are more common in Japan than in Europe or the United States. In comparison to results with DNA repair-proficient human cells (W138-VA13), UV-treated pZ189 passed through the XP-A [XP2OS(SV)] or XP-F [XP2YO(SV)] cells showed fewer surviving plasmids (XP-A less than XP-F) and a higher frequency of mutated plasmids (XP-A greater than XP-F). Base sequence analysis of more than 200 mutated plasmids showed the major type of base substitution mutation to be the G:C----A:T transition with all three cell lines. The XP-A and XP-F cells revealed a higher frequency of G:C----A:T transitions and a lower frequency of transversions among plasmids with single or tandem mutations and a lower frequency of plasmids with multiple point mutations compared to the normal line. The spectrum of mutations in pZ189 with the XP-A cells was similar to that with the XP-F cells. Seventy-six to 91% of the single base substitution mutations occurred at G:C base pairs in which the 5'-neighboring base of the cytosine was thymine or cytosine. These studies indicate that the DNA repair defects in Japanese XP patients in complementation groups A and F result in different frequencies of plasmid survival and mutagenesis but in similar types of mutagenic abnormalities despite marked differences in clinical features

  1. Comparative transcriptome analysis in induced neural stem cells reveals defined neural cell identities in vitro and after transplantation into the adult rodent brain

    Directory of Open Access Journals (Sweden)

    Anna-Lena Hallmann

    2016-05-01

    Full Text Available Reprogramming technology enables the production of neural progenitor cells (NPCs from somatic cells by direct transdifferentiation. However, little is known on how neural programs in these induced neural stem cells (iNSCs differ from those of alternative stem cell populations in vitro and in vivo. Here, we performed transcriptome analyses on murine iNSCs in comparison to brain-derived neural stem cells (NSCs and pluripotent stem cell-derived NPCs, which revealed distinct global, neural, metabolic and cell cycle-associated marks in these populations. iNSCs carried a hindbrain/posterior cell identity, which could be shifted towards caudal, partially to rostral but not towards ventral fates in vitro. iNSCs survived after transplantation into the rodent brain and exhibited in vivo-characteristics, neural and metabolic programs similar to transplanted NSCs. However, iNSCs vastly retained caudal identities demonstrating cell-autonomy of regional programs in vivo. These data could have significant implications for a variety of in vitro- and in vivo-applications using iNSCs.

  2. Temporal network based analysis of cell specific vein graft transcriptome defines key pathways and hub genes in implantation injury.

    Directory of Open Access Journals (Sweden)

    Manoj Bhasin

    Full Text Available Vein graft failure occurs between 1 and 6 months after implantation due to obstructive intimal hyperplasia, related in part to implantation injury. The cell-specific and temporal response of the transcriptome to vein graft implantation injury was determined by transcriptional profiling of laser capture microdissected endothelial cells (EC and medial smooth muscle cells (SMC from canine vein grafts, 2 hours (H to 30 days (D following surgery. Our results demonstrate a robust genomic response beginning at 2 H, peaking at 12-24 H, declining by 7 D, and resolving by 30 D. Gene ontology and pathway analyses of differentially expressed genes indicated that implantation injury affects inflammatory and immune responses, apoptosis, mitosis, and extracellular matrix reorganization in both cell types. Through backpropagation an integrated network was built, starting with genes differentially expressed at 30 D, followed by adding upstream interactive genes from each prior time-point. This identified significant enrichment of IL-6, IL-8, NF-κB, dendritic cell maturation, glucocorticoid receptor, and Triggering Receptor Expressed on Myeloid Cells (TREM-1 signaling, as well as PPARα activation pathways in graft EC and SMC. Interactive network-based analyses identified IL-6, IL-8, IL-1α, and Insulin Receptor (INSR as focus hub genes within these pathways. Real-time PCR was used for the validation of two of these genes: IL-6 and IL-8, in addition to Collagen 11A1 (COL11A1, a cornerstone of the backpropagation. In conclusion, these results establish causality relationships clarifying the pathogenesis of vein graft implantation injury, and identifying novel targets for its prevention.

  3. Complement C3

    OpenAIRE

    Dinasarapu, Ashok Reddy; Chandrasekhar, Anjana; Sahu, Arvind; Subramaniam, Shankar

    2012-01-01

    Complement C3 is the central component of the human complement system. It is ~186 kDa in size, consisting of an α-chain (~110 kDa) and a β-chain (~75 kDa) that are connected by cysteine bridges. C3 in its native form is inactive. Cleavage of C3 into C3b (~177 kDa) and C3a (~9 kDa) is a crucial step in the complement activation cascade, which can be initiated by one or more of the three distinct pathways, called alternative, classical and lectin complement pathways. In the alternative pathway,...

  4. conformational complexity of complement component C3

    OpenAIRE

    Janssen, B.J.C.

    2007-01-01

    The complement system is an important part of the immune system and critical for the elimination of pathogens. In mammals the complement system consists of an intricate set of about 35 soluble and cell-surface plasma proteins. Central to complement is component C3, a large protein of 1,641 residues. Activation of C3 into C3b leads to several molecular and cellular responses, and to stimulation of the adaptive immune system. Chapter 1 gives an overview of the complement system, the central com...

  5. Complement: an overview for the clinician.

    Science.gov (United States)

    Varela, Juan Carlos; Tomlinson, Stephen

    2015-06-01

    The complement system is an essential component of the immune system. It is a highly integrative system and has a number of functions, including host defense, removal of injured cells and debris, modulation of metabolic and regenerative processes, and regulation of adaptive immunity. Complement is activated via different pathways and it is regulated tightly by several mechanisms to prevent host injury. Imbalance between complement activation and regulation can manifest in disease and injury to self. This article provides an outline of complement activation pathways, regulatory mechanisms, and normal physiologic functions of the system.

  6. Complement activation and inhibition: a delicate balance

    DEFF Research Database (Denmark)

    Sjöberg, A P; Trouw, L A; Blom, A M

    2009-01-01

    Complement is part of the innate immune defence and not only recognizes microbes but also unwanted host molecules to enhance phagocytosis and clearance. This process of opsonisation must be tightly regulated to prevent immunopathology. Endogenous ligands such as dying cells, extracellular matrix...... proteins, pentraxins, amyloid deposits, prions and DNA, all bind the complement activator C1q, but also interact with complement inhibitors C4b-binding protein and factor H. This contrasts to the interaction between C1q and immune complexes, in which case no inhibitors bind, resulting in full complement...

  7. Transcriptome Analysis of Individual Stromal Cell Populations Identifies Stroma-Tumor Crosstalk in Mouse Lung Cancer Model

    Directory of Open Access Journals (Sweden)

    Hyejin Choi

    2015-02-01

    Full Text Available Emerging studies have begun to demonstrate that reprogrammed stromal cells play pivotal roles in tumor growth, metastasis, and resistance to therapy. However, the contribution of stromal cells to non-small-cell lung cancer (NSCLC has remained underexplored. We used an orthotopic model of Kras-driven NSCLC to systematically dissect the contribution of specific hematopoietic stromal cells in lung cancer. RNA deep-sequencing analysis of individually sorted myeloid lineage and tumor epithelial cells revealed cell-type-specific differentially regulated genes, indicative of activated stroma. We developed a computational model for crosstalk signaling discovery based on ligand-receptor interactions and downstream signaling networks and identified known and novel tumor-stroma paracrine and tumor autocrine crosstalk-signaling pathways in NSCLC. We provide cellular and molecular insights into components of the lung cancer microenvironment that contribute to carcinogenesis. This study has the potential for development of therapeutic strategies that target tumor-stroma interactions and may complement conventional anti-cancer treatments.

  8. Transcriptome analysis of individual stromal cell populations identifies stroma-tumor crosstalk in mouse lung cancer model.

    Science.gov (United States)

    Choi, Hyejin; Sheng, Jianting; Gao, Dingcheng; Li, Fuhai; Durrans, Anna; Ryu, Seongho; Lee, Sharrell B; Narula, Navneet; Rafii, Shahin; Elemento, Olivier; Altorki, Nasser K; Wong, Stephen T C; Mittal, Vivek

    2015-02-24

    Emerging studies have begun to demonstrate that reprogrammed stromal cells play pivotal roles in tumor growth, metastasis, and resistance to therapy. However, the contribution of stromal cells to non-small-cell lung cancer (NSCLC) has remained underexplored. We used an orthotopic model of Kras-driven NSCLC to systematically dissect the contribution of specific hematopoietic stromal cells in lung cancer. RNA deep-sequencing analysis of individually sorted myeloid lineage and tumor epithelial cells revealed cell-type-specific differentially regulated genes, indicative of activated stroma. We developed a computational model for crosstalk signaling discovery based on ligand-receptor interactions and downstream signaling networks and identified known and novel tumor-stroma paracrine and tumor autocrine crosstalk-signaling pathways in NSCLC. We provide cellular and molecular insights into components of the lung cancer microenvironment that contribute to carcinogenesis. This study has the potential for development of therapeutic strategies that target tumor-stroma interactions and may complement conventional anti-cancer treatments. PMID:25704820

  9. Transcriptome Analysis of CD4+ T Cells in Coeliac Disease Reveals Imprint of BACH2 and IFNγ Regulation.

    Directory of Open Access Journals (Sweden)

    Emma M Quinn

    Full Text Available Genetic studies have to date identified 43 genome wide significant coeliac disease susceptibility (CD loci comprising over 70 candidate genes. However, how altered regulation of such disease associated genes contributes to CD pathogenesis remains to be elucidated. Recently there has been considerable emphasis on characterising cell type specific and stimulus dependent genetic variants. Therefore in this study we used RNA sequencing to profile over 70 transcriptomes of CD4+ T cells, a cell type crucial for CD pathogenesis, in both stimulated and resting samples from individuals with CD and unaffected controls. We identified extensive transcriptional changes across all conditions, with the previously established CD gene IFNy the most strongly up-regulated gene (log2 fold change 4.6; P(adjusted = 2.40x10(-11 in CD4+ T cells from CD patients compared to controls. We show a significant correlation of differentially expressed genes with genetic studies of the disease to date (P(adjusted = 0.002, and 21 CD candidate susceptibility genes are differentially expressed under one or more of the conditions used in this study. Pathway analysis revealed significant enrichment of immune related processes. Co-expression network analysis identified several modules of coordinately expressed CD genes. Two modules were particularly highly enriched for differentially expressed genes (P<2.2x10(-16 and highlighted IFNy and the genetically associated transcription factor BACH2 which showed significantly reduced expression in coeliac samples (log2FC -1.75; P(adjusted = 3.6x10(-3 as key regulatory genes in CD. Genes regulated by BACH2 were very significantly over-represented among our differentially expressed genes (P<2.2x10(-16 indicating that reduced expression of this master regulator of T cell differentiation promotes a pro-inflammatory response and strongly corroborates genetic evidence that BACH2 plays an important role in CD pathogenesis.

  10. Integrative transcriptome sequencing identifies trans-splicing events with important roles in human embryonic stem cell pluripotency

    Science.gov (United States)

    Wu, Chan-Shuo; Yu, Chun-Ying; Chuang, Ching-Yu; Hsiao, Michael; Kao, Cheng-Fu; Kuo, Hung-Chih; Chuang, Trees-Juen

    2014-01-01

    Trans-splicing is a post-transcriptional event that joins exons from separate pre-mRNAs. Detection of trans-splicing is usually severely hampered by experimental artifacts and genetic rearrangements. Here, we develop a new computational pipeline, TSscan, which integrates different types of high-throughput long-/short-read transcriptome sequencing of different human embryonic stem cell (hESC) lines to effectively minimize false positives while detecting trans-splicing. Combining TSscan screening with multiple experimental validation steps revealed that most chimeric RNA products were platform-dependent experimental artifacts of RNA sequencing. We successfully identified and confirmed four trans-spliced RNAs, including the first reported trans-spliced large intergenic noncoding RNA (“tsRMST”). We showed that these trans-spliced RNAs were all highly expressed in human pluripotent stem cells and differentially expressed during hESC differentiation. Our results further indicated that tsRMST can contribute to pluripotency maintenance of hESCs by suppressing lineage-specific gene expression through the recruitment of NANOG and the PRC2 complex factor, SUZ12. Taken together, our findings provide important insights into the role of trans-splicing in pluripotency maintenance of hESCs and help to facilitate future studies into trans-splicing, opening up this important but understudied class of post-transcriptional events for comprehensive characterization. PMID:24131564

  11. Time-Course Study of the Transcriptome of Peripheral Blood Mononuclear Cells (PBMCs) from Sheep Infected with Fasciola hepatica

    Science.gov (United States)

    Scheerlinck, Jean-Pierre; Ansell, Brendan R. E.; Hall, Ross S.; Gasser, Robin B.; Jex, Aaron R.

    2016-01-01

    Fasciola hepatica is a parasitic trematode that infects a wide range of mammalian hosts, including livestock and humans, in temperate and tropical regions globally. This trematode causes the disease fascioliasis, which consists of an acute phase (≤ 12 weeks) during which juvenile parasites migrate through the host liver tissues, and a chronic phase (> 12 weeks) following the establishment of adult parasites in the liver bile ducts. Few studies have explored the progression of the host response over the course of Fasciola infection in the same animals. In this study, we characterized transcriptomic changes in peripheral blood mononuclear cells (PBMCs) collected from sheep at three time points over the first eight weeks of infection relative to uninfected controls. In total, 183 and 76 genes were found to be differentially transcribed at two and eight weeks post-infection respectively. Functional and pathway analysis of differentially transcribed genes revealed changes related to T-cell activation that may underpin a Th2-biased immune response against this parasite. This first insight into the dynamics of host responses during the early stages of infection improves the understanding of the pathogenesis of acute fascioliasis, informs vaccine development and presents a set of PBMC markers with diagnostic potential. PMID:27438474

  12. Transcriptomic Analysis Reveals Novel Mechanistic Insight into Murine Biological Responses to Multi-Walled Carbon Nanotubes in Lungs and Cultured Lung Epithelial Cells

    OpenAIRE

    Sarah Søs Poulsen; Nicklas R. Jacobsen; Sarah Labib; Dongmei Wu; Mainul Husain; Andrew Williams; Bøgelund, Jesper P.; Ole Andersen; Carsten Købler; Kristian Mølhave; Kyjovska, Zdenka O.; Saber, Anne T.; Håkan Wallin; Yauk, Carole L.; Ulla Vogel

    2013-01-01

    There is great interest in substituting animal work with in vitro experimentation in human health risk assessment; however, there are only few comparisons of in vitro and in vivo biological responses to engineered nanomaterials. We used high-content genomics tools to compare in vivo pulmonary responses of multiwalled carbon nanotubes (MWCNT) to those in vitro in cultured lung epithelial cells (FE1) at the global transcriptomic level. Primary size, surface area and other properties of MWCNT- X...

  13. Transcriptomic Analysis Reveals Novel Mechanistic Insight into Murine Biological Responses to Multi-Walled Carbon Nanotubes in Lungs and Cultured Lung Epithelial Cells

    OpenAIRE

    Poulsen, Sarah Søs; Nicklas R. Jacobsen; Labib, Sarah; Wu, Dongmei; Husain, Mainul; Williams, Andrew; Bøgelund, Jesper P.; Andersen, Ole; Købler, Carsten; Mølhave, Kristian; Kyjovska, Zdenka O.; Saber, Anne T.; Wallin, Håkan; Yauk, Carole L.; Vogel, Ulla Birgitte

    2013-01-01

    There is great interest in substituting animal work with in vitro experimentation in human health risk assessment; however, there are only few comparisons of in vitro and in vivo biological responses to engineered nanomaterials. We used high-content genomics tools to compare in vivo pulmonary responses of multiwalled carbon nanotubes (MWCNT) to those in vitro in cultured lung epithelial cells (FE1) at the global transcriptomic level. Primary size, surface area and other properties of MWCNT-XN...

  14. Genome-wide immunity studies in the rabbit: transcriptome variations in peripheral blood mononuclear cells after in vitro stimulation by LPS or PMA-Ionomycin

    OpenAIRE

    Jacquier, Vincent; Estellé, Jordi; Schmaltz-Panneau, Barbara; Lecardonnel, Jerôme,; Moroldo, Marco; Lemonnier, Gaetan; Turner-Maier, Jason; Duranthon, Veronique; Oswald, Isabelle; Gidenne, Thierry

    2015-01-01

    BackgroundOur purpose was to obtain genome-wide expression data for the rabbit species on the responses of peripheral blood mononuclear cells (PBMCs) after in vitro stimulation by lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) and ionomycin. This transcriptome profiling was carried out using microarrays enriched with immunity-related genes, and annotated with the most recent data available for the rabbit genome.ResultsThe LPS affected 15 to 20 times fewer genes than PMA-Ionomycin...

  15. Genome-wide immunity studies in the rabbit: transcriptome variations in peripheral blood mononuclear cells after in vitro stimulation by LPS or PMA-Ionomycin

    OpenAIRE

    Jacquier, Vincent; Estellé, Jordi; Schmaltz-Panneau, Barbara; Lecardonnel, Jérôme; Moroldo, Marco; Lemonnier, Gaëtan; Turner-Maier, Jason; Duranthon, Véronique; Oswald, Isabelle P.; Gidenne, Thierry; Rogel-Gaillard, Claire

    2015-01-01

    Background Our purpose was to obtain genome-wide expression data for the rabbit species on the responses of peripheral blood mononuclear cells (PBMCs) after in vitro stimulation by lipopolysaccharide (LPS) or phorbol myristate acetate (PMA) and ionomycin. This transcriptome profiling was carried out using microarrays enriched with immunity-related genes, and annotated with the most recent data available for the rabbit genome. Results The LPS affected 15 to 20 times fewer genes than PMA-Ionomy...

  16. Population transcriptomics with single-cell resolution: a new field made possible by microfluidics: a technology for high throughput transcript counting and data-driven definition of cell types.

    Science.gov (United States)

    Plessy, Charles; Desbois, Linda; Fujii, Teruo; Carninci, Piero

    2013-02-01

    Tissues contain complex populations of cells. Like countries, which are comprised of mixed populations of people, tissues are not homogeneous. Gene expression studies that analyze entire populations of cells from tissues as a mixture are blind to this diversity. Thus, critical information is lost when studying samples rich in specialized but diverse cells such as tumors, iPS colonies, or brain tissue. High throughput methods are needed to address, model and understand the constitutive and stochastic differences between individual cells. Here, we describe microfluidics technologies that utilize a combination of molecular biology and miniaturized labs on chips to study gene expression at the single cell level. We discuss how the characterization of the transcriptome of each cell in a sample will open a new field in gene expression analysis, population transcriptomics, that will change the academic and biomedical analysis of complex samples by defining them as quantified populations of single cells. PMID:23281054

  17. Transcriptome atlas of eight liver cell types uncovers effects of histidine catabolites on rat liver regeneration

    Indian Academy of Sciences (India)

    C. F. Chang; J. Y. Fan; F. C. Zhang; J. Ma; C. S. Xu

    2010-12-01

    Eight liver cell types were isolated using the methods of Percoll density gradient centrifugation and immunomagnetic beads to explore effects of histidine catabolites on rat liver regeneration. Rat Genome 230 2.0 Array was used to detect the expression profiles of genes associated with metabolism of histidine and its catabolites for the above-mentioned eight liver cell types, and bioinformatic and systems biology approaches were employed to analyse the relationship between above genes and rat liver regeneration. The results showed that the urocanic acid (UA) was degraded from histidine in Kupffer cells, acts on Kupffer cells itself and dendritic cells to generate immune suppression by autocrine and paracrine modes. Hepatocytes, biliary epithelia cells, oval cells and dendritic cells can convert histidine to histamine, which can promote sinusoidal endothelial cells proliferation by GsM pathway, and promote the proliferation of hepatocytes and biliary epithelia cells by GqM pathway.

  18. IL-4 and IL-13 induce protection from complement and melittin in endothelial cells despite initial loss of cytoplasmic proteins: membrane resealing impairs quantifying cytotoxicity with the lactate dehydrogenase permeability assay.

    Science.gov (United States)

    Benson, Barbara A; Vercellotti, Gregory M; Dalmasso, Agustin P

    2015-01-01

    Endothelial cell activation and injury by the terminal pathway of complement is important in various pathobiological processes, including xenograft rejection. Protection against injury by human complement can be induced in porcine endothelial cells (ECs) with IL-4 and IL-13 through metabolic activation. However, despite this resistance, the complement-treated ECs were found to lose membrane permeability control assessed with the small molecule calcein. Therefore, to define the apparent discrepancy of permeability changes vis-à-vis the protection from killing, we now investigated whether IL-4 and IL-13 influence the release of the large cytoplasmic protein lactate dehydrogenase (LDH) in ECs incubated with complement or the pore-forming protein melittin. Primary cultures of ECs were pre-treated with IL-4 or IL-13 and then incubated with human serum as source of antibody and complement or melittin. Cell death was assessed using neutral red. Membrane permeability was quantitated measuring LDH release. We found that IL-4-/IL-13-induced protection of ECs from killing by complement or melittin despite loss of LDH in amounts similar to control ECs. However, the cytokine-treated ECs that were protected from killing rapidly regained effective control of membrane permeability. Moreover, the viability of the protected ECs was maintained for at least 2 days. We conclude that the protection induced by IL-4/IL-13 in ECs against lethal attack by complement or melittin is effective and durable despite severe initial impairment of membrane permeability. The metabolic changes responsible for protection allow the cells to repair the membrane injury caused by complement or melittin. PMID:26031609

  19. IL-4 and IL-13 induce protection from complement and melittin in endothelial cells despite initial loss of cytoplasmic proteins: membrane resealing impairs quantifying cytotoxicity with the lactate dehydrogenase permeability assay.

    Science.gov (United States)

    Benson, Barbara A; Vercellotti, Gregory M; Dalmasso, Agustin P

    2015-01-01

    Endothelial cell activation and injury by the terminal pathway of complement is important in various pathobiological processes, including xenograft rejection. Protection against injury by human complement can be induced in porcine endothelial cells (ECs) with IL-4 and IL-13 through metabolic activation. However, despite this resistance, the complement-treated ECs were found to lose membrane permeability control assessed with the small molecule calcein. Therefore, to define the apparent discrepancy of permeability changes vis-à-vis the protection from killing, we now investigated whether IL-4 and IL-13 influence the release of the large cytoplasmic protein lactate dehydrogenase (LDH) in ECs incubated with complement or the pore-forming protein melittin. Primary cultures of ECs were pre-treated with IL-4 or IL-13 and then incubated with human serum as source of antibody and complement or melittin. Cell death was assessed using neutral red. Membrane permeability was quantitated measuring LDH release. We found that IL-4-/IL-13-induced protection of ECs from killing by complement or melittin despite loss of LDH in amounts similar to control ECs. However, the cytokine-treated ECs that were protected from killing rapidly regained effective control of membrane permeability. Moreover, the viability of the protected ECs was maintained for at least 2 days. We conclude that the protection induced by IL-4/IL-13 in ECs against lethal attack by complement or melittin is effective and durable despite severe initial impairment of membrane permeability. The metabolic changes responsible for protection allow the cells to repair the membrane injury caused by complement or melittin.

  20. Comparative transcriptome analyses indicate enhanced cellular protection against FMDV in PK15 cells pretreated with IFN-γ.

    Science.gov (United States)

    Fu, Yin; Zhu, Zesen; Chang, Huiyun; Liu, Zaixin; Liu, Jing; Chen, Huiyong

    2016-07-25

    Interferon gamma (IFN-γ) can induce a host antiviral response to foot and mouth disease virus (FMDV) in vivo and in vitro. To elucidate the mechanism of IFN-γ anti FMDV infection in host cells, high-throughput RNA sequencing was analyzed for systemic changes in gene expression profiles in PK15 cells infected by FMDV with or without IFN-γ pretreatment. More than 25 million reads, covering 1.2-1.5 Gb, were analyzed from each experiment panel. FMDV challenge altered the transcription of genes involved in positively and negatively regulating cell death or apoptosis; however, the expected immune suppression response was not obvious. IFN-γ pretreatment combined with FMDV infection normalized the increase in apoptosis. Furthermore, the transcription factors required for IFN-γ functioning, STAT1 and IRF1 were up-regulated by IFN-γ pretreatment and stimulated downstream IFN-stimulated genes (ISGs). These induced ISGs are mainly responsible for antigen processing, antigen presentation or antiviral defense. Interestingly, a synergistic effect on some ISGs, including OAS1, OAS2, MX1, MX2, RIG-I and IFIT1, was observed in the combined treatment compared to the IFN-γ treatment alone. The suggested effects identified by RNA sequencing were consistent with cellular morphology changes and confirmed by related protein markers. This is the first report exploring transcriptome alterations introduced by FMDV infection with or without IFN-γ pretreatment. The identified key host genes that control cell survival in vitro broaden our comprehensive understanding of how IFN-γ inhibits FMDV infection and may shed light on developing improved FMD control approaches. PMID:27018244

  1. Transcriptomic-Wide Discovery of Direct and Indirect HuR RNA Targets in Activated CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Patsharaporn Techasintana

    Full Text Available Due to poor correlation between steady state mRNA levels and protein product, purely transcriptomic profiling methods may miss genes posttranscriptionally regulated by RNA binding proteins (RBPs and microRNAs (miRNAs. RNA immunoprecipitation (RIP methods developed to identify in vivo targets of RBPs have greatly elucidated those mRNAs which may be regulated via transcript stability and translation. The RBP HuR (ELAVL1 and family members are major stabilizers of mRNA. Many labs have identified HuR mRNA targets; however, many of these analyses have been performed in cell lines and oftentimes are not independent biological replicates. Little is known about how HuR target mRNAs behave in conditional knock-out models. In the present work, we performed HuR RIP-Seq and RNA-Seq to investigate HuR direct and indirect targets using a novel conditional knock-out model of HuR genetic ablation during CD4+ T activation and Th2 differentiation. Using independent biological replicates, we generated a high coverage RIP-Seq data set (>160 million reads that was analyzed using bioinformatics methods specifically designed to find direct mRNA targets in RIP-Seq data. Simultaneously, another set of independent biological replicates were sequenced by RNA-Seq (>425 million reads to identify indirect HuR targets. These direct and indirect targets were combined to determine canonical pathways in CD4+ T cell activation and differentiation for which HuR plays an important role. We show that HuR may regulate genes in multiple canonical pathways involved in T cell activation especially the CD28 family signaling pathway. These data provide insights into potential HuR-regulated genes during T cell activation and immune mechanisms.

  2. Virus-Mediated Metalloproteinase 1 Induction Revealed by Transcriptome Profiling of Bovine Herpesvirus 4-Infected Bovine Endometrial Stromal Cells.

    Science.gov (United States)

    Tebaldi, Giulia; Jacca, Sarah; Montanini, Barbara; Capra, Emanuele; Rosamilia, Alfonso; Sala, Arianna; Stella, Alessandra; Castiglioni, Bianca; Ottonello, Simone; Donofrio, Gaetano

    2016-07-01

    Viral infections can cause genital tract disorders (including abortion) in cows, and bovine herpesvirus 4 (BoHV-4) is often present in endometritis-affected animals. A major problem with cattle uterine viral infections in general, and BoHV-4 in particular, is our limited understanding of the pathogenic role(s) that these infections play in the endometrium. A similar lack of knowledge holds for the molecular mechanisms utilized, and the host cell pathways affected, by BoHV-4. To begin to fill these gaps, we set up optimized conditions for BoHV-4 infection of a pure population of bovine endometrial stromal cells (BESCs) to be used as source material for RNA sequencing-based transcriptome profiling. Many genes were found to be upregulated (417) or downregulated (181) after BoHV-4 infection. As revealed by enrichment functional analysis on differentially expressed genes, BoHV-4 infection affects various pathways related to cell proliferation and cell surface integrity, at least three of which were centered on upregulation of matrix metalloproteinase 1 (MMP1) and interleukin 8 (IL8). This was confirmed by reverse transcription PCR, real-time PCR, Western-immunoblot analysis, and a luciferase assay with a bovine MMP1-specific promoter reporter construct. Further, it was found that MMP1 transcription was upregulated by the BoHV-4 transactivator IE2/RTA, leading to abnormally high metalloproteinase tissue levels, potentially leading to defective endometrium healing and unresolved inflammation. Based on these findings, we propose a new model for BoHV-4 action centered on IE2-mediated MMP1 upregulation and novel therapeutic interventions based on IFN gamma-mediated MMP1 downregulation. PMID:27281703

  3. Expression of membrane complement regulators, CD46, CD55 and CD59, in mesothelial cells of patients on peritoneal dialysis therapy.

    Science.gov (United States)

    Sei, Yumi; Mizuno, Masashi; Suzuki, Yasuhiro; Imai, Masaki; Higashide, Keiko; Harris, Claire L; Sakata, Fumiko; Iguchi, Daiki; Fujiwara, Michitaka; Kodera, Yasuhiro; Maruyama, Shoichi; Matsuo, Seiichi; Ito, Yasuhiko

    2015-06-01

    We investigated the expression of membrane complement regulators (CRegs), CD46, CD55 and CD59 in human mesothelial cells, and correlated with clinical background and level of complement (C) activation products in peritoneal dialysis (PD) fluids (PDF) to clarify influence of the C activation system in PD patients. Expression of CRegs was assessed on primary cultures of mesothelial cells (HPMC) harvested from PD fluid of 31 PD patients. Because expression of CD55 but not CD46 and CD59 in mesothelial cells was significantly correlated to value of dialysate-to-plasma creatinine concentration ratio (D/P Cre) (p<0.005) as an indicator of peritoneal function, we focused on analysis of CD55 expression of HPMCs in comparison with levels of C activation products in the PDF of the PD patients, and their background factors. When comparing expression of the CRegs between systemic neutrophils and HPMC, no correlation was observed, supporting that change of CRegs' expression in HPMC was independently occurring in the peritoneum. Expression of CD55 protein in HPMC was closely correlated with expression at the mRNA level (p<0.0001) and was inversely correlated with levels of sC5b-9 (p<0.05), but not C3, C4, IL6 and CA125 in the PDF. Complications of diabetes, usage of icodextrin and residual renal function were not correlated with change of CD55 expression in HPMCs. Our data show that the process of PD therapy modifies expression of CD55 on peritoneal mesothelium and triggers local C activation. These findings support efforts to modify PD therapy to limit effects on activation and regulation of the C system.

  4. Molecular cloning and characterization of a mammalian excision repair gene that partially restores UV resistance to xeroderma pigmentosum complementation group D cells

    International Nuclear Information System (INIS)

    A hamster DNA repair gene has been isolated by cosmid rescue after two rounds of transfection of an immortalized xeroderma pigmentosum (XP) complementation group D cell line with neomycin-resistance gene (neo)-tagged normal hamster DNA and selection with G418 and ultraviolet irradiation. The functional length of the sequence has been defined as 11.5 kilobase pairs by measurement of the region of overlap between two hamster DNA-containing cosmids, cloned by selection for the integrated neo gene, that are able to confer an increase in resistance to ultraviolet irradiation on two XP-D cell line but not on an XP-A line. Detailed molecular characterization of the hamster repair gene has revealed no obvious similarities to two human excision repair genes (ERCC1 and ERCC2) that correct repair-defective hamster cells but have no effect on XP cells. Hybridization analyses of normal human and XP cell genomic DNAs and mRNAs, using a cosmid-clone probe from which repeated sequences have been removed, show that homologues are present and expressed in all cases

  5. The statistical geometry of transcriptome divergence in cell-type evolution and cancer

    NARCIS (Netherlands)

    Liang, Cong; Forrest, Alistair R R; Wagner, Günter P; Clevers, J.C.

    2015-01-01

    In evolution, body plan complexity increases due to an increase in the number of individualized cell types. Yet, there is very little understanding of the mechanisms that produce this form of organismal complexity. One model for the origin of novel cell types is the sister cell-type model. According

  6. Transcriptomic profiles of peripheral white blood cells in type II diabetes and racial differences in expression profiles

    Directory of Open Access Journals (Sweden)

    Mao Jinghe

    2011-12-01

    Full Text Available Abstract Background Along with obesity, physical inactivity, and family history of metabolic disorders, African American ethnicity is a risk factor for type 2 diabetes (T2D in the United States. However, little is known about the differences in gene expression and transcriptomic profiles of blood in T2D between African Americans (AA and Caucasians (CAU, and microarray analysis of peripheral white blood cells (WBCs from these two ethnic groups will facilitate our understanding of the underlying molecular mechanism in T2D and identify genetic biomarkers responsible for the disparities. Results A whole human genome oligomicroarray of peripheral WBCs was performed on 144 samples obtained from 84 patients with T2D (44 AA and 40 CAU and 60 healthy controls (28 AA and 32 CAU. The results showed that 30 genes had significant difference in expression between patients and controls (a fold change of 1.4 with a P value Conclusions These newly identified genetic markers in WBCs provide valuable information about the pathophysiology of T2D and can be used for diagnosis and pharmaceutical drug design. Our results also found that AA and CAU patients with T2D express genes and pathways differently.

