WorldWideScience

Sample records for cells target polymorphic

  1. Candidate gene analysis using imputed genotypes: cell cycle single-nucleotide polymorphisms and ovarian cancer risk

    DEFF Research Database (Denmark)

    Goode, Ellen L; Fridley, Brooke L; Vierkant, Robert A

    2009-01-01

    Polymorphisms in genes critical to cell cycle control are outstanding candidates for association with ovarian cancer risk; numerous genes have been interrogated by multiple research groups using differing tagging single-nucleotide polymorphism (SNP) sets. To maximize information gleaned from......, and rs3212891; CDK2 rs2069391, rs2069414, and rs17528736; and CCNE1 rs3218036. These results exemplify the utility of imputation in candidate gene studies and lend evidence to a role of cell cycle genes in ovarian cancer etiology, suggest a reduced set of SNPs to target in additional cases and controls....

  2. A Novel System of Polymorphic and Diverse NK Cell Receptors in Primates

    Science.gov (United States)

    Rosner, Cornelia; Neff, Jennifer; Roos, Christian; Eberle, Manfred; Aujard, Fabienne; Münch, Claudia; Schempp, Werner; Carrington, Mary; Shiina, Takashi; Inoko, Hidetoshi; Knaust, Florian; Coggill, Penny; Sehra, Harminder; Beck, Stephan; Abi-Rached, Laurent; Reinhardt, Richard; Walter, Lutz

    2009-01-01

    There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in “higher” primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire. PMID:19834558

  3. Effects of polymorphisms in ovine and caprine prion protein alleles on cell-free conversion

    Directory of Open Access Journals (Sweden)

    Eiden Martin

    2011-02-01

    Full Text Available Abstract In sheep polymorphisms of the prion gene (PRNP at the codons 136, 154 and 171 strongly influence the susceptibility to scrapie and bovine spongiform encephalopathy (BSE infections. In goats a number of other gene polymorphisms were found which are suspected to trigger similar effects. However, no strong correlation between polymorphisms and TSE susceptibility in goats has yet been obtained from epidemiological studies and only a low number of experimental challenge data are available at present. We have therefore studied the potential impact of these polymorphisms in vitro by cell-free conversion assays using mouse scrapie strain Me7. Mouse scrapie brain derived PrPSc served as seeds and eleven recombinant single mutation variants of sheep and goat PrPC as conversion targets. With this approach it was possible to assign reduced conversion efficiencies to specific polymorphisms, which are associated to low frequency in scrapie-affected goats or found only in healthy animals. Moreover, we could demonstrate a dominant-negative inhibition of prion polymorphisms associated with high susceptibility by alleles linked to low susceptibility in vitro.

  4. ErbB polymorphisms: Insights and implications for response to targeted cancer therapeutics

    Directory of Open Access Journals (Sweden)

    Moulay A Alaoui-Jamali

    2015-02-01

    Full Text Available Advances in high-throughput genomic-scanning have expanded the repertory of genetic variations in DNA sequences encoding ErbB tyrosine kinase receptors in humans, including single nucleotide polymorphisms (SNPs, polymorphic repetitive elements, microsatellite variations, small-scale insertions and deletions. The ErbB family members: EGFR, ErbB2, ErbB3 and ErbB4 receptors are established as drivers of many aspects of tumor initiation and progression to metastasis. This knowledge has provided rationales for the development of an arsenal of anti-ErbB therapeutics, ranging from small molecule kinase inhibitors to monoclonal antibodies. Anti-ErbB agents are becoming the cornerstone therapeutics for the management of cancers that overexpress hyperactive variants of ErbB receptors, in particular ErbB2-positive breast cancer and non-small cell lung carcinomas. However, their clinical benefit has been limited to a subset of patients due to a wide heterogeneity in drug response despite the expression of the ErbB targets, attributed to intrinsic (primary and to acquired (secondary resistance. Somatic mutations in ErbB tyrosine kinase domains have been extensively investigated in preclinical and clinical setting as determinants for either high sensitivity or resistance to anti-ErbB therapeutics. In contrast, only scant information is available on the impact of SNPs, which are widespread in genes encoding ErbB receptors, on receptor structure and activity, and their predictive values for drug susceptibility. This review aims to briefly update polymorphic variations in genes encoding ErbB receptors based on recent advances in deep sequencing technologies, and to address challenging issues for a better understanding of the functional impact of single versus combined SNPs in ErbB genes to receptor topology, receptor-drug interaction, and drug susceptibility. The potential of exploiting SNPs in the era of stratified targeted therapeutics is discussed.

  5. Generation of Hypertension-Associated STK39 Polymorphism Knockin Cell Lines With the Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 System.

    Science.gov (United States)

    Mandai, Shintaro; Mori, Takayasu; Sohara, Eisei; Rai, Tatemitsu; Uchida, Shinichi

    2015-12-01

    Previous genome-wide association studies identified serine threonine kinase 39 (STK39), encoding STE20/SPS1-related proline/alanine-rich kinase, as one of a limited number of hypertension susceptibility genes. A recent meta-analysis confirmed the association of STK39 intronic polymorphism rs3754777 with essential hypertension, among previously reported hypertension-associated STK39 polymorphisms. However, the biochemical function of this polymorphism in the mechanism responsible for hypertension is yet to be clarified. We generated rs3754777G>A knockin human cell lines with clustered regularly interspaced short palindromic repeats-mediated genome engineering. Homozygous (A/A) and heterozygous (G/A) knockin human embryonic kidney cell lines were generated using a double nickase, single-guide RNAs targeting STK39 intron 5 around single-nucleotide polymorphism, and a 100-bp donor single-stranded DNA oligonucleotide. Reverse transcription polymerase chain reaction with sequencing analyses revealed the identical STK39 transcripts among the wild-type and both knockin cell lines. Quantitative reverse transcription polymerase chain reaction showed increased STK39 mRNA expression, and immunoblot analysis revealed increases in total and phosphorylated STE20/SPS1-related proline/alanine-rich kinase with increased phosphorylated Na-K-Cl cotransporter isoform 1 in both knockin cell lines. The largest increases in these molecules were observed in the homozygous cell line. These findings indicated that this intronic polymorphism increases STK39 transcription, leading to activation of the STE20/SPS1-related proline/alanine-rich kinase-solute carrier family 12A signaling cascade. Increased interactions between STE20/SPS1-related proline/alanine-rich kinase and the target cation-chloride cotransporters may be responsible for hypertension susceptibility in individuals with this polymorphism. © 2015 American Heart Association, Inc.

  6. PECAM-1 polymorphism affects monocyte adhesion to endothelial cells.

    Science.gov (United States)

    Goodman, Reyna S; Kirton, Christopher M; Oostingh, Gertie J; Schön, Michael P; Clark, Michael R; Bradley, J Andrew; Taylor, Craig J

    2008-02-15

    Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) plays an important role in leukocyte-endothelial cell adhesion and transmigration. Single nucleotide polymorphisms of PECAM-1 encoding amino acid substitutions at positions 98 leucine/valine (L/V), 536 serine/asparagine (S/N), and 643 arginine/glycine (R/G) occur in strong genetic linkage resulting in two common haplotypes (LSR and VNG). These PECAM-1 polymorphisms are associated with graft-versus-host disease after hematopoietic stem cell transplantation and with cardiovascular disease, but whether they influence PECAM-1 function is unknown. We examined the effect of homozygous and heterozygous expression of the PECAM-1 LSR and VNG genotypes on the adhesive interactions of peripheral blood monocytes and activated endothelial cell monolayers under shear stress in a flow-based cell adhesion assay. There was no difference in monocyte adhesion between the two homozygous genotypes of PECAM-1 but when monocytes expressed both alleles in heterozygous form, firm adhesion of monocytes to endothelial cells was markedly increased. PECAM-1 polymorphism expressed in homozygous or heterozygous form by endothelial cells did not influence monocyte adhesion. This is, to our knowledge, the first demonstration that PECAM-1 genotype can alter the level of monocyte binding to endothelial cells and a demonstration that heterozygous expression of a polymorphic protein may lead to altered function.

  7. Influence of CAG Repeat Polymorphism on the Targets of Testosterone Action

    Directory of Open Access Journals (Sweden)

    Giacomo Tirabassi

    2015-01-01

    Full Text Available In the last decade, ample evidence has demonstrated the growing importance of androgen receptor (AR CAG repeat polymorphism in andrology. This genetic parameter is able to condition the peripheral effects of testosterone and therefore to influence male sexual function and fertility, cardiovascular risk, body composition, bone metabolism, the risk of prostate and testicular cancer, the psychiatric status, and the onset of neurodegenerative disorders. In this review, we extensively discuss the literature data and identify a role for AR CAG repeat polymorphism in conditioning the systemic testosterone effects. In particular, our main purpose was to provide an updated text able to shed light on the many and often contradictory findings reporting an influence of CAG repeat polymorphism on the targets of testosterone action.

  8. Start codon targeted (SCoT) and target region amplification polymorphism (TRAP) for evaluating the genetic relationship of Dendrobium species.

    Science.gov (United States)

    Feng, Shangguo; He, Refeng; Yang, Sai; Chen, Zhe; Jiang, Mengying; Lu, Jiangjie; Wang, Huizhong

    2015-08-10

    Two molecular marker systems, start codon targeted (SCoT) and target region amplification polymorphism (TRAP), were used for genetic relationship analysis of 36 Dendrobium species collected from China. Twenty-two selected SCoT primers produced 337 loci, of which 324 (96%) were polymorphic, whereas 13 TRAP primer combinations produced a total of 510 loci, with 500 (97.8%) of them being polymorphic. An average polymorphism information content of 0.953 and 0.983 was detected using the SCoT and TRAP primers, respectively, showing that a high degree of genetic diversity exists among Chinese Dendrobium species. The partition of clusters in the unweighted pair group method with arithmetic mean dendrogram and principal coordinate analysis plot based on the SCoT and TRAP markers was similar and clustered the 36 Dendrobium species into four main groups. Our results will provide useful information for resource protection and will also be useful to improve the current Dendrobium breeding programs. Our results also demonstrate that SCoT and TRAP markers are informative and can be used to evaluate genetic relationships between Dendrobium species. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. IMPACT OF MANNOSE-BINDING PROTEIN GENE POLYMORPHISMS IN OMANI SICKLE CELL DISEASE PATIENTS

    Directory of Open Access Journals (Sweden)

    Mathew Zachariah

    2016-02-01

    Full Text Available Objectives: Our objective was to study mannose binding protein (MBP polymorphisms in exonic and promoter region and correlate associated infections and vasoocculsive (VOC episodes, since MBP plays an important role in innate immunity by activating the complement system. Methods: We studied the genetic polymorphisms in the Exon 1 (alleles A/O and promoter region (alleles Y/X; H/L, P/Q of the MBL2 gene, in sickle cell disease (SCD patients as increased incidence of infections is seen in these patients. A PCR-based, targeted genomic DNA sequencing of MBL2 was used to study 68 SCD Omani patients and 44 controls (voluntary blood donors. Results: The observed frequencies of MBL2 promoter polymorphism (-221, Y/X were 44.4% and 20.5% for the heterozygous genotype Y/X and 3.2% and 2.2% for the homozygous (X/X respectively between SCD patients and controls. MBL2 Exon1 gene mutations were 29.4% and 50% for the heterozygous genotype A/O and 5.9% and 6.8% respectively for the homozygous (O/O genotype between SCD patients and controls. The distribution of variant MBL2 polymorphisms did not show any correlation in SCD patients with or without vasoocculsive crisis (VOC attacks (p=0.162; OR-0.486; CI=0.177 -1.33, however, it was correlated with infections (p=0.0162; OR-3.55; CI 1.25-10.04. Conclusions: Although the frequency of the genotypes and haplotypes of MBL2 in SCD patients did not differ from controls, overall in the SCD patient cohort the increased representation of variant alleles was significantly correlated with infections (p<0.05. However, these variant MBL2 polymorphisms did not seem to play a significant role in the VOC episodes in this SCD cohort. Keywords: Mannose-binding lectin, polymorphism, promoter, Sickle cell disease, MBL2, MBP

  10. KIT polymorphisms and mutations determine responses of neoplastic mast cells to bafetinib (INNO-406).

    Science.gov (United States)

    Peter, Barbara; Hadzijusufovic, Emir; Blatt, Katharina; Gleixner, Karoline V; Pickl, Winfried F; Thaiwong, Tuddow; Yuzbasiyan-Gurkan, Vilma; Willmann, Michael; Valent, Peter

    2010-09-01

    Advanced systemic mastocytosis (SM) is characterized by uncontrolled growth of neoplastic mast cells (MC) and drug resistance. The tyrosine kinase receptor KIT is often mutated and activated and thus contributes to malignant growth of MC. Therefore, KIT-targeting drugs are currently tested for their ability to block growth of malignant MC. We determined the effects of the multikinase inhibitor INNO-406 (bafetinib) on primary neoplastic MC, the canine mastocytoma cell line C2, the human MC leukemia cell line HMC-1.1 bearing the KIT mutant V560G, and HMC-1.2 cells harboring KIT V560G and KIT D816V. INNO-406 was found to inhibit proliferation in HMC-1.1 cells (IC(50): 30-40 nM), but not in HMC-1.2 cells or primary neoplastic cells in patients with KIT D816V-positive SM. In canines, growth-inhibitory effects of INNO-406 were seen in C2 cells (IC(50): 50-100 nM) exhibiting a KIT exon 11 internal tandem-duplication and in primary neoplastic MC harboring wild-type exon 11, whereas no effects were seen in MC exhibiting a polymorphism at amino acid 581 in exon 11. INNO-406 was found to block KIT phosphorylation and expression in HMC-1.1 cells and C2 cells, but not in HMC-1.2 cells, whereas Lyn-phosphorylation was blocked by INNO-406 in all types of MC. In neoplastic MC, the major target of INNO-406 appears to be KIT. Drug responses may depend on the presence and type of KIT mutation. In human MC, the KIT D816V mutant introduces resistance, and in canine mastocytomas, an exon 11 polymorphism may be indicative of resistance against INNO-406.

  11. Reduced folate carrier polymorphism determines methotrexate uptake by B cells and CD4+ T cells

    DEFF Research Database (Denmark)

    Baslund, B; Gregers, J; Nielsen, Claus Henrik

    2008-01-01

    To examine if polymorphism 80G --> A in the Reduced Folate Carrier (RFC) affects uptake of MTX in B- and CD4+ T-cells.......To examine if polymorphism 80G --> A in the Reduced Folate Carrier (RFC) affects uptake of MTX in B- and CD4+ T-cells....

  12. Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers.

    Science.gov (United States)

    Heikrujam, Monika; Kumar, Jatin; Agrawal, Veena

    2015-09-01

    To detect genetic variations among different Simmondsia chinensis genotypes, two gene targeted markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) were employed in terms of their informativeness and efficiency in analyzing genetic relationships among different genotypes. A total of 15 SCoT and 17 CBDP primers detected genetic polymorphism among 39 Jojoba genotypes (22 females and 17 males). Comparatively, CBDP markers proved to be more effective than SCoT markers in terms of percentage polymorphism as the former detecting an average of 53.4% and the latter as 49.4%. The Polymorphic information content (PIC) value and marker index (MI) of CBPD were 0.43 and 1.10, respectively which were higher than those of SCoT where the respective values of PIC and MI were 0.38 and 1.09. While comparing male and female genotype populations, the former showed higher variation in respect of polymorphic percentage and PIC, MI and Rp values over female populations. Nei's diversity (h) and Shannon index (I) were calculated for each genotype and found that the genotype "MS F" (in both markers) was highly diverse and genotypes "Q104 F" (SCoT) and "82-18 F" (CBDP) were least diverse among the female genotype populations. Among male genotypes, "32 M" (CBDP) and "MS M" (SCoT) revealed highest h and I values while "58-5 M" (both markers) was the least diverse. Jaccard's similarity co-efficient of SCoT markers ranged from 0.733 to 0.922 in female genotypes and 0.941 to 0.746 in male genotype population. Likewise, CBDP data analysis also revealed similarity ranging from 0.751 to 0.958 within female genotypes and 0.754 to 0.976 within male genotype populations thereby, indicating genetically diverse Jojoba population. Employing the NTSYS (Numerical taxonomy and multivariate analysis system) Version 2.1 software, both the markers generated dendrograms which revealed that all the Jojoba genotypes were clustered into two major groups, one group consisting of

  13. HLA Class-II Associated HIV Polymorphisms Predict Escape from CD4+ T Cell Responses.

    Directory of Open Access Journals (Sweden)

    Nathan Erdmann

    2015-08-01

    Full Text Available Antiretroviral therapy, antibody and CD8+ T cell-mediated responses targeting human immunodeficiency virus-1 (HIV-1 exert selection pressure on the virus necessitating escape; however, the ability of CD4+ T cells to exert selective pressure remains unclear. Using a computational approach on HIV gag/pol/nef sequences and HLA-II allelic data, we identified 29 HLA-II associated HIV sequence polymorphisms or adaptations (HLA-AP in an African cohort of chronically HIV-infected individuals. Epitopes encompassing the predicted adaptation (AE or its non-adapted (NAE version were evaluated for immunogenicity. Using a CD8-depleted IFN-γ ELISpot assay, we determined that the magnitude of CD4+ T cell responses to the predicted epitopes in controllers was higher compared to non-controllers (p<0.0001. However, regardless of the group, the magnitude of responses to AE was lower as compared to NAE (p<0.0001. CD4+ T cell responses in patients with acute HIV infection (AHI demonstrated poor immunogenicity towards AE as compared to NAE encoded by their transmitted founder virus. Longitudinal data in AHI off antiretroviral therapy demonstrated sequence changes that were biologically confirmed to represent CD4+ escape mutations. These data demonstrate an innovative application of HLA-associated polymorphisms to identify biologically relevant CD4+ epitopes and suggests CD4+ T cells are active participants in driving HIV evolution.

  14. Characterization of genetic diversity in chickpea using SSR markers, Start Codon Targeted Polymorphism (SCoT) and Conserved DNA-Derived Polymorphism (CDDP).

    Science.gov (United States)

    Hajibarat, Zahra; Saidi, Abbas; Hajibarat, Zohreh; Talebi, Reza

    2015-07-01

    To evaluate the genetic diversity among 48 genotypes of chickpea comprising cultivars, landraces and internationally developed improved lines genetic distances were evaluated using three different molecular marker techniques: Simple Sequence Repeat (SSR); Start Codon Targeted (SCoT) and Conserved DNA-derived Polymorphism (CDDP). Average polymorphism information content (PIC) for SSR, SCoT and CDDP markers was 0.47, 0.45 and 0.45, respectively, and this revealed that three different marker types were equal for the assessment of diversity amongst genotypes. Cluster analysis for SSR and SCoT divided the genotypes in to three distinct clusters and using CDDP markers data, genotypes grouped in to five clusters. There were positive significant correlation (r = 0.43, P SSR markers. These results suggest that efficiency of SSR, SCOT and CDDP markers was relatively the same in fingerprinting of chickpea genotypes. To our knowledge, this is the first detailed report of using targeted DNA region molecular marker (CDDP) for genetic diversity analysis in chickpea in comparison with SCoT and SSR markers. Overall, our results are able to prove the suitability of SCoT and CDDP markers for genetic diversity analysis in chickpea for their high rates of polymorphism and their potential for genome diversity and germplasm conservation.

  15. EVALUATION OF CYTOKINE GENE POLYMORPHISM IN B CELL LYMPHOID MALIGNANCIES

    Directory of Open Access Journals (Sweden)

    E. L. Nazarova

    2014-01-01

    Full Text Available Previous studies with some solid tumors has shown that polymorphisms of certain cytokine genes may be used as predictors of clinical outcome in the patients. It seemed important to evaluate potential correlations between production of certain pro- and anti-inflammatory cytokines and co-receptor molecules, and promoter polymorphism of the cytokine genes involved into regulation of cell proliferation, differentiation, apoptosis, lipid metabolism and blood clotting in the patients with hematological malignancies. The article contains our results concerning associations between of IL-1β, -2, -4, -10, -17, TNFα, and allelic polymorphisms of their genes in 62 patients with B cell lymphoid malignancies in an ethnically homogenous group (self-identified as Russians. We have shown that the GА and AA genotypes of the G-308A polymorphism in TNFα gene are significantly associated with increased production of this cytokine, being more common in aggressive non-Hodgkin lymphomas, more rare in multiple myeloma and in indolent non-Hodgkin lymphomas.

  16. Analysis of IV characteristics of solar cells made of hydrogenated amorphous, polymorphous and microcrystalline silicon

    International Nuclear Information System (INIS)

    Hamadeh, H.

    2009-03-01

    The IV characteristics of pin solar cells made of amorphous, polymorphous and microcrystalline silicon were investigated. The temperature dependence was measured in the temperature range between 150 K and 395 K. This range covers the most terrestrial applications condition. Using simplex procedure, the IV parameter of the cells were deduce using line fitting. It has been shown that polymorphous silicon shows electrical properties that are close to properties of microcrystalline silicon but as it is well known, polymorphous silicon shows higher absorption similar to amorphous silicon. The polymorphous silicon solar cells showed higher efficiencies, lower shunting and higher filling factors. In the above mentioned temperature range, polymorphous silicon is the better material for the manufacturing of thin film hydrogenated silicon pin solar cells. More investigations concerning the structural properties are necessary to make stronger conclusions in regards to the stability of the material, what we hope to do in the future. (author)

  17. Single nucleotide polymorphisms as susceptibility, prognostic, and therapeutic markers of nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zienolddiny S

    2011-12-01

    Full Text Available Shanbeh Zienolddiny, Vidar SkaugSection for Toxicology and Biological Work Environment, National Institute of Occupational Health, Oslo, NorwayAbstract: Lung cancer is a major public health problem throughout the world. Among the most frequent cancer types (prostate, breast, colorectal, stomach, lung, lung cancer is the leading cause of cancer-related deaths worldwide. Among the two major subtypes of small cell lung cancer and nonsmall cell lung cancer (NSCLC, 85% of tumors belong to the NSCLC histological types. Small cell lung cancer is associated with the shortest survival time. Although tobacco smoking has been recognized as the major risk factor for lung cancer, there is a great interindividual and interethnic difference in risk of developing lung cancer given exposure to similar environmental and lifestyle factors. This may indicate that in addition to chemical and environmental factors, genetic variations in the genome may contribute to risk modification. A common type of genetic variation in the genome, known as single nucleotide polymorphism, has been found to be associated with susceptibility to lung cancer. Interestingly, many of these polymorphisms are found in the genes that regulate major pathways of carcinogen metabolism (cytochrome P450 genes, detoxification (glutathione S-transferases, adduct removal (DNA repair genes, cell growth/apoptosis (TP53/MDM2, the immune system (cytokines/chemokines, and membrane receptors (nicotinic acetylcholine and dopaminergic receptors. Some of these polymorphisms have been shown to alter the level of mRNA, and protein structure and function. In addition to being susceptibility markers, several of these polymorphisms are emerging to be important for response to chemotherapy/radiotherapy and survival of patients. Therefore, it is hypothesized that single nucleotide polymorphisms will be valuable genetic markers in individual-based prognosis and therapy in future. Here we will review some of the most

  18. PAI-1 expression and its regulation by promoter 4G/5G polymorphism in clear cell renal cell carcinoma.

    Science.gov (United States)

    Choi, Jung-Woo; Lee, Ju-Han; Park, Hong Seok; Kim, Young-Sik

    2011-10-01

    To characterise patients with high plasminogen activator inhibitor-1 (PAI-1) expression as oral PAI-1 antagonists are currently in preclinical trials, and to determine whether the PAI-1 promoter 4G/5G polymorphism regulates PAI-1 expression in clear cell renal cell carcinoma (CCRCC). PAI-1 expression was examined by immunohistochemistry in 69 CCRCC specimens. In addition, the promoter 4G/5G polymorphism was investigated by both allele-specific PCR and direct DNA sequencing. PAI-1 was overexpressed in 25/69 (36.2%) patients with CCRCC. PAI-1 staining was intense in tumour cells with a high Fuhrman nuclear grade and in spindle-shaped tumour cells. PAI-1 expression was significantly associated with older age at diagnosis (p=0.027), high nuclear grade (p5G and 31.9% (22/69) 5G/5G. The homozygous 4G/4G or 5G/5G group showed a tendency for a high nuclear grade (p=0.05) but the 4G/5G polymorphism was not related to other prognostic parameters. PAI-1 expression was poorly correlated with its promoter 4G/5G polymorphism (Spearman ρ=0.088). CCRCC with high PAI-1 expression is characterised by older age, high nuclear grade, advanced stage, distant metastasis and/or shortened disease-free survival. PAI-1 expression is not affected by the promoter 4G/5G polymorphism.

  19. Novel (Phenylethynyl)pyrene-LNA Constructs for Fluorescence SNP Sensing in Polymorphic Nucleic Acid Targets

    DEFF Research Database (Denmark)

    Astakhova, Irina Kira; Samokhina, Evgeniya; Babu, B Ravindra

    2012-01-01

    We describe fluorescent oligonucleotide probes labeled with novel (phenylethynyl)pyrene dyes attached to locked nucleic acids. Furthermore, we prove the utility of these probes for the effective detection of single-nucleotide polymorphisms in natural nucleic acids. High-affinity hybridization......DNA and RNA gene fragments. Target sequences were obtained by analysis of 200 clinical samples from patients currently receiving anti-HIV/AIDS combination therapy at the Russian Federal AIDS Center. Using these fluorescent oligonucleotides, we were able to detect the target mutation despite all the challenges...

  20. A Polymorphism within the Internal Fusion Loop of the Ebola Virus Glycoprotein Modulates Host Cell Entry.

    Science.gov (United States)

    Hoffmann, Markus; Crone, Lisa; Dietzel, Erik; Paijo, Jennifer; González-Hernández, Mariana; Nehlmeier, Inga; Kalinke, Ulrich; Becker, Stephan; Pöhlmann, Stefan

    2017-05-01

    The large scale of the Ebola virus disease (EVD) outbreak in West Africa in 2013-2016 raised the question whether the host cell interactions of the responsible Ebola virus (EBOV) strain differed from those of other ebolaviruses. We previously reported that the glycoprotein (GP) of the virus circulating in West Africa in 2014 (EBOV2014) exhibited reduced ability to mediate entry into two nonhuman primate (NHP)-derived cell lines relative to the GP of EBOV1976. Here, we investigated the molecular determinants underlying the differential entry efficiency. We found that EBOV2014-GP-driven entry into diverse NHP-derived cell lines, as well as human monocyte-derived macrophages and dendritic cells, was reduced compared to EBOV1976-GP, although entry into most human- and all bat-derived cell lines tested was comparable. Moreover, EBOV2014 replication in NHP but not human cells was diminished relative to EBOV1976, suggesting that reduced cell entry translated into reduced viral spread. Mutagenic analysis of EBOV2014-GP and EBOV1976-GP revealed that an amino acid polymorphism in the receptor-binding domain, A82V, modulated entry efficiency in a cell line-independent manner and did not account for the reduced EBOV2014-GP-driven entry into NHP cells. In contrast, polymorphism T544I, located in the internal fusion loop in the GP2 subunit, was found to be responsible for the entry phenotype. These results suggest that position 544 is an important determinant of EBOV infectivity for both NHP and certain human target cells. IMPORTANCE The Ebola virus disease outbreak in West Africa in 2013 entailed more than 10,000 deaths. The scale of the outbreak and its dramatic impact on human health raised the question whether the responsible virus was particularly adept at infecting human cells. Our study shows that an amino acid exchange, A82V, that was acquired during the epidemic and that was not observed in previously circulating viruses, increases viral entry into diverse target cells

  1. The -271 G>A polymorphism of kinase insert domain-containing receptor gene regulates its transcription level in patients with non-small cell lung cancer

    International Nuclear Information System (INIS)

    An, She-Juan; Chen, Zhi-Hong; Lin, Qiu-Xiong; Su, Jian; Chen, Hua-Jun; Lin, Jia-Ying; Wu, Yi-Long

    2009-01-01

    Kinase insert domain-containing receptor (KDR) plays a critical role in the metastasis of cancer and is used as a molecular target in cancer therapy. We investigated the characteristics of the -271 G>A polymorphism of the KDR gene to gain information that may benefit the development of individualized therapies for patients with non-small cell lung cancer (NSCLC). The -271 G>A polymorphism of the KDR gene in 106 lung cancer patients and 203 healthy control individuals was analyzed by polymerase chain reaction (PCR) and DNA sequencing methods. Real-time quantitative PCR and immunohistochemical methods were used to evaluate KDR mRNA and protein expression levels, respectively, in frozen tumor specimens. The -271 G>A polymorphism was associated with the mRNA expression level of the KDR gene in tumor tissues (t = 2.178, P = 0.032, independent samples t-test). Compared with the AG/GG genotype, the AA genotype was associated with higher KDR mRNA expression in tumor tissues. We found no relationship between the genotype and the KDR protein expression level and no significant difference in the distribution of the KDR gene polymorphism genotypes between lung cancer patients and the control group (χ 2 = 1.269, P = 0.264, Fisher's exact test). This study is the first to show that the -271 G>A polymorphism of the KDR gene may be a functional polymorphism related to the regulation of gene transcription. These findings may have important implications for therapies targeting KDR in patients with NSCLC

  2. Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Mangum, John S.; Chan, Lisa H.; Schmidt, Ute; Garten, Lauren M.; Ginley, David S.; Gorman, Brian P.

    2018-05-01

    Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In this work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice.

  3. MODULATING EFFECT OF THE −158 GΓ (C→T XMN-1 POLYMORPHISM IN INDIAN SICKLE CELL PATIENTS

    Directory of Open Access Journals (Sweden)

    Sanjay Pandey

    2012-01-01

    Full Text Available Xmn-1 polymorphism is a known factor, which increases fetal haemoglobin production. Among the inherited disorders of blood, thalassaemia and SCD constitutes a major bulk of genetic diseases in India.  Our aim was to verify the role of the Xmn I polymorphism as a modulating factor in sickle cell patients and frequency of the polymorphism in Indian sickle cell patients. Subjects were 60 sickles homozygous and 75 sickle beta thalassemia patients. 5 ml blood   samples collected from patients. Screening of sickle patients done by HPLC. An automated cell analyzer SYSMEX (K-4500 Model used to analyze the CBC of patients.Xmn1 polymorphism analysis done by PCR-RFLP and Statistical analysis was performed on GraphPad static’s software. t test applied to compare the means amongst group. Among the sickle homozygous 27 were   heterozygous (+/- and 19 were   homozygous (+/+ while 30 were heterozygous and 24 were homozygous in sickle β-thalassemia patients. Extremely significant differences (p-value <0.001 of hematological parameters seen among patient with xmn-1 carrier and without the xmn-1 carrier. In our cases the clinical symptom less frequent and higher HbF level with Xmn-1 carriers. Presence of Xmn-1 polymorphism in sickle patients with higher HbF that improve phenotypic presentation in the sickle cell patients. We conclude that the phenotype of Indian sickle cell patients influenced by Xmn-1 polymorphism.

  4. Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Hong; Dwaraknath, Shyam S.; Garten, Lauren; Ndione, Paul; Ginley, David; Persson, Kristin A.

    2016-05-25

    With the ultimate goal of finding new polymorphs through targeted synthesis conditions and techniques, we outline a computational framework to select optimal substrates for epitaxial growth using first principle calculations of formation energies, elastic strain energy, and topological information. To demonstrate the approach, we study the stabilization of metastable VO2 compounds which provides a rich chemical and structural polymorph space. We find that common polymorph statistics, lattice matching, and energy above hull considerations recommends homostructural growth on TiO2 substrates, where the VO2 brookite phase would be preferentially grown on the a-c TiO2 brookite plane while the columbite and anatase structures favor the a-b plane on the respective TiO2 phases. Overall, we find that a model which incorporates a geometric unit cell area matching between the substrate and the target film as well as the resulting strain energy density of the film provide qualitative agreement with experimental observations for the heterostructural growth of known VO2 polymorphs: rutile, A and B phases. The minimal interfacial geometry matching and estimated strain energy criteria provide several suggestions for substrates and substrate-film orientations for the heterostructural growth of the hitherto hypothetical anatase, brookite, and columbite polymorphs. These criteria serve as a preliminary guidance for the experimental efforts stabilizing new materials and/or polymorphs through epitaxy. The current screening algorithm is being integrated within the Materials Project online framework and data and hence publicly available.

  5. Target cells in internal dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Goessner, W

    2003-07-01

    Data related to radium induced bone sarcomas in humans are used as a model for defining target cells on bone surfaces and in the bone marrow. The differential distribution of radiation induced bone sarcoma types with a high ratio of non-bone producing, mainly fibroblastic tumours, challenges the ICRP concept that the bone lining cells are target cells. Multipotential mesenchymal stem cells are located within the range of alpha particles, and are the most likely target cells for the fibroblastic type of bone sarcoma. The histogenesis of bone sarcomas after irradiation with alpha emitters shows that their final histopathology is not dependent on a single target cell. Each target cell has a microenvironment, which has to be regarded as a synergistic morpho-functional tissue unit. For this the concept of 'histion', a term used in general pathology, is proposed. Interactions between target cells that have been hit by alpha-particles, leading to lethal, mutational or transformation events with all components of a 'histion', will prove critical to understanding the pathogenesis of both deterministic and stochastic late effects. (author)

  6. Target cells in internal dosimetry

    International Nuclear Information System (INIS)

    Goessner, W.

    2003-01-01

    Data related to radium induced bone sarcomas in humans are used as a model for defining target cells on bone surfaces and in the bone marrow. The differential distribution of radiation induced bone sarcoma types with a high ratio of non-bone producing, mainly fibroblastic tumours, challenges the ICRP concept that the bone lining cells are target cells. Multipotential mesenchymal stem cells are located within the range of alpha particles, and are the most likely target cells for the fibroblastic type of bone sarcoma. The histogenesis of bone sarcomas after irradiation with alpha emitters shows that their final histopathology is not dependent on a single target cell. Each target cell has a microenvironment, which has to be regarded as a synergistic morpho-functional tissue unit. For this the concept of 'histion', a term used in general pathology, is proposed. Interactions between target cells that have been hit by alpha-particles, leading to lethal, mutational or transformation events with all components of a 'histion', will prove critical to understanding the pathogenesis of both deterministic and stochastic late effects. (author)

  7. A polymorphism in the splice donor site of ZNF419 results in the novel renal cell carcinoma-associated minor histocompatibility antigen ZAPHIR.

    Directory of Open Access Journals (Sweden)

    Kelly Broen

    Full Text Available Nonmyeloablative allogeneic stem cell transplantation (SCT can induce remission in patients with renal cell carcinoma (RCC, but this graft-versus-tumor (GVT effect is often accompanied by graft-versus-host disease (GVHD. Here, we evaluated minor histocompatibility antigen (MiHA-specific T cell responses in two patients with metastatic RCC who were treated with reduced-intensity conditioning SCT followed by donor lymphocyte infusion (DLI. One patient had stable disease and emergence of SMCY.A2-specific CD8+ T cells was observed after DLI with the potential of targeting SMCY-expressing RCC tumor cells. The second patient experienced partial regression of lung metastases from whom we isolated a MiHA-specific CTL clone with the capability of targeting RCC cell lines. Whole genome association scanning revealed that this CTL recognizes a novel HLA-B7-restricted MiHA, designated ZAPHIR, resulting from a polymorphism in the splice donor site of the ZNF419 gene. Tetramer analysis showed that emergence of ZAPHIR-specific CD8+ T cells in peripheral blood occurred in the absence of GVHD. Furthermore, the expression of ZAPHIR in solid tumor cell lines indicates the involvement of ZAPHIR-specific CD8+ T cell responses in selective GVT immunity. These findings illustrate that the ZNF419-encoded MiHA ZAPHIR is an attractive target for specific immunotherapy after allogeneic SCT.

  8. Xmn1 Polymorphism in Sickle cell trait cohort in Siwa Oasis

    Indian Academy of Sciences (India)

    Dr Pacint Moez

    were obtained from parents of all recruited children, before participation, in the presence of a doctor and a .... cell patients was greatly influenced by the Xmn1 polymorphism. .... Life expectancy and risk factors for early death. N. Engl. J. Med.

  9. IDENTIFICATION OF GH|ALUI AND GHR|ALUI GENES POLYMORPHISMS IN INDONESIAN BUFFALO

    Directory of Open Access Journals (Sweden)

    E. Andreas

    2014-10-01

    Full Text Available Growth hormone (GH is an anabolic hormone which sintesized and secreted by somatrotop cell inpituitary anterior lobe. GH exert its effect on growth and metabolism by interacting with a specificreceptor on the surface of the target cells. Growth hormone receptor (GHR has been suggested ascandidate gene for traits related to meat production in Bovidae. The objectives of this study were toidentify polymorphism of GH and GHR genes in buffalo. The 452 DNA samples buffalo were collectedfrom five populations in Indonesia (Siborong-Borong-Medan (65, Lebak-Banten (29, Pandeglang-Banten (180, Semarang-Central Java, and Mataram-West Nusa Tenggara (103. A gene fragment of theGH|AluI gene at 432 bp located on exon 3 and GHR|AluI gene at 298 bp on exon 10 were successfullyamplified by using the techniques of a PCR (polymerase chain reaction and genotyped by PCR-RFLP(restriction fragment length polymorphism then -SSCP (single strand conformation polymorphism. Theresults showed no polymorphisms were detected in these genes. All buffaloes tested had LL genotype forlocus GH|AluI and AA genotype for locus GHR|AluI.

  10. Cooperative tumour cell membrane targeted phototherapy

    Science.gov (United States)

    Kim, Heegon; Lee, Junsung; Oh, Chanhee; Park, Ji-Ho

    2017-06-01

    The targeted delivery of therapeutics using antibodies or nanomaterials has improved the precision and safety of cancer therapy. However, the paucity and heterogeneity of identified molecular targets within tumours have resulted in poor and uneven distribution of targeted agents, thus compromising treatment outcomes. Here, we construct a cooperative targeting system in which synthetic and biological nanocomponents participate together in the tumour cell membrane-selective localization of synthetic receptor-lipid conjugates (SR-lipids) to amplify the subsequent targeting of therapeutics. The SR-lipids are first delivered selectively to tumour cell membranes in the perivascular region using fusogenic liposomes. By hitchhiking with extracellular vesicles secreted by the cells, the SR-lipids are transferred to neighbouring cells and further spread throughout the tumour tissues where the molecular targets are limited. We show that this tumour cell membrane-targeted delivery of SR-lipids leads to uniform distribution and enhanced phototherapeutic efficacy of the targeted photosensitizer.

  11. A complex dominance hierarchy is controlled by polymorphism of small RNAs and their targets.

    Science.gov (United States)

    Yasuda, Shinsuke; Wada, Yuko; Kakizaki, Tomohiro; Tarutani, Yoshiaki; Miura-Uno, Eiko; Murase, Kohji; Fujii, Sota; Hioki, Tomoya; Shimoda, Taiki; Takada, Yoshinobu; Shiba, Hiroshi; Takasaki-Yasuda, Takeshi; Suzuki, Go; Watanabe, Masao; Takayama, Seiji

    2016-12-22

    In diploid organisms, phenotypic traits are often biased by effects known as Mendelian dominant-recessive interactions between inherited alleles. Phenotypic expression of SP11 alleles, which encodes the male determinants of self-incompatibility in Brassica rapa, is governed by a complex dominance hierarchy 1-3 . Here, we show that a single polymorphic 24 nucleotide small RNA, named SP11 methylation inducer 2 (Smi2), controls the linear dominance hierarchy of the four SP11 alleles (S 44 > S 60 > S 40 > S 29 ). In all dominant-recessive interactions, small RNA variants derived from the linked region of dominant SP11 alleles exhibited high sequence similarity to the promoter regions of recessive SP11 alleles and acted in trans to epigenetically silence their expression. Together with our previous study 4 , we propose a new model: sequence similarity between polymorphic small RNAs and their target regulates mono-allelic gene expression, which explains the entire five-phased linear dominance hierarchy of the SP11 phenotypic expression in Brassica.

  12. Sequence based polymorphic (SBP marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Sahu Binod B

    2012-01-01

    Full Text Available Abstract Background Molecular markers facilitate both genotype identification, essential for modern animal and plant breeding, and the isolation of genes based on their map positions. Advancements in sequencing technology have made possible the identification of single nucleotide polymorphisms (SNPs for any genomic regions. Here a sequence based polymorphic (SBP marker technology for generating molecular markers for targeted genomic regions in Arabidopsis is described. Results A ~3X genome coverage sequence of the Arabidopsis thaliana ecotype, Niederzenz (Nd-0 was obtained by applying Illumina's sequencing by synthesis (Solexa technology. Comparison of the Nd-0 genome sequence with the assembled Columbia-0 (Col-0 genome sequence identified putative single nucleotide polymorphisms (SNPs throughout the entire genome. Multiple 75 base pair Nd-0 sequence reads containing SNPs and originating from individual genomic DNA molecules were the basis for developing co-dominant SBP markers. SNPs containing Col-0 sequences, supported by transcript sequences or sequences from multiple BAC clones, were compared to the respective Nd-0 sequences to identify possible restriction endonuclease enzyme site variations. Small amplicons, PCR amplified from both ecotypes, were digested with suitable restriction enzymes and resolved on a gel to reveal the sequence based polymorphisms. By applying this technology, 21 SBP markers for the marker poor regions of the Arabidopsis map representing polymorphisms between Col-0 and Nd-0 ecotypes were generated. Conclusions The SBP marker technology described here allowed the development of molecular markers for targeted genomic regions of Arabidopsis. It should facilitate isolation of co-dominant molecular markers for targeted genomic regions of any animal or plant species, whose genomic sequences have been assembled. This technology will particularly facilitate the development of high density molecular marker maps, essential for

  13. Targeting of Mesenchymal Stromal Cells by Cre-Recombinase Transgenes Commonly Used to Target Osteoblast Lineage Cells.

    Science.gov (United States)

    Zhang, Jingzhu; Link, Daniel C

    2016-11-01

    The targeting specificity of tissue-specific Cre-recombinase transgenes is a key to interpreting phenotypes associated with their use. The Ocn-Cre and Dmp1-Cre transgenes are widely used to target osteoblasts and osteocytes, respectively. Here, we used high-resolution microscopy of bone sections and flow cytometry to carefully define the targeting specificity of these transgenes. These transgenes were crossed with Cxcl12 gfp mice to identify Cxcl12-abundant reticular (CAR) cells, which are a perivascular mesenchymal stromal population implicated in hematopoietic stem/progenitor cell maintenance. We show that in addition to osteoblasts, Ocn-Cre targets a majority of CAR cells and arteriolar pericytes. Surprisingly, Dmp1-Cre also targets a subset of CAR cells, in which expression of osteoblast-lineage genes is enriched. Finally, we introduce a new tissue-specific Cre-recombinase, Tagln-Cre, which efficiently targets osteoblasts, a majority of CAR cells, and both venous sinusoidal and arteriolar pericytes. These data show that Ocn-Cre and Dmp1-Cre target broader stromal cell populations than previously appreciated and may aid in the design of future studies. Moreover, these data highlight the heterogeneity of mesenchymal stromal cells in the bone marrow and provide tools to interrogate this heterogeneity. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  14. Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria.

    Science.gov (United States)

    Vassallo, Christopher N; Cao, Pengbo; Conklin, Austin; Finkelstein, Hayley; Hayes, Christopher S; Wall, Daniel

    2017-08-18

    Myxobacteria are known for complex social behaviors including outer membrane exchange (OME), in which cells exchange large amounts of outer membrane lipids and proteins upon contact. The TraA cell surface receptor selects OME partners based on a variable domain. However, traA polymorphism alone is not sufficient to precisely discriminate kin. Here, we report a novel family of OME-delivered toxins that promote kin discrimination of OME partners. These SitA lipoprotein toxins are polymorphic and widespread in myxobacteria. Each sitA is associated with a cognate sitI immunity gene, and in some cases a sitB accessory gene. Remarkably, we show that SitA is transferred serially between target cells, allowing the toxins to move cell-to-cell like an infectious agent. Consequently, SitA toxins define strong identity barriers between strains and likely contribute to population structure, maintenance of cooperation, and strain diversification. Moreover, these results highlight the diversity of systems evolved to deliver toxins between bacteria.

  15. Cdx2 Polymorphism Affects the Activities of Vitamin D Receptor in Human Breast Cancer Cell Lines and Human Breast Carcinomas

    Science.gov (United States)

    Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression. PMID:25849303

  16. Cdx2 polymorphism affects the activities of vitamin D receptor in human breast cancer cell lines and human breast carcinomas.

    Directory of Open Access Journals (Sweden)

    Claudio Pulito

    Full Text Available Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR. It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954 human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative. These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression.

  17. Pharmacologic suppression of target cell recognition by engineered T cells expressing chimeric T-cell receptors.

    Science.gov (United States)

    Alvarez-Vallina, L; Yañez, R; Blanco, B; Gil, M; Russell, S J

    2000-04-01

    Adoptive therapy with autologous T cells expressing chimeric T-cell receptors (chTCRs) is of potential interest for the treatment of malignancy. To limit possible T-cell-mediated damage to normal tissues that weakly express the targeted tumor antigen (Ag), we have tested a strategy for the suppression of target cell recognition by engineered T cells. Jurkat T cells were transduced with an anti-hapten chTCR tinder the control of a tetracycline-suppressible promoter and were shown to respond to Ag-positive (hapten-coated) but not to Ag-negative target cells. The engineered T cells were then reacted with hapten-coated target cells at different effector to target cell ratios before and after exposure to tetracycline. When the engineered T cells were treated with tetracycline, expression of the chTCR was greatly decreased and recognition of the hapten-coated target cells was completely suppressed. Tetracycline-mediated suppression of target cell recognition by engineered T cells may be a useful strategy to limit the toxicity of the approach to cancer gene therapy.

  18. Small organic compounds enhance antigen loading of class II major histocompatibility complex proteins by targeting the polymorphic P1 pocket

    DEFF Research Database (Denmark)

    Höpner, Sabine; Dickhaut, Katharina; Hofstätter, Maria

    2006-01-01

    the peptide loading rate. The effect was evident only for an allelic subset and strictly correlated with the presence of glycine at the dimorphic position beta86 of the HLA-DR molecule. The residue forms the floor of the conserved pocket P1, located in the peptide binding site of MHC molecule. Apparently......, transient occupation of this pocket by the organic compound stabilizes the peptide-receptive conformation permitting rapid antigen loading. This interaction appeared restricted to the larger Gly(beta86) pocket and allowed striking enhancements of T cell responses for antigens presented by these "adamantyl......-susceptible" MHC molecules. As catalysts of antigen loading, compounds targeting P1 may be useful molecular tools to amplify the immune response. The observation, however, that the ligand repertoire can be affected through polymorphic sites form the outside may also imply that environmental factors could induce...