  7. Complement's participation in acquired immunity

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Leslie, Robert Graham Quinton

    2002-01-01

    of the B cell receptor for antigen (BCR), a complex composed of the iC3b/C3d fragment-binding complement type 2 receptor (CR2, CD21) and its signaling element CD19 and the IgG-binding receptor FcgammaRIIb (CD32). The positive or negative outcome of signaling through this triad is determined by the context...

  8. Autocrine Effects of Tumor-Derived Complement

    Directory of Open Access Journals (Sweden)

    Min Soon Cho

    2014-03-01

    Full Text Available We describe a role for the complement system in enhancing cancer growth. Cancer cells secrete complement proteins that stimulate tumor growth upon activation. Complement promotes tumor growth via a direct autocrine effect that is partially independent of tumor-infiltrating cytotoxic T cells. Activated C5aR and C3aR signal through the PI3K/AKT pathway in cancer cells, and silencing the PI3K or AKT gene in cancer cells eliminates the progrowth effects of C5aR and C3aR stimulation. In patients with ovarian or lung cancer, higher tumoral C3 or C5aR mRNA levels were associated with decreased overall survival. These data identify a role for tumor-derived complement proteins in promoting tumor growth, and they therefore have substantial clinical and therapeutic implications.

  9. The Epidermal Growth Factor Receptor Is a Regulator of Epidermal Complement Component Expression and Complement Activation

    DEFF Research Database (Denmark)

    Abu-Humaidan, Anas H A; Ananthoju, Nageshwar; Mohanty, Tirthankar;

    2014-01-01

    The complement system is activated in response to tissue injury. During wound healing, complement activation seems beneficial in acute wounds but may be detrimental in chronic wounds. We found that the epidermal expression of many complement components was only increased to a minor extent in skin...... wounds in vivo and in cultured keratinocytes after exposure to supernatant from stimulated mononuclear cells. In contrast, the epidermal expression of complement components was downregulated in ex vivo injured skin lacking the stimulation from infiltrating inflammatory cells but with intact injury......-induced epidermal growth factor receptor (EGFR)-mediated growth factor response. In cultured primary keratinocytes, stimulation with the potent EGFR ligand, TGF-α, yielded a significant downregulation of complement component expression. Indeed, EGFR inhibition significantly enhanced the induction of complement...

  10. Vitamin D and the RNA transcriptome: more than mRNA regulation

    Directory of Open Access Journals (Sweden)

    Moray J Campbell

    2014-05-01

    Full Text Available The GRCh37.p13 primary assembly of the human genome contains 20805 protein coding mRNA, and 37147 non-protein coding genes and pseudogenes that as a result of RNA processing and editing generate 196501 gene transcripts. Given the size and diversity of the human transcriptome, it is timely to revisit what is known of VDR function in the regulation and targeting of transcription.Early transcriptomic studies using microarray approaches focused on the protein coding mRNA that were regulated by the VDR, usually following treatment with ligand. These studies quickly established the approxamte size, and surprising diversity of the VDR transcriptome, revealing it to be highly heterogenous and cell type and time dependent. With the discovery of microRNA, investigators also considered VDR regulation of these non-protein coding RNA. Again, cell and time dependency has emerged. Attempts to integrate mRNA and miRNA regulation patterns are beginning to reveal patterns of co-regulation and interaction that allow for greater control of mRNA expression, and the capacity to govern more complex cellular events. As the awareness of the diversity of non-coding RNA increases, it is evident that VDR actions are mediated through these molecules also. Key knowledge gaps remain over the VDR transcriptome. The causes for the cell and type dependent transcriptional heterogenetiy remain enigmatic. ChIP-Seq approaches have confirmed that VDR binding choices differ very significantly by cell type, but as yet the underlying causes distilling VDR binding choices are unclear. Similarly, it is clear that many of the VDR binding sites are non-canonical in nature but again the mechanisms underlying these interactions are unclear. Finally, although alternative splicing is clearly a very significant process in cellular transcriptional control, the lack of RNA-Seq data centered on VDR function are currently limiting the global assessment of the VDR transcriptome. VDR focused research

  11. Immunologically induced, complement-dependent up-regulation of the prion protein in the mouse spleen: follicular dendritic cells versus capsule and trabeculae.

    Science.gov (United States)

    Lötscher, Marius; Recher, Mike; Hunziker, Lukas; Klein, Michael A

    2003-06-15

    The expression of the prion protein (PrP) in the follicular dendritic cell network of germinal centers in the spleen is critical for the splenic propagation of the causative agent of prion diseases. However, a physiological role of the prion protein in the periphery remains elusive. To investigate the role and function of PrP expression in the lymphoid system we treated naive mice i.v. with preformed immune complexes or vesicular stomatitis virus. Immunohistochemistry and Western blot analysis of the spleen revealed that 8 days after immunization, immune complexes and vesicular stomatitis virus had both induced a strong increase of PrP expression in the follicular dendritic cell network. Remarkably, this up-regulation did not occur in mice that lack an early factor of the complement cascade, C1q, a component which has been shown previously to facilitate early prion pathogenesis. In addition to the variable PrP level in the germinal centers, we detected steady and abundant PrP expression in the splenic capsule and trabeculae, which are structural elements that have not been associated before with PrP localization. The abundant trabeculo-capsular PrP expression was also evident in spleens of Rag-1-deficient mice, which have been shown before to be incapable of prion expansion. We conclude that trabeculocapsular PrP is not sufficient for splenic prion propagation. Furthermore, our observations may provide important clues for a physiological function of the prion protein and allow a new view on the role of complement and PrP in peripheral prion pathogenesis. PMID:12794132

  12. Transcriptomic portrait of human Mesenchymal Stromal/Stem cells isolated from bone marrow and placenta

    OpenAIRE

    Roson-Burgo, Beatriz; Sanchez-Guijo, Fermin; del Cañizo, Consuelo; De Las Rivas, Javier

    2014-01-01

    Background Human Mesenchymal Stromal/Stem Cells (MSCs) are adult multipotent cells that behave in a highly plastic manner, inhabiting the stroma of several tissues. The potential utility of MSCs is nowadays strongly investigated in the field of regenerative medicine and cell therapy, although many questions about their molecular identity remain uncertain. Results MSC primary cultures from human bone marrow (BM) and placenta (PL) were derived and verified by their immunophenotype standard patt...

  13. Complement system part II: role in immunity

    Directory of Open Access Journals (Sweden)

    Nicolas S. Merle

    2015-05-01

    Full Text Available The complement system has been considered for a long time as a simple lytic system, aimed to kill bacteria infecting the host organism. Nowadays this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing a direct killing by C5b-9 membrane attack complex by triggering inflammatory responses with the anaphylatoxins C3a and C5a and helps the mounting of an adaptive immune response, involving antigen presenting cells, T- and B- lymphocytes. But it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Also examples will be discussed, where inadequate complement activation becomes a disease cause, including atypical hemolytic uremic syndrome (aHUS, C3 glomerulopathies (C3G and systemic lupus erythematosus (SLE. Age related macular degeneration (AMD and cancer will be described as examples showing that complement contributes to a large variety of diseases, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target.

  14. Complement System Part II: Role in Immunity

    Science.gov (United States)

    Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922

  15. Three Human Cell Types Respond to Multi-Walled Carbon Nanotubes and Titanium Dioxide Nanobelts with Cell-Specific Transcriptomic and Proteomic Expression Patterns.

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Karin, Norman J.; Tolic, Ana; Xie, Yumei; Lai, Xianyin; Hamilton, Raymond F.; Waters, Katrina M.; Holian, Andrij; Witzmann, Frank A.; Orr, Galya

    2014-08-01

    The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect ratio NP types, to identify patterns of expression that might indicate high versus low NP toxicity. Three cell types representing the most common routes of human exposure to NPs, including macrophage-like (THP-1), small airway epithelial and intestinal (Caco-2/HT29-MTX) cells, were exposed to TiO2 nanobelts (TiO2-NB; high toxicity) and multi-walled carbon nanotubes (MWCNT; low toxicity) at low (10 µg/mL) and high (100 µg/mL) concentrations for 1 and 24 h. Unique patterns of gene and protein expressions were identified for each cell type, with no differentially expressed (p < 0.05, 1.5-fold change) genes or proteins overlapping across all three cell types. While unique to each cell type, the early response was primarily independent of NP type, showing similar expression patterns in response to both TiO2-NB and MWCNT. The early response might, therefore, indicate a general response to insult. In contrast, the 24 h response was unique to each NP type. The most significantly (p < 0.05) enriched biological processes in THP-1 cells indicated TiO2-NB regulation of pathways associated with inflammation, apoptosis, cell cycle arrest, DNA replication stress and genomic instability, while MWCNT-regulated pathways indicated increased cell proliferation, DNA repair and anti-apoptosis. These two distinct sets of biological pathways might, therefore, underlie cellular responses to high and low NP toxicity, respectively.

  16. Interaction between Epstein-Barr virus and a T cell line (HSB-2) via a receptor phenotypically distinct from complement receptor type 2.

    Science.gov (United States)

    Hedrick, J A; Watry, D; Speiser, C; O'Donnell, P; Lambris, J D; Tsoukas, C D

    1992-05-01

    Epstein-Barr virus (EBV), the causative agent of mononucleosis and several human cancers, infects cells via complement receptor type 2 (CR2, CD21) which also serves as the receptor for the third complement component, C3. Expression of this receptor is restricted to B lymphocytes, immature thymocytes, and certain epithelial cells. In the present investigation; we describe the presence of a seemingly novel EBV receptor which is phenotypically distinct from CR2. Among various leukemic T cells studied, one, HSB-2, demonstrates no reactivity to several anti-CR2 antibodies, yet it reacts strongly with EBV as detected by incubation with biotin-conjugated virus and streptavidin-phycoerythrin. The virus binding is specific as demonstrated by blocking with anti-EBV antibodies and with non-conjugated virus. Aggregated C3 also binds HSB-2 and is capable of partially inhibiting EBV binding. The absence of CR2 on HSB-2 is further supported by the lack of expression of specific mRNA, assessed by Northern blotting analysis and polymerase chain reaction. Viral internalization and infection is demonstrated with electron microscopy, with detection of EBV-DNA by Southern blotting, and with detection of EBNA-1 transcripts by the polymerase chain reaction. Even though HSB-2 does not express CR2, it nevertheless displays transcripts which have some homology to a CR2 cDNA probe under low stringency hybridization conditions. This probe encompasses approximately the N-terminal half of CR2 which includes the EBV-binding epitope(s). The HSB-2 message is 5.2 kb, a size distinct from the 4.7-kb message of B cell CR2s. In contrast, the 5.2-kb message in not seen, under similar hybridization conditions, with a probe comprising the C-terminal half of CR2. Collectively, the data indicate that a receptor molecule having distinct phenotypic characteristics from the known CR2 protein on B cells is utilized by EBV to target human T lymphocytes. PMID:1315687

  17. Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines

    Science.gov (United States)

    Carrier, Marilyn; Joint, Mathilde; Lutzing, Régis; Page, Adeline; Rochette-Egly, Cécile

    2016-01-01

    Retinoic acid (RA), the main active vitamin A metabolite, controls multiple biological processes such as cell proliferation and differentiation through genomic programs and kinase cascades activation. Due to these properties, RA has proven anti-cancer capacity. Several breast cancer cells respond to the antiproliferative effects of RA, while others are RA-resistant. However, the overall signaling and transcriptional pathways that are altered in such cells have not been elucidated. Here, in a large-scale analysis of the phosphoproteins and in a genome-wide analysis of the RA-regulated genes, we compared two human breast cancer cell lines, a RA-responsive one, the MCF7 cell line, and a RA-resistant one, the BT474 cell line, which depicts several alterations of the “kinome”. Using high-resolution nano-LC-LTQ-Orbitrap mass spectrometry associated to phosphopeptide enrichment, we found that several proteins involved in signaling and in transcription, are differentially phosphorylated before and after RA addition. The paradigm of these proteins is the RA receptor α (RARα), which was phosphorylated in MCF7 cells but not in BT474 cells after RA addition. The panel of the RA-regulated genes was also different. Overall our results indicate that RA resistance might correlate with the deregulation of the phosphoproteome with consequences on gene expression. PMID:27362937

  18. Combination of two anti-CD5 monoclonal antibodies synergistically induces complement-dependent cytotoxicity of chronic lymphocytic leukaemia cells

    DEFF Research Database (Denmark)

    Klitgaard, Josephine L; Koefoed, Klaus; Geisler, Christian;

    2013-01-01

    The treatment of chronic lymphocytic leukaemia (CLL) has been improved by introduction of monoclonal antibodies (mAbs) that exert their effect through secondary effector mechanisms. CLL cells are characterized by expression of CD5 and CD23 along with CD19 and CD20, hence anti-CD5 Abs that engage ...

  19. Transcriptomic Analysis Of Purified Embryonic Neural Stem Cells From Zebrafish Embryos Reveals Signalling Pathways Involved In Glycine-dependent Neurogenesis

    Directory of Open Access Journals (Sweden)

    Eric eSAMARUT

    2016-03-01

    Full Text Available How is the initial set of neurons correctly established during the development of the vertebrate central nervous system? In the embryo, glycine and GABA are depolarizing due the immature chloride gradient, which is only reversed to become hyperpolarizing later in post-natal development. We previously showed that glycine regulates neurogenesis via paracrine signalling that promotes calcium transients in neural stem cells (NSCs and their differentiation into interneurons within the spinal cord of the zebrafish embryo. However, the subjacent molecular mechanisms are not yet understood. Our previous work suggests that early neuronal progenitors were not differentiating correctly in the developing spinal cord. As a result, we aimed at identifying the downstream molecular mechanisms involved specifically in NSCs during glycine-dependent embryonic neurogenesis. Using a gfap:GFP transgenic line, we successfully purified NSCs by fluorescence-activated cell sorting (FACS from whole zebrafish embryos and in embryos in which the glycine receptor was knocked down. The strength of this approach is that it focused on the NSC population while tackling the biological issue in an in vivo context in whole zebrafish embryos. After sequencing the transcriptome by RNA-sequencing, we analyzed the genes whose expression was changed upon disruption of glycine signalling and we confirmed the differential expression by independent RTqPCR assay. While over a thousand genes showed altered expression levels, through pathway analysis we identified 14 top candidate genes belonging to five different canonical signalling pathways (signalling by calcium, TGF-beta, sonic hedgehog, Wnt and p53-related apoptosis that are likely to mediate the promotion of neurogenesis by glycine.

  20. Transcriptome analysis of Enterococcus faecalis during mammalian infection shows cells undergo adaptation and exist in a stringent response state.

    Directory of Open Access Journals (Sweden)

    Kristi L Frank

    Full Text Available As both a commensal and a major cause of healthcare-associated infections in humans, Enterococcus faecalis is a remarkably adaptable organism. We investigated how E. faecalis adapts in a mammalian host as a pathogen by characterizing changes in the transcriptome during infection in a rabbit model of subdermal abscess formation using transcriptional microarrays. The microarray experiments detected 222 and 291 differentially regulated genes in E. faecalis OG1RF at two and eight hours after subdermal chamber inoculation, respectively. The profile of significantly regulated genes at two hours post-inoculation included genes involved in stress response, metabolism, nutrient acquisition, and cell surface components, suggesting genome-wide adaptation to growth in an altered environment. At eight hours post-inoculation, 88% of the differentially expressed genes were down-regulated and matched a transcriptional profile consistent with a (pppGpp-mediated stringent response. Subsequent subdermal abscess infections with E. faecalis mutants lacking the (pppGpp synthetase/hydrolase RSH, the small synthetase RelQ, or both enzymes, suggest that intracellular (pppGpp levels, but not stringent response activation, influence persistence in the model. The ability of cells to synthesize (pppGpp was also found to be important for growth in human serum and whole blood. The data presented in this report provide the first genome-wide insights on E. faecalis in vivo gene expression and regulation measured by transcriptional profiling during infection in a mammalian host and show that (pppGpp levels affect viability of E. faecalis in multiple conditions relevant to mammalian infection. The subdermal abscess model can serve as a novel experimental system for studying the E. faecalis stringent response in the context of the mammalian immune system.

  1. Adaptive immune response to whole cell pertussis vaccine reflects vaccine quality: A possible complementation to the Pertussis Serological Potency test.

    Science.gov (United States)

    Hoonakker, M E; Verhagen, L M; van der Maas, L; Metz, B; Uittenbogaard, J P; van de Waterbeemd, B; van Els, C A C M; van Eden, W; Hendriksen, C F M; Sloots, A; Han, W G H

    2016-08-17

    Whole cell Bordetella pertussis (wP) vaccines are still used in many countries to protect against the respiratory disease pertussis. The potency of whole-cell pertussis vaccine lots is determined by an intracerebral challenge test (the Kendrick test). This test is criticized due to lack of immunological relevance of the read-out after an intracerebral challenge with B. pertussis. The alternative in vivo test, which assesses specific antibody levels in serum after wP vaccination, is the Pertussis Serological Potency test (PSPT). Although the PSPT focuses on a parameter that contributes to protection, the protective immune mechanisms after wP vaccination includes more elements than specific antibody responses only. In this study, additional parameters were investigated, i.e. circulating pro-inflammatory cytokines, antibody specificity and T helper cell responses and it was evaluated whether they can be used as complementary readout parameters in the PSPT to assess wP lot quality. By deliberate manipulation of the vaccine preparation procedure, a panel of high, intermediate and low quality wP vaccines were made. The results revealed that these vaccines induced similar IL-6 and IP10 levels in serum 4h after vaccination (innate responses) and similar antibody levels directed against the entire bacterium. In contrast, the induced antibody specificity to distinct wP antigens differed after vaccination with high, intermediate and low quality wP vaccines. In addition, the magnitude of wP-induced Th cell responses (Th17, Th1 and Th2) was reduced after vaccination with a wP vaccine of low quality. T cell responses and antibody specificity are therefore correlates of qualitative differences in the investigated vaccines, while the current parameter of the PSPT alone was not sensitive enough to distinguish between vaccines of different qualities. This study demonstrates that assessment of the magnitude of Th cell responses and the antigen specificity of antibodies induced by w

  2. Effect of the methoxychlor metabolite HPTE on the rat ovarian granulosa cell transcriptome in vitro.

    Science.gov (United States)

    Harvey, Craig N; Esmail, Mahmoud; Wang, Qi; Brooks, Andrew I; Zachow, Rob; Uzumcu, Mehmet

    2009-07-01

    Ovarian granulosa cells play a central role in steroidogenesis, which is critical for female reproduction. Follicle-stimulating hormone (FSH) promotes cyclic adenosine monophosphate (cAMP)-mediated signaling to regulate granulosa cell steroidogenesis. We have shown previously that 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) inhibits FSH- and dibutyryl cAMP-stimulated steroidogenesis and affects the messenger RNA levels of steroidogenic pathway enzymes in rat granulosa cells. However, HPTE showed a differential effect in FSH- and cAMP-stimulated cells in that HPTE more completely blocked FSH- when compared to cAMP-driven steroidogenesis. The objective of this study was to analyze the effects of HPTE on global gene expression profiles in untreated granulosa cells and those challenged with FSH or cAMP. Granulosa cells from immature rats were cultured with 0, 1, 5, or 10 microM HPTE in the presence or absence of either 3 ng FSH/ml or 1mM cAMP for 48 h. Total RNA was isolated for real-time quantitative PCR and microarray analysis using the GeneChip Rat Genome 230 2.0 and ArrayAssist Microarray Suite. An investigation of changes in gene expression across all HPTE treatments showed that HPTE altered more genes in FSH- (approximately 670 genes) than in cAMP-stimulated cells (approximately 366 genes). Analysis confirmed that HPTE more effectively inhibited FSH- than cAMP-induced steroid pathway gene expression and steroidogenesis. Furthermore, expression patterns of novel genes regulating signal transduction, transport, cell cycle, adhesion, differentiation, motility and growth, apoptosis, development, and metabolism were all altered by HPTE. This study further established that HPTE exerts differential effects within the granulosa cell steroidogenic pathway and revealed that these effects include broader changes in gene expression.

  3. Folic acid induces cell type-specific changes in the transcriptome of breast cancer cell lines: a proof-of-concept study.

    Science.gov (United States)

    Price, R Jordan; Lillycrop, Karen A; Burdge, Graham C

    2016-01-01

    The effect of folic acid (FA) on breast cancer (BC) risk is uncertain. We hypothesised that this uncertainty may be due, in part, to differential effects of FA between BC cells with different phenotypes. To test this we investigated the effect of treatment with FA concentrations within the range of unmetabolised FA reported in humans on the expression of the transcriptome of non-transformed (MCF10A) and cancerous (MCF7 and Hs578T) BC cells. The total number of transcripts altered was: MCF10A, seventy-five (seventy up-regulated); MCF7, twenty-four (fourteen up-regulated); and Hs578T, 328 (156 up-regulated). Only the cancer-associated gene TAGLN was altered by FA in all three cell lines. In MCF10A and Hs578T cells, FA treatment decreased pathways associated with apoptosis, cell death and senescence, but increased those associated with cell proliferation. The folate transporters SLC19A1, SLC46A1 and FOLR1 were differentially expressed between cell lines tested. However, the level of expression was not altered by FA treatment. These findings suggest that physiological concentrations of FA can induce cell type-specific changes in gene regulation in a manner that is consistent with proliferative phenotype. This has implications for understanding the role of FA in BC risk. In addition, these findings support the suggestion that differences in gene expression induced by FA may involve differential activities of folate transporters. Together these findings indicate the need for further studies of the effect of FA on BC.

  4. Transcriptomic Analysis of Cultured Whale Skin Cells Exposed to Hexavalent Chromium [Cr(VI)

    OpenAIRE

    Pabuwal, Vagmita; Boswell, Mikki; Pasquali, Amanda; Wise, Sandra S.; Kumar, Suresh; Shen, Yingjia; Garcia, Tzintzuni; LaCerte, Carolyne; Wise, John Pierce; Warren, Wesley; Walter, Ronald B.

    2013-01-01

    Hexavalent chromium Cr(VI) is known to produce cytotoxic effects in humans and is a highly toxic environmental contaminant. Interestingly, it has been shown that free ranging sperm whales (Phyester macrocephalus) may have exceedingly high levels of Cr in their skin. Also, it has been demonstrated that skin cells from whales appear more resistant to both cytotoxicity and clastogenicity upon Cr exposure compared to human cells. However, the molecular genetic mechanisms employed in whale skin ce...

  5. Differential remodeling of a T-cell transcriptome following CD8-versus CD3-induced signaling

    Institute of Scientific and Technical Information of China (English)

    S Hussain I Abidi; Tao Dong; Mai T Vuong; Vattipally B Sreenu; Sarah L Rowland-Jones; Edward J Evans; Simon J Davis

    2008-01-01

    CD8 engagement with class I major histocompatibility antigens greatly enhances T-cell activation,but it is not clear how this is achieved.We address the question of whether or not the antibody-mediated ligation of CD8 alone induces transcriptional remodeling in a T-cell clone,using serial analysis of gene expression.Even though it fails to induce overt phenotypic changes,we find that CD8 ligation profoundly alters transcription in the T-cell clone,at a scale comparable to that induced by antibody-mediated ligation of CD3.The character of the resulting changes is distinct,however,with the net effect ofCD8 ligation being substantially inhibitory.We speculate that ligating CD8 induces weak,T-cell receptor (TCR)-mediated inhibitory signals reminiscent of the effects of TCR antagonists.Our results imply that CD8 ligation alone is incapable of activating the T-cell clone because it fails to fully induce NFAT-dependent transcription.

  6. Antibody-dependent NK cell activation is associated with late kidney allograft dysfunction and the complement-independent alloreactive potential of donor-specific antibodies

    Directory of Open Access Journals (Sweden)

    Tristan Legris

    2016-08-01

    Full Text Available Although kidney transplantation remains the best treatment for end-stage renal failure, it is limited by chronic humoral aggression of the graft vasculature by donor-specific antibodies (DSAs. The complement-independent mechanisms that lead to the antibody-mediated rejection (ABMR of kidney allografts remain poorly understood. Increasing lines of evidence have revealed the relevance of natural killer (NK cells as innate immune effectors of antibody-dependent cellular cytotoxicity, but few studies have investigated their alloreactive potential in the context of solid organ transplantation. Our study aimed to investigate the potential contribution of the antibody-dependent alloreactive function of NK cells to kidney graft dysfunction. We first conducted an observational study to investigate whether the cytotoxic function of NK cells is associated with chronic allograft dysfunction. The NK-Cellular Humoral Activation Test (NK-CHAT was designed to evaluate the recipient and antibody-dependent reactivity of NK cells against allogeneic target cells. The release of CD107a/Lamp1+ cytotoxic granules, resulting from the recognition of rituximab-coated B cells by NK cells, was analyzed in 148 kidney transplant recipients (KTRs, mean graft duration: 6.2 years. Enhanced ADCC responsiveness was associated with reduced graft function and identified as an independent risk factor predicting a decline in the estimated glomerular filtration rate (eGFR over a 1-year period (hazard ratio: 2.83. In a second approach, we used the NK-CHAT to reveal the cytotoxic potential of circulating alloantibodies in vitro. The level of CD16 engagement resulting from the in vitro recognition of serum-coated allogeneic B cells or splenic cells was further identified as a specific marker of DSA-induced ADCC. The NK-CHAT scoring of sera obtained from 40 patients at the time of transplant biopsy was associated with ABMR diagnosis. Our findings indicate that despite the administration

  7. Antibody-Dependent NK Cell Activation Is Associated with Late Kidney Allograft Dysfunction and the Complement-Independent Alloreactive Potential of Donor-Specific Antibodies.

    Science.gov (United States)

    Legris, Tristan; Picard, Christophe; Todorova, Dilyana; Lyonnet, Luc; Laporte, Cathy; Dumoulin, Chloé; Nicolino-Brunet, Corinne; Daniel, Laurent; Loundou, Anderson; Morange, Sophie; Bataille, Stanislas; Vacher-Coponat, Henri; Moal, Valérie; Berland, Yvon; Dignat-George, Francoise; Burtey, Stéphane; Paul, Pascale

    2016-01-01

    Although kidney transplantation remains the best treatment for end-stage renal failure, it is limited by chronic humoral aggression of the graft vasculature by donor-specific antibodies (DSAs). The complement-independent mechanisms that lead to the antibody-mediated rejection (ABMR) of kidney allografts remain poorly understood. Increasing lines of evidence have revealed the relevance of natural killer (NK) cells as innate immune effectors of antibody-dependent cellular cytotoxicity (ADCC), but few studies have investigated their alloreactive potential in the context of solid organ transplantation. Our study aimed to investigate the potential contribution of the antibody-dependent alloreactive function of NK cells to kidney graft dysfunction. We first conducted an observational study to investigate whether the cytotoxic function of NK cells is associated with chronic allograft dysfunction. The NK-Cellular Humoral Activation Test (NK-CHAT) was designed to evaluate the recipient and antibody-dependent reactivity of NK cells against allogeneic target cells. The release of CD107a/Lamp1(+) cytotoxic granules, resulting from the recognition of rituximab-coated B cells by NK cells, was analyzed in 148 kidney transplant recipients (KTRs, mean graft duration: 6.2 years). Enhanced ADCC responsiveness was associated with reduced graft function and identified as an independent risk factor predicting a decline in the estimated glomerular filtration rate over a 1-year period (hazard ratio: 2.83). In a second approach, we used the NK-CHAT to reveal the cytotoxic potential of circulating alloantibodies in vitro. The level of CD16 engagement resulting from the in vitro recognition of serum-coated allogeneic B cells or splenic cells was further identified as a specific marker of DSA-induced ADCC. The NK-CHAT scoring of sera obtained from 40 patients at the time of transplant biopsy was associated with ABMR diagnosis. Our findings indicate that despite the administration of

  8. PROTEIN ENGINEERING TO TARGET COMPLEMENT EVASION IN CANCER

    OpenAIRE

    Carter, Darrick; Lieber, André

    2013-01-01

    The complement system is composed of soluble factors in plasma that enhance or “complement” immune-mediated killing through innate and adaptive mechanisms. Activation of complement causes recruitment of immune cells; opsonization of coated cells; and direct killing of affected cells through a membrane attack complex (MAC). Tumor cells up-regulate complement inhibitory factors -one of several strategies to evade the immune system. In many cases as the tumor progresses, dramatic increases in co...

  9. Apples to origins: Identifying brain tumor stem cell genes by comparing transcriptomes of normal and cancer stem cells

    OpenAIRE

    Wortham, Matthew; Yan, Hai

    2012-01-01

    The mechanisms whereby medulloblastoma stem cells coordinate tumor propagation are poorly understood. Utilizing microarray analysis, Corno and colleagues draw parallels and distinctions between medulloblastoma stem cells from the Ptch+/− mouse and normal neural stem cells, identifying Ebf3 as a cancer stem cell-specific transcript critical for tumor growth.

  10. Finite Complements in English

    Institute of Scientific and Technical Information of China (English)

    Ronald W. Langacker

    2008-01-01

    This paper explores the conceptual basis of finite complimentation in English.It first considem the distinguishing property of a finite clause,namely grounding,effeeted by tense and the modals.Notions crucial for clausal grounding--including a reality conception and the striving for control at the effective and epistemic levelsalso figure in the semantic import of eomplementation.An essential feature of complement constructions is the involvement of multiple conceptualizers,each with their own conception of reality.The different types of complement and their grammatical markings can be characterized on this basis.Finite complements differ from other types by virtue of expressing an autonomous proposition capable of being apprehended by multiple conceptualizers,each from their own vantage point.Acognitive model representing phases in the striving for epistemic control provides a partial basis for the semantic description of predicates taking finite complements.The same model supports the description of both personal and impersonal complement constructions.

  11. Transcriptome analysis of the hippocampal CA1 pyramidal cell region after kainic acid-induced status epilepticus in juvenile rats.

    Directory of Open Access Journals (Sweden)

    Hanna B Laurén

    Full Text Available Molecular mechanisms involved in epileptogenesis in the developing brain remain poorly understood. The gene array approach could reveal some of the factors involved by allowing the identification of a broad scale of genes altered by seizures. In this study we used microarray analysis to reveal the gene expression profile of the laser microdissected hippocampal CA1 subregion one week after kainic acid (KA-induced status epilepticus (SE in 21-day-old rats, which are developmentally roughly comparable to juvenile children. The gene expression analysis with the Chipster software generated a total of 1592 differently expressed genes in the CA1 subregion of KA-treated rats compared to control rats. The KEGG database revealed that the identified genes were involved in pathways such as oxidative phosporylation (26 genes changed, and long-term potentiation (LTP; 18 genes changed. Also genes involved in Ca(2+ homeostasis, gliosis, inflammation, and GABAergic transmission were altered. To validate the microarray results we further examined the protein expression for a subset of selected genes, glial fibrillary protein (GFAP, apolipoprotein E (apo E, cannabinoid type 1 receptor (CB1, Purkinje cell protein 4 (PEP-19, and interleukin 8 receptor (CXCR1, with immunohistochemistry, which confirmed the transcriptome results. Our results showed that SE resulted in no obvious CA1 neuronal loss, and alterations in the expression pattern of several genes during the early epileptogenic phase were comparable to previous gene expression studies of the adult hippocampus of both experimental epileptic animals and patients with temporal lobe epilepsy (TLE. However, some changes seem to occur after SE specifically in the juvenile rat hippocampus. Insight of the SE-induced alterations in gene expression and their related pathways could give us hints for the development of new target-specific antiepileptic drugs that interfere with the progression of the disease in the

  12. Integrative transcriptomic and proteomic analysis of osteocytic cells exposed to fluid flow reveals novel mechano-sensitive signaling pathways.