  19. Lung Squamous Cell Carcinoma Stem Cells as Immunotherapy Targets

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0260 TITLE: Lung Squamous Cell Carcinoma Stem Cells as Immunotherapy Targets PRINCIPAL INVESTIGATOR: Carla Kim... Cell Carcinoma Stem Cells as Immunotherapy Targets 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0260 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...SUPPLEMENTARY NOTES 14. ABSTRACT Lung squamous cell carcinoma (SCC) is the second most common type of lung cancer, and immunotherapy is a promising new

  20. Molecular polymorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia.

    Science.gov (United States)

    Sanderson, R D; Bernfield, M

    1988-12-01

    Epithelial cells are organized into either a single layer (simple epithelia) or multiple layers (stratified epithelia). Maintenance of these cellular organizations requires distinct adhesive mechanisms involving many cell surface molecules. One such molecule is a cell surface proteoglycan, named syndecan, that contains both heparan sulfate and chondroitin sulfate chains. This proteoglycan binds cells to fibrillar collagens and fibronectin and thus acts as a receptor for interstitial matrix. The proteoglycan is restricted to the basolateral surface of simple epithelial cells, but is located over the entire surface of stratified epithelial cells, even those surfaces not contacting matrix. We now show that the distinct localization in simple and stratified epithelia correlates with a distinct proteoglycan structure. The proteoglycan from simple epithelia (modal molecular size, 160 kDa) is larger than that from stratified epithelia (modal molecular size, 92 kDa), but their core proteins are identical in size and immunoreactivity. The proteoglycan from simple epithelia has more and larger heparan sulfate and chondroitin sulfate chains than the proteoglycan from stratified epithelia. Thus, the cell surface proteoglycan shows a tissue-specific structural polymorphism due to distinct posttranslational modifications. This polymorphism likely reflects distinct proteoglycan functions in simple and stratified epithelia, potentially meeting the different adhesive requirements of the cells in these different organizations.

  1. A Single Nucleotide Polymorphism in the Bax Gene Promoter Affects Transcription and Influences Retinal Ganglion Cell Death

    Directory of Open Access Journals (Sweden)

    Sheila J Semaan

    2010-03-01

    Full Text Available Pro-apoptotic Bax is essential for RGC (retinal ganglion cell death. Gene dosage experiments in mice, yielding a single wild-type Bax allele, indicated that genetic background was able to influence the cell death phenotype. DBA/2J Bax+/− mice exhibited complete resistance to nerve damage after 2 weeks (similar to Bax −/− mice, but 129B6 Bax+/− mice exhibited significant cell loss (similar to wild-type mice. The different cell death phenotype was associated with the level of Bax expression, where 129B6 neurons had twice the level of endogenous Bax mRNA and protein as DBA/2J neurons. Sequence analysis of the Bax promoters between these strains revealed a single nucleotide polymorphism (T129B6 to CDBA/2J at position −515. A 1.5- to 2.5-fold increase in transcriptional activity was observed from the 129B6 promoter in transient transfection assays in a variety of cell types, including RGC5 cells derived from rat RGCs. Since this polymorphism occurred in a p53 half-site, we investigated the requirement of p53 for the differential transcriptional activity. Differential transcriptional activity from either 129B6 or DBA/2J Bax promoters were unaffected in p53−/− cells, and addition of exogenous p53 had no further effect on this difference, thus a role for p53 was excluded. Competitive electrophoretic mobility-shift assays identified two DNA-protein complexes that interacted with the polymorphic region. Those forming Complex 1 bound with higher affinity to the 129B6 polymorphic site, suggesting that these proteins probably comprised a transcriptional activator complex. These studies implicated quantitative expression of the Bax gene as playing a possible role in neuronal susceptibility to damaging stimuli.

  2. Basal cell carcinoma is associated with high TNF-alpha release but nor with TNF-alpha polymorphism at position--308

    DEFF Research Database (Denmark)

    Skov, Lone; Allen, Michael H; Bang, Bo

    2003-01-01

    secretion of TNF-alpha has been identified in humans. We have therefore investigated the association of the --308 polymorphism with the risk of basal cell carcinoma (BCC) in humans. The frequency of TNF G and TNF A alleles among Caucasian patients with a previous BCC (n=191) and health adults (n-107) were...... compared. For the TNF--308 polymorphism there was significant association between the genotype or allele frequencies and having BCC. To determine whether patients with a previous BCC had an increased capacity to secrete TNF-alpha, mononuclear cells were stimulated with lipopolysaccharide. Mononuclear cells...... from patients with a previous BCC (n=15) demonstrated a significantly increased release of TNF-alpha upon stimulation with lipopolysaccharide (Pcells age-matched control subjects (n=16). Further studies of other polymorphisms of the TNF-alpha gene associated...

  3. Human immune cell targeting of protein nanoparticles - caveospheres

    Science.gov (United States)

    Glass, Joshua J.; Yuen, Daniel; Rae, James; Johnston, Angus P. R.; Parton, Robert G.; Kent, Stephen J.; de Rose, Robert

    2016-04-01

    Nanotechnology has the power to transform vaccine and drug delivery through protection of payloads from both metabolism and off-target effects, while facilitating specific delivery of cargo to immune cells. However, evaluation of immune cell nanoparticle targeting is conventionally restricted to monocultured cell line models. We generated human caveolin-1 nanoparticles, termed caveospheres, which were efficiently functionalized with monoclonal antibodies. Using this platform, we investigated CD4+ T cell and CD20+ B cell targeting within physiological mixtures of primary human blood immune cells using flow cytometry, imaging flow cytometry and confocal microscopy. Antibody-functionalization enhanced caveosphere binding to targeted immune cells (6.6 to 43.9-fold) within mixed populations and in the presence of protein-containing fluids. Moreover, targeting caveospheres to CCR5 enabled caveosphere internalization by non-phagocytic CD4+ T cells--an important therapeutic target for HIV treatment. This efficient and flexible system of immune cell-targeted caveosphere nanoparticles holds promise for the development of advanced immunotherapeutics and vaccines.

  4. Association of nonalcoholic fatty liver disease grades with the plasma cell antigen-1 (PC-1 gene polymorphism

    Directory of Open Access Journals (Sweden)

    Ibrahim H. Borai

    2018-07-01

    Full Text Available Background and aims: Nonalcoholic fatty liver disease (NAFLD is a complicated disease linked with dietary habitats, obesity, and a range of comorbidities correlated with insulin resistance.Although environmental parameters are essential in deciding risk of the disease, proofs from previous reports sustain the hypothesis that genetics are responsible for NAFLD developmentand progression. Plasma cell antigen-1 (PC-1 and its gene polymorphism are associated with NAFLD progression. Consequently, the object of this study was to detect the usefulness of PC-1 K121Q gene polymorphism in NAFLD progression. Subjects and methods: A total of 87 NAFLD patients were included in the study and subdivided ultrasonographically into 31 patients with grade 1 (mild NAFLD, 26 patients with grade 2 (moderate NAFLD and 30 patients with grade 3 (severe NAFLD, in addition to 47 normal controls. The detection of PC-1 K121Q gene polymorphism was accomplished by using restriction fragment length polymorphism (RFLP-PCR. Results: Lipid profile parameters were associated with the incidence of NAFLD. AlthoughPC-1 gene polymorphism didnot significantly change in parallel with NAFLD grades, PC-1 at the genetic and protein level was significantly associated with triacylglycerollevels in NAFLD patients. Conclusion: Lipid profile indices are risk factors for the incidence of NAFLD. Triacylglycerol (TAG level is the hall-mark in the NAFLD pathogenesis and in the predisposition of PC-1 gene polymorphism. Keywords: NAFLD, Triacylglycerol (TAG, Plasma cell antigen-1 (PC-1

  5. Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0644 TITLE: Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: Chun-Ju...Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0644 5c. PROGRAM ELEMENT...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Cancer stem cells (CSCs), a cell population with acquired perpetuating self-renewal properties which

  6. Lupus-related single nucleotide polymorphisms and risk of diffuse large B-cell lymphoma

    NARCIS (Netherlands)

    Bernatsky, Sasha; Velásquez García, Héctor A; Spinelli, John; Gaffney, Patrick; Smedby, Karin E; Ramsey-Goldman, Rosalind; Wang, Sophia S.; Adami, Hans-Olov; Albanes, Demetrius; Angelucci, Emanuele; Ansell, Stephen M.; Asmann, Yan W.; Becker, Nikolaus; Benavente, Yolanda; Berndt, Sonja I.; Bertrand, Kimberly A.; Birmann, Brenda M.; Boeing, Heiner; Boffetta, Paolo; Bracci, Paige M.; Brennan, Paul; Brooks-Wilson, Angela R.; Cerhan, James R.; Chanock, Stephen J.; Clavel, Jacqueline; Conde, Lucia; Cotenbader, Karen H; Cox, David G; Cozen, Wendy; Crouch, Simon; De Roos, Anneclaire J.; De Sanjose, Silvia; Di Lollo, Simonetta; Diver, W. Ryan; Dogan, Ahmet; Foretova, Lenka; Ghesquières, Hervé; Giles, Graham G.; Glimelius, Bengt; Habermann, Thomas M.; Haioun, Corinne; Hartge, Patricia; Hjalgrim, Henrik; Holford, Theodore R.; Holly, Elizabeth A.; Jackson, Rebecca D.; Kaaks, Rudolph; Kane, Eleanor; Kelly, Rachel S.; Klein, Robert J.; Kraft, Peter; Kricker, Anne; Lan, Qing; Lawrence, Charles; Liebow, Mark; Lightfoot, Tracy; Link, Brian K.; Maynadie, Marc; McKay, James; Melbye, Mads; Molina, Thierry Jo; Monnereau, Alain; Morton, Lindsay M.; Nieters, Alexandra; North, Kari E.; Novak, Anne J.; Offit, Kenneth; Purdue, Mark P.; Rais, Marco; Riby, Jacques; Roman, Eve; Rothman, Nathaniel; Salles, Gilles; Severi, Gianluca; Severson, Richard K.; Skibola, Christine F.; Slager, Susan L.; Smith, Alex; Smith, Martyn T.; Southey, Melissa C.; Staines, Anthony; Teras, Lauren R.; Thompson, Carrie A.; Tilly, Hervé; Tinker, Lesley F.; Tjonneland, Anne; Turner, Jenny; Vajdic, Claire M.; Vermeulen, Roel C H; Vijai, Joseph; Vineis, Paolo; Virtamo, Jarmo; Wang, Zhaoming; Weinstein, Stephanie; Witzig, Thomas E.; Zelenetz, Andrew; Zeleniuch-Jacquotte, Anne; Zhang, Yawei; Zheng, Tongzhang; Zucca, Mariagrazia; Clarke, Ann E

    2017-01-01

    Objective: Determinants of the increased risk of diffuse large B-cell lymphoma (DLBCL) in SLE are unclear. Using data from a recent lymphoma genome-wide association study (GWAS), we assessed whether certain lupus-related single nucleotide polymorphisms (SNPs) were also associated with DLBCL.

  7. Immune sensitization against epidermal antigens in polymorphous light eruption

    International Nuclear Information System (INIS)

    Gonzalez-Amaro, R.; Baranda, L.; Salazar-Gonzalez, J.F.; Abud-Mendoza, C.; Moncada, B.

    1991-01-01

    To get further insight into the pathogenesis of polymorphous light eruption, we studied nine patients with polymorphous light eruption and six healthy persons. Two skin biopsy specimens were obtained from each person, one from previously ultraviolet light-irradiated skin and another one from unirradiated skin. An epidermal cell suspension, skin homogenate, or both were prepared from each specimen. Autologous cultures were made with peripheral blood mononuclear cells combined with irradiated or unirradiated skin homogenate and peripheral blood mononuclear cells combined with irradiated or unirradiated epidermal cell suspension. Cell proliferation was assessed by 3H-thymidine incorporation assay. The response of peripheral blood mononuclear cells to unirradiated epidermal cells or unirradiated skin homogenate was similar in both patients and controls. However, peripheral blood mononuclear cells from patients with polymorphous light eruption showed a significantly increased proliferative response to both irradiated epidermal cells and irradiated skin homogenate. Our results indicate that ultraviolet light increases the stimulatory capability of polymorphous light eruption epidermal cells in a unidirectional mixed culture with autologous peripheral blood mononuclear cells. This suggests that an immune sensitization against autologous ultraviolet light-modified skin antigens occurs in polymorphous light eruption

  8. Fc receptors for mouse IgG1 on human monocytes: polymorphism and role in antibody-induced T cell proliferation.

    Science.gov (United States)

    Tax, W J; Hermes, F F; Willems, R W; Capel, P J; Koene, R A

    1984-09-01

    In previous studies, it was shown that there is polymorphism in the mitogenic effect of mouse IgG1 monoclonal antibodies against the T3 antigen of human T cells. This polymorphism implies that IgG1 anti-T3 antibodies are not mitogenic for T cells from 30% of healthy individuals. The present results demonstrate that this polymorphism is caused by polymorphism of an Fc receptor for mouse IgG1, present on human monocytes. The Fc receptor for murine IgG1 could be detected by a newly developed rosetting assay on monocytes from all individuals responsive to the mitogenic effect of IgG1 anti-T3 antibodies. This Fc receptor was not detectable on monocytes from those individuals exhibiting no mitogenic responses to IgG1 anti-T3 monoclonal antibodies. Cross-linking of T3 antigens appears to be essential for antibody-induced mitosis of T cells, because mononuclear cells that did not proliferate in response to WT 31 (an IgG1 antibody against T3 antigen) showed a proliferative response to Sepharose beads coated with WT 31. The Fc receptor--if functionally present--may be involved in the cross-linking of T3 antigens through anti-T3 antibodies. Further evidence for the involvement of this Fc receptor in antibody-induced T cell proliferation was provided by inhibition studies. Immune complexes containing IgG1 antibodies were able to inhibit the proliferative response to IgG1 anti-T3 antibodies. This inhibition by immune complexes appears to be mediated through the monocyte Fc receptor for mouse IgG1. These findings are important for the interpretation of previously described inhibitory effects of anti-T cell monoclonal antibodies on T cell proliferation, and show that such inhibitory effects may be monocyte-mediated (via immune complexes) rather than caused by a direct involvement of the respective T cell antigens in T cell mitosis. The Fc receptor for mouse IgG1 plays a role in antibody-induced T cell proliferation. Its polymorphism may have important implications for the

  9. gene polymorphism and its serum lev

    Indian Academy of Sciences (India)

    Navya

    Association of Interleukin-10 (-1082 A>G, -819 C >T and -592 C >A) gene polymorphism and its ... Th2 induced component of anti-β cell immunity is mediated principally by IL-10 (Lee et al. ..... promoter polymorphisms influence the clinical outcome of diffuse large B-cell lymphoma. ... Bone Marrow Transplant 36, 1089-1095.

  10. Cell-specific targeting by heterobivalent ligands.

    Science.gov (United States)

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  11. Influence of shock induced polymorphic transition on penetration in steel

    International Nuclear Information System (INIS)

    Hereil, P.L.; Fanget, A.

    1994-01-01

    The effects of polymorphic transition for the impact of a 27NCD10 steel projectile on a 27NCD10 steel target at 1280 m/s is presented. Comparisons between results of 2D numerical calculations performed with and without polymorphic transition show the influence of this phenomenon on stress distribution and tension zones in the target and in the projectile. Good agreement between experimental and calculated free surface velocity profiles is obtained with polymorphic transition and damage models taken into account. (orig.)

  12. Association between polymorphisms in pre-miRNA genes and risk of oral squamous cell cancer in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Enjiao Zhang

    Full Text Available MicroRNAs play important roles in the development of human cancers. This case-control study is to evaluate the roles of the polymorphisms in pre-miRNAs on risk of oral cancer in a Chinese population.The genotypes of three polymorphisms were determined in 340 patients with oral squamous cell cancer and 340 healthy controls who were frequency matched for age and sex. Odds ratios (ORs and 95% confidence intervals (95%CIs were calculated to assess the association. All analyses were performed using the SPSS software. 3.154( 0.001.For miR-499 rs3746444, individuals carrying homozygous CC genotype had increased risks of oral cancer compared with the homozygous wild TT genotype (adjusted OR was 3.154, 95%CI was 1.555-6.397, P value was 0.001. The C allele of miR-499 rs3746444 was associated with a higher risk of oral cancer with significant odds ratio of 1.453. In the stratified analyses by sex, the associations between miR-499 rs3746444 and miR-146a rs2910164 polymorphisms with the susceptibility of oral squamous cell cancer were significant in males. However, with 1/4 as many subjects there were no significant associations between the three polymorphisms and oral cancer risks in females. The joint effects of miRNA polymorphisms and smoking on the risk of OSCC were analyzed and the results suggested that the association between microRNA genetic variants and OSCC risk was modified by smoking.These findings suggest that miR-499 rs3746444 and miR-146a rs2910164 polymorphisms may contribute to genetic susceptibility to oral squamous cell cancer.

  13. Polymorphism in liver-stage malaria vaccine candidate proteins: immune evasion and implications for vaccine design.

    Science.gov (United States)

    Flanagan, Katie L; Wilson, Kirsty L; Plebanski, Magdalena

    2016-01-01

    The pre-erythrocytic stage of infection by malaria parasites represents a key target for vaccines that aim to eradicate malaria. Two important broad immune evasion strategies that can interfere with vaccine efficacy include the induction of dendritic cell (DC) dysfunction and regulatory T cells (Tregs) by blood-stage malaria parasites, leading to inefficient priming of T cells targeting liver-stage infections. The parasite also uses 'surgical strike' strategies, whereby polymorphism in pre-erythrocytic antigens can interfere with host immunity. Specifically, we review how even single amino acid changes in T cell epitopes can lead to loss of binding to major histocompatibility complex (MHC), lack of cross-reactivity, or antagonism and immune interference, where simultaneous or sequential stimulation with related variants of the same T cell epitope can cause T cell anergy or the conversion of effector to immunosuppressive T cell phenotypes.

  14. Lack of association between STAT4 gene polymorphism and biopsy-proven giant cell arteritis.

    Science.gov (United States)

    Palomino-Morales, Rogelio; Vazquez-Rodriguez, Tomas R; Morado, Inmaculada C; Castañeda, Santos; Ortego-Centeno, Norberto; Miranda-Filloy, Jose A; Lamas, Jose R; Martin, Javier; Gonzalez-Gay, Miguel A

    2009-05-01

    To investigate the potential implication of the STAT4 gene polymorphism rs7574865 in the predisposition to or the clinical expression of giant cell arteritis (GCA). A total of 212 patients diagnosed with biopsy-proven GCA were studied. DNA from patients and controls matched by age, sex, and ethnicity was obtained from peripheral blood. Samples were genotyped for STAT4 rs7574865 polymorphism. No statistically significant differences in the allele frequencies for the STAT4 rs7574865 polymorphism were observed between patients and controls. Although we observed an increased frequency of the T/T genotype in GCA patients (6.0%) compared to healthy controls (3.9%), this difference did not achieve statistical significance (OR 1.57, 95% CI 0.72-3.41). No statistically significant differences in allele or genotype frequencies were observed when patients were stratified according to the presence of typical disease features such as polymyalgia rheumatica, severe ischemic manifestations, and visual ischemic complications in the setting of this vasculitis. Our results do not support a major role of the STAT4 rs7574865 gene polymorphism in susceptibility to or clinical manifestations of GCA.

  15. IL-10 polymorphism and cell-mediated immune response to Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Öhman, H.; Tiitinen, A; Halttunen, M.

    2006-01-01

    background. To study a relationship between interleukin-10 (IL-10) promoter -1082 polymorphism and cell-mediated immune response during C trachomatis infection in vitro, lymphocyte proliferation and cytokine (IL-10, IFN-gamma, TNF-alpha, IL-2, IL-4 and IL-5) secretion were analysed in subjects with different...... IL-10 genotypes. Enhanced IL-10 secretion and reduced antigen-specific lymphocyte proliferative and IFN-gamma responses were found in subjects with IL-10 -1082 GG genotype when compared to those with -1082 AA genotype. CD14+ monocytes were main source of IL-10 indicating that these cells...... are important regulators of the antigen-specific cell-mediated responses during active C trachomatis infection. We conclude that impaired cell-mediated response to C trachomatis is associated with IL-10 genotype in subjects with high IL-10 producing capacity. A comparison of immune markers between subjects...

  16. CD209-336A/G promotor polymorphism and its clinical associations in sickle cell disease Egyptian Pediatric patients.

    Science.gov (United States)

    Afifi, Rasha Abdel-Raouf; Kamal, Dina; Sayed, Riham El; Ekladious, Sherif M M; Shaheen, Gehan H; Yousry, Sherif M; Hussein, Rania Elsayed

    2018-06-01

    To detect the frequency of CD209 A>G polymorphism in sickle cell disease (SCD) Egyptian patients and to evaluate the use of CD209 A>G polymorphism as a genetic predictor of SCD clinical heterogeneity. A total of 100 Egyptian children with SCD and 100 Egyptian controls were tested for CD209 A>G polymorphism and were followed up prospectively between June 2012 and December 2014. Comparison of CD209 A>G polymorphism among cases and controls did not show statistically significant difference (p = .742). In addition, comparison of the allelic frequency did not show statistically significant difference (p = .738). Infections occurred more frequently among the heterozygous genotype (AG; 60.5%) and homozygous genotype (GG; 75%) patients than among the wild (AA) genotype (24.1%; p G polymorphism. Infections occurred more frequently among the heterozygous genotype (AG) and homozygous genotype (GG) patients. Copyright © 2017. Published by Elsevier Ltd.

  17. gene polymorphism and its serum lev

    Indian Academy of Sciences (India)

    Navya

    polymorphisms and its serum level with the risk of MetS as well as their ... population for quantifying insulin resistance and β-cell function (Matthews et al. 1985). .... of IL-10 -819 C >T gene polymorphism (Co-dominant model) was significantly.

  18. Radiation responses of stem cells: targeted and non-targeted effects

    International Nuclear Information System (INIS)

    Kavanagh, J.N.; Waring, E.J.; Prise, K.M.

    2015-01-01

    Stem cells are fundamental to the development of any tissue or organism via their ability to self-renew, which is aided by their unlimited proliferative capacity and their ability to produce fully differentiated offspring, often from multiple lineages. Stems cells are long lived and have the potential to accumulate mutations, including in response to radiation exposure. It is thought that stem cells have the potential to be induced into a cancer stem cell phenotype and that these may play an important role in resistance to radiotherapy. For radiation-induced carcinogenesis, the role of targeted and non-targeted effects is unclear with tissue or origin being important. Studies of genomic instability and bystander responses have shown consistent effects in haematopoietic models. Several models of radiation have predicted that stem cells play an important role in tumour initiation and that bystander responses could play a role in proliferation and self-renewal. (authors)

  19. Cytokine single-nucleotide polymorphisms and risk of non-small-cell lung cancer.

    Science.gov (United States)

    Pérez-Ramírez, Cristina; Alnatsha, Ahmed; Cañadas-Garre, Marisa; Villar, Eduardo; Valdivia-Bautista, Javier; Faus-Dáder, María J; Calleja-Hernández, Miguel Á

    2017-12-01

    Lung cancer, particularly the non-small-cell lung cancer (NSCLC) subtype, is the leading cause of cancer-related death worldwide. Several functional polymorphisms in inflammatory cytokine genes, such as IL1B, IL6, IL12A, IL13 and IL16, have been associated with the risk of NSCLC. The aim of this study was to evaluate the association between ILs gene polymorphisms and the risk of developing NSCLC. A retrospective case-control study was carried out, including 174 NSCLC cases and 298 controls of Spanish origin. IL1B (rs1143634), IL1B (rs12621220), IL1B (rs1143623), IL1B (rs16944), IL1B (rs1143627), IL12A (rs662959), IL13 (rs1881457), IL6 (rs1800795) and IL16 (rs7170924) gene polymorphisms were analysed by TaqMan. The genotypic logistic regression model adjusted by smoking status showed that the IL1B rs1143634-TT genotype was associated with a lower risk of NSCLC (P=0.04312; odds ratio=0.226; 95% confidence interval=0.044-0.840). No other gene polymorphisms showed an association with NSCLC in any of the models tested. In conclusion, IL1B rs1143634 was significantly associated with a higher risk of NSCLC. No influence of IL1B rs12621220, rs1143623, rs16944, rs1143627, IL12A rs662959, IL13 rs1881457 and IL16 rs7170924 on the risk of developing NSCLC was found in our study.

  20. Identification of a novel FGFRL1 MicroRNA target site polymorphism for bone mineral density in meta-analyses of genome-wide association studies

    NARCIS (Netherlands)

    T. Niu (Tianhua); N. Liu (Ning); M. Zhao (Ming); G. Xie (Guie); L. Zhang (Lei); J. Li (Jian); Y.-F. Pei (Yu-Fang); H. Shen (Hui); X. Fu (Xiaoying); H. He (Hao); S. Lu (Shan); X. Chen (Xiangding); L. Tan (Lijun); T.-L. Yang (Tie-Lin); Y. Guo (Yan); P.J. Leo (Paul); E.L. Duncan (Emma); J. Shen (Jie); Y.-F. Guo (Yan-fang); G.C. Nicholson (Geoffrey); R.L. Prince (Richard L.); J.A. Eisman (John); G. Jones (Graeme); P.N. Sambrook (Philip); X. Hu (Xiang); P.M. Das (Partha M.); Q. Tian (Qing); X.-Z. Zhu (Xue-Zhen); C.J. Papasian (Christopher J.); M.A. Brown (Matthew); A.G. Uitterlinden (André); Y.-P. Wang (Yu-Ping); S. Xiang (Shuanglin); H.-W. Deng

    2015-01-01

    textabstractMicroRNAs (miRNAs) are critical post-transcriptional regulators. Based on a previous genome-wide association (GWA) scan, we conducted a polymorphism in microRNAs' Target Sites (poly-miRTS)-centric multistage meta-analysis for lumbar spine (LS)-, total hip (HIP)-, and femoral neck

  1. Substrate and p-layer effects on polymorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Abolmasov S.N.

    2014-07-01

    Full Text Available The influence of textured transparent conducting oxide (TCO substrate and p-layer on the performance of single-junction hydrogenated polymorphous silicon (pm-Si:H solar cells has been addressed. Comparative studies were performed using p-i-n devices with identical i/n-layers and back reflectors fabricated on textured Asahi U-type fluorine-doped SnO2, low-pressure chemical vapor deposited (LPCVD boron-doped ZnO and sputtered/etched aluminum-doped ZnO substrates. The p-layers were hydrogenated amorphous silicon carbon and microcrystalline silicon oxide. As expected, the type of TCO and p-layer both have a great influence on the initial conversion efficiency of the solar cells. However they have no effect on the defect density of the pm-Si:H absorber layer.

  2. Association of TERT Polymorphisms with Clinical Outcome of Non-Small Cell Lung Cancer Patients.

    Directory of Open Access Journals (Sweden)

    Xueying Zhao

    Full Text Available TERT is of great importance in cancer initiation and progression. Many studies have demonstrated the TERT polymorphisms as risk factors for many cancer types, including lung cancer. However, the impacts of TERT variants on cancer progression and treatment efficacy have remained controversial. This study aimed to investigate the association of TERT polymorphisms with clinical outcome of advanced non-small cell lung cancer (NSCLC patients receiving first-line platinum-based chemotherapy, including response rate, clinical benefit, progression-free survival (PFS, overall survival (OS, and grade 3 or 4 toxicity. Seven polymorphisms of TERT were assessed, and a total of 1004 inoperable advanced NSCLC patients treated with platinum-based chemotherapy were enrolled. It is exhibited that the variant heterozygote of rs4975605 showed significant association with a low rate of clinical benefit, and displayed a much stronger effect in never-smoking female subset, leading to the clinical benefit rate decreased from 82.9% (C/C genotype to 56.4% (C/A genotype; adjusted OR, 3.58; P=1.40×10(-4. It is also observed that the polymorphism rs2736109 showed significant correlation with PFS (log-rank P=0.023. In age > 58 subgroup, patients carrying the heterozygous genotype had a longer median PFS than those carrying the wild-type genotypes (P=0.002. The results from the current study, for the first time to our knowledge, provide suggestive evidence of an effect of TERT polymorphisms on disease progression variability among Chinese patients with platinum-treated advanced NSCLC.

  3. Prognostic significance of interleukin-7 receptor-α gene polymorphisms in allogeneic stem-cell transplantation: a confirmatory study

    DEFF Research Database (Denmark)

    Shamim, Zaiba; Ryder, Lars P; Christensen, Ib J

    2011-01-01

    BACKGROUND: Interleukin-7 (IL-7) is a hematopoietic cytokine essential for T-cell development in the thymus and for the maintenance of peripheral T cells. A previous study of single nucleotide polymorphisms in the exons of IL-7 receptor a-chain (IL-7Ra) in a Danish cohort of patients undergoing a...

  4. RANTES polymorphisms and the risk of graft-versus-host disease in human leukocyte antigen-matched sibling allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Shin, Dong-Yeop; Kim, Inho; Kim, Jin Hee; Lee, Yun-Gyoo; Kang, Eun Joo; Cho, Hyeon Jin; Lee, Kyung-Hun; Kim, Hye Jin; Park, Eun-Hee; Lee, Jong-Eun; Bae, Ji-Yeon; See, Cha Ja; Yoon, Sung-Soo; Park, Sung Sup; Han, Kyou-Sup; Park, Myoung Hee; Hong, Yun-Chul; Park, Seonyang; Kim, Byoung Kook

    2013-01-01

    We investigated the association between RANTES (regulated upon activation, normal T cell expressed and secreted) polymorphisms and clinical outcomes in patients treated with allogeneic hematopoietic stem cell transplantation (allo-HSCT). Three RANTES gene polymorphisms, i.e., -403G/A (rs2107538), -28C/G (rs2280788) and In1.1T/C (rs2280789), were genotyped, and the effects of the genotypes and haplotypes of RANTES on clinical outcomes were analyzed. The competing risk regression analysis was used to investigate the relationship between the polymorphisms and the cumulative risk of graft-versus-host disease (GVHD). An AGC haplotype in a recessive model showed significant harmful effects on the cumulative risk of acute GVHD and relapse-free survival (adjusted hazard ratios 2.42 and 2.71, 95% confidence intervals 1.29-4.55 and 1.30-5.64; p = 0.018 and 0.024, respectively), whereas a GCT haplotype did not. RANTES polymorphisms were not significantly associated with overall survival and the risk of chronic GVHD. This study suggests that RANTES polymorphisms might be associated with the occurrence of acute GVHD rather than of chronic GVHD and also of relapse-free survival in the patients treated with allo-HSCT. Further larger prospective investigations are needed to establish the role of RANTES polymorphisms in patients treated with allo-HSCT. Copyright © 2012 S. Karger AG, Basel.

  5. Buoyancy-activated cell sorting using targeted biotinylated albumin microbubbles.

    Directory of Open Access Journals (Sweden)

    Yu-Ren Liou

    Full Text Available Cell analysis often requires the isolation of certain cell types. Various isolation methods have been applied to cell sorting, including fluorescence-activated cell sorting and magnetic-activated cell sorting. However, these conventional approaches involve exerting mechanical forces on the cells, thus risking cell damage. In this study we applied a novel isolation method called buoyancy-activated cell sorting, which involves using biotinylated albumin microbubbles (biotin-MBs conjugated with antibodies (i.e., targeted biotin-MBs. Albumin MBs are widely used as contrast agents in ultrasound imaging due to their good biocompatibility and stability. For conjugating antibodies, biotin is conjugated onto the albumin MB shell via covalent bonds and the biotinylated antibodies are conjugated using an avidin-biotin system. The albumin microbubbles had a mean diameter of 2 μm with a polydispersity index of 0.16. For cell separation, the MDA-MB-231 cells are incubated with the targeted biotin-MBs conjugated with anti-CD44 for 10 min, centrifuged at 10 g for 1 min, and then allowed 1 hour at 4 °C for separation. The results indicate that targeted biotin-MBs conjugated with anti-CD44 antibodies can be used to separate MDA-MB-231 breast cancer cells; more than 90% of the cells were collected in the MB layer when the ratio of the MBs to cells was higher than 70:1. Furthermore, we found that the separating efficiency was higher for targeted biotin-MBs than for targeted avidin-incorporated albumin MBs (avidin-MBs, which is the most common way to make targeted albumin MBs. We also demonstrated that the recovery rate of targeted biotin-MBs was up to 88% and the sorting purity was higher than 84% for a a heterogenous cell population containing MDA-MB-231 cells (CD44(+ and MDA-MB-453 cells (CD44-, which are classified as basal-like breast cancer cells and luminal breast cancer cells, respectively. Knowing that the CD44(+ is a commonly used cancer-stem-cell

  6. Polymorphisms in the mitochondrial ribosome recycling factor EF-G2mt/MEF2 compromise cell respiratory function and increase atorvastatin toxicity.

    Directory of Open Access Journals (Sweden)

    Sylvie Callegari

    Full Text Available Mitochondrial translation, essential for synthesis of the electron transport chain complexes in the mitochondria, is governed by nuclear encoded genes. Polymorphisms within these genes are increasingly being implicated in disease and may also trigger adverse drug reactions. Statins, a class of HMG-CoA reductase inhibitors used to treat hypercholesterolemia, are among the most widely prescribed drugs in the world. However, a significant proportion of users suffer side effects of varying severity that commonly affect skeletal muscle. The mitochondria are one of the molecular targets of statins, and these drugs have been known to uncover otherwise silent mitochondrial mutations. Based on yeast genetic studies, we identify the mitochondrial translation factor MEF2 as a mediator of atorvastatin toxicity. The human ortholog of MEF2 is the Elongation Factor Gene (EF-G 2, which has previously been shown to play a specific role in mitochondrial ribosome recycling. Using small interfering RNA (siRNA silencing of expression in human cell lines, we demonstrate that the EF-G2mt gene is required for cell growth on galactose medium, signifying an essential role for this gene in aerobic respiration. Furthermore, EF-G2mt silenced cell lines have increased susceptibility to cell death in the presence of atorvastatin. Using yeast as a model, conserved amino acid variants, which arise from non-synonymous single nucleotide polymorphisms (SNPs in the EF-G2mt gene, were generated in the yeast MEF2 gene. Although these mutations do not produce an obvious growth phenotype, three mutations reveal an atorvastatin-sensitive phenotype and further analysis uncovers a decreased respiratory capacity. These findings constitute the first reported phenotype associated with SNPs in the EF-G2mt gene and implicate the human EF-G2mt gene as a pharmacogenetic candidate gene for statin toxicity in humans.

  7. Polymorphism in ABC transporter genes of Dirofilaria immitis

    Directory of Open Access Journals (Sweden)

    Thangadurai Mani

    2017-08-01

    Full Text Available Dirofilaria immitis, a filarial nematode, causes dirofilariasis in dogs, cats and occasionally in humans. Prevention of the disease has been mainly by monthly use of the macrocyclic lactone (ML endectocides during the mosquito transmission season. Recently, ML resistance has been confirmed in D. immitis and therefore, there is a need to find new classes of anthelmintics. One of the mechanisms associated with ML resistance in nematodes has been the possible role of ATP binding cassette (ABC transporters in reducing drug concentrations at receptor sites. ABC transporters, mainly from sub-families B, C and G, may contribute to multidrug resistance (MDR by active efflux of drugs out of the cell. Gene products of ABC transporters may thus serve as the targets for agents that may modulate susceptibility to drugs, by inhibiting drug transport. ABC transporters are believed to be involved in a variety of physiological functions critical to the parasite, such as sterol transport, and therefore may also serve as the target for drugs that can act as anthelmintics on their own. Knowledge of polymorphism in these ABC transporter genes in nematode parasites could provide useful information for the process of drug design. We have identified 15 ABC transporter genes from sub-families A, B, C and G, in D. immitis, by comparative genomic approaches and analyzed them for polymorphism. Whole genome sequencing data from four ML susceptible (SUS and four loss of efficacy (LOE pooled populations were used for single nucleotide polymorphism (SNP genotyping. Out of 231 SNPs identified in those 15 ABC transporter genes, 89 and 75 of them were specific to the SUS or LOE populations, respectively. A few of the SNPs identified may affect gene expression, protein function, substrate specificity or resistance development and may be useful for transporter inhibitor/anthelmintic drug design, or in order to anticipate resistance development. Keywords: Dirofilaria immitis

  8. Mutations and polymorphisms in FSH receptor: functional implications in human reproduction.

    Science.gov (United States)

    Desai, Swapna S; Roy, Binita Sur; Mahale, Smita D

    2013-12-01

    FSH brings about its physiological actions by activating a specific receptor located on target cells. Normal functioning of the FSH receptor (FSHR) is crucial for follicular development and estradiol production in females and for the regulation of Sertoli cell function and spermatogenesis in males. In the last two decades, the number of inactivating and activating mutations, single nucleotide polymorphisms, and spliced variants of FSHR gene has been identified in selected infertile cases. Information on genotype-phenotype correlation and in vitro functional characterization of the mutants has helped in understanding the possible genetic cause for female infertility in affected individuals. The information is also being used to dissect various extracellular and intracellular events involved in hormone-receptor interaction by studying the differences in the properties of the mutant receptor when compared with WT receptor. Studies on polymorphisms in the FSHR gene have shown variability in clinical outcome among women treated with FSH. These observations are being explored to develop molecular markers to predict the optimum dose of FSH required for controlled ovarian hyperstimulation. Pharmacogenetics is an emerging field in this area that aims at designing individual treatment protocols for reproductive abnormalities based on FSHR gene polymorphisms. The present review discusses the current knowledge of various genetic alterations in FSHR and their impact on receptor function in the female reproductive system.

  9. Do prion protein gene polymorphisms induce apoptosis in non

    Indian Academy of Sciences (India)

    To elucidate the relationship between the SNPs and apoptosis, TUNEL assays and active caspase-3 immunodetection techniques in brain sections of the polymorphic samples were performed. The results revealed that TUNEL-positive cells and active caspase-3-positive cells in the turtles with four polymorphisms were ...

  10. Radioprotection of targeted and bystander cells by methylproamine

    International Nuclear Information System (INIS)

    Burdak-Rothkamm, Susanne; Smith, Andrea; Lobachevsky, Pavel; Martin, Roger; Prise, Kevin M.

    2015-01-01

    Radioprotective agents are of interest for application in radiotherapy for cancer and in public health medicine in the context of accidental radiation exposure. Methylproamine is the lead compound of a class of radioprotectors which act as DNA binding anti-oxidants, enabling the repair of transient radiation-induced oxidative DNA lesions. This study tested methylproamine for the radioprotection of both directly targeted and bystander cells. T98G glioma cells were treated with 15 μM methylproamine and exposed to 137 Cs γ-ray/X-ray irradiation and He 2+ microbeam irradiation. Radioprotection of directly targeted cells and bystander cells was measured by clonogenic survival or γH2AX assay. Radioprotection of directly targeted T98G cells by methylproamine was observed for 137 Cs γ-rays and X-rays but not for He 2+ charged particle irradiation. The effect of methylproamine on the bystander cell population was tested for both X-ray irradiation and He 2+ ion microbeam irradiation. The X-ray bystander experiments were carried out by medium transfer from irradiated to non-irradiated cultures and three experimental designs were tested. Radioprotection was only observed when recipient cells were pretreated with the drug prior to exposure to the conditioned medium. In microbeam bystander experiments targeted and nontargeted cells were co-cultured with continuous methylproamine treatment during irradiation and postradiation incubation; radioprotection of bystander cells was observed. Methylproamine protected targeted cells from DNA damage caused by γ-ray or X-ray radiation but not He 2+ ion radiation. Protection of bystander cells was independent of the type of radiation which the donor population received. (orig.) [de

  11. Three-dimensional atomic mapping of hydrogenated polymorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wanghua, E-mail: wanghua.chen@polytechnique.edu; Roca i Cabarrocas, Pere [LPICM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau (France); Pareige, Philippe [GPM, CNRS, Université et INSA de Rouen, Normandie Université, 76801 Saint Etienne du Rouvray (France)

    2016-06-20

    Hydrogenated polymorphous silicon (pm-Si:H) is a nanostructured material consisting of silicon nanocrystals embedded in an amorphous silicon matrix. Its use as the intrinsic layer in thin film p-i-n solar cells has led to good cell properties in terms of stability and efficiency. Here, we have been able to assess directly the concentration and distribution of nanocrystals and impurities (dopants) in p-i-n solar cells, by using femtosecond laser-assisted atom probe tomography (APT). An effective sample preparation method for APT characterization is developed. Based on the difference in atomic density between hydrogenated amorphous and crystalline silicon, we are able to distinguish the nanocrystals from the amorphous matrix by using APT. Moreover, thanks to the three-dimensional reconstruction, we demonstrate that Si nanocrystals are homogeneously distributed in the entire intrinsic layer of the solar cell. The influence of the process pressure on the incorporation of nanocrystals and their distribution is also investigated. Thanks to APT we could determine crystalline fractions as low as 4.2% in the pm-Si:H films, which is very difficult to determine by standard techniques, such as X-ray diffraction, Raman spectroscopy, and spectroscopic ellipsometry. Moreover, we also demonstrate a sharp p/i interface in our solar cells.

  12. Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies

    Directory of Open Access Journals (Sweden)

    Ander Abarrategi

    2016-01-01

    Full Text Available Osteosarcoma (OS is the most common type of primary solid tumor that develops in bone. Although standard chemotherapy has significantly improved long-term survival over the past few decades, the outcome for those patients with metastatic or recurrent OS remains dismally poor and, therefore, novel agents and treatment regimens are urgently required. A hypothesis to explain the resistance of OS to chemotherapy is the existence of drug resistant CSCs with progenitor properties that are responsible of tumor relapses and metastasis. These subpopulations of CSCs commonly emerge during tumor evolution from the cell-of-origin, which are the normal cells that acquire the first cancer-promoting mutations to initiate tumor formation. In OS, several cell types along the osteogenic lineage have been proposed as cell-of-origin. Both the cell-of-origin and their derived CSC subpopulations are highly influenced by environmental and epigenetic factors and, therefore, targeting the OS-CSC environment and niche is the rationale for many recently postulated therapies. Likewise, some strategies for targeting CSC-associated signaling pathways have already been tested in both preclinical and clinical settings. This review recapitulates current OS cell-of-origin models, the properties of the OS-CSC and its niche, and potential new therapies able to target OS-CSCs.

  13. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells.

    Science.gov (United States)

    Herce, Henry D; Schumacher, Dominik; Schneider, Anselm F L; Ludwig, Anne K; Mann, Florian A; Fillies, Marion; Kasper, Marc-André; Reinke, Stefan; Krause, Eberhard; Leonhardt, Heinrich; Cardoso, M Cristina; Hackenberger, Christian P R

    2017-08-01

    Functional antibody delivery in living cells would enable the labelling and manipulation of intracellular antigens, which constitutes a long-thought goal in cell biology and medicine. Here we present a modular strategy to create functional cell-permeable nanobodies capable of targeted labelling and manipulation of intracellular antigens in living cells. The cell-permeable nanobodies are formed by the site-specific attachment of intracellularly stable (or cleavable) cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain VHH antibody fragments. We used this strategy for the non-endocytic delivery of two recombinant nanobodies into living cells, which enabled the relocalization of the polymerase clamp PCNA (proliferating cell nuclear antigen) and tumour suppressor p53 to the nucleolus, and thereby allowed the detection of protein-protein interactions that involve these two proteins in living cells. Furthermore, cell-permeable nanobodies permitted the co-transport of therapeutically relevant proteins, such as Mecp2, into the cells. This technology constitutes a major step in the labelling, delivery and targeted manipulation of intracellular antigens. Ultimately, this approach opens the door towards immunostaining in living cells and the expansion of immunotherapies to intracellular antigen targets.

  14. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells

    Science.gov (United States)

    Herce, Henry D.; Schumacher, Dominik; Schneider, Anselm F. L.; Ludwig, Anne K.; Mann, Florian A.; Fillies, Marion; Kasper, Marc-André; Reinke, Stefan; Krause, Eberhard; Leonhardt, Heinrich; Cardoso, M. Cristina; Hackenberger, Christian P. R.

    2017-08-01

    Functional antibody delivery in living cells would enable the labelling and manipulation of intracellular antigens, which constitutes a long-thought goal in cell biology and medicine. Here we present a modular strategy to create functional cell-permeable nanobodies capable of targeted labelling and manipulation of intracellular antigens in living cells. The cell-permeable nanobodies are formed by the site-specific attachment of intracellularly stable (or cleavable) cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain VHH antibody fragments. We used this strategy for the non-endocytic delivery of two recombinant nanobodies into living cells, which enabled the relocalization of the polymerase clamp PCNA (proliferating cell nuclear antigen) and tumour suppressor p53 to the nucleolus, and thereby allowed the detection of protein-protein interactions that involve these two proteins in living cells. Furthermore, cell-permeable nanobodies permitted the co-transport of therapeutically relevant proteins, such as Mecp2, into the cells. This technology constitutes a major step in the labelling, delivery and targeted manipulation of intracellular antigens. Ultimately, this approach opens the door towards immunostaining in living cells and the expansion of immunotherapies to intracellular antigen targets.

  15. The clinical impact of MTHFR polymorphism on the vascular complications of sickle cell disease

    Directory of Open Access Journals (Sweden)

    F. Moreira Neto

    2006-10-01

    Full Text Available Sickle cell disease (SCD is one of the most common inherited diseases in the world and the patients present notorious clinical heterogeneity. It is known that patients with SCD present activation of the blood coagulation and fibrinolytic systems, especially during vaso-occlusive crises, but also during the steady state of the disease. We determined if the presence of the factor V gene G1691A mutation (factor V Leiden, the prothrombin gene G20210A variant, and methylenetetrahydrofolate reductase (MTHFR C677T polymorphism may be risk factors for vascular complications in individuals with SCD. We studied 53 patients with SCD (60% being women, 29 with SS (sickle cell anemia; 28 years, range: 13-52 years and 24 with SC (sickle-hemoglobin C disease; 38.5 years, range: 17-72 years hemoglobinopathy. Factor V Leiden, MTHFR C677T polymorphism, and prothrombin G20210A variant were identified by PCR followed by further digestion of the PCR product with specific endonucleases. The following vascular complications were recorded: stroke, retinopathy, acute thoracic syndrome, and X-ray-documented avascular necrosis. Only one patient was heterozygous for factor V Leiden (1.8% and there was no prothrombin G20210A variant. MTHFR 677TT polymorphism was detected in 1 patient (1.8% and the heterozygous form 677TC was observed in 18 patients (34%, 9 with SS and 9 with SC disease, a prevalence similar to that reported by others. No association was detected between the presence of the MTHFR 677T allele and other genetic modulation factors, such as alpha-thalassemia, ß-globin gene haplotype and fetal hemoglobin. The presence of the MTHFR 677T allele was associated with the occurrence of vascular complications in SCD, although this association was not significant when each complication was considered separately. In conclusion, MTHFR C677T polymorphism might be a risk factor for vascular complications in SCD.