    Science.gov (United States)

    Govey, Peter M; Jacobs, Jon M; Tilton, Susan C; Loiselle, Alayna E; Zhang, Yue; Freeman, Willard M; Waters, Katrina M; Karin, Norman J; Donahue, Henry J

    2014-06-01

    Osteocytes, positioned within bone׳s porous structure, are subject to interstitial fluid flow upon whole bone loading. Such fluid flow is widely theorized to be a mechanical signal transduced by osteocytes, initiating a poorly understood cascade of signaling events mediating bone adaptation to mechanical load. The objective of this study was to examine the time course of flow-induced changes in osteocyte gene transcript and protein levels using high-throughput approaches. Osteocyte-like MLO-Y4 cells were subjected to 2h of oscillating fluid flow (1Pa peak shear stress) and analyzed following 0, 2, 8, and 24h post-flow incubation. Transcriptomic microarray analysis, followed by gene ontology pathway analysis, demonstrated fluid flow regulation of genes consistent with both known and unknown metabolic and inflammatory responses in bone. Additionally, two of the more highly up-regulated gene products - chemokines Cxcl1 and Cxcl2, supported by qPCR - have not previously been reported as responsive to fluid flow. Proteomic analysis demonstrated greatest up-regulation of the ATP-producing enzyme NDK, calcium-binding Calcyclin, and G protein-coupled receptor kinase 6. Finally, an integrative pathway analysis merging fold changes in transcript and protein levels predicted signaling nodes not directly detected at the sampled time points, including transcription factors c-Myc, c-Jun, and RelA/NF-κB. These results extend our knowledge of the osteocytic response to fluid flow, most notably up-regulation of Cxcl1 and Cxcl2 as possible paracrine agents for osteoblastic and osteoclastic recruitment. Moreover, these results demonstrate the utility of integrative, high-throughput approaches in place of a traditional candidate approach for identifying novel mechano-sensitive signaling molecules. PMID:24720889

  13. Phenotypic and Transcriptomic Analyses of Mildly and Severely Salt-Stressed Bacillus cereus ATCC 14579 Cells

    NARCIS (Netherlands)

    Besten, den H.M.W.; Mols, J.M.; Moezelaar, R.; Zwietering, M.H.; Abee, T.

    2009-01-01

    Bacteria are able to cope with the challenges of a sudden increase in salinity by activating adaptation mechanisms. In this study, exponentially growing cells of the pathogen Bacillus cereus ATCC 14579 were exposed to both mild (2.5% [wt/vol] NaCl) and severe (5% [wt/vol] NaCl) salt stress condition

  14. Comparative DNA damage and transcriptomic effects of engineered nanoparticles in human lung cells in vitro

    Science.gov (United States)

    A series of six titanium dioxide and two cerium oxide engineered nanomaterials were assessed for their ability to induce cytotoxicity, reactive oxygen species (ROS), various types of DNA damage, and transcriptional changes in human respiratory BEAS-2B cells exposed in vitro at se...

  15. Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines.

    Directory of Open Access Journals (Sweden)

    Matthew G Permenter

    Full Text Available Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies.

  16. Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines.

    Science.gov (United States)

    Permenter, Matthew G; Dennis, William E; Sutto, Thomas E; Jackson, David A; Lewis, John A; Stallings, Jonathan D

    2013-01-01

    Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies.

  17. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines

    Science.gov (United States)

    Permenter, Matthew G.; Dennis, William E.; Sutto, Thomas E.; Jackson, David A.; Lewis, John A.; Stallings, Jonathan D.

    2013-01-01

    Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies. PMID:24386269

  18. Viral mimicry of the complement system

    Indian Academy of Sciences (India)

    John Bernet; Jayati Mullick; Akhilesh K Singh; Arvind Sahu

    2003-04-01

    The complement system is a potent innate immune mechanism consisting of cascades of proteins which are designed to fight against and annul intrusion of all the foreign pathogens. Although viruses are smaller in size and have relatively simple structure, they are not immune to complement attack. Thus, activation of the complement system can lead to neutralization of cell-free viruses, phagocytosis of C3b-coated viral particles, lysis of virus-infected cells, and generation of inflammatory and specific immune responses. However, to combat host responses and succeed as pathogens, viruses not only have developed/adopted mechanisms to control complement, but also have turned these interactions to their own advantage. Important examples include poxviruses, herpesviruses, retroviruses, paramyxoviruses and picornaviruses. In this review, we provide information on the various complement evasion strategies that viruses have developed to thwart the complement attack of the host. A special emphasis is given on the interactions between the viral proteins that are involved in molecular mimicry and the complement system.

  19. Transcriptome analysis and physiology of Bifidobacterium longum NCC2705 cells under continuous culture conditions.

    Science.gov (United States)

    Mozzetti, V; Grattepanche, F; Moine, D; Berger, B; Rezzonico, E; Arigoni, F; Lacroix, C

    2012-12-01

    A central issue in the use of probiotics in food and food supplements is their sensitivity to many environmental stress factors. The resistance of probiotic cells to lethal stress can be improved by application of homologous or heterologous sub-lethal stress during culture. This screening procedure is generally performed using batch cultures. Continuous cultures could be a suitable and more efficient method to test different stress factors on one culture instead of repeating several batch cultures. However, before testing stresses using continuous cultures, the physiological stability of continuously produced cells over a considered time period must be first evaluated. A continuous culture of Bifidobacterium longum NCC2705 was maintained for 211 h at a dilution rate of 0.1 per h, mimicking a deceleration growth phase culture. Stable viable cell counts were measured over the culture period, decreasing only moderately from 8.8 to 8.6 log10 cfu/ml. A slight shift in metabolite production, characterized by increased lactate and decreased acetate, formate and ethanol concentrations was observed. Susceptibilities to antibiotics and stress conditions were stable (cefotaxim, ampicillin, ceftazidime) or moderately affected (simulated gastric juices, heat, bile salts, tetracycline, chloramphenicol, penicillin, vancomycin and neomycin) over culturing time. Comparison of gene transcription profiles between samples collected after 31 h of continuous culture and samples collected after 134 and 211 h revealed only limited changes in expression of 1.0 and 3.8% of total genes, respectively. Based on these results, we propose that continuous culture can be used to produce bacterial cells with stable physiological properties suitable for fast and efficient screening of sub-lethal stress conditions. PMID:23234728

  20. Identification of Thalidomide-Specific Transcriptomics and Proteomics Signatures during Differentiation of Human Embryonic Stem Cells

    OpenAIRE

    Kesavan Meganathan; Smita Jagtap; Vilas Wagh; Johannes Winkler; John Antonydas Gaspar; Diana Hildebrand; Maria Trusch; Karola Lehmann; Jürgen Hescheler; Hartmut Schlüter; Agapios Sachinidis

    2012-01-01

    Embryonic development can be partially recapitulated in vitro by differentiating human embryonic stem cells (hESCs). Thalidomide is a developmental toxicant in vivo and acts in a species-dependent manner. Besides its therapeutic value, thalidomide also serves as a prototypical model to study teratogenecity. Although many in vivo and in vitro platforms have demonstrated its toxicity, only a few test systems accurately reflect human physiology. We used global gene expression and proteomics prof...

  1. Teratogen screening using transcriptome profiling of differentiating human embryonic stem cells

    OpenAIRE

    Mayshar, Yoav; Yanuka, Ofra; Benvenisty, Nissim

    2010-01-01

    Abstract Teratogens are substances that may cause defects in normal embryonic development while not necessarily being toxic in adults. Identification of possible teratogenic compounds has been historically beset by the species-specific nature of the teratogen response. To examine teratogenic effects on early human development we performed non-biased expression profiling of differentiating human embryonic and induced pluripotent stem cells treated with several drugs – ethanol, lithium, retinoi...

  2. The vitamin D3 transcriptomic response in skin cells derived from the Atlantic bottlenose dolphin

    OpenAIRE

    Ellis, Blake C.; Gattoni-Celli, Sebastiano; Mancia, Annalaura; Kindy, Mark S.

    2009-01-01

    The Atlantic bottlenose dolphin has attracted attention due to the evident impact that environmental stressors have taken on its health. In order to better understand the mechanisms linking environmental health with dolphin health, we have established cell cultures from dolphin skin as in vitro tools for molecular evaluations. The vitamin D3 pathway is one mechanism of interest because of its well established chemopreventative and immunomodulatory properties in terrestrial mammals. On the oth...

  3. Effect of irradiation on cell transcriptome and proteome of rat submandibular salivary glands.

    Directory of Open Access Journals (Sweden)

    Raluca Stiubea-Cohen

    Full Text Available Salivary glands (SGs are irreversibly damaged by irradiation (IR treatment in head and neck cancer patients. Here, we used an animal irradiation model to investigate and define the molecular mechanisms affecting SGs following IR, focusing on saliva proteome and global transcription profile of submandibular salivary gland (SSG tissue.We show that saliva secretion was gradually reduced to 50% of its initial level 12 weeks post-IR. Saliva protein composition was further examined by proteomic analysis following mass spectrometry (MS analysis that revealed proteins with reduced expression originating from SSGs and proteins with increased expression derived from the serum, both indicating salivary tissue damage. To examine alterations in mRNA expression levels microarray analysis was performed. We found significant alterations in 95 genes, including cell-cycle arrest genes, SG functional genes and a DNA repair gene.Tissue damage was seen by confocal immunofluorescence of α-amylase and c-Kit that showed an increase and decrease, respectively, in protein expression. This was coherent with real-time PCR results.This data indicates that IR damages the SSG cells' ability to produce and secrete saliva and proteins, and maintain the physiological barrier between serum and saliva. The damage does not heal due to cell-cycle arrest, which prevents tissue regeneration. Taken together, our results reveal a new insight into IR pathobiology.

  4. Transcriptome analysis in primary neural stem cells using a tag cDNA amplification method

    Directory of Open Access Journals (Sweden)

    Wikström Lilian

    2005-04-01

    Full Text Available Abstract Background Neural stem cells (NSCs can be isolated from the adult mammalian brain and expanded in culture, in the form of cellular aggregates called neurospheres. Neurospheres provide an in vitro model for studying NSC behaviour and give information on the factors and mechanisms that govern their proliferation and differentiation. They are also a promising source for cell replacement therapies of the central nervous system. Neurospheres are complex structures consisting of several cell types of varying degrees of differentiation. One way of characterising neurospheres is to analyse their gene expression profiles. The value of such studies is however uncertain since they are heterogeneous structures and different populations of neurospheres may vary significantly in their gene expression. Results To address this issue, we have used cDNA microarrays and a recently reported tag cDNA amplification method to analyse the gene expression profiles of neurospheres originating from separate isolations of the lateral ventricle wall of adult mice and passaged to varying degrees. Separate isolations as well as consecutive passages yield a high variability in gene expression while parallel cultures yield the lowest variability. Conclusions We demonstrate a low technical amplification variability using the employed amplification strategy and conclude that neurospheres from the same isolation and passage are sufficiently similar to be used for comparative gene expression analysis.

  5. Laboratory tests for disorders of complement and complement regulatory proteins.

    Science.gov (United States)

    Shih, Angela R; Murali, Mandakolathur R

    2015-12-01

    The complement pathway is a cascade of proteases that is involved in immune surveillance and innate immunity, as well as adaptive immunity. Dysfunction of the complement cascade may be mediated by aberrations in the pathways of activation, complement regulatory proteins, or complement deficiencies, and has been linked to a number of hematologic disorders, including paroxysmal noctural hemoglobinuria (PNH), hereditary angioedema (HAE), and atypical hemolytic-uremic syndrome (aHUS). Here, current laboratory tests for disorders of the complement pathway are reviewed, and their utility and limitations in hematologic disorders and systemic diseases are discussed. Current therapeutic advances targeting the complement pathway in treatment of complement-mediated hematologic disorders are also reviewed.

  6. [BPO-Specific, complement-dependant cell-lysis of differently sensitized sheep red cells: evaluation of haptenic groups and their influence on IgM and IgG-induced lysis (author's transl)].

    Science.gov (United States)

    Wiedermann, G; Stemberger, H; Förster, O; Müller, M

    1976-04-01

    Sheep erythrocytes were coated with bencylpenicilloyl-(BPO)groups. Different incubation periods resulted in erythrocyte preparations with different hapten density. Complement dependent lysis induced by IgM or IgG antibodies was studied with the cell preparations. The calculation of hapten density on the erythrocyte surface was not possible by direct measurement of coupled radioactive BPO since more than 90% of radioactive material was found in the soluble supernatant after osmotic cell lysis and less than 10% was fixed to the cellular membrane. Measurement of membrane bound immunologically relevant BPO-groups was achieved, therefore, by comparison of the inhibitory capacity of the test cells with that of a standard cell preparation. The latter consisted of tannic acid treated erythrocytes coated with protein complexed radioactive BPO. Surface hapten density of the different target cell preparations varied between 1.9 x 10(5) and 4.8 10(5) BPO-groups per cell depending on the time of incubation. Complement dependent antibody mediated cell lysis was significantly reduced by reduction of haptenic sites per target cell, IgG induced lysis being much more affected than hemolysis induced by IgM antibodies. Statistical calculations led to the conclusion that 18,000 protein islets per cell bearing 4 or more BPO-groups are not sufficient for hemolysis induced by IgG antibodies. 48,000 protein islets with this hapten density are necessary for "optimal" sensitization. IgG antibodies must be apparently bound to the cell surface in bivalent form.

  7. Co-Transcriptomes of Initial Interactions In Vitro between Streptococcus Pneumoniae and Human Pleural Mesothelial Cells.

    Directory of Open Access Journals (Sweden)

    Claire J Heath

    Full Text Available Streptococcus pneumoniae (Spn is a major causative organism of empyema, an inflammatory condition occurring in the pleural sac. In this study, we used human and Spn cDNA microarrays to characterize the transcriptional responses occurring during initial contact between Spn and a human pleural mesothelial cell line (PMC in vitro. Using stringent filtering criteria, 42 and 23 Spn genes were up-and down-regulated respectively. In particular, genes encoding factors potentially involved in metabolic processes and Spn adherence to eukaryotic cells were up-regulated e.g. glnQ, glnA, aliA, psaB, lytB and nox. After Spn initial contact, 870 human genes were differentially regulated and the largest numbers of significant gene expression changes were found in canonical pathways for eukaryotic initiation factor 2 signaling (60 genes out of 171, oxidative phosphorylation (32/103, mitochondrial dysfunction (37/164, eIF4 and p70S6K signaling (28/142, mTOR signaling (27/182, NRF2-mediated oxidative stress response (20/177, epithelial adherens junction remodeling (11/66 and ubiquitination (22/254. The cellular response appeared to be directed towards host cell survival and defense. Spn did not activate NF-kB or phosphorylate p38 MAPK or induce cytokine production from PMC. Moreover, Spn infection of TNF-α pre-stimulated PMC inhibited production of IL-6 and IL-8 secretion by >50% (p<0.01. In summary, this descriptive study provides datasets and a platform for examining further the molecular mechanisms underlying the pathogenesis of empyema.

  8. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells

    OpenAIRE

    Yifei Shen; Michael J. Wolkowicz; Tatyana Kotova; Lonjiang Fan; Timko, Michael P.

    2016-01-01

    Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e...

  9. Transcriptomic Analysis of Aflatoxin B1-Regulated Genes in Rat Hepatic Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    杨柳; 季静; 李光辉; 李君文; 陈招立; 王海勇

    2014-01-01

    Aflatoxins are the most popular hepatotoxicants. Chronic exposure to aflatoxins leads to a wide variety of liver diseases, such as hepatocellular carcinoma. In this study, we analyzed the genome wide expression profiles of aflatoxin B1-induced rat hepatic epithelial cells. The expression of 325, 184 and 199 special genes was altered when exposed to 0.03, 0.1 and 0.2 μmol/L aflatoxin B1 respectively, and 239 genes were commonly expressed. After the functional analysis on these dose-special genes, we determined several key pathways related to hepatotoxicity, such as TGF-beta signaling pathway, tight junction, adherens junction, the regulation of actin cytoskeleton, ErbB signaling pathway, p53 signaling pathway, pathways in cancer and axon guidance. Common genes were mainly associated with focal adhesion, ECM-receptor interaction, and cell adhesion molecules. Gene ontology annotations showed a good concordance with these pathways. The quantitative real-time polymerase chain reaction(PCR) analysis of selected genes showed similar patterns in microarrays. The toxicogenomic study provides a better understanding of molecular mechanisms of aflatoxins.

  10. Transcriptomic analysis of host immune and cell death responses associated with the influenza A virus PB1-F2 protein.

    Directory of Open Access Journals (Sweden)

    Ronan Le Goffic

    2011-08-01

    Full Text Available Airway inflammation plays a major role in the pathogenesis of influenza viruses and can lead to a fatal outcome. One of the challenging objectives in the field of influenza research is the identification of the molecular bases associated to the immunopathological disorders developed during infection. While its precise function in the virus cycle is still unclear, the viral protein PB1-F2 is proposed to exert a deleterious activity within the infected host. Using an engineered recombinant virus unable to express PB1-F2 and its wild-type homolog, we analyzed and compared the pathogenicity and host response developed by the two viruses in a mouse model. We confirmed that the deletion of PB1-F2 renders the virus less virulent. The global transcriptomic analyses of the infected lungs revealed a potent impact of PB1-F2 on the response developed by the host. Thus, after two days post-infection, PB1-F2 invalidation severely decreased the number of genes activated by the host. PB1-F2 expression induced an increase in the number and level of expression of activated genes linked to cell death, inflammatory response and neutrophil chemotaxis. When generating interactive gene networks specific to PB1-F2, we identified IFN-γ as a central regulator of PB1-F2-regulated genes. The enhanced cell death of airway-recruited leukocytes was evidenced using an apoptosis assay, confirming the pro-apoptotic properties of PB1-F2. Using a NF-kB luciferase adenoviral vector, we were able to quantify in vivo the implication of NF-kB in the inflammation mediated by the influenza virus infection; we found that PB1-F2 expression intensifies the NF-kB activity. Finally, we quantified the neutrophil recruitment within the airways, and showed that this type of leukocyte is more abundant during the infection of the wild-type virus. Collectively, these data demonstrate that PB1-F2 strongly influences the early host response during IAV infection and provides new insights into the

  11. Transcriptomic analysis of host immune and cell death responses associated with the influenza A virus PB1-F2 protein.

    Science.gov (United States)

    Le Goffic, Ronan; Leymarie, Olivier; Chevalier, Christophe; Rebours, Emmanuelle; Da Costa, Bruno; Vidic, Jasmina; Descamps, Delphyne; Sallenave, Jean-Michel; Rauch, Michel; Samson, Michel; Delmas, Bernard

    2011-08-01

    Airway inflammation plays a major role in the pathogenesis of influenza viruses and can lead to a fatal outcome. One of the challenging objectives in the field of influenza research is the identification of the molecular bases associated to the immunopathological disorders developed during infection. While its precise function in the virus cycle is still unclear, the viral protein PB1-F2 is proposed to exert a deleterious activity within the infected host. Using an engineered recombinant virus unable to express PB1-F2 and its wild-type homolog, we analyzed and compared the pathogenicity and host response developed by the two viruses in a mouse model. We confirmed that the deletion of PB1-F2 renders the virus less virulent. The global transcriptomic analyses of the infected lungs revealed a potent impact of PB1-F2 on the response developed by the host. Thus, after two days post-infection, PB1-F2 invalidation severely decreased the number of genes activated by the host. PB1-F2 expression induced an increase in the number and level of expression of activated genes linked to cell death, inflammatory response and neutrophil chemotaxis. When generating interactive gene networks specific to PB1-F2, we identified IFN-γ as a central regulator of PB1-F2-regulated genes. The enhanced cell death of airway-recruited leukocytes was evidenced using an apoptosis assay, confirming the pro-apoptotic properties of PB1-F2. Using a NF-kB luciferase adenoviral vector, we were able to quantify in vivo the implication of NF-kB in the inflammation mediated by the influenza virus infection; we found that PB1-F2 expression intensifies the NF-kB activity. Finally, we quantified the neutrophil recruitment within the airways, and showed that this type of leukocyte is more abundant during the infection of the wild-type virus. Collectively, these data demonstrate that PB1-F2 strongly influences the early host response during IAV infection and provides new insights into the mechanisms by which PB

  12. Xeroderma pigmentosum, complementation group D expression in H1299 lung cancer cells following benzo[a]pyrene exposure as well as in head and neck cancer patients.

    Science.gov (United States)

    Lin, Chang-Shen; Chiou, Wen-Yen; Lee, Ka-Wo; Chen, Tzu-Fen; Lin, Yuan-Jen; Huang, Jau-Ling

    2016-01-01

    DNA repair genes play critical roles in response to carcinogen-induced and anticancer therapy-induced DNA damage. Benzo[a]pyrene (BaP), the most carcinogenic polycyclic aromatic hydrocarbon (PAH), is classified as a group 1 carcinogen by International Agency for Research on Cancer. The aims of this study were to (1) evaluate the effects of BaP on DNA repair activity and expression of DNA repair genes in vitro and (2) examine the role of xeroderma pigmentosum, complementation group D (XPD) mRNA expression in human head and neck cancers. Host cell reactivation assay showed that BaP inhibited nucleotide excision repair in H1299 lung cancer cells. DNA repair through the non-homologous end-joining pathway was not affected by BaP. Real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) and Western blot demonstrated that XPD was downregulated by BaP treatment. BaP exposure did not apparently affect expression of another 11 DNA repair genes. BaP treatment increased the DNA damage marker γ-H2AX and ultraviolet (UV) sensitivity, supporting an impairment of DNA repair in BaP-treated cells. XPD expression was also examined by quantitative RT-PCR in 68 head and neck cancers, and a lower XPD mRNA level was found in smokers' cancer specimens. Importantly, reduced XPD expression was correlated with patient 5-year overall survival rate (35 vs. 56%) and was an independent prognostic factor (hazard ratio: 2.27). Data demonstrated that XPD downregulation was correlated with BaP exposure and human head and neck cancer survival. PMID:26731659

  13. Apobec-1 Complementation Factor (A1CF Inhibits Epithelial-Mesenchymal Transition and Migration of Normal Rat Kidney Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Liyuan Huang

    2016-02-01

    Full Text Available Apobec-1 complementation factor (A1CF is a member of the heterogeneous nuclear ribonucleoproteins (hnRNP family, which participates in site-specific posttranscriptional RNA editing of apolipoprotein B (apoB transcript. The posttranscriptional editing of apoB mRNA by A1CF in the small intestine is required for lipid absorption. Apart from the intestine, A1CF mRNA is also reported to be highly expressed in the kidneys. However, it is remained unknown about the functions of A1CF in the kidneys. The aim of this paper is to explore the potential functions of A1CF in the kidneys. Our results demonstrated that in C57BL/6 mice A1CF was weakly expressed in embryonic kidneys from E15.5dpc while strongly expressed in mature kidneys after birth, and it mainly existed in the tubules of inner cortex. More importantly, we identified A1CF negatively regulated the process of epithelial-mesenchymal transition (EMT in kidney tubular epithelial cells. Our results found ectopic expression of A1CF up-regulated the epithelial markers E-cadherin, and down-regulated the mesenchymal markers vimentin and α-smooth muscle actin (α-SMA in NRK52e cells. In addition, knockdown of A1CF enhanced EMT contrary to the overexpression effect. Notably, the two A1CF variants led to the similar trend in the EMT process. Taken together, these data suggest that A1CF may be an antagonistic factor to the EMT process of kidney tubular epithelial cells.

  14. Targeted complement inhibition and microvasculature in transplants: a therapeutic perspective.

    Science.gov (United States)

    Khan, M A; Hsu, J L; Assiri, A M; Broering, D C

    2016-02-01

    Active complement mediators play a key role in graft-versus-host diseases, but little attention has been given to the angiogenic balance and complement modulation during allograft acceptance. The complement cascade releases the powerful proinflammatory mediators C3a and C5a anaphylatoxins, C3b, C5b opsonins and terminal membrane attack complex into tissues, which are deleterious if unchecked. Blocking complement mediators has been considered to be a promising approach in the modern drug discovery plan, and a significant number of therapeutic alternatives have been developed to dampen complement activation and protect host cells. Numerous immune cells, especially macrophages, develop both anaphylatoxin and opsonin receptors on their cell surface and their binding affects the macrophage phenotype and their angiogenic properties. This review discusses the mechanism that complement contributes to angiogenic injury, and the development of future therapeutic targets by antagonizing activated complement mediators to preserve microvasculature in rejecting the transplanted organ.

  15. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells.

    Science.gov (United States)

    Shen, Yifei; Wolkowicz, Michael J; Kotova, Tatyana; Fan, Lonjiang; Timko, Michael P

    2016-01-01

    Electronic cigarettes (e-cigarettes) generate an aerosol vapor (e-vapor) thought to represent a less risky alternative to main stream smoke (MSS) of conventional tobacco cigarettes. RNA-seq analysis was used to examine the transcriptomes of differentiated human bronchial epithelial (HBE) cells exposed to air, MSS from 1R5F tobacco reference cigarettes, and e-vapor with and without added nicotine in an in vitro air-liquid interface model for cellular exposure. Our results indicate that while e-vapor does not elicit many of the cell toxicity responses observed in MSS-exposed HBE cells, e-vapor exposure is not benign, but elicits discrete transcriptomic signatures with and without added nicotine. Among the cellular pathways with the most significantly enriched gene expression following e-vapor exposure are the phospholipid and fatty acid triacylglycerol metabolism pathways. Our data suggest that alterations in cellular glycerophopholipid biosynthesis are an important consequences of e-vapor exposure. Moreover, the presence of nicotine in e-vapor elicits a cellular response distinct from e-vapor alone including alterations of cytochrome P450 function, retinoid metabolism, and nicotine catabolism. These studies establish a baseline for future analysis of e-vapor and e-vapor additives that will better inform the FDA and other governmental bodies in discussions of the risks and future regulation of these products. PMID:27041137

  16. Properdin in complement activation and tissue injury.

    Science.gov (United States)

    Lesher, Allison M; Nilsson, Bo; Song, Wen-Chao

    2013-12-15

    The plasma protein properdin is the only known positive regulator of complement activation. Although regarded as an initiator of the alternative pathway of complement activation at the time of its discovery more than a half century ago, the role and mechanism of action of properdin in the complement cascade has undergone significant conceptual evolution since then. Despite the long history of research on properdin, however, new insight and unexpected findings on the role of properdin in complement activation, pathogen infection and host tissue injury are still being revealed by ongoing investigations. In this article, we provide a brief review on recent studies that shed new light on properdin biology, focusing on the following three topics: (1) its role as a pattern recognition molecule to direct and trigger complement activation, (2) its context-dependent requirement in complement activation on foreign and host cell surfaces, and (3) its involvement in alternative pathway complement-mediated immune disorders and considerations of properdin as a potential therapeutic target in human diseases.

  17. Methods to determine the transcriptomes of trypanosomes in mixtures with mammalian cells: the effects of parasite purification and selective cDNA amplification.

    Directory of Open Access Journals (Sweden)

    Julius Mulindwa

    2014-04-01

    Full Text Available Patterns of gene expression in cultured Trypanosoma brucei bloodstream and procyclic forms have been extensively characterized, and some comparisons have been made with trypanosomes grown to high parasitaemias in laboratory rodents. We do not know, however, to what extent these transcriptomes resemble those in infected Tsetse flies - or in humans or cattle, where parasitaemias are substantially lower. For clinical and field samples it is difficult to characterize parasite gene expression because of the large excess of host cell RNA. We have here examined two potential solutions to this problem for bloodstream form trypanosomes, assaying transcriptomes by high throughput cDNA sequencing (RNASeq. We first purified the parasites from blood of infected rats. We found that a red blood cell lysis procedure affected the transcriptome substantially more than purification using a DEAE cellulose column, but that too introduced significant distortions and variability. As an alternative, we specifically amplified parasite sequences from a mixture containing a 1000-fold excess of human RNA. We first purified polyadenylated RNA, then made trypanosome-specific cDNA by priming with a spliced leader primer. Finally, the cDNA was amplified using nested primers. The amplification procedure was able to produce samples in which 20% of sequence reads mapped to the trypanosome genome. Synthesis of the second cDNA strand with a spliced leader primer, followed by amplification, is sufficiently reproducible to allow comparison of different samples so long as they are all treated in the same way. However, SL priming distorted the abundances of the cDNA products and definitely cannot be used, by itself, to measure absolute mRNA levels. The amplification method might be suitable for clinical samples with low parasitaemias, and could also be adapted for other Kinetoplastids and to samples from infected vectors.

  18. Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing

    Directory of Open Access Journals (Sweden)

    Cannon Charles H

    2011-07-01

    Full Text Available Abstract Background Acacia auriculiformis × Acacia mangium hybrids are commercially important trees for the timber and pulp industry in Southeast Asia. Increasing pulp yield while reducing pulping costs are major objectives of tree breeding programs. The general monolignol biosynthesis and secondary cell wall formation pathways are well-characterized but genes in these pathways are poorly characterized in Acacia hybrids. RNA-seq on short-read platforms is a rapid approach for obtaining comprehensive transcriptomic data and to discover informative sequence variants. Results We sequenced transcriptomes of A. auriculiformis and A. mangium from non-normalized cDNA libraries synthesized from pooled young stem and inner bark tissues using paired-end libraries and a single lane of an Illumina GAII machine. De novo assembly produced a total of 42,217 and 35,759 contigs with an average length of 496 bp and 498 bp for A. auriculiformis and A. mangium respectively. The assemblies of A. auriculiformis and A. mangium had a total length of 21,022,649 bp and 17,838,260 bp, respectively, with the largest contig 15,262 bp long. We detected all ten monolignol biosynthetic genes using Blastx and further analysis revealed 18 lignin isoforms for each species. We also identified five contigs homologous to R2R3-MYB proteins in other plant species that are involved in transcriptional regulation of secondary cell wall formation and lignin deposition. We searched the contigs against public microRNA database and predicted the stem-loop structures of six highly conserved microRNA families (miR319, miR396, miR160, miR172, miR162 and miR168 and one legume-specific family (miR2086. Three microRNA target genes were predicted to be involved in wood formation and flavonoid biosynthesis. By using the assemblies as a reference, we discovered 16,648 and 9,335 high quality putative Single Nucleotide Polymorphisms (SNPs in the transcriptomes of A. auriculiformis and A. mangium

  19. Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina

    Directory of Open Access Journals (Sweden)

    Caruso Marco

    2012-02-01

    Full Text Available Abstract Background Reproductive biology in citrus is still poorly understood. Although in recent years several efforts have been made to study pollen-pistil interaction and self-incompatibility, little information is available about the molecular mechanisms regulating these processes. Here we report the identification of candidate genes involved in pollen-pistil interaction and self-incompatibility in clementine (Citrus clementina Hort. ex Tan.. These genes have been identified comparing the transcriptomes of laser-microdissected stylar canal cells (SCC isolated from two genotypes differing for self-incompatibility response ('Comune', a self-incompatible cultivar and 'Monreal', a self- compatible mutation of 'Comune'. Results The transcriptome profiling of SCC indicated that the differential regulation of few specific, mostly uncharacterized transcripts is associated with the breakdown of self-incompatibility in 'Monreal'. Among them, a novel F-box gene showed a drastic up-regulation both in laser microdissected stylar canal cells and in self-pollinated whole styles with stigmas of 'Comune' in concomitance with the arrest of pollen tube growth. Moreover, we identify a non-characterized gene family as closely associated to the self-incompatibility genetic program activated in 'Comune'. Three different aspartic-acid rich (Asp-rich protein genes, located in tandem in the clementine genome, were over-represented in the transcriptome of 'Comune'. These genes are tightly linked to a DELLA gene, previously found to be up-regulated in the self-incompatible genotype during pollen-pistil interaction. Conclusion The highly specific transcriptome survey of the stylar canal cells identified novel genes which have not been previously associated with self-pollen rejection in citrus and in other plant species. Bioinformatic and transcriptional analyses suggested that the mutation leading to self-compatibility in 'Monreal' affected the expression of non

  20. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Sonali; Rao, A.L.N., E-mail: arao@ucr.edu

    2014-09-15

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER.

  1. Downregulation of C3 and C4A/B complement factor fragments in plasma from patients with squamous cell carcinoma of the penis

    Directory of Open Access Journals (Sweden)

    Paulo Ornellas

    2012-12-01

    Full Text Available Purpose To investigate the use of ClinProt technique to identify cancer markers in plasma of patients suffering from squamous cell carcinoma of the penis (SCCP. Materials and Methods Plasma of 36 healthy subjects and 25 patients with penile carcinoma who underwent surgical treatment between June 2010 and June 2011 was collected and analyzed by the ClinProt/MALDI/ToF technique. Then the peptides were identified from the C8 MB eluted fraction of patients' and control subjects' plasma by LIFT MS/MS. Results A cluster of 2 peptides (A=m/z 1897.22 ± 9 Da and B=m/z 2021.99 ± 9 Da was able to discriminate patients from control subjects. Cross validation analysis using the whole casuistic showed 62.5% and 86.76% sensitivity and specificity, respectively. The cluster also showed very high sensitivity (100% and specificity (97% for SCCP patients that died due to the disease. Furthermore, patients with lymph node involvement presented sensitivity and specificity of 80% and 97%, respectively. These two peptides were identified by the proteomic approach based on a MALDI-TOF/TOF as fragments of C3 (m/z 1896.17 and C4a/b (m/z 2021.26 complement proteins. Conclusions The results showed that as the disease progresses, the fragments C3 and C4 A/B are less expressed in comparison with healthy subjects. These results may be useful as prognostic tools.