  16. From Single Nucleotide Polymorphisms to Constant Immunosuppression: Mesenchymal Stem Cell Therapy for Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Raghavan Chinnadurai

    2013-01-01

    Full Text Available The regenerative abilities and the immunosuppressive properties of mesenchymal stromal cells (MSCs make them potentially the ideal cellular product of choice for treatment of autoimmune and other immune mediated disorders. Although the usefulness of MSCs for therapeutic applications is in early phases, their potential clinical use remains of great interest. Current clinical evidence of use of MSCs from both autologous and allogeneic sources to treat autoimmune disorders confers conflicting clinical benefit outcomes. These varied results may possibly be due to MSC use across wide range of autoimmune disorders with clinical heterogeneity or due to variability of the cellular product. In the light of recent genome wide association studies (GWAS, linking predisposition of autoimmune diseases to single nucleotide polymorphisms (SNPs in the susceptible genetic loci, the clinical relevance of MSCs possessing SNPs in the critical effector molecules of immunosuppression is largely undiscussed. It is of further interest in the allogeneic setting, where SNPs in the target pathway of MSC's intervention may also modulate clinical outcome. In the present review, we have discussed the known critical SNPs predisposing to disease susceptibility in various autoimmune diseases and their significance in the immunomodulatory properties of MSCs.

  17. Start codon targeted (scot polymorphism reveals genetic diversity in european old maize (zea mays l. Genotypes

    Directory of Open Access Journals (Sweden)

    Martin Vivodík

    2016-11-01

    Full Text Available Maize (Zea mays L. is one of the world's most important crop plants following wheat and rice, which provides staple food to large number of human population in the world. It is cultivated in a wider range of environments than wheat and rice because of its greater adaptability. Molecular characterization is frequently used by maize breeders as an alternative method for selecting more promising genotypes and reducing the cost and time needed to develop hybrid combinations. In the present investigation 40 genotypes of maize from Czechoslovakia, Hungary, Poland, Union of Soviet Socialist Republics, Slovakia and Yugoslavia were analysed using 20 Start codon targeted (SCoT markers. These primers produced total 114 fragments across 40 maize genotypes, of which 86 (76.43% were polymorphic with an average of 4.30 polymorphic fragments per primer and number of amplified fragments ranged from 2 (SCoT 45 to 8 (SCoT 28 and SCoT 63. The polymorphic information content (PIC value ranged from 0.374 (ScoT 45 to 0.846 (SCoT 28 with an average of 0.739. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared. The hierarchical cluster analysis showed that the maize genotypes were divided into two main clusters. Unique maize genotype (cluster 1, Zuta Brzica, originating from Yugoslavia separated from others. Cluster 2 was divided into two main clusters (2a and 2b. Subcluster 2a contained one Yugoslavian genotype Juhoslavanska and subcluster 2b was divided in two subclusters 2ba and 2bb. The present study shows effectiveness of employing SCoT markers in analysis of maize, and would be useful for further studies in population genetics, conservation genetics and genotypes improvement.

  18. Polymorphous silicon thin films produced in dusty plasmas: application to solar cells

    International Nuclear Information System (INIS)

    Roca i Cabarrocas, Pere; Chaabane, N; Kharchenko, A V; Tchakarov, S

    2004-01-01

    We summarize our current understanding of the optimization of PIN solar cells produced by plasma enhanced chemical vapour deposition from silane-hydrogen mixtures. To increase the deposition rate, the discharge is operated under plasma conditions close to powder formation, where silicon nanocrystals contribute to the deposition of so-called polymorphous silicon thin films. We show that the increase in deposition rate can be achieved via an accurate control of the plasma parameters. However, this also results in a highly defective interface in the solar cells due to the bombardment of the P-layer by positively charged nanocrystals during the deposition of the I-layer. We show that decreasing the ion energy by increasing the total pressure or by using silane-helium mixtures allows us to increase both the deposition rate and the solar cells efficiency, as required for cost effective thin film photovoltaics

  19. Influence of prostate stem cell antigen gene polymorphisms on susceptibility to Helicobacter pylori-associated diseases: a case-control study.

    Science.gov (United States)

    Ichikawa, Hitomi; Sugimoto, Mitsushige; Uotani, Takahiro; Sahara, Shu; Yamade, Mihoko; Iwaizumi, Moriya; Yamada, Takanori; Osawa, Satoshi; Sugimoto, Ken; Miyajima, Hiroaki; Yamaoka, Yoshio; Furuta, Takahisa

    2015-04-01

    Patients with duodenal ulcer have a reduced risk of developing gastric cancer compared to those without. Recently, the prostate stem cell antigen (PSCA) rs2294008 C>T polymorphism was found to be associated with different pathogenesis of duodenal ulcer and gastric cancer developments. However, whether PSCA rs2294008 C>T polymorphism is associated with severity of gastric mucosal atrophy is unclear. We examined the influence of the PSCA rs2294008 C>T polymorphism on susceptibility to H. pylori-related diseases and the relationships between PSCA polymorphism and gastric mucosal atrophy. PSCA rs2294008 C>T polymorphism was assessed in H. pylori-positive Japanese patients (n = 488) with noncardia gastric cancer (n = 193), gastric ulcer (n = 84), duodenal ulcer (n = 61), and atrophic gastritis (n = 150), as well as in H. pylori-negatives (n = 266). Frequency of PSCA rs2294008 C/C genotype in duodenal ulcer was 36.1%, which was significantly higher than those with gastric cancer (12.4%), gastric ulcer (19.0%), gastritis (10.7%), and H. pylori-negatives (19.5%) (p T polymorphism is associated with differing susceptibilities to H. pylori-associated diseases. The PSCA rs2294008 C>T polymorphism may be acting through induction of gastric mucosal atrophy, finally leading to development of gastric ulcer and gastric cancer in PSCA rs2294008 T allele carriers, but not duodenal ulcer. © 2014 John Wiley & Sons Ltd.

  20. The quest for targets executing MYC-dependent cell transformation

    Directory of Open Access Journals (Sweden)

    Markus eHartl

    2016-06-01

    Full Text Available MYC represents a transcription factor with oncogenic potential converting multiple cellular signals into a broad transcriptional response, thereby controlling the expression of numerous protein-coding and non-coding RNAs important for cell proliferation, metabolism, differentiation, and apoptosis. Constitutive activation of MYC leads to neoplastic cell transformation, and deregulated MYC alleles are frequently observed in many human cancer cell types. Multiple approaches have been performed to isolate genes differentially expressed in cells containing aberrantly activated MYC proteins leading to the identification of thousands of putative targets. Functional analyses of genes differentially expressed in MYC-transformed cells had revealed that so far more than forty upregulated or downregulated MYC targets are actively involved in cell transformation or tumorigenesis. However, for determination which of the known, or yet unidentified targets are responsible for processing the oncogenic MYC program, further systematic and selective approaches are required. The search for critical targets in MYC-dependent tumor cells is exacerbated by the fact that during tumor development, cancer cells progressively evolve in a multistep process thereby acquiring their characteristic features in an additive manner. Functional expression cloning, combinatorial gene expression and appropriate in vivo tests could represent adequate tools for dissecting the complex scenario of MYC-specified cell transformation. In this context, the central goal is to identify a minimal set of targets that suffices to phenocopy oncogenic MYC. Recently developed genomic editing tools could be employed to confirm the requirement of crucial transformation-associated targets.Knowledge about essential MYC regulated genes is beneficial to expedite the development of specific inhibitors to interfere with growth and viability of human tumor cells in which MYC is aberrantly activated

  1. Targeting therapy-resistant cancer stem cells by hyperthermia

    DEFF Research Database (Denmark)

    Oei, A L; Vriend, L E M; Krawczyk, P M

    2017-01-01

    Eradication of all malignant cells is the ultimate but challenging goal of anti-cancer treatment; most traditional clinically-available approaches fail because there are cells in a tumour that either escape therapy or become therapy-resistant. A subpopulation of cancer cells, the cancer stem cells...... are limited. Here, we argue that hyperthermia - a therapeutic approach based on local heating of a tumour - is potentially beneficial for targeting CSCs in solid tumours. First, hyperthermia has been described to target cells in hypoxic and nutrient-deprived tumour areas where CSCs reside and ionising...

  2. Targeting human breast cancer cells by an oncolytic adenovirus using microRNA-targeting strategy.

    Science.gov (United States)

    Shayestehpour, Mohammad; Moghim, Sharareh; Salimi, Vahid; Jalilvand, Somayeh; Yavarian, Jila; Romani, Bizhan; Mokhtari-Azad, Talat

    2017-08-15

    MicroRNA-targeting strategy is a promising approach that enables oncolytic viruses to replicate in tumor cells but not in normal cells. In this study, we targeted adenoviral replication toward breast cancer cells by inserting ten complementary binding sites for miR-145-5p downstream of E1A gene. In addition, we evaluated the effect of increasing miR-145 binding sites on inhibition of virus replication. Ad5-control and adenoviruses carrying five or ten copies of miR145-5p target sites (Ad5-5miR145T, Ad5-10miR145T) were generated and inoculated into MDA-MB-453, BT-20, MCF-7 breast cancer cell lines and human mammary epithelial cells (HMEpC). Titer of Ad5-10miR145T in HMEpC was significantly lower than Ad5-control titer. Difference between the titer of these two viruses at 12, 24, 36, and 48h after infection was 1.25, 2.96, 3.06, and 3.77 log TCID 50 . No significant difference was observed between the titer of both adenoviruses in MDA-MB-453, BT-20 and MCF-7 cells. The infectious titer of adenovirus containing 10 miR-145 binding sites in HMEpC cells at 24, 36, and 48h post-infection was 1.7, 2.08, and 4-fold, respectively, lower than the titer of adenovirus carrying 5 miR-145 targets. Our results suggest that miR-145-targeting strategy provides selectivity for adenovirus replication in breast cancer cells. Increasing the number of miRNA binding sites within the adenoviral genome confers more selectivity for viral replication in cancer cells. Copyright © 2017. Published by Elsevier B.V.

  3. Cell cycle-tailored targeting of metastatic melanoma: Challenges and opportunities.

    Science.gov (United States)

    Haass, Nikolas K; Gabrielli, Brian

    2017-07-01

    The advent of targeted therapies of metastatic melanoma, such as MAPK pathway inhibitors and immune checkpoint antagonists, has turned dermato-oncology from the "bad guy" to the "poster child" in oncology. Current targeted therapies are effective, although here is a clear need to develop combination therapies to delay the onset of resistance. Many antimelanoma drugs impact on the cell cycle but are also dependent on certain cell cycle phases resulting in cell cycle phase-specific drug insensitivity. Here, we raise the question: Have combination trials been abandoned prematurely as ineffective possibly only because drug scheduling was not optimized? Firstly, if both drugs of a combination hit targets in the same melanoma cell, cell cycle-mediated drug insensitivity should be taken into account when planning combination therapies, timing of dosing schedules and choice of drug therapies in solid tumors. Secondly, if the combination is designed to target different tumor cell subpopulations of a heterogeneous tumor, one drug effective in a particular subpopulation should not negatively impact on the other drug targeting another subpopulation. In addition to the role of cell cycle stage and progression on standard chemotherapeutics and targeted drugs, we discuss the utilization of cell cycle checkpoint control defects to enhance chemotherapeutic responses or as targets themselves. We propose that cell cycle-tailored targeting of metastatic melanoma could further improve therapy outcomes and that our real-time cell cycle imaging 3D melanoma spheroid model could be utilized as a tool to measure and design drug scheduling approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. USP38, FREM3, SDC1, DDC, and LOC727982 Gene Polymorphisms and Differential Susceptibility to Severe Malaria in Tanzania.

    Science.gov (United States)

    Manjurano, Alphaxard; Sepúlveda, Nuno; Nadjm, Behzad; Mtove, George; Wangai, Hannah; Maxwell, Caroline; Olomi, Raimos; Reyburn, Hugh; Drakeley, Christopher J; Riley, Eleanor M; Clark, Taane G

    2015-10-01

    Populations exposed to Plasmodium falciparum infection develop genetic mechanisms of protection against severe malarial disease. Despite decades of genetic epidemiological research, the sickle cell trait (HbAS) sickle cell polymorphism, ABO blood group, and other hemoglobinopathies remain the few major determinants in severe malaria to be replicated across different African populations and study designs. Within a case-control study in a region of high transmission in Tanzania (n = 983), we investigated the role of 40 new loci identified in recent genome-wide studies. In 32 loci passing quality control procedures, we found polymorphisms in USP38, FREM3, SDC1, DDC, and LOC727982 genes to be putatively associated with differential susceptibility to severe malaria. Established candidates explained 7.4% of variation in severe malaria risk (HbAS polymorphism, 6.3%; α-thalassemia, 0.3%; ABO group, 0.3%; and glucose-6-phosphate dehydrogenase deficiency, 0.5%) and the new polymorphisms, another 4.3%. The regions encompassing the loci identified are promising targets for the design of future treatment and control interventions. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  5. Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles.

    Science.gov (United States)

    Connell, John J; Patrick, P Stephen; Yu, Yichao; Lythgoe, Mark F; Kalber, Tammy L

    2015-01-01

    Regenerative medicine would greatly benefit from a new platform technology that enabled measurable, controllable and targeting of stem cells to a site of disease or injury in the body. Superparamagnetic iron-oxide nanoparticles offer attractive possibilities in biomedicine and can be incorporated into cells, affording a safe and reliable means of tagging. This review describes three current and emerging methods to enhance regenerative medicine using magnetic particles to guide therapeutic cells to a target organ; track the cells using MRI and assess their spatial localization with high precision and influence the behavior of the cell using magnetic actuation. This approach is complementary to the systemic injection of cell therapies, thus expanding the horizon of stem cell therapeutics.

  6. B cells as a target of immune modulation

    Directory of Open Access Journals (Sweden)

    Hawker Kathleen

    2009-01-01

    Full Text Available B cells have recently been identified as an integral component of the immune system; they play a part in autoimmunity through antigen presentation, antibody secretion, and complement activation. Animal models of multiple sclerosis (MS suggest that myelin destruction is partly mediated through B cell activation (and plasmablasts. MS patients with evidence of B cell involvement, as compared to those without, tend to have a worse prognosis. Finally, the significant decrease in new gadolinium-enhancing lesions, new T2 lesions, and relapses in MS patients treated with rituximab (a monoclonal antibody against CD20 on B cells leads us to the conclusion that B cells play an important role in MS and that immune modulation of these cells may ameliorate the disease. This article will explore the role of B cells in MS and the rationale for the development of B cell-targeted therapeutics. MS is an immune-mediated disease that affects over 2 million people worldwide and is the number one cause of disability in young patients. Most therapeutic targets have focused on T cells; however, recently, the focus has shifted to the role of B cells in the pathogenesis of MS and the potential of B cells as a therapeutic target.

  7. The Fc Receptor Polymorphisms and Expression of Neutrophil Activation Markers in Patients with Sickle Cell Disease from Western India

    Directory of Open Access Journals (Sweden)

    Harshada K. Kangne

    2013-01-01

    Full Text Available Objective. Sickle cell disease has variable clinical manifestations. Activation of neutrophils plays an important role in the initiation and propagation of vaso occlusive crises which can be analysed by determining the expression of neutrophil antigens such as CD16, CD32, and CD62L. The common FcγR polymorphisms (FcγRIIA and FcγRIIIB are considered to influence clinical presentation. This study focuses on distribution of FcγR polymorphisms and their association with neutrophil activity among the patients from western India. Methods. In this paper 127 sickle cell anemia patients and 58 patients with sickle-β-thalassemia (median age 12±8.58 years with variable clinical phenotypes along with 175 normals were investigated. FcγRs polymorphisms were analysed by RFLP and AS-PCR. Activation of neutrophils was measured by flow cytometry. Results. The genotypic frequency of the H/R genotype of FcγRIIA and the NA1/NA1 genotype of FcγRIIIB was significantly decreased in patients compared to normals (P-0.0074, P-0.0471, resp.. We found a significant difference in the expression of CD32 and CD62L among the patients as against normals. A significantly higher expression of CD32 was seen in the milder patients with the H/H genotype (P-0.0231, whereas the expression of CD16 was higher in severe patients with the NA2/NA2 genotype (P-0.0312. Conclusion. The two FcγR polymorphisms had significant association with variable phenotypes of sickle cell disease. The expression of CD62L decreased in our patients indicating activation of neutrophils.

  8. Methylation sensitive-sequence related amplified polymorphism (MS ...

    African Journals Online (AJOL)

    DR NJ TONUKARI

    2011-04-25

    Apr 25, 2011 ... Sequence-related amplified polymorphism (SRAP) is a simple but an efficient gene amplification marker system for both .... Each polymorphic band reflecting different methylation status at the ... After boiling for 5 min in the water, the .... CpG dinucleotides in the open reading frame of a testicular germ cell-.

  9. Targeting Stromal Recruitment by Prostate Cancer Cells

    Science.gov (United States)

    2006-03-01

    Ensinger, C., Tumer , Z., Tommerup, N. et al.: Hedgehog signaling in small-cell lung cancer : frequent in vivo but a rare event in vitro. Lung Cancer , 52...W81XWH-04-1-0157 TITLE: Targeting Stromal Recruitment by Prostate Cancer Cells PRINCIPAL INVESTIGATOR: Jingxian Zhang, Ph.D...DATES COVERED (From - To) 15 Feb 2004 – 14 Feb 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Stromal Recruitment by Prostate Cancer

  10. Transcription factor HIF1A: downstream targets, associated pathways, polymorphic hypoxia response element (HRE) sites, and initiative for standardization of reporting in scientific literature.

    Science.gov (United States)

    Slemc, Lucija; Kunej, Tanja

    2016-11-01

    Hypoxia-inducible factor-1α (HIF-1α) has crucial role in adapting cells to hypoxia through expression regulation of many genes. Identification of HIF-1α target genes (HIF-1α-TGs) is important for understanding the adapting mechanism. The aim of the present study was to collect known HIF-1α-TGs and identify their associated pathways. Targets and associated genomics data were retrieved using PubMed, WoS ( http://apps.webofknowledge.com/ ), HGNC ( http://www.genenames.org/ ), NCBI ( http://www.ncbi.nlm.nih.gov/ ), Ensemblv.84 ( http://www.ensembl.org/index.html ), DAVID Bioinformatics Resources ( https://david.ncifcrf.gov /), and Disease Ontology database ( http://disease-ontology.org/ ). From 51 papers, we collected 98 HIF-1α TGs found to be associated with 20 pathways, including metabolism of carbohydrates and pathways in cancer. Reanalysis of genomic coordinates of published HREs (hypoxia response elements) revealed six polymorphisms within HRE sites (HRE-SNPs): ABCG2, ACE, CA9, and CP. Due to large heterogeneity of results presentation in scientific literature, we also propose a first step towards reporting standardization of HIF-1α-target interactions consisting of ten relevant data types. Suggested minimal checklist for reporting will enable faster development of a complete catalog of HIF-1α-TGs, data sharing, bioinformatics analyses, and setting novel more targeted hypotheses. The proposed format for data standardization is not yet complete but presents a baseline for further optimization of the protocol with additional details, for example, regarding the experimental validation.

  11. Broad target cell selectivity of Kaposi's sarcoma-associated herpesvirus glycoprotein-mediated cell fusion and virion entry

    International Nuclear Information System (INIS)

    Kaleeba, Johnan A.R.; Berger, Edward A.

    2006-01-01

    The molecular mechanism of Kaposi's sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) entry is poorly understood. We tested a broad variety of cell types of diverse species and tissue origin for their ability to function as targets in a quantitative reporter gene assay for KSHV-glycoprotein-mediated cell fusion. Several human, non-human primate, and rabbit cell lines were efficient targets, whereas rodent and all human lymphoblastoid cell lines were weak targets. Parallel findings were obtained with a virion entry assay using a recombinant KSHV encoding a reporter gene. No correlation was observed between target cell activity and surface expression of α3β1 integrin, a proposed KSHV receptor. We hypothesize that target cell permissiveness in both the cell fusion and virion entry assays reflects the presence of a putative KSHV fusion-entry receptor

  12. Magnetic stem cell targeting to the inner ear

    Science.gov (United States)

    Le, T. N.; Straatman, L.; Yanai, A.; Rahmanian, R.; Garnis, C.; Häfeli, U. O.; Poblete, T.; Westerberg, B. D.; Gregory-Evans, K.

    2017-12-01

    Severe sensorineural deafness is often accompanied by a loss of auditory neurons in addition to injury of the cochlear epithelium and hair cell loss. Cochlear implant function however depends on a healthy complement of neurons and their preservation is vital in achieving optimal results. We have developed a technique to target mesenchymal stem cells (MSCs) to a deafened rat cochlea. We then assessed the neuroprotective effect of systematically delivered MSCs on the survival and function of spiral ganglion neurons (SGNs). MSCs were labeled with superparamagnetic nanoparticles, injected via the systemic circulation, and targeted using a magnetized cochlea implant and external magnet. Neurotrophic factor concentrations, survival of SGNs, and auditory function were assessed at 1 week and 4 weeks after treatments and compared against multiple control groups. Significant numbers of magnetically targeted MSCs (>30 MSCs/section) were present in the cochlea with accompanied elevation of brain-derived neurotrophic factor and glial cell-derived neurotrophic factor levels (p < 0.001). In addition we saw improved survival of SGNs (approximately 80% survival at 4 weeks). Hearing threshold levels in magnetically targeted rats were found to be significantly better than those of control rats (p < 0.05). These results indicate that magnetic targeting of MSCs to the cochlea can be accomplished with a magnetized cochlear permalloy implant and an external magnet. The targeted stem cells release neurotrophic factors which results in improved SGN survival and hearing recovery. Combining magnetic cell-based therapy and cochlear implantation may improve cochlear implant function in treating deafness.

  13. Surface-modified gold nanorods for specific cell targeting

    Science.gov (United States)

    Wang, Chan-Ung; Arai, Yoshie; Kim, Insun; Jang, Wonhee; Lee, Seonghyun; Hafner, Jason H.; Jeoung, Eunhee; Jung, Deokho; Kwon, Youngeun

    2012-05-01

    Gold nanoparticles (GNPs) have unique properties that make them highly attractive materials for developing functional reagents for various biomedical applications including photothermal therapy, targeted drug delivery, and molecular imaging. For in vivo applications, GNPs need to be prepared with very little or negligible cytotoxicitiy. Most GNPs are, however, prepared using growth-directing surfactants such as cetyl trimethylammonium bromide (CTAB), which are known to have considerable cytotoxicity. In this paper, we describe an approach to remove CTAB to a non-toxic concentration. We optimized the conditions for surface modification with methoxypolyethylene glycol thiol (mPEG), which replaced CTAB and formed a protective layer on the surface of gold nanorods (GNRs). The cytotoxicities of pristine and surface-modified GNRs were measured in primary human umbilical vein endothelial cells and human cell lines derived from hepatic carcinoma cells, embryonic kidney cells, and thyroid papillary carcinoma cells. Cytotoxicity assays revealed that treating cells with GNRs did not significantly affect cell viability except for thyroid papillary carcinoma cells. Thyroid cancer cells were more susceptible to residual CTAB, so CTAB had to be further removed by dialysis in order to use GNRs for thyroid cell targeting. PEGylated GNRs are further modified to present monoclonal antibodies that recognize a specific surface marker, Na-I symporter, for thyroid cells. Antibody-conjugated GNRs specifically targeted human thyroid cells in vitro.

  14. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Dudás, József; Fullár, Alexandra; Romani, Angela; Pritz, Christian; Kovalszky, Ilona; Hans Schartinger, Volker; Mathias Sprinzl, Georg; Riechelmann, Herbert

    2013-01-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells

  15. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Dudás, József, E-mail: jozsef.dudas@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Fullár, Alexandra, E-mail: fullarsz@gmail.com [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest (Hungary); Romani, Angela, E-mail: angela.romani@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Pritz, Christian, E-mail: christian.pritz@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Kovalszky, Ilona, E-mail: koval@korb1.sote.hu [1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest (Hungary); Hans Schartinger, Volker, E-mail: volker.schartinger@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Mathias Sprinzl, Georg, E-mail: georg.sprinzl@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Riechelmann, Herbert, E-mail: herbert.riechelmann@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria)

    2013-04-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.

  16. Selective tumor cell targeting by the disaccharide moiety of bleomycin.

    Science.gov (United States)

    Yu, Zhiqiang; Schmaltz, Ryan M; Bozeman, Trevor C; Paul, Rakesh; Rishel, Michael J; Tsosie, Krystal S; Hecht, Sidney M

    2013-02-27

    In a recent study, the well-documented tumor targeting properties of the antitumor agent bleomycin (BLM) were studied in cell culture using microbubbles that had been derivatized with multiple copies of BLM. It was shown that BLM selectively targeted MCF-7 human breast carcinoma cells but not the "normal" breast cell line MCF-10A. Furthermore, it was found that the BLM analogue deglycobleomycin, which lacks the disaccharide moiety of BLM, did not target either cell line, indicating that the BLM disaccharide moiety is necessary for tumor selectivity. Not resolved in the earlier study were the issues of whether the BLM disaccharide moiety alone is sufficient for tumor cell targeting and the possible cellular uptake of the disaccharide. In the present study, we conjugated BLM, deglycoBLM, and BLM disaccharide to the cyanine dye Cy5**. It was found that the BLM and BLM disaccharide conjugates, but not the deglycoBLM conjugate, bound selectively to MCF-7 cells and were internalized. The same was also true for the prostate cancer cell line DU-145 (but not for normal PZ-HPV-7 prostate cells) and for the pancreatic cancer cell line BxPC-3 (but not for normal SVR A221a pancreas cells). The targeting efficiency of the disaccharide was only slightly less than that of BLM in MCF-7 and DU-145 cells and comparable to that of BLM in BxPC-3 cells. These results establish that the BLM disaccharide is both necessary and sufficient for tumor cell targeting, a finding with obvious implications for the design of novel tumor imaging and therapeutic agents.

  17. Clinical and biochemical function of polymorphic NR0B1 GGAA-microsatellites in Ewing sarcoma: a report from the Children's Oncology Group.

    Directory of Open Access Journals (Sweden)

    Michael J Monument

    Full Text Available The genetics involved in Ewing sarcoma susceptibility and prognosis are poorly understood. EWS/FLI and related EWS/ETS chimeras upregulate numerous gene targets via promoter-based GGAA-microsatellite response elements. These microsatellites are highly polymorphic in humans, and preliminary evidence suggests EWS/FLI-mediated gene expression is highly dependent on the number of GGAA motifs within the microsatellite.Here we sought to examine the polymorphic spectrum of a GGAA-microsatellite within the NR0B1 promoter (a critical EWS/FLI target in primary Ewing sarcoma tumors, and characterize how this polymorphism influences gene expression and clinical outcomes.A complex, bimodal pattern of EWS/FLI-mediated gene expression was observed across a wide range of GGAA motifs, with maximal expression observed in constructs containing 20-26 GGAA motifs. Relative to white European and African controls, the NR0B1 GGAA-microsatellite in tumor cells demonstrated a strong bias for haplotypes containing 21-25 GGAA motifs suggesting a relationship between microsatellite function and disease susceptibility. This selection bias was not a product of microsatellite instability in tumor samples, nor was there a correlation between NR0B1 GGAA-microsatellite polymorphisms and survival outcomes.These data suggest that GGAA-microsatellite polymorphisms observed in human populations modulate EWS/FLI-mediated gene expression and may influence disease susceptibility in Ewing sarcoma.

  18. Relationship among tobacco habits, human papilloma virus (HPV) infection, p53 polymorphism/mutation and the risk of oral squamous cell carcinoma.

    Science.gov (United States)

    Chakrobarty, Bidyut; Roy, Jay Gopal; Majumdar, Sumit; Uppala, Divya

    2014-05-01

    The prevalence of oral squamous cell carcinoma (OSCC) has significantly increased over decades in several countries and human papilloma virus (HPV) has been indicated as one of the underlying causes. This suggests that HPV plays a role in the early stages of carcinogenesis but is not a requisite for the maintenance and progression of malignant state. p53 is a tumor suppressor gene that checks the cell and promotes apoptosis and cell repair that can be deactivated by mutations and a viral interaction leading to cancer and individuals with particular polymorphic variant of p53 is more susceptible to HPV-induced carcinogenesis. The present study has been carried out to detect and correlate p53 polymorphism/mutation, HPV DNA in the biopsy samples of oral cancer patients who had tobacco habits.

  19. The effect of Trim5 polymorphisms on the clinical course of HIV-1 infection.

    Directory of Open Access Journals (Sweden)

    Daniëlle van Manen

    2008-02-01

    Full Text Available The antiviral factor tripartite interaction motif 5alpha (Trim5alpha restricts a broad range of retroviruses in a species-specific manner. Although human Trim5alpha is unable to block HIV-1 infection in human cells, a modest inhibition of HIV-1 replication has been reported. Recently two polymorphisms in the Trim5 gene (H43Y and R136Q were shown to affect the antiviral activity of Trim5alpha in vitro. In this study, participants of the Amsterdam Cohort studies were screened for polymorphisms at amino acid residue 43 and 136 of the Trim5 gene, and the potential effects of these polymorphisms on the clinical course of HIV-1 infection were analyzed. In agreement with the reported decreased antiviral activity of Trim5alpha that contains a Y at amino acid residue 43 in vitro, an accelerated disease progression was observed for individuals who were homozygous for the 43Y genotype as compared to individuals who were heterozygous or homozygous for the 43H genotype. A protective effect of the 136Q genotype was observed but only after the emergence of CXCR4-using (X4 HIV-1 variants and when a viral load of 10(4.5 copies per ml plasma was used as an endpoint in survival analysis. Interestingly, naive CD4 T cells, which are selectively targeted by X4 HIV-1, revealed a significantly higher expression of Trim5alpha than memory CD4 T cells. In addition, we observed that the 136Q allele in combination with the -2GG genotype in the 5'UTR was associated with an accelerated disease progression. Thus, polymorphisms in the Trim5 gene may influence the clinical course of HIV-1 infection also underscoring the antiviral effect of Trim5alpha on HIV-1 in vivo.

  20. The Effect of Trim5 Polymorphisms on the Clinical Course of HIV-1 Infection

    Science.gov (United States)

    van Manen, Daniëlle; Rits, Maarten A. N; Beugeling, Corrine; van Dort, Karel; Schuitemaker, Hanneke; Kootstra, Neeltje A

    2008-01-01

    The antiviral factor tripartite interaction motif 5α (Trim5α) restricts a broad range of retroviruses in a species-specific manner. Although human Trim5α is unable to block HIV-1 infection in human cells, a modest inhibition of HIV-1 replication has been reported. Recently two polymorphisms in the Trim5 gene (H43Y and R136Q) were shown to affect the antiviral activity of Trim5α in vitro. In this study, participants of the Amsterdam Cohort studies were screened for polymorphisms at amino acid residue 43 and 136 of the Trim5 gene, and the potential effects of these polymorphisms on the clinical course of HIV-1 infection were analyzed. In agreement with the reported decreased antiviral activity of Trim5α that contains a Y at amino acid residue 43 in vitro, an accelerated disease progression was observed for individuals who were homozygous for the 43Y genotype as compared to individuals who were heterozygous or homozygous for the 43H genotype. A protective effect of the 136Q genotype was observed but only after the emergence of CXCR4-using (X4) HIV-1 variants and when a viral load of 104.5 copies per ml plasma was used as an endpoint in survival analysis. Interestingly, naive CD4 T cells, which are selectively targeted by X4 HIV-1, revealed a significantly higher expression of Trim5α than memory CD4 T cells. In addition, we observed that the 136Q allele in combination with the −2GG genotype in the 5′UTR was associated with an accelerated disease progression. Thus, polymorphisms in the Trim5 gene may influence the clinical course of HIV-1 infection also underscoring the antiviral effect of Trim5α on HIV-1 in vivo. PMID:18248091

  1. An innovative pre-targeting strategy for tumor cell specific imaging and therapy.

    Science.gov (United States)

    Qin, Si-Yong; Peng, Meng-Yun; Rong, Lei; Jia, Hui-Zhen; Chen, Si; Cheng, Si-Xue; Feng, Jun; Zhang, Xian-Zheng

    2015-09-21

    A programmed pre-targeting system for tumor cell imaging and targeting therapy was established based on the "biotin-avidin" interaction. In this programmed functional system, transferrin-biotin can be actively captured by tumor cells with the overexpression of transferrin receptors, thus achieving the pre-targeting modality. Depending upon avidin-biotin recognition, the attachment of multivalent FITC-avidin to biotinylated tumor cells not only offered the rapid fluorescence labelling, but also endowed the pre-targeted cells with targeting sites for the specifically designed biotinylated peptide nano-drug. Owing to the successful pre-targeting, tumorous HepG2 and HeLa cells were effectively distinguished from the normal 3T3 cells via fluorescence imaging. In addition, the self-assembled peptide nano-drug resulted in enhanced cell apoptosis in the observed HepG2 cells. The tumor cell specific pre-targeting strategy is applicable for a variety of different imaging and therapeutic agents for tumor treatments.

  2. The ColM Family, Polymorphic Toxins Breaching the Bacterial Cell Wall

    Directory of Open Access Journals (Sweden)

    Maarten G. K. Ghequire

    2018-02-01

    Full Text Available Bacteria host an arsenal of antagonism-mediating molecules to combat for ecologic space. Bacteriocins represent a pivotal group of secreted antibacterial peptides and proteins assisting in this fight, mainly eliminating relatives. Colicin M, a model for peptidoglycan-interfering bacteriocins in Gram-negative bacteria, appears to be part of a set of polymorphic toxins equipped with such a catalytic domain (ColM targeting lipid II. Diversifying recombination has enabled parasitism of different receptors and has also given rise to hybrid bacteriocins in which ColM is associated with another toxin module. Remarkably, ColM toxins have recruited a diverse array of immunity partners, comprising cytoplasmic membrane-associated proteins with different topologies. Together, these findings suggest that different immunity mechanisms have evolved for ColM, in contrast to bacteriocins with nuclease activities.

  3. Potential targets for lung squamous cell carcinoma

    Science.gov (United States)

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  4. Association of a single nucleotide polymorphic variation in the human chromosome 19q13.3 with drug responses in the NCI60 cell lines

    DEFF Research Database (Denmark)

    Nissen, K.K.; Vogel, Ulla Birgitte; Nexo, B.A.

    2009-01-01

    the correlations between the responses of the NCI60 cells to different anticancer drugs and their respective alleles of five DNA polymorphisms located in a cancer-related chromosomal area. One polymorphism, located in the 5' noncoding region of the gene ASE-1, alias CD3EAP, proved to be associated with drug...

  5. Targeting the bone marrow: applications in stem cell transplantation

    International Nuclear Information System (INIS)

    Orchard, K.; Cooper, M.

    2004-01-01

    Therapeutic doses of radiation cab be selectively directed to the bone marrow either directly using vectors that bind to myeloid and/or lymphoid specific antigens or indirectly by targeting bone matrix. The combination of an accessible target tissue and relatively radiation sensitive malignant cells favours the use of targeted radiotherapy in the treatment of haematopoietic malignancies. Dose escalation of targeted radiation can increase tumour cell destruction and has led to the use of myelosuppressive and possibly myeloablative doses of targeted radiation. A natural development has been the use of targeted radiation in conditioning prior to haematopoietic stem cell transplantation (HSCT). Several groups are actively exploring the use of targeted radiotherapy in the context of HSCT as treatment for haematological malignancies. Although no randomised trials using targeted radiotherapy in HSCT have been published, phase I and II trials have shown very encouraging results stimulating further clinical research in this field. After more than a decade of translational research the optimal combination of therapeutic radioisotope and vector has not been determined. This review summarises the clinical experience of targeted radiotherapy in HSCT and discusses the problems that still need to be solved to maximise the potential of this new treatment modality in HSCT

  6. Targeting dendritic cells in vivo for cancer therapy

    Directory of Open Access Journals (Sweden)

    Irina eCaminschi

    2012-02-01

    Full Text Available Monoclonal antibodies that recognise cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC for induction of immune responses. The encouraging anti-tumour immunity elicited using this immunisation strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialisation of DC-subsets, the immunological outcomes of targeting different DC-subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumour immunity. Finally, we review preclinical experiments and the progress towards targeting human DC in vivo.

  7. Targeting cancer stem cells in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    He AR

    2014-12-01

    Full Text Available Aiwu Ruth He,1 Daniel C Smith,1 Lopa Mishra2 1Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 2Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: The poor outcome of patients with hepatocellular carcinoma (HCC is attributed to recurrence of the disease after curative treatment and the resistance of HCC cells to conventional chemotherapy, which may be explained partly by the function of liver cancer stem cells (CSCs. Liver CSCs have emerged as an important therapeutic target against HCC. Numerous surface markers for liver CSCs have been identified, and include CD133, CD90, CD44, CD13, and epithelial cell adhesion molecules. These surface markers serve not only as tools for identifying and isolating liver CSCs but also as therapeutic targets for eradicating these cells. In studies of animal models and large-scale genomic analyses of human HCC samples, many signaling pathways observed in normal stem cells have been found to be altered in liver CSCs, which accounts for the stemness and aggressive behavior of these cells. Antibodies and small molecule inhibitors targeting the signaling pathways have been evaluated at different levels of preclinical and clinical development. Another strategy is to promote the differentiation of liver CSCs to less aggressive HCC that is sensitive to conventional chemotherapy. Disruption of the tumor niche essential for liver CSC homeostasis has become a novel strategy in cancer treatment. To overcome the challenges in developing treatment for liver CSCs, more research into the genetic makeup of patient tumors that respond to treatment may lead to more effective therapy. Standardization of HCC CSC tumor markers would be helpful for measuring the CSC response to these agents. Herein, we review the current strategies for developing treatment to eradicate liver CSCs and to improve the outcome for patients with

  8. Breast cancer stem cells, EMT and therapeutic targets

    Energy Technology Data Exchange (ETDEWEB)

    Kotiyal, Srishti; Bhattacharya, Susinjan, E-mail: s.bhattacharya@jiit.ac.in

    2014-10-10

    Highlights: • Therapeutic targeting or inhibition of the key molecules of signaling pathways can control growth of breast cancer stem cells (BCSCs). • Development of BCSCs also involves miRNA interactions. • Therapeutic achievement can be done by targeting identified targets in the BCSC pathways. - Abstract: A small heterogeneous population of breast cancer cells acts as seeds to induce new tumor growth. These seeds or breast cancer stem cells (BCSCs) exhibit great phenotypical plasticity which allows them to undergo “epithelial to mesenchymal transition” (EMT) at the site of primary tumor and a future reverse transition. Apart from metastasis they are also responsible for maintaining the tumor and conferring it with drug and radiation resistance and a tendency for post-treatment relapse. Many of the signaling pathways involved in induction of EMT are involved in CSC generation and regulation. Here we are briefly reviewing the mechanism of TGF-β, Wnt, Notch, TNF-α, NF-κB, RTK signalling pathways which are involved in EMT as well as BCSCs maintenance. Therapeutic targeting or inhibition of the key/accessory players of these pathways could control growth of BCSCs and hence malignant cancer. Additionally several miRNAs are dysregulated in cancer stem cells indicating their roles as oncogenes or tumor suppressors. This review also lists the miRNA interactions identified in BCSCs and discusses on some newly identified targets in the BCSC regulatory pathways like SHIP2, nicastrin, Pin 1, IGF-1R, pro-inflammatory cytokines and syndecan which can be targeted for therapeutic achievements.

  9. Multimodal Nanomedicine Strategies for Targeting Cancer Cells as well as Cancer Stem Cell Signalling Mechanisms.

    Science.gov (United States)

    Kanwar, Jagat R; Samarasinghe, Rasika M; Kamalapuram, Sishir K; Kanwar, Rupinder K

    2017-01-01

    Increasing evidence suggests that stem cells, a small population of cells with unique selfrenewable and tumour regenerative capacity, are aiding tumour re-growth and multidrug resistance. Conventional therapies are highly ineffective at eliminating these cells leading to relapse of disease and formation of chemoresistance tumours. Cancer and stem cells targeted therapies that utilizes nanotherapeutics to delivery anti-cancer drugs to specific sites are continuously investigated. This review focuses on recent research using nanomedicine and targeting entities to eliminate cancer cells and cancer stem cells. Current nanotherapeutics in clinical trials along with more recent publications on targeted therapies are addressed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. BCL2-like 11 intron 2 deletion polymorphism is not associated with non-small cell lung cancer risk and prognosis.

    Science.gov (United States)

    Cho, Eun Na; Kim, Eun Young; Jung, Ji Ye; Kim, Arum; Oh, In Jae; Kim, Young Chul; Chang, Yoon Soo

    2015-10-01

    BCL2-Like 11(BIM), which encodes a BH3-only protein, is a major pro-apoptotic molecule that facilitates cell death. We hypothesized that a BIM intron 2 deletion polymorphism increases lung cancer risk and predicts poor prognosis in non-small lung cancer (NSCLC) patients. We prospectively recruited 450 lung cancer patients and 1:1 age, sex, and smoking status matched control subjects from February 2013 to April 2014 among patients treated at Severance, Gangnam Severance, and Chonnam Hwasoon Hospital. The presence of a 2903-bp genomic DNA deletion polymorphism of intron 2 of BIM was analyzed by PCR and validated by sequencing. Odds ratios were calculated by chi-square tests and survival analysis with Kaplan-Meier estimation. Sixty-nine out of 450 (15.3%) lung cancer patients carried the BIM deletion polymorphism, while 66 out of 450 (14.7%) control subjects carried the BIM deletion polymorphism, with an odds ratio of for lung cancer of 1.054 (95% CI; 0.731-1.519). We categorized 406 NSCLC patients according to the presence of the polymorphism and found that there were no statistically significant differences in age, sex, histologic type, or stage between subjects with and without the deletion polymorphism. The BIM deletion polymorphism did not influence overall survival (OS) or progression free survival (PFS) in our sample (OS; 37.6 vs 34.4 months (P=0.759), PFS; 49.6 vs 26.0 months (P=0.434)). These findings indicate that the BIM deletion polymorphism is common in Korean NSCLC patients but does not significantly affect the intrinsic biologic function of BH3-only protein. Furthermore, the BIM deletion polymorphism did not predict clinical outcomes in patients with NSCLC. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Targeting myeloid cells using nanoparticles to improve cancer immunotherapy.

    Science.gov (United States)

    Amoozgar, Zohreh; Goldberg, Michael S

    2015-08-30

    While nanoparticles have traditionally been used to deliver cytotoxic drugs directly to tumors to induce cancer cell death, emerging data suggest that nanoparticles are likely to generate a larger impact on oncology through the delivery of agents that can stimulate antitumor immunity. Tumor-targeted nanocarriers have generally been used to localize chemotherapeutics to tumors and thus decrease off-target toxicity while enhancing efficacy. Challengingly, tumor heterogeneity and evolution render tumor-intrinsic approaches likely to succumb to relapse. The immune system offers exquisite specificity, cytocidal potency, and long-term activity that leverage an adaptive memory response. For this reason, the ability to manipulate immune cell specificity and function would be desirable, and nanoparticles represent an exciting means by which to perform such manipulation. Dendritic cells and tumor-associated macrophages are cells of the myeloid lineage that function as natural phagocytes, so they naturally take up nanoparticles. Dendritic cells direct the specificity and potency of cellular immune responses that can be targeted for cancer vaccines. Herein, we discuss the specific criteria needed for efficient vaccine design, including but not limited to the route of administration, size, morphology, surface charge, targeting ligands, and nanoparticle composition. In contrast, tumor-associated macrophages are critical mediators of immunosuppression whose trans-migratory abilities can be exploited to localize therapeutics to the tumor core and which can be directly targeted for elimination or for repolarization to a tumor suppressive phenotype. It is likely that a combination of targeting dendritic cells to stimulate antitumor immunity and tumor-associated macrophages to reduce immune suppression will impart significant benefits and result in durable antitumor responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Liposomes to target peripheral neurons and Schwann cells.

    Directory of Open Access Journals (Sweden)

    Sooyeon Lee

    Full Text Available While a wealth of literature for tissue-specific liposomes is emerging, optimal formulations to target the cells of the peripheral nervous system (PNS are lacking. In this study, we asked whether a novel formulation of phospholipid-based liposomes could be optimized for preferential uptake by microvascular endothelia, peripheral neurons and Schwann cells. Here, we report a unique formulation consisting of a phospholipid, a polymer surfactant and cholesterol that result in enhanced uptake by targeted cells. Using fluorescently labeled liposomes, we followed particle internalization and trafficking through a distinct route from dextran and escape from degradative compartments, such as lysosomes. In cultures of non-myelinating Schwann cells, liposomes associate with the lipid raft marker Cholera toxin, and their internalization is inhibited by disruption of lipid rafts or actin polymerization. In contrast, pharmacological inhibition of clathrin-mediated endocytosis does not significantly impact liposome entry. To evaluate the efficacy of liposome targeting in tissues, we utilized myelinating explant cultures of dorsal root ganglia and isolated diaphragm preparations, both of which contain peripheral neurons and myelinating Schwann cells. In these models, we detected preferential liposome uptake into neurons and glial cells in comparison to surrounding muscle tissue. Furthermore, in vivo liposome administration by intramuscular or intravenous injection confirmed that the particles were delivered to myelinated peripheral nerves. Within the CNS, we detected the liposomes in choroid epithelium, but not in myelinated white matter regions or in brain parenchyma. The described nanoparticles represent a novel neurophilic delivery vehicle for targeting small therapeutic compounds, biological molecules, or imaging reagents into peripheral neurons and Schwann cells, and provide a major advancement toward developing effective therapies for peripheral

  13. Targeting regulatory T cells in cancer.

    LENUS (Irish Health Repository)

    Byrne, William L

    2012-01-31

    Infiltration of tumors by regulatory T cells confers growth and metastatic advantages by inhibiting antitumor immunity and by production of receptor activator of NF-kappaB (RANK) ligand, which may directly stimulate metastatic propagation of RANK-expressing cancer cells. Modulation of regulatory T cells can enhance the efficacy of cancer immunotherapy. Strategies include depletion, interference with function, inhibition of tumoral migration, and exploitation of T-cell plasticity. Problems with these strategies include a lack of specificity, resulting in depletion of antitumor effector T cells or global interruption of regulatory T cells, which may predispose to autoimmune diseases. Emerging technologies, such as RNA interference and tetramer-based targeting, may have the potential to improve selectivity and efficacy.