  2. Association of Polymorphisms in X-Ray Repair Cross Complementing 1 Gene and Risk of Esophageal Squamous Cell Carcinoma in a Chinese Population

    Directory of Open Access Journals (Sweden)

    Yu-Xia Yun

    2015-01-01

    Full Text Available Objectives. To investigate the association between three single nucleotide polymorphisms (SNPs in the X-ray repair cross complementing 1 gene (XRCC1 and the risk of esophageal squamous cell carcinoma (ESCC in Chinese population. Methods. A case-control study including 381 primary ESCC patients recruited from hospital and 432 normal controls matched with patients by age and gender from Chinese Han population was conducted. The genotypes of three XRCC1 polymorphisms at −77T>C (T-77C, codon 194 (Arg194Trp, and codon 399 (Arg399Gln were studied by means of polymerase chain reaction-restriction fragment length polymorphism techniques (PCR-RFLP. Unconditional logistic regression model and haplotype analysis were used to estimate associations of these three SNPs in XRCC1 gene with ESCC risk. Results. Polymorphisms at these three sites in XRCC1 gene were not found to be associated with risk for developing ESCC; however the haplotype Ccodon 194Gcodon 399C-77T>C was significantly associated with reduced risk of ESCC (OR: 0.62, 95% CI: 0.40–0.96 upon haplotype analysis. Conclusion. These results suggested that the gene-gene interactions might play vital roles in the progression on esophageal cancer in Chinese Han population and it would be necessary to confirm these findings in a large and multiethnic population.

  3. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    International Nuclear Information System (INIS)

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER

  4. Transcriptomic variation of pharmacogenes in multiple human tissues and lymphoblastoid cell lines

    Science.gov (United States)

    Chhibber, Aparna; French, Courtney E.; Yee, Sook Wah; Gamazon, Eric R.; Theusch, Elizabeth; Qin, Xiang; Webb, Amy; Papp, Audrey C.; Wang, Ann; Simmons, Christine Q.; Konkashbaev, Anuar; Chaudhry, Amarjit S.; Mitchel, Katrina; Stryke, Doug; Ferrin, Thomas E.; Weiss, Scott T.; Kroetz, Deanna L.; Sadee, Wolfgang; Nickerson, Deborah A.; Krauss, Ronald M.; George, Alfred L.; Schuetz, Erin G.; Medina, Marisa W.; Cox, Nancy J.; Scherer, Steven E.; Giacomini, Kathleen M.; Brenner, Steven E

    2015-01-01

    Variation in the expression level and activity of genes involved in drug disposition and action (“pharmacogenes”) can affect drug response and toxicity, especially when in tissues of pharmacological importance. Previous studies have relied primarily on microarrays to understand gene expression differences, or have focused on a single tissue or small number of samples. The goal of this study was to use RNA-seq to determine the expression levels and alternative splicing of 389 PGRN pharmacogenes across four tissues (liver, kidney, heart and adipose) and lymphoblastoid cell lines (LCLs), which are used widely in pharmacogenomics studies. Analysis of RNA-seq data from 139 different individuals across the 5 tissues (20–45 individuals per tissue type) revealed substantial variation in both expression levels and splicing across samples and tissue types. This in-depth exploration also revealed 183 splicing events in pharmacogenes that were previously not annotated. Overall, this study serves as a rich resource for the research community to inform biomarker and drug discovery and use. PMID:26856248

  5. Transcriptome sequencing wide functional analysis of human mesenchymal stem cells in response to TLR4 ligand.

    Science.gov (United States)

    Kim, Sun Hwa; Das, Amitabh; Chai, Jin Choul; Binas, Bert; Choi, Mi Ran; Park, Kyoung Sun; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2016-01-01

    Due to their multipotentiality and immunomodulation, human mesenchymal stem cells (hMSCs) are widely studied for the treatment of degenerative and inflammatory diseases. Transplantation of hMSCs to damaged tissue is a promising approach for tissue regeneration. However, the physiological mechanisms and regulatory processes of MSC trafficking to injured tissue are largely unexplored. Here, we evaluated the gene expression profile and migratory potential of hMSCs upon stimulation with the TLR4 ligand lipopolysaccharide (LPS). Using RNA sequencing, we identified unique induction patterns of interferon stimulated genes, cytokines and chemokines involved in chemotaxis and homing. The -950 to +50 bp regions of many of these LPS-responsive genes were enriched with putative binding motifs for the transcription factors (TFs) interferon regulatory factor (IRF1) and nuclear factor kappa B (NF-κB1, REL), which were also induced by LPS along with other TFs. Chromatin immunoprecipitation assays showed that IRF1 bound within their target genes promoter region. In addition, IRF1 attenuation significantly down-regulated interferon stimulated genes as well as key cytokines. Furthermore, using pharmacological inhibitors, we showed that the NF-κB and phosphatidylinositol 3-kinase (PI3K) pathways regulate the migratory and cytokines/chemokines response to LPS. These unprecedented data suggest that IRF1 and NF-κB orchestrate the TLR4-primed immunomodulatory response of hMSCs and that this response also involves the PI3K pathway. PMID:27444640

  6. Differentiated neuroprogenitor cells incubated with human or canine adenovirus, or lentiviral vectors have distinct transcriptome profiles.

    Directory of Open Access Journals (Sweden)

    Stefania Piersanti

    Full Text Available Several studies have demonstrated the potential for vector-mediated gene transfer to the brain. Helper-dependent (HD human (HAd and canine (CAV-2 adenovirus, and VSV-G-pseudotyped self-inactivating HIV-1 vectors (LV effectively transduce human brain cells and their toxicity has been partly analysed. However, their effect on the brain homeostasis is far from fully defined, especially because of the complexity of the central nervous system (CNS. With the goal of dissecting the toxicogenomic signatures of the three vectors for human neurons, we transduced a bona fide human neuronal system with HD-HAd, HD-CAV-2 and LV. We analysed the transcriptional response of more than 47,000 transcripts using gene chips. Chip data showed that HD-CAV-2 and LV vectors activated the innate arm of the immune response, including Toll-like receptors and hyaluronan circuits. LV vector also induced an IFN response. Moreover, HD-CAV-2 and LV vectors affected DNA damage pathways--but in opposite directions--suggesting a differential response of the p53 and ATM pathways to the vector genomes. As a general response to the vectors, human neurons activated pro-survival genes and neuron morphogenesis, presumably with the goal of re-establishing homeostasis. These data are complementary to in vivo studies on brain vector toxicity and allow a better understanding of the impact of viral vectors on human neurons, and mechanistic approaches to improve the therapeutic impact of brain-directed gene transfer.

  7. CD55 is a key complement regulatory protein that counteracts complement-mediated inactivation of Newcastle Disease Virus.

    Science.gov (United States)

    Rangaswamy, Udaya S; Cotter, Christopher R; Cheng, Xing; Jin, Hong; Chen, Zhongying

    2016-08-01

    Newcastle disease virus (NDV) is being developed as an oncolytic virus for virotherapy. In this study we analysed the regulation of complement-mediated inactivation of a recombinant NDV in different host cells. NDV grown in human cells was less sensitive to complement-mediated virus inactivation than NDV grown in embryonated chicken eggs. Additionally, NDV produced from HeLa-S3 cells is more resistant to complement than NDV from 293F cells, which correlated with higher expression and incorporation of complement regulatory proteins (CD46, CD55 and CD59) into virions from HeLa-S3 cells. Further analysis of the recombinant NDVs individually expressing the three CD molecules showed that CD55 is the most potent in counteracting complement-mediated virus inactivation. The results provide important information on selecting NDV manufacture substrate to mitigate complement-mediated virus inactivation.

  8. Complement receptor 2–mediated targeting of complement inhibitors to sites of complement activation

    OpenAIRE

    Song, Hongbin; He, Chun; Knaak, Christian; GUTHRIDGE, JOEL M.; Holers, V. Michael; Tomlinson, Stephen

    2003-01-01

    In a strategy to specifically target complement inhibitors to sites of complement activation and disease, recombinant fusion proteins consisting of a complement inhibitor linked to a C3 binding region of complement receptor (CR) 2 were prepared and characterized. Natural ligands for CR2 are C3 breakdown products deposited at sites of complement activation. Fusion proteins were prepared consisting of a human CR2 fragment linked to either the N terminus or C terminus of soluble forms of the mem...

  9. Prosteatotic and Protective Components in a Unique Model of Fatty Liver: Gut Microbiota and Suppressed Complement System

    Science.gov (United States)

    Liu, Long; Zhao, Xing; Wang, Qian; Sun, Xiaoxian; Xia, Lili; Wang, Qianqian; Yang, Biao; Zhang, Yihui; Montgomery, Sean; Meng, He; Geng, Tuoyu; Gong, Daoqing

    2016-01-01

    Goose can develop severe hepatic steatosis without overt injury, thus it may serve as a unique model for uncovering how steatosis-related injury is prevented. To identify the markedly prosteatotic and protective mechanisms, we performed an integrated analysis of liver transcriptomes and gut microbial metagenomes using samples collected from overfed and normally-fed geese at different time points. The results indicated that the fatty liver transcriptome, initially featuring a ‘metabolism’ pathway, was later joined by ‘cell growth and death’ and ‘immune diseases’ pathways. Gut microbiota played a synergistic role in the liver response as microbial and hepatic genes affected by overfeeding shared multiple pathways. Remarkably, the complement system, an inflammatory component, was comprehensively suppressed in fatty liver, which was partially due to increased blood lactic acid from enriched Lactobacillus. Data from in vitro studies suggested that lactic acid suppressed TNFα via the HNF1α/C5 pathway. In conclusion, gut microbes and their hosts respond to excess energy influx as an organic whole, severe steatosis and related tolerance of goose liver may be partially attributable to gut microbiotic products and suppressed complement system, and lactic acid from gut microbiota participates in the suppression of hepatic TNFα/inflammation through the HNF1α/C5 pathway. PMID:27550859

  10. Clinical significance of complement deficiencies.

    Science.gov (United States)

    Pettigrew, H David; Teuber, Suzanne S; Gershwin, M Eric

    2009-09-01

    The complement system is composed of more than 30 serum and membrane-bound proteins, all of which are needed for normal function of complement in innate and adaptive immunity. Historically, deficiencies within the complement system have been suspected when young children have had recurrent and difficult-to-control infections. As our understanding of the complement system has increased, many other diseases have been attributed to deficiencies within the complement system. Generally, complement deficiencies within the classical pathway lead to increased susceptibility to encapsulated bacterial infections as well as a syndrome resembling systemic lupus erythematosus. Complement deficiencies within the mannose-binding lectin pathway generally lead to increased bacterial infections, and deficiencies within the alternative pathway usually lead to an increased frequency of Neisseria infections. However, factor H deficiency can lead to membranoproliferative glomerulonephritis and hemolytic uremic syndrome. Finally, deficiencies within the terminal complement pathway lead to an increased incidence of Neisseria infections. Two other notable complement-associated deficiencies are complement receptor 3 and 4 deficiency, which result from a deficiency of CD18, a disease known as leukocyte adhesion deficiency type 1, and CD59 deficiency, which causes paroxysmal nocturnal hemoglobinuria. Most inherited deficiencies of the complement system are autosomal recessive, but properidin deficiency is X-linked recessive, deficiency of C1 inhibitor is autosomal dominant, and mannose-binding lectin and factor I deficiencies are autosomal co-dominant. The diversity of clinical manifestations of complement deficiencies reflects the complexity of the complement system. PMID:19758139

  11. Identification of murine complement receptor type 2.

    OpenAIRE

    Fingeroth, J D; Benedict, M A; Levy, D.N.; Strominger, J L

    1989-01-01

    A rabbit antiserum reactive with the human complement component C3d/Epstein-Barr virus receptor (complement receptor type 2, CR2) immunoprecipitates a Mr 155,000 murine B-cell surface antigen. The apparent molecular weight and cellular distribution of this murine antigen are similar to those of human CR2. Cells expressing the murine protein bind sheep erythrocytes coated with antibody and murine C1-C3d but do not bind Epstein-Barr virus at all. The monospecific antiserum to human CR2 together...

  12. Transcriptome sequencing reveals differences between primary and secondary hair follicle-derived dermal papilla cells of the Cashmere goat (Capra hircus.

    Directory of Open Access Journals (Sweden)

    Bing Zhu

    Full Text Available The dermal papilla is thought to establish the character and control the size of hair follicles. Inner Mongolia Cashmere goats (Capra hircus have a double coat comprising the primary and secondary hair follicles, which have dramatically different sizes and textures. The Cashmere goat is rapidly becoming a potent model for hair follicle morphogenesis research. In this study, we established two dermal papilla cell lines during the anagen phase of the hair growth cycle from the primary and secondary hair follicles and clarified the similarities and differences in their morphology and growth characteristics. High-throughput transcriptome sequencing was used to identify gene expression differences between the two dermal papilla cell lines. Many of the differentially expressed genes are involved in vascularization, ECM-receptor interaction and Wnt/β-catenin/Lef1 signaling pathways, which intimately associated with hair follicle morphogenesis. These findings provide valuable information for research on postnatal morphogenesis of hair follicles.

  13. Transcriptomic Analysis Reveals Novel Mechanistic Insight into Murine Biological Responses to Multi-Walled Carbon Nanotubes in Lungs and Cultured Lung Epithelial Cells

    DEFF Research Database (Denmark)

    Poulsen, Sarah Søs; Jacobsen, Nicklas R.; Labib, Sarah;

    2013-01-01

    responses of multiwalled carbon nanotubes (MWCNT) to those in vitro in cultured lung epithelial cells (FE1) at the global transcriptomic level. Primary size, surface area and other properties of MWCNT-XNRI -7 (Mitsui7) were characterized using DLS, SEM and TEM. Mice were exposed via a single intratracheal...... results were confirmed using gene-specific RT-qPCR. Bronchoalveolar lavage (BAL) fluid was assessed for indications of inflammation in vivo. A strong dose-dependent activation of acute phase and inflammation response was observed in mouse lungs reflective mainly of an inflammatory response as observed...... at the pathway-level, the specific genes altered under these pathways were different, suggesting that the underlying mechanisms of responses are different in cells in culture and the lung tissue. Our results suggest that careful consideration should be given in selecting relevant endpoints when substituting...

  14. Complement and thrombosis in the antiphospholipid syndrome.

    Science.gov (United States)

    Oku, Kenji; Nakamura, Hiroyuki; Kono, Michihiro; Ohmura, Kazumasa; Kato, Masaru; Bohgaki, Toshiyuki; Horita, Tetsuya; Yasuda, Shinsuke; Amengual, Olga; Atsumi, Tatsuya

    2016-10-01

    The involvement of complement activation in the pathophysiology of antiphospholipid syndrome (APS) was first reported in murine models of antiphospholipid antibody (aPL)-related pregnancy morbidities. We previously reported that complement activation is prevalent and may function as a source of procoagulant cell activation in the sera of APS patients. Recently, autoantibodies against C1q, a component of complement 1, were reported to be correlated with complement activation in systemic lupus erythematosus. These antibodies target neoepitopes of deformed C1q bound to various molecules (i.e., anionic phospholipids) and induce accelerated complement activation. We found that anti-C1q antibodies are more frequently detected in primary APS patients than in control patients and in refractory APS patients with repeated thrombotic events. The titer of anti-C1q antibodies was significantly higher in refractory APS patients than in APS patients without flare. The binding of C1q to anionic phospholipids may be associated with the surge in complement activation in patients with anti-C1q antibodies when triggered by 'second-hit' biological stressors such as infection. Such stressors will induce overexpression of anionic phospholipids, with subsequent increases in deformed C1q that is targeted by anti-C1q antibodies.

  15. E2F1 Orchestrates Transcriptomics and Oxidative Metabolism in Wharton’s Jelly-Derived Mesenchymal Stem Cells from Growth-Restricted Infants

    Science.gov (United States)

    Tan, Peck Yean; Chang, Cheng Wei; Duan, Kaibo; Poidinger, Michael; Ng, Kai Lyn; Chong, Yap Seng; Gluckman, Peter D.; Stünkel, Walter

    2016-01-01

    Wharton’s jelly-derived Mesenchymal Stem Cells (MSCs) isolated from newborns with intrauterine fetal growth restriction were previously shown to exert anabolic features including insulin hypersensitivity. Here, we extend these observations and demonstrate that MSCs from small for gestational age (SGA) individuals have decreased mitochondrial oxygen consumption rates. Comparing normally grown and SGA MSCs using next generation sequencing studies, we measured global transcriptomic and epigenetic profiles and identified E2F1 as an over-expressed transcription factor regulating oxidative metabolism in the SGA group. We further show that E2F1 regulates the differential transcriptome found in SGA derived MSCs and is associated with the activating histone marks H3K27ac and H3K4me3. One of the key genes regulated by E2F1 was found to be the fatty acid elongase ELOVL2, a gene involved in the endogenous synthesis of docosahexaenoic acid (DHA). Finally, we shed light on how the E2F1-ELOVL2 pathway may alter oxidative respiration in the SGA condition by contributing to the maintenance of cellular metabolic homeostasis. PMID:27631473

  16. E2F1 Orchestrates Transcriptomics and Oxidative Metabolism in Wharton's Jelly-Derived Mesenchymal Stem Cells from Growth-Restricted Infants.

    Science.gov (United States)

    Tan, Peck Yean; Chang, Cheng Wei; Duan, Kaibo; Poidinger, Michael; Ng, Kai Lyn; Chong, Yap Seng; Gluckman, Peter D; Stünkel, Walter

    2016-01-01

    Wharton's jelly-derived Mesenchymal Stem Cells (MSCs) isolated from newborns with intrauterine fetal growth restriction were previously shown to exert anabolic features including insulin hypersensitivity. Here, we extend these observations and demonstrate that MSCs from small for gestational age (SGA) individuals have decreased mitochondrial oxygen consumption rates. Comparing normally grown and SGA MSCs using next generation sequencing studies, we measured global transcriptomic and epigenetic profiles and identified E2F1 as an over-expressed transcription factor regulating oxidative metabolism in the SGA group. We further show that E2F1 regulates the differential transcriptome found in SGA derived MSCs and is associated with the activating histone marks H3K27ac and H3K4me3. One of the key genes regulated by E2F1 was found to be the fatty acid elongase ELOVL2, a gene involved in the endogenous synthesis of docosahexaenoic acid (DHA). Finally, we shed light on how the E2F1-ELOVL2 pathway may alter oxidative respiration in the SGA condition by contributing to the maintenance of cellular metabolic homeostasis. PMID:27631473

  17. Material properties in complement activation

    DEFF Research Database (Denmark)

    Moghimi, S. Moein; Andersen, Alina Joukainen; Ahmadvand, Davoud;

    2011-01-01

    -immune performance’ relationship studies in nanomedicine research at many fronts. The interaction between nanomaterials and the complement system is complex and regulated by inter-related factors that include nanoscale size, morphology and surface characteristics. Each of these parameters may affect complement...... activation differently and through different sensing molecules and initiation pathways. The importance of material properties in triggering complement is considered and mechanistic aspects discussed. Mechanistic understanding of complement events could provide rational approaches for improved material design...

  18. Complement component 3 (C3)

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003539.htm Complement component 3 (C3) To use the sharing features on this page, ... be some throbbing. Why the Test is Performed C3 and C4 are the most commonly measured complement components. A complement test may be used to monitor ...

  19. Screening New Drugs for Immunotoxic Potential: II. Assessment of the Effects of Selective and Nonselective COX-2 Inhibitors on Complement Activation, Superoxide Anion Production and Leukocyte Chemotaxis and Migration Through Endothelial Cells.

    Science.gov (United States)

    Furst, Sylvia M; Khan, K Nasir; Komocsar, Wendy J; Fan, Lian; Mennear, John

    2005-04-01

    Results from earlier experiments in our laboratories revealed that both selective and nonselective inhibitors of cyclooxygenase-2 possess little potential for decreasing in vitro phagocytosis by rat macrophages or canine neutrophils and no potential for decreasing in vivo phagocytosis by the intact murine immune system. We now report the results of studies to assess in vitro and ex vivo effects of the drugs on 1) canine complement activation, 2) generation of superoxide anion and hydrogen peroxide (oxidative burst) by canine neutrophils, and 3) leukocytic chemotaxis and transmigration through endothelial cell monolayers. In vitro concentrations of naproxen sodium, SC-236, SC-245, and SC-791 ranging from 0.1 to 10 muM were tested for their abilities to inhibit canine complement-mediated hemolysis of opsonized sheep erythrocytes and to block phorbol myristate acetate-induced oxidative burst in canine neutrophils. Both models responded to known inhibitory agents, leupeptin in the complement activation test and staurosporine in the superoxide anion assay. In contrast, tested nonsteroidal anti-inflammatory drugs produced only trivial changes in complement activation and superoxide anion production. Experiments on plasma and neutrophils isolated from dogs administered an experimental selective COX-2 inhibitor during a 28-day toxicology study revealed no evidence of drug-associated changes in complement activation or formation of superoxide anion. SC-791 reduced chemotaxis of canine leukocytes toward zymosan-activated dog plasma, but not toward leukotriene B(4). None of the other drugs tested significantly affected leukocytic chemotaxis. Ibuprofen, SC-245 and SC-791 but not SC-236, reduced transmigration of canine leukocytes through endothelial cell monolayers. Based on the results of these experiments and our earlier studies we have concluded that, although high (suprapharmacologic) concentrations of the drugs may induce in vitro evidence of apparent immunomodulation of

  20. DNA repair enzyme deficiency and in vitro complementation of the enzyme activity in cell-free extracts from ataxia telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Three ataxia telangiectasia homozygotes, one heterozygote and normal fibroblast strains were compared as to the capacity of their cellular extracts to enhance the priming activity of gamma-irradiated colicin E1 DNA for purified DNA polymerase (EC 2.7.7.7) of Escherichia coli. It was found that homozygotes had substantially lower activity than normal strains, while no difference was detected between the heterozygote and normal strains. In vitro complementation of the activity occurred between extracts of certain strains of homozygotes, allocating them to two complementation groups. (Auth.)

  1. Infections of People with Complement Deficiencies and Patients Who Have Undergone Splenectomy

    OpenAIRE

    Ram, Sanjay; Lewis, Lisa A.; Rice, Peter A.

    2010-01-01

    Summary: The complement system comprises several fluid-phase and membrane-associated proteins. Under physiological conditions, activation of the fluid-phase components of complement is maintained under tight control and complement activation occurs primarily on surfaces recognized as “nonself” in an attempt to minimize damage to bystander host cells. Membrane complement components act to limit complement activation on host cells or to facilitate uptake of antigens or microbes “tagged” with co...

  2. Transcriptomic analysis reveals differential gene expressions for cell growth and functional secondary metabolites in induced autotetraploid of Chinese woad (Isatis indigotica Fort..

    Directory of Open Access Journals (Sweden)

    Yingying Zhou

    Full Text Available The giant organs and enhanced concentrations of secondary metabolites realized by autopolyploidy are attractive for breeding the respective medicinal and agricultural plants and studying the genetic mechanisms. The traditional medicinal plant Chinese woad (Isatis indigotica Fort., 2n = 2x = 14 is now still largely used for the diseases caused by bacteria and viruses in China. In this study, its autopolyploids (3x, 4x were produced and characterized together with the 2x donor for their phenotype and transcriptomic alterations by using high-throughput RNA sequencing. With the increase of genome dosage, the giantism in cells and organs was obvious and the photosynthetic rate was higher. The 4x plants showed predominantly the normal meiotic chromosome pairing (bivalents and quadrivalents and equal segregation and then produced the majority of 4x progeny. The total 70136 All-unigenes were de novo assembled, and 56,482 (80.53% unigenes were annotated based on BLASTx searches of the public databases. From pair-wise comparisons between transcriptomic data of 2x, 3x, 4x plants, 1856 (2.65%(2x vs 4x, 693(0.98%(2x vs 3x, 1045(1.48%(3x vs 4x unigenes were detected to differentially expressed genes (DEGs, including both up- and down-regulated ones. These DEGs were mainly involved in cell growth (synthesis of expansin and pectin, cell wall organization, secondary metabolite biosynthesis, response to stress and photosynthetic pathways. The up-regulation of some DEGs for metabolic pathways of functional compounds in the induced autotetraploids substantiates the promising new type of this medicinal plant with the increased biomass and targeted metabolites.

  3. CLL Exosomes Modulate the Transcriptome and Behaviour of Recipient Stromal Cells and Are Selectively Enriched in miR-202-3p.

    Directory of Open Access Journals (Sweden)

    Mosavar Farahani

    Full Text Available Bi-directional communication with the microenvironment is essential for homing and survival of cancer cells with implications for disease biology and behaviour. In chronic lymphocytic leukemia (CLL, the role of the microenvironment on malignant cell behaviour is well described. However, how CLL cells engage and recruit nurturing cells is poorly characterised. Here we demonstrate that CLL cells secrete exosomes that are nanovesicles originating from the fusion of multivesicular bodies with the plasma membrane, to shuttle proteins, lipids, microRNAs (miR and mRNAs to recipient cells. We characterise and confirm the size (50-100 nm and identity of the CLL-derived exosomes by Electron microscopy (EM, Atomic force microscopy (AFM, flow cytometry and western blotting using both exosome- and CLL-specific markers. Incubation of CLL-exosomes, derived either from cell culture supernatants or from patient plasma, with human stromal cells shows that they are readily taken up into endosomes, and induce expression of genes such as c-fos and ATM as well as enhance proliferation of recipient HS-5 cells. Furthermore, we show that CLL exosomes encapsulate abundant small RNAs and are enriched in certain miRs and specifically hsa-miR-202-3p. We suggest that such specific packaging of miR-202-3p into exosomes results in enhanced expression of 'suppressor of fused' (Sufu, a Hedgehog (Hh signalling intermediate, in the parental CLL cells. Thus, our data show that CLL cells secrete exosomes that alter the transcriptome and behaviour of recipient cells. Such communication with microenvironment is likely to have an important role in CLL disease biology.

  4. Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for Ca(2+)i-independent excitation-transcription coupling.

    Science.gov (United States)

    Koltsova, Svetlana V; Trushina, Yulia; Haloui, Mounsif; Akimova, Olga A; Tremblay, Johanne; Hamet, Pavel; Orlov, Sergei N

    2012-01-01

    Stimulus-dependent elevation of intracellular Ca(2+) ([Ca(2+)](i)) affects the expression of numerous genes--a phenomenon known as excitation-transcription coupling. Recently, we found that increases in [Na(+)](i) trigger c-Fos expression via a novel Ca(2+) (i)-independent pathway. In the present study, we identified ubiquitous and tissue-specific [Na(+)](i)/[K(+)](i)-sensitive transcriptomes by comparative analysis of differentially expressed genes in vascular smooth muscle cells from rat aorta (RVSMC), the human adenocarcinoma cell line HeLa, and human umbilical vein endothelial cells (HUVEC). To augment [Na(+)](i) and reduce [K(+)](i), cells were treated for 3 hrs with the Na(+),K(+)-ATPase inhibitor ouabain or placed for the same time in the K(+)-free medium. Employing Affymetrix-based technology, we detected changes in expression levels of 684, 737 and 1839 transcripts in HeLa, HUVEC and RVSMC, respectively, that were highly correlated between two treatments (p0.62). Among these Na(+) (i)/K(+) (i)-sensitive genes, 80 transcripts were common for all three types of cells. To establish if changes in gene expression are dependent on increases in [Ca(2+)](i), we performed identical experiments in Ca(2+)-free media supplemented with extracellular and intracellular Ca(2+) chelators. Surprisingly, this procedure elevated rather than decreased the number of ubiquitous and cell-type specific Na(+) (i)/K(+) (i)-sensitive genes. Among the ubiquitous Na(+) (i)/K(+) (i)-sensitive genes whose expression was regulated independently of the presence of Ca(2+) chelators by more than 3-fold, we discovered several transcription factors (Fos, Jun, Hes1, Nfkbia), interleukin-6, protein phosphatase 1 regulatory subunit, dual specificity phosphatase (Dusp8), prostaglandin-endoperoxide synthase 2, cyclin L1, whereas expression of metallopeptidase Adamts1, adrenomedulin, Dups1, Dusp10 and Dusp16 was detected exclusively in Ca(2+)-depleted cells. Overall, our findings indicate that Ca(2

  5. Low dose irradiation of thyroid cells reveals a unique transcriptomic and epigenetic signature in RET/PTC-positive cells

    Energy Technology Data Exchange (ETDEWEB)

    Abou-El-Ardat, Khalil, E-mail: kabouela@sckcen.be [Radiobiology Unit, Molecular and Cellular Biology, GKD Building, Studiecentrum voor Kernenergie - Centre d' Etude de l' Energie Nucleaire (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Universiteit Gent, 9000 Ghent (Belgium); Monsieurs, Pieter [Radiobiology Unit, Molecular and Cellular Biology, GKD Building, Studiecentrum voor Kernenergie - Centre d' Etude de l' Energie Nucleaire (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); Anastasov, Natasa; Atkinson, Mike [Department of Radiation Sciences, Helmholtz Zentrum Muenchen, Munich (Germany); Derradji, Hanane [Radiobiology Unit, Molecular and Cellular Biology, GKD Building, Studiecentrum voor Kernenergie - Centre d' Etude de l' Energie Nucleaire (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); De Meyer, Tim [Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Universiteit Gent, 9000 Ghent (Belgium); Department of Applied Mathematics, Biometrics and Process Control, Faculty of Bioscience Engineering, Universiteit Gent, 9000 Ghent (Belgium); Bekaert, Sofie [Clinical Research Center, Faculty for Medicine and Health Sciences, Universiteit Gent, 185 De Pintelaan, 9000 Ghent (Belgium); Van Criekinge, Wim [Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Universiteit Gent, 9000 Ghent (Belgium); and others

    2012-03-01

    The high doses of radiation received in the wake of the Chernobyl incident and the atomic bombing of Hiroshima and Nagasaki have been linked to the increased appearance of thyroid cancer in the children living in the vicinity of the site. However, the data gathered on the effect of low doses of radiation on the thyroid remain limited. We have examined the genome wide transcriptional response of a culture of TPC-1 human cell line of papillary thyroid carcinoma origin with a RET/PTC1 translocation to various doses (0.0625, 0.5, and 4 Gy) of X-rays and compared it to response of thyroids with a RET/PTC3 translocation and against wild-type mouse thyroids irradiated with the same doses using Affymetrix microarrays. We have found considerable overlap at a high dose of 4 Gy in both RET/PTC-positive systems but no common genes at 62.5 mGy. In addition, the response of RET/PTC-positive system at all doses was distinct from the response of wild-type thyroids with both systems signaling down different pathways. Analysis of the response of microRNAs in TPC-1 cells revealed a radiation-responsive signature of microRNAs in addition to dose-responsive microRNAs. Our results point to the fact that a low dose of X-rays seems to have a significant proliferative effect on normal thyroids. This observation should be studied further as opposed to its effect on RET/PTC-positive thyroids which was subtle, anti-proliferative and system-dependent.

  6. Low dose irradiation of thyroid cells reveals a unique transcriptomic and epigenetic signature in RET/PTC-positive cells.

    Science.gov (United States)

    Abou-El-Ardat, Khalil; Monsieurs, Pieter; Anastasov, Nataša; Atkinson, Mike; Derradji, Hanane; De Meyer, Tim; Bekaert, Sofie; Van Criekinge, Wim; Baatout, Sarah

    2012-03-01

    The high doses of radiation received in the wake of the Chernobyl incident and the atomic bombing of Hiroshima and Nagasaki have been linked to the increased appearance of thyroid cancer in the children living in the vicinity of the site. However, the data gathered on the effect of low doses of radiation on the thyroid remain limited. We have examined the genome wide transcriptional response of a culture of TPC-1 human cell line of papillary thyroid carcinoma origin with a RET/PTC1 translocation to various doses (0.0625, 0.5, and 4Gy) of X-rays and compared it to response of thyroids with a RET/PTC3 translocation and against wild-type mouse thyroids irradiated with the same doses using Affymetrix microarrays. We have found considerable overlap at a high dose of 4Gy in both RET/PTC-positive systems but no common genes at 62.5mGy. In addition, the response of RET/PTC-positive system at all doses was distinct from the response of wild-type thyroids with both systems signaling down different pathways. Analysis of the response of microRNAs in TPC-1 cells revealed a radiation-responsive signature of microRNAs in addition to dose-responsive microRNAs. Our results point to the fact that a low dose of X-rays seems to have a significant proliferative effect on normal thyroids. This observation should be studied further as opposed to its effect on RET/PTC-positive thyroids which was subtle, anti-proliferative and system-dependent. PMID:22027090

  7. The role of complement in the acquired immune response

    DEFF Research Database (Denmark)

    Nielsen, C H; Fischer, E M; Leslie, R G

    2000-01-01

    Studies over the past three decades have clearly established a central role for complement in the promotion of a humoral immune response. The primary function of complement, in this regard, is to opsonize antigen or immune complexes for uptake by complement receptor type 2 (CR2, CD21) expressed...... on B cells, follicular dendritic cells (FDC) and some T cells. A variety of mechanisms appear to be involved in complement-mediated promotion of the humoral response. These include: enhancement of antigen (Ag) uptake and processing by both Ag-specific and non-specific B cells for presentation...... participate in intercellular bridging. Finally, current studies suggest that CR2 may also play a role in the determination of B-cell tolerance towards self-antigens and thereby hold the key to the previously observed correlation between deficiencies of the early complement components and autoimmune disease....