  14. The mechanism of gene targeting in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Yinan Kan

    2014-04-01

    Full Text Available Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB repair known as homologous recombination (HR. The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.

  15. Nipah virus infection and glycoprotein targeting in endothelial cells

    Directory of Open Access Journals (Sweden)

    Maisner Andrea

    2010-11-01

    Full Text Available Abstract Background The highly pathogenic Nipah virus (NiV causes fatal respiratory and brain infections in animals and humans. The major hallmark of the infection is a systemic endothelial infection, predominantly in the CNS. Infection of brain endothelial cells allows the virus to overcome the blood-brain-barrier (BBB and to subsequently infect the brain parenchyma. However, the mechanisms of NiV replication in endothelial cells are poorly elucidated. We have shown recently that the bipolar or basolateral expression of the NiV surface glycoproteins F and G in polarized epithelial cell layers is involved in lateral virus spread via cell-to-cell fusion and that correct sorting depends on tyrosine-dependent targeting signals in the cytoplasmic tails of the glycoproteins. Since endothelial cells share many characteristics with epithelial cells in terms of polarization and protein sorting, we wanted to elucidate the role of the NiV glycoprotein targeting signals in endothelial cells. Results As observed in vivo, NiV infection of endothelial cells induced syncytia formation. The further finding that infection increased the transendothelial permeability supports the idea of spread of infection via cell-to-cell fusion and endothelial cell damage as a mechanism to overcome the BBB. We then revealed that both glycoproteins are expressed at lateral cell junctions (bipolar, not only in NiV-infected primary endothelial cells but also upon stable expression in immortalized endothelial cells. Interestingly, mutation of tyrosines 525 and 542/543 in the cytoplasmic tail of the F protein led to an apical redistribution of the protein in endothelial cells whereas tyrosine mutations in the G protein had no effect at all. This fully contrasts the previous results in epithelial cells where tyrosine 525 in the F, and tyrosines 28/29 in the G protein were required for correct targeting. Conclusion We conclude that the NiV glycoprotein distribution is responsible for

  16. The polymorphism and haplotypes of XRCC1 and survival of non-small-cell lung cancer after radiotherapy

    International Nuclear Information System (INIS)

    Yoon, Sang Min; Hong, Yun-Chul; Park, Heon Joo; Lee, Jong-Eun; Kim, Sang Yoon; Kim, Jong Hoon; Lee, Sang-Wook; Park, So-Yeon; Lee, Jung Shin; Choi, Eun Kyung

    2005-01-01

    Purpose: The X-ray repair cross-complementing Group 1 (XRCC1) protein is involved mainly in the base excision repair of the DNA repair process. This study examined the association of 3 polymorphisms (codon 194, 280, and 399) of XRCC1 and lung cancer in terms of whether or not these polymorphisms have an effect on the survival of lung cancer patients who have received radiotherapy. Methods and Materials: Between January 2000 and April 2004, 229 lung cancer patients with non-small-cell lung cancer in Stages I-III were enrolled. Genotyping was performed by single base primer extension assay using the SNP-IT Kit with genomic DNA samples from all patients. The haplotype of the XRCC1 polymorphisms was estimated by PHASE version 2.1. Results: The patients consisted of 191 (83.4%) males and 38 (16.6%) females with a median age of 62 (range, 26-88 years). Sixty percent of the patients were included in Stage I-IIIa. The median progression-free and overall survival was 13 months and 16 months, respectively. The XRCC1 codon 194, histology, and stage were shown to be significant predictors of the progression-free survival. The 6 haplotypes among the XRCC1 polymorphisms (194, 280, and 399) were estimated by PHASE v.2.1. The patients with haplotype pairs other than the homozygous TGG haplotype pairs survived significantly longer (p = 0.04). Conclusions: Polymorphisms of XRCC1 have an effect on the survival of lung cancer patients treated with radiotherapy, and this effect seems to be more significant after the haplotype pairs are considered

  17. Prodrug strategy for cancer cell-specific targeting: A recent overview.

    Science.gov (United States)

    Zhang, Xian; Li, Xiang; You, Qidong; Zhang, Xiaojin

    2017-10-20

    The increasing development of targeted cancer therapy provides extensive possibilities in clinical trials, and numerous strategies have been explored. The prodrug is one of the most promising strategies in targeted cancer therapy to improve the selectivity and efficacy of cytotoxic compounds. Compared with normal tissues, cancer cells are characterized by unique aberrant markers, thus inactive prodrugs targeting these markers are excellent therapeutics to release active drugs, killing cancer cells without damaging normal tissues. In this review, we explore an integrated view of potential prodrugs applied in targeted cancer therapy based on aberrant cancer specific markers and some examples are provided for inspiring new ideas of prodrug strategy for cancer cell-specific targeting. Copyright © 2017. Published by Elsevier Masson SAS.

  18. Impacts of CA9 gene polymorphisms on urothelial cell carcinoma susceptibility and clinicopathologic characteristics in Taiwan.

    Directory of Open Access Journals (Sweden)

    Shian-Shiang Wang

    Full Text Available Carbonic anhydrase 9 (CA9 is reportedly overexpressed in several types of carcinomas and is generally considered a marker of malignancy. The current study explored the effect of CA9 gene polymorphisms on the susceptibility of developing urothelial cell carcinoma (UCC and the clinicopathological status.A total of 442 participants, including 221 healthy people and 221 patients with UCC, were recruited for this study. Four single-nucleotide polymorphisms (SNPs of the CA9 gene were assessed by a real-time PCR with the TaqMan assay. After adjusting for other co-variants, the individuals carrying at least one A allele at CA9 rs1048638 had a 2.303-fold risk of developing UCC than did wild-type (CC carriers. Furthermore, UCC patients who carried at least one A allele at rs1048638 had a higher invasive stage risk (p< 0.05 than did patients carrying the wild-type allele. Moreover, among the UCC patients with smoker, people with at least one A allele of CA9 polymorphisms (rs1048638 had a 4.75-fold (95% CI = 1.204-18.746 increased risk of invasive cancer.The rs1048638 polymorphic genotypes of CA9 might contribute to the prediction of susceptibility to and pathological development of UCC. This is the first study to provide insight into risk factors associated with CA9 variants in carcinogenesis of UCC in Taiwan.

  19. DNA fragmentation: manifestation of target cell destruction mediated by cytotoxic T-cell lines, lymphotoxin-secreting helper T-cell clones, and cell-free lymphotoxin-containing supernatant

    International Nuclear Information System (INIS)

    Schmid, D.S.; Tite, J.P.; Ruddle, N.H.

    1986-01-01

    A Lyt-2 + , trinitrophenyl-specific, lymphotoxin-secreting, cytotoxic T-cell line, PCl 55, mediates the digestion of target cell DNA into discretely sized fragments. This phenomenon manifests itself within 30 min after effector cell encounter as measured by the release of 3 H counts from target cells prelabeled with [ 3 H]deoxythymidine and occurs even at very low effector to target cell ratios (0.25:1). A Lyt-1 + , ovalbumin-specific, lymphotoxin-secreting T-helper cell clone, 5.9.24, is also able to mediate fragmentation of target cell DNA over a time course essentially indistinguishable from the cytotoxic T lymphocyte-mediated hit. Cell-free lymphotoxin-containing supernatants also cause release of DNA from targets, although they require a longer time course, on the order of 24 hr. In contrast, lysis of cells by antibody plus complement or Triton X-100 does not result in DNA release even after extended periods of incubation (24 hr). All three treatments that result in the release of DNA from cells cause fragmentation of that DNA into discretely sized pieces that are multiples of 200 base pairs. The results thus suggest that cytotoxic T cells, lymphotoxin-secreting helper clones with cytolytic activity, and lymphotoxin all effect target cell destruction by means of a similar mechanism and that observed differences in time course and the absence of target cell specificity in killing mediated by lymphotoxin may simply reflect differences in the mode of toxin delivery

  20. Genetic polymorphism of toll-like receptors 4 gene by polymerase chain reaction-restriction fragment length polymorphisms, polymerase chain reaction-single-strand conformational polymorphism to correlate with mastitic cows

    Directory of Open Access Journals (Sweden)

    Pooja H. Gupta

    2015-05-01

    Full Text Available Aim: An attempt has been made to study the toll-like receptors 4 (TLR4 gene polymorphism from cattle DNA to correlate with mastitis cows. Materials and Methods: In present investigation, two fragments of TLR4 gene named T4CRBR1 and T4CRBR2 of a 316 bp and 382 bp were amplified by polymerase chain reaction (PCR, respectively from Kankrej (22 and Triple cross (24 cattle. The genetic polymorphisms in the two populations were detected by a single-strand conformational polymorphism in the first locus and by digesting the fragments with restriction endonuclease Alu I in the second one. Results: Results showed that both alleles (A and B of two loci were found in all the two populations and the value of polymorphism information content indicated that these were highly polymorphic. Statistical results of χ2 test indicated that two polymorphism sites in the two populations fit with Hardy–Weinberg equilibrium (p˂0.05. Meanwhile, the effect of polymorphism of TLR4 gene on the somatic cell score (SCS indicated the cattle with allele a in T4CRBR1 showed lower SCS than that of allele B (p<0.05. Thus, the allele A might play an important role in mastitis resistance in cows. Conclusion: The relationship between the bovine mastitis trait and the polymorphism of TLR4 gene indicated that the bovine TLR4 gene may play an important role in mastitis resistance.

  1. Targeting vaccines to dendritic cells

    DEFF Research Database (Denmark)

    Foged, Camilla; Sundblad, Anne; Hovgaard, Lars

    2002-01-01

    delivery systems (DDS) with adjuvant effect that target DC directly and induce optimal immune responses. This paper will review the current knowledge of DC physiology as well as the progress in the field of novel vaccination strategies that directly or indirectly aim at targeting DC....... to be far superior to that of B-cells and macrophages. DC are localized at strategic places in the body at sites used by pathogens to enter the organism, and are thereby in an optimal position to capture antigens. In general, vaccination strategies try to mimic the invasiveness of the pathogens. DC...

  2. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines

    Directory of Open Access Journals (Sweden)

    Cleo Goyvaerts

    2015-01-01

    Full Text Available In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.

  3. Oncolytic viral therapy: targeting cancer stem cells

    Directory of Open Access Journals (Sweden)

    Smith TT

    2014-02-01

    Full Text Available Tyrel T Smith,1 Justin C Roth,1 Gregory K Friedman,1 G Yancey Gillespie2 1Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL, USA; 2Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL, USA Abstract: Cancer stem cells (CSCs are defined as rare populations of tumor-initiating cancer cells that are capable of both self-renewal and differentiation. Extensive research is currently underway to develop therapeutics that target CSCs for cancer therapy, due to their critical role in tumorigenesis, as well as their resistance to chemotherapy and radiotherapy. To this end, oncolytic viruses targeting unique CSC markers, signaling pathways, or the pro-tumor CSC niche offer promising potential as CSCs-destroying agents/therapeutics. We provide a summary of existing knowledge on the biology of CSCs, including their markers and their niche thought to comprise the tumor microenvironment, and then we provide a critical analysis of the potential for targeting CSCs with oncolytic viruses, including herpes simplex virus-1, adenovirus, measles virus, reovirus, and vaccinia virus. Specifically, we review current literature regarding first-generation oncolytic viruses with their innate ability to replicate in CSCs, as well as second-generation viruses engineered to enhance the oncolytic effect and CSC-targeting through transgene expression. Keywords: oncolytic virotherapy, cancer stem cell niche

  4. Coupling Neurogenetics (GARS™) and a Nutrigenomic Based Dopaminergic Agonist to Treat Reward Deficiency Syndrome (RDS): Targeting Polymorphic Reward Genes for Carbohydrate Addiction Algorithms.

    Science.gov (United States)

    Blum, Kenneth; Simpatico, Thomas; Badgaiyan, Rajendra D; Demetrovics, Zsolt; Fratantonio, James; Agan, Gozde; Febo, Marcelo; Gold, Mark S

    Earlier work from our laboratory, showing anti-addiction activity of a nutraceutical consisting of amino-acid precursors and enkephalinase inhibition properties and our discovery of the first polymorphic gene (Dopamine D2 Receptor Gene [DRD2]) to associate with severe alcoholism serves as a blue-print for the development of "Personalized Medicine" in addiction. Prior to the later genetic finding, we developed the concept of Brain Reward Cascade, which continues to act as an important component for stratification of addiction risk through neurogenetics. In 1996 our laboratory also coined the term "Reward Deficiency Syndrome (RDS)" to define a common genetic rubric for both substance and non-substance related addictive behaviors. Following many reiterations we utilized polymorphic targets of a number of reward genes (serotonergic, Opioidergic, GABAergic and Dopaminergic) to customize KB220 [Neuroadaptogen- amino-acid therapy (NAAT)] by specific algorithms. Identifying 1,000 obese subjects in the Netherlands a subsequent small subset was administered various KB220Z formulae customized according to respective DNA polymorphisms individualized that translated to significant decreases in both Body Mass Index (BMI) and weight in pounds. Following these experiments, we have been successfully developing a panel of genes known as "Genetic Addiction Risk Score" (GARSp DX )™. Selection of 10 genes with appropriate variants, a statistically significant association between the ASI-Media Version-alcohol and drug severity scores and GARSp Dx was found A variant of KB220Z in abstinent heroin addicts increased resting state functional connectivity in a putative network including: dorsal anterior cingulate, medial frontal gyrus, nucleus accumbens, posterior cingulate, occipital cortical areas, and cerebellum. In addition, we show that KB220Z significantly activates, above placebo, seed regions of interest including the left nucleus accumbens, cingulate gyrus, anterior thalamic

  5. Polymorphisms of transforming growth factor beta 1 (RS#1800468 and RS#1800471) and esophageal squamous cell carcinoma among Zhuangese population, China.

    Science.gov (United States)

    Tang, Ren-Guang; Huang, Yong-Zhi; Yao, Li-Min; Xiao, Jian; Lu, Chuan; Yu, Qian

    2013-01-01

    Epidemiological evidence has shown two polymorphisms (namely RS#1800468G>A and RS#1800471G>C) of transforming growth factor-beta 1 (TGF-β1) gene may be involved in the cancer development. However, their role in the carcinogenic process of esophageal squamous cell carcinoma (ESCC) has been less well elaborated. We conducted a hospital-based case-control study including 391 ESCC cases and 508 controls without any evidence of tumors to evaluate the association between these two polymorphisms and ESCC risk and prognosis for Zhuangese population by means of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and amplification refractory mutation system (ARMS)-PCR techniques. We found that individuals with the genotypes with RS#1800471 C allele (namely RS#1800471-GC or -CC) had an increased risk of ESCC than those without above genotypes (namely RS#1800471-GG, adjusted odds ratio 3.26 and 5.65, respectively). Further stratification analysis showed that this polymorphism was correlated with tumor histological grades and TNM (tumor, node, and metastasis) stage, and modified the serum levels of TGF-β1. Additionally, RS#1800471 polymorphism affected ESCC prognosis (hazard ratio, 3.40), especially under high serum levels of TGF-β1 conditions. However, RS#1800468 polymorphism was not significantly related to ESCC risk. These findings indicated that TGF-β1 RS#1800471G>C polymorphism may be a genetic modifier for developing ESCC in Zhuangese population. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Purification-Free, Target-Selective Immobilization of a Protein from Cell Lysates.

    Science.gov (United States)

    Cha, Jaehyun; Kwon, Inchan

    2018-02-27

    Protein immobilization has been widely used for laboratory experiments and industrial processes. Preparation of a recombinant protein for immobilization usually requires laborious and expensive purification steps. Here, a novel purification-free, target-selective immobilization technique of a protein from cell lysates is reported. Purification steps are skipped by immobilizing a target protein containing a clickable non-natural amino acid (p-azidophenylalanine) in cell lysates onto alkyne-functionalized solid supports via bioorthogonal azide-alkyne cycloaddition. In order to achieve a target protein-selective immobilization, p-azidophenylalanine was introduced into an exogenous target protein, but not into endogenous non-target proteins using host cells with amber codon-free genomic DNAs. Immobilization of superfolder fluorescent protein (sfGFP) from cell lysates is as efficient as that of the purified sfGFP. Using two fluorescent proteins (sfGFP and mCherry), the authors also demonstrated that the target proteins are immobilized with a minimal immobilization of non-target proteins (target-selective immobilization). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Studies on ADCC (antibody-dependent cell-mediated cytotoxicity) using sheep red blood cells as target cells, 2

    International Nuclear Information System (INIS)

    Ichikawa, Yukinobu; Takaya, Masatoshi; Arimori, Shigeru

    1979-01-01

    A non-specific cytotoxic mediator from effector cells (human peripheral blood leukocytes) was investigated in the ADCC (antibody-dependent cell-mediated cytotoxicity) system using antibody-coated sheep red blood cells (SRBC) as target cells. 51 Cr-labelled homologous (sheep) or heterologous (human) red blood cells were used as adjacent cells. Either crude lymphocyte fraction, phagocyte depleted fraction or granulocyte rich fraction separated from human peripheral leukocytes showed moderate cytotoxic effect on homologous adjacent cells, however no cytotoxic activity on heterologous adjacent cells was demonstrated in any leukocyte fraction. This suggests that the cytotoxic effects on homologous adjacent cells were resulted from the translocation of antibody molecules to adjacent cells from antibody-coated target cells. We concluded that the cytotoxic mechanism in this ADCC system was not mediated by non-specific soluble factors released from either human peripheral lymphocytes, monocytes or granulocytes. (author)

  8. The polarized double cell target of the SMC

    International Nuclear Information System (INIS)

    Adams, D.; Adeva, B.; Arik, E.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, G.; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjoerkholm, P.; Bonner, B.E.; Botton, N. de; Boutemeur, M.; Bradamante, F.; Bravar, A.; Bressan, A.; Bueltmann, S.; Burtin, E.; Cavata, C.; Crabb, D.; Cranshaw, J.; Cuhadar, T.; Torre, S. Dalla; Dantzig, R. van; Derro, B.; Deshpande, A.; Dhawan, S.; Dulya, C.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Forthmann, S.; Frois, B.; Gallas, A.; Garzon, J.A.; Gaussiran, T.; Gilly, H.; Giorgi, M.; Goeler, E. von; Goertz, S.; Gracia, G.; Groot, N. de; Perdekamp, M. Grosse; Guelmez, E.; Haft, K.; Harrach, D. von; Hasegawa, T.; Hautle, P.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Kabuss, E.M.; Kageya, T.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kiryluk, J.; Kishi, A.; Kisselev, Yu.; Klostermann, L.; Kraemer, D.; Krivokhijine, V.; Kroeger, W.; Kurek, K.; Kyynaeraeinen, J.; Lamanna, M.; Landgraf, U.; Layda, T.; Le Goff, J.M.; Lehar, F.; Lesquen, A. de; Lichtenstadt, J.; Lindqvist, T.; Litmaath, M.; Lowe, M.; Magnon, A.; Mallot, G.K.; Marie, F.; Martin, A.; Martino, J.; Matsuda, T.; Mayes, B.; McCarthy, J.S.; Medved, K.; Meyer, W.; Middelkoop, G. van; Miller, D.; Miyachi, Y.; Mori, K.; Moromisato, J.; Nassalski, J.; Naumann, L.; Neganov, B.; Niinikoski, T.O.; Oberski, J.E.J.; Ogawa, A.; Ozben, C.; Parks, D.P.; Pereira, H.; Penzo, A.; Perrot-Kunne, F.; Peshekhonov, D.; Piegaia, R.; Pinsky, L.; Platchkov, S.; Plo, M.; Pose, D.; Postma, H.; Pretz, J.; Pussieux, T.; Pyrlik, J.; Raedel, G.; Reyhancan, I.; Reicherz, G.; Rieubland, J.M.; Rijllart, A.; Roberts, J.B.; Rock, S.; Rodriguez, M.; Rondio, E.; Rosado, A.; Roscherr, B.; Sabo, I.; Saborido, J.; Sandacz, A.; Savin, I.; Schiavon, P.; Schiller, A.; Schueler, K.P.; Segel, R.; Seitz, R.; Semertzidis, Y.; Sever, F.; Shanahan, P.; Sichtermann, E.P.; Simeoni, F.; Smirnov, G.I.; Staude, A.; Steinmetz, A.; Stiegler, U.; Stuhrmann, H.; Szleper, M.; Teichert, K.M.; Tessarotto, F.; Thers, D.; Tlaczala, W.; Trentalange, S.; Tripet, A.; Unel, G.; Velasco, M.; Vogt, J.; Voss, R.; Weinstein, R.; Whitten, C.; Windmolders, R.; Willumeit, R.; Wislicki, W.; Witzmann, A.; Zanetti, A.M.; Zaremba, K.; Zhao, J.

    1999-01-01

    The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993-1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials -- butanol, ammonia, and deuterated butanol -- with maximum degrees of polarization of 94%, 91% and 60%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and their analyses, the accuracies achieved were between 2.0% and 3.2%. The SMC target system with two cells of opposite polarizations, each cell 65 cm long and 5 cm in diameter, constitutes the largest polarized target system ever built and facilitates accurate spin asymmetry measurements. The design considerations, construction and performance of the target are reviewed

  9. Effects of human SAMHD1 polymorphisms on HIV-1 susceptibility

    International Nuclear Information System (INIS)

    White, Tommy E.; Brandariz-Nuñez, Alberto; Valle-Casuso, Jose Carlos; Knowlton, Caitlin; Kim, Baek; Sawyer, Sara L.; Diaz-Griffero, Felipe

    2014-01-01

    SAMHD1 is a human restriction factor that prevents efficient infection of macrophages, dendritic cells and resting CD4+ T cells by HIV-1. Here we explored the antiviral activity and biochemical properties of human SAMHD1 polymorphisms. Our studies focused on human SAMHD1 polymorphisms that were previously identified as evolving under positive selection for rapid amino acid replacement during primate speciation. The different human SAMHD1 polymorphisms were tested for their ability to block HIV-1, HIV-2 and equine infectious anemia virus (EIAV). All studied SAMHD1 variants block HIV-1, HIV-2 and EIAV infection when compared to wild type. We found that these variants did not lose their ability to oligomerize or to bind RNA. Furthermore, all tested variants were susceptible to degradation by Vpx, and localized to the nuclear compartment. We tested the ability of human SAMHD1 polymorphisms to decrease the dNTP cellular levels. In agreement, none of the different SAMHD1 variants lost their ability to reduce cellular levels of dNTPs. Finally, we found that none of the tested human SAMHD1 polymorphisms affected the ability of the protein to block LINE-1 retrotransposition. - Highlights: • Human SAMHD1 single-nucleotide polymorphisms block HIV-1 and HIV-2 infection. • SAMHD1 polymorphisms do not affect its ability to block LINE-1 retrotransposition. • SAMHD1 polymorphisms decrease the cellular levels of dNTPs

  10. Effects of human SAMHD1 polymorphisms on HIV-1 susceptibility

    Energy Technology Data Exchange (ETDEWEB)

    White, Tommy E.; Brandariz-Nuñez, Alberto; Valle-Casuso, Jose Carlos [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park – Price Center 501, New York, NY 10461 (United States); Knowlton, Caitlin; Kim, Baek [Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States); Sawyer, Sara L. [Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712 (United States); Diaz-Griffero, Felipe, E-mail: Felipe.Diaz-Griffero@einstein.yu.edu [Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, 1301 Morris Park – Price Center 501, New York, NY 10461 (United States)

    2014-07-15

    SAMHD1 is a human restriction factor that prevents efficient infection of macrophages, dendritic cells and resting CD4+ T cells by HIV-1. Here we explored the antiviral activity and biochemical properties of human SAMHD1 polymorphisms. Our studies focused on human SAMHD1 polymorphisms that were previously identified as evolving under positive selection for rapid amino acid replacement during primate speciation. The different human SAMHD1 polymorphisms were tested for their ability to block HIV-1, HIV-2 and equine infectious anemia virus (EIAV). All studied SAMHD1 variants block HIV-1, HIV-2 and EIAV infection when compared to wild type. We found that these variants did not lose their ability to oligomerize or to bind RNA. Furthermore, all tested variants were susceptible to degradation by Vpx, and localized to the nuclear compartment. We tested the ability of human SAMHD1 polymorphisms to decrease the dNTP cellular levels. In agreement, none of the different SAMHD1 variants lost their ability to reduce cellular levels of dNTPs. Finally, we found that none of the tested human SAMHD1 polymorphisms affected the ability of the protein to block LINE-1 retrotransposition. - Highlights: • Human SAMHD1 single-nucleotide polymorphisms block HIV-1 and HIV-2 infection. • SAMHD1 polymorphisms do not affect its ability to block LINE-1 retrotransposition. • SAMHD1 polymorphisms decrease the cellular levels of dNTPs.

  11. Validation of in vitro cell models used in drug metabolism and transport studies; genotyping of cytochrome P450, phase II enzymes and drug transporter polymorphisms in the human hepatoma (HepG2), ovarian carcinoma (IGROV-1) and colon carcinoma (CaCo-2, LS180) cell lines

    International Nuclear Information System (INIS)

    Brandon, Esther F.A.; Bosch, Tessa M.; Deenen, Maarten J.; Levink, Rianne; Wal, Everdina van der; Meerveld, Joyce B.M. van; Bijl, Monique; Beijnen, Jos H.; Schellens, Jan H.M.; Meijerman, Irma

    2006-01-01

    Human cell lines are often used for in vitro biotransformation and transport studies of drugs. In vivo, genetic polymorphisms have been identified in drug-metabolizing enzymes and ABC-drug transporters leading to altered enzyme activity, or a change in the inducibility of these enzymes. These genetic polymorphisms could also influence the outcome of studies using human cell lines. Therefore, the aim of our study was to pharmacogenotype four cell lines frequently used in drug metabolism and transport studies, HepG2, IGROV-1, CaCo-2 and LS180, for genetic polymorphisms in biotransformation enzymes and drug transporters. The results indicate that, despite the presence of some genetic polymorphisms, no real effects influencing the activity of metabolizing enzymes or drug transporters in the investigated cell lines are expected. However, this characterization will be an aid in the interpretation of the results of biotransformation and transport studies using these in vitro cell models

  12. T-REX on-demand redox targeting in live cells.

    Science.gov (United States)

    Parvez, Saba; Long, Marcus J C; Lin, Hong-Yu; Zhao, Yi; Haegele, Joseph A; Pham, Vanha N; Lee, Dustin K; Aye, Yimon

    2016-12-01

    This protocol describes targetable reactive electrophiles and oxidants (T-REX)-a live-cell-based tool designed to (i) interrogate the consequences of specific and time-resolved redox events, and (ii) screen for bona fide redox-sensor targets. A small-molecule toolset comprising photocaged precursors to specific reactive redox signals is constructed such that these inert precursors specifically and irreversibly tag any HaloTag-fused protein of interest (POI) in mammalian and Escherichia coli cells. Syntheses of the alkyne-functionalized endogenous reactive signal 4-hydroxynonenal (HNE(alkyne)) and the HaloTag-targetable photocaged precursor to HNE(alkyne) (also known as Ht-PreHNE or HtPHA) are described. Low-energy light prompts photo-uncaging (t 1/2 <1-2 min) and target-specific modification. The targeted modification of the POI enables precisely timed and spatially controlled redox events with no off-target modification. Two independent pathways are described, along with a simple setup to functionally validate known targets or discover novel sensors. T-REX sidesteps mixed responses caused by uncontrolled whole-cell swamping with reactive signals. Modification and downstream response can be analyzed by in-gel fluorescence, proteomics, qRT-PCR, immunofluorescence, fluorescence resonance energy transfer (FRET)-based and dual-luciferase reporters, or flow cytometry assays. T-REX targeting takes 4 h from initial probe treatment. Analysis of targeted redox responses takes an additional 4-24 h, depending on the nature of the pathway and the type of readouts used.

  13. Risky business: target choice in adoptive cell therapy.

    Science.gov (United States)

    Morgan, Richard A

    2013-11-14

    In this issue of Blood, Casucci et al present an elegant study that describes a potential new target for adoptive cell transfer (ACT), in this case CD44 splice variant 6 (CD44v6), and detail why it may be a good target for ACT and how to manage expected off-tumor/on-target toxicities.

  14. Targeting senescence cells in pancreatic cancer | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Targeting senescence cells in pancreatic cancer. Cellular senescence is a programmed response to oncogenic (tumour-causing) stress that aims to halt the expansion of cells with malignant potential. It does this by stopping the proliferation of pre-cancerous lesions and recruitment of the immune system for their elimination.

  15. Polymorphism discovery and allele frequency estimation using high-throughput DNA sequencing of target-enriched pooled DNA samples

    Directory of Open Access Journals (Sweden)

    Mullen Michael P

    2012-01-01

    Full Text Available Abstract Background The central role of the somatotrophic axis in animal post-natal growth, development and fertility is well established. Therefore, the identification of genetic variants affecting quantitative traits within this axis is an attractive goal. However, large sample numbers are a pre-requisite for the identification of genetic variants underlying complex traits and although technologies are improving rapidly, high-throughput sequencing of large numbers of complete individual genomes remains prohibitively expensive. Therefore using a pooled DNA approach coupled with target enrichment and high-throughput sequencing, the aim of this study was to identify polymorphisms and estimate allele frequency differences across 83 candidate genes of the somatotrophic axis, in 150 Holstein-Friesian dairy bulls divided into two groups divergent for genetic merit for fertility. Results In total, 4,135 SNPs and 893 indels were identified during the resequencing of the 83 candidate genes. Nineteen percent (n = 952 of variants were located within 5' and 3' UTRs. Seventy-two percent (n = 3,612 were intronic and 9% (n = 464 were exonic, including 65 indels and 236 SNPs resulting in non-synonymous substitutions (NSS. Significant (P ® MassARRAY. No significant differences (P > 0.1 were observed between the two methods for any of the 43 SNPs across both pools (i.e., 86 tests in total. Conclusions The results of the current study support previous findings of the use of DNA sample pooling and high-throughput sequencing as a viable strategy for polymorphism discovery and allele frequency estimation. Using this approach we have characterised the genetic variation within genes of the somatotrophic axis and related pathways, central to mammalian post-natal growth and development and subsequent lactogenesis and fertility. We have identified a large number of variants segregating at significantly different frequencies between cattle groups divergent for calving

  16. Plasmodium falciparum field isolates from South America use an atypical red blood cell invasion pathway associated with invasion ligand polymorphisms

    DEFF Research Database (Denmark)

    Lopez-Perez, Mary; Villasis, Elizabeth; Machado, Ricardo L D

    2012-01-01

    Studies of Plasmodium falciparum invasion pathways in field isolates have been limited. Red blood cell (RBC) invasion is a complex process involving two invasion protein families; Erythrocyte Binding-Like (EBL) and the Reticulocyte Binding-Like (PfRh) proteins, which are polymorphic and not fully...... characterized in field isolates. To determine the various P. falciparum invasion pathways used by parasite isolates from South America, we studied the invasion phenotypes in three regions: Colombia, Peru and Brazil. Additionally, polymorphisms in three members of the EBL (EBA-181, EBA-175 and EBL-1) and five...... pathways and the ligand polymorphisms differed substantially among the Colombian and Brazilian isolates while the Peruvian isolates represent an amalgam of those present in the Colombian and Brazilian field isolates. The NrTrCr invasion profile was associated with the presence of the PfRh2a pepC variant...

  17. The cancer cell adhesion resistome: mechanisms, targeting and translational approaches.

    Science.gov (United States)

    Dickreuter, Ellen; Cordes, Nils

    2017-06-27

    Cell adhesion-mediated resistance limits the success of cancer therapies and is a great obstacle to overcome in the clinic. Since the 1990s, where it became clear that adhesion of tumor cells to the extracellular matrix is an important mediator of therapy resistance, a lot of work has been conducted to understand the fundamental underlying mechanisms and two paradigms were deduced: cell adhesion-mediated radioresistance (CAM-RR) and cell adhesion-mediated drug resistance (CAM-DR). Preclinical work has evidently demonstrated that targeting of integrins, adapter proteins and associated kinases comprising the cell adhesion resistome is a promising strategy to sensitize cancer cells to both radiotherapy and chemotherapy. Moreover, the cell adhesion resistome fundamentally contributes to adaptation mechanisms induced by radiochemotherapy as well as molecular drugs to secure a balanced homeostasis of cancer cells for survival and growth. Intriguingly, this phenomenon provides a basis for synthetic lethal targeted therapies simultaneously administered to standard radiochemotherapy. In this review, we summarize current knowledge about the cell adhesion resistome and highlight targeting strategies to override CAM-RR and CAM-DR.

  18. The interleukin-18 gene promoter -607 A/C polymorphism contributes to non-small-cell lung cancer risk in a Chinese population

    Directory of Open Access Journals (Sweden)

    Jia YC

    2016-03-01

    Full Text Available Youchao Jia,1,2 Aimin Zang,2 Shunchang Jiao,1 Sumei Chen,1 Fu Yan1 1Department of Medical Oncology, General Hospital of Chinese PLA, Beijing, 2Department of Oncology, Affiliated Hospital of Hebei University, Hebei, People’s Republic of China Abstract: The purpose of the present study was to determine the relationship between interleukin-18 (IL-18 -607 A/C polymorphism and the risk of non-small-cell lung cancer (NSCLC and its impact on the serum IL-18 level. The genotyping of IL-18 -607 A/C polymorphism was detected by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP. The results showed that the AA/AC genotype distribution in NSCLC patients was significantly higher than that of healthy controls (P=0.02. However, no significant differences were found between the two subgroups when stratified by clinical characteristics. Furthermore, serum IL-18 levels were found to be significantly higher in the NSCLC patients than in the controls (P=0.01 as detected by enzyme-linked immunosorbent assay analysis. There was no correlation between serum IL-18 levels and different genotypes. In conclusion, these findings suggest that IL-18 -607 A/C polymorphism increases the risk of NSCLC in the Chinese population, and this polymorphism could not functionally affect the IL-18 levels. Keywords: IL-18, polymorphism, NSCLC

  19. The kinematics of cytotoxic lymphocytes influence their ability to kill target cells.

    Directory of Open Access Journals (Sweden)

    Purnima Bhat

    Full Text Available Cytotoxic lymphocytes (CTL have been reported to show a range of motility patterns from rapid long-range tracking to complete arrest, but how and whether these kinematics affect their ability to kill target cells is not known. Many in vitro killing assays utilize cell lines and tumour-derived cells as targets, which may be of limited relevance to the kinetics of CTL-mediated killing of somatic cells. Here, live-cell microscopy is used to examine the interactions of CTL and primary murine skin cells presenting antigens. We developed a qualitative and quantitative killing assay using extended-duration fluorescence time-lapse microscopy coupled with large-volume objective software-based data analysis to obtain population data of cell-to-cell interactions, motility and apoptosis. In vivo and ex vivo activated antigen-specific cytotoxic lymphocytes were added to primary keratinocyte targets in culture with fluorometric detection of caspase-3 activation in targets as an objective determinant of apoptosis. We found that activated CTL achieved contact-dependent apoptosis of non-tumour targets after a period of prolonged attachment - on average 21 hours - which was determined by target cell type, amount of antigen, and activation status of CTL. Activation of CTL even without engagement of the T cell receptor was sufficient to mobilise cells significantly above baseline, while the addition of cognate antigen further enhanced their motility. Highly activated CTL showed markedly increased vector displacement, and velocity, and lead to increased antigen-specific target cell death. These data show that the inherent kinematics of CTL correlate directly with their ability to kill non-tumour cells presenting cognate antigen.

  20. Glypican-3 Targeting of Liver Cancer Cells Using Multifunctional Nanoparticles

    Directory of Open Access Journals (Sweden)

    James O. Park

    2011-01-01

    Full Text Available Imaging is essential in accurately detecting, staging, and treating primary liver cancer (hepatocellular carcinoma [HCC], one of the most prevalent and lethal malignancies. We developed a novel multifunctional nanoparticle (NP specifically targeting glypican-3 (GPC3, a proteoglycan implicated in promotion of cell growth that is overexpressed in most HCCs. Quantitative real-time polymerase chain reaction was performed to confirm the differential GPC3 expression in two human HCC cells, Hep G2 (high and HLF (negligible. These cells were treated with biotin-conjugated GPC3 monoclonal antibody (αGPC3 and subsequently targeted using superparamagnetic iron oxide NPs conjugated to streptavidin and Alexa Fluor 647. Flow cytometry demonstrated that only GPC3-expressing Hep G2 cells were specifically targeted using this αGPC3-NP conjugate (fourfold mean fluorescence over nontargeted NP, and magnetic resonance imaging (MRI experiments showed similar findings (threefold R2 relaxivity. Confocal fluorescence microscopy localized the αGPC3 NPs only to the cell surface of GPC3-expressing Hep G2 cells. Further characterization of this construct demonstrated a negatively charged, monodisperse, 50 nm NP, ideally suited for tumor targeting. This GPC3-specific NP system, with dual-modality imaging capability, may enhance pretreatment MRI, enable refined intraoperative HCC visualization by near-infrared fluorescence, and be potentially used as a carrier for delivery of tumor-targeted therapies, improving patient outcomes.

  1. Chemosensitization of cancer cells by siRNA using targeted nanogel delivery

    International Nuclear Information System (INIS)

    Dickerson, Erin B; Blackburn, William H; Smith, Michael H; Kapa, Laura B; Lyon, L Andrew; McDonald, John F

    2010-01-01

    Chemoresistance is a major obstacle in cancer treatment. Targeted therapies that enhance cancer cell sensitivity to chemotherapeutic agents have the potential to increase drug efficacy while reducing toxic effects on untargeted cells. Targeted cancer therapy by RNA interference (RNAi) is a relatively new approach that can be used to reversibly silence genes in vivo by selectively targeting genes such as the epidermal growth factor receptor (EGFR), which has been shown to increase the sensitivity of cancer cells to taxane chemotherapy. However, delivery represents the main hurdle for the broad development of RNAi therapeutics. We report here the use of core/shell hydrogel nanoparticles (nanogels) functionalized with peptides that specially target the EphA2 receptor to deliver small interfering RNAs (siRNAs) targeting EGFR. Expression of EGFR was determined by immunoblotting, and the effect of decreased EGFR expression on chemosensitization of ovarian cancer cells after siRNA delivery was investigated. Treatment of EphA2 positive Hey cells with siRNA-loaded, peptide-targeted nanogels decreased EGFR expression levels and significantly increased the sensitivity of this cell line to docetaxel (P < 0.05). Nanogel treatment of SK-OV-3 cells, which are negative for EphA2 expression, failed to reduce EGFR levels and did not increase docetaxel sensitivity (P > 0.05). This study suggests that targeted delivery of siRNAs by nanogels may be a promising strategy to increase the efficacy of chemotherapy drugs for the treatment of ovarian cancer. In addition, EphA2 is a viable target for therapeutic delivery, and the siRNAs are effectively protected by the nanogel carrier, overcoming the poor stability and uptake that has hindered clinical advancement of therapeutic siRNAs

  2. Association of impulsivity and polymorphic microRNA-641 target sites in the SNAP-25 gene.

    Directory of Open Access Journals (Sweden)

    Nóra Németh

    Full Text Available Impulsivity is a personality trait of high impact and is connected with several types of maladaptive behavior and psychiatric diseases, such as attention deficit hyperactivity disorder, alcohol and drug abuse, as well as pathological gambling and mood disorders. Polymorphic variants of the SNAP-25 gene emerged as putative genetic components of impulsivity, as SNAP-25 protein plays an important role in the central nervous system, and its SNPs are associated with several psychiatric disorders. In this study we aimed to investigate if polymorphisms in the regulatory regions of the SNAP-25 gene are in association with normal variability of impulsivity. Genotypes and haplotypes of two polymorphisms in the promoter (rs6077690 and rs6039769 and two SNPs in the 3' UTR (rs3746544 and rs1051312 of the SNAP-25 gene were determined in a healthy Hungarian population (N = 901 using PCR-RFLP or real-time PCR in combination with sequence specific probes. Significant association was found between the T-T 3' UTR haplotype and impulsivity, whereas no association could be detected with genotypes or haplotypes of the promoter loci. According to sequence alignment, the polymorphisms in the 3' UTR of the gene alter the binding site of microRNA-641, which was analyzed by luciferase reporter system. It was observed that haplotypes altering one or two nucleotides in the binding site of the seed region of microRNA-641 significantly increased the amount of generated protein in vitro. These findings support the role of polymorphic SNAP-25 variants both at psychogenetic and molecular biological levels.

  3. Investigation of the L-Glutamic acid polymorphism: Comparison between stirred and stagnant conditions

    Science.gov (United States)

    Tahri, Yousra; Gagnière, Emilie; Chabanon, Elodie; Bounahmidi, Tijani; Mangin, Denis

    2016-02-01

    This work highlights the effect of the stirring, the temperature and the supersaturation on the cooling crystallization of L-Glutamic acid (LGlu) polymorphs. First, solubility measurements of the metastable polymorph α and the stable polymorph β were performed. Then, crystallization experiments were carried out in stirred vessel and in stagnant cell. All these experiments were monitored by in situ devices. The effect of the temperature on the LGlu polymorphs was found to be more relevant than the supersaturation in the stirred crystallizer. In the stagnant cell, only the stable form β crystallized regardless of the operating conditions. Moreover, an unexpected and new habit of the β form was discovered and confirmed. These results suggest that the temperature and the stirring can strongly affect the nucleation and the growth kinetics of polymorphic forms.

  4. MicroRNA-944 Affects Cell Growth by Targeting EPHA7 in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Minxia Liu

    2016-09-01

    Full Text Available MicroRNAs (miRNAs have critical roles in lung tumorigenesis and development. To determine aberrantly expressed miRNAs involved in non-small cell lung cancer (NSCLC and investigate pathophysiological functions and mechanisms, we firstly carried out small RNA deep sequencing in NSCLC cell lines (EPLC-32M1, A549 and 801D and a human immortalized cell line 16HBE, we then studied miRNA function by cell proliferation and apoptosis. cDNA microarray, luciferase reporter assay and miRNA transfection were used to investigate interaction between the miRNA and target gene. miR-944 was significantly down-regulated in NSCLC and had many putative targets. Moreover, the forced expression of miR-944 significantly inhibited the proliferation of NSCLC cells in vitro. By integrating mRNA expression data and miR-944-target prediction, we disclosed that EPHA7 was a potential target of miR-944, which was further verified by luciferase reporter assay and microRNA transfection. Our data indicated that miR-944 targets EPHA7 in NSCLC and regulates NSCLC cell proliferation, which may offer a new mechanism underlying the development and progression of NSCLC.

  5. MicroRNA-944 Affects Cell Growth by Targeting EPHA7 in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Liu, Minxia; Zhou, Kecheng; Cao, Yi

    2016-09-26

    MicroRNAs (miRNAs) have critical roles in lung tumorigenesis and development. To determine aberrantly expressed miRNAs involved in non-small cell lung cancer (NSCLC) and investigate pathophysiological functions and mechanisms, we firstly carried out small RNA deep sequencing in NSCLC cell lines (EPLC-32M1, A549 and 801D) and a human immortalized cell line 16HBE, we then studied miRNA function by cell proliferation and apoptosis. cDNA microarray, luciferase reporter assay and miRNA transfection were used to investigate interaction between the miRNA and target gene. miR-944 was significantly down-regulated in NSCLC and had many putative targets. Moreover, the forced expression of miR-944 significantly inhibited the proliferation of NSCLC cells in vitro. By integrating mRNA expression data and miR-944-target prediction, we disclosed that EPHA7 was a potential target of miR-944, which was further verified by luciferase reporter assay and microRNA transfection. Our data indicated that miR-944 targets EPHA7 in NSCLC and regulates NSCLC cell proliferation, which may offer a new mechanism underlying the development and progression of NSCLC.

  6. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review.

    Science.gov (United States)

    Mousavizadeh, Ali; Jabbari, Ali; Akrami, Mohammad; Bardania, Hassan

    2017-10-01

    Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Aptamer-Mediated Polymeric Vehicles for Enhanced Cell-Targeted Drug Delivery.

    Science.gov (United States)

    Tan, Kei X; Danquah, Michael K; Sidhu, Amandeep; Yon, Lau Sie; Ongkudon, Clarence M

    2018-02-08

    The search for smart delivery systems for enhanced pre-clinical and clinical pharmaceutical delivery and cell targeting continues to be a major biomedical research endeavor owing to differences in the physicochemical characteristics and physiological effects of drug molecules, and this affects the delivery mechanisms to elicit maximum therapeutic effects. Targeted drug delivery is a smart evolution essential to address major challenges associated with conventional drug delivery systems. These challenges mostly result in poor pharmacokinetics due to the inability of the active pharmaceutical ingredients to specifically act on malignant cells thus, causing poor therapeutic index and toxicity to surrounding normal cells. Aptamers are oligonucleotides with engineered affinities to bind specifically to their cognate targets. Aptamers have gained significant interests as effective targeting elements for enhanced therapeutic delivery as they can be generated to specifically bind to wide range of targets including proteins, peptides, ions, cells and tissues. Notwithstanding, effective delivery of aptamers as therapeutic vehicles is challenged by cell membrane electrostatic repulsion, endonuclease degradation, low pH cleavage, and binding conformation stability. The application of molecularly engineered biodegradable and biocompatible polymeric particles with tunable features such as surface area and chemistry, particulate size distribution and toxicity creates opportunities to develop smart aptamer-mediated delivery systems for controlled drug release. This article discusses opportunities for particulate aptamer-drug formulations to advance current drug delivery modalities by navigating active ingredients through cellular and biomolecular traffic to target sites for sustained and controlled release at effective therapeutic dosages while minimizing systemic cytotoxic effects. A proposal for a novel drug-polymer-aptamer-polymer (DPAP) design of aptamer-drug formulation with

  8. Therapeutic targeting strategies using endogenous cells and proteins.

    Science.gov (United States)

    Parayath, Neha N; Amiji, Mansoor M

    2017-07-28

    Targeted drug delivery has become extremely important in enhancing efficacy and reducing the toxicity of therapeutics in the treatment of various disease conditions. Current approaches include passive targeting, which relies on naturally occurring differences between healthy and diseased tissues, and active targeting, which utilizes various ligands that can recognize targets expressed preferentially at the diseased site. Clinical translation of these mechanisms faces many challenges including the immunogenic and toxic effects of these non-natural systems. Thus, use of endogenous targeting systems is increasingly gaining momentum. This review is focused on strategies for employing endogenous moieties, which could serve as safe and efficient carriers for targeted drug delivery. The first part of the review involves cells and cellular components as endogenous carriers for therapeutics in multiple disease states, while the second part discusses the use of endogenous plasma components as endogenous carriers. Further understanding of the biological tropism with cells and proteins and the newer generation of delivery strategies that exploits these endogenous approaches promises to provide better solutions for site-specific delivery and could further facilitate clinical translations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Macrophage and NK-mediated killing of precursor-B acute lymphoblastic leukemia cells targeted with a-fucosylated anti-CD19 humanized antibodies.

    Science.gov (United States)

    Matlawska-Wasowska, K; Ward, E; Stevens, S; Wang, Y; Herbst, R; Winter, S S; Wilson, B S

    2013-06-01

    This work reports the tumoricidal effects of a novel investigational humanized anti-CD19 monoclonal antibody (Medi-551). An a-fucosylated antibody with increased affinity for human FcγRIIIA, Medi-551 is shown to mediate both antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Medi-551/CD19 complexes internalize slowly (>5 h) and thus remain accessible to effector cells for prolonged periods. We evaluated in vitro ADCC and ADCP activities of primary human natural killer (NK) cells and macrophages against precursor-B (pre-B) acute lymphoblastic leukemia (ALL) cell lines and pediatric patient blasts. Fluorescent imaging studies document immunological synapses formed between anti-CD19-bound target leukemia cells and effector cells and capture the kinetics of both NK-mediated killing and macrophage phagocytosis. Genetic polymorphisms in FcγRIIIA-158F/V modulate in vitro activities of effector cells, with FcγRIIIA-158V homozygotes or heterozygotes showing the strongest activity. Medi-551 treatment of severe combined immunodeficiency (SCID) mice engrafted with human pre-B cells led to prolonged animal survival and markedly reduced disease burden in blood, liver and bone marrow. These data show that anti-CD19 antibodies effectively recruit immune cells to pre-B ALL cells and support a move forward to early phase trials in this disease.

  10. Enhancing oral vaccine potency by targeting intestinal M cells.

    Directory of Open Access Journals (Sweden)

    Ali Azizi

    2010-11-01

    Full Text Available The immune system in the gastrointestinal tract plays a crucial role in the control of infection, as it constitutes the first line of defense against mucosal pathogens. The attractive features of oral immunization have led to the exploration of a variety of oral delivery systems. However, none of these oral delivery systems have been applied to existing commercial vaccines. To overcome this, a new generation of oral vaccine delivery systems that target antigens to gut-associated lymphoid tissue is required. One promising approach is to exploit the potential of microfold (M cells by mimicking the entry of pathogens into these cells. Targeting specific receptors on the apical surface of M cells might enhance the entry of antigens, initiating the immune response and consequently leading to protection against mucosal pathogens. In this article, we briefly review the challenges associated with current oral vaccine delivery systems and discuss strategies that might potentially target mouse and human intestinal M cells.

  11. Light induced electrical and macroscopic changes in hydrogenated polymorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Roca i Cabarrocas P.

    2012-07-01

    Full Text Available We report on light-induced electrical and macroscopic changes in hydrogenated polymorphous silicon (pm-Si:H PIN solar cells. To explain the particular light-soaking behavior of such cells – namely an increase of the open circuit voltage (Voc and a rapid drop of the short circuit current density (Jsc – we correlate these effects to changes in hydrogen incorporation and structural properties in the layers of the cells. Numerous techniques such as current-voltage characteristics, infrared spectroscopy, hydrogen exodiffusion, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and spectroscopic ellipsometry are used to study the light-induced changes from microscopic to macroscopic scales (up to tens of microns. Such comprehensive use of complementary techniques lead us to suggest that light-soaking produces the diffusion of molecular hydrogen, hydrogen accumulation at p-layer/substrate interface and localized delamination of the interface. Based on these results we propose that light-induced degradation of PIN solar cells has to be addressed from not only as a material issue, but also a device point of view. In particular we bring experimental evidence that localized delamination at the interface between the p-layer and SnO2 substrate by light-induced hydrogen motion causes the rapid drop of Jsc.

  12. Cell cycle and anti-estrogen effects synergize to regulate cell proliferation and ER target gene expression.

    Directory of Open Access Journals (Sweden)

    Mathieu Dalvai

    Full Text Available Antiestrogens are designed to antagonize hormone induced proliferation and ERalpha target gene expression in mammary tumor cells. Commonly used drugs such as OH-Tamoxifen and ICI 182780 (Fulvestrant block cell cycle progression in G0/G1. Inversely, the effect of cell cycle stage on ER regulated gene expression has not been tested directly. We show that in ERalpha-positive breast cancer cells (MCF-7 the estrogen receptor gene and downstream target genes are cell cycle regulated with expression levels varying as much as three-fold between phases of the cell cycle. Steroid free culture conditions commonly used to assess the effect of hormones or antiestrogens on gene expression also block MCF-7 cells in G1-phase when several ERalpha target genes are overexpressed. Thus, cell cycle effects have to be taken into account when analyzing the impact of hormonal treatments on gene transcription. We found that antiestrogens repress transcription of several ERalpha target genes specifically in S phase. This observation corroborates the more rapid and strong impact of antiestrogen treatments on cell proliferation in thymidine, hydroxyurea or aphidicolin arrested cells and correlates with an increase of apoptosis compared to similar treatments in lovastatin or nocodazol treated cells. Hence, cell cycle effects synergize with the action of antiestrogens. An interesting therapeutic perspective could be to enhance the action of anti-estrogens by associating hormone-therapy with specific cell cycle drugs.

  13. ATR-dependent bystander effects in non-targeted cells

    International Nuclear Information System (INIS)

    Burdak-Rothkamm, S.

    2007-01-01

    Complete text of publication follows. Radiation induced non-targeted bystander effects have been reported for a range of endpoints including the induction of γH2AX foci which serve as a marker for DNA double strand breaks. We have recently reported the induction of γH2AX foci in non-targeted bystander cells up to 48 hours after irradiation and the involvement of reactive oxygen species (ROS) and TGF-beta 1 in the induction of γH2AX foci (Oncogene (2007) 26:993-1002). Here, we wanted to determine the role of the PI3-like kinases ATM, ATR and DNA-PK in DNA damage signalling in bystander cells. Conditioned medium from T98G cells irradiated with 2 Gy of X-rays was transferred onto non-irradiated cells that were subsequently analysed for the induction of γH2AX, ATR and 53BP1 foci as well as clonogenic survival. Irradiated T98G glioma cells generated signals that induced γH2AX and 53BP1 foci in cells treated with the conditioned medium from irradiated cells. These foci co-localised with ATR foci. Inhibition of ATM and DNA-PK could not suppress the induction of bystander γH2AX foci whereas the mutation of ATR in Seckel cells abrogated bystander foci induction. A restriction of bystander foci to the S-phase of the cell cycle both in T98G cells and in ATR- proficient fibroblasts was observed. These results identify ATR as a central player within the bystander signalling cascade leading to γH2AX and 53BP1 foci formation, and suggest a mechanism of DNA damage induction in non-targeted cells. Further investigations have shown decreased clonogenic cell survival in bystander T98G and ATR wild-type fibroblasts. ATR mutated Seckel cells and also ATM-/- fibroblasts were resistant to this effect suggesting a role for both ATR and ATM in the bystander signalling cascade with regard to cell survival. Taken together, these observations support a hypothesis of DNA damage-induced accumulation of stalled replication forks in bystander cells which are subsequently processed by

  14. A new prospect in cancer therapy: targeting cancer stem cells to eradicate cancer.

    Science.gov (United States)

    Chen, Li-Sha; Wang, An-Xin; Dong, Bing; Pu, Ke-Feng; Yuan, Li-Hua; Zhu, Yi-Min

    2012-12-01

    According to the cancer stem cell theory, cancers can be initiated by cancer stem cells. This makes cancer stem cells prime targets for therapeutic intervention. Eradicating cancer stem cells by efficient targeting agents may have the potential to cure cancer. In this review, we summarize recent breakthroughs that have improved our understanding of cancer stem cells, and we discuss the therapeutic strategy of targeting cancer stem cells, a promising future direction for cancer stem cell research.

  15. The polarized double cell target of the SMC

    CERN Document Server

    Adams, D; Adeva, B; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gaussiran, T; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Gülmez, E; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Layda, T; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Neganov, B S; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Pereira, H; Penzo, Aldo L; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Pussieux, T; Pyrlik, J; Rädel, G; Reyhancan, I; Reicherz, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Roscherr, B; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Schüler, K P; Segel, R E; Seitz, R; Semertzidis, Y K; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Thers, D; Tlaczala, W; Trentalange, S; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Zanetti, A M; Zaremba, K; Zhao, J

    1999-01-01

    The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993 to 1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials $-$ butanol, ammonia, and deuterated butanol, with maximum degrees of polarization of 94, 91, and 60 \\%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and their analyses. The achieved accuracies were between 2.0 and 3.2 \\%. The SMC target system with two cells of opposite polarizations, each cell 65 cm long and 5 cm in diameter, constitutes the largest polarized target system ever built and facilitates accurate spin asymmetry measurements. The design considerations, the ...

  16. Endothelial Cell-Targeted Adenoviral Vector for Suppressing Breast Malignancies

    National Research Council Canada - National Science Library

    Huang, Shuang

    2004-01-01

    .... Our proposal is designed to develop an endothelial cell-targeted adenoviral vector and to use the targeted vector to express high levels of anticancer therapeutic genes in the sites of angiogenenic...

  17. Luteolin suppresses cancer cell proliferation by targeting vaccinia-related kinase 1.

    Directory of Open Access Journals (Sweden)

    Ye Seul Kim

    Full Text Available Uncontrolled proliferation, a major feature of cancer cells, is often triggered by the malfunction of cell cycle regulators such as protein kinases. Recently, cell cycle-related protein kinases have become attractive targets for anti-cancer therapy, because they play fundamental roles in cellular proliferation. However, the protein kinase-targeted drugs that have been developed so far do not show impressive clinical results and also display severe side effects; therefore, there is undoubtedly a need to investigate new drugs targeting other protein kinases that are critical in cell cycle progression. Vaccinia-related kinase 1 (VRK1 is a mitotic kinase that functions in cell cycle regulation by phosphorylating cell cycle-related substrates such as barrier-to-autointegration factor (BAF, histone H3, and the cAMP response element (CRE-binding protein (CREB. In our study, we identified luteolin as the inhibitor of VRK1 by screening a small-molecule natural compound library. Here, we evaluated the efficacy of luteolin as a VRK1-targeted inhibitor for developing an effective anti-cancer strategy. We confirmed that luteolin significantly reduces VRK1-mediated phosphorylation of the cell cycle-related substrates BAF and histone H3, and directly interacts with the catalytic domain of VRK1. In addition, luteolin regulates cell cycle progression by modulating VRK1 activity, leading to the suppression of cancer cell proliferation and the induction of apoptosis. Therefore, our study suggests that luteolin-induced VRK1 inhibition may contribute to establish a novel cell cycle-targeted strategy for anti-cancer therapy.

  18. ErbB-targeted CAR T-cell immunotherapy of cancer.

    Science.gov (United States)

    Whilding, Lynsey M; Maher, John

    2015-01-01

    Chimeric antigen receptor (CAR) based immunotherapy has been under development for the last 25 years and is now a promising new treatment modality in the field of cancer immunotherapy. The approach involves genetically engineering T cells to target malignant cells through expression of a bespoke fusion receptor that couples an HLA-independent antigen recognition domain to one or more intracellular T-cell activating modules. Multiple clinical trials are now underway in several centers to investigate CAR T-cell immunotherapy of diverse hematologic and solid tumor types. The most successful results have been achieved in the treatment of patients with B-cell malignancies, in whom several complete and durable responses have been achieved. This review focuses on the preclinical and clinical development of CAR T-cell immunotherapy of solid cancers, targeted against members of the ErbB family.

  19. Thermal, spectroscopic, and ab initio structural characterization of carprofen polymorphs.

    Science.gov (United States)

    Bruni, Giovanna; Gozzo, Fabia; Capsoni, Doretta; Bini, Marcella; Macchi, Piero; Simoncic, Petra; Berbenni, Vittorio; Milanese, Chiara; Girella, Alessandro; Ferrari, Stefania; Marini, Amedeo

    2011-06-01

    Commercial and recrystallized polycrystalline samples of carprofen, a nonsteroidal anti-inflammatory drug, were studied by thermal, spectroscopic, and structural techniques. Our investigations demonstrated that recrystallized sample, stable at room temperature (RT), is a single polymorphic form of carprofen (polymorph I) that undergoes an isostructural polymorphic transformation by heating (polymorph II). Polymorph II remains then metastable at ambient conditions. Commercial sample is instead a mixture of polymorphs I and II. The thermodynamic relationships between the two polymorphs were determined through the construction of an energy/temperature diagram. The ab initio structural determination performed on synchrotron X-Ray powder diffraction patterns recorded at RT on both polymorphs allowed us to elucidate, for the first time, their crystal structure. Both crystallize in the monoclinic space group type P2(1) /c, and the unit cell similarity index and the volumetric isostructurality index indicate that the temperature-induced polymorphic transformation I → II is isostructural. Polymorphs I and II are conformational polymorphs, sharing a very similar hydrogen bond network, but with different conformation of the propanoic skeleton, which produces two different packing. The small conformational change agrees with the low value of transition enthalpy obtained by differential scanning calorimetry measurements and the small internal energy computed with density functional methods. Copyright © 2011 Wiley-Liss, Inc.

  20. GEM-loaded magnetic albumin nanospheres modified with cetuximab for simultaneous targeting, magnetic resonance imaging, and double-targeted thermochemotherapy of pancreatic cancer cells.

    Science.gov (United States)

    Wang, Ling; An, Yanli; Yuan, Chenyan; Zhang, Hao; Liang, Chen; Ding, Fengan; Gao, Qi; Zhang, Dongsheng

    2015-01-01

    Targeted delivery is a promising strategy to improve the diagnostic imaging and therapeutic effect of cancers. In this paper, novel cetuximab (C225)-conjugated, gemcitabine (GEM)-containing magnetic albumin nanospheres (C225-GEM/MANs) were fabricated and applied as a theranostic nanocarrier to conduct simultaneous targeting, magnetic resonance imaging (MRI), and double-targeted thermochemotherapy against pancreatic cancer cells. Fe3O4 nanoparticles (NPs) and GEM co-loaded albumin nanospheres (GEM/MANs) were prepared, and then C225 was further conjugated to synthesize C225-GEM/MANs. Their morphology, mean particle size, GEM encapsulation ratio, specific cell-binding ability, and thermal dynamic profiles were characterized. The effects of discriminating different EGFR-expressing pancreatic cancer cells (AsPC-1 and MIA PaCa-2) and monitoring cellular targeting effects were assessed by targeted MRI. Lastly, the antitumor efficiency of double/C225/magnetic-targeted and nontargeted thermochemotherapy was compared with chemotherapy alone using 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and flow cytometry (FCM) assay. When treated with targeted nanospheres, AsPC-1 cells showed a significantly less intense MRI T2 signal than MIA PaCa-2 cells, while both cells had similar signal strength when incubated with nontargeted nanospheres. T2 signal intensity was significantly lower when magnetic and C225 targeting were combined, rather than used alone. The inhibitory and apoptotic rates of each thermochemotherapy group were significantly higher than those of the chemotherapy-alone groups. Additionally, both MTT and FCM analysis verified that double-targeted thermochemotherapy had the highest targeted killing efficiency among all groups. The C225-GEM/MANs can distinguish various EGFR-expressing live pancreatic cancer cells, monitor diverse cellular targeting effects using targeted MRI imaging, and efficiently mediate double-targeted thermochemotherapy

  1. Cell Line Controls for the Genotyping of a Spectrum of Human Single Nucleotide Polymorphisms in the Clinical Laboratory.

    Science.gov (United States)

    Kimbacher, Christine; Paar, Christian; Freystetter, Andrea; Berg, Joerg

    2018-05-01

    Genotyping for clinically important single nucleotide polymorphisms (SNPs) is performed by many clinical routine laboratories. To support testing, quality controls and reference materials are needed. Those may be derived from residual patient samples, left over samples of external quality assurance schemes, plasmid DNA or DNA from cell lines. DNAs from cell lines are commutable and available in large amounts. DNA from 38 cell lines were examined for suitability as controls in 11 SNP assays that are frequently used in a clinical routine laboratory: FV (1691G>A), FII (20210G>A), PAI-1 4G/5G polymorphism, MTHFR (677C>T, 1298A>C), HFE (H63D, S65C, C282Y), APOE (E2, E3, E4), LPH (-13910C>T), UGT1A1 (*28, *36, *37), TPMT (*2, *3A, *3B, *3C), VKORC1 (-1639G>A, 1173C>T), CYP2C9 (*2, *3, *5). Genotyping was performed by real-time PCR with melting curve analysis and confirmed by bi-directional sequencing. We find an almost complete spectrum of genotypic constellations within these 38 cell lines. About 12 cell lines appear sufficient as genotypic controls for the 11 SNP assays by covering almost all of the genotypes. However, hetero- and homozygous genotypes for FII and the alleles TPMT*2, UGT1A1*37 and CYP2C9*5 were not detected in any of the cell lines. DNA from most of the examined cell lines appear suitable as quality controls for these SNP assays in the laboratory routine, as to the implementation of those assays or to prepare samples for quality assurance schemes. Our study may serve as a pilot to further characterize these cell lines to arrive at the status of reference materials.

  2. Lack of effect of the alpha2C-adrenoceptor Del322-325 polymorphism on inhibition of cyclic AMP production in HEK293 cells.

    Science.gov (United States)

    Montgomery, M D; Bylund, D B

    2010-02-01

    The alpha(2C)-adrenoceptor has multiple functions, including inhibiting release of noradrenaline from presynaptic nerve terminals. A human alpha(2C) polymorphism, Del322-325, a potential risk factor for heart failure, has been reported to exhibit reduced signalling in CHO cells. To further understand the role of the Del322-325 polymorphism on receptor signalling, we attempted to replicate and further study the reduced signalling in HEK293 cells. Human alpha(2C) wild-type (WT) and Del322-325 adrenoceptors were stably transfected into HEK293 cells. Radioligand binding was performed to determine affinities for both receptors. In intact cells, inhibition of forskolin-stimulated cyclic AMP production by WT and Del322-325 clones with a range of receptor densities (200-2320 fmol.mg(-1) protein) was measured following agonist treatment. Noradrenaline, brimonidine and clonidine exhibited similar binding affinities for WT and Del322-325. Brimonidine and clonidine also had similar efficacies and potencies for both receptors for the inhibition of cyclic AMP production at all receptor densities tested. A linear regression analysis comparing efficacy and potency with receptor expression levels showed no differences in slopes between WT and Del322-325. The alpha(2C) WT and Del322-325 adrenoceptors exhibited similar binding properties. Additionally, inhibition of cyclic AMP production by Del322-325 was similar to that of WT over a range of receptor densities. Therefore, in intact HEK293 cells, the alpha(2C)-Del322-325 polymorphism does not exhibit reduced signalling to adenylyl cyclase and may not represent a clinically important phenotype.

  3. Phenotypic high-throughput screening elucidates target pathway in breast cancer stem cell-like cells.

    Science.gov (United States)

    Carmody, Leigh C; Germain, Andrew R; VerPlank, Lynn; Nag, Partha P; Muñoz, Benito; Perez, Jose R; Palmer, Michelle A J

    2012-10-01

    Cancer stem cells (CSCs) are resistant to standard cancer treatments and are likely responsible for cancer recurrence, but few therapies target this subpopulation. Due to the difficulty in propagating CSCs outside of the tumor environment, previous work identified CSC-like cells by inducing human breast epithelial cells into an epithelial-to-mesenchymal transdifferentiated state (HMLE_sh_ECad). A phenotypic screen was conducted against HMLE_sh_ECad with 300 718 compounds from the Molecular Libraries Small Molecule Repository to identify selective inhibitors of CSC growth. The screen yielded 2244 hits that were evaluated for toxicity and selectivity toward an isogenic control cell line. An acyl hydrazone scaffold emerged as a potent and selective scaffold targeting HMLE_sh_ECad. Fifty-three analogues were acquired and tested; compounds ranged in potency from 790 nM to inactive against HMLE_sh_ECad. Of the analogues, ML239 was best-in-class with an IC(50)= 1.18 µM against HMLE_sh_ECad, demonstrated a >23-fold selectivity over the control line, and was toxic to another CSC-like line, HMLE_shTwist, and a breast carcinoma cell line, MDA-MB-231. Gene expression studies conducted with ML239-treated cells showed altered gene expression in the NF-κB pathway in the HMLE_sh_ECad line but not in the isogenic control line. Future studies will be directed toward the identification of ML239 target(s).

  4. Detecting drug-target binding in cells using fluorescence-activated cell sorting coupled with mass spectrometry analysis

    Science.gov (United States)

    Wilson, Kris; Webster, Scott P.; Iredale, John P.; Zheng, Xiaozhong; Homer, Natalie Z.; Pham, Nhan T.; Auer, Manfred; Mole, Damian J.

    2018-01-01

    The assessment of drug-target engagement for determining the efficacy of a compound inside cells remains challenging, particularly for difficult target proteins. Existing techniques are more suited to soluble protein targets. Difficult target proteins include those with challenging in vitro solubility, stability or purification properties that preclude target isolation. Here, we report a novel technique that measures intracellular compound-target complex formation, as well as cellular permeability, specificity and cytotoxicity-the toxicity-affinity-permeability-selectivity (TAPS) technique. The TAPS assay is exemplified here using human kynurenine 3-monooxygenase (KMO), a challenging intracellular membrane protein target of significant current interest. TAPS confirmed target binding of known KMO inhibitors inside cells. We conclude that the TAPS assay can be used to facilitate intracellular hit validation on most, if not all intracellular drug targets.

  5. Dual association of a TRKA polymorphism with schizophrenia

    DEFF Research Database (Denmark)

    Van Schijndel, Jessica E; Van Zweeden, Martine; Van Loo, Karen M J

    2011-01-01

    OBJECTIVE: An interaction between predisposing genes and environmental stressors is thought to underlie the neurodevelopmental disorder schizophrenia. In a targeted gene screening, we previously found that the minor allele of the single nucleotide polymorphism (SNP) rs6336 in the neurotrophic...

  6. IL-33 polymorphisms are associated with increased risk of hay fever and reduced regulatory T cells in a birth cohort.

    Science.gov (United States)

    Schröder, Paul C; Casaca, Vera I; Illi, Sabina; Schieck, Maximilian; Michel, Sven; Böck, Andreas; Roduit, Caroline; Frei, Remo; Lluis, Anna; Genuneit, Jon; Pfefferle, Petra; Roponen, Marjut; Weber, Juliane; Braun-Fahrländer, Charlotte; Riedler, Josef; Lauener, Roger; Vuitton, Dominique Angèle; Dalphin, Jean-Charles; Pekkanen, Juha; von Mutius, Erika; Kabesch, Michael; Schaub, Bianca

    2016-11-01

    IL-33 polymorphisms influence the susceptibility to asthma. IL-33 indirectly induces Th2-immune responses via dendritic cell activation, being important for development of atopic diseases. Furthermore, IL-33 upregulates regulatory T cells (Tregs), which are critical for healthy immune homeostasis. This study investigates associations between IL-33 polymorphisms during the development of childhood atopic diseases and underlying mechanisms including immune regulation of Tregs. Genotyping of IL-33-polymorphisms (rs928413, rs1342326) was performed by MALDI-TOF-MS in 880 of 1133 PASTURE/EFRAIM children. In 4.5-year-old German PASTURE/EFRAIM children (n = 99), CD4 + CD25 high FOXP3 + Tregs were assessed by flow cytometry following 24-h incubation of PBMCs with PMA/ionomycin, LPS or without stimuli (U). SOCS3, IL1RL1, TLR4 mRNA expression and sST2 protein levels ex vivo were measured in PASTURE/EFRAIM children by real-time PCR or ELISA, respectively. Health outcomes (hay fever, asthma) were assessed by questionnaires at the age of 6 years. rs928413 and rs1342326 were positively associated with hay fever (OR = 1.77, 95%CI = 1.02-3.08; OR = 1.79, 95%CI = 1.04-3.11) and CD4 + CD25 high FOXP3 + Tregs (%) decreased in minor allele homozygotes/heterozygotes compared to major allele homozygotes (p(U) = 0.004; p(LPS) = 0.005; p(U) = 0.001; p(LPS) = 0.012). SOCS3 mRNA expression increased in minor allele homozygotes and heterozygotes compared with major allele homozygotes for both IL-33-polymorphisms (p(rs928413) = 0.032, p(rs1342326) = 0.019) and negatively correlated to Tregs. IL-33-polymorphisms rs928413 and rs1342326 may account for an increased risk of hay fever with the age of 6 years. Lower Tregs and increased SOCS3 in combined heterozygotes and minor allele homozygotes may be relevant for hay fever development, pointing towards dysbalanced immune regulation and insufficient control of allergic inflammation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Targeted cancer cell death induced by biofunctionalized magnetic nanowires

    KAUST Repository

    Contreras, Maria F.; Ravasi, Timothy; Kosel, Jü rgen

    2014-01-01

    Magnetic micro and nanomaterials are increasingly interesting for biomedical applications since they possess many advantageous properties: they can become biocompatible, they can be functionalized to target specific cells and they can be remotely manipulated by magnetic fields. The goal of this study is to use antibody-functionalized nickel nanowires (Ab-NWs) as an alternative method in cancer therapy overcoming the limitations of current treatments that lack specificity and are highly cytotoxic. Ab-NWs have been incubated with cancer cells and a 12% drop on cell viability was observed for a treatment of only 10 minutes and an alternating magnetic field of low intensity and low frequency. It is believed that the Ab-NWs vibrate transmitting a mechanical force to the targeted cells inducing cell death. © 2014 IEEE.

  8. Targeted cancer cell death induced by biofunctionalized magnetic nanowires

    KAUST Repository

    Contreras, Maria F.

    2014-02-01

    Magnetic micro and nanomaterials are increasingly interesting for biomedical applications since they possess many advantageous properties: they can become biocompatible, they can be functionalized to target specific cells and they can be remotely manipulated by magnetic fields. The goal of this study is to use antibody-functionalized nickel nanowires (Ab-NWs) as an alternative method in cancer therapy overcoming the limitations of current treatments that lack specificity and are highly cytotoxic. Ab-NWs have been incubated with cancer cells and a 12% drop on cell viability was observed for a treatment of only 10 minutes and an alternating magnetic field of low intensity and low frequency. It is believed that the Ab-NWs vibrate transmitting a mechanical force to the targeted cells inducing cell death. © 2014 IEEE.

  9. Profiling the Targets of Protective CD8+ T Cell Responses to Infection

    Directory of Open Access Journals (Sweden)

    Joseph T. Bruder

    2017-12-01

    Full Text Available T cells are critical effectors of host immunity that target intracellular pathogens, such as the causative agents of HIV, tuberculosis, and malaria. The development of vaccines that induce effective cell-mediated immunity against such pathogens has proved challenging; for tuberculosis and malaria, many of the antigens targeted by protective T cells are not known. Here, we report a novel approach for screening large numbers of antigens as potential targets of T cells. Malaria provides an excellent model to test this antigen discovery platform because T cells are critical mediators of protection following immunization with live sporozoite vaccines and the specific antigen targets are unknown. We generated an adenovirus array by cloning 312 highly expressed pre-erythrocytic Plasmodium yoelii antigens into adenovirus vectors using high-throughput methodologies. The array was screened to identify antigen-specific CD8+ T cells induced by a live sporozoite vaccine regimen known to provide high levels of sterile protection mediated by CD8+ T cells. We identified 69 antigens that were targeted by CD8+ T cells induced by this vaccine regimen. The antigen that recalled the highest frequency of CD8+ T cells, PY02605, induced protective responses in mice, demonstrating proof of principle for this approach in identifying antigens for vaccine development.

  10. Coupling Neurogenetics (GARS™) and a Nutrigenomic Based Dopaminergic Agonist to Treat Reward Deficiency Syndrome (RDS): Targeting Polymorphic Reward Genes for Carbohydrate Addiction Algorithms

    Science.gov (United States)

    Blum, Kenneth; Simpatico, Thomas; Badgaiyan, Rajendra D.; Demetrovics, Zsolt; Fratantonio, James; Agan, Gozde; Febo, Marcelo; Gold, Mark S.

    2016-01-01

    Earlier work from our laboratory, showing anti-addiction activity of a nutraceutical consisting of amino-acid precursors and enkephalinase inhibition properties and our discovery of the first polymorphic gene (Dopamine D2 Receptor Gene [DRD2]) to associate with severe alcoholism serves as a blue-print for the development of “Personalized Medicine” in addiction. Prior to the later genetic finding, we developed the concept of Brain Reward Cascade, which continues to act as an important component for stratification of addiction risk through neurogenetics. In 1996 our laboratory also coined the term “Reward Deficiency Syndrome (RDS)” to define a common genetic rubric for both substance and non-substance related addictive behaviors. Following many reiterations we utilized polymorphic targets of a number of reward genes (serotonergic, Opioidergic, GABAergic and Dopaminergic) to customize KB220 [Neuroadaptogen- amino-acid therapy (NAAT)] by specific algorithms. Identifying 1,000 obese subjects in the Netherlands a subsequent small subset was administered various KB220Z formulae customized according to respective DNA polymorphisms individualized that translated to significant decreases in both Body Mass Index (BMI) and weight in pounds. Following these experiments, we have been successfully developing a panel of genes known as “Genetic Addiction Risk Score” (GARSpDX)™. Selection of 10 genes with appropriate variants, a statistically significant association between the ASI-Media Version-alcohol and drug severity scores and GARSpDx was found A variant of KB220Z in abstinent heroin addicts increased resting state functional connectivity in a putative network including: dorsal anterior cingulate, medial frontal gyrus, nucleus accumbens, posterior cingulate, occipital cortical areas, and cerebellum. In addition, we show that KB220Z significantly activates, above placebo, seed regions of interest including the left nucleus accumbens, cingulate gyrus, anterior

  11. A novel murine T-cell receptor targeting NY-ESO-1.

    Science.gov (United States)

    Rosati, Shannon F; Parkhurst, Maria R; Hong, Young; Zheng, Zhili; Feldman, Steven A; Rao, Mahadev; Abate-Daga, Daniel; Beard, Rachel E; Xu, Hui; Black, Mary A; Robbins, Paul F; Schrump, David A; Rosenberg, Steven A; Morgan, Richard A

    2014-04-01

    Cancer testis antigens, such as NY-ESO-1, are expressed in a variety of prevalent tumors and represent potential targets for T-cell receptor (TCR) gene therapy. DNA encoding a murine anti-NY-ESO-1 TCR gene (mTCR) was isolated from immunized HLA-A*0201 transgenic mice and inserted into a γ-retroviral vector. Two mTCR vectors were produced and used to transduce human PBL. Transduced cells were cocultured with tumor target cell lines and T2 cells pulsed with the NY-ESO-1 peptide, and assayed for cytokine release and cell lysis activity. The most active TCR construct was selected for production of a master cell bank for clinical use. mTCR-transduced PBL maintained TCR expression in short-term and long-term culture, ranging from 50% to 90% efficiency 7-11 days after stimulation and 46%-82% 10-20 days after restimulation. High levels of interferon-γ secretion were observed (1000-12000 pg/mL), in tumor coculture assays and recognition of peptide-pulsed cells was observed at 0.1 ng/mL, suggesting that the new mTCR had high avidity for antigen recognition. mTCR-transduced T cells also specifically lysed human tumor targets. In all assays, the mTCR was equivalent or better than the comparable human TCR. As the functional activity of TCR-transduced cells may be affected by the formation of mixed dimers, mTCRs, which are less likely to form mixed dimers with endogenous hTCRs, may be more effective in vivo. This new mTCR targeted to NY-ESO-1 represents a novel potential therapeutic option for adoptive cell-transfer therapy for a variety of malignancies.

  12. Neuraminidase treatment of respiratory syncytial virus-infected cells or virions, but not target cells, enhances cell-cell fusion and infection

    International Nuclear Information System (INIS)

    Barretto, Naina; Hallak, Louay K.; Peeples, Mark E.

    2003-01-01

    Respiratory syncytial virus (RSV) infection of HeLa cells induces fusion, but transient expression of the three viral glycoproteins induces fusion poorly, if at all. We found that neuraminidase treatment of RSV-infected cells to remove sialic acid (SA) increases fusion dramatically and that the same treatment of transiently transfected cells expressing the three viral glycoproteins, or even cells expressing the fusion (F) protein alone, results in easily detectable fusion. Neuraminidase treatment of the effector cells, expressing the viral glycoproteins, enhanced fusion while treatment of the target cells did not. Likewise, infectivity was increased by treating virions with neuraminidase, but not by treating target cells. Reduction of charge repulsion by removal of the negatively charged SA is unlikely to explain this effect, since removal of negative charges from either membrane would reduce charge repulsion. Infection with neuraminidase-treated virus remained heparan-sulfate-dependent, indicating that a novel attachment mechanism is not revealed by SA removal. Interestingly, neuraminidase enhancement of RSV infectivity was less pronounced in a virus expressing both the G and the F glycoproteins, compared to virus expressing only the F glycoprotein, possibly suggesting that the G protein sterically hinders access of the neuraminidase to its fusion-enhancing target

  13. The 434(G>C) polymorphism in the eosinophil cationic protein gene and its association with tissue eosinophilia in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Pereira, Michele C; Oliveira, Denise T; Olivieri, Eloísa H R

    2010-01-01

    OBJECTIVE: The aim of this study was to investigate the prevalence of the Eosinophil cationic protein (ECP)-gene polymorphism 434(G>C) in oral squamous cell carcinoma (OSCC) patients and its association with tumor-associated tissue eosinophilia (TATE), demographic, clinical, and microscopic...... of ECP-gene polymorphism 434(G>C) with TATE, demographic, clinical, and microscopic variables in OSCC patients. Disease-free survival and overall survival were calculated by the Kaplan-Meier product-limit actuarial method and the comparison of the survival curves were performed using log rank test...

  14. Evaluation of Cytochalasin B-Induced Membrane Vesicles Fusion Specificity with Target Cells

    Directory of Open Access Journals (Sweden)

    Marina Gomzikova

    2018-01-01

    Full Text Available Extracellular vesicles (EV represent a promising vector system for biomolecules and drug delivery due to their natural origin and participation in intercellular communication. As the quantity of EVs is limited, it was proposed to induce the release of membrane vesicles from the surface of human cells by treatment with cytochalasin B. Cytochalasin B-induced membrane vesicles (CIMVs were successfully tested as a vector for delivery of dye, nanoparticles, and a chemotherapeutic. However, it remained unclear whether CIMVs possess fusion specificity with target cells and thus might be used for more targeted delivery of therapeutics. To answer this question, CIMVs were obtained from human prostate cancer PC3 cells. The diameter of obtained CIMVs was 962,13 ± 140,6 nm. We found that there is no statistically significant preference in PC3 CIMVs fusion with target cells of the same type. According to our observations, the greatest impact on CIMVs entry into target cells is by the heterophilic interaction of CIMV membrane receptors with the surface proteins of target cells.

  15. Assessing genetic polymorphisms using DNA extracted from cells present in saliva samples

    Directory of Open Access Journals (Sweden)

    Nemoda Zsofia

    2011-12-01

    Full Text Available Abstract Background Technical advances following the Human Genome Project revealed that high-quality and -quantity DNA may be obtained from whole saliva samples. However, usability of previously collected samples and the effects of environmental conditions on the samples during collection have not been assessed in detail. In five studies we document the effects of sample volume, handling and storage conditions, type of collection device, and oral sampling location, on quantity, quality, and genetic assessment of DNA extracted from cells present in saliva. Methods Saliva samples were collected from ten adults in each study. Saliva volumes from .10-1.0 ml, different saliva collection devices, sampling locations in the mouth, room temperature storage, and multiple freeze-thaw cycles were tested. One representative single nucleotide polymorphism (SNP in the catechol-0-methyltransferase gene (COMT rs4680 and one representative variable number of tandem repeats (VNTR in the serotonin transporter gene (5-HTTLPR: serotonin transporter linked polymorphic region were selected for genetic analyses. Results The smallest tested whole saliva volume of .10 ml yielded, on average, 1.43 ± .77 μg DNA and gave accurate genotype calls in both genetic analyses. The usage of collection devices reduced the amount of DNA extracted from the saliva filtrates compared to the whole saliva sample, as 54-92% of the DNA was retained on the device. An "adhered cell" extraction enabled recovery of this DNA and provided good quality and quantity DNA. The DNA from both the saliva filtrates and the adhered cell recovery provided accurate genotype calls. The effects of storage at room temperature (up to 5 days, repeated freeze-thaw cycles (up to 6 cycles, and oral sampling location on DNA extraction and on genetic analysis from saliva were negligible. Conclusions Whole saliva samples with volumes of at least .10 ml were sufficient to extract good quality and quantity DNA. Using

  16. PON1Q192R genetic polymorphism modifies organophosphorous pesticide effects on semen quality and DNA integrity in agricultural workers from southern Mexico

    International Nuclear Information System (INIS)

    Perez-Herrera, N.; Polanco-Minaya, H.; Salazar-Arredondo, E.; Solis-Heredia, M.J.; Hernandez-Ochoa, I.; Rojas-Garcia, E.; Alvarado-Mejia, J.; Borja-Aburto, V.H.; Quintanilla-Vega, B.

    2008-01-01

    Pesticide exposure, including organophosphorous (OP) insecticides, has been associated with poor semen quality, and paraoxonase (PON1), an enzyme involved in OP deactivation, may have a role on their susceptibility, due to PON1 polymorphisms. Our objective was to evaluate the role of PON1Q192R polymorphism on the susceptibility to OP toxicity on semen quality and DNA integrity in agricultural workers. A cross-sectional study was conducted in farmers with Mayan ascendancy from southeastern Mexico chronically exposed to pesticides; mostly OP. Fifty four agricultural workers (18-55 years old) were included, who provided semen and blood samples. Semen quality was evaluated according to WHO, sperm DNA damage by in situ-nick translation (NT-positive cells), PON1Q192R polymorphism by real-time PCR and serum PON1 activity by using phenylacetate and paraoxon. Two OP exposure indexes were created: at the month of sampling and during 3 months before sampling, representing the exposure to spermatids-spermatozoa and to cells at one spermatogenic cycle, respectively. PON1 192R and 192Q allele frequencies were 0.54 and 0.46, respectively. Significant associations were found between OP exposure at the month of sampling and NT-positive cells and sperm viability in homozygote 192RR subjects, and dose-effect relationships were observed between OP exposure during 3 months before sampling and sperm quality parameters and NT-positive cells in homozygote 192RR farmers. This suggests that cells at all stages of spermatogenesis are target of OP, and that there exists an interaction between OP exposure and PON1Q192R polymorphism on these effects; farmers featuring the 192RR genotype were more susceptible to develop reproductive toxic effects by OP exposure

  17. MiR-223 suppresses cell proliferation by targeting IGF-1R.

    Directory of Open Access Journals (Sweden)

    Cheng You Jia

    Full Text Available To study the roles of microRNA-223 (miR-223 in regulation of cell growth, we established a miR-223 over-expression model in HeLa cells infected with miR-223 by Lentivirus pLL3.7 system. We observed in this model that miR-223 significantly suppressed the proliferation, growth rate, colony formation of HeLa cells in vitro, and in vivo tumorigenicity or tumor formation in nude mice. To investigate the mechanisms involved, we scanned and examined the potential and putative target molecules of miR-223 by informatics, quantitative PCR and Western blot, and found that insulin-like growth factor-1 receptor (IGF-1R was the functional target of miR-223 inhibition of cell proliferation. Targeting IGF-1R by miR-223 was not only seen in HeLa cells, but also in leukemia and hepatoma cells. The downstream pathway, Akt/mTOR/p70S6K, to which the signal was mediated by IGF-1R, was inhibited as well. The relative luciferase activity of the reporter containing wild-type 3'UTR(3'untranslated region of IGF-1R was significantly suppressed, but the mutant not. Silence of IGF-1R expression by vector-based short hairpin RNA resulted in the similar inhibition with miR-223. Contrarily, rescued IGF-1R expression in the cells that over-expressed miR-223, reversed the inhibition caused by miR-223 via introducing IGF-1R cDNA that didn't contain the 3'UTR. Meanwhile, we also noted that miR-223 targeted Rasa1, but the downstream molecules mediated by Rasa1 was neither targeted nor regulated. Therefore we believed that IGF-1R was the functional target for miR-223 suppression of cell proliferation and its downstream PI3K/Akt/mTOR/p70S6K pathway suppressed by miR-223 was by targeting IGF-1R.

  18. Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism-Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer.

    Science.gov (United States)

    Tanimoto, Azusa; Takeuchi, Shinji; Arai, Sachiko; Fukuda, Koji; Yamada, Tadaaki; Roca, Xavier; Ong, S Tiong; Yano, Seiji

    2017-06-15

    Purpose: The BIM deletion polymorphism is associated with apoptosis resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib and erlotinib, in non-small cell lung cancer (NSCLC) harboring EGFR mutations. Here, we investigated whether the BIM deletion polymorphism contributes to resistance against osimertinib, a third-generation EGFR-TKI. In addition, we determined the efficacy of a histone deacetylase (HDAC) inhibitor, vorinostat, against this form of resistance and elucidated the underlying mechanism. Experimental Design: We used EGFR -mutated NSCLC cell lines, which were either heterozygous or homozygous for the BIM deletion polymorphism, to evaluate the effect of osimertinib in vitro and in vivo Protein expression was examined by Western blotting. Alternative splicing of BIM mRNA was analyzed by RT-PCR. Results: EGFR -mutated NSCLC cell lines with the BIM deletion polymorphism exhibited apoptosis resistance to osimertinib in a polymorphism dosage-dependent manner, and this resistance was overcome by combined use with vorinostat. Experiments with homozygous BIM deletion-positive cells revealed that vorinostat affected the alternative splicing of BIM mRNA in the deletion allele, increased the expression of active BIM protein, and thereby induced apoptosis in osimertinib-treated cells. These effects were mediated predominantly by HDAC3 inhibition. In xenograft models, combined use of vorinostat with osimertinib could regress tumors in EGFR -mutated NSCLC cells homozygous for the BIM deletion polymorphism. Moreover, this combination could induce apoptosis even when tumor cells acquired EGFR -T790M mutations. Conclusions: These findings indicate the importance of developing HDAC3-selective inhibitors, and their combined use with osimertinib, for treating EGFR -mutated lung cancers carrying the BIM deletion polymorphism. Clin Cancer Res; 23(12); 3139-49. ©2016 AACR . ©2016 American Association for Cancer Research.

  19. Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death

    International Nuclear Information System (INIS)

    Cheng, Gang; Zielonka, Jacek; McAllister, Donna M; Mackinnon, A Craig Jr; Joseph, Joy; Dwinell, Michael B; Kalyanaraman, Balaraman

    2013-01-01

    Recent research has revealed that targeting mitochondrial bioenergetic metabolism is a promising chemotherapeutic strategy. Key to successful implementation of this chemotherapeutic strategy is the use of new and improved mitochondria-targeted cationic agents that selectively inhibit energy metabolism in breast cancer cells, while exerting little or no long-term cytotoxic effect in normal cells. In this study, we investigated the cytotoxicity and alterations in bioenergetic metabolism induced by mitochondria-targeted vitamin E analog (Mito-chromanol, Mito-ChM) and its acetylated ester analog (Mito-ChMAc). Assays of cell death, colony formation, mitochondrial bioenergetic function, intracellular ATP levels, intracellular and tissue concentrations of tested compounds, and in vivo tumor growth were performed. Both Mito-ChM and Mito-ChMAc selectively depleted intracellular ATP and caused prolonged inhibition of ATP-linked oxygen consumption rate in breast cancer cells, but not in non-cancerous cells. These effects were significantly augmented by inhibition of glycolysis. Mito-ChM and Mito-ChMAc exhibited anti-proliferative effects and cytotoxicity in several breast cancer cells with different genetic background. Furthermore, Mito-ChM selectively accumulated in tumor tissue and inhibited tumor growth in a xenograft model of human breast cancer. We conclude that mitochondria-targeted small molecular weight chromanols exhibit selective anti-proliferative effects and cytotoxicity in multiple breast cancer cells, and that esterification of the hydroxyl group in mito-chromanols is not a critical requirement for its anti-proliferative and cytotoxic effect

  20. Designing and modeling a centrifugal microfluidic device to separate target blood cells

    Science.gov (United States)

    Shamloo, Amir; Selahi, AmirAli; Madadelahi, Masoud

    2016-03-01

    The objective of this study is to design a novel and efficient portable lab-on-a-CD (LOCD) microfluidic device for separation of specific cells (target cells) using magnetic beads. In this study the results are shown for neutrophils as target cells. However, other kinds of target cells can be separated in a similar approach. The designed microfluidics can be utilized as a point of care system for neutrophil detection. This microfluidic system employs centrifugal and magnetic forces for separation. After model validation by the experimental data in the literature (that may be used as a design tool for developing centrifugo-magnetophoretic devices), two models are presented for separation of target cells using magnetic beads. The first model consists of one container in the inlet section and two containers in the outlets. Initially, the inlet container is filled with diluted blood sample which is a mixture of red blood cells (RBCs) plus neutrophils which are attached to Magnetic beads. It is shown that by using centrifugal and magnetic forces, this model can separate all neutrophils with recovery factor of ~100%. In the second model, due to excess of magnetic beads in usual experimental analysis (to ensure that all target cells are attached to them) the geometry is improved by adding a third outlet for these free magnetic beads. It is shown that at angular velocity of 45 rad s-1, recovery factor of 100% is achievable for RBCs, free magnetic beads and neutrophils as target cells.

  1. Systematic identification of combinatorial drivers and targets in cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Adel Tabchy

    Full Text Available There is an urgent need to elicit and validate highly efficacious targets for combinatorial intervention from large scale ongoing molecular characterization efforts of tumors. We established an in silico bioinformatic platform in concert with a high throughput screening platform evaluating 37 novel targeted agents in 669 extensively characterized cancer cell lines reflecting the genomic and tissue-type diversity of human cancers, to systematically identify combinatorial biomarkers of response and co-actionable targets in cancer. Genomic biomarkers discovered in a 141 cell line training set were validated in an independent 359 cell line test set. We identified co-occurring and mutually exclusive genomic events that represent potential drivers and combinatorial targets in cancer. We demonstrate multiple cooperating genomic events that predict sensitivity to drug intervention independent of tumor lineage. The coupling of scalable in silico and biologic high throughput cancer cell line platforms for the identification of co-events in cancer delivers rational combinatorial targets for synthetic lethal approaches with a high potential to pre-empt the emergence of resistance.