  8. Ancient origins: complement in invertebrates

    Directory of Open Access Journals (Sweden)

    SV Nair

    2005-08-01

    Full Text Available Proteins with obvious similarities to mammalian complement are widely distributed in the animal kingdom.In the vertebrate lineage, deuterostomes like sea urchins and tunicates express proteins that arehomologues of C3, the central component of the vertebrate complement cascade. Their genomes alsoencode molecules resembling factor B from the “alternative” complement activation pathway; andtunicates have collagenous lectins of the type that can activate complement in the absence of antibodies.This suggests that the core components of the complement system evolved before antibodies, which firstappear in jawed fish.

  9. Rhesus and Human Cytomegalovirus Glycoprotein L Are Required for Infection and Cell-to-Cell Spread of Virus but Cannot Complement Each Other▿

    OpenAIRE

    Bowman, J. Jason; Lacayo, Juan C.; Burbelo, Peter; Fischer, Elizabeth R.; Cohen, Jeffrey I.

    2010-01-01

    Rhesus cytomegalovirus (RhCMV), the homolog of human cytomegalovirus (HCMV), serves as a model for understanding the pathogenesis of HCMV and for developing candidate vaccines. In order to develop a replication-defective virus as a vaccine candidate, we constructed RhCMV with glycoprotein L (gL) deleted. RhCMV gL was essential for viral replication, and virus with gL deleted could only replicate in cells expressing RhCMV gL. Noncomplementing cells infected with RhCMV with gL deleted released ...

  10. Human immune response to pneumococcal polysaccharides : Complement-mediated localization preferentially on CD21-positive splenic marginal zone B cells and follicular dendritic cells

    NARCIS (Netherlands)

    Peset Llopis, MJ; Harms, Geert; Hardonk, MJ; Timens, W

    1996-01-01

    A functionally intact spleen with a marginal zone, containing B cells with high density of surface C3d-receptors (CD21), is essential for the ability to induce a primary immune response to thymus-independent type 2 (TI-2) antigens. Main representatives of natural TI-2 antigens are capsular pneumococ

  11. An integrated study of natural hydroxyapatite-induced osteogenic differentiation of mesenchymal stem cells using transcriptomics, proteomics and microRNA analyses

    International Nuclear Information System (INIS)

    This work combined transcriptomics, proteomics, and microRNA (miRNA) analyses to elucidate the mechanism of natural hydroxyapatite (NHA)-induced osteogenic differentiation of mesenchymal stem cells (MSCs). First, NHA powder was obtained from pig bones and fabricated into disc-shaped samples. Subsequently, the proliferation and osteogenic differentiation of MSCs cultured on NHA were investigated. Then, proteomics was employed to detect the protein expression profiles of MSCs cultured on NHA, and the effect of NHA on MSCs was analyzed through an integrated pathway analysis (including proteomics and previous transcriptomics data) in which specific NHA-induced differentiation pathways were analyzed. The pathway nodes with expression data at both the mRNA and protein levels (mRNA–protein pairs) were filtered in differentiation-related pathways. miRNAs corresponding to these target mRNA–protein pairs were predicted, screened and tested, and the regulatory effects of miRNAs on mRNA–protein pairs were analyzed. Finally, the NHA-induced osteogenic pathways were verified. The results of an MTT assay and alkaline phosphatase (ALP) staining showed that the cell proliferation rate decreased and the osteogenic performance improved in the presence of NHA. By integrating transcriptomics and proteomics, the genes and proteins involved in 89 pathways were shown to be differentially expressed. Among them, 5 differentiation-associated pathways, in which 9 miRNAs and 8 regulated-target mRNA–protein zby inhibiting the target mRNA–protein pair HSPA8 in the MAPK signaling pathway, and miR-26a and miR-26b might inhibit adipogenic differentiation by repressing the target mRNA–protein pair HMGA1 in the adipogenesis pathway. A verification experiment for the osteogenic pathway indicated that the ERK1/2 or JNK MAPK pathways might play an important role in NHA-induced osteogenic differentiation. In conclusion, NHA affected MSCs at both the transcriptional and translational levels

  12. Developmental transcriptome of Aplysia californica'

    KAUST Repository

    Heyland, Andreas

    2010-12-06

    Genome-wide transcriptional changes in development provide important insight into mechanisms underlying growth, differentiation, and patterning. However, such large-scale developmental studies have been limited to a few representatives of Ecdysozoans and Chordates. Here, we characterize transcriptomes of embryonic, larval, and metamorphic development in the marine mollusc Aplysia californica and reveal novel molecular components associated with life history transitions. Specifically, we identify more than 20 signal peptides, putative hormones, and transcription factors in association with early development and metamorphic stages-many of which seem to be evolutionarily conserved elements of signal transduction pathways. We also characterize genes related to biomineralization-a critical process of molluscan development. In summary, our experiment provides the first large-scale survey of gene expression in mollusc development, and complements previous studies on the regulatory mechanisms underlying body plan patterning and the formation of larval and juvenile structures. This study serves as a resource for further functional annotation of transcripts and genes in Aplysia, specifically and molluscs in general. A comparison of the Aplysia developmental transcriptome with similar studies in the zebra fish Danio rerio, the fruit fly Drosophila melanogaster, the nematode Caenorhabditis elegans, and other studies on molluscs suggests an overall highly divergent pattern of gene regulatory mechanisms that are likely a consequence of the different developmental modes of these organisms. © 2010 Wiley-Liss, Inc., A Wiley Company.

  13. Role of complement and complement regulatory proteins in the complications of diabetes.

    Science.gov (United States)

    Ghosh, Pamela; Sahoo, Rupam; Vaidya, Anand; Chorev, Michael; Halperin, Jose A

    2015-06-01

    It is well established that the organ damage that complicates human diabetes is caused by prolonged hyperglycemia, but the cellular and molecular mechanisms by which high levels of glucose cause tissue damage in humans are still not fully understood. The prevalent hypothesis explaining the mechanisms that may underlie the pathogenesis of diabetes complications includes overproduction of reactive oxygen species, increased flux through the polyol pathway, overactivity of the hexosamine pathway causing intracellular formation of advanced glycation end products, and activation of protein kinase C isoforms. In addition, experimental and clinical evidence reported in past decades supports a strong link between the complement system, complement regulatory proteins, and the pathogenesis of diabetes complications. In this article, we summarize the body of evidence that supports a role for the complement system and complement regulatory proteins in the pathogenesis of diabetic vascular complications, with specific emphasis on the role of the membrane attack complex (MAC) and of CD59, an extracellular cell membrane-anchored inhibitor of MAC formation that is inactivated by nonenzymatic glycation. We discuss a pathogenic model of human diabetic complications in which a combination of CD59 inactivation by glycation and hyperglycemia-induced complement activation increases MAC deposition, activates pathways of intracellular signaling, and induces the release of proinflammatory, prothrombotic cytokines and growth factors. Combined, complement-dependent and complement-independent mechanisms induced by high glucose promote inflammation, proliferation, and thrombosis as characteristically seen in the target organs of diabetes complications.

  14. Complementing Gender Analysis Methods.

    Science.gov (United States)

    Kumar, Anant

    2016-01-01

    The existing gender analysis frameworks start with a premise that men and women are equal and should be treated equally. These frameworks give emphasis on equal distribution of resources between men and women and believe that this will bring equality which is not always true. Despite equal distribution of resources, women tend to suffer and experience discrimination in many areas of their lives such as the power to control resources within social relationships, and the need for emotional security and reproductive rights within interpersonal relationships. These frameworks believe that patriarchy as an institution plays an important role in women's oppression, exploitation, and it is a barrier in their empowerment and rights. Thus, some think that by ensuring equal distribution of resources and empowering women economically, institutions like patriarchy can be challenged. These frameworks are based on proposed equality principle which puts men and women in competing roles. Thus, the real equality will never be achieved. Contrary to the existing gender analysis frameworks, the Complementing Gender Analysis framework proposed by the author provides a new approach toward gender analysis which not only recognizes the role of economic empowerment and equal distribution of resources but suggests to incorporate the concept and role of social capital, equity, and doing gender in gender analysis which is based on perceived equity principle, putting men and women in complementing roles that may lead to equality. In this article the author reviews the mainstream gender theories in development from the viewpoint of the complementary roles of gender. This alternative view is argued based on existing literature and an anecdote of observations made by the author. While criticizing the equality theory, the author offers equity theory in resolving the gender conflict by using the concept of social and psychological capital. PMID:25941756

  15. Complementing Gender Analysis Methods.

    Science.gov (United States)

    Kumar, Anant

    2016-01-01

    The existing gender analysis frameworks start with a premise that men and women are equal and should be treated equally. These frameworks give emphasis on equal distribution of resources between men and women and believe that this will bring equality which is not always true. Despite equal distribution of resources, women tend to suffer and experience discrimination in many areas of their lives such as the power to control resources within social relationships, and the need for emotional security and reproductive rights within interpersonal relationships. These frameworks believe that patriarchy as an institution plays an important role in women's oppression, exploitation, and it is a barrier in their empowerment and rights. Thus, some think that by ensuring equal distribution of resources and empowering women economically, institutions like patriarchy can be challenged. These frameworks are based on proposed equality principle which puts men and women in competing roles. Thus, the real equality will never be achieved. Contrary to the existing gender analysis frameworks, the Complementing Gender Analysis framework proposed by the author provides a new approach toward gender analysis which not only recognizes the role of economic empowerment and equal distribution of resources but suggests to incorporate the concept and role of social capital, equity, and doing gender in gender analysis which is based on perceived equity principle, putting men and women in complementing roles that may lead to equality. In this article the author reviews the mainstream gender theories in development from the viewpoint of the complementary roles of gender. This alternative view is argued based on existing literature and an anecdote of observations made by the author. While criticizing the equality theory, the author offers equity theory in resolving the gender conflict by using the concept of social and psychological capital.

  16. Integrative transcriptomics-based identification of cryptic drivers of taxol-resistance genes in ovarian carcinoma cells: Analysis of the androgen receptor.

    Science.gov (United States)

    Sun, Nian-Kang; Huang, Shang-Lang; Lu, Hsing-Pang; Chang, Ting-Chang; Chao, Chuck C-K

    2015-09-29

    A systematic analysis of the genes involved in taxol resistance (txr) has never been performed. In the present study, we created txr ovarian carcinoma cell lines to identify the genes involved in chemoresistance. Transcriptome analysis revealed 1,194 overexpressed genes in txr cells. Among the upregulated genes, more than 12 cryptic transcription factors were identified using MetaCore analysis (including AR, C/EBPβ, ERα, HNF4α, c-Jun/AP-1, c-Myc, and SP-1). Notably, individual silencing of these transcription factors (except HNF4`)sensitized txr cells to taxol. The androgen receptor (AR) and its target genes were selected for further analysis. Silencing AR using RNA interference produced a 3-fold sensitization to taxol in txr cells, a response similar to that produced by silencing abcb1. AR silencing also downregulated the expression of prominent txr gene candidates (including abcb1, abcb6, abcg2, bmp5, fat3, fgfr2, h1f0, srcrb4d, and tmprss15). In contrast, AR activation using the agonist DHT upregulated expression of the target genes. Individually silencing seven out of nine (78%) AR-regulated txr genes sensitized txr cells to taxol. Inhibition of AKT and JNK cellular kinases using chemical inhibitors caused a dramatic suppression of AR expression. These results indicate that the AR represents a critical driver of gene expression involved in txr.

  17. Transcriptomic analysis identified up-regulation of a solute carrier transporter and UDP glucuronosyltransferases in dogs with aggressive cutaneous mast cell tumours.

    Science.gov (United States)

    Giantin, Mery; Baratto, Chiara; Marconato, Laura; Vascellari, Marta; Mutinelli, Franco; Dacasto, Mauro; Granato, Anna

    2016-06-01

    Gene expression analyses have been recently used in cancer research to identify genes associated with tumorigenesis and potential prognostic markers or therapeutic targets. In the present study, the transcriptome of dogs that had died because of mast cell tumours (MCTs) was characterised to identify a fingerprint having significant influence on prognosis determination and treatment selection. A dataset (GSE50433) obtained using a commercial canine DNA microarray platform was used. The transcriptome of seven biopsies obtained from dogs with histologically confirmed, surgically removed MCTs, treated with chemotherapy, and dead for MCT-related causes, was compared with the transcriptional portrait of 40 samples obtained from dogs with histologically confirmed, surgically removed MCTs and that were still alive at the end of the follow-up period. Among the differentially expressed genes (DEGs), eight transcripts were validated by quantitative real time PCR and their mRNA levels were measured in a cohort of 22 additional MCTs. Statistical analysis identified 375 DEGs (fold change 2, false discovery rate 5%). The functional annotation analysis indicated that the DEGs were associated with drug metabolism and cell cycle pathways. Particularly, members of solute carrier transporter (SLC) and UDP glucuronosyltransferase (UGT) gene families were identified as dysregulated. Principal component analysis (PCA) of the 22 additional MCTs identified the separate cluster dogs dead for MCT-related causes. SLCs and UGTs have been recently recognised in human cancer as important key factors in tumour progression and chemo-resistance. An in-depth analysis of their roles in aggressive canine MCT is warranted in future studies. PMID:27256023

  18. Inhibition of Complement Retards Ankylosing Spondylitis Progression

    Science.gov (United States)

    Yang, Chaoqun; Ding, Peipei; Wang, Qingkai; Zhang, Long; Zhang, Xin; Zhao, Jianquan; Xu, Enjie; Wang, Na; Chen, Jianfeng; Yang, Guang; Hu, Weiguo; Zhou, Xuhui

    2016-01-01

    Ankylosing spondylitis (AS) is a chronic axial spondyloarthritis (SpA) resulting in back pain and progressive spinal ankyloses. Currently, there are no effective therapeutics targeting AS largely due to elusive pathogenesis mechanisms, even as potential candidates such as HLA-B27 autoantigen have been identified. Herein, we employed a proteoglycan (PG)-induced AS mouse model together with clinical specimens, and found that the complement system was substantially activated in the spinal bone marrow, accompanied by a remarkable proportion alteration of neutrophils and macrophage in bone marrow and spleen, and by the significant increase of TGF-β1 in serum. The combined treatment with a bacteria-derived complement inhibitor Efb-C (C-terminal of extracellular fibrinogen-binding protein of Staphylococcus aureus) remarkably retarded the progression of mouse AS by reducing osteoblast differentiation. Furthermore, we demonstrated that two important modulators involved in AS disease, TGF-β1 and RANKL, were elevated upon in vitro complement attack in osteoblast and/or osteoclast cells. These findings further unravel that complement activation is closely related with the pathogenesis of AS, and suggest that complement inhibition may hold great potential for AS therapy. PMID:27698377

  19. Complementation analysis of ataxia-telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, N.G.; Painter, R.B.; Paterson, M.C.; Kidson, C.; Inoue, T.

    1985-01-01

    In a number of laboratories genetic analysis of ataxia-telangiectasia (AT) has been performed by studying the expression of the AT phenotype in fused somatic cells or mixtures of cell-free extracts from different patients. Complementation of the defective response to ionizing radiation was observed frequently, considering four different parameters for radiosensitivity in AT. The combined results from studies on cultured fibroblasts or lymphoblastoid cells from 17 unrelated families revealed the presence of at least four and possibly nine complementation groups. These findings suggest that there is an extensive genetic heterogeneity in AT. More extensive studies are needed for an integration of these data and to provide a set of genetically characterized cell strains for future research of the AT genetic defect.

  20. Integrated transcriptome and binding sites analysis implicates E2F in the regulation of self-renewal in human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hock Chuan Yeo

    Full Text Available Rapid cellular growth and multiplication, limited replicative senescence, calibrated sensitivity to apoptosis, and a capacity to differentiate into almost any cell type are major properties that underline the self-renewal capabilities of human pluripotent stem cells (hPSCs. We developed an integrated bioinformatics pipeline to understand the gene regulation and functions involved in maintaining such self-renewal properties of hPSCs compared to matched fibroblasts. An initial genome-wide screening of transcription factor activity using in silico binding-site and gene expression microarray data newly identified E2F as one of major candidate factors, revealing their significant regulation of the transcriptome. This is underscored by an elevated level of its transcription factor activity and expression in all tested pluripotent stem cell lines. Subsequent analysis of functional gene groups demonstrated the importance of the TFs to self-renewal in the pluripotency-coupled context; E2F directly targets the global signaling (e.g. self-renewal associated WNT and FGF pathways and metabolic network (e.g. energy generation pathways, molecular transports and fatty acid metabolism to promote its canonical functions that are driving the self-renewal of hPSCs. In addition, we proposed a core self-renewal module of regulatory interplay between E2F and, WNT and FGF pathways in these cells. Thus, we conclude that E2F plays a significant role in influencing the self-renewal capabilities of hPSCs.

  1. The Foot-and-Mouth Disease Virus cis-Acting Replication Element (cre) Can Be Complemented in trans within Infected Cells

    OpenAIRE

    Tiley, Laurence; King, Andrew M. Q.; Belsham, Graham J.

    2003-01-01

    A temperature-sensitive (ts) mutation was identified within the 5′-untranslated region of foot-and-mouth disease virus (FMDV) RNA. The mutation destabilizes a stem-loop structure recently identified as a cis-acting replication element (cre). Genetic analyses indicated that the ts defect in virus replication could be complemented. Thus, the FMDV cre can function in trans. It is suggested that the cre be renamed a 3B-uridylylation site (bus).

  2. Complement system in lung disease.

    Science.gov (United States)

    Pandya, Pankita H; Wilkes, David S

    2014-10-01

    In addition to its established contribution to innate immunity, recent studies have suggested novel roles for the complement system in the development of various lung diseases. Several studies have demonstrated that complement may serve as a key link between innate and adaptive immunity in a variety of pulmonary conditions. However, the specific contributions of complement to lung diseases based on innate and adaptive immunity are just beginning to emerge. Elucidating the role of complement-mediated immune regulation in these diseases will help to identify new targets for therapeutic interventions.

  3. The Expression Profile of Complement Components in Podocytes

    Directory of Open Access Journals (Sweden)

    Xuejuan Li

    2016-03-01

    Full Text Available Podocytes are critical for maintaining the glomerular filtration barrier and are injured in many renal diseases, especially proteinuric kidney diseases. Recently, reports suggested that podocytes are among the renal cells that synthesize complement components that mediate glomerular diseases. Nevertheless, the profile and extent of complement component expression in podocytes remain unclear. This study examined the expression profile of complement in podocytes under physiological conditions and in abnormal podocytes induced by multiple stimuli. In total, 23/32 complement component components were detected in podocyte by conventional RT-PCR. Both primary cultured podocytes and immortalized podocytes expressed the complement factors C1q, C1r, C2, C3, C7, MASP, CFI, DAF, CD59, C4bp, CD46, Protein S, CR2, C1qR, C3aR, C5aR, and Crry (17/32, whereas C4, CFB, CFD, C5, C6, C8, C9, MBL1, and MBL2 (9/32 complement factors were not expressed. C3, Crry, and C1q-binding protein were detected by tandem mass spectrometry. Podocyte complement gene expression was affected by several factors (puromycin aminonucleoside (PAN, angiotensin II (Ang II, interleukin-6 (IL-6, and transforming growth factor-β (TGF-β. Representative complement components were detected using fluorescence confocal microscopy. In conclusion, primary podocytes express various complement components at the mRNA and protein levels. The complement gene expressions were affected by several podocyte injury factors.

  4. The Expression Profile of Complement Components in Podocytes.

    Science.gov (United States)

    Li, Xuejuan; Ding, Fangrui; Zhang, Xiaoyan; Li, Baihong; Ding, Jie

    2016-01-01

    Podocytes are critical for maintaining the glomerular filtration barrier and are injured in many renal diseases, especially proteinuric kidney diseases. Recently, reports suggested that podocytes are among the renal cells that synthesize complement components that mediate glomerular diseases. Nevertheless, the profile and extent of complement component expression in podocytes remain unclear. This study examined the expression profile of complement in podocytes under physiological conditions and in abnormal podocytes induced by multiple stimuli. In total, 23/32 complement component components were detected in podocyte by conventional RT-PCR. Both primary cultured podocytes and immortalized podocytes expressed the complement factors C1q, C1r, C2, C3, C7, MASP, CFI, DAF, CD59, C4bp, CD46, Protein S, CR2, C1qR, C3aR, C5aR, and Crry (17/32), whereas C4, CFB, CFD, C5, C6, C8, C9, MBL1, and MBL2 (9/32) complement factors were not expressed. C3, Crry, and C1q-binding protein were detected by tandem mass spectrometry. Podocyte complement gene expression was affected by several factors (puromycin aminonucleoside (PAN), angiotensin II (Ang II), interleukin-6 (IL-6), and transforming growth factor-β (TGF-β)). Representative complement components were detected using fluorescence confocal microscopy. In conclusion, primary podocytes express various complement components at the mRNA and protein levels. The complement gene expressions were affected by several podocyte injury factors. PMID:27043537

  5. The role of complement in the acquired immune response

    DEFF Research Database (Denmark)

    Nielsen, C H; Fischer, E M; Leslie, R G

    2000-01-01

    Studies over the past three decades have clearly established a central role for complement in the promotion of a humoral immune response. The primary function of complement, in this regard, is to opsonize antigen or immune complexes for uptake by complement receptor type 2 (CR2, CD21) expressed...... participate in intercellular bridging. Finally, current studies suggest that CR2 may also play a role in the determination of B-cell tolerance towards self-antigens and thereby hold the key to the previously observed correlation between deficiencies of the early complement components and autoimmune disease....

  6. A Sample-to-Sequence Protocol for Genus Targeted Transcriptomic Profiling: Application to Marine Synechococcus

    Science.gov (United States)

    Pitt, Frances D.; Millard, Andrew; Ostrowski, Martin; Dervish, Suat; Mazard, Sophie; Paulsen, Ian T.; Zubkov, Mikhail V.; Scanlan, David J.

    2016-01-01

    Recent studies using whole community metagenomic and metatranscriptomic approaches are revealing important new insights into the functional potential and activity of natural marine microbial communities. Here, we complement these approaches by describing a complete ocean sample-to-sequence protocol, specifically designed to target a single bacterial genus for purposes of both DNA and RNA profiling using fluorescence activated cell sorting (FACS). The importance of defining and understanding the effects of a sampling protocol are critical if we are to gain meaningful data from environmental surveys. Rigorous pipeline trials with a cultured isolate, Synechococcus sp. BL107 demonstrate that water filtration has a well-defined but limited impact on the transcriptomic profile of this organism, whilst sample storage and multiple rounds of cell sorting have almost no effect on the resulting RNA sequence profile. Attractively, the means to replicate the sampling strategy is within the budget and expertise of most researchers.

  7. Integrative investigation of metabolic and transcriptomic data

    Directory of Open Access Journals (Sweden)

    Önsan Z İlsen

    2006-04-01

    Full Text Available Abstract Background New analysis methods are being developed to integrate data from transcriptome, proteome, interactome, metabolome, and other investigative approaches. At the same time, existing methods are being modified to serve the objectives of systems biology and permit the interpretation of the huge datasets currently being generated by high-throughput methods. Results Transcriptomic and metabolic data from chemostat fermentors were collected with the aim of investigating the relationship between these two data sets. The variation in transcriptome data in response to three physiological or genetic perturbations (medium composition, growth rate, and specific gene deletions was investigated using linear modelling, and open reading-frames (ORFs whose expression changed significantly in response to these perturbations were identified. Assuming that the metabolic profile is a function of the transcriptome profile, expression levels of the different ORFs were used to model the metabolic variables via Partial Least Squares (Projection to Latent Structures – PLS using PLS toolbox in Matlab. Conclusion The experimental design allowed the analyses to discriminate between the effects which the growth medium, dilution rate, and the deletion of specific genes had on the transcriptome and metabolite profiles. Metabolite data were modelled as a function of the transcriptome to determine their congruence. The genes that are involved in central carbon metabolism of yeast cells were found to be the ORFs with the most significant contribution to the model.

  8. Transcriptomic analysis of persistent infection with foot-and-mouth disease virus in cattle suggests impairment of cell-mediated immunity in the nasopharynx

    Science.gov (United States)

    In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV) infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vac...

  9. Web services for transcriptomics

    NARCIS (Netherlands)

    Neerincx, P.

    2009-01-01

    Transcriptomics is part of a family of disciplines focussing on high throughput molecular biology experiments. In the case of transcriptomics, scientists study the expression of genes resulting in transcripts. These transcripts can either perform a biological function themselves or function as messe

  10. Complementing the sugar code: role of GAGs and sialic acid in complement regulation

    Directory of Open Access Journals (Sweden)

    Alex eLangford-Smith

    2015-02-01

    Full Text Available Sugar molecules play a vital role on both microbial and mammalian cells, where they are involved in cellular communication, govern microbial virulence and modulate host immunity and inflammatory responses. The complement cascade, as part of a host’s innate immune system, is a potent weapon against invading bacteria but has to be tightly regulated to prevent inappropriate attack and damage to host tissues. A number of complement regulators, such as factor H and properdin, interact with sugar molecules, such as glycosaminoglycans and sialic acid, on host and pathogen membranes and direct the appropriate complement response by either promoting the binding of complement activators or inhibitors. The binding of these complement regulators to sugar molecules can vary from location to location, due to their different specificities and because distinct structural and functional subpopulations of sugars are found in different human organs, such as the brain, kidney and eye. This review will cover recent studies that have provided important new insights into the role of glycosaminoglycans and sialic acid in complement regulation and how sugar recognition may be compromised in disease

  11. Complement receptor expression and activation of the complement cascade on B lymphocytes from patients with systemic lupus erythematosus (SLE)

    DEFF Research Database (Denmark)

    Marquart, H V; Svendsen, A; Rasmussen, J M;

    1995-01-01

    It has previously been reported that the expression of the complement receptors, CR1 on erythrocytes and blood leucocytes and CR2 on B cells, is reduced in patients with SLE, and that the reduced expression of CR1 on erythrocytes is related to disease activity. We have earlier demonstrated...... that normal B cells are capable of activating the alternative pathway (AP) of complement in a CR2-dependent fashion. In this study we have investigated whether disturbances in this activity may be related to the altered phenotype of SLE B cells. Flow cytometry was used to measure expression of complement...... activation by B cells in homologous serum. Finally, we demonstrated an inverse relationship between SLE disease activity index (SLEDAI) and the expression of complement receptor 2 (CR2) on SLE B cells. Thus, determination of CR2 on B cells may emerge as an additional laboratory tool in the assessment of SLE...

  12. Complement and membrane-bound complement regulatory proteins as biomarkers and therapeutic targets for autoimmune inflammatory disorders, RA and SLE.

    Science.gov (United States)

    Das, Nibhriti

    2015-11-01

    Complement system is a major effecter system of the innate immunity that bridges with adaptive immunity. The system consists of about 40 humoral and cell surface proteins that include zymogens, receptors and regulators. The zymogens get activated in a cascade fashion by antigen-antibody complex, antigen alone or by polymannans, respectively, by the classical, alternative and mannose binding lectin (MBL) pathways. The ongoing research on complement regulators and complement receptors suggest key role of these proteins in the initiation, regulation and effecter mechanisms of the innate and adaptive immunity. Although, the complement system provides the first line of defence against the invading pathogens, its aberrant uncontrolled activation causes extensive self tissue injury. A large number of humoral and cell surface complement regulatory protein keep the system well-regulated in healthy individuals. Complement profiling had brought important information on the pathophysiology of several infectious and chronic inflammatory disorders. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases that affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This brief review discusses on the complement system, its functions and its importance as biomarkers and therapeutic targets for autoimmune diseases with focus on SLE and RA.

  13. Novel Evasion Mechanisms of the Classical Complement Pathway.

    Science.gov (United States)

    Garcia, Brandon L; Zwarthoff, Seline A; Rooijakkers, Suzan H M; Geisbrecht, Brian V

    2016-09-15

    Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules.

  14. Novel Evasion Mechanisms of the Classical Complement Pathway.

    Science.gov (United States)

    Garcia, Brandon L; Zwarthoff, Seline A; Rooijakkers, Suzan H M; Geisbrecht, Brian V

    2016-09-15

    Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules. PMID:27591336

  15. Different impact of excision repair cross-complementation group 1 on survival in male and female patients with inoperable non-small-cell lung cancer treated with carboplatin and gemcitabine

    DEFF Research Database (Denmark)

    Holm, Bente; Mellemgaard, Anders; Skov, Torsten;

    2009-01-01

    PURPOSE: The excision repair cross-complementation group 1 (ERCC1) status was assessed in patients receiving carboplatin and gemcitabine for inoperable non-small-cell lung cancer (NSCLC). We analyzed the association between the ERCC1 status and the overall survival after the chemotherapy. PATIENTS...... mainly seen in men, where those with ERCC1-negative tumors had a significantly increased survival compared to men with ERCC1-positive tumors (median survival, 11.8 months v 7.9 months; P = .005). Conversely, women who were ERCC1 negative did not have a survival advantage over ERCC1-positive women...

  16. Transcriptome Profiling of the Green Alga Spirogyra pratensis (Charophyta) Suggests an Ancestral Role for Ethylene in Cell Wall Metabolism, Photosynthesis, and Abiotic Stress Responses1[OPEN

    Science.gov (United States)

    2016-01-01

    It is well known that ethylene regulates a diverse set of developmental and stress-related processes in angiosperms, yet its roles in early-diverging embryophytes and algae are poorly understood. Recently, it was shown that ethylene functions as a hormone in the charophyte green alga Spirogyra pratensis. Since land plants evolved from charophytes, this implies conservation of ethylene as a hormone in green plants for at least 450 million years. However, the physiological role of ethylene in charophyte algae has remained unknown. To gain insight into ethylene responses in Spirogyra, we used mRNA sequencing to measure changes in gene expression over time in Spirogyra filaments in response to an ethylene treatment. Our analyses show that at the transcriptional level, ethylene predominantly regulates three processes in Spirogyra: (1) modification of the cell wall matrix by expansins and xyloglucan endotransglucosylases/hydrolases, (2) down-regulation of chlorophyll biosynthesis and photosynthesis, and (3) activation of abiotic stress responses. We confirmed that the photosynthetic capacity and chlorophyll content were reduced by an ethylene treatment and that several abiotic stress conditions could stimulate cell elongation in an ethylene-dependent manner. We also found that the Spirogyra transcriptome harbors only 10 ethylene-responsive transcription factor (ERF) homologs, several of which are regulated by ethylene. These results provide an initial understanding of the hormonal responses induced by ethylene in Spirogyra and help to reconstruct the role of ethylene in ancestral charophytes prior to the origin of land plants. PMID:27489312

  17. Tricks to translating TB transcriptomics.

    Science.gov (United States)

    Deffur, Armin; Wilkinson, Robert J; Coussens, Anna K

    2015-05-01

    Transcriptomics and other high-throughput methods are increasingly applied to questions relating to tuberculosis (TB) pathogenesis. Whole blood transcriptomics has repeatedly been applied to define correlates of TB risk and has produced new insight into the late stage of disease pathogenesis. In a novel approach, authors of a recently published study in Science Translational Medicine applied complex data analysis of existing TB transcriptomic datasets, and in vitro models, in an attempt to identify correlates of protection in TB, which are crucially required for the development of novel TB diagnostics and therapeutics to halt this global epidemic. Utilizing latent TB infection (LTBI) as a surrogate of protection, they identified IL-32 as a mediator of interferon gamma (IFNγ)-vitamin D dependent antimicrobial immunity and a marker of LTBI. Here, we provide a review of all TB whole-blood transcriptomic studies to date in the context of identifying correlates of protection, discuss potential pitfalls of combining complex analyses originating from such studies, the importance of detailed metadata to interpret differential patient classification algorithms, the effect of differing circulating cell populations between patient groups on the interpretation of resulting biomarkers and we decipher weighted gene co-expression network analysis (WGCNA), a recently developed systems biology tool which holds promise of identifying novel pathway interactions in disease pathogenesis. In conclusion, we propose the development of an integrated OMICS platform and open access to detailed metadata, in order for the TB research community to leverage the vast array of OMICS data being generated with the aim of unraveling the holy grail of TB research: correlates of protection. PMID:26046091

  18. Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo and exocytosis.