  2. Systematic identification of combinatorial drivers and targets in cancer cell lines.

    Science.gov (United States)

    Tabchy, Adel; Eltonsy, Nevine; Housman, David E; Mills, Gordon B

    2013-01-01

    There is an urgent need to elicit and validate highly efficacious targets for combinatorial intervention from large scale ongoing molecular characterization efforts of tumors. We established an in silico bioinformatic platform in concert with a high throughput screening platform evaluating 37 novel targeted agents in 669 extensively characterized cancer cell lines reflecting the genomic and tissue-type diversity of human cancers, to systematically identify combinatorial biomarkers of response and co-actionable targets in cancer. Genomic biomarkers discovered in a 141 cell line training set were validated in an independent 359 cell line test set. We identified co-occurring and mutually exclusive genomic events that represent potential drivers and combinatorial targets in cancer. We demonstrate multiple cooperating genomic events that predict sensitivity to drug intervention independent of tumor lineage. The coupling of scalable in silico and biologic high throughput cancer cell line platforms for the identification of co-events in cancer delivers rational combinatorial targets for synthetic lethal approaches with a high potential to pre-empt the emergence of resistance.

  3. Microchimeric cells in systemic lupus erythematosus: targets or innocent bystanders?

    Science.gov (United States)

    Stevens, A M

    2006-01-01

    During pregnancy maternal and fetal cells commute back and forth leading to fetal microchimerism in the mother and maternal microchimerism in the child that can persist for years after the birth. Chimeric fetal and maternal cells can be hematopoietic or can differentiate into somatic cells in multiple organs, potentially acting as targets for 'autoimmunity' and so have been implicated in the pathogenesis of autoimmune diseases that resemble graft-versus-host disease after stem cell transplantation. Fetal cells have been found in women with systemic lupus erythematosus, both in the blood and a target organ, the kidney, suggesting that they may be involved in pathogenesis. Future studies will address how the host immune system normally tolerates maternal and fetal cells or how the balance may change during autoimmunity.

  4. Myeloid derived suppressor cells as therapeutic target in hematological malignancies

    Directory of Open Access Journals (Sweden)

    Kim eDe Veirman

    2014-12-01

    Full Text Available Myeloid derived suppressor cells (MDSC are a heterogeneous population of immature myeloid cells that accumulate during pathological conditions such as cancer and are associated with a poor clinical outcome. MDSC expansion hampers the host anti-tumor immune response by inhibition of T cell proliferation, cytokine secretion and recruitment of regulatory T cells. In addition, MDSC exert non-immunological functions including the promotion of angiogenesis, tumor invasion and metastasis. Recent years, MDSC are considered as a potential target in solid tumors and hematological malignancies to enhance the effects of currently used immune modulating agents. This review focuses on the characteristics, distribution, functions, cell-cell interactions and targeting of MDSC in hematological malignancies including multiple myeloma, lymphoma and leukemia.

  5. Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line

    International Nuclear Information System (INIS)

    Marcet-Palacios, Marcelo; Odemuyiwa, Solomon O.; Coughlin, Jason J.; Garofoli, Daniella; Ewen, Catherine; Davidson, Courtney E.; Ghaffari, Mazyar; Kane, Kevin P.; Lacy, Paige; Logan, Michael R.; Befus, A. Dean; Bleackley, R. Chris; Moqbel, Redwan

    2008-01-01

    Natural killer cells recognize and induce apoptosis in foreign, transformed or virus-infected cells through the release of perforin and granzymes from secretory lysosomes. Clinically, NK-cell mediated killing is a major limitation to successful allo- and xenotransplantation. The molecular mechanisms that regulate the fusion of granzyme B-containing secretory lysosomes to the plasma membrane in activated NK cells, prior to target cell killing, are not fully understood. Using the NK cell line YT-Indy as a model, we have investigated the expression of SNAP REceptors (SNAREs), both target (t-) and vesicular (v-) SNAREs, and their function in granzyme B-mediated target cell killing. Our data showed that YT-Indy cells express VAMP-7 and SNAP-23, but not VAMP-2. VAMP-7 was associated with granzyme B-containing lysosomal granules. Using VAMP-7 small interfering RNA (siRNA), we successfully knocked down the expression of VAMP-7 protein in YT-Indy to less than 10% of untreated cells in 24 h. VAMP7-deficient YT-Indy cells activated via co-culture with Jurkat cells released <1 ng/mL of granzyme B, compared to 1.5-2.5 μg/mL from controls. Using Jurkat cells as targets, we showed a 7-fold reduction in NK cell-mediated killing by VAMP-7 deficient YT-Indy cells. Our results show that VAMP-7 is a crucial component of granzyme B release and target cell killing in the NK cell line YT-Indy. Thus, targeting VAMP-7 expression specifically with siRNA, following transplantation, may be a viable strategy for preventing NK cell-mediated transplant rejection, in vivo

  6. Cyclin D1 gene polymorphism as a risk factor for squamous cell carcinoma of the upper aerodigestive system in non-alcoholics

    DEFF Research Database (Denmark)

    Nishimoto, Ines Nobuko; Pinheiro, Nidia Alice; Rogatto, Silvia Regina

    2004-01-01

    Squamous cell carcinoma of the upper aerodigestive tract (UADT) is associated with environmental factors, especially tobacco and alcohol consumption. Genetic factors, including cyclin D1 (CCND1) polymorphism have been suggested to play an important role in tumorigenesis and progression of UADT...

  7. Predictive value of XPD polymorphisms on platinum-based chemotherapy in non-small cell lung cancer: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Mantang Qiu

    Full Text Available BACKGROUND: The correlation between xeroderma pigmentosum group D (XPD polymorphisms (Lys751Gln and Asp312Asn and clinical outcomes of non-small cell lung cancer (NSCLC patients, who received platinum-based chemotherapy (Pt-chemotherapy, is still inconclusive. This meta-analysis was aimed to systematically review published evidence and ascertain the exact role of XPD polymorphisms. METHODS: Databases of MEDLINE and EMBASE were searched up to April 2013 to identify eligible studies. A rigorous quality assessment of eligible studies was conducted according the Newcastle-Ottawa Quality Assessment Scales. The relationship between XPD polymorphisms and response to Pt-chemotherapy and survival was analyzed. RESULTS: A total of 22 eligible studies were included and analyzed in this meta-analysis. The overall analysis suggested that the XPD Lys751Gln polymorphism was not associated with response to Pt-chemotherapy or survival. However, the XPD 312Asn allele was significantly associated with poor response to Pt-chemotherapy compared with the Asp312 allele (Asn vs. Asp: OR = 0.435, 95% CI: 0.261-0.726. Additionally, the variant genotype of XPD Asp312Asn polymorphism was associated with favorable survival in Caucasian (AspAsn vs. AspAsp: HR = 0.781, 95% CI: 0.619-0.986 but unfavorable survival in Asian (AspAsn+AsnAsn vs. AspAsp: HR = 1.550, 95% CI: 1.038-2.315. CONCLUSIONS: These results suggest that XPD Asp312Asn polymorphism may function as a predictive biomarker on platinum-based chemotherapy in NSCLC and further studies are warranted.

  8. Interethnic diversity of the CD209 (rs4804803 gene promoter polymorphism in African but not American sickle cell disease

    Directory of Open Access Journals (Sweden)

    Jenelle A. Noble

    2015-02-01

    Full Text Available Elucidating the genomic diversity of CD209 gene promoter polymorphism could assist in clarifying disease pathophysiology as well as contribution to co-morbidities. CD209 gene promoter polymorphism has been shown to be associated with susceptibility to infection. We hypothesize that CD209 mutant variants occur at a higher frequency among Africans and in sickle cell disease. We analyzed the frequency of the CD209 gene (rs4804803 in healthy control and sickle cell disease (SCD populations and determined association with disease. Genomic DNA was extracted from blood samples collected from 145 SCD and 231 control Africans (from Mali, 331 SCD and 379 control African Americans and 159 Caucasians. Comparative analysis among and between groups was carried out by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP. Per ethnic diversification, we found significant disparity in genotypic (23.4% versus 16.9% versus 3.2% and allelic frequencies (48.7% versus 42.1% versus 19.8% of the homozygote mutant variant of the CD209 (snp 309A/G gene promoter between Africans, African Americans and Caucasians respectively. Comparative evaluation between disease and control groups reveal a significant difference in genotypic (10.4% versus 23.4%; p = 0.002 and allelic frequencies (39.7% versus 48.7%; p = 0.02 of the homozygote mutant variant in African SCD and healthy controls respectively, an observation that is completely absent among Americans. Comparing disease groups, we found no difference in the genotypic (p = 0.19 or allelic (p = 0.72 frequencies of CD209 homozygote mutant variant between Africans and Americans with sickle cell disease. The higher frequency of CD209 homozygote mutant variants in the African control group reveals a potential impairment of the capacity to mount an immune response to infectious diseases, and possibly delineate susceptibility to or severity of infectious co-morbidities within and between groups.

  9. Targeting of porous hybrid silica nanoparticles to cancer cells

    NARCIS (Netherlands)

    Rosenholm, J.M.; Meinander, A.; Peuhu, E.; Niemi, R.; Eriksson, J.E.; Sahlgren, C.; Lindén, M.

    2009-01-01

    Mesoporous silica nanoparticles functionalized by surface hyperbranching polymerization of polyethylene imine), PEI, were further modified by introducing both fluorescent and targeting moieties, with the aim of specifically targeting cancer cells. Owing to the high abundance of folate receptors in

  10. Liver cell-targeted delivery of therapeutic molecules.

    Science.gov (United States)

    Kang, Jeong-Hun; Toita, Riki; Murata, Masaharu

    2016-01-01

    The liver is the largest internal organ in mammals and is involved in metabolism, detoxification, synthesis of proteins and lipids, secretion of cytokines and growth factors and immune/inflammatory responses. Hepatitis, alcoholic or non-alcoholic liver disease, hepatocellular carcinoma, hepatic veno-occlusive disease, and liver fibrosis and cirrhosis are the most common liver diseases. Safe and efficient delivery of therapeutic molecules (drugs, genes or proteins) into the liver is very important to increase the clinical efficacy of these molecules and to reduce their side effects in other organs. Several liver cell-targeted delivery systems have been developed and tested in vivo or ex vivo/in vitro. In this review, we discuss the literature concerning liver cell-targeted delivery systems, with a particular emphasis on the results of in vivo studies.

  11. High-Pressure Polymorphism in Orthoamphiboles

    Science.gov (United States)

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  12. The Impact of Drug Metabolism Gene Polymorphisms on Therapeutic Response and Survival in Diffuse Large B-Cell Lymphoma Patients.

    Science.gov (United States)

    Pál, Ildikó; Illés, Árpád; Gergely, Lajos; Pál, Tibor; Radnay, Zita; Szekanecz, Zoltán; Zilahi, Erika; Váróczy, László

    2018-04-01

    Diffuse large B-cell lymphoma (DLBCL) accounts for 30% of all non-Hodgkin lymphomas (NHL) and 80% of agressive lymphomas. Besides the traditional International Prognostic Index (IPI), some other factors may also influence the prognosis of DLBCL patients. To study how the genetic polymorphisms in the metabolic pathway influence the event-free and overall survivals and therapeutic responses in DLBCL. The study was comprised of 51 patients (32 men, 19 women). The average age was 53.1 years. DLBCL was diagnosed between 2011 and 2016 and the average follow-up time was 3.78 years. These patients received 1-8 cycles (an average of 6.2 cycles) of rituximab, cyclophosphamide, doxorubicin, vincristin, prednisolon (R-CHOP) immunochemotherapy. Real-time polymerase chain reaction was used to determine the genetic polymorphisms of CYP2E1, GSTP1, NAT1, and NAT2 genes. Our results showed that the polymorphisms of CYP2E1, GSTP1, and NAT1 genes did not influence the prognosis of DLBCL patients significantly. In terms of the NAT2 gene, GG homozygous patients showed slightly better therapeutic response and survival results compared to those bearing an A allele; however, the differences were not statistically significant. Our results could not confirm that genetic polymorphism in metabolic pathways has any predictive role in DLBCL.

  13. Enhancing Natural Killer Cell Mediated Targeting and Responses to Myeloid Leukemias

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0380 TITLE: Enhancing Natural Killer Cell Mediated Targeting and Responses to Myeloid Leukemias PRINCIPAL...2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Enhancing Natural Killer Cell Mediated Targeting and Responses to Myeloid Leukemias 5b. GRANT NUMBER...leukemias still have poor prognosis, particularly in the elderly, and require hematopoietic cell transplants to fully kill the tumor, which is both

  14. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions

    Directory of Open Access Journals (Sweden)

    Janice Kim

    2015-11-01

    Full Text Available Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis—all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting.

  15. Concise Review: Cell Surface N-Linked Glycoproteins as Potential Stem Cell Markers and Drug Targets.

    Science.gov (United States)

    Boheler, Kenneth R; Gundry, Rebekah L

    2017-01-01

    Stem cells and their derivatives hold great promise to advance regenerative medicine. Critical to the progression of this field is the identification and utilization of antibody-accessible cell-surface proteins for immunophenotyping and cell sorting-techniques essential for assessment and isolation of defined cell populations with known functional and therapeutic properties. Beyond their utility for cell identification and selection, cell-surface proteins are also major targets for pharmacological intervention. Although comprehensive cell-surface protein maps are highly valuable, they have been difficult to define until recently. In this review, we discuss the application of a contemporary targeted chemoproteomic-based technique for defining the cell-surface proteomes of stem and progenitor cells. In applying this approach to pluripotent stem cells (PSCs), these studies have improved the biological understanding of these cells, led to the enhanced use and development of antibodies suitable for immunophenotyping and sorting, and contributed to the repurposing of existing drugs without the need for high-throughput screening. The utility of this latter approach was first demonstrated with human PSCs (hPSCs) through the identification of small molecules that are selectively toxic to hPSCs and have the potential for eliminating confounding and tumorigenic cells in hPSC-derived progeny destined for research and transplantation. Overall, the cutting-edge technologies reviewed here will accelerate the development of novel cell-surface protein targets for immunophenotyping, new reagents to improve the isolation of therapeutically qualified cells, and pharmacological studies to advance the treatment of intractable diseases amenable to cell-replacement therapies. Stem Cells Translational Medicine 2017;6:131-138. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  16. Putting together the psoriasis puzzle: an update on developing targeted therapies

    Directory of Open Access Journals (Sweden)

    Leanne M. Johnson-Huang

    2012-07-01

    Full Text Available Psoriasis vulgaris is a chronic, debilitating skin disease that affects millions of people worldwide. There is no mouse model that accurately reproduces all facets of the disease, but the accessibility of skin tissue from patients has facilitated the elucidation of many pathways involved in the pathogenesis of psoriasis and highlighted the importance of the immune system in the disease. The pathophysiological relevance of these findings has been supported by genetic studies that identified polymorphisms in genes associated with NFκB activation, IL-23 signaling and T helper 17 (Th17-cell adaptive immune responses, and in genes associated with the epidermal barrier. Recently developed biologic agents that selectively target specific components of the immune system are highly effective for treating psoriasis. In particular, emerging therapeutics are focused on targeting the IL-23–Th17-cell axis, and several agents that block IL-17 signaling have shown promising results in early-phase clinical trials. This review discusses lessons learned about the pathogenesis of psoriasis from mouse-and patient-based studies, emphasizing how the outcomes of clinical trials with T-cell-targeted and cytokine-blocking therapies have clarified our understanding of the disease.

  17. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    Science.gov (United States)

    Unzueta, Ugutz; Céspedes, María Virtudes; Ferrer-Miralles, Neus; Casanova, Isolda; Cedano, Juan; Corchero, José Luis; Domingo-Espín, Joan; Villaverde, Antonio; Mangues, Ramón; Vázquez, Esther

    2012-01-01

    Background Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4) is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing. Results Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer. Conclusion Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles, and imaging agents. PMID:22923991

  18. Targeting cancer stem cells: emerging role of Nanog transcription factor

    Directory of Open Access Journals (Sweden)

    Wang ML

    2013-09-01

    Full Text Available Mong-Lien Wang,1 Shih-Hwa Chiou,2,3 Cheng-Wen Wu1,4–61Institute of Biochemistry and Molecular Biology, 2Institute of Pharmacology, National Yang Ming University, Taipei, Taiwan; 3Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan; 4Institute of Microbiology and Immunology, 5Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan; 6Institute of Biomedical Science, Academia Sinica, Taipei, TaiwanAbstract: The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in several types of cancer stem cells; the importance and therapeutic potential of targeting these stemness regulators in cancers has turned to research focus. Nanog determines cell fate in both embryonic and cancer stem cells; activating Nanog at an inappropriate time would result in cancer stem cells rather than normal pluripotent stem cells or differentiated somatic cells. Upregulated Nanog is correlated with poor survival outcome of patients with various types of cancer. The discoveries of downstream regulatory pathways directly or indirectly mediated by Nanog indicate that Nanog regulates several aspects of cancer development such as tumor cell proliferation, self-renewal, motility, epithelial-mesenchymal transition, immune evasion, and drug-resistance, which are all defined features for cancer stem cells. The current review paper illustrates the central role of Nanog in the regulatory networks of cancer malignant development and stemness acquirement, as well as in the communication between cancer cells and the surrounding stroma. Though a more defined model is needed to test the

  19. Designing and modeling a centrifugal microfluidic device to separate target blood cells

    International Nuclear Information System (INIS)

    Shamloo, Amir; Selahi, AmirAli; Madadelahi, Masoud

    2016-01-01

    The objective of this study is to design a novel and efficient portable lab-on-a-CD (LOCD) microfluidic device for separation of specific cells (target cells) using magnetic beads. In this study the results are shown for neutrophils as target cells. However, other kinds of target cells can be separated in a similar approach. The designed microfluidics can be utilized as a point of care system for neutrophil detection. This microfluidic system employs centrifugal and magnetic forces for separation. After model validation by the experimental data in the literature (that may be used as a design tool for developing centrifugo-magnetophoretic devices), two models are presented for separation of target cells using magnetic beads. The first model consists of one container in the inlet section and two containers in the outlets. Initially, the inlet container is filled with diluted blood sample which is a mixture of red blood cells (RBCs) plus neutrophils which are attached to Magnetic beads. It is shown that by using centrifugal and magnetic forces, this model can separate all neutrophils with recovery factor of ∼100%. In the second model, due to excess of magnetic beads in usual experimental analysis (to ensure that all target cells are attached to them) the geometry is improved by adding a third outlet for these free magnetic beads. It is shown that at angular velocity of 45 rad s −1 , recovery factor of 100% is achievable for RBCs, free magnetic beads and neutrophils as target cells. (paper)

  20. Identification of human embryonic progenitor cell targeting peptides using phage display.

    Directory of Open Access Journals (Sweden)

    Paola A Bignone

    Full Text Available Human pluripotent stem (hPS cells are capable of differentiation into derivatives of all three primary embryonic germ layers and can self-renew indefinitely. They therefore offer a potentially scalable source of replacement cells to treat a variety of degenerative diseases. The ability to reprogram adult cells to induced pluripotent stem (iPS cells has now enabled the possibility of patient-specific hPS cells as a source of cells for disease modeling, drug discovery, and potentially, cell replacement therapies. While reprogramming technology has dramatically increased the availability of normal and diseased hPS cell lines for basic research, a major bottleneck is the critical unmet need for more efficient methods of deriving well-defined cell populations from hPS cells. Phage display is a powerful method for selecting affinity ligands that could be used for identifying and potentially purifying a variety of cell types derived from hPS cells. However, identification of specific progenitor cell-binding peptides using phage display may be hindered by the large cellular heterogeneity present in differentiating hPS cell populations. We therefore tested the hypothesis that peptides selected for their ability to bind a clonal cell line derived from hPS cells would bind early progenitor cell types emerging from differentiating hPS cells. The human embryonic stem (hES cell-derived embryonic progenitor cell line, W10, was used and cell-targeting peptides were identified. Competition studies demonstrated specificity of peptide binding to the target cell surface. Efficient peptide targeted cell labeling was accomplished using multivalent peptide-quantum dot complexes as detected by fluorescence microscopy and flow cytometry. The cell-binding peptides were selective for differentiated hPS cells, had little or no binding on pluripotent cells, but preferential binding to certain embryonic progenitor cell lines and early endodermal hPS cell derivatives. Taken

  1. Association of the polymorphism of the CAG repeat in the mitochondrial DNA polymerase gamma gene (POLG) with testicular germ-cell cancer

    DEFF Research Database (Denmark)

    Blomberg Jensen, M; Leffers, H; Petersen, J H

    2008-01-01

    BACKGROUND: A possible association between the polymorphic CAG repeat in the DNA polymerase gamma (POLG) gene and the risk of testicular germ-cell tumours (TGCT) was investigated in this study. The hypothesis was prompted by an earlier preliminary study proposing an association of the absence...

  2. Identification and Regulation of c-Myb Target Genes in MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    O'Rourke John P

    2011-01-01

    Full Text Available Abstract Background The c-Myb transcription factor regulates differentiation and proliferation in hematopoietic cells, stem cells and epithelial cells. Although oncogenic versions of c-Myb were first associated with leukemias, over expression or rearrangement of the c-myb gene is common in several types of solid tumors, including breast cancers. Expression of the c-myb gene in human breast cancer cells is dependent on estrogen stimulation, but little is known about the activities of the c-Myb protein or what genes it regulates in estrogen-stimulated cells. Methods We used chromatin immunoprecipitation coupled with whole genome promoter tiling microarrays to identify endogenous c-Myb target genes in human MCF-7 breast cancer cells and characterized the activity of c-Myb at a panel of target genes during different stages of estrogen deprivation and stimulation. Results By using different antibodies and different growth conditions, the c-Myb protein was found associated with over 10,000 promoters in MCF-7 cells, including many genes that encode cell cycle regulators or transcription factors and more than 60 genes that encode microRNAs. Several previously identified c-Myb target genes were identified, including CCNB1, MYC and CXCR4 and novel targets such as JUN, KLF4, NANOG and SND1. By studying a panel of these targets to validate the results, we found that estradiol stimulation triggered the association of c-Myb with promoters and that association correlated with increased target gene expression. We studied one target gene, CXCR4, in detail, showing that c-Myb associated with the CXCR4 gene promoter and activated a CXCR4 reporter gene in transfection assays. Conclusions Our results show that c-Myb associates with a surprisingly large number of promoters in human cells. The results also suggest that estradiol stimulation leads to large-scale, genome-wide changes in c-Myb activity and subsequent changes in gene expression in human breast cancer

  3. Identification and Regulation of c-Myb Target Genes in MCF-7 Cells

    International Nuclear Information System (INIS)

    Quintana, Anita M; Liu, Fan; O'Rourke, John P; Ness, Scott A

    2011-01-01

    The c-Myb transcription factor regulates differentiation and proliferation in hematopoietic cells, stem cells and epithelial cells. Although oncogenic versions of c-Myb were first associated with leukemias, over expression or rearrangement of the c-myb gene is common in several types of solid tumors, including breast cancers. Expression of the c-myb gene in human breast cancer cells is dependent on estrogen stimulation, but little is known about the activities of the c-Myb protein or what genes it regulates in estrogen-stimulated cells. We used chromatin immunoprecipitation coupled with whole genome promoter tiling microarrays to identify endogenous c-Myb target genes in human MCF-7 breast cancer cells and characterized the activity of c-Myb at a panel of target genes during different stages of estrogen deprivation and stimulation. By using different antibodies and different growth conditions, the c-Myb protein was found associated with over 10,000 promoters in MCF-7 cells, including many genes that encode cell cycle regulators or transcription factors and more than 60 genes that encode microRNAs. Several previously identified c-Myb target genes were identified, including CCNB1, MYC and CXCR4 and novel targets such as JUN, KLF4, NANOG and SND1. By studying a panel of these targets to validate the results, we found that estradiol stimulation triggered the association of c-Myb with promoters and that association correlated with increased target gene expression. We studied one target gene, CXCR4, in detail, showing that c-Myb associated with the CXCR4 gene promoter and activated a CXCR4 reporter gene in transfection assays. Our results show that c-Myb associates with a surprisingly large number of promoters in human cells. The results also suggest that estradiol stimulation leads to large-scale, genome-wide changes in c-Myb activity and subsequent changes in gene expression in human breast cancer cells

  4. Insertion and deletion polymorphisms of the ancient AluS family in the human genome.

    Science.gov (United States)

    Kryatova, Maria S; Steranka, Jared P; Burns, Kathleen H; Payer, Lindsay M

    2017-01-01

    Polymorphic Alu elements account for 17% of structural variants in the human genome. The majority of these belong to the youngest AluY subfamilies, and most structural variant discovery efforts have focused on identifying Alu polymorphisms from these currently retrotranspositionally active subfamilies. In this report we analyze polymorphisms from the evolutionarily older AluS subfamily, whose peak activity was tens of millions of years ago. We annotate the AluS polymorphisms, assess their likely mechanism of origin, and evaluate their contribution to structural variation in the human genome. Of 52 previously reported polymorphic AluS elements ascertained for this study, 48 were confirmed to belong to the AluS subfamily using high stringency subfamily classification criteria. Of these, the majority (77%, 37/48) appear to be deletion polymorphisms. Two polymorphic AluS elements (4%) have features of non-classical Alu insertions and one polymorphic AluS element (2%) likely inserted by a mechanism involving internal priming. Seven AluS polymorphisms (15%) appear to have arisen by the classical target-primed reverse transcription (TPRT) retrotransposition mechanism. These seven TPRT products are 3' intact with 3' poly-A tails, and are flanked by target site duplications; L1 ORF2p endonuclease cleavage sites were also observed, providing additional evidence that these are L1 ORF2p endonuclease-mediated TPRT insertions. Further sequence analysis showed strong conservation of both the RNA polymerase III promoter and SRP9/14 binding sites, important for mediating transcription and interaction with retrotransposition machinery, respectively. This conservation of functional features implies that some of these are fairly recent insertions since they have not diverged significantly from their respective retrotranspositionally competent source elements. Of the polymorphic AluS elements evaluated in this report, 15% (7/48) have features consistent with TPRT-mediated insertion

  5. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    Directory of Open Access Journals (Sweden)

    Yonatan Y Mahller

    Full Text Available Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers.Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice.These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  6. Targeted delivery of celastrol to mesangial cells is effective against mesangioproliferative glomerulonephritis.

    Science.gov (United States)

    Guo, Ling; Luo, Shi; Du, Zhengwu; Zhou, Meiling; Li, Peiwen; Fu, Yao; Sun, Xun; Huang, Yuan; Zhang, Zhirong

    2017-10-12

    Mesangial cells-mediated glomerulonephritis is a frequent cause of end-stage renal disease. Here, we show that celastrol is effective in treating both reversible and irreversible mesangioproliferative glomerulonephritis in rat models, but find that its off-target distributions cause severe systemic toxicity. We thus target celastrol to mesangial cells using albumin nanoparticles. Celastrol-albumin nanoparticles crosses fenestrated endothelium and accumulates in mesangial cells, alleviating proteinuria, inflammation, glomerular hypercellularity, and excessive extracellular matrix deposition in rat anti-Thy1.1 nephritis models. Celastrol-albumin nanoparticles presents lower drug accumulation than free celastrol in off-target organs and tissues, thereby minimizing celastrol-related systemic toxicity. Celastrol-albumin nanoparticles thus represents a promising treatment option for mesangioproliferative glomerulonephritis and similar glomerular diseases.Mesangial cell-mediated glomerulonephritis is a frequent cause of kidney disease. Here the authors show that celastrol loaded in albumin nanoparticles efficiently targets mesangial cells, and is effective in rat models.

  7. Identification and validation nucleolin as a target of curcumol in nasopharyngeal carcinoma cells.

    Science.gov (United States)

    Wang, Juan; Wu, Jiacai; Li, Xumei; Liu, Haowei; Qin, Jianli; Bai, Zhun; Chi, Bixia; Chen, Xu

    2018-06-30

    Identification of the specific protein target(s) of a drug is a critical step in unraveling its mechanisms of action (MOA) in many natural products. Curcumol, isolated from well known Chinese medicinal plant Curcuma zedoary, has been shown to possess multiple biological activities. It can inhibit nasopharyngeal carcinoma (NPC) proliferation and induce apoptosis, but its target protein(s) in NPC cells remains unclear. In this study, we employed a mass spectrometry-based chemical proteomics approach reveal the possible protein targets of curcumol in NPC cells. Cellular thermal shift assay (CETSA), molecular docking and cell-based assay was used to validate the binding interactions. Chemical proteomics capturing uncovered that NCL is a target of curcumol in NPC cells, Molecular docking showed that curcumol bound to NCL with an -7.8 kcal/mol binding free energy. Cell function analysis found that curcumol's treatment leads to a degradation of NCL in NPC cells, and it showed slight effects on NP69 cells. In conclusion, our results providing evidences that NCL is a target protein of curcumol. We revealed that the anti-cancer effects of curcumol in NPC cells are mediated, at least in part, by NCL inhibition. Many natural products showed high bioactivity, while their mechanisms of action (MOA) are very poor or completely missed. Understanding the MOA of natural drugs can thoroughly exploit their therapeutic potential and minimize their adverse side effects. Identification of the specific protein target(s) of a drug is a critical step in unraveling its MOA. Compound-centric chemical proteomics is a classic chemical proteomics approach which integrates chemical synthesis with cell biology and mass spectrometry (MS) to identify protein targets of natural products determine the drug mechanism of action, describe its toxicity, and figure out the possible cause of off-target. It is an affinity-based chemical proteomics method to identify small molecule-protein interactions

  8. Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4+ T cell immunity.

    Science.gov (United States)

    Ascough, Stephanie; Ingram, Rebecca J; Chu, Karen K; Reynolds, Catherine J; Musson, Julie A; Doganay, Mehmet; Metan, Gökhan; Ozkul, Yusuf; Baillie, Les; Sriskandan, Shiranee; Moore, Stephen J; Gallagher, Theresa B; Dyson, Hugh; Williamson, E Diane; Robinson, John H; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M

    2014-05-01

    Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.

  9. Targeting nanoparticles to dendritic cells for immunotherapy.

    NARCIS (Netherlands)

    Cruz, L.J.; Tacken, P.J.; Rueda, F.; Domingo, J.C.; Albericio, F.; Figdor, C.G.

    2012-01-01

    Dendritic cells (DCs) are key players in the initiation of adaptive immune responses and are currently exploited in immunotherapy for treatment of cancer and infectious diseases. Development of targeted nanodelivery systems carrying vaccine components, including antigens and adjuvants, to DCs in

  10. Radioprotection of targeted and bystander cells by methylproamine

    Energy Technology Data Exchange (ETDEWEB)

    Burdak-Rothkamm, Susanne [Queen' s University Belfast, Centre for Cancer Research and Cell Biology, Belfast (United Kingdom); Oxford University Hospitals, Cellular Pathology, Oxford (United Kingdom); Smith, Andrea; Lobachevsky, Pavel; Martin, Roger [Peter MacCallum Cancer Centre, Molecular Radiation Biology Laboratory, Melbourne (Australia); University of Melbourne, The Sir Peter MacCallum Department of Oncology, Melbourne (Australia); Prise, Kevin M. [Queen' s University Belfast, Centre for Cancer Research and Cell Biology, Belfast (United Kingdom)

    2014-09-23

    Radioprotective agents are of interest for application in radiotherapy for cancer and in public health medicine in the context of accidental radiation exposure. Methylproamine is the lead compound of a class of radioprotectors which act as DNA binding anti-oxidants, enabling the repair of transient radiation-induced oxidative DNA lesions. This study tested methylproamine for the radioprotection of both directly targeted and bystander cells. T98G glioma cells were treated with 15 μM methylproamine and exposed to {sup 137}Cs γ-ray/X-ray irradiation and He{sup 2+} microbeam irradiation. Radioprotection of directly targeted cells and bystander cells was measured by clonogenic survival or γH2AX assay. Radioprotection of directly targeted T98G cells by methylproamine was observed for {sup 137}Cs γ-rays and X-rays but not for He{sup 2+} charged particle irradiation. The effect of methylproamine on the bystander cell population was tested for both X-ray irradiation and He{sup 2+} ion microbeam irradiation. The X-ray bystander experiments were carried out by medium transfer from irradiated to non-irradiated cultures and three experimental designs were tested. Radioprotection was only observed when recipient cells were pretreated with the drug prior to exposure to the conditioned medium. In microbeam bystander experiments targeted and nontargeted cells were co-cultured with continuous methylproamine treatment during irradiation and postradiation incubation; radioprotection of bystander cells was observed. Methylproamine protected targeted cells from DNA damage caused by γ-ray or X-ray radiation but not He{sup 2+} ion radiation. Protection of bystander cells was independent of the type of radiation which the donor population received. (orig.) [German] Radioprotektive Agenzien sind sowohl in der Strahlentherapie von Krebserkrankungen als auch im Strahlenschutz im Zusammenhang mit akzidenteller Exposition von Bedeutung. Methylproamine ist die Leitsubstanz einer Klasse von

  11. Unlike twins: an NMR comparison of two α-synuclein polymorphs featuring different toxicity.

    Directory of Open Access Journals (Sweden)

    Julia Gath

    Full Text Available We structurally compare, using solid-state NMR, two different polymorphs of α-synuclein which, as established recently, display contrasting biochemical properties, toxicity, and tropism for cells. We show that both forms, which can each be produced as a pure polymorph, are greatly different in secondary structure. While β-sheets are the dominating secondary structure elements for both polymorphs, they are markedly divergent in terms of number of elements, as well as their distribution. We demonstrate that all identified β-sheets feature an in-register parallel stacking for both polymorphs. The two forms show a different molecular arrangement in the unit cell and distinct dynamic features, while sharing a highly flexible C-terminal domain. The use of reproducible, well-identified conditions for sample preparation and the recording of identical NMR experiments allows for a direct comparison of the results.

  12. The association between COX-2 polymorphisms and hematologic toxicity in patients with advanced non-small-cell lung cancer treated with platinum-based chemotherapy.

    Directory of Open Access Journals (Sweden)

    Fei Zhou

    Full Text Available BACKGROUND AND OBJECTIVE: Overexpression of COX-2 is proved to contribute to tumor promotion and carcinogenesis through stimulating cell proliferation, inhibiting apoptosis and enhancing the invasiveness of cancer cells. Apoptosis-related molecules are potential predictive markers for survival and toxicity in platinum treatment. This study aimed at investigating the association between COX-2 polymorphisms and the occurrence of grade 3 or 4 toxicity in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. MATERIALS AND METHODS: Two hundred and twelve patients with inoperable stage IIIB-IV NSCLC received first-line chemotherapy between 2007 and 2009 were recruited in this study. Four functional COX-2 polymorphisms were genotyped by PCR-based restriction fragment length polymorphism (RFLP methods. RESULTS: The incidence of grade 3 or 4 hematologic toxicity was significantly higher in G allele carriers of the COX-2 rs689466 (-1195G/A polymorphism compared with wild-type homozygotes AA (P value = 0.008; odds ratio, 2.47; 95% confidence internal, 1.26-4.84 and the significance still existed after the Bonferroni correction. Statistically significant difference was also found in grade 3 or 4 leukopenia (P value = 0.010; OR = 2.82; 95%CI = 1.28-6.20. No other significant association was observed between genotype and toxicity in the study. The haplotype analysis showed that the haplotype AGG was associated with a reduced risk of grade 3 or 4 hematologic and leukopenia toxicity (P value = 0.009; OR = 0.59; 95%CI = 0.39-0.88 and P value = 0.025; OR = 0.61; 95%CI = 0.39-0.94, respectively while the haplotype GGG was associated with an increased risk of grade 3 or 4 hematologic and leukopenia toxicity (P value = 0.009; OR = 1.71; 95%CI = 1.14-2.56 and P value = 0.025; OR = 1.65; 95%CI  = 1.06-2.57, respectively. CONCLUSION: This investigation for the first time

  13. Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells

    International Nuclear Information System (INIS)

    Luce, A.; Courtin, A.; Levalois, C.; Altmeyer-Morel, S.; Chevillard, S.; Lebeau, J.; Romeo, P.H.

    2009-01-01

    Delayed cell death by mitotic catastrophe is a frequent mode of solid tumor cell death after γ-irradiation, a widely used treatment of cancer. Whereas the mechanisms that underlie the early γ-irradiation-induced cell death are well documented, those that drive the delayed cell death are largely unknown. Here we show that the Fas, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor (TNF)-α death receptor pathways mediate the delayed cell death observed after γ-irradiation of breast cancer cells. Early after irradiation, we observe the increased expression of Fas, TRAIL-R and TNF-R that first sensitizes cells to apoptosis. Later, the increased expression of FasL, TRAIL and TNF-α permit the apoptosis engagement linked to mitotic catastrophe. Treatments with TNF-α, TRAIL or anti-Fas antibody, early after radiation exposure, induce apoptosis, whereas the neutralization of the three death receptors pathways impairs the delayed cell death. We also show for the first time that irradiated breast cancer cells excrete soluble forms of the three ligands that can induce the death of sensitive bystander cells. Overall, these results define the molecular basis of the delayed cell death of irradiated cancer cells and identify the death receptors pathways as crucial actors in apoptosis induced by targeted as well as non-targeted effects of ionizing radiation. (authors)

  14. Haplotyping the human T-cell receptor β-chain gene complex by use of restriction fragment length polymorphisms

    International Nuclear Information System (INIS)

    Charmley, P.; Chao, A.; Gatti, R.A.; Concannon, P.; Hood, L.

    1990-01-01

    The authors have studied the genetic segregation of human T-cell receptor β-chain (TCRβ) genes on chromosome 7q in 40 CEPH (Centre d'Etude du Polymorphisme Humain) families by using restriction fragment length polymorphisms (RFLPs). They constructed haplotypes from eight RFLPs by using variable- and constant-region cDNA probes, which detect polymorphisms that span more than 600 kilobases of the TCRβ gene complex. Analysis of allele distributions between TCRβ genes revealed significant linkage disequilibrium between only 6 of the 28 different pairs of RFLPs. This linkage disequilibrium strongly influences the most efficient order to proceed for typing of these RFLPs in order to achieve maximum genetic informativeness, which in this study revealed a 97.3% level of heterozygosity within the TCRβ gene complex. The results should provide new insight into recent reports of disease associations with the TCRβ gene complex and should assist in designing future experiments to detect or confirm the existence of disease-susceptibility loci in this region of the human genome

  15. Targeting NK cells for anti-cancer immunotherapy: clinical and pre-clinical approaches

    Directory of Open Access Journals (Sweden)

    Sebastian eCarotta

    2016-04-01

    Full Text Available The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. While the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune-surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer cells are the body’s first line of defense against infected or transformed cells as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer-immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell based anti-cancer therapies, which has lead to a steady increase of NK cell based clinical and pre-clinical trials. Here, the role of NK cells in cancer immunesurveillance is summarized and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed.

  16. Polymorphs and polymorphic cocrystals of temozolomide.

    Science.gov (United States)

    Babu, N Jagadeesh; Reddy, L Sreenivas; Aitipamula, Srinivasulu; Nangia, Ashwini

    2008-07-07

    Crystal polymorphism in the antitumor drug temozolomide (TMZ), cocrystals of TMZ with 4,4'-bipyridine-N,N'-dioxide (BPNO), and solid-state stability were studied. Apart from a known X-ray crystal structure of TMZ (form 1), two new crystalline modifications, forms 2 and 3, were obtained during attempted cocrystallization with carbamazepine and 3-hydroxypyridine-N-oxide. Conformers A and B of the drug molecule are stabilized by intramolecular amide N--HN(imidazole) and N--HN(tetrazine) interactions. The stable conformer A is present in forms 1 and 2, whereas both conformers crystallized in form 3. Preparation of polymorphic cocrystals I and II (TMZBPNO 1:0.5 and 2:1) were optimized by using solution crystallization and grinding methods. The metastable nature of polymorph 2 and cocrystal II is ascribed to unused hydrogen-bond donors/acceptors in the crystal structure. The intramolecularly bonded amide N-H donor in the less stable structure makes additional intermolecular bonds with the tetrazine C==O group and the imidazole N atom in stable polymorph 1 and cocrystal I, respectively. All available hydrogen-bond donors and acceptors are used to make intermolecular hydrogen bonds in the stable crystalline form. Synthon polymorphism and crystal stability are discussed in terms of hydrogen-bond reorganization.

  17. Therapeutic targeting of the p53 pathway in cancer stem cells

    Science.gov (United States)

    Prabhu, Varun V.; Allen, Joshua E.; Hong, Bo; Zhang, Shengliang; Cheng, Hairong; El-Deiry, Wafik S.

    2013-01-01

    Introduction Cancer stem cells are a high profile drug target for cancer therapeutics due to their indispensable role in cancer progression, maintenance, and therapeutic resistance. Restoring wild-type p53 function is an attractive new therapeutic approach for the treatment of cancer due to the well-described powerful tumor suppressor function of p53. As emerging evidence intimately links p53 and stem cell biology, this approach also provides an opportunity to target cancer stem cells. Areas covered Therapeutic approaches to restore the function of wild-type p53, cancer and normal stem cell biology in relation to p53, and the downstream effects of p53 on cancer stem cells. Expert opinion The restoration of wild-type p53 function by targeting p53 directly, its interacting proteins, or its family members holds promise as a new class of cancer therapies. This review examines the impact that such therapies may have on normal and cancer stem cells based on the current evidence linking p53 signaling with these populations. PMID:22998602

  18. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells.

    Science.gov (United States)

    Sato, Hiroshi; Kato, Hiroki; Yamaza, Haruyoshi; Masuda, Keiji; Nguyen, Huong Thi Nguyen; Pham, Thanh Thi Mai; Han, Xu; Hirofuji, Yuta; Nonaka, Kazuaki

    2017-01-01

    Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk) gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV). Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  19. A drug development perspective on targeting tumor-associated myeloid cells.

    Science.gov (United States)

    Majety, Meher; Runza, Valeria; Lehmann, Christian; Hoves, Sabine; Ries, Carola H

    2018-02-01

    Despite decades of research, cancer remains a devastating disease and new treatment options are needed. Today cancer is acknowledged as a multifactorial disease not only comprising of aberrant tumor cells but also the associated stroma including tumor vasculature, fibrotic plaques, and immune cells that interact in a complex heterotypic interplay. Myeloid cells represent one of the most abundant immune cell population within the tumor stroma and are equipped with a broad functional repertoire that promotes tumor growth by suppressing cytotoxic T cell activity, stimulating neoangiogenesis and tissue remodeling. Therefore, myeloid cells have become an attractive target for pharmacological intervention. In this review, we summarize the pharmacological approaches to therapeutically target tumor-associated myeloid cells with a focus on advanced programs that are clinically evaluated. In addition, for each therapeutic strategy, the preclinical rationale as well as advantages and challenges from a drug development perspective are discussed. © 2017 Federation of European Biochemical Societies.

  20. Glycan Markers as Potential Immunological Targets in Circulating Tumor Cells.

    Science.gov (United States)

    Wang, Denong; Wu, Lisa; Liu, Xiaohe

    2017-01-01

    We present here an experimental approach for exploring a new class of tumor biomarkers that are overexpressed by circulating tumor cells (CTCs) and are likely targetable in immunotherapy against tumor metastasis. Using carbohydrate microarrays, anti-tumor monoclonal antibodies (mAbs) were scanned against a large panel of carbohydrate antigens to identify potential tumor glycan markers. Subsequently, flow cytometry and fiber-optic array scanning technology (FAST) were applied to determine whether the identified targets are tumor-specific cell-surface markers and are, therefore, likely suitable for targeted immunotherapy. Finally, the tumor glycan-specific antibodies identified were validated using cancer patients' blood samples for their performance in CTC-detection and immunotyping analysis. In this article, identifying breast CTC-specific glycan markers and targeting mAbs serve as examples to illustrate this tumor biomarker discovery strategy.

  1. Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression

    Directory of Open Access Journals (Sweden)

    Viktor Fleming

    2018-03-01

    Full Text Available The immune system has many sophisticated mechanisms to balance an extensive immune response. Distinct immunosuppressive cells could protect from excessive tissue damage and autoimmune disorders. Tumor cells take an advantage of those immunosuppressive mechanisms and establish a strongly immunosuppressive tumor microenvironment (TME, which inhibits antitumor immune responses, supporting the disease progression. Myeloid-derived suppressor cells (MDSC play a crucial role in this immunosuppressive TME. Those cells represent a heterogeneous population of immature myeloid cells with a strong immunosuppressive potential. They inhibit an antitumor reactivity of T cells and NK cells. Furthermore, they promote angiogenesis, establish pre-metastatic niches, and recruit other immunosuppressive cells such as regulatory T cells. Accumulating evidences demonstrated that the enrichment and activation of MDSC correlated with tumor progression, recurrence, and negative clinical outcome. In the last few years, various preclinical studies and clinical trials targeting MDSC showed promising results. In this review, we discuss different therapeutic approaches on MDSC targeting to overcome immunosuppressive TME and enhance the efficiency of current tumor immunotherapies.

  2. GEM-loaded magnetic albumin nanospheres modified with cetuximab for simultaneous targeting, magnetic resonance imaging, and double-targeted thermochemotherapy of pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Wang L

    2015-03-01

    Full Text Available Ling Wang,1 Yanli An,2 Chenyan Yuan,3 Hao Zhang,2 Chen Liang,2 Fengan Ding,2 Qi Gao,1 Dongsheng Zhang4 1Department of Ultrasonography, Zhong Da Hospital, Medical School, Southeast University, Nanjing, People’s Republic of China; 2Medical School, Southeast University, Nanjing, People’s Republic of China; 3Department of Clinical Laboratory, Zhong Da Hospital, Medical School, Southeast University, Nanjing, People’s Republic of China; 4Jiangsu Key Laboratory for Biomaterials and Devices, Medical School, Southeast University, Nanjing, People’s Republic of China Background: Targeted delivery is a promising strategy to improve the diagnostic imaging and therapeutic effect of cancers. In this paper, novel cetuximab (C225-conjugated, gemcitabine (GEM-containing magnetic albumin nanospheres (C225-GEM/MANs were fabricated and applied as a theranostic nanocarrier to conduct simultaneous targeting, magnetic resonance imaging (MRI, and double-targeted thermochemotherapy against pancreatic cancer cells. Methods: Fe3O4 nanoparticles (NPs and GEM co-loaded albumin nanospheres (GEM/MANs were prepared, and then C225 was further conjugated to synthesize C225-GEM/MANs. Their morphology, mean particle size, GEM encapsulation ratio, specific cell-binding ability, and thermal dynamic profiles were characterized. The effects of discriminating different EGFR-expressing pancreatic cancer cells (AsPC-1 and MIA PaCa-2 and monitoring cellular targeting effects were assessed by targeted MRI. Lastly, the antitumor efficiency of double/C225/magnetic-targeted and nontargeted thermochemotherapy was compared with chemotherapy alone using 3-(4, 5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT and flow cytometry (FCM assay. Results: When treated with targeted nanospheres, AsPC-1 cells showed a significantly less intense MRI T2 signal than MIA PaCa-2 cells, while both cells had similar signal strength when incubated with nontargeted nanospheres. T2 signal

  3. PEGylated anticancer-carbon nanotubes complex targeting mitochondria of lung cancer cells

    Science.gov (United States)

    Kim, Sang-Woo; Lee, Yeon Kyung; Lee, Jong Yeon; Hong, Jeong Hee; Khang, Dongwoo

    2017-11-01

    Although activating apoptosis in cancer cells by targeting the mitochondria is an effective strategy for cancer therapy, insufficient targeting of the mitochondria in cancer cells restricts the availability in clinical treatment. Here, we report on a polyethylene glycol-coated carbon nanotube (CNT)-ABT737 nanodrug that improves the mitochondrial targeting of lung cancer cells. The polyethylene glycol-coated CNT-ABT737 nanodrug internalized into the early endosomes via macropinocytosis and clathrin-mediated endocytosis in advance of early endosomal escape and delivered into the mitochondria. Cytosol release of the nanodrug led to apoptosis of lung cancer cells by abruption of the mitochondrial membrane potential, inducing Bcl-2-mediated apoptosis and generating intracellular reactive oxygen species. As such, this study provides an effective strategy for increasing the anti-lung cancer efficacy by increasing mitochondria accumulation rate of cytosol released anticancer nanodrugs.

  4. Targeted DNA vaccines for enhanced induction of idiotype-specific B and T cells

    International Nuclear Information System (INIS)

    Fredriksen, Agnete B.; Sandlie, Inger; Bogen, Bjarne

    2012-01-01

    Background: Idiotypes (Id) are antigenic determinants localized in variable (V) regions of Ig. Id-specific T and B cells (antibodies) play a role in immunotherapy of Id + tumors. However, vaccine strategies that enhance Id-specific responses are needed. Methods: Id + single-chain fragment variable (scFv) from multiple myelomas and B cell lymphomas were prepared in a fusion format that bivalently target surface molecules on antigen-presenting cells (APC). APC-specific targeting units were either scFv from APC-specific mAb (anti-MHC II, anti-CD40) or chemokines (MIP-1α, RANTES). Homodimeric Id-vaccines were injected intramuscularly or intradermally as plasmids in mice, combined with electroporation. Results: (i) Transfected cells secreted plasmid-encoded Id + fusion proteins to extracellular fluid followed by binding of vaccine molecules to APC. (ii) Targeted vaccine molecules increased Id-specific B and T cell responses. (iii) Bivalency and xenogeneic sequences both contributed to enhanced responses. (iv) Targeted Id DNA vaccines induced tumor resistance against challenges with Id + tumors. (v) Human MIP-1α targeting units enhanced Id-specific responses in mice, due to a cross reaction with murine chemokine receptors. Thus, targeted vaccines designed for humans can be quality tested in mice. (vi) Human Id + scFv from four multiple myeloma patients were inserted into the vaccine format and were successfully tested in mice. (vii) Human MIP-1α vaccine proteins enhanced human T cell responses in vitro. (viii) A hypothetical model for how the APC-targeted vaccine molecules enhance Id-specific T and B cells is presented. Conclusion: Targeted DNA Id-vaccines show promising results in preclinical studies, paving the way for testing in patients.

  5. Targeted DNA vaccines for enhanced induction of idiotype-specific B and T cells

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksen, Agnete B.; Sandlie, Inger; Bogen, Bjarne, E-mail: bjarne.bogen@medisin.uio.no [Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo (Norway)

    2012-10-30

    Background: Idiotypes (Id) are antigenic determinants localized in variable (V) regions of Ig. Id-specific T and B cells (antibodies) play a role in immunotherapy of Id{sup +} tumors. However, vaccine strategies that enhance Id-specific responses are needed. Methods: Id{sup +} single-chain fragment variable (scFv) from multiple myelomas and B cell lymphomas were prepared in a fusion format that bivalently target surface molecules on antigen-presenting cells (APC). APC-specific targeting units were either scFv from APC-specific mAb (anti-MHC II, anti-CD40) or chemokines (MIP-1α, RANTES). Homodimeric Id-vaccines were injected intramuscularly or intradermally as plasmids in mice, combined with electroporation. Results: (i) Transfected cells secreted plasmid-encoded Id{sup +} fusion proteins to extracellular fluid followed by binding of vaccine molecules to APC. (ii) Targeted vaccine molecules increased Id-specific B and T cell responses. (iii) Bivalency and xenogeneic sequences both contributed to enhanced responses. (iv) Targeted Id DNA vaccines induced tumor resistance against challenges with Id{sup +} tumors. (v) Human MIP-1α targeting units enhanced Id-specific responses in mice, due to a cross reaction with murine chemokine receptors. Thus, targeted vaccines designed for humans can be quality tested in mice. (vi) Human Id{sup +} scFv from four multiple myeloma patients were inserted into the vaccine format and were successfully tested in mice. (vii) Human MIP-1α vaccine proteins enhanced human T cell responses in vitro. (viii) A hypothetical model for how the APC-targeted vaccine molecules enhance Id-specific T and B cells is presented. Conclusion: Targeted DNA Id-vaccines show promising results in preclinical studies, paving the way for testing in patients.

  6. Low Frequencies of Autoimmunity-Associated PTPN22 Polymorphisms in MODY Patients, Including Those Transiently Expressing Islet Cell Autoantibodies.

    Science.gov (United States)

    Heneberg, Petr; Malá, Milena; Yorifuji, Tohru; Gat-Yablonski, Galia; Lebenthal, Yael; Tajima, Toshihiro; Nogaroto, Viviane; Rypáčková, Blanka; Kocková, Lucie; Urbanová, Jana; Anděl, Michal

    2015-01-01

    The protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene encodes lymphoid tyrosine phosphatase (LYP), which is expressed primarily in lymphoid tissues. The functional but geographically highly variable PTPN22 single-nucleotide polymorphisms (SNPs), particularly c.1858C>T, contribute to the onset and progression of autoimmunity-associated diseases and facilitate the expression of disease-associated autoantibodies. In Central Europe, 17-25% of patients with monogenic diabetes (maturity-onset diabetes of the young, MODY) transiently express islet cell autoantibodies. We addressed the links between the functional and geographically variable PTPN22 SNPs with MODY manifestation and the expression of islet cell autoantibodies in 276 MODY patients who originated from four regions (the Czech Republic, Israel, Japan and Brazil). The frequency of PTPN22 polymorphisms in the MODY patients was similar to those in geographically matched healthy populations, with the exception of c.788G>A, the minor allele frequency of which was significantly elevated in the Czech hepatocyte nuclear factor 1-α (HNF1A) MODY patients [odds ratio (OR) 4.8, 95% confidence interval (CI) 2.2-10.7] and the Brazilian MODY patients (OR 8.4, 95% CI 1.8-39.1). A barely significant increase in the c.788G>A minor allele was also detected in the islet cell autoantibody-positive Czech MODY patients. However, c.788A behaves as a loss-of-function mutant in T cells, and thus protects against autoimmunity. MODY patients (including islet cell autoantibody-positive cases) do not display any increase in autoimmunity-associated PTPN22 alleles. The absence of autoimmunity-associated PTPN22 alleles was also demonstrated in latent autoimmune diabetes in adults, which suggests that the slow kinetics of the onset of autoantibodies is subject to a regulation that is different from that experienced in type 1 diabetes and other autoimmune disorders. © 2015 S. Karger AG, Basel.

  7. Twelve single nucleotide polymorphisms on chromosome 19q13.2-13.3

    DEFF Research Database (Denmark)

    Yin, Jiaoyang; Vogel, Ulla; Gerdes, Lars Ulrik

    2003-01-01

    The genetic susceptibility to basal cell carcinoma (BCC) among Danish psoriatic patients was investigated in association studies with 12 single nucleotide polymorphisms on chromosome 19q13.2-3. The results show a significant association between BCC and the A-allele of a polymorphism in ERCCI exon4...

  8. The progesterone receptor Val660→Leu polymorphism and breast cancer risk

    International Nuclear Information System (INIS)

    De Vivo, Immaculata; Hankinson, Susan E; Colditz, Graham A; Hunter, David J

    2004-01-01

    Recent evidence suggests a role for progesterone in breast cancer development and tumorigenesis. Progesterone exerts its effect on target cells by interacting with its receptor; thus, genetic variations, which might cause alterations in the biological function in the progesterone receptor (PGR), can potentially contribute to an individual's susceptibility to breast cancer. It has been reported that the PROGINS allele, which is in complete linkage disequilibrium with a missense substitution in exon 4 (G/T, valine→leucine, at codon 660), is associated with a decreased risk for breast cancer. Using a nested case-control study design within the Nurses' Health Study cohort, we genotyped 1252 cases and 1660 matched controls with the use of the Taqman assay. We did not observe any association of breast cancer risk with carrying the G/T (Val660→Leu) polymorphism (odds ratio 1.10, 95% confidence interval 0.93–1.30). In addition, we did not observe an interaction between this allele and menopausal status and family history of breast cancer as reported previously. Overall, our study does not support an association between the Val660→Leu PROGINS polymorphism and breast cancer risk

  9. Impacts of microRNA gene polymorphisms on the susceptibility of environmental factors leading to carcinogenesis in oral cancer.

    Directory of Open Access Journals (Sweden)

    Yin-Hung Chu

    Full Text Available BACKGROUND: MicroRNAs (miRNAs have been regarded as a critical factor in targeting oncogenes or tumor suppressor genes in tumorigenesis. The genetic predisposition of miRNAs-signaling pathways related to the development of oral squamous cell carcinoma (OSCC remains unresolved. This study examined the associations of polymorphisms with four miRNAs with the susceptibility and clinicopathological characteristics of OSCC. METHODOLOGY/PRINCIPAL FINDINGS: A total of 895 male subjects, including 425 controls and 470 male oral cancer patients, were selected. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP and real-time PCR were used to analyze miRNA146a, miRNA196, miRNA499 and miRNA149 genetic polymorphisms between the control group and the case group. This study determined that a significant association of miRNA499 with CC genotype, as compared to the subjects with TT genotype, had a higher risk (AOR = 4.52, 95% CI = 1.24-16.48 of OSCC. Moreover, an impact of those four miRNAs gene polymorphism on the susceptibility of betel nut and tobacco consumption leading to oral cancer was also revealed. We found a protective effect between clinical stage development (AOR = 0.58, 95% CI = 0.36-0.94 and the tumor size growth (AOR = 0.47, 95% CI = 0.28-0.79 in younger patients (age<60. CONCLUSIONS: Our results suggest that genetic polymorphism of miRNA499 is associated with oral carcinogenesis, and the interaction of the miRNAs genetic polymorphism and environmental carcinogens is also related to an increased risk of oral cancer in Taiwanese.

  10. Polymorphisms within novel risk loci for type 2 diabetes determine beta-cell function.

    Directory of Open Access Journals (Sweden)

    Harald Staiger

    Full Text Available BACKGROUND: Type 2 diabetes arises when insulin resistance-induced compensatory insulin secretion exhausts. Insulin resistance and/or beta-cell dysfunction result from the interaction of environmental factors (high-caloric diet and reduced physical activity with a predisposing polygenic background. Very recently, genetic variations within four novel genetic loci (SLC30A8, HHEX, EXT2, and LOC387761 were reported to be more frequent in subjects with type 2 diabetes than in healthy controls. However, associations of these variations with insulin resistance and/or beta-cell dysfunction were not assessed. METHODOLOGY/PRINCIPAL FINDINGS: By genotyping of 921 metabolically characterized German subjects for the reported candidate single nucleotide polymorphisms (SNPs, we show that the major alleles of the SLC30A8 SNP rs13266634 and the HHEX SNP rs7923837 associate with reduced insulin secretion stimulated by orally or intravenously administered glucose, but not with insulin resistance. In contrast, the other reported type 2 diabetes candidate SNPs within the EXT2 and LOC387761 loci did not associate with insulin resistance or beta-cell dysfunction, respectively. CONCLUSIONS/SIGNIFICANCE: The HHEX and SLC30A8 genes encode for proteins that were shown to be required for organogenesis of the ventral pancreas and for insulin maturation/storage, respectively. Therefore, the major alleles of type 2 diabetes candidate SNPs within these genetic loci represent crucial alleles for beta-cell dysfunction and, thus, might confer increased susceptibility of beta-cells towards adverse environmental factors.

  11. Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors.

    Science.gov (United States)

    Mitra, A K; Mukherjee, U K; Harding, T; Jang, J S; Stessman, H; Li, Y; Abyzov, A; Jen, J; Kumar, S; Rajkumar, V; Van Ness, B

    2016-05-01

    Multiple myeloma (MM) is characterized by significant genetic diversity at subclonal levels that have a defining role in the heterogeneity of tumor progression, clinical aggressiveness and drug sensitivity. Although genome profiling studies have demonstrated heterogeneity in subclonal architecture that may ultimately lead to relapse, a gene expression-based prediction program that can identify, distinguish and quantify drug response in sub-populations within a bulk population of myeloma cells is lacking. In this study, we performed targeted transcriptome analysis on 528 pre-treatment single cells from 11 myeloma cell lines and 418 single cells from 8 drug-naïve MM patients, followed by intensive bioinformatics and statistical analysis for prediction of proteasome inhibitor sensitivity in individual cells. Using our previously reported drug response gene expression profile signature at the single-cell level, we developed an R Statistical analysis package available at https://github.com/bvnlabSCATTome, SCATTome (single-cell analysis of targeted transcriptome), that restructures the data obtained from Fluidigm single-cell quantitative real-time-PCR analysis run, filters missing data, performs scaling of filtered data, builds classification models and predicts drug response of individual cells based on targeted transcriptome using an assortment of machine learning methods. Application of SCATT should contribute to clinically relevant analysis of intratumor heterogeneity, and better inform drug choices based on subclonal cellular responses.

  12. Combined effects of DNA methyltransferase 1 and 3A polymorphisms and urinary total arsenic levels on the risk for clear cell renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shu-Mei [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Huang, Chao-Yuan [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Shiue, Horng-Sheng [Department of Chinese Medicine, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Hsieh, Yi-Hsun; Chen, Wei-Jen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Lin, Ying-Chin [Department of Family Medicine, Shung Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan (China); Division of Family Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2016-08-15

    Our previous study showed that high urinary total arsenic levels were associated with higher odds ratio (OR) for renal cell carcinoma (RCC). Single nucleotide polymorphisms (SNPs) of DNA methyltransferases (DNMTs) might influence DNMT enzyme activity associated with tumorigenesis. In this study, we investigated the association of five SNPs from DNMT1 (rs8101626 and rs2228611), DNMT3A (rs34048824 and rs1550117), and DNMT3B (rs1569686) with the risk of clear cell renal cell carcinoma (ccRCC). We also examined the combined effects of DNMT genotypes and urinary arsenic levels on ccRCC risk. We conducted a hospital-based case-control study, which included 293 subjects with ccRCC and 293 age- and gender-matched controls. The urinary arsenic species were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Genotypes were investigated using polymerase chain reaction and restriction fragment length polymorphism analyses. We observed that the DNMT1 rs8101626 G/G genotype was significantly associated with reduced odds ratio (OR) of ccRCC [OR = 0.38, 95% confidence interval (CI) 0.14–0.99]. Subjects with concurrent DNMT1 rs8101626 A/A + A/G and DNMT3A rs34048824 T/T + T/C genotypes had significantly higher OR for ccRCC [OR = 2.88, 95% CI 1.44–5.77]. Participants with the high-risk genotype of DNMT1 rs8101626 and DNMT3A rs34048824 with concurrently high urinary total arsenic levels had even higher OR of ccRCC in a dose-response manner. This is the first study to evaluate variant DNMT1 rs8101626 and DNMT3A rs34048824 genotypes that modify the arsenic-related ccRCC risk in a geographic area without significant arsenic exposure in Taiwan. - Highlights: • High urinary total arsenic level or polymorphism of DNMT1 increased the OR of ccRCC. • High risk genotypes of combination of DNMT1 and DNMT3A increased the OR of ccRCC. • A joint effect of urinary total arsenic level and DNMTs genotypes may affect ccRCC.

  13. Glycoengineering of Human Cell Lines Using Zinc Finger Nuclease Gene Targeting

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Bennett, Eric Paul; Clausen, Henrik

    2013-01-01

    Lectin affinity chromatography is a powerful technique for isolation of glycoproteins carrying a specific glycan structure of interest. However, the enormous diversity of glycans present on the cell surface, as well as on individual proteins, makes it difficult to isolate an entire glycoproteome...... with one or even a series of lectins. Here we present a technique to generate cell lines with homogenous truncated O-glycans using zinc finger nuclease gene targeting. Because of their simplified O-glycoproteome, the cells have been named SimpleCells. Glycoproteins from SimpleCells can be isolated...... in a single purification step by lectin chromatography performed on a long lectin column. This protocol describes Zinc finger nuclease gene targeting of human cells to simplify the glycoproteome, as well as lectin chromatography and isolation of glycopeptides from total cell lysates of SimpleCells....

  14. Association between Single Nucleotide Polymorphisms in Vitamin D Receptor Gene Polymorphisms and Permanent Tooth Caries Susceptibility to Permanent Tooth Caries in Chinese Adolescent

    Directory of Open Access Journals (Sweden)

    Miao Yu

    2017-01-01

    Full Text Available Purpose. Dental caries is a multifactorial infectious disease. In this study, we investigated whether single nucleotide polymorphisms (SNPs in vitamin D receptor (VDR gene were associated with susceptibility to permanent tooth caries in Chinese adolescents. Method. A total of 200 dental caries patients and 200 healthy controls aged 12 years were genotyped for VDR gene polymorphisms using the PCR-restriction fragment length polymorphism (PCR-RFLP assay. All of them were examined for their oral and dental status with the WHO criteria, and clinical information such as the Decayed Missing Filled Teeth Index (DMFT was evaluated. Genomic DNA was extracted from the buccal epithelial cells. The four polymorphic SNPs (Bsm I, Taq I, Apa I, and Fok I in VDR were assessed for both genotypic and phenotypic susceptibilities. Results. Among the four examined VDR gene polymorphisms, the increased frequency of the CT and CC genotype of the Fok I VDR gene polymorphism was associated with dental caries in 12-year-old adolescent, compared with the controls (X2 = 17.813, p≤0.001. Moreover, Fok I polymorphic allele C frequency was significantly increased in the dental caries cases, compared to the controls (X2 = 14.144, p≤0.001, OR = 1.730, 95% CI = 1.299–2.303. However, the other three VDR gene polymorphisms (Bsm I, Taq I, and Apa I showed no statistically significant differences in the caries groups compared with the controls. Conclusion. VDR-Fok I gene polymorphisms may be associated with susceptibility to permanent tooth caries in Chinese adolescent.

  15. Splenocytes cultured in low concentrations of IL-2 generate NK cell specificities toward syngenic and allogenic targets

    DEFF Research Database (Denmark)

    Nissen, Mogens Holst; Jeppesen, M; Claesson, M H

    2000-01-01

    Splenocytes cultured in the presence of 30-60 units/ml IL-2 for 5 days develop natural killer activity toward syngeneic and allogeneic tumor cell targets. The IL-2 activated splenocytes, themselves, are partially resistant, whereas concanavalin A-activated T blast cells are completely resistant...... to killing. Surprisingly, major histocompatibility complex (MHC)-I-negative target cells are also resistant to natural killer (NK)-cell-mediated killing. Cells resistant to killing were unable to block NK-cell-mediated killing of sensitive targets as judged from cold target cell inhibition experiments......, and one type of target cells sensitive to killing did generally not cross-block killing of other killing-sensitive target cell types. Alloantigen exposure of splenocytes, i.e., one-way mixed lymphocyte cultures, partially prevents the development of NK-cell activity. Our data suggest that target...

  16. Orchestration of transplantation tolerance by regulatory dendritic cell therapy or in-situ targeting of dendritic cells.

    Science.gov (United States)

    Morelli, Adrian E; Thomson, Angus W

    2014-08-01

    Extensive research in murine transplant models over the past two decades has convincingly demonstrated the ability of regulatory dendritic cells (DCregs) to promote long-term allograft survival. We review important considerations regarding the source of therapeutic DCregs (donor or recipient) and their mode of action, in-situ targeting of DCregs, and optimal therapeutic regimens to promote DCreg function. Recent studies have defined protocols and mechanisms whereby ex-vivo-generated DCregs of donor or recipient origin subvert allogeneic T-cell responses and promote long-term organ transplant survival. Particular interest has focused on how donor antigen is acquired, processed and presented by autologous dendritic cells, on the stability of DCregs, and on in-situ targeting of dendritic cells to promote their tolerogenic function. New evidence of the therapeutic efficacy of DCregs in a clinically relevant nonhuman primate organ transplant model and production of clinical grade DCregs support early evaluation of DCreg therapy in human graft recipients. We discuss strategies currently used to promote dendritic cell tolerogenicity, including DCreg therapy and in-situ targeting of dendritic cells, with a view to improved understanding of underlying mechanisms and identification of the most promising strategies for therapeutic application.

  17. InDel polymorphisms in quantitative posttransplant chi merism evaluation

    Directory of Open Access Journals (Sweden)

    I. M. Barkhatov

    2016-01-01

    Full Text Available Reduction of minimal residual disease to undetectable levels is the key criterion for efficiency of allogeneic hematopoietic stem cell transplantation (alloHSCT, along with engraftment of transplanted cells with complete replacement of recipient hematopoiesis, i. e., full posttransplant chimerism. Among different approaches, molecular genetic techniques are preferable, being based on the analysis of highly polymorphic DNA sequences (short tandem repeats, STRs. However, this approach, despite its high specificity, has a limited sensitivity. In this regard, it seems appropriate to introduce more sensitive diagnostic solutions, in particular, analysis of insertion/deletion (InDel polymorphisms, followed by real-time detection of PCR products. The data obtained upon analysis of several genetic markers have shown higher sensitivity of this method. However, the deviations in the range of 10 to 90 % in evaluation of the cell ratios indicates the feasibility of using this approach just to evaluate the residual populations of recipient cells.

  18. Therapeutic Approaches to Target Cancer Stem Cells

    International Nuclear Information System (INIS)

    Diaz, Arlhee; Leon, Kalet

    2011-01-01

    The clinical relevance of cancer stem cells (CSC) remains a major challenge for current cancer therapies, but preliminary findings indicate that specific targeting may be possible. Recent studies have shown that these tumor subpopulations promote tumor angiogenesis through the increased production of VEGF, whereas the VEGF neutralizing antibody bevacizumab specifically inhibits CSC growth. Moreover, nimotuzumab, a monoclonal antibody against the epidermal growth factor receptor (EGFR) with a potent antiangiogenic activity, has been shown by our group to reduce the frequency of CSC-like subpopulations in mouse models of brain tumors when combined with ionizing radiation. These studies and subsequent reports from other groups support the relevance of approaches based on molecular-targeted therapies to selectively attack CSC. This review discusses the relevance of targeting both the EGFR and angiogenic pathways as valid approaches to this aim. We discuss the relevance of identifying better molecular markers to develop drug screening strategies that selectively target CSC

  19. Killing cancer cells by targeted drug-carrying phage nanomedicines

    Directory of Open Access Journals (Sweden)

    Yacoby Iftach

    2008-04-01

    Full Text Available Abstract Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates.

  20. Killing cancer cells by targeted drug-carrying phage nanomedicines

    Science.gov (United States)

    Bar, Hagit; Yacoby, Iftach; Benhar, Itai

    2008-01-01

    Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates. PMID:18387177

  1. Tumor initiating cells and chemoresistance: which is the best strategy to target colon cancer stem cells?

    Science.gov (United States)

    Paldino, Emanuela; Tesori, Valentina; Casalbore, Patrizia; Gasbarrini, Antonio; Puglisi, Maria Ausiliatrice

    2014-01-01

    There is an emerging body of evidence that chemoresistance and minimal residual disease result from selective resistance of a cell subpopulation from the original tumor that is molecularly and phenotypically distinct. These cells are called "cancer stem cells" (CSCs). In this review, we analyze the potential targeting strategies for eradicating CSCs specifically in order to develop more effective therapeutic strategies for metastatic colon cancer. These include induction of terminal epithelial differentiation of CSCs or targeting some genes expressed only in CSCs and involved in self-renewal and chemoresistance. Ideal targets could be cell regulators that simultaneously control the stemness and the resistance of CSCs. Another important aspect of cancer biology, which can also be harnessed to create novel broad-spectrum anticancer agents, is the Warburg effect, also known as aerobic glycolysis. Actually, little is yet known with regard to the metabolism of CSCs population, leaving an exciting unstudied avenue in the dawn of the emerging field of metabolomics.

  2. Interleukin 17A and interleukin 17F polymorphisms are associated with oral squamous cell carcinoma susceptibility in a Chinese population.

    Science.gov (United States)

    Li, Ning; Zhang, Chao; Chen, Zhaoquan; Bai, Lilu; Nie, Min; Zhou, Bin; Xu, Huanxi

    2015-02-01

    Several studies have investigated the association of the interleukin (IL) 17A and IL-17F polymorphisms and cancer of various organs. However, the role of the IL-17A and IL-17F polymorphisms in oral squamous cell carcinoma (OSCC) remains unclear. Thus we sought to clarify the association of the rs2275913, rs763780, and rs2397084 polymorphisms with OSCC in a Chinese population. A TaqMan single-nucleotide polymorphism Genotyping Assay (ABI, Foster, CA) was used to measure the distributions of the IL-17A (rs2275913) and IL-17F (rs763780, rs2397084) polymorphisms in 121 OSCC patients and 103 healthy controls. The association of those polymorphisms and clinical OSCC patient characteristic also was evaluated. Individuals carrying the rs2275913 A allele and AA genotype had an increased risk of OSCC (odds ratio [OR], 1.463; 95% confidence interval [CI], 0.807 to 2.652; and OR, 2.713; 95% CI, 1.250 to 5.889, respectively). The frequency of the rs2397084 T allele was significantly associated with a higher risk of OSCC than the G allele (OR, 1.501; 95% CI, 1.026 to 2.196). No difference in rs763780 frequencies was observed. The rs2275913 AA and rs2397084 TT genotypes also were associated with late clinical stages and poor tumor differentiation. In addition, stratification analysis indicated that the rs2275913 AA genotype increased OSCC risk among smoking and drinking populations (OR, 4.000; 95% CI, 1.404 to 11.394; and OR, 3.500; 95% CI, 1.018 to 12.030, respectively). In a smoking population, an rs9382084 T-allele carrier has a greater potential risk of OSCC than the overall population (OR, 2.200; 95% CI, 1.009 to 4.797). The results of this study suggest a significant association of rs2275913 and rs2397084 but not rs763780 with OSCC risk, and this was related to tumor stage and differentiation. In addition, the IL-17A and IL-17F polymorphisms can interact with smoking and drinking to enhance the risk of OSCC developing. Copyright © 2015 American Association of Oral and

  3. Polymorphism in the interleukin-7 receptor-alpha and outcome after allogeneic hematopoietic cell transplantation with matched unrelated donor

    DEFF Research Database (Denmark)

    Shamim, Z; Spellman, S; Haagenson, M

    2013-01-01

    Interleukin-7 (IL-7) is essential for T cell development in the thymus and maintenance of peripheral T cells. The α-chain of the IL-7R is polymorphic with the existence of SNPs that give rise to non-synonymous amino acid substitutions. We previously found an association between donor genotypes...... significance of IL-7Rα SNP genotypes in 590-recipient/donor pairs that received HLA-matched unrelated donor HCT for haematological malignancies. Consistent with the primary studies, the rs1494555GG and rs1494558TT genotypes of the donor were associated with aGvHD and chronic GvHD in the univariate analysis...

  4. Engineering of Systematic Elimination of a Targeted Chromosome in Human Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Sato

    2017-01-01

    Full Text Available Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV. Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.

  5. Towards The Generation of Functionalized Magnetic Nanowires to Target Leukemic Cells

    KAUST Repository

    Alsharif, Nouf

    2016-01-01

    . In addition the NWs can be coated and functionalized to target cells of interest and, upon exposure to an alternating magnetic field, have been shown to induce cell death on several types of adherent cells, including several cancer cell types. For suspension

  6. Targeting cancer cells using 3-bromopyruvate for selective cancer treatment

    Directory of Open Access Journals (Sweden)

    Hussam H Baghdadi

    2017-01-01

    Full Text Available Cancer treatment deserves more research efforts despite intensive conventional treatment modalities for many types of malignancies. Metastasis and resistance to chemotherapy and radiotherapy receive a lot of global research efforts. The current advances in cancer biology may improve targeting the critical metabolic differences that distinguish cancer cells from normal cells. Cancer cells are highly glycolytic for energy production, exhibit the Warburg effect, establish aggressive acidic microenvironment, maintain cancer stem cells, exhibit resistance to chemotherapy, have low antioxidant systems but different ΔΨm (delta psi, mitochondrial transmembrane potential, express P-glycoprotein for multidrug resistance, upregulate glucose transporters and monocarboxylate transporters and are under high steady-state reactive oxygen species conditions. Normal cells differ in all these aspects. Lactate produced through the Warburg effect helps cancer metastasis. Targeting glycolysis reactions for energy production in cancer cells seems promising in decreasing the proliferation and metastasis of cancer cells. 3-bromopyruvate makes use of cancer biology in treating cancer cells, cancer stem cells and preventing metastasis in human cancer as discussed in this review. Updated advances are analyzed here, which include research analysis of background, experience, readings in the field of cancer biology, oncology and biochemistry.

  7. Slp-76 is a critical determinant of NK cell-mediated recognition of missing-self targets

    Science.gov (United States)

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-01-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying “missing-self” recognition, including the involvement of activating receptors, remain poorly understood. Using ENU mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell-mediated recognition and elimination of “missing-self” targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation [Thr428Ile] in the SH2 domain of Slp-76—a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele—while no major defects were observed in conventional T cell development/function, a marked defect in NK cell-mediated elimination of β2-Microglobulin (β2M)-deficient target cells was observed. Further studies revealed Slp-76 to control NK cell receptor expression and maturation, however, activation of Slp-76ace/ace NK cells through ITAM-containing NK cell receptors or allogeneic/tumor target cells appeared largely unaffected. Imagestream analysis of the NK-β2M−/− target cell synapse, revealed a specific defect in actin recruitment to the conjugate synapse in Slp-76ace/ace NK cells. Overall these studies establish Slp-76 as a critical determinant of NK cell development and NK cell-mediated elimination of missing-self target cells. PMID:25929249

  8. Slp-76 is a critical determinant of NK-cell mediated recognition of missing-self targets.

    Science.gov (United States)

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-07-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying "missing-self" recognition, including the involvement of activating receptors, remain poorly understood. Using ethyl-N-nitrosourea mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell mediated recognition and elimination of "missing-self" targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation (Thr428Ile) in the SH2 domain of Slp-76-a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele-while no major defects were observed in conventional T-cell development/function, a marked defect in NK cell mediated elimination of β2-microglobulin (β2M) deficient target cells was observed. Further studies revealed Slp-76 to control NK-cell receptor expression and maturation; however, activation of Slp-76(ace/ace) NK cells through ITAM-containing NK-cell receptors or allogeneic/tumor target cells appeared largely unaffected. Imagestream analysis of the NK-β2M(-/-) target cell synapse revealed a specific defect in actin recruitment to the conjugate synapse in Slp-76(ace/ace) NK cells. Overall these studies establish Slp-76 as a critical determinant of NK-cell development and NK cell mediated elimination of missing-self target cells in mice. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA targeting proteins

    Science.gov (United States)

    Doyle, Erin L.; Stoddard, Barry L.; Voytas, Daniel F.; Bogdanove, Adam J.

    2013-01-01

    Transcription activator-like (TAL) effectors are transcription factors injected into plant cells by pathogenic bacteria in the genus Xanthomonas. They function as virulence factors by activating host genes important for disease, or as avirulence factors by turning on genes that provide resistance. DNA binding specificity is encoded by polymorphic repeats in each protein that correspond one-to-one with different nucleotides. This code has facilitated target identification and opened new avenues for engineering disease resistance. It has also enabled TAL effector customization for targeted gene control, genome editing, and other applications. This article reviews the structural basis for TAL effector-DNA specificity, the impact of the TAL effector-DNA code on plant pathology and engineered resistance, and recent accomplishments and future challenges in TAL effector-based DNA targeting. PMID:23707478

  10. Association of eNOS and ACE gene polymorphisms and plasma nitric oxide with risk of non-small cell lung cancer in South India.

    Science.gov (United States)

    Peddireddy, Vidyullatha; Badabagni, Siva Prasad; Gundimeda, Sandhya Devi; Mundluru, Hema Prasad

    2018-01-01

    The role of ACE and eNOS gene polymorphisms and their association with various cancers were reported. However, their role in the lung cancer is unclear. In this study, we analyzed eNOS and ACE gene polymorphisms and the risk of non-small cell lung cancer (NSCLC) in South Indian population. For the eNOS gene, the homozygous "AA" genotypic frequency was significantly associated with NSCLC with an overall risk of 3.6-fold (P = 0.006, odds ratio = 3.58, 95% confidence interval = 1.66, 7.723). The heterozygous "I/D" genotypic frequency of ACE gene was significantly higher in NSCLC patients when compared to the controls with a 2.29-fold risk for NSCLC. Multiple regression analyses indicated that gender, smoking status, and polymorphisms in eNOS and ACE genes as the strongest predicting factors for an increased susceptibility to NSCLC. We report for the first time that polymorphisms in the eNOS "A/A" (homozygous mutant) and ACE "I/D" genotypes might contribute to the increased risk of NSCLC in the South Indian population. © 2016 John Wiley & Sons Ltd.

  11. In silico analysis of Ta9 gene polymorphism in an Iranian Theileria annulata schizont-infected cell line S15 vaccine strain and native isolates

    Directory of Open Access Journals (Sweden)

    Habibi, G.

    2016-07-01

    Full Text Available Bovine theileriosis is a tick-borne disease caused by obligate intracellular parasites related to the genus Theileria. Cellular immune responses protect cattle against pathogens through the activation of immune cells. Nowadays, live, attenuated vaccine of Theileria annulata (T. annulata is being produced in Iran and is recommended for active cattle immunization. Detection of the immunogenic antigens and epitopes recognized by CD8+ T Lymphocytes is vital for the development of recombinant and subunit vaccines. Herein, sequences of the genes encoding Ta9, which is an important antigen recognized by bovine CD8+ T cells specific for T. annulata, in Iranian S15 vaccine strains, several Iranian isolates, as well as reference Ta9 DNA sequences registered in GeneBank were compared through polymerase chain reaction (PCR. The obtained data from DNA sequences were analyzed by using "Nucleotide", "Blast n", "BioEdit" and "IEDB" softwares. The results showed high level of variation in nucleotides and amino acids level. The observed polymorphism in Ta9 gene sequences of Iranian vaccine strains and some isolates from Iran demonstrated that this antigen contains polymorphic sequences and is active along with the specific major histocompatibility complex (MHC of the host. Polymorphic sequences and specific epitopes of Ta9 gene for CD8+ T cell provides an explanation for incomplete protection observed after inoculation of heterologous parasites in vaccinated cattle. These results have important implications for the application of Ta9 antigen for developing novel subunit vaccines.

  12. Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells

    Science.gov (United States)

    Modi, Dimple A.; Sunoqrot, Suhair; Bugno, Jason; Lantvit, Daniel D.; Hong, Seungpyo; Burdette, Joanna E.

    2014-02-01

    Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side

  13. Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment.

    Directory of Open Access Journals (Sweden)

    Ruben R Bender

    2016-06-01

    Full Text Available Receptor-targeted lentiviral vectors (LVs can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance. Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4 was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs.

  14. Association of the SOD2 polymorphism (Val6Ala and SOD activity with vaso-occlusive crisis and acute splenic sequestration in children with sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Isabela Cristina Cordeiro Farias

    2018-02-01

    Full Text Available The SOD2 polymorphism Val16Ala TàC influences the antioxidative response. This study investigated the association of the SOD2 polymorphism and superoxide dismutase (SOD activity with vaso-occlusive crisis (VOC and acute splenic sequestration (ASS in children with sickle cell anemia (SCA. One hundred ninety-five children aged 1-9 years old were analyzed. The TC and CC genotypes were associated with lower SOD activity compared with the TT genotype (p=0.0321; p=0.0253, respectively. Furthermore, TC/CC were more frequent in patients with VOC or ASS (p=0.0285; p=0.0090, respectively. These results suggest that the SOD2 polymorphism associated with low SOD activity could be involved in SCA physiopathology.

  15. Targeting poly (ADP-ribose polymerase partially contributes to bufalin-induced cell death in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    He Huang

    Full Text Available Despite recent pharmaceutical advancements in therapeutic drugs, multiple myeloma (MM remains an incurable disease. Recently, ploy(ADP-ribose polymerase 1 (PARP1 has been shown as a potentially promising target for MM therapy. A previous report suggested bufalin, a component of traditional Chinese medicine ("Chan Su", might target PARP1. However, this hypothesis has not been verified. We here showed that bufalin could inhibit PARP1 activity in vitro and reduce DNA-damage-induced poly(ADP-ribosylation in MM cells. Molecular docking analysis revealed that the active site of bufalin interaction is within the catalytic domain of PAPR1. Thus, PARP1 is a putative target of bufalin. Furthermore, we showed, for the first time that the proliferation of MM cell lines (NCI-H929, U266, RPMI8226 and MM.1S and primary CD138(+ MM cells could be inhibited by bufalin, mainly via apoptosis and G2-M phase cell cycle arrest. MM cell apoptosis was confirmed by apoptotic cell morphology, Annexin-V positive cells, and the caspase3 activation. We further evaluated the role of PARP1 in bufalin-induced apoptosis, discovering that PARP1 overexpression partially suppressed bufalin-induced cell death. Moreover, bufalin can act as chemosensitizer to enhance the cell growth-inhibitory effects of topotecan, camptothecin, etoposide and vorinostat in MM cells. Collectively, our data suggest that bufalin is a novel PARP1 inhibitor and a potentially promising therapeutic agent against MM alone or in combination with other drugs.

  16. Mechanoresponsive stem cells to target cancer metastases through biophysical cues.

    Science.gov (United States)

    Liu, Linan; Zhang, Shirley X; Liao, Wenbin; Farhoodi, Henry P; Wong, Chi W; Chen, Claire C; Ségaliny, Aude I; Chacko, Jenu V; Nguyen, Lily P; Lu, Mengrou; Polovin, George; Pone, Egest J; Downing, Timothy L; Lawson, Devon A; Digman, Michelle A; Zhao, Weian

    2017-07-26

    Despite decades of effort, little progress has been made to improve the treatment of cancer metastases. To leverage the central role of the mechanoenvironment in cancer metastasis, we present a mechanoresponsive cell system (MRCS) to selectively identify and treat cancer metastases by targeting the specific biophysical cues in the tumor niche in vivo. Our MRCS uses mechanosensitive promoter-driven mesenchymal stem cell (MSC)-based vectors, which selectively home to and target cancer metastases in response to specific mechanical cues to deliver therapeutics to effectively kill cancer cells, as demonstrated in a metastatic breast cancer mouse model. Our data suggest a strong correlation between collagen cross-linking and increased tissue stiffness at the metastatic sites, where our MRCS is specifically activated by the specific cancer-associated mechano-cues. MRCS has markedly reduced deleterious effects compared to MSCs constitutively expressing therapeutics. MRCS indicates that biophysical cues, specifically matrix stiffness, are appealing targets for cancer treatment due to their long persistence in the body (measured in years), making them refractory to the development of resistance to treatment. Our MRCS can serve as a platform for future diagnostics and therapies targeting aberrant tissue stiffness in conditions such as cancer and fibrotic diseases, and it should help to elucidate mechanobiology and reveal what cells "feel" in the microenvironment in vivo. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Crispr-mediated Gene Targeting of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Byrne, Susan M; Church, George M

    2015-01-01

    CRISPR/Cas9 nuclease systems can create double-stranded DNA breaks at specific sequences to efficiently and precisely disrupt, excise, mutate, insert, or replace genes. However, human embryonic stem or induced pluripotent stem cells (iPSCs) are more difficult to transfect and less resilient to DNA damage than immortalized tumor cell lines. Here, we describe an optimized protocol for genome engineering of human iPSCs using a simple transient transfection of plasmids and/or single-stranded oligonucleotides. With this protocol, we achieve transfection efficiencies greater than 60%, with gene disruption efficiencies from 1-25% and gene insertion/replacement efficiencies from 0.5-10% without any further selection or enrichment steps. We also describe how to design and assess optimal sgRNA target sites and donor targeting vectors; cloning individual iPSC by single cell FACS sorting, and genotyping successfully edited cells.

  18. Polymorphism in clinical immunology – From HLA typing to immunogenetic profiling

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2003-11-01

    Full Text Available Abstract The pathology of humans, in contrast to that of inbred laboratory animals faces the challenge of diversity addressed in genetic terms as polymorphism. Thus, unsurprisingly, treatment modalities that successfully can be applied to carefully-selected pre-clinical models only sporadically succeed in the clinical arena. Indeed, pre-fabricated experimental models purposefully avoid the basic essence of human pathology: the uncontrollable complexity of disease heterogeneity and the intrinsic diversity of human beings. Far from pontificating on this obvious point, this review presents emerging evidence that the study of complex system such as the cytokine network is further complicated by inter-individual differences dictated by increasingly recognized polymorphisms. Polymorphism appears widespread among genes of the immune system possibly resulting from an evolutionary adaptation of the organism facing an ever evolving environment. We will refer to this high variability of immune-related genes as immune polymorphism. In this review we will briefly highlight the possible clinical relevance of immune polymorphism and suggest a change in the approach to the study of human pathology, from the targeted study of individual systems to a broader view of the organism as a whole through immunogenetic profiling.

  19. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    Science.gov (United States)

    Pissuwan, Dakrong; Valenzuela, Stella M.; Killingsworth, Murray C.; Xu, Xiaoda; Cortie, Michael B.

    2007-12-01

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation (˜1×105 to 1×1010 W/m2). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5×102 W/m2 being sufficient, provided that a total fluence of ˜30 J/cm2 is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm2 resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells.

  20. Myeloid Conditioning with c-kit-Targeted CAR-T Cells Enables Donor Stem Cell Engraftment.

    Science.gov (United States)

    Arai, Yasuyuki; Choi, Uimook; Corsino, Cristina I; Koontz, Sherry M; Tajima, Masaki; Sweeney, Colin L; Black, Mary A; Feldman, Steven A; Dinauer, Mary C; Malech, Harry L

    2018-05-02

    We report a novel approach to bone marrow (BM) conditioning using c-kit-targeted chimeric antigen receptor T (c-kit CAR-T) cells in mice. Previous reports using anti-c-kit or anti-CD45 antibody linked to a toxin such as saporin have been promising. We developed a distinctly different approach using c-kit CAR-T cells. Initial studies demonstrated in vitro killing of hematopoietic stem cells by c-kit CAR-T cells but poor expansion in vivo and poor migration of CAR-T cells into BM. Pre-treatment of recipient mice with low-dose cyclophosphamide (125 mg/kg) together with CXCR4 transduction in the CAR-T cells enhanced trafficking to and expansion in BM (c-kit + population (9.0%-0.1%). Because congenic Thy1.1 CAR-T cells were used in the Thy1.2-recipient mice, anti-Thy1.1 antibody could be used to deplete CAR-T cells in vivo before donor BM transplant. This achieved 20%-40% multilineage engraftment. We applied this conditioning to achieve an average of 28% correction of chronic granulomatous disease mice by wild-type BM transplant. Our findings provide a proof of concept that c-kit CAR-T cells can achieve effective BM conditioning without chemo-/radiotherapy. Our work also demonstrates that co-expression of a trafficking receptor can enhance targeting of CAR-T cells to a designated tissue. Published by Elsevier Inc.

  1. Targeting Gallium to Cancer Cells through the Folate Receptor

    Directory of Open Access Journals (Sweden)

    Nerissa Viola-Villegas

    2008-01-01

    Full Text Available The development of gallium(III compounds as anti-cancer agents for both treatment and diagnosis is a rapidly developing field of research. Problems remain in exploring the full potential of gallium(III as a safe and successful therapeutic agent or as an imaging agent. One of the major issues is that gallium(III compounds have little tropism for cancer cells. We have combined the targeting properties of folic acid (FA with long chain liquid polymer poly(ethylene glycol (PEG 'spacers’. This FA-PEG unit has been coupled to the gallium coordination complex of 1,4,7,10-tetraazacyclo-dodecane-N, N′, N′, N′′-tetraacetic acid (DOTA through amide linkages for delivery into target cells overexpressing the folate receptor (FR. In vitro cytotoxicity assays were conducted against a multi-drug resistant ovarian cell line (A2780/AD that overexpresses the FR and contrasted against a FR free Chinese hamster ovary (CHO cell line. Results are rationalized taking into account stability studies conducted in RPMI 1640 media and HEPES buffer at pH 7.4.

  2. Targeting Gallium to Cancer Cells through the Folate Receptor

    Directory of Open Access Journals (Sweden)

    Nerissa Viola-Villegas

    2008-01-01

    Full Text Available The development of gallium(III compounds as anti-cancer agents for both treatment and diagnosis is a rapidly developing field of research. Problems remain in exploring the full potential of gallium(III as a safe and successful therapeutic agent or as an imaging agent. One of the major issues is that gallium(III compounds have little tropism for cancer cells. We have combined the targeting properties of folic acid (FA with long chain liquid polymer poly(ethylene glycol (PEG ‘spacers’. This FA-PEG unit has been coupled to the gallium coordination complex of 1,4,7,10-tetraazacyclo-dodecane-N,N′,N′′,N′′′-tetraacetic acid (DOTA through amide linkages for delivery into target cells overexpressing the folate receptor (FR. In vitro cytotoxicity assays were conducted against a multi-drug resistant ovarian cell line (A2780/AD that overexpresses the FR and contrasted against a FR free Chinese hamster ovary (CHO cell line. Results are rationalized taking into account stability studies conducted in RPMI 1640 media and HEPES buffer at pH 7.4.