    Directory of Open Access Journals (Sweden)

    Jorge Corbacho

    Full Text Available BACKGROUND: Mature-fruit abscission (MFA in fleshy-fruit is a genetically controlled process with mechanisms that, contrary to immature-fruit abscission, has not been fully characterized. Here, we use pyrosequencing to characterize the transcriptomes of melon abscission zone (AZ at three stages during AZ-cell separation in order to understand MFA control at an early stage of AZ-activation. PRINCIPAL FINDINGS: The results show that by early induction of MFA, the melon AZ exhibits major gene induction, while by late induction of MFA, melon AZ shows major gene repression. Although some genes displayed similar regulation in both early and late induction of abscission, such as EXT1-EXT4, EGase1, IAA2, ERF1, AP2D15, FLC, MADS2, ERAF17, SAP5 and SCL13 genes, the majority had different expression patterns. This implies that time-specific events occur during MFA, and emphasizes the value of characterizing multiple time-specific abscission transcriptomes. Analysis of gene-expression from these AZs reveal that a sequential induction of cell-wall-degrading genes is associated with the upregulation of genes involved in endo and exocytosis, and a shift in plant-hormone metabolism and signaling genes during MFA. This is accompanied by transcriptional activity of small-GTPases and synthaxins together with tubulins, dynamins, V-type ATPases and kinesin-like proteins potentially involved in MFA signaling. Early events are potentially controlled by down-regulation of MADS-box, AP2/ERF and Aux/IAA transcription-factors, and up-regulation of homeobox, zinc finger, bZIP, and WRKY transcription-factors, while late events may be controlled by up-regulation of MYB transcription-factors. SIGNIFICANCE: Overall, the data provide a comprehensive view on MFA in fleshy-fruit, identifying candidate genes and pathways associated with early induction of MFA. Our comprehensive gene-expression profile will be very useful for elucidating gene regulatory networks of the MFA in

  19. MicroRNA transcriptome analysis identifies miR-365 as a novel negative regulator of cell proliferation in Zmpste24-deficient mouse embryonic fibroblasts

    International Nuclear Information System (INIS)

    Highlights: • A comprehensive miRNA transcriptome of MEFs from Zmpste24−/− and control mice. • Identification of miR-365 as a down-regulated miRNA in Zmpste24−/− MEFs. • Characterization of miR-365 as a modulator of cellular growth in part by targeting Rasd1. - Abstract: Zmpste24 is a metalloproteinase responsible for the posttranslational processing and cleavage of prelamin A into mature laminA. Zmpste24−/− mice display a range of progeroid phenotypes overlapping with mice expressing progerin, an altered version of lamin A associated with Hutchinson-Gilford progeria syndrome (HGPS). Increasing evidence has demonstrated that miRNAs contribute to the regulation of normal aging process, but their roles in progeroid disorders remain poorly understood. Here we report the miRNA transcriptomes of mouse embryonic fibroblasts (MEFs) established from wild type (WT) and Zmpste24−/− progeroid mice using a massively parallel sequencing technology. With data from 19.5 × 106 reads from WT MEFs and 16.5 × 106 reads from Zmpste24−/− MEFs, we discovered a total of 306 known miRNAs expressed in MEFs with a wide dynamic range of read counts ranging from 10 to over 1 million. A total of 8 miRNAs were found to be significantly down-regulated, with only 2 miRNAs upregulated, in Zmpste24−/− MEFs as compared to WT MEFs. Functional studies revealed that miR-365, a significantly down-regulated miRNA in Zmpste24−/− MEFs, modulates cellular growth phenotypes in MEFs. Overexpression of miR-365 in Zmpste24−/− MEFs increased cellular proliferation and decreased the percentage of SA-β-gal-positive cells, while inhibition of miR-365 function led to an increase of SA-β-gal-positive cells in WT MEFs. Furthermore, we identified Rasd1, a member of the Ras superfamily of small GTPases, as a functional target of miR-365. While expression of miR-365 suppressed Rasd1 3′ UTR luciferase-reporter activity, this effect was lost with mutations in the putative 3

  20. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges.

    Science.gov (United States)

    Riesgo, Ana; Farrar, Nathan; Windsor, Pamela J; Giribet, Gonzalo; Leys, Sally P

    2014-05-01

    Sponges (Porifera) are among the earliest evolving metazoans. Their filter-feeding body plan based on choanocyte chambers organized into a complex aquiferous system is so unique among metazoans that it either reflects an early divergence from other animals prior to the evolution of features such as muscles and nerves, or that sponges lost these characters. Analyses of the Amphimedon and Oscarella genomes support this view of uniqueness-many key metazoan genes are absent in these sponges-but whether this is generally true of other sponges remains unknown. We studied the transcriptomes of eight sponge species in four classes (Hexactinellida, Demospongiae, Homoscleromorpha, and Calcarea) specifically seeking genes and pathways considered to be involved in animal complexity. For reference, we also sought these genes in transcriptomes and genomes of three unicellular opisthokonts, two sponges (A. queenslandica and O. carmela), and two bilaterian taxa. Our analyses showed that all sponge classes share an unexpectedly large complement of genes with other metazoans. Interestingly, hexactinellid, calcareous, and homoscleromorph sponges share more genes with bilaterians than with nonbilaterian metazoans. We were surprised to find representatives of most molecules involved in cell-cell communication, signaling, complex epithelia, immune recognition, and germ-lineage/sex, with only a few, but potentially key, absences. A noteworthy finding was that some important genes were absent from all demosponges (transcriptomes and the Amphimedon genome), which might reflect divergence from main-stem lineages including hexactinellids, calcareous sponges, and homoscleromorphs. Our results suggest that genetic complexity arose early in evolution as shown by the presence of these genes in most of the animal lineages, which suggests sponges either possess cryptic physiological and morphological complexity and/or have lost ancestral cell types or physiological processes.

  1. Transcriptomic assay of CD8+ T cells in treatment-naive HIV, HCV-mono-infected and HIV/HCV-co-infected Chinese.

    Directory of Open Access Journals (Sweden)

    Jin Zhao

    Full Text Available BACKGROUND: Co-infection with HIV and HCV is very common. It is estimated that over 5 million people are co-infected with HIV and HCV worldwide. Accumulated evidence shows that each virus alters the course of infection of the other one. CD8+ T cells play a crucial role in the eradication of viruses and infected target cells. To the best of our knowledge, no one has investigated the gene expression profiles in HIV/HCV-co-infected individuals. METHODOLOGY: Genome-wide transcriptomes of CD8+ T cells from HIV/HCV-co-infected or mono-infected treatment-naïve individuals were analyzed by microarray assays. Pairwise comparisons were performed and differentially expressed genes were identified followed by quantitative real-time PCR (qRT-PCR validation. Directed Acyclic Graphs (DAG from Web-based Gene SeT AnaLysis Toolkit (WebGestalt and DAVID bioinformatics resources 6.7 (the Database for Annotation, Visualization, and Integrated Discovery were used to discover the Gene Ontology (GO categories with significantly enriched gene numbers. The enriched Kyoto Encyclopedia of Genes and Genomes (KEGG pathways were also obtained by using WebGestalt software. RESULTS AND CONCLUSIONS: A total of 110, 24 and 72 transcript IDs were shown to be differentially expressed (> 2-fold and p<0.05 in comparisons between HCV- and HIV-mono-infected groups, HIV/HCV-co-infected and HIV-mono-infected groups, and HIV/HCV-co-infected and HCV-mono-infected groups, respectively. In qRT-PCR assay, most of the genes showed similar expressing profiles with the observation in microarray assays. Further analysis revealed that genes involved in cell proliferation, differentiation, transcriptional regulation and cytokine responses were significantly altered. These data offer new insights into HIV/HCV co-infections, and may help to identify new markers for the management and treatment of HIV/HCV co-infections.

  2. Complement inhibitors to treat IgM-mediated autoimmune hemolysis.

    Science.gov (United States)

    Wouters, Diana; Zeerleder, Sacha

    2015-11-01

    Complement activation in autoimmune hemolytic anemia may exacerbate extravascular hemolysis and may occasionally result in intravascular hemolysis. IgM autoantibodies as characteristically found in cold autoantibody autoimmune hemolytic anemia, in cold agglutinin disease but also in a considerable percentage of patients with warm autoantibodies are very likely to activate complement in vivo. Therapy of IgM-mediated autoimmune hemolytic anemia mainly aims to decrease autoantibody production. However, most of these treatments require time to become effective and will not stop immediate ongoing complement-mediated hemolysis nor prevent hemolysis of transfused red blood cells. Therefore pharmacological inhibition of the complement system might be a suitable approach to halt or at least attenuate ongoing hemolysis and improve the recovery of red blood cell transfusion in autoimmune hemolytic anemia. In recent years, several complement inhibitors have become available in the clinic, some of them with proven efficacy in autoimmune hemolytic anemia. In the present review, we give a short introduction on the pathogenesis of autoimmune hemolytic anemia, followed by an overview on the complement system with a special focus on its regulation. Finally, we will discuss complement inhibitors with regard to their potential efficacy to halt or attenuate hemolysis in complement-mediated autoimmune hemolytic anemia.

  3. Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by Laser Capture Microdissection

    OpenAIRE

    Bonnet Agnes; Bevilacqua Claudia; Benne Francis; Bodin Loys; Cotinot Corinne; Liaubet Laurence; Sancristobal Magali; Sarry Julien; Terenina Elena; Martin Patrice; Tosser-Klopp Gwenola; Mandon-Pepin Beatrice

    2011-01-01

    Abstract Background Successful achievement of early folliculogenesis is crucial for female reproductive function. The process is finely regulated by cell-cell interactions and by the coordinated expression of genes in both the oocyte and in granulosa cells. Despite many studies, little is known about the cell-specific gene expression driving early folliculogenesis. The very small size of these follicles and the mixture of types of follicles within the developing ovary make the experimental st...

  4. Transcriptome comparison of distinct osteolineage subsets in the hematopoietic stem cell niche using a triple fluorescent transgenic mouse model.

    Science.gov (United States)

    Yu, Vionnie W C; Lymperi, Stefania; Ferraro, Francesca; Scadden, David T

    2015-09-01

    The bone marrow niche is recognized as a central player in maintaining and regulating the behavior of hematopoietic stem and progenitor cells. Specific gain-of and loss-of function experiments perturbing a range of osteolineage cells or their secreted proteins had been shown to affect stem cell maintenance (Calvi et al, 2003 [1]; Stier et al., 2005 [2]; Zhang et al., 2003 [3]; Nilsson et al., 2005 [4]; Greenbaum et al., 2013 [5]) and engraftment (Adam et al., 2006, 2009 [6,7]). We used specific in vivo cell deletion approaches to dissect the niche cell-parenchymal cell dependency in a complex bone marrow microenvironment. Endogenous deletion of osteocalcin-expressing (Ocn(+)) cells led to a loss of T immune cells (Yu et al., 2015 [8]. Ocn(+) cells express the Notch ligand DLL4 to communicate with T-competent progenitors, and thereby ensuring T precursor production and expression of chemotactic molecules on their cell surface for subsequent thymic seeding. In contrast, depletion of osterix-expressing (Osx(+)) osteoprogenitors led to reduced B immune cells. These distinct hematopoietic phenotypes suggest specific pairing of mesenchymal niche cells and parenchymal hematopoietic cells in the bone marrow to create unique functional units to support hematopoiesis. Here, we present the global gene expression profiles of these osteolineage subtypes utilizing a triple fluorescent transgenic mouse model (OsxCre(+);Rosa-mCh(+);Ocn:Topaz(+)) that labels Osx(+) cells red, Ocn(+) cells green, and Osx(+) Ocn(+) cells yellow. This system allows isolation of distinct osteolineage subsets within the same animal by flow cytometry. Array data that have been described in our study [8] are also publically available from NCBI Gene Expression Omnibus (GEO) with the accession number GSE66042. Differences in gene expression may correlate with functional difference in supporting hematopoiesis. PMID:26484277

  5. Transcriptome Analysis of Individual Stromal Cell Populations Identifies Stroma-Tumor Crosstalk in Mouse Lung Cancer Model

    OpenAIRE

    Hyejin Choi; Jianting Sheng; Dingcheng Gao; Fuhai Li; Anna Durrans; Seongho Ryu; Sharrell B. Lee; Navneet Narula; Shahin Rafii; Olivier Elemento; Nasser K. Altorki; Stephen T.C. Wong; Vivek Mittal

    2015-01-01

    Emerging studies have begun to demonstrate that reprogrammed stromal cells play pivotal roles in tumor growth, metastasis, and resistance to therapy. However, the contribution of stromal cells to non-small-cell lung cancer (NSCLC) has remained underexplored. We used an orthotopic model of Kras-driven NSCLC to systematically dissect the contribution of specific hematopoietic stromal cells in lung cancer. RNA deep-sequencing analysis of individually sorted myeloid lineage and tumor epithelial c...

  6. Heat differentiated complement factor profiling.

    Science.gov (United States)

    Hamsten, Carl; Skattum, Lillemor; Truedsson, Lennart; von Döbeln, Ulrika; Uhlén, Mathias; Schwenk, Jochen M; Hammarström, Lennart; Nilsson, Peter; Neiman, Maja

    2015-08-01

    Complement components and their cascade of reactions are important defense mechanisms within both innate and adaptive immunity. Many complement deficient patients still remain undiagnosed because of a lack of high throughput screening tools. Aiming towards neonatal proteome screening for immunodeficiencies, we used a multiplex profiling approach with antibody bead arrays to measure 9 complement proteins in serum and dried blood spots. Several complement components have been described as heat sensitive, thus their heat-dependent detectability was investigated. Using sera from 16 patients with complement deficiencies and 23 controls, we confirmed that the proteins C1q, C2, C3, C6, C9 and factor H were positively affected by heating, thus the identification of deficient patients was improved when preheating samples. Measurements of C7, C8 and factor I were negatively affected by heating and non-heated samples should be used in analysis of these components. In addition, a proof of concept study demonstrated the feasibility of labeling eluates from dried blood spots to perform a subsequent correct classification of C2-deficiencies. Our study demonstrates the potential of using multiplexed single binder assays for screening of complement components that open possibilities to expand such analysis to other forms of deficiencies.

  7. Transcriptome complexity in a genome-reduced bacterium.

    Science.gov (United States)

    Güell, Marc; van Noort, Vera; Yus, Eva; Chen, Wei-Hua; Leigh-Bell, Justine; Michalodimitrakis, Konstantinos; Yamada, Takuji; Arumugam, Manimozhiyan; Doerks, Tobias; Kühner, Sebastian; Rode, Michaela; Suyama, Mikita; Schmidt, Sabine; Gavin, Anne-Claude; Bork, Peer; Serrano, Luis

    2009-11-27

    To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previously undescribed, mostly noncoding transcripts, 89 of them in antisense configuration to known genes. We identified 341 operons, of which 139 are polycistronic; almost half of the latter show decaying expression in a staircase-like manner. Under various conditions, operons could be divided into 447 smaller transcriptional units, resulting in many alternative transcripts. Frequent antisense transcripts, alternative transcripts, and multiple regulators per gene imply a highly dynamic transcriptome, more similar to that of eukaryotes than previously thought.

  8. Transcriptome 2002 Conference

    Energy Technology Data Exchange (ETDEWEB)

    Quackenbush, John

    2002-01-01

    The Transcriptome 2002 meeting was held March 11-13, 2002 in Seattle, Washington with attendance by more than 300 scientists representing the international community. The scientific program was developed by an international organizing committee. In association with the main meeting, an Image Consortium invitational meeting was organized by Charles Auffray of CNRS and held with approximately 40 participants immediately following the conclusion of the Transcriptome meeting.

  9. The relative merits of therapies being developed to tackle inappropriate ('self'-directed) complement activation.

    Science.gov (United States)

    Antwi-Baffour, Samuel; Kyeremeh, Ransford; Adjei, Jonathan Kofi; Aryeh, Claudia; Kpentey, George

    2016-12-01

    The complement system is an enzyme cascade that helps defend against infection. Many complement proteins occur in serum as inactive enzyme precursors or reside on cell surfaces. Complement components have many biologic functions and their activation can eventually damage the plasma membranes of cells and some bacteria. Although a direct link between complement activation and autoimmune diseases has not been found, there is increasing evidence that complement activation significantly contributes to the pathogenesis of a large number of inflammatory diseases that may have autoimmune linkage. The inhibition of complement may therefore be very important in a variety of autoimmune diseases since their activation may be detrimental to the individual involved. However, a complete and long-term inhibition of complement may have some contra side effects such as increased susceptibility to infection. The site of complement activation will, however, determine the type of inhibitor to be used, its route of application and dosage level. Compared with conventional drugs, complement inhibitors may be the best option for treatment of autoimmune diseases. The review takes a critical look at the relative merits of therapies being developed to tackle inappropriate complement activation that are likely to result in sporadic autoimmune diseases or worsen already existing one. It covers the complement system, general aspects of complement inhibition therapy, therapeutic strategies and examples of complement inhibitors. It concludes by highlighting on the possibility that a better inhibitor of complement activation when found will help provide a formidable treatment for autoimmune diseases as well as preventing one.

  10. Protease-dependent mechanisms of complement evasion by bacterial pathogens.

    Science.gov (United States)

    Potempa, Michal; Potempa, Jan

    2012-09-01

    The human immune system has evolved a variety of mechanisms for the primary task of neutralizing and eliminating microbial intruders. As the first line of defense, the complement system is responsible for rapid recognition and opsonization of bacteria, presentation to phagocytes and bacterial cell killing by direct lysis. All successful human pathogens have mechanisms of circumventing the antibacterial activity of the complement system and escaping this stage of the immune response. One of the ways in which pathogens achieve this is the deployment of proteases. Based on the increasing number of recent publications in this area, it appears that proteolytic inactivation of the antibacterial activities of the complement system is a common strategy of avoiding targeting by this arm of host innate immune defense. In this review, we focus on those bacteria that deploy proteases capable of degrading complement system components into non-functional fragments, thus impairing complement-dependent antibacterial activity and facilitating pathogen survival inside the host.

  11. The Role of Complement in Antibody Therapy for Infectious Diseases.

    Science.gov (United States)

    Wibroe, Peter P; Helvig, Shen Y; Moein Moghimi, S

    2014-04-01

    The complement system is part of the innate immune system, eliciting central immunoregulatory functions. Detection of foreign surfaces is either achieved through complement-specific patternrecognition molecules or mediated by antigen recognition of antibodies. Immunoglobulin A (IgA), IgG, and IgM all have the potential to initiate a complement response, with the efficiency and response development closely related to the antibody isotype, multimeric state, and degree of glycosylation. A group of serum proteins constitutes the central effector functions of complement, thus allowing direct cell lysis, opsonization, and inflammation. These effector functions can be used in antibody therapies, especially against infectious diseases, as the target membranes lack complement regulatory proteins. The relative contribution of each function and the interplay with direct antibody-mediated clearance is not fully exploited, thus suggesting an option for further rational optimization of antibody therapies.

  12. Acidosis activation of the proton-sensing GPR4 receptor stimulates vascular endothelial cell inflammatory responses revealed by transcriptome analysis.

    Directory of Open Access Journals (Sweden)

    Lixue Dong

    Full Text Available Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-κB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2 and stress response genes such as ATF3 and DDIT3 (CHOP. Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-κB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be

  13. Transcriptome Encyclopedia of Early Human Development.

    Science.gov (United States)

    Sahakyan, Anna; Plath, Kathrin

    2016-05-01

    Our understanding of human pre-implantation development is limited by the availability of human embryos and cannot completely rely on mouse studies. Petropoulos et al. now provide an extensive transcriptome analysis of a large number of human pre-implantation embryos at single-cell resolution, revealing previously unrecognized features unique to early human development.

  14. Next-generation transcriptome assembly

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey A.; Wang, Zhong

    2011-09-01

    Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalog of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies-along with some perspectives on transcriptome assembly in the near future.

  15. The complement cascade in kidney disease: from sideline to center stage.

    Science.gov (United States)

    McCaughan, Jennifer A; O'Rourke, Declan M; Courtney, Aisling E

    2013-09-01

    Activation of the complement pathway is implicated in the pathogenesis of many kidney diseases. The pathologic and clinical features of these diseases are determined in part by the mechanism and location of complement activation within the kidney parenchyma. This review describes the physiology, action, and control of the complement cascade and explains the role of complement overactivation and dysregulation in kidney disease. There have been recent advances in the understanding of the effects of upregulation of the complement cascade after kidney transplantation. Complement plays an important role in initiating and propagating damage to transplanted kidneys in ischemia-reperfusion injury, antibody-mediated rejection, and cell-mediated rejection. Complement-targeting therapies presently are in development, and the first direct complement medication for kidney disease was licensed in 2011. The potential therapeutic targets for anticomplement drugs in kidney disease are described. Clinical and experimental studies are ongoing to identify further roles for complement-targeting therapy.

  16. Antibodies That Efficiently Form Hexamers upon Antigen Binding Can Induce Complement-Dependent Cytotoxicity under Complement-Limiting Conditions

    Science.gov (United States)

    Cook, Erika M.; Lindorfer, Margaret A.; van der Horst, Hilma; Oostindie, Simone; Beurskens, Frank J.; Schuurman, Janine; Zent, Clive S.; Burack, Richard; Parren, Paul W. H. I.

    2016-01-01

    Recently, we demonstrated that IgG Abs can organize into ordered hexamers after binding their cognate Ags expressed on cell surfaces. This process is dependent on Fc:Fc interactions, which promote C1q binding, the first step in classical pathway complement activation. We went on to engineer point mutations that stimulated IgG hexamer formation and complement-dependent cytotoxicity (CDC). The hexamer formation–enhanced (HexaBody) CD20 and CD38 mAbs support faster, more robust CDC than their wild-type counterparts. To further investigate the CDC potential of these mAbs, we used flow cytometry, high-resolution digital imaging, and four-color confocal microscopy to examine their activity against B cell lines and primary chronic lymphocytic leukemia cells in sera depleted of single complement components. We also examined the CDC activity of alemtuzumab (anti-CD52) and mAb W6/32 (anti-HLA), which bind at high density to cells and promote substantial complement activation. Although we observed little CDC for mAb-opsonized cells reacted with sera depleted of early complement components, we were surprised to discover that the Hexabody mAbs, as well as ALM and W6/32, were all quite effective at promoting CDC in sera depleted of individual complement components C6 to C9. However, neutralization studies conducted with an anti-C9 mAb verified that C9 is required for CDC activity against cell lines. These highly effective complement-activating mAbs efficiently focus activated complement components on the cell, including C3b and C9, and promote CDC with a very low threshold of MAC binding, thus providing additional insight into their enhanced efficacy in promoting CDC. PMID:27474078

  17. Changes in the transcriptome of the human endometrial Ishikawa cancer cell line induced by estrogen, progesterone, tamoxifen, and mifepristone (RU486 as detected by RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    Karin Tamm-Rosenstein

    Full Text Available BACKGROUND: Estrogen (E2 and progesterone (P4 are key players in the maturation of the human endometrium. The corresponding steroid hormone modulators, tamoxifen (TAM and mifepristone (RU486 are widely used in breast cancer therapy and for contraception purposes, respectively. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression profiling of the human endometrial Ishikawa cancer cell line treated with E2 and P4 for 3 h and 12 h, and TAM and RU486 for 12 h, was performed using RNA-sequencing. High levels of mRNA were detected for genes, including PSAP, ATP5G2, ATP5H, and GNB2L1 following E2 or P4 treatment. A total of 82 biomarkers for endometrial biology were identified among E2 induced genes, and 93 among P4 responsive genes. Identified biomarkers included: EZH2, MDK, MUC1, SLIT2, and IL6ST, which are genes previously associated with endometrial receptivity. Moreover, 98.8% and 98.6% of E2 and P4 responsive genes in Ishikawa cells, respectively, were also detected in two human mid-secretory endometrial biopsy samples. TAM treatment exhibited both antagonistic and agonistic effects of E2, and also regulated a subset of genes independently. The cell cycle regulator cyclin D1 (CCND1 showed significant up-regulation following treatment with TAM. RU486 did not appear to act as a pure antagonist of P4 and a functional analysis of RU486 response identified genes related to adhesion and apoptosis, including down-regulated genes associated with cell-cell contacts and adhesion as CTNND1, JUP, CDH2, IQGAP1, and COL2A1. CONCLUSIONS: Significant changes in gene expression by the Ishikawa cell line were detected after treatments with E2, P4, TAM, and RU486. These transcriptome data provide valuable insight into potential biomarkers related to endometrial receptivity, and also facilitate an understanding of the molecular changes that take place in the endometrium in the early stages of breast cancer treatment and contraception usage.

  18. Generation of mast cells from mouse fetus: analysis of differentiation and functionality, and transcriptome profiling using next generation sequencer.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fukuishi

    Full Text Available While gene knockout technology can reveal the roles of proteins in cellular functions, including in mast cells, fetal death due to gene manipulation frequently interrupts experimental analysis. We generated mast cells from mouse fetal liver (FLMC, and compared the fundamental functions of FLMC with those of bone marrow-derived mouse mast cells (BMMC. Under electron microscopy, numerous small and electron-dense granules were observed in FLMC. In FLMC, the expression levels of a subunit of the FcεRI receptor and degranulation by IgE cross-linking were comparable with BMMC. By flow cytometry we observed surface expression of c-Kit prior to that of FcεRI on FLMC, although on BMMC the expression of c-Kit came after FcεRI. The surface expression levels of Sca-1 and c-Kit, a marker of putative mast cell precursors, were slightly different between bone marrow cells and fetal liver cells, suggesting that differentiation stage or cell type are not necessarily equivalent between both lineages. Moreover, this indicates that phenotypically similar mast cells may not have undergone an identical process of differentiation. By comprehensive analysis using the next generation sequencer, the same frequency of gene expression was observed for 98.6% of all transcripts in both cell types. These results indicate that FLMC could represent a new and useful tool for exploring mast cell differentiation, and may help to elucidate the roles of individual proteins in the function of mast cells where gene manipulation can induce embryonic lethality in the mid to late stages of pregnancy.

  19. Gene expression profiling of MYC-driven tumor signatures in porcine liver stem cells by transcriptome sequencing

    Science.gov (United States)

    It is now well-established that cancer stem cells (CSCs) drive tumor growth and that the cancer gene, c-Myc, plays a critical role in converting cells to CSCs. However, little is known about the genes that are induced and regulated by c-Myc to generate tumors, and, in particular, tumors of the live...

  20. Characterisation of Caenorhabditis elegans sperm transcriptome and proteome

    OpenAIRE

    Ma, Xuan; Zhu, Yingjie; Li, Chunfang; Xue, Peng; Zhao, Yanmei; Chen, Shilin; Yang, Fuquan; Miao, Long

    2014-01-01

    Background Although sperm is transcriptionally and translationally quiescent, complex populations of RNAs, including mRNAs and non-coding RNAs, exist in sperm. Previous microarray analysis of germ cell mutants identified hundreds of sperm genes in Caenorhabditis elegans. To take a more comprehensive view on C. elegans sperm genes, here, we isolate highly pure sperm cells and employ high-throughput technologies to obtain sperm transcriptome and proteome. Results First, sperm transcriptome cons...

  1. Transcriptome-wide studies of prostate cancer cell lines in the context of medical radiation; Transkriptomweite Untersuchungen von Prostata-Krebszelllinien im Kontext medizinischer Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, Paul

    2012-06-26

    The use of radiotherapy in addition to chemotherapy and surgical removal is the most powerful instrument in the fight against malignant tumors in cancer medicine. After cardiovascular diseases, cancer is the second leading cause of death in the western world, in which prostate cancer is the most frequent male cancer. Despite continuous technological improvements in radiological instruments and prognosis, it may occur a recurrence up to many years after radiotherapy due to a high resistance capability of individual malignant cells of the locally occurring tumor. Although modern radiation biology has studied many aspects of the resistance mechanisms, questions are largely unanswered especially in regards to prognostic terms and time response of tumor cells to ionizing radiation. As cellular models four prostate cancer cell lines with different radiation sensitivities (PC3, DuCaP, DU-145, RWPE-1) were cultured and tested for their ability to survive after exposure to ionizing radiation by a trypane blue and MTT viability assay. The proliferative capacity of the four cell lines was determined using a colony formation assay. The PC3 cell line (radiation-resistant) and the DuCaP cell line (radiation-sensitive) showed the maximal differences in terms of radiation sensitivity. Based on these results the two cell lines were selected to allow identification of potential prognostic marker for predicting the effectiveness of radiation therapy via their transcriptome-wide gene expression. Furthermore, a time series experiment with the radiation-resistant PC3 cell line was performed. At 8 different time points, during the period from 00:00 - 42:53 (hh:mm) after exposure with 1 Gy, the mRNA was quantified by next generation sequencing to investigate the dynamic behavior of time-delayed gene expression and to discover resistance mechanisms. Of 10,966 expressed genes 730 were significant differentially expressed, determined by setting a fold change threshold in conjunction with a P

  2. Dysregulation of adaptive immune responses in complement C3-deficient patients

    NARCIS (Netherlands)

    Pekkarinen, Pirkka T.; Heikkila, Nelli; Kisand, Kai; Peterson, Paert; Botto, Marina; Daha, Mohamed R.; Drouet, Christian; Isaac, Lourdes; Helminen, Merja; Haahtela, Tari; Meri, Seppo; Jarva, Hanna; Arstila, T. Petteri

    2015-01-01

    In addition to its effector functions, complement is an important regulator of adaptive immune responses. Murine studies suggest that complement modulates helper T-cell differentiation, and Th1 responses in particular are impaired in the absence of functional complement. Here, we have studied humora

  3. Expression of complement C5a receptor and the viability of 4T1 tumor cells following agonist–antagonist treatment

    Directory of Open Access Journals (Sweden)

    Nurneqman Nashreq Kosni

    2016-01-01

    Conclusion: This experiment shows the presence of C5a receptor on 4T1 cell line. We believe that the antagonist peptide is eligible to be used widely in cancer immunotherapy field; but in vivo studies need to be carried out first in the future, as it will determine how these drugs affect the tumor cell growth.

  4. FACS Purification and Transcriptome Analysis of Drosophila Neural Stem Cells Reveals a Role for Klumpfuss in Self-Renewal

    Directory of Open Access Journals (Sweden)

    Christian Berger

    2012-08-01

    Full Text Available Drosophila neuroblasts (NBs have emerged as a model for stem cell biology that is ideal for genetic analysis but is limited by the lack of cell-type-specific gene expression data. Here, we describe a method for isolating large numbers of pure NBs and differentiating neurons that retain both cell-cycle and lineage characteristics. We determine transcriptional profiles by mRNA sequencing and identify 28 predicted NB-specific transcription factors that can be arranged in a network containing hubs for Notch signaling, growth control, and chromatin regulation. Overexpression and RNA interference for these factors identify Klumpfuss as a regulator of self-renewal. We show that loss of Klumpfuss function causes premature differentiation and that overexpression results in the formation of transplantable brain tumors. Our data represent a valuable resource for investigating Drosophila developmental neurobiology, and the described method can be applied to other invertebrate stem cell lineages as well.

  5. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures

    OpenAIRE

    Schriemer David C; Khan Morgan F; Desgagné-Penix Isabel; Cram Dustin; Nowak Jacek; Facchini Peter J

    2010-01-01

    Abstract Background Papaver somniferum (opium poppy) is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the i...

  6. Bioinformatic analysis reveals the expression of unique transcriptomic signatures in Zika virus infected human neural stem cells

    OpenAIRE

    Rolfe, Alyssa J.; Bosco, Dale B.; Wang, Jingying; Nowakowski, Richard S.; Fan, Jianqing; Ren, Yi

    2016-01-01

    Background The single-stranded RNA Flavivirus, Zika virus (ZIKV), has recently re-emerged and spread rapidly across the western hemisphere’s equatorial countries, primarily through Aedes mosquito transmission. While symptoms in adult infections appear to be self-limiting and mild, severe birth defects, such as microcephaly, have been linked to infection during early pregnancy. Recently, Tang et al. (Cell Stem Cell 2016, doi: 10.1016/j.stem.2016.02.016) demonstrated that ZIKV efficiently infec...