  3. Evaluating Cytotoxicity of Hyaluronate Targeted Solid Lipid Nanoparticles of Etoposide on SK-OV-3 Cells

    Directory of Open Access Journals (Sweden)

    Parviz Mohammadi Ghalaei

    2014-01-01

    Full Text Available The epithelial ovarian carcinoma is one of the most fatal gynecological cancers. Etoposide is used in treating platinum-resistant ovarian cancer. Sodium hyaluronate is a substance that binds to the CD44 receptors overexpressed in SK-OV-3 cells of epithelial ovarian carcinoma. The aim of the present work was to study the cytotoxicity effect of hyaluronate targeted solid lipid nanoparticles (SLNs of etoposide on SK-OV-3 cells. The cytotoxicity of the targeted and nontargeted SLNs of etoposide was compared to free drug on the SK-OV-3 cells by MTT assay method. The cellular uptake of the targeted and nontargeted nanoparticles containing sodium fluorescein was also studied. The difference of cell vitality between nontargeted nanoparticles and also targeted nanoparticles with free drug was significant. Targeted nanoparticles also caused more toxicity than nontargeted nanoparticles (P<0.05. After 4 hours of incubating, the fluorescence was remarkably higher in the cells treated by targeted SLNs rather than nontargeted ones, and there was no observable fluorescence in cells incubated with pure sodium fluorescein. Hyaluronate targeted SLNs containing etoposide increased the cytotoxicity of etoposide on SK-OV-3 cells which may be a worthwhile potential method for reducing the prescribed dose and systemic side effects of this drug in epithelial ovarian carcinoma.

  4. Gene targeting and cloning in pigs using fetal liver derived cells.

    Science.gov (United States)

    Waghmare, Sanjeev K; Estrada, Jose; Reyes, Luz; Li, Ping; Ivary, Bess; Sidner, Richard A; Burlak, Chris; Tector, A Joseph

    2011-12-01

    Since there are no pig embryonic stem cells, pig genetic engineering is done in fetal fibroblasts that remain totipotent for only 3 to 5 wk. Nuclear donor cells that remain totipotent for longer periods of time would facilitate complicated genetic engineering in pigs. The goal of this study was to test the feasibility of using fetal liver-derived cells (FLDC) to perform gene targeting, and create a genetic knockout pig. FLDC were isolated and processed using a human liver stem cell protocol. Single copy α-1,3-galactosyl transferase knockout (GTKO) FLDCs were created using electroporation and neomycin resistant colonies were screened using PCR. Homozygous GTKO cells were created through loss of heterozygosity mutations in single GTKO FLDCs. Double GTKO FLDCs were used in somatic cell nuclear transfer (SCNT) to create GTKO pigs. FLDCs grew for more than 80 population doublings, maintaining normal karyotype. Gene targeting and loss of heterozygosity mutations produced homozygous GTKO FLDCs. FLDCs used in SCNT gave rise to homozygous GTKO pigs. FDLCs can be used in gene targeting and SCNT to produce genetically modified pigs. The increased life span in culture compared to fetal fibroblasts may facilitate genetic engineering in the pig. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Chimeric Antigen Receptor (CAR) T Cells: Lessons Learned from Targeting of CD19 in B-Cell Malignancies.

    Science.gov (United States)

    Hay, Kevin A; Turtle, Cameron J

    2017-03-01

    Adoptive immunotherapy with chimeric antigen receptor-modified (CAR)-T cells is a rapidly growing therapeutic approach to treating patients with refractory cancer, with over 100 clinical trials in various malignancies in progress. The enthusiasm for CAR-T cells has been driven by the clinical success of CD19-targeted CAR-T cell therapy in B-cell acute lymphoblastic leukemia, and the promising data in B-cell non-Hodgkin's lymphoma and chronic lymphocytic leukemia. Despite the success of targeting CD19 with CAR-T cells in early clinical studies, many challenges remain to improve outcomes, reduce toxicity, and determine the appropriate settings for CAR-T cell immunotherapy. Reviewing the lessons learned thus far in CD19 CAR-T cell trials and how some of these challenges may be overcome will help guide the development of CAR-T cell therapy for malignancies of B-cell origin, as well as for other hematopoietic and non-hematopoietic cancers.

  6. Near-IR laser-triggered target cell collection using a carbon nanotube-based cell-cultured substrate.

    Science.gov (United States)

    Sada, Takao; Fujigaya, Tsuyohiko; Niidome, Yasuro; Nakazawa, Kohji; Nakashima, Naotoshi

    2011-06-28

    Unique near-IR optical properties of single-walled carbon nanotube (SWNTs) are of interest in many biological applications. Here we describe the selective cell detachment and collection from an SWNT-coated cell-culture dish triggered by near-IR pulse laser irradiation. First, HeLa cells were cultured on an SWNT-coated dish prepared by a spraying of an aqueous SWNT dispersion on a glass dish. The SWNT-coated dish was found to show a good cell adhesion behavior as well as a cellular proliferation rate similar to a conventional glass dish. We discovered, by near-IR pulse laser irradiation (at the laser power over 25 mW) to the cell under optical microscopic observation, a quick single-cell detachment from the SWNT-coated surface. Shockwave generation from the irradiated SWNTs is expected to play an important role for the cell detachment. Moreover, we have succeeded in catapulting the target single cell from the cultured medium when the depth of the medium was below 150 μm and the laser power was stronger than 40 mW. The captured cell maintained its original shape. The retention of the genetic information of the cell was confirmed by the polymerase chain reaction (PCR) technique. A target single-cell collection from a culture medium under optical microscopic observation is significant in wide fields of single-cell studies in biological areas.

  7. Sirtuin1 single nucleotide polymorphism (A2191G is a diagnostic marker for vibration-induced white finger disease

    Directory of Open Access Journals (Sweden)

    Voelter-Mahlknecht Susanne

    2012-10-01

    Full Text Available Abstract Background Vibration-induced white finger disease (VWF, also known as hand-arm vibration syndrome, is a secondary form of Raynaud’s disease, affecting the blood vessels and nerves. So far, little is known about the pathogenesisof the disease. VWF is associated with an episodic reduction in peripheral blood flow. Sirtuin 1, a class III histone deacetylase, has been described to regulate the endothelium dependent vasodilation by targeting endothelial nitric oxide synthase. We assessed Sirt1single nucleotide polymorphisms in patients with VWF to further elucidate the role of sirtuin 1 in the pathogenesis of VWF. Methods Peripheral blood samples were obtained from 74 patients with VWF (male 93.2%, female 6.8%, median age 53 years and from 317 healthy volunteers (gender equally distributed, below 30 years of age. Genomic DNA was extracted from peripheral blood mononuclear cells and screened for potential Sirt1single nucleotide polymorphisms. Four putative genetic polymorphisms out of 113 within the Sirt1 genomic region (NCBI Gene Reference: NM_012238.3 were assessed. Allelic discrimination was performed by TaqMan-polymerasechainreaction-based allele-specific genotyping single nucleotide polymorphism assays. Results Sirt1single nucleotide polymorphism A2191G (Assay C_25611590_10, rs35224060 was identified within Sirt1 exon 9 (amino acid position 731, Ile → Val, with differing allelic frequencies in the VWF population (A/A: 70.5%, A/G: 29.5%, G/G: 0% and the control population (A/A: 99.7%, A/G: 0.3%, G/G: 0.5%, with significance levels of P U test (two-tailed P t-test and Chi-square test with Yates correction (all two-tailed: P Conclusion We identified theSirt1A2191Gsingle nucleotide polymorphism as a diagnostic marker for VWF.

  8. Integrin Targeting and Toxicological Assessment of Peptide-Conjugated Liposome Delivery Systems to Activated Endothelial Cells

    DEFF Research Database (Denmark)

    Kermanizadeh, Ali; Villadsen, Klaus; Østrem, Ragnhild Garborg

    2017-01-01

    constructed with the aim of targeting integrins (i.e. vitronectin and/or fibronectin receptors) on activated endothelial cells. The peptide-conjugated liposomes induced only cytotoxicity at the highest concentration in non-activated or activated endothelial cells, as well as in co-culture of endothelial cells...... and macrophages. There was unaltered secretion of cytokines following exposure of peptide-conjugated liposomes to endothelial cells, indicating that the materials were not inflammogenic. Liposomes with a peptide targeting the fibronectin receptor (integrin α5β1) were more effective in targeting of activated....... Therefore, this study demonstrates the feasibility of constructing a peptide-conjugated cationic liposome, which displays targeting to activated endothelial cells at concentrations that are not cytotoxic or inflammogenic to the cells....

  9. Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems

    Science.gov (United States)

    2011-01-01

    Background Alfalfa, [Medicago sativa (L.) sativa], a widely-grown perennial forage has potential for development as a cellulosic ethanol feedstock. However, the genomics of alfalfa, a non-model species, is still in its infancy. The recent advent of RNA-Seq, a massively parallel sequencing method for transcriptome analysis, provides an opportunity to expand the identification of alfalfa genes and polymorphisms, and conduct in-depth transcript profiling. Results Cell walls in stems of alfalfa genotype 708 have higher cellulose and lower lignin concentrations compared to cell walls in stems of genotype 773. Using the Illumina GA-II platform, a total of 198,861,304 expression sequence tags (ESTs, 76 bp in length) were generated from cDNA libraries derived from elongating stem (ES) and post-elongation stem (PES) internodes of 708 and 773. In addition, 341,984 ESTs were generated from ES and PES internodes of genotype 773 using the GS FLX Titanium platform. The first alfalfa (Medicago sativa) gene index (MSGI 1.0) was assembled using the Sanger ESTs available from GenBank, the GS FLX Titanium EST sequences, and the de novo assembled Illumina sequences. MSGI 1.0 contains 124,025 unique sequences including 22,729 tentative consensus sequences (TCs), 22,315 singletons and 78,981 pseudo-singletons. We identified a total of 1,294 simple sequence repeats (SSR) among the sequences in MSGI 1.0. In addition, a total of 10,826 single nucleotide polymorphisms (SNPs) were predicted between the two genotypes. Out of 55 SNPs randomly selected for experimental validation, 47 (85%) were polymorphic between the two genotypes. We also identified numerous allelic variations within each genotype. Digital gene expression analysis identified numerous candidate genes that may play a role in stem development as well as candidate genes that may contribute to the differences in cell wall composition in stems of the two genotypes. Conclusions Our results demonstrate that RNA-Seq can be

  10. Polymorphism in interleukin-7 receptor α gene is associated with faster CD4 T-cell recovery after initiation of combination antiretroviral therapy

    DEFF Research Database (Denmark)

    Hartling, Hans J; Thørner, Lise W; Erikstrup, Christian

    2014-01-01

    OBJECTIVES: To investigate single-nucleotide polymorphisms (SNPs) in the gene encoding interleukin-7 receptor α (IL7RA) as predictors for CD4⁺ T-cell change after initiation of combination antiretroviral therapy (cART) in HIV-infected whites. DESIGN: SNPs in IL7RA were determined in the Danish HIV...

  11. The cell's nucleolus: an emerging target for chemotherapeutic intervention.

    Science.gov (United States)

    Pickard, Amanda J; Bierbach, Ulrich

    2013-09-01

    The transient nucleolus plays a central role in the up-regulated synthesis of ribosomal RNA (rRNA) to sustain ribosome biogenesis, a hallmark of aberrant cell growth. This function, in conjunction with its unique pathohistological features in malignant cells and its ability to mediate apoptosis, renders this sub-nuclear structure a potential target for chemotherapeutic agents. In this Minireview, structurally and functionally diverse small molecules are discussed that have been reported to either interact with the nucleolus directly or perturb its function indirectly by acting on its dynamic components. These molecules include all major classes of nucleic-acid-targeted agents, antimetabolites, kinase inhibitors, anti-inflammatory drugs, natural product antibiotics, oligopeptides, as well as nanoparticles. Together, these molecules are invaluable probes of structure and function of the nucleolus. They also provide a unique opportunity to develop novel strategies for more selective and therefore better-tolerated chemotherapeutic intervention. In this regard, inhibition of RNA polymerase-I-mediated rRNA synthesis appears to be a promising mechanism for killing cancer cells. The recent development of molecules targeted at G-quadruplex-forming rRNA gene sequences, which are currently undergoing clinical trials, seems to attest to the success of this approach. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Templated sequence insertion polymorphisms in the human genome

    Science.gov (United States)

    Onozawa, Masahiro; Aplan, Peter

    2016-11-01

    Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including 1) target-site duplication (TSD), 2) polyadenylation 10-30 nucleotides downstream of a “cryptic” polyadenylation signal, and 3) preference for insertion at a 5’-TTTT/A-3’ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25-30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases.

  13. Targeting Gas6/TAM in cancer cells and tumor microenvironment.

    Science.gov (United States)

    Wu, Guiling; Ma, Zhiqiang; Cheng, Yicheng; Hu, Wei; Deng, Chao; Jiang, Shuai; Li, Tian; Chen, Fulin; Yang, Yang

    2018-01-31

    Growth arrest-specific 6, also known as Gas6, is a human gene encoding the Gas6 protein, which was originally found to be upregulated in growth-arrested fibroblasts. Gas6 is a member of the vitamin K-dependent family of proteins expressed in many human tissues and regulates several biological processes in cells, including proliferation, survival and migration, by binding to its receptors Tyro3, Axl and Mer (TAM). In recent years, the roles of Gas6/TAM signalling in cancer cells and the tumour microenvironment have been studied, and some progress has made in targeted therapy, providing new potential directions for future investigations of cancer treatment. In this review, we introduce the Gas6 and TAM receptors and describe their involvement in different cancers and discuss the roles of Gas6 in cancer cells, the tumour microenvironment and metastasis. Finally, we introduce recent studies on Gas6/TAM targeting in cancer therapy, which will assist in the experimental design of future analyses and increase the potential use of Gas6 as a therapeutic target for cancer.

  14. Chimeric Antigen Receptor (CAR) T cells: Lessons Learned from Targeting of CD19 in B cell malignancies

    Science.gov (United States)

    Hay, Kevin A; Turtle, Cameron J

    2017-01-01

    Adoptive immunotherapy with chimeric antigen receptor-modified T (CAR-T) cells is a rapidly growing therapeutic approach to treating patients with refractory cancer, with over 100 clinical trials in various malignancies in progress. The enthusiasm for CAR-T cells has been driven by the clinical success of CD19-targeted CAR-T therapy in B-cell acute lymphoblastic leukemia, and the promising data in B-cell non-Hodgkin’s lymphoma and chronic lymphocytic leukemia. Despite the success of targeting CD19 with CAR-T cells in early clinical studies, many challenges remain to improve outcomes, reduce toxicity, and determine the appropriate settings for CAR-T cell immunotherapy. Reviewing the lessons learned thus far in CD19 CAR-T cell trials and how some of these challenges may be overcome will help guide the development of CAR-T cell therapy for malignancies of B-cell origin, as well as for other hematopoietic and non-hematopoietic cancers. PMID:28110394

  15. MicroRNA-145 targets YES and STAT1 in colon cancer cells

    DEFF Research Database (Denmark)

    Gregersen, Lea H; Jacobsen, Anders B; Frankel, Lisa

    2010-01-01

    miRNA overexpression. Gene Ontology analysis showed an overrepresentation of genes involved in cell death, cellular growth and proliferation, cell cycle, gene expression and cancer. A number of the identified miRNA targets have previously been implicated in cancer, including YES, FSCN1, ADAM17, BIRC2......, VANGL1 as well as the transcription factor STAT1. Both YES and STAT1 were verified as direct miR-145 targets. CONCLUSIONS/SIGNIFICANCE: The study identifies and validates new cancer-relevant direct targets of miR-145 in colon cancer cells and hereby adds important mechanistic understanding of the tumor......BACKGROUND: MicroRNAs (miRNAs) have emerged as important gene regulators and are recognized as key players in tumorigenesis. miR-145 is reported to be down-regulated in several cancers, but knowledge of its targets in colon cancer remains limited. METHODOLOGY/PRINCIPAL FINDINGS: To investigate...

  16. Membrane Targeting of P-type ATPases in Plant Cells

    International Nuclear Information System (INIS)

    Harper, Jeffrey F.

    2004-01-01

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems

  17. Targeting myeloid cells to the brain using non-myeloablative conditioning.

    Directory of Open Access Journals (Sweden)

    Chotima Böttcher

    Full Text Available Bone marrow-derived cells (BMDCs are able to colonize the central nervous system (CNS at sites of damage. This ability makes BMDCs an ideal cellular vehicle for transferring therapeutic genes/molecules to the CNS. However, conditioning is required for bone marrow-derived myeloid cells to engraft in the brain, which so far has been achieved by total body irradiation (TBI and by chemotherapy (e.g. busulfan treatment. Unfortunately, both regimens massively disturb the host's hematopoietic compartment. Here, we established a conditioning protocol to target myeloid cells to sites of brain damage in mice using non-myeloablative focal head irradiation (HI. This treatment was associated with comparatively low inflammatory responses in the CNS despite cranial radiation doses which are identical to TBI, as revealed by gene expression analysis of cytokines/chemokines such as CCL2, CXCL10, TNF-α and CCL5. HI prior to bone marrow transplantation resulted in much lower levels of blood chimerism defined as the percentage of donor-derived cells in peripheral blood ( 95% or busulfan treatment (> 50%. Nevertheless, HI effectively recruited myeloid cells to the area of motoneuron degeneration in the brainstem within 7 days after facial nerve axotomy. In contrast, no donor-derived cells were detected in the lesioned facial nucleus of busulfan-treated animals up to 2 weeks after transplantation. Our findings suggest that myeloid cells can be targeted to sites of brain damage even in the presence of very low levels of peripheral blood chimerism. We established a novel non-myeloablative conditioning protocol with minimal disturbance of the host's hematopoietic system for targeting BMDCs specifically to areas of pathology in the brain.

  18. Characterization of aldehyde dehydrogenase 1 high ovarian cancer cells: Towards targeted stem cell therapy.

    Science.gov (United States)

    Sharrow, Allison C; Perkins, Brandy; Collector, Michael I; Yu, Wayne; Simons, Brian W; Jones, Richard J

    2016-08-01

    The cancer stem cell (CSC) paradigm hypothesizes that successful clinical eradication of CSCs may lead to durable remission for patients with ovarian cancer. Despite mounting evidence in support of ovarian CSCs, their phenotype and clinical relevance remain unclear. We and others have found high aldehyde dehydrogenase 1 (ALDH(high)) expression in a variety of normal and malignant stem cells, and sought to better characterize ALDH(high) cells in ovarian cancer. We compared ALDH(high) to ALDH(low) cells in two ovarian cancer models representing distinct subtypes: FNAR-C1 cells, derived from a spontaneous rat endometrioid carcinoma, and the human SKOV3 cell line (described as both serous and clear cell subtypes). We assessed these populations for stem cell features then analyzed expression by microarray and qPCR. ALDH(high) cells displayed CSC properties, including: smaller size, quiescence, regenerating the phenotypic diversity of the cell lines in vitro, lack of contact inhibition, nonadherent growth, multi-drug resistance, and in vivo tumorigenicity. Microarray and qPCR analysis of the expression of markers reported by others to enrich for ovarian CSCs revealed that ALDH(high) cells of both models showed downregulation of CD24, but inconsistent expression of CD44, KIT and CD133. However, the following druggable targets were consistently expressed in the ALDH(high) cells from both models: mTOR signaling, her-2/neu, CD47 and FGF18/FGFR3. Based on functional characterization, ALDH(high) ovarian cancer cells represent an ovarian CSC population. Differential gene expression identified druggable targets that have the potential for therapeutic efficacy against ovarian CSCs from multiple subtypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The Role of Dopamine in Anticipatory Pursuit Eye Movements: Insights from Genetic Polymorphisms in Healthy Adults.

    Science.gov (United States)

    Billino, Jutta; Hennig, Jürgen; Gegenfurtner, Karl R

    2016-01-01

    There is a long history of eye movement research in patients with psychiatric diseases for which dysfunctions of neurotransmission are considered to be the major pathologic mechanism. However, neuromodulation of oculomotor control is still hardly understood. We aimed to investigate in particular the impact of dopamine on smooth pursuit eye movements. Systematic variability in dopaminergic transmission due to genetic polymorphisms in healthy subjects offers a noninvasive opportunity to determine functional associations. We measured smooth pursuit in 110 healthy subjects genotyped for two well-documented polymorphisms, the COMT Val 158 Met polymorphism and the SLC6A3 3'-UTR-VNTR polymorphism. Pursuit paradigms were chosen to particularly assess the ability of the pursuit system to initiate tracking when target motion onset is blanked, reflecting the impact of extraretinal signals. In contrast, when following a fully visible target sensory, retinal signals are available. Our results highlight the crucial functional role of dopamine for anticipatory, but not for sensory-driven, pursuit processes. We found the COMT Val 158 Met polymorphism specifically associated with anticipatory pursuit parameters, emphasizing the dominant impact of prefrontal dopamine activity on complex oculomotor control. In contrast, modulation of striatal dopamine activity by the SLC6A3 3'-UTR-VNTR polymorphism had no significant functional effect. Though often neglected so far, individual differences in healthy subjects provide a promising approach to uncovering functional mechanisms and can be used as a bridge to understanding deficits in patients.

  20. A Phenotypic Cell-Binding Screen Identifies a Novel Compound Targeting Triple-Negative Breast Cancer.

    Science.gov (United States)

    Chen, Luxi; Long, Chao; Youn, Jonghae; Lee, Jiyong

    2018-06-11

    We describe a "phenotypic cell-binding screen" by which therapeutic candidate targeting cancer cells of a particular phenotype can be isolated without knowledge of drug targets. Chemical library beads are incubated with cancer cells of the phenotype of interest in the presence of cancer cells lacking the phenotype of interest, and then the beads bound to only cancer cells of the phenotype of interest are selected as hits. We have applied this screening strategy in discovering a novel compound (LC129-8) targeting triple-negative breast cancer (TNBC). LC129-8 displayed highly specific binding to TNBC in cancer cell lines and patient-derived tumor tissues. LC129-8 exerted anti-TNBC activity by inducing apoptosis, inhibiting proliferation, reversing epithelial-mesenchymal transition, downregulating cancer stem cell activity and blocking in vivo tumor growth.

  1. Assessment of single nucleotide polymorphisms in screening 52 DNA repair and cell cycle control genes in Fanconi anemia patients

    Directory of Open Access Journals (Sweden)

    Petrović Sandra

    2015-01-01

    Full Text Available Fanconi anemia (FA is a rare genetically heterogeneous disorder associated with bone marrow failure, birth defects and cancer susceptibility. Apart from the disease- causing mutations in FANC genes, the identification of specific DNA variations, such as single nucleotide polymorphisms (SNPs, in other candidate genes may lead to a better clinical description of this condition enabling individualized treatment with improvement of the prognosis. In this study, we have assessed 95 SNPs located in 52 key genes involved in base excision repair (BER, nucleotide excision repair (NER, mismatch repair (MMR, double strand break (DSB repair and cell cycle control using a DNA repair chip (Asper Biotech, Estonia which includes most of the common variants for the candidate genes. The SNP genotyping was performed in five FA-D2 patients and in one FA-A patient. The polymorphisms studied were synonymous (n=10, nonsynonymous (missense (n=52 and in non-coding regions of the genome (introns and 5 ‘and 3’ untranslated regions (UTR (n=33. Polymorphisms found at the homozygous state are selected for further analysis. Our results have shown a significant inter-individual variability among patients in the type and the frequency of SNPs and also elucidate the need for further studies of polymorphisms located in ATM, APEX APE 1, XRCC1, ERCC2, MSH3, PARP4, NBS1, BARD1, CDKN1B, TP53 and TP53BP1 which may be of great importance for better clinical description of FA. In addition, the present report recommends the use of SNPs as predictive and prognostic genetic markers to individualize therapy of FA patients. [Projekat Ministarstva nauke Republike Srbije, br. 173046

  2. Protocells and their use for targeted delivery of multicomponent cargos to cancer cells

    Science.gov (United States)

    Brinker, C Jeffrey; Ashley, Carlee Erin; Jiang, Xingmao; Liu, Juewen; Peabody, David S; Wharton, Walker Richard; Carnes, Eric; Chackerian, Bryce; Willman, Cheryl L

    2015-03-31

    Various embodiments provide materials and methods for synthesizing protocells for use in targeted delivery of cargo components to cancer cells. In one embodiment, the lipid bilayer can be fused to the porous particle core to form a protocell. The lipid bilayer can be modified with targeting ligands or other ligands to achieve targeted delivery of cargo components that are loaded within the protocell to a target cell, e.g., a type of cancer. Shielding materials can be conjugated to the surface of the lipid bilayer to reduce undesired non-specific binding.

  3. Targeting tissue factor on tumour cells and angiogenic vascular endothelial cells by factor VII-targeted verteporfin photodynamic therapy for breast cancer in vitro and in vivo in mice

    International Nuclear Information System (INIS)

    Hu, Zhiwei; Rao, Benqiang; Chen, Shimin; Duanmu, Jinzhong

    2010-01-01

    The objective of this study was to develop a ligand-targeted photodynamic therapy (tPDT) by conjugating factor VII (fVII) protein with photosensitiser verteporfin in order to overcome the poor selectivity and enhance the effect of non-targeted PDT (ntPDT) for cancer. fVII is a natural ligand for receptor tissue factor (TF) with high affinity and specificity. The reason for targeting receptor TF for the development of tPDT is that TF is a common but specific target on angiogenic tumour vascular endothelial cells (VEC) and many types of tumour cells, including solid tumours and leukaemia. Murine factor VII protein (mfVII) containing a mutation (Lys341Ala) was covalently conjugated via a cross linker EDC with Veterporfin (VP) that was extracted from liposomal Visudyne, and then free VP was separated by Sephadex G50 spin columns. fVII-tPDT using mfVII-VP conjugate, compared to ntPDT, was tested in vitro for the killing of breast cancer cells and VEGF-stimulated VEC and in vivo for inhibiting the tumour growth of breast tumours in a mouse xenograft model. We showed that: (i) fVII protein could be conjugated with VP without affecting its binding activity; (ii) fVII-tPDT could selectively kill TF-expressing breast cancer cells and VEGF-stimulated angiogenic HUVECs but had no side effects on non-TF expressing unstimulated HUVEC, CHO-K1 and 293 cells; (iii) fVII targeting enhanced the effect of VP PDT by three to four fold; (iii) fVII-tPDT induced significantly stronger levels of apoptosis and necrosis than ntPDT; and (iv) fVII-tPDT had a significantly stronger effect on inhibiting breast tumour growth in mice than ntPDT. We conclude that the fVII-targeted VP PDT that we report here is a novel and effective therapeutic with improved selectivity for the treatment of breast cancer. Since TF is expressed on many types of cancer cells including leukaemic cells and selectively on angiogenic tumour VECs, fVII-tPDT could have broad therapeutic applications for other solid cancers

  4. Cutaneous infiltration of plasmacytoid dendritic cells and T regulatory cells in skin lesions of polymorphic light eruption.

    Science.gov (United States)

    Rossi, M T; Arisi, M; Lonardi, S; Lorenzi, L; Ungari, M; Serana, F; Fusano, M; Moggio, E; Calzavara-Pinton, P G; Venturini, M

    2018-02-11

    Polymorphic light eruption (PLE) is the most common autoimmune photodermatosis. Plasmacytoid dendritic cells (PDCs) are important mediators of innate antimicrobial immunity involved in the pathogenesis of many inflammatory skin diseases. In addition to PDCs, regulatory T cells (Tregs) are involved in controlling inflammation and adaptive immunity in skin by their immunosuppressive capacity. The aim of this study was to investigate the presence of PDCs and Tregs in photoexposed skin from PLE compared to healthy skin. Patients with PLE diagnosis and healthy controls were recruited and underwent a photoprovocative test. A 4-mm punch biopsy was taken from the site of positive photoprovocation test reaction, and immunohistochemistry for BDCA2 as marker for PDCs, CD4 and FOXP3 as markers for Tregs was performed. Double immunostain for FOXP3 and CD4 was performed as well. Absolute counts for CD4, BDCA2 and FOXP3 were performed in at least 5 High Power Fields (HPF). Percentage of CD4-, BDCA2- and CD4FOXP3-positive cells over the total inflammatory infiltrate was assessed for each case. We enrolled 23 patients and controls. BDCA2+ cells were present in 91.3% of PLE skin samples and 100% of healthy volunteer. Both in PLE patients and healthy controls, PDCs distribution was mainly dermic (P PLE patients (P PLE patients and healthy controls, Tregs distribution was mainly dermic (P PLE patients compared to controls (P PLE, and dermal distribution of PDCs in PLE skin biopsies seems to confirm a possible overlap with cutaneous lupus erythematosus (CLE). © 2018 European Academy of Dermatology and Venereology.

  5. Analysis of the role of homology arms in gene-targeting vectors in human cells.

    Directory of Open Access Journals (Sweden)

    Ayako Ishii

    Full Text Available Random integration of targeting vectors into the genome is the primary obstacle in human somatic cell gene targeting. Non-homologous end-joining (NHEJ, a major pathway for repairing DNA double-strand breaks, is thought to be responsible for most random integration events; however, absence of DNA ligase IV (LIG4, the critical NHEJ ligase, does not significantly reduce random integration frequency of targeting vector in human cells, indicating robust integration events occurring via a LIG4-independent mechanism. To gain insights into the mechanism and robustness of LIG4-independent random integration, we employed various types of targeting vectors to examine their integration frequencies in LIG4-proficient and deficient human cell lines. We find that the integration frequency of targeting vector correlates well with the length of homology arms and with the amount of repetitive DNA sequences, especially SINEs, present in the arms. This correlation was prominent in LIG4-deficient cells, but was also seen in LIG4-proficient cells, thus providing evidence that LIG4-independent random integration occurs frequently even when NHEJ is functionally normal. Our results collectively suggest that random integration frequency of conventional targeting vectors is substantially influenced by homology arms, which typically harbor repetitive DNA sequences that serve to facilitate LIG4-independent random integration in human cells, regardless of the presence or absence of functional NHEJ.

  6. PET imaging of T cells: Target identification and feasibility assessment.

    Science.gov (United States)

    Auberson, Yves P; Briard, Emmanuelle; Rudolph, Bettina; Kaupmann, Klemen; Smith, Paul; Oberhauser, Berndt

    2018-06-01

    Imaging T cells using positron emission tomography (PET) would be highly useful for diagnosis and monitoring in immunology and oncology patients. There are however no obvious targets that can be used to develop imaging agents for this purpose. We evaluated several potential target proteins with selective expression in T cells, and for which lead molecules were available: PKC , Lck, ZAP70 and Itk. Ultimately, we focused on Itk (interleukin-2-inducible T cell kinase) and identified a tool molecule with properties suitable for in vivo imaging of T cells, (5aR)-5,5-difluoro-5a-methyl-N-(1-((S)-3-(methylsulfonyl)-phenyl)(tetrahydro-2H-pyran-4-yl)methyl)-1H-pyrazol-4-yl)-1,4,4a,5,5a,6-hexahydro-cyclopropa[f]-indazole-3-carboxamide (23). While not having the optimal profile for clinical use, this molecule indicates that it might be possible to develop Itk-selective PET ligands for imaging the distribution of T cells in patients. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Tumor Initiating Cells and Chemoresistance: Which Is the Best Strategy to Target Colon Cancer Stem Cells?

    Directory of Open Access Journals (Sweden)

    Emanuela Paldino

    2014-01-01

    Full Text Available There is an emerging body of evidence that chemoresistance and minimal residual disease result from selective resistance of a cell subpopulation from the original tumor that is molecularly and phenotypically distinct. These cells are called “cancer stem cells” (CSCs. In this review, we analyze the potential targeting strategies for eradicating CSCs specifically in order to develop more effective therapeutic strategies for metastatic colon cancer. These include induction of terminal epithelial differentiation of CSCs or targeting some genes expressed only in CSCs and involved in self-renewal and chemoresistance. Ideal targets could be cell regulators that simultaneously control the stemness and the resistance of CSCs. Another important aspect of cancer biology, which can also be harnessed to create novel broad-spectrum anticancer agents, is the Warburg effect, also known as aerobic glycolysis. Actually, little is yet known with regard to the metabolism of CSCs population, leaving an exciting unstudied avenue in the dawn of the emerging field of metabolomics.

  8. Family Polymorphism

    DEFF Research Database (Denmark)

    Ernst, Erik

    2001-01-01

    safety and flexibility at the level of multi-object systems. We are granted the flexibility of using different families of kinds of objects, and we are guaranteed the safety of the combination. This paper highlights the inability of traditional polymorphism to handle multiple objects, and presents family...... polymorphism as a way to overcome this problem. Family polymorphism has been implemented in the programming language gbeta, a generalized version of Beta, and the source code of this implementation is available under GPL....

  9. Nitric oxide mediated bystander responses induced by microbeam targeted cells

    International Nuclear Information System (INIS)

    Shao, C.; Prise, K.M.; Folkard, M.; Michael, B.D.

    2003-01-01

    Considerable evidence has recently been accumulated in support of the existence of a 'bystander effect', which cells having received no irradiation show biological consequences from their vicinal irradiated cells. The application of microbeams is providing new insights into the radiation-induced bystander effect. The present study found that when a fraction of radioresistant human glioblastoma cells were individually targeted with a precise number of helium ions generated from the Gray Cancer Institute Charged Particle Microbeam, micronucleus (MN) induction significantly exceeded the expected value that was calculated from the number of MN observed when all of the cells were targeted assuming no bystander effect occurring. Even when only a single cell within a population was hit by one helium ion, the MN induction in the population could be increased by 16%. These results provide direct evidence of radiation-induced bystander effect. Moreover, MN was effectively induced in the unirradiated primary human fibroblasts and glioblastoma cells either co-cultured with irradiated cells or treated with the medium harvested from irradiated cells, indicating a signal molecule was produced from the irradiated cells. However, when c-PTIO, a nitric oxide (NO)-specific scavenger, was present in the medium during and after irradiation until MN analysis, the production of MN in all of the above cases was reduced to low levels. Consequently, NO plays an important role in the radiation-induced bystander effect

  10. Immunologic targeting of FOXP3 in inflammatory breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Smita Nair

    Full Text Available The forkhead transcription factor FOXP3 is necessary for induction of regulatory T lymphocytes (Tregs and their immunosuppressive function. We have previously demonstrated that targeting Tregs by vaccination of mice with murine FOXP3 mRNA-transfected dendritic cells (DCs elicits FOXP3-specific T cell responses and enhances tumor immunity. It is clear that FOXP3 expression is not restricted to T-cell lineage and herein, using RT-PCR, flow cytometry, and western immunoblot we demonstrate for the first time that FOXP3 is expressed in inflammatory breast cancer (IBC cells, SUM149 (triple negative, ErbB1-activated and SUM190 (ErbB2-overexpressing. Importantly, FOXP3-specific T cells generated in vitro using human FOXP3 RNA-transfected DCs as stimulators efficiently lyse SUM149 cells. Interestingly, an isogenic model (rSUM149 derived from SUM149 with an enhanced anti-apoptotic phenotype was resistant to FOXP3-specific T cell mediated lysis. The MHC class I cellular processing mechanism was intact in both cell lines at the protein and transcription levels suggesting that the resistance to cytolysis by rSUM149 cells was not related to MHC class I expression or to the MHC class I antigen processing machinery in these cells. Our data suggest that FOXP3 may be an effective tumor target in IBC cells however increased anti-apoptotic signaling can lead to immune evasion.

  11. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Pissuwan, Dakrong [University of Technology Sydney, Institute for Nanoscale Technology (Australia); Valenzuela, Stella M. [University of Technology Sydney, Department of Medical and Molecular Biosciences (Australia)], E-mail: stella.valenzuela@uts.edu.au; Killingsworth, Murray C. [Sydney South West Pathology Service (Australia)], E-mail: murray.killingsworth@swsahs.nsw.gov.au; Xu, Xiaoda; Cortie, Michael B. [University of Technology Sydney, Institute for Nanoscale Technology (Australia)], E-mail: michael.cortie@uts.edu.au

    2007-12-15

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation ({approx}1x10{sup 5} to 1x10{sup 10} W/m{sup 2}). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5x10{sup 2} W/m{sup 2} being sufficient, provided that a total fluence of {approx}30 J/cm{sup 2} is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm{sup 2} resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells.

  12. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods

    International Nuclear Information System (INIS)

    Pissuwan, Dakrong; Valenzuela, Stella M.; Killingsworth, Murray C.; Xu, Xiaoda; Cortie, Michael B.

    2007-01-01

    Gold nanorods manifest a readily tunable longitudinal plasmon resonance with light and consequently have potential for use in photothermal therapeutics. Recent work by others has shown how gold nanoshells and rods can be used to target cancer cells, which can then be destroyed using relatively high power laser radiation (∼1x10 5 to 1x10 10 W/m 2 ). Here we extend this concept to demonstrate how gold nanorods can be modified to bind to target macrophage cells, and show that high intensity laser radiation is not necessary, with even 5x10 2 W/m 2 being sufficient, provided that a total fluence of ∼30 J/cm 2 is delivered. We used the murine cell line RAW 264.7 and the monoclonal antibody CD11b, raised against murine macrophages, as our model system and a 5 mW solid state diode laser as our energy source. Exposure of the cells labeled with gold nanorods to a laser fluence of 30 J/cm 2 resulted in 81% cell death compared to only 0.9% in the control, non-labeled cells

  13. Multifunctional Polymer Nanoparticles for Dual Drug Release and Cancer Cell Targeting

    Directory of Open Access Journals (Sweden)

    Yu-Han Wen

    2017-06-01

    Full Text Available Multifunctional polymer nanoparticles have been developed for cancer treatment because they could be easily designed to target cancer cells and to enhance therapeutic efficacy according to cancer hallmarks. In this study, we synthesized a pH-sensitive polymer, poly(methacrylic acid-co-histidine/doxorubicin/biotin (HBD in which doxorubicin (DOX was conjugated by a hydrazone bond to encapsulate an immunotherapy drug, imiquimod (IMQ, to form dual cancer-targeting and dual drug-loaded nanoparticles. At low pH, polymeric nanoparticles could disrupt and simultaneously release DOX and IMQ. Our experimental results show that the nanoparticles exhibited pH-dependent drug release behavior and had an ability to target cancer cells via biotin and protonated histidine.

  14. Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jameel Ahmad Khan

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer related deaths in America. Monoclonal antibodies are a viable treatment option for inhibiting cancer growth. Tumor specific drug delivery could be achieved utilizing these monoclonal antibodies as targeting agents. This type of designer therapeutic is evolving and with the use of gold nanoparticles it is a promising approach to selectively deliver chemotherapeutics to malignant cells. Gold nanoparticles (GNPs are showing extreme promise in current medicinal research. GNPs have been shown to non-invasively kill tumor cells by hyperthermia using radiofrequency. They have also been implemented as early detection agents due to their unique X-ray contrast properties; success was revealed with clear delineation of blood capillaries in a preclinical model by CT (computer tomography. The fundamental parameters for intelligent design of nanoconjugates are on the forefront. The goal of this study is to define the necessary design parameters to successfully target pancreatic cancer cells.The nanoconjugates described in this study were characterized with various physico-chemical techniques. We demonstrate that the number of cetuximab molecules (targeting agent on a GNP, the hydrodynamic size of the nanoconjugates, available reactive surface area and the ability of the nanoconjugates to sequester EGFR (epidermal growth factor receptor, all play critical roles in effectively targeting tumor cells in vitro and in vivo in an orthotopic model of pancreatic cancer.Our results suggest the specific targeting of tumor cells depends on a number of crucial components 1 targeting agent to nanoparticle ratio 2 availability of reactive surface area on the nanoparticle 3 ability of the nanoconjugate to bind the target and 4 hydrodynamic diameter of the nanoconjugate. We believe this study will help define the design parameters for formulating better strategies for specifically targeting tumors with nanoparticle

  15. Simultaneous targeting of prostate stem cell antigen and prostate-specific membrane antigen improves the killing of prostate cancer cells using a novel modular T cell-retargeting system.

    Science.gov (United States)

    Arndt, Claudia; Feldmann, Anja; Koristka, Stefanie; Cartellieri, Marc; Dimmel, Maria; Ehninger, Armin; Ehninger, Gerhard; Bachmann, Michael

    2014-09-01

    Recently, we described a novel modular platform technology in which T cell-recruitment and tumor-targeting domains of conventional bispecific antibodies are split to independent components, a universal effector module (EM) and replaceable monospecific/monovalent target modules (TMs) that form highly efficient T cell-retargeting complexes. Theoretically, our unique strategy should allow us to simultaneously retarget T cells to different tumor antigens by combining the EM with two or more different monovalent/monospecific TMs or even with bivalent/bispecific TMs, thereby overcoming limitations of a monospecific treatment such as the selection of target-negative tumor escape variants. In order to advance our recently introduced prostate stem cell antigen (PSCA)-specific modular system for a dual-targeting of prostate cancer cells, two additional TMs were constructed: a monovalent/monospecific TM directed against the prostate-specific membrane antigen (PSMA) and a bivalent/bispecific TM (bsTM) with specificity for PSMA and PSCA. The functionality of the novel dual-targeting strategies was analyzed by performing T cell activation and chromium release assays. Similar to the PSCA-specific modular system, the novel PSMA-specific modular system mediates an efficient target-dependent and -specific tumor cell lysis at low E:T ratios and picomolar Ab concentrations. Moreover, by combination of the EM with either the bispecific TM directed to PSMA and PSCA or both monospecifc TMs directed to either PSCA or PSMA, dual-specific targeting complexes were formed which allowed us to kill potential escape variants expressing only one or the other target antigen. Overall, the novel modular system represents a promising tool for multiple tumor targeting. © 2014 Wiley Periodicals, Inc.

  16. Polymorphous computing fabric

    Science.gov (United States)

    Wolinski, Christophe Czeslaw [Los Alamos, NM; Gokhale, Maya B [Los Alamos, NM; McCabe, Kevin Peter [Los Alamos, NM

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  17. Nanoscale mapping and organization analysis of target proteins on cancer cells from B-cell lymphoma patients

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mi [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiao, Xiubin [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China); Liu, Lianqing, E-mail: lqliu@sia.cn [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Xi, Ning, E-mail: xin@egr.msu.edu [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wang, Yuechao; Dong, Zaili [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, Weijing, E-mail: zhangwj3072@163.com [Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071 (China)

    2013-11-01

    CD20, a membrane protein highly expressed on most B-cell lymphomas, is an effective target demonstrated in clinical practice for treating B-cell non-Hodgkin's lymphoma (NHL). Rituximab is a monoclonal antibody against CD20. In this work, we applied atomic force microscopy (AFM) to map the nanoscale distribution of CD20 molecules on the surface of cancer cells from clinical B-cell NHL patients under the assistance of ROR1 fluorescence recognition (ROR1 is a specific cell surface marker exclusively expressed on cancer cells). First, the ROR1 fluorescence labeling experiments showed that ROR1 was expressed on cancer cells from B-cell lymphoma patients, but not on normal cells from healthy volunteers. Next, under the guidance of ROR1 fluorescence, the rituximab-conjugated AFM tips were moved to cancer cells to image the cellular morphologies and detect the CD20-rituximab interactions on the cell surfaces. The distribution maps of CD20 on cancer cells were constructed by obtaining arrays of (16×16) force curves in local areas (500×500 nm{sup 2}) on the cell surfaces. The experimental results provide a new approach to directly investigate the nanoscale distribution of target protein on single clinical cancer cells. - Highlights: • Cancer cells were recognized from healthy cells by ROR1 fluorescence labeling. • The nanoscale distribution of CD20 on cancer cells was characterized. • The distribution of CD20 was non-uniform on the surface of cancer cells.

  18. An examination of the Apo-1/Fas promoter Mva I polymorphism in Japanese patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Yabe Ichiro

    2002-08-01

    Full Text Available Abstract Background The Apo-1/Fas (CD95 molecule is an apoptosis-signaling cell surface receptor belonging to the tumor necrosis factor (TNF receptor family. Both Fas and Fas ligand (FasL are expressed in activated mature T cells, and prolonged cell activation induces susceptibility to Fas-mediated apoptosis. The Apo-1/Fas gene is located in a chromosomal region that shows linkage in multiple sclerosis (MS genome screens, and studies indicate that there is aberrant expression of the Apo-1/Fas molecule in MS. Methods Mva I polymorphism on the Apo-1/Fas promoter gene was detected by PCR-RFLP from the DNA of 114 Japanese patients with conventional MS and 121 healthy controls. We investigated the association of the Mva I polymorphism in Japanese MS patients using a case-control association study design. Results We found no evidence that the polymorphism contributes to susceptibility to MS. Furthermore, there was no association between Apo-1/Fas gene polymorphisms and clinical course (relapsing-remitting course or secondary-progressive course. No significant association was observed between Apo-1/Fas gene polymorphisms and the age at disease onset. Conclusions Overall, our findings suggest that Apo-1/Fas promoter gene polymorphisms are not conclusively related to susceptibility to MS or the clinical characteristics of Japanese patients with MS.

  19. Targeting of phage particles towards endothelial cells by antibodies selected through a multi-parameter selection strategy.

    Science.gov (United States)

    Mandrup, Ole A; Lykkemark, Simon; Kristensen, Peter

    2017-02-10

    One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.

  20. Target-specific delivery of doxorubicin to human glioblastoma cell ...

    Indian Academy of Sciences (India)

    Abdullah Tahir Bayraç

    2018-01-29

    Jan 29, 2018 ... was previously selected for specific recognition of glioblastoma and represented many advantageous ... antigens, receptors or any 3-D structure on the target cells ..... both PSMA (?) and PSMA (-) prostate cancers.

  1. Imaging and Targeting of Hypoxic Tumor Cells with Use of HIF-1-2

    International Nuclear Information System (INIS)

    Kizaka-Kondoh, Shinae; Harada, Hiroshi; Tanaka, Shotaro; Hiraoka, Masahiro

    2006-01-01

    This paper describes imaging (visualization) of transplanted tumor cells under hypoxia in vivo and molecular targeting to kill those cells by inducing their apoptosis. HIF (hypoxia inducible factor) concerned with angiogenesis is induced specifically in hypoxic tumor cells and its activity can be visualized by transfection of reporter vector construct of fluorescent protein GFP or luciferase. Authors established the transfected tumor cells with the plasmid p5HRE-luciferase and when transplanted in the nude mouse, those cells emitted light dependently to their hypoxic conditions, which could be visualized by in vivo imaging system (IVIS) with CCD camera. Authors prepared the oxygen-dependent degradation-procaspase 3-fusion protein (TOP3) to target the hypoxic tumor cells for enhancing their apoptotic signaling, whose apoptosis was actually observed by the IVIS. Reportedly, radiation transiently activates HIF-1 and combination treatment of radiation and TOP3 resulted in the enhanced death of tumor cells. Interestingly, the suppression of tumor growth lasted longer than expected, probably due to inhibition of angiogenesis