  7. Force Dynamics of Verb Complementation

    Directory of Open Access Journals (Sweden)

    Jacek Woźny

    2015-12-01

    Full Text Available Force Dynamics of Verb Complementation The concepts of motion and force are both extensively discussed in cognitive linguistics literature. But they are discussed separately. The first usually in the context of ‘motion situations’ (Talmy, Slobin, Zlatev, the other as part of the Force Dynamics framework, which was developed by Talmy. The aim of this paper is twofold: first, to argue that the concepts of force and motion should not be isolated but considered as two inseparable parts of force-motion events. The second goal is to prove that the modified Force Dynamics (force-motion framework can be used for precise characterization of the verb complementation patterns. To this end, a random sample of 50 sentences containing the verb ‘went’ is analyzed, demonstrating the differences between the categories of intensive and intransitive complementation with respect to the linguistically coded parameters of force and motion.

  8. Cooperation with Complement is Better

    CERN Document Server

    Yildirim, Ilker

    2008-01-01

    In a setting where heterogeneous agents interact to accomplish a given set of goals, cooperation is of utmost importance, especially when agents cannot achieve their individual goals by exclusive use of their own efforts. Even when we consider friendly environments and benevolent agents, cooperation involves several issues: with whom to cooperate, reciprocation, how to address credit assignment and complex division of gains, etc. We propose a model where heterogeneous agents cooperate by forming groups and formation of larger groups is promoted. Benefit of agents is proportional to the performance and the size of the group. There is a time pressure to form a group. We investigate how preferring similar or complement agents in group formation affects an agent's success. Preferring complement in group formation is found to be better, yet there is no need to push the strategy to the extreme since the effect of complementing partners is saturated.

  9. Early intra-articular complement activation in ankle fractures

    DEFF Research Database (Denmark)

    Schmal, Hagen; Salzmann, Gian M; Niemeyer, Philipp;

    2014-01-01

    osteochondritis dissecans (OCD) of the ankle. All fractures needed external fixation during which joint effusions were collected. Fluid analysis was done by ELISA measuring aggrecan, bFGF, IL-1 β, IGF-1, and the complement components C3a, C5a, and C5b-9. The time periods between occurrence of fracture...... and OCD patients, bFGF, IGF-1, and all complement components were significantly higher concentrated in ankle joints with fractures (P Complement activation and inflammatory cell infiltration characterize the joint biology following acute ankle fractures....

  10. Transcriptome Signatures Reveal Rapid Induction of Immune-Responsive Genes in Human Memory CD8(+) T Cells.

    Science.gov (United States)

    Yang, Cheng; Khanniche, Asma; DiSpirito, Joanna R; Ji, Ping; Wang, Shujun; Wang, Ying; Shen, Hao

    2016-01-01

    Memory T cells (TM) play a prominent role in protection and auto-immunity due to their ability to mount a more effective response than naïve T cells (TN). However, the molecular mechanisms underlying enhanced functionality of TM are not well defined, particularly in human TM. We examined the global gene expression profiles of human CD8(+) TN and TM before and after stimulation. There were 1,284, 1,373 and 1,629 differentially expressed genes between TN and TM at 0 hr, 4 hr and 24 hr after stimulation, respectively, with more genes expressed to higher levels in TM. Genes rapidly up-regulated in TN cells were largely involved in nitrogen, nucleoside and amino acid metabolisms. In contrast, those in CD8(+) TM were significantly enriched for immune-response-associated processes, including cytokine production, lymphocyte activation and chemotaxis. Multiple cytokines were rapidly up-regulated in TM cells, including effector cytokines known to be produced by CD8(+) T cells and important for their functions, as well as regulatory cytokines, both pro- and anti-inflammatory, that are not typically produced by CD8(+) T cells. These results provide new insights into molecular mechanisms that contribute to the enhanced functionality of human CD8(+) TM and their prominent role in protection and auto-immunity. PMID:27243788

  11. Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation

    OpenAIRE

    Lekowski, Robert; Collard, Charles D.; Reenstra, Wende R.; Stahl, Gregory L.

    2001-01-01

    Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC)...

  12. Transcriptomic gene-network analysis of exposure to silver nanoparticle reveals potentially neurodegenerative progression in mouse brain neural cells.

    Science.gov (United States)

    Lin, Ho-Chen; Huang, Chin-Lin; Huang, Yuh-Jeen; Hsiao, I-Lun; Yang, Chung-Wei; Chuang, Chun-Yu

    2016-08-01

    Silver nanoparticles (AgNPs) are commonly used in daily living products. AgNPs can induce inflammatory response in neuronal cells, and potentially develop neurological disorders. The gene networks in response to AgNPs-induced neurodegenerative progression have not been clarified in various brain neural cells. This study found that 3-5nm AgNPs were detectable to enter the nuclei of mouse neuronal cells after 24-h of exposure. The differentially expressed genes in mouse brain neural cells exposure to AgNPs were further identified using Phalanx Mouse OneArray® chip, and permitted to explore the gene network pathway regulating in neurodegenerative progression according to Cytoscape analysis. In focal adhesion pathway of ALT astrocytes, AgNPs induced the gene expression of RasGRF1 and reduced its downstream BCL2 gene for apoptosis. In cytosolic DNA sensing pathway of microglial BV2 cells, AgNPs reduced the gene expression of TREX1 and decreased IRF7 to release pro-inflammatory cytokines for inflammation and cellular activation. In MAPK pathway of neuronal N2a cells, AgNPs elevated GADD45α gene expression, and attenuated its downstream PTPRR gene to interfere with neuron growth and differentiation. Moreover, AgNPs induced beta amyloid deposition in N2a cells, and decreased PSEN1 and PSEN2, which may disrupt calcium homeostasis and presynaptic dysfunction for Alzheimer's disease development. These findings suggested that AgNPs exposure reveals the potency to induce the progression of neurodegenerative disorder. PMID:27131904

  13. Transcriptomic analysis of milk somatic cells in mastitis resistant and susceptible sheep upon challenge with Staphylococcus epidermidis and Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Tasca Christian

    2011-04-01

    Full Text Available Abstract Background The existence of a genetic basis for host responses to bacterial intramammary infections has been widely documented, but the underlying mechanisms and the genes are still largely unknown. Previously, two divergent lines of sheep selected for high/low milk somatic cell scores have been shown to be respectively susceptible and resistant to intramammary infections by Staphylococcus spp. Transcriptional profiling with an 15K ovine-specific microarray of the milk somatic cells of susceptible and resistant sheep infected successively by S. epidermidis and S. aureus was performed in order to enhance our understanding of the molecular and cellular events associated with mastitis resistance. Results The bacteriological titre was lower in the resistant than in the susceptible animals in the 48 hours following inoculation, although milk somatic cell concentration was similar. Gene expression was analysed in milk somatic cells, mainly represented by neutrophils, collected 12 hours post-challenge. A high number of differentially expressed genes between the two challenges indicated that more T cells are recruited upon inoculation by S. aureus than S. epidermidis. A total of 52 genes were significantly differentially expressed between the resistant and susceptible animals. Further Gene Ontology analysis indicated that differentially expressed genes were associated with immune and inflammatory responses, leukocyte adhesion, cell migration, and signal transduction. Close biological relationships could be established between most genes using gene network analysis. Furthermore, gene expression suggests that the cell turn-over, as a consequence of apoptosis/granulopoiesis, may be enhanced in the resistant line when compared to the susceptible line. Conclusions Gene profiling in resistant and susceptible lines has provided good candidates for mapping the biological pathways and genes underlying genetically determined resistance and susceptibility

  14. Early Neoplastic Progression Is Complement Independent

    Directory of Open Access Journals (Sweden)

    Karin E. de Visser

    2004-11-01

    Full Text Available Infiltration of leukocytes into premalignant tissue is a common feature of many epithelial neoplasms and is thought to contribute to cancer development. However, the molecular and cellular regulatory mechanisms underlying activation of innate host responses to enhanced neoplastic cell proliferation are largely unknown. Considering the importance of the complement system in regulating inflammation during acute pathologic tissue remodeling, we examined the functional significance of complement component 3 (C3 as a regulator of inflammatory cell infiltration and activation during malignant progression by using a transgenic mouse model of multistage epithelial carcinogenesis, e.g., HPV16 mice. Whereas abundant deposition of C3 is a characteristic feature of premalignant hyperplasias and dysplasias coincident with leukocyte infiltration in neoplastic tissue, genetic elimination of C3 neither affects inflammatory cell recruitment toward neoplastic skin nor impacts responding pathways downstream of inflammatory cell activation, e.g., keratinocyte hyperproliferation or angiogenesis. Taken together, these data suggest that complementindependent pathways are critical for leukocyte recruitment into neoplastic tissue and leukocytemediated potentiation of tumorigenesis.

  15. Increased IgG on cell-derived plasma microparticles in systemic lupus erythematosus is associated with autoantibodies and complement activation

    DEFF Research Database (Denmark)

    Nielsen, Christoffer T; Østergaard, Ole; Stener, Line;

    2012-01-01

    To quantify immunoglobulin and C1q on circulating cell-derived microparticles (MPs) in patients with systemic lupus erythematosus (SLE) and to determine whether immunoglobulin and C1q levels are correlated with clinical and serologic parameters.......To quantify immunoglobulin and C1q on circulating cell-derived microparticles (MPs) in patients with systemic lupus erythematosus (SLE) and to determine whether immunoglobulin and C1q levels are correlated with clinical and serologic parameters....

  16. MicroRNA transcriptome analysis identifies miR-365 as a novel negative regulator of cell proliferation in Zmpste24-deficient mouse embryonic fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Xing-dong [Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808 (China); Institute of Biochemistry & Molecular Biology, Guangdong Medical College, Zhanjiang 524023 (China); Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan 523808 (China); Institute of Laboratory Medicine, Guangdong Medical College, Dongguan, Guangdong 523808 (China); Jung, Hwa Jin [Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Gombar, Saurabh [Departments of Systems Biology, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Park, Jung Yoon [Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461 (United States); Zhang, Chun-long; Zheng, Huiling [Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808 (China); Institute of Biochemistry & Molecular Biology, Guangdong Medical College, Zhanjiang 524023 (China); Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan 523808 (China); Ruan, Jie; Li, Jiang-bin [Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808 (China); Institute of Biochemistry & Molecular Biology, Guangdong Medical College, Zhanjiang 524023 (China); Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan 523808 (China); Institute of Laboratory Medicine, Guangdong Medical College, Dongguan, Guangdong 523808 (China); Kaeberlein, Matt [Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808 (China); Department of Pathology, University of Washington, Seattle, WA 98195 (United States); and others

    2015-07-15

    Highlights: • A comprehensive miRNA transcriptome of MEFs from Zmpste24{sup −/−} and control mice. • Identification of miR-365 as a down-regulated miRNA in Zmpste24{sup −/−} MEFs. • Characterization of miR-365 as a modulator of cellular growth in part by targeting Rasd1. - Abstract: Zmpste24 is a metalloproteinase responsible for the posttranslational processing and cleavage of prelamin A into mature laminA. Zmpste24{sup −/−} mice display a range of progeroid phenotypes overlapping with mice expressing progerin, an altered version of lamin A associated with Hutchinson-Gilford progeria syndrome (HGPS). Increasing evidence has demonstrated that miRNAs contribute to the regulation of normal aging process, but their roles in progeroid disorders remain poorly understood. Here we report the miRNA transcriptomes of mouse embryonic fibroblasts (MEFs) established from wild type (WT) and Zmpste24{sup −/−} progeroid mice using a massively parallel sequencing technology. With data from 19.5 × 10{sup 6} reads from WT MEFs and 16.5 × 10{sup 6} reads from Zmpste24{sup −/−} MEFs, we discovered a total of 306 known miRNAs expressed in MEFs with a wide dynamic range of read counts ranging from 10 to over 1 million. A total of 8 miRNAs were found to be significantly down-regulated, with only 2 miRNAs upregulated, in Zmpste24{sup −/−} MEFs as compared to WT MEFs. Functional studies revealed that miR-365, a significantly down-regulated miRNA in Zmpste24{sup −/−} MEFs, modulates cellular growth phenotypes in MEFs. Overexpression of miR-365 in Zmpste24{sup −/−} MEFs increased cellular proliferation and decreased the percentage of SA-β-gal-positive cells, while inhibition of miR-365 function led to an increase of SA-β-gal-positive cells in WT MEFs. Furthermore, we identified Rasd1, a member of the Ras superfamily of small GTPases, as a functional target of miR-365. While expression of miR-365 suppressed Rasd1 3′ UTR luciferase-reporter activity

  17. Role of the lectin complement pathway in kidney transplantation.

    Science.gov (United States)

    Farrar, Conrad A; Zhou, Wuding; Sacks, Steven H

    2016-10-01

    In the last 15 years two major advances in the role of complement in the kidney transplant have come about. The first is that ischaemia reperfusion injury and its profound effect on transplant outcome is dependent on the terminal product of complement activation, C5b-9. The second key observation relates to the function of the small biologically active fragments C3a and C5a released by complement activation in increasing antigen presentation and priming the T cell response that results in transplant rejection. In both cases local synthesis of C3 principally by the renal tubule cells plays an essential role that overshadows the role of the circulating pool of C3 generated largely by hepatocyte synthesis. More recent efforts have investigated the molecules expressed by renal tissue that can trigger complement activation. These have revealed a prominent effect of collectin-11 (CL-11), a soluble C-type lectin that is expressed in renal tissue and aligns with its major ligand L-fucose at sites of complement activation following ischaemic stress. Biochemical studies have shown that interaction between CL-11 and L-fucose results in complement activation by the lectin complement pathway, precisely targeting the innate immune response to the ischaemic tubule surface. Therapeutic approaches to reduce inflammatory and immune stimulation in ischaemic kidney have so far targeted C3 or its activation products and several are in clinical trials. The finding that lectin-fucose interaction is an important trigger of lectin pathway complement activation within the donor organ opens up further therapeutic targets where intervention could protect the donor kidney against complement. PMID:27286717

  18. Extensive temporal transcriptome and microRNA analyses identify molecular mechanisms underlying mitochondrial dysfunction induced by multi-walled carbon nanotubes in human lung cells.

    Science.gov (United States)

    Nymark, Penny; Wijshoff, Peter; Cavill, Rachel; van Herwijnen, Marcel; Coonen, Maarten L J; Claessen, Sandra; Catalán, Julia; Norppa, Hannu; Kleinjans, Jos C S; Briedé, Jacob J

    2015-01-01

    Understanding toxicity pathways of engineered nanomaterials (ENM) has recently been brought forward as a key step in twenty-first century ENM risk assessment. Molecular mechanisms linked to phenotypic end points is a step towards the development of toxicity tests based on key events, which may allow for grouping of ENM according to their modes of action. This study identified molecular mechanisms underlying mitochondrial dysfunction in human bronchial epithelial BEAS 2B cells following exposure to one of the most studied multi-walled carbon nanotubes (Mitsui MWCNT-7). Asbestos was used as a positive control and a non-carcinogenic glass wool material was included as a negative fibre control. Decreased mitochondrial membrane potential (MMP↓) was observed for MWCNTs at a biologically relevant dose (0.25 μg/cm(2)) and for asbestos at 2 μg/cm(2), but not for glass wool. Extensive temporal transcriptomic and microRNA expression analyses identified a 330-gene signature (including 26 genes with known mitochondrial function) related to MWCNT- and asbestos-induced MMP↓. Forty-nine of the MMP↓-associated genes showed highly similar expression patterns over time (six time points) and the majority was found to be regulated by two transcription factors strongly involved in mitochondrial homeostasis, APP and NRF1. In addition, four miRNAs were correlated with MMP↓ and one of them, miR-1275, was found to negatively correlate with a large part of the MMP↓-associated genes. Cellular processes such as gluconeogenesis, mitochondrial LC-fatty acid β-oxidation and spindle microtubule function were enriched among the MMP↓-associated genes and miRNAs. These results are expected to be useful in the identification of key events in ENM-related toxicity pathways for the development of molecular screening techniques.

  19. Transcriptome analysis of Bacillus thuringiensis spore life, germination and cell outgrowth in a vegetable-based food model.

    Science.gov (United States)

    Bassi, Daniela; Colla, Francesca; Gazzola, Simona; Puglisi, Edoardo; Delledonne, Massimo; Cocconcelli, Pier Sandro

    2016-05-01

    Toxigenic species belonging to Bacillus cereus sensu lato, including Bacillus thuringiensis, cause foodborne outbreaks thanks to their capacity to survive as spores and to grow in food matrixes. The goal of this work was to assess by means of a genome-wide transcriptional assay, in the food isolate B. thuringiensis UC10070, the gene expression behind the process of spore germination and consequent outgrowth in a vegetable-based food model. Scanning electron microscopy and Energy Dispersive X-ray microanalysis were applied to select the key steps of B. thuringiensis UC10070 cell cycle to be analyzed with DNA-microarrays. At only 40 min from heat activation, germination started rapidly and in less than two hours spores transformed in active growing cells. A total of 1646 genes were found to be differentially expressed and modulated during the entire B. cereus life cycle in the food model, with most of the significant genes belonging to transport, transcriptional regulation and protein synthesis, cell wall and motility and DNA repair groups. Gene expression studies revealed that toxin-coding genes nheC, cytK and hblC were found to be expressed in vegetative cells growing in the food model.

  20. 21 CFR 866.4100 - Complement reagent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Complement reagent. 866.4100 Section 866.4100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... Complement reagent. (a) Identification. A complement reagent is a device that consists of complement,...

  1. Understanding the Role of Host Hemocytes in a Squid/Vibrio Symbiosis Using Transcriptomics and Proteomics

    Directory of Open Access Journals (Sweden)

    Andrew J. Collins

    2012-05-01

    Full Text Available The symbiosis between the squid, Euprymna scolopes, and the bacterium, Vibrio fischeri, serves as a model for understanding interactions between beneficial bacteria and animal hosts. The establishment and maintenance of the association is highly specific and depends on the selection of V. fischeri and exclusion of non-symbiotic bacteria from the environment. Current evidence suggests that the host’s cellular innate immune system, in the form of macrophage-like hemocytes, helps to mediate host tolerance of V. fischeri. To begin to understand the role of hemocytes in this association, we analyzed these cells by high-throughput 454 transcriptomic and liquid chromatography/ tandem mass spectrometry (LC-MS/MS proteomic analyses. 454 high-throughput sequencing produced 650,686 reads totaling 279.9 Mb while LC-MS/MS analyses of circulating hemocytes putatively identified 702 unique proteins. Several receptors involved with the recognition of microbial associated molecular patterns (MAMPs were identified. Among these was a complete open reading frame (ORF to a putative peptidoglycan recognition protein (EsPGRP5 that has conserved residues for amidase activity. Assembly of the hemocyte transcriptome showed EsPGRP5 had high coverage, suggesting it is among the 5% most abundant transcripts in circulating hemocytes. Other transcripts and proteins identified included members of the conserved NFκB signaling pathway, putative members of the complement pathway, the carbohydrate binding protein galectin, and cephalotoxin. Quantitative PCR of complement-related genes, cephalotoxin, EsPGRP5, and a nitric oxide synthase showed differential expression in circulating hemocytes isolated from adult squid with colonized light organs compared to those for which the symbionts were removed. These data suggest that the presence of the symbiont influences gene expression of the cellular innate immune system of the host.

  2. Transcriptomic Changes in Osteoblasts Following Endothelial Cell-Cocultivation Suggest a Role of Extracellular Matrix in Cellular Interaction.

    Science.gov (United States)

    Lampert, Florian M; Simunovic, Filip; Finkenzeller, Günter; Pfeifer, Dietmar; Stark, G Björn; Winninger, Oscar; Steiner, Dominik

    2016-08-01

    Vascularization is important for bone development, fracture healing and engineering of artificial bone tissue. In the context of bone tissue engineering, it was shown that coimplantation of human primary umbilical vein endothelial cells (HUVECs) and human osteoblasts (hOBs) results in the formation of functional blood vessels and enhanced bone regeneration. Implanted endothelial cells do not only contribute to blood vessel formation, but also support proliferation, cell survival and osteogenic differentiation of coimplanted hOBs. These effects are partially mediated by direct heterotypic cell contacts. In a previous report we could show that cocultivated hOBs strongly increase the expression of genes involved in extracellular matrix (ECM) formation in HUVECs, suggesting that ECM may be involved in the intercellular communication between hOBs and HUVECs. The present study aimed at investigating whether comparable changes occur in hOBs. We therefore performed a microarray analysis of hOBs cultivated in direct contact with HUVECs, revealing 1,004 differentially expressed genes. The differentially expressed genes could be assigned to the functional clusters ECM, proliferation, apoptosis and osteogenic differentiation. The microarray data could be confirmed by performing quantitative real time RT-PCR on selected genes. Furthermore, we could show that the ECM produced by HUVECs increased the expression of the osteogenic differentiation marker alkaline phosphatase (ALP) in hOBs. In summary, our data demonstrate that HUVECs provoke complex changes in gene expression patterns in cocultivated hOBs and that ECM plays and important role in this interaction. J. Cell. Biochem. 117: 1869-1879, 2016. © 2016 Wiley Periodicals, Inc. PMID:26754918

  3. Complement: Alive and Kicking Nanomedicines

    DEFF Research Database (Denmark)

    Andersen, Alina Joukainen; Hashemi, S.H.; Andresen, Thomas Lars;

    2009-01-01

    Administration of liposome- and polymer-based clinical nanomedicines, as well as many other proposed multifunctional nanoparticles, often triggers hypersensitivity reactions without the involvement of IgE. These anaphylactic reactions are believed to be secondary to activation of the complement...

  4. The lectin pathway of complement

    DEFF Research Database (Denmark)

    Ballegaard, Vibe Cecilie Diederich; Haugaard, Anna Karen; Garred, P;

    2014-01-01

    The pattern recognition molecules of the lectin complement pathway are important components of the innate immune system with known functions in host-virus interactions. This paper summarizes current knowledge of how these intriguing molecules, including mannose-binding lectin (MBL), Ficolin-1, -2...

  5. Complement receptor expression and activation of the complement cascade on B lymphocytes from patients with systemic lupus erythematosus (SLE)

    DEFF Research Database (Denmark)

    Marquart, H V; Svendsen, A; Rasmussen, J M;

    1995-01-01

    It has previously been reported that the expression of the complement receptors, CR1 on erythrocytes and blood leucocytes and CR2 on B cells, is reduced in patients with SLE, and that the reduced expression of CR1 on erythrocytes is related to disease activity. We have earlier demonstrated...... that normal B cells are capable of activating the alternative pathway (AP) of complement in a CR2-dependent fashion. In this study we have investigated whether disturbances in this activity may be related to the altered phenotype of SLE B cells. Flow cytometry was used to measure expression of complement...... receptors and regulatory proteins on B cells from SLE patients, as well as the deposition of C3 fragments occurring in vivo or after in vitro AP activation. We have confirmed, for a proportion of the patients studied, reduced expression of CR1 and CR2 on B cells, and shown a consistency between low CR2...

  6. CD54/intercellular adhesion molecule 1 and major histocompatibility complex II signaling induces B cells to express interleukin 2 receptors and complements help provided through CD40 ligation

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    We have examined signaling roles for CD54 intercellular adhesion molecule 1 and major histocompatibility complex (MHC) II as contact ligands during T help for B cell activation. We used a T helper 1 (Th1)-dependent helper system that was previously shown to be contact as well as interleukin 2 (IL-2......) dependent to demonstrate the relative roles of CD54, MHC II, and CD40 signaling in the events leading to the induction of B cell proliferation and responsiveness to IL-2. Paraformaldehyde-fixed activated Th1-induced expression of IL-2R alpha, IL-2R beta, and B7, and upregulated MHC II and CD54 on B cells...

  7. Transcriptomic and molecular genetic analysis of the cell wall salvage response of Aspergillus niger to the absence of galactofuranose synthesis.

    Science.gov (United States)

    Park, Joohae; Hulsman, Mark; Arentshorst, Mark; Breeman, Matthijs; Alazi, Ebru; Lagendijk, Ellen L; Rocha, Marina C; Malavazi, Iran; Nitsche, Benjamin M; van den Hondel, Cees A M J J; Meyer, Vera; Ram, Arthur F J

    2016-09-01

    The biosynthesis of cell surface-located galactofuranose (Galf)-containing glycostructures such as galactomannan, N-glycans and O-glycans in filamentous fungi is important to secure the integrity of the cell wall. UgmA encodes an UDP-galactopyranose mutase, which is essential for the formation of Galf. Consequently, the ΔugmA mutant lacks Galf-containing molecules. Our previous work in Aspergillus niger work suggested that loss of function of ugmA results in activation of the cell wall integrity (CWI) pathway which is characterized by increased expression of the agsA gene, encoding an α-glucan synthase. In this study, the transcriptional response of the ΔugmA mutant was further linked to the CWI pathway by showing the induced and constitutive phosphorylation of the CWI-MAP kinase in the ΔugmA mutant. To identify genes involved in cell wall remodelling in response to the absence of galactofuranose biosynthesis, a genome-wide expression analysis was performed using RNAseq. Over 400 genes were higher expressed in the ΔugmA mutant compared to the wild-type. These include genes that encode enzymes involved in chitin (gfaB, gnsA, chsA) and α-glucan synthesis (agsA), and in β-glucan remodelling (bgxA, gelF and dfgC), and also include several glycosylphosphatidylinositol (GPI)-anchored cell wall protein-encoding genes. In silico analysis of the 1-kb promoter regions of the up-regulated genes in the ΔugmA mutant indicated overrepresentation of genes with RlmA, MsnA, PacC and SteA-binding sites. The importance of these transcription factors for survival of the ΔugmA mutant was analysed by constructing the respective double mutants. The ΔugmA/ΔrlmA and ΔugmA/ΔmsnA double mutants showed strong synthetic growth defects, indicating the importance of these transcription factors to maintain cell wall integrity in the absence of Galf biosynthesis. PMID:27264789

  8. Complement activation promotes muscle inflammation during modified muscle use

    Science.gov (United States)

    Frenette, J.; Cai, B.; Tidball, J. G.

    2000-01-01

    Modified muscle use can result in muscle inflammation that is triggered by unidentified events. In the present investigation, we tested whether the activation of the complement system is a component of muscle inflammation that results from changes in muscle loading. Modified rat hindlimb muscle loading was achieved by removing weight-bearing from the hindlimbs for 10 days followed by reloading through normal ambulation. Experimental animals were injected with the recombinant, soluble complement receptor sCR1 to inhibit complement activation. Assays for complement C4 or factor B in sera showed that sCR1 produced large reductions in the capacity for activation of the complement system through both the classical and alternative pathways. Analysis of complement C4 concentration in serum in untreated animals showed that the classical pathway was activated during the first 2 hours of reloading. Analysis of factor B concentration in untreated animals showed activation of the alternative pathway at 6 hours of reloading. Administration of sCR1 significantly attenuated the invasion of neutrophils (-49%) and ED1(+) macrophages (-52%) that occurred in nontreated animals after 6 hours of reloading. The presence of sCR1 also reduced significantly the degree of edema by 22% as compared to untreated animals. Together, these data show that increased muscle loading activated the complement system which then briefly contributes to the early recruitment of inflammatory cells during modified muscle loading.

  9. Transcriptomic Crosstalk between Fungal Invasive Pathogens and Their Host Cells: Opportunities and Challenges for Next-Generation Sequencing Methods

    OpenAIRE

    Francisco J Enguita; Costa, Marina C.; Ana Marisa Fusco-Almeida; Maria José Mendes-Giannini; Ana Lúcia Leitão

    2016-01-01

    Fungal invasive infections are an increasing health problem. The intrinsic complexity of pathogenic fungi and the unmet clinical need for new and more effective treatments requires a detailed knowledge of the infection process. During infection, fungal pathogens are able to trigger a specific transcriptional program in their host cells. The detailed knowledge of this transcriptional program will allow for a better understanding of the infection process and consequently will help in the future...

  10. Identification of RECQ1-regulated transcriptome uncovers a role of RECQ1 in regulation of cancer cell migration and invasion

    Science.gov (United States)

    Li, Xiao Ling; Lu, Xing; Parvathaneni, Swetha; Bilke, Sven; Zhang, Hongen; Thangavel, Saravanabhavan; Vindigni, Alessandro; Hara, Toshifumi; Zhu, Yuelin; Meltzer, Paul S; Lal, Ashish; Sharma, Sudha

    2014-01-01

    The RECQ protein family of helicases has critical roles in protecting and stabilizing the genome. Three of the 5 known members of the human RecQ family are genetically linked with cancer susceptibility syndromes, but the association of the most abundant human RecQ homolog, RECQ1, with cellular transformation is yet unclear. RECQ1 is overexpressed in a variety of human cancers, indicating oncogenic functions. Here, we assessed genome-wide changes in gene expression upon knockdown of RECQ1 in HeLa and MDA-MB-231 cells. Pathway analysis suggested that RECQ1 enhances the expression of multiple genes that play key roles in cell migration, invasion, and metastasis, including EZR, ITGA2, ITGA3, ITGB4, SMAD3, and TGFBR2. Consistent with these results, silencing RECQ1 significantly reduced cell migration and invasion. In comparison to genome-wide annotated promoter regions, the promoters of genes downregulated upon RECQ1 silencing were significantly enriched for a potential G4 DNA forming sequence motif. Chromatin immunoprecipitation assays demonstrated binding of RECQ1 to the G4 motifs in the promoters of select genes downregulated upon RECQ1 silencing. In breast cancer patients, the expression of a subset of RECQ1-activated genes positively correlated with RECQ1 expression. Moreover, high RECQ1 expression was associated with poor prognosis in breast cancer. Collectively, our findings identify a novel function of RECQ1 in gene regulation and indicate that RECQ1 contributes to tumor development and progression, in part, by regulating the expression of key genes that promote cancer cell migration, invasion and metastasis. PMID:25483193

  11. The impact of methylmercury on 1,25-dihydroxyvitamin D3-induced transcriptomic responses in dolphin skin cells.

    Science.gov (United States)

    Ellis, Blake C; Gattoni-Celli, Sebastiano; Kindy, Mark S

    2010-01-01

    The Atlantic bottlenose dolphin has been the focus of much attention owing to the considerable impact of environmental stress on its health and the associated implications for human health. Here, we used skin cells from the dolphin to investigate the protective role of the vitamin D pathway against environmental stressors. We previously reported that dolphin skin cells respond to 1,25-dihydroxyvitamin D3 (1,25D3), the bioactive metabolite of vitamin D3, by upregulation of the vitamin D receptor (VDR) and expression of several genes. Methylmercury is a highly bioaccumulative environmental stressor of relevance to the dolphin. We currently report that in dolphin cells sublethal concentrations of methylmercury compromise the ability of 1,25D3 to upregulate VDR, to transactivate a vitamin D-sensitive promoter, and to express specific target genes. These results help elucidate the effects of vitamin D and methylmercury on innate immunity in dolphin skin and potentially in human skin as well, considering similarities in the vitamin D pathway between the two species.

  12. IgG antibodies in food allergy influence allergen-antibody complex formation and binding to B cells: a role for complement receptors

    NARCIS (Netherlands)

    Meulenbroek, L.A.; Jong, R.J.; Hartog Jager, den C.F.; Monsuur, H.N.; Wouters, D.; Nauta, A.; Knippels, L.M.; Neerven, van R.J.J.; Ruiter, B.; Leusen, J.H.; Hack, C.E.; Bruijnzeel-Koomen, C.A.; Knulst, A.C.; Garssen, J.; Hoffen, van E.

    2013-01-01

    Allergen-IgE complexes are more efficiently internalized and presented by B cells than allergens alone. It has been suggested that IgG Abs induced by immunotherapy inhibit these processes. Food-allergic patients have high allergen-specific IgG levels. However, the role of these Abs in complex format

  13. Complementing xeroderma pigmentosum fibroblasts restore biological activity to UV-damaged DNA

    International Nuclear Information System (INIS)

    UV survival curves of adenovirus 2 using fused complementing xeroderma pigmentosum fibroblast strains as virus hosts showed a component with an inactivation slope identical to that given by normal cells. This component was not observed when the fibroblasts were not fused or when fusions involved strains in the same complementing group. Extrapolation to zero dose indicated that three percent of the viral plaque-forming units had infected cells capable of normal repair; this suggested that three percent of the cells were complementing heterokaryons. Thus, heterokaryons formed from xeroderma pigmentosum fibroblasts belonging to different complementation groups are as capable of restoring biological activity to UV-damaged adenovirus 2 as are normal cells

  14. The Escherichia coli transcriptome linked to growth fitness

    Directory of Open Access Journals (Sweden)

    Bei-Wen Ying

    2016-03-01

    Full Text Available A series of Escherichia coli strains with varied genomic sequences were subjected to high-density microarray analyses to elucidate the fitness-correlated transcriptomes. Fitness, which is commonly evaluated by the growth rate during the exponential phase, is not only determined by the genome but is also linked to growth conditions, e.g., temperature. We previously reported genetic and environmental contributions to E. coli transcriptomes and evolutionary transcriptome changes in thermal adaptation. Here, we describe experimental details on how to prepare microarray samples that truly represent the growth fitness of the E. coli cells. A step-by-step record of sample preparation procedures that correspond to growing cells and transcriptome data sets that are deposited at the GEO database (GSE33212, GSE52770, GSE61739 are also provided for reference.

  15. The olfactory transcriptomes of mice.

    Science.gov (United States)

    Ibarra-Soria, Ximena; Levitin, Maria O; Saraiva, Luis R; Logan, Darren W

    2014-09-01

    The olfactory (OR) and vomeronasal receptor (VR) repertoires are collectively encoded by 1700 genes and pseudogenes in the mouse genome. Most OR and VR genes were identified by comparative genomic techniques and therefore, in many of those cases, only their protein coding sequences are defined. Some also lack experimental support, due in part to the similarity between them and their monogenic, cell-specific expression in olfactory tissues. Here we use deep RNA sequencing, expression microarray and quantitative RT-PCR in both the vomeronasal organ and whole olfactory mucosa to quantify their full transcriptomes in multiple male and female mice. We find evidence of expression for all VR, and almost all OR genes that are annotated as functional in the reference genome, and use the data to generate over 1100 new, multi-exonic, significantly extended receptor gene annotations. We find that OR and VR genes are neither equally nor randomly expressed, but have reproducible distributions of abundance in both tissues. The olfactory transcriptomes are only minimally different between males and females, suggesting altered gene expression at the periphery is unlikely to underpin the striking sexual dimorphism in olfactory-mediated behavior. Finally, we present evidence that hundreds of novel, putatively protein-coding genes are expressed in these highly specialized olfactory tissues, and carry out a proof-of-principle validation. Taken together, these data provide a comprehensive, quantitative catalog of the genes that mediate olfactory perception and pheromone-evoked behavior at the periphery. PMID:25187969

  16. The olfactory transcriptomes of mice.

    Directory of Open Access Journals (Sweden)

    Ximena Ibarra-Soria

    2014-09-01

    Full Text Available The olfactory (OR and vomeronasal receptor (VR repertoires are collectively encoded by 1700 genes and pseudogenes in the mouse genome. Most OR and VR genes were identified by comparative genomic techniques and therefore, in many of those cases, only their protein coding sequences are defined. Some also lack experimental support, due in part to the similarity between them and their monogenic, cell-specific expression in olfactory tissues. Here we use deep RNA sequencing, expression microarray and quantitative RT-PCR in both the vomeronasal organ and whole olfactory mucosa to quantify their full transcriptomes in multiple male and female mice. We find evidence of expression for all VR, and almost all OR genes that are annotated as functional in the reference genome, and use the data to generate over 1100 new, multi-exonic, significantly extended receptor gene annotations. We find that OR and VR genes are neither equally nor randomly expressed, but have reproducible distributions of abundance in both tissues. The olfactory transcriptomes are only minimally different between males and females, suggesting altered gene expression at the periphery is unlikely to underpin the striking sexual dimorphism in olfactory-mediated behavior. Finally, we present evidence that hundreds of novel, putatively protein-coding genes are expressed in these highly specialized olfactory tissues, and carry out a proof-of-principle validation. Taken together, these data provide a comprehensive, quantitative catalog of the genes that mediate olfactory perception and pheromone-evoked behavior at the periphery.

  17. Transcriptome differentiation along the dorso-ventral axis in laser-captured microdissected rat hippocampal granular cell layer

    DEFF Research Database (Denmark)

    Christensen, T.; Bisgaard, C.F.; Nielsen, Henrik Bjørn;

    2010-01-01

    Several findings suggest a functional and anatomical differentiation along the dorso-ventral axis of the hippocampus. Lesion studies in rats have indicated that the dorsal hippocampus preferentially plays a role in spatial learning and memory, while the ventral hippocampus is involved in anxiety...... ventral granular cell layer with a false discovery rate below 5% and with a relative change in gene expression level of 20% or more. From this pool of genes 45 genes were more than two-fold regulated, 13 genes being dorsally enriched and 32 genes being ventrally enriched. Moreover, cluster analysis based...

  18. Transcriptomic Profiling of Virus-Host Cell Interactions following Chicken Anaemia Virus (CAV Infection in an In Vivo Model.

    Directory of Open Access Journals (Sweden)

    Efstathios S Giotis

    Full Text Available Chicken Anaemia Virus (CAV is an economically important virus that targets lymphoid and erythroblastoid progenitor cells leading to immunosuppression. This study aimed to investigate the interplay between viral infection and the host's immune response to better understand the pathways that lead to CAV-induced immunosuppression. To mimic vertical transmission of CAV in the absence of maternally-derived antibody, day-old chicks were infected and their responses measured at various time-points post-infection by qRT-PCR and gene expression microarrays. The kinetics of mRNA expression levels of signature cytokines of innate and adaptive immune responses were determined by qRT-PCR. The global gene expression profiles of mock-infected (control and CAV-infected chickens at 14 dpi were also compared using a chicken immune-related 5K microarray. Although in the thymus there was evidence of induction of an innate immune response following CAV infection, this was limited in magnitude. There was little evidence of a Th1 adaptive immune response in any lymphoid tissue, as would normally be expected in response to viral infection. Most cytokines associated with Th1, Th2 or Treg subsets were down-regulated, except IL-2, IL-13, IL-10 and IFNγ, which were all up-regulated in thymus and bone marrow. From the microarray studies, genes that exhibited significant (greater than 1.5-fold, false discovery rate <0.05 changes in expression in thymus and bone marrow on CAV infection were mainly associated with T-cell receptor signalling, immune response, transcriptional regulation, intracellular signalling and regulation of apoptosis. Expression levels of a number of adaptor proteins, such as src-like adaptor protein (SLA, a negative regulator of T-cell receptor signalling and the transcription factor Special AT-rich Binding Protein 1 (SATB1, were significantly down-regulated by CAV infection, suggesting potential roles for these genes as regulators of viral infection or

  19. Largescale Transcriptomics Analysis Suggests Over-Expression of BGH3, MMP9 and PDIA3 in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    He, Yuan; Shao, Fangyang; Pi, Weidong; Shi, Cong; Chen, Yujia; Gong, Diping; Wang, Bingjie; Cao, Zhiwei; Tang, Kailin

    2016-01-01

    Oral squamous cell carcinoma (OSCC) has been reported as the most prevalent cancer of the head and neck region, while early diagnosis remains challenging. Here we took a comprehensive bioinformatics study on microarray data of 326 OSCC clinical samples with control of 165 normal tissues. The cell interaction pathways of ECM-receptor interaction and focal adhesion were found to be significantly regulated in OSCC samples. Further analysis of the topological properties and expression consistency identified that three hub genes in the gene interaction network, MMP9, PDIA3 and BGH3, were consistently up-expressed in OSCC samples. When being validated on additional microarray datasets of 41 OSCC samples, the validation rate of over-expressed BGH3, MMP9, and PDIA3 reached 90%, 90% and 84% respectively. At last, immuno-histochemical assays were done to test the protein expression of the three genes on newly collected clinical samples of 35 OSCC, 20 samples of pre-OSCC stage, and 12 normal oral mucosa specimens. Their protein expression levels were also found to progressively increase from normal mucosa to pre-OSCC stage and further to OSCC (ANOVA p = 0.000), suggesting their key roles in OSCC pathogenesis. Based on above solid validation, we propose BGH3, MMP9 and PDIA3 might be further explored as potential biomarkers to aid OSCC diagnosis.

  20. Largescale Transcriptomics Analysis Suggests Over-Expression of BGH3, MMP9 and PDIA3 in Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Yuan He

    Full Text Available Oral squamous cell carcinoma (OSCC has been reported as the most prevalent cancer of the head and neck region, while early diagnosis remains challenging. Here we took a comprehensive bioinformatics study on microarray data of 326 OSCC clinical samples with control of 165 normal tissues. The cell interaction pathways of ECM-receptor interaction and focal adhesion were found to be significantly regulated in OSCC samples. Further analysis of the topological properties and expression consistency identified that three hub genes in the gene interaction network, MMP9, PDIA3 and BGH3, were consistently up-expressed in OSCC samples. When being validated on additional microarray datasets of 41 OSCC samples, the validation rate of over-expressed BGH3, MMP9, and PDIA3 reached 90%, 90% and 84% respectively. At last, immuno-histochemical assays were done to test the protein expression of the three genes on newly collected clinical samples of 35 OSCC, 20 samples of pre-OSCC stage, and 12 normal oral mucosa specimens. Their protein expression levels were also found to progressively increase from normal mucosa to pre-OSCC stage and further to OSCC (ANOVA p = 0.000, suggesting their key roles in OSCC pathogenesis. Based on above solid validation, we propose BGH3, MMP9 and PDIA3 might be further explored as potential biomarkers to aid OSCC diagnosis.

  1. Genome-wide analysis of the mouse lung transcriptome reveals novel molecular gene interaction networks and cell-specific expression signatures

    Directory of Open Access Journals (Sweden)

    Williams Robert W

    2011-05-01

    Full Text Available Abstract Background The lung is critical in surveillance and initial defense against pathogens. In humans, as in mice, individual genetic differences strongly modulate pulmonary responses to infectious agents, severity of lung disease, and potential allergic reactions. In a first step towards understanding genetic predisposition and pulmonary molecular networks that underlie individual differences in disease vulnerability, we performed a global analysis of normative lung gene expression levels in inbred mouse strains and a large family of BXD strains that are widely used for systems genetics. Our goal is to provide a key community resource on the genetics of the normative lung transcriptome that can serve as a foundation for experimental analysis and allow predicting genetic predisposition and response to pathogens, allergens, and xenobiotics. Methods Steady-state polyA+ mRNA levels were assayed across a diverse and fully genotyped panel of 57 isogenic strains using the Affymetrix M430 2.0 array. Correlations of expression levels between genes were determined. Global expression QTL (eQTL analysis and network covariance analysis was performed using tools and resources in GeneNetwork http://www.genenetwork.org. Results Expression values were highly variable across strains and in many cases exhibited a high heri-tability factor. Several genes which showed a restricted expression to lung tissue were identified. Using correlations between gene expression values across all strains, we defined and extended memberships of several important molecular networks in the lung. Furthermore, we were able to extract signatures of immune cell subpopulations and characterize co-variation and shared genetic modulation. Known QTL regions for respiratory infection susceptibility were investigated and several cis-eQTL genes were identified. Numerous cis- and trans-regulated transcripts and chromosomal intervals with strong regulatory activity were mapped. The Cyp1a1 P

  2. Pseudo-Reference-Based Assembly of Vertebrate Transcriptomes

    OpenAIRE

    Kyoungwoo Nam; Heesu Jeong; Jin-Wu Nam

    2016-01-01

    High-throughput RNA sequencing (RNA-seq) provides a comprehensive picture of the transcriptome, including the identity, structure, quantity, and variability of expressed transcripts in cells, through the assembly of sequenced short RNA-seq reads. Although the reference-based approach guarantees the high quality of the resulting transcriptome, this approach is only applicable when the relevant reference genome is present. Here, we developed a pseudo-reference-based assembly (PRA) that reconstr...

  3. Activation of human complement by immunoglobulin G antigranulocyte antibody.

    Science.gov (United States)

    Rustagi, P K; Currie, M S; Logue, G L

    1982-01-01

    The ability of antigranulocyte antibody to fix the third component of complement (C3) to the granulocyte surface was investigated by an assay that quantitates the binding of monoclonal anti-C3 antibody to paraformaldehyde-fixed cells preincubated with Felty's syndrome serum in the presence of human complement. The sera from 7 of 13 patients with Felty's syndrome bound two to three times as much C3 to granulocytes as sera from patients with uncomplicated rheumatoid arthritis. The complement-activating ability of Felty's syndrome serum seemed to reside in the monomeric IgG-containing serum fraction. For those sera capable of activating complement, the amount of C3 fixed to granulocytes was proportional to the amount of granulocyte-binding IgG present in the serum. Thus, complement fixation appeared to be a consequence of the binding of antigranulocyte antibody to the cell surface. These studies suggest a role for complement-mediated injury in the pathophysiology of immune granulocytopenia, as has been demonstrated for immune hemolytic anemia and immune thrombocytopenia. PMID:7174786

  4. Lessons learned from mice deficient in lectin complement pathway molecules

    DEFF Research Database (Denmark)

    Genster, Ninette; Takahashi, Minoru; Sekine, Hideharu;

    2014-01-01

    The lectin pathway of the complement system is initiated when the pattern-recognition molecules, mannose-binding lectin (MBL), ficolins or collectin-11, bind to invading pathogens or damaged host cells. This leads to activation of MBL/ficolin/collectin-11 associated serine proteases (MASPs), which...... in turn activate downstream complement components, ultimately leading to elimination of the pathogen. Mice deficient in the key molecules of lectin pathway of complement have been generated in order to build knowledge of the molecular mechanisms of the lectin pathway in health and disease. Despite...... in complement activation, pathogen infection, coagulation, host tissue injury and developmental biology have been revealed by in vivo investigations. This review provides an overview of the mice deficient in lectin pathway molecules and highlights some of the most important findings that have resulted from...

  5. Pseudo-Reference-Based Assembly of Vertebrate Transcriptomes

    Directory of Open Access Journals (Sweden)

    Kyoungwoo Nam

    2016-02-01

    Full Text Available High-throughput RNA sequencing (RNA-seq provides a comprehensive picture of the transcriptome, including the identity, structure, quantity, and variability of expressed transcripts in cells, through the assembly of sequenced short RNA-seq reads. Although the reference-based approach guarantees the high quality of the resulting transcriptome, this approach is only applicable when the relevant reference genome is present. Here, we developed a pseudo-reference-based assembly (PRA that reconstructs a transcriptome based on a linear regression function of the optimized mapping parameters and genetic distances of the closest species. Using the linear model, we reconstructed transcriptomes of four different aves, the white leg horn, turkey, duck, and zebra finch, with the Gallus gallus genome as a pseudo-reference, and of three primates, the chimpanzee, gorilla, and macaque, with the human genome as a pseudo-reference. The resulting transcriptomes show that the PRAs outperformed the de novo approach for species with within about 10% mutation rate among orthologous transcriptomes, enough to cover distantly related species as far as chicken and duck. Taken together, we suggest that the PRA method can be used as a tool for reconstructing transcriptome maps of vertebrates whose genomes have not yet been sequenced.

  6. Pseudo-Reference-Based Assembly of Vertebrate Transcriptomes.

    Science.gov (United States)

    Nam, Kyoungwoo; Jeong, Heesu; Nam, Jin-Wu

    2016-01-01

    High-throughput RNA sequencing (RNA-seq) provides a comprehensive picture of the transcriptome, including the identity, structure, quantity, and variability of expressed transcripts in cells, through the assembly of sequenced short RNA-seq reads. Although the reference-based approach guarantees the high quality of the resulting transcriptome, this approach is only applicable when the relevant reference genome is present. Here, we developed a pseudo-reference-based assembly (PRA) that reconstructs a transcriptome based on a linear regression function of the optimized mapping parameters and genetic distances of the closest species. Using the linear model, we reconstructed transcriptomes of four different aves, the white leg horn, turkey, duck, and zebra finch, with the Gallus gallus genome as a pseudo-reference, and of three primates, the chimpanzee, gorilla, and macaque, with the human genome as a pseudo-reference. The resulting transcriptomes show that the PRAs outperformed the de novo approach for species with within about 10% mutation rate among orthologous transcriptomes, enough to cover distantly related species as far as chicken and duck. Taken together, we suggest that the PRA method can be used as a tool for reconstructing transcriptome maps of vertebrates whose genomes have not yet been sequenced. PMID:26927182

  7. Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile.

    Science.gov (United States)

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Cuyàs, Elisabet; Corominas-Faja, Bruna; Rodríguez-Gallego, Esther; Fernández-Arroyo, Salvador; Martin-Castillo, Begoña; Joven, Jorge; Menendez, Javier A

    2014-01-01

    Therapeutic interventions based on metabolic inhibitor-based therapies are expected to be less prone to acquired resistance. However, there has not been any study assessing the possibility that the targeting of the tumor cell metabolism may result in unforeseeable resistance. We recently established a pre-clinical model of estrogen-dependent MCF-7 breast cancer cells that were chronically adapted to grow (> 10 months) in the presence of graded, millimolar concentrations of the anti-diabetic biguanide metformin, an AMPK agonist/mTOR inhibitor that has been evaluated in multiple in vitro and in vivo cancer studies and is now being tested in clinical trials. To assess what impact the phenomenon of resistance might have on the metformin-like "dirty" drugs that are able to simultaneously hit several metabolic pathways, we employed the ingenuity pathway analysis (IPA) software to functionally interpret the data from Agilent whole-human genome arrays in the context of biological processes, networks, and pathways. Our findings establish, for the first time, that a "global" targeting of metabolic reprogramming using metformin certainly imposes a great selective pressure for the emergence of new breast cancer cellular states. Intriguingly, acquired resistance to metformin appears to trigger a transcriptome reprogramming toward a metastatic stem-like profile, as many genes encoding the components of the degradome (KLK11, CTSF, FREM1, BACE-2, CASP, TMPRSS4, MMP16, HTRA1), cancer cell migration and invasion factors (TP63, WISP2, GAS3, DKK1, BCAR3, PABPC1, MUC1, SPARCL1, SEMA3B, SEMA6A), stem cell markers (DCLK1, FAK), and key pro-metastatic lipases (MAGL and Cpla2) were included in the signature. Because this convergent activation of pathways underlying tumor microenvironment interactions occurred in low-proliferative cancer cells exhibiting a notable downregulation of the G 2/M DNA damage checkpoint regulators that maintain genome stability (CCNB1, CCNB2, CDC20, CDC25C, AURKA

  8. Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile

    Science.gov (United States)

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Cuyàs, Elisabet; Corominas-Faja, Bruna; Rodríguez-Gallego, Esther; Fernández-Arroyo, Salvador; Martin-Castillo, Begoña; Joven, Jorge; Menendez, Javier A

    2014-01-01

    Therapeutic interventions based on metabolic inhibitor-based therapies are expected to be less prone to acquired resistance. However, there has not been any study assessing the possibility that the targeting of the tumor cell metabolism may result in unforeseeable resistance. We recently established a pre-clinical model of estrogen-dependent MCF-7 breast cancer cells that were chronically adapted to grow (> 10 months) in the presence of graded, millimolar concentrations of the anti-diabetic biguanide metformin, an AMPK agonist/mTOR inhibitor that has been evaluated in multiple in vitro and in vivo cancer studies and is now being tested in clinical trials. To assess what impact the phenomenon of resistance might have on the metformin-like “dirty” drugs that are able to simultaneously hit several metabolic pathways, we employed the ingenuity pathway analysis (IPA) software to functionally interpret the data from Agilent whole-human genome arrays in the context of biological processes, networks, and pathways. Our findings establish, for the first time, that a “global” targeting of metabolic reprogramming using metformin certainly imposes a great selective pressure for the emergence of new breast cancer cellular states. Intriguingly, acquired resistance to metformin appears to trigger a transcriptome reprogramming toward a metastatic stem-like profile, as many genes encoding the components of the degradome (KLK11, CTSF, FREM1, BACE-2, CASP, TMPRSS4, MMP16, HTRA1), cancer cell migration and invasion factors (TP63, WISP2, GAS3, DKK1, BCAR3, PABPC1, MUC1, SPARCL1, SEMA3B, SEMA6A), stem cell markers (DCLK1, FAK), and key pro-metastatic lipases (MAGL and Cpla2) were included in the signature. Because this convergent activation of pathways underlying tumor microenvironment interactions occurred in low-proliferative cancer cells exhibiting a notable downregulation of the G2/M DNA damage checkpoint regulators that maintain genome stability (CCNB1, CCNB2, CDC20, CDC25C

  9. Protective responses to sublytic complement in the retinal pigment epithelium.

    Science.gov (United States)

    Tan, Li Xuan; Toops, Kimberly A; Lakkaraju, Aparna

    2016-08-01

    The retinal pigment epithelium (RPE) is a key site of injury in inherited and age-related macular degenerations. Abnormal activation of the complement system is a feature of these blinding diseases, yet how the RPE combats complement attack is poorly understood. The complement cascade terminates in the cell-surface assembly of membrane attack complexes (MACs), which promote inflammation by causing aberrant signal transduction. Here, we investigated mechanisms crucial for limiting MAC assembly and preserving cellular integrity in the RPE and asked how these are compromised in models of macular degeneration. Using polarized primary RPE and the pigmented Abca4(-/-) Stargardt disease mouse model, we provide evidence for two protective responses occurring within minutes of complement attack, which are essential for maintaining mitochondrial health in the RPE. First, accelerated recycling of the membrane-bound complement regulator CD59 to the RPE cell surface inhibits MAC formation. Second, fusion of lysosomes with the RPE plasma membrane immediately after complement attack limits sustained elevations in intracellular calcium and prevents mitochondrial injury. Cholesterol accumulation in the RPE, induced by vitamin A dimers or oxidized LDL, inhibits these defense mechanisms by activating acid sphingomyelinase (ASMase), which increases tubulin acetylation and derails organelle traffic. Defective CD59 recycling and lysosome exocytosis after complement attack lead to mitochondrial fragmentation and oxidative stress in the RPE. Drugs that stimulate cholesterol efflux or inhibit ASMase restore both these critical safeguards in the RPE and avert complement-induced mitochondrial injury in vitro and in Abca4(-/-) mice, indicating that they could be effective therapeutic approaches for macular degenerations. PMID:27432952

  10. Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets

    DEFF Research Database (Denmark)

    Adriaenssens, Alice E; Svendsen, Berit; Lam, Brian Y H;

    2016-01-01

    and delta cells. METHODS: Sst-Cre mice crossed with fluorescent reporters were used to identify delta cells, while Glu-Venus (with Venus reported under the control of the Glu [also known as Gcg] promoter) mice were used to identify alpha and beta cells. Alpha, beta and delta cells were purified using flow...... cytometry and analysed by RNA sequencing. The role of the ghrelin receptor was validated by imaging delta cell calcium concentrations using islets with delta cell restricted expression of the calcium reporter GCaMP3, and in perfused mouse pancreases. RESULTS: A database was constructed of all genes...... expressed in alpha, beta and delta cells. The gene encoding the ghrelin receptor, Ghsr, was highlighted as being highly expressed and enriched in delta cells. Activation of the ghrelin receptor raised cytosolic calcium levels in primary pancreatic delta cells and enhanced somatostatin secretion in perfused...

  11. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells.

    Directory of Open Access Journals (Sweden)

    Kelly P Nevin

    Full Text Available The mechanisms by which Geobacter sulfurreducens transfers electrons through relatively thick (>50 microm biofilms to electrodes acting as a sole electron acceptor were investigated. Biofilms of Geobacter sulfurreducens were grown either in flow-through systems with graphite anodes as the electron acceptor or on the same graphite surface, but with fumarate as the sole electron acceptor. Fumarate-grown biofilms were not immediately capable of significant current production, suggesting substantial physiological differences from current-producing biofilms. Microarray analysis revealed 13 genes in current-harvesting biofilms that had significantly higher transcript levels. The greatest increases were for pilA, the gene immediately downstream of pilA, and the genes for two outer c-type membrane cytochromes, OmcB and OmcZ. Down-regulated genes included the genes for the outer-membrane c-type cytochromes, OmcS and OmcT. Results of quantitative RT-PCR of gene transcript levels during biofilm growth were consistent with microarray results. OmcZ and the outer-surface c-type cytochrome, OmcE, were more abundant and OmcS was less abundant in current-harvesting cells. Strains in which pilA, the gene immediately downstream from pilA, omcB, omcS, omcE, or omcZ was deleted demonstrated that only deletion of pilA or omcZ severely inhibited current production and biofilm formation in current-harvesting mode. In contrast, these gene deletions had no impact on biofilm formation on graphite surfaces when fumarate served as the electron acceptor. These results suggest that biofilms grown harvesting current are specifically poised for electron transfer to electrodes and that, in addition to pili, OmcZ is a key component in electron transfer through differentiated G. sulfurreducens biofilms to electrodes.

  12. Transcriptomic analysis of mouse EL4 T cells upon T cell activation and in response to protein synthesis inhibition via cycloheximide treatment.

    Science.gov (United States)

    Lim, Pek Siew; Hardy, Kristine; Peng, Kaiman; Shannon, Frances M

    2016-03-01

    T cell activation involves the recognition of a foreign antigen complexed to the major histocompatibility complex on the antigen presenting T cell to the T cell receptor. This leads to activation of signaling pathways, which ultimately leads to induction of key cytokine genes responsible for eradication of foreign antigens. We used the mouse EL4 T cell as a model system to study genes that are induced as a result of T cell activation using phorbol myristate acetate (PMA) and calcium ionomycin (I) as stimuli. We were also interested to examine the importance of new protein synthesis in regulating the expression of genes involved in T cell activation. Thus we have pre-treated mouse EL4 T cells with cycloheximide, a protein synthesis inhibitor, and left the cells unstimulated or stimulated with PMA/I for 4 h. We performed microarray expression profiling of these cells to correlate the gene expression with chromatin state of T cells upon T cell activation [1]. Here, we detail further information and analysis of the microarray data, which shows that T cell activation leads to differential expression of genes and inducible genes can be further classified as primary and secondary response genes based on their protein synthesis dependency. The data is available in the Gene Expression Omnibus under accession number GSE13278. PMID:26981393

  13. Complement activation and complement control proteins in acute pancreatitis.

    OpenAIRE

    Whicher, J T; Barnes, M. P.; Brown, A; Cooper, M J; Read, R; Walters, G; Williamson, R C

    1982-01-01

    Serum levels of the complement proteins C3, C4, C1 inhibitor (C1 INH), factor I (C3b inactivator) and factor H (BIH) and plasma levels of cleavage products of C3 (C3c) and factor B were measured in 26 patients with acute pancreatitis. Breakdown of C3 occurred in 19 patients, as shown by a reduction in C3 level and the presence of C3c. C4 levels, however, did not fall and factor B breakdown products were not detected, thus suggesting that enzymatic cleavage of C3 occurred without significant i...

  14. The complement system and adverse pregnancy outcomes.

    Science.gov (United States)

    Regal, Jean F; Gilbert, Jeffrey S; Burwick, Richard M

    2015-09-01

    Adverse pregnancy outcomes significantly contribute to morbidity and mortality for mother and child, with lifelong health consequences for both. The innate and adaptive immune system must be regulated to insure survival of the fetal allograft, and the complement system is no exception. An intact complement system optimizes placental development and function and is essential to maintain host defense and fetal survival. Complement regulation is apparent at the placental interface from early pregnancy with some degree of complement activation occurring normally throughout gestation. However, a number of pregnancy complications including early pregnancy loss, fetal growth restriction, hypertensive disorders of pregnancy and preterm birth are associated with excessive or misdirected complement activation, and are more frequent in women with inherited or acquired complement system disorders or complement gene mutations. Clinical studies employing complement biomarkers in plasma and urine implicate dysregulated complement activation in components of each of the adverse pregnancy outcomes. In addition, mechanistic studies in rat and mouse models of adverse pregnancy outcomes address the complement pathways or activation products of importance and allow critical analysis of the pathophysiology. Targeted complement therapeutics are already in use to control adverse pregnancy outcomes in select situations. A clearer understanding of the role of the complement system in both normal pregnancy and complicated or failed pregnancy will allow a rational approach to future therapeutic strategies for manipulating complement with the goal of mitigating adverse pregnancy outcomes, preserving host defense, and improving long term outcomes for both mother and child.

  15. Mannose binding lectin plays a crucial role in innate immunity against yeast by enhanced complement activation and enhanced uptake of polymorphonuclear cells

    Directory of Open Access Journals (Sweden)

    Herpers Bjorn L

    2008-12-01

    Full Text Available Abstract Background Mannose binding lectin (MBL is an important host defence protein against opportunistic fungal pathogens. This carbohydrate-binding protein, an opsonin and lectin pathway activator, binds through multiple lectin domains to the repeating sugar arrays displayed on the surface of a wide range of clinically relevant microbial species. We investigated the contribution of MBL to antifungal innate immunity towards C. parapsilosis in vitro. Results High avidity binding was observed between MBL and C. albicans and C. parapsilosis. Addition of MBL to MBL deficient serum increased the deposition of C4 and C3b and enhanced the uptake of C. albicans, C. parapsilosis and acapsular C. neoformans by polymorphonuclear cells (PMNs. Compared to other microorganisms, such as Escherichia coli, Staphylococcus aureus and Cryptococcus neoformans, C. parapsilosis and Candida albicans were potent activators of the lectin pathway. Conclusion Our results suggest that MBL plays a crucial role in the innate immunity against infections caused by yeast by increasing uptake by PMN.

  16. Function of SSA subfamily of Hsp70 within and across species varies widely in complementing Saccharomyces cerevisiae cell growth and prion propagation.

    Directory of Open Access Journals (Sweden)

    Deepak Sharma

    Full Text Available BACKGROUND: The cytosol of most eukaryotic cells contains multiple highly conserved Hsp70 orthologs that differ mainly by their spatio-temporal expression patterns. Hsp70s play essential roles in protein folding, transport or degradation, and are major players of cellular quality control processes. However, while several reports suggest that specialized functions of Hsp70 orthologs were selected through evolution, few studies addressed systematically this issue. METHODOLOGY/PRINCIPAL FINDINGS: We compared the ability of Ssa1p-Ssa4p from Saccharomyces cerevisiae and Ssa5p-Ssa8p from the evolutionary distant yeast Yarrowia lipolytica to perform Hsp70-dependent tasks when expressed as the sole Hsp70 for S. cerevisiae in vivo. We show that Hsp70 isoforms (i supported yeast viability yet with markedly different growth rates, (ii influenced the propagation and stability of the [PSI(+] and [URE3] prions, but iii did not significantly affect the proteasomal degradation rate of CFTR. Additionally, we show that individual Hsp70 orthologs did not induce the formation of different prion strains, but rather influenced the aggregation properties of Sup35 in vivo. Finally, we show that [URE3] curing by the overexpression of Ydj1p is Hsp70-isoform dependent. CONCLUSION/SIGNIFICANCE: Despite very high homology and overlapping functions, the different Hsp70 orthologs have evolved to possess distinct activities that are required to cope with different types of substrates or stress situations. Yeast prions provide a very sensitive model to uncover this functional specialization and to explore the intricate network of chaperone/co-chaperone/substrates interactions.

  17. Complement activation in experimental human malaria infection.

    NARCIS (Netherlands)

    Roestenberg, M.; McCall, M.B.B.; Mollnes, T.E.; Deuren, M. van; Sprong, T.; Klasen, I.S.; Hermsen, C.C.; Sauerwein, R.W.; Ven, A.J.A.M. van der

    2007-01-01

    The objective of this study was to investigate complement activation in uncomplicated, early phases of human malaria. Fifteen healthy volunteers were experimentally infected with Plasmodium falciparum malaria. Parasitemia and complement activation products were assessed. During blood stage parasitem

  18. ON COMPLEMENTED SUBGROUPS OF FINITE GROUPS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A subgroup H of a finite group G is said to be complemented in G if there exists a subgroup K of G such that G = HK and H ∩ K = 1. In this case, K is called a complement of H in G.In this note some results on complemented subgroups of finite groups are obtained.

  19. Genetics Home Reference: complement factor I deficiency

    Science.gov (United States)

    ... the complement system decreases blood levels of another complement protein called C3, reducing the immune system's ability to fight infections. ... in my area? Other Names for This Condition C3 inactivator deficiency complement component 3 inactivator deficiency Related Information How are ...

  20. Transcriptomics using axolotls.

    Science.gov (United States)

    Voss, S Randal; Athippozhy, Antony; Woodcock, M Ryan

    2015-01-01

    Microarray and RNA-sequencing technology now exists for the characterization of the Ambystoma mexicanum transcriptome. With sufficient replication, these tools give the opportunity to truly investigate gene expression in a variety of experimental paradigms. Analysis of data from the Amby002 array and RNA-sequencing technology can identify genes that change expression levels in concert with each other, which in turn may reveal mechanisms associated with biological processes and molecular functions. PMID:25740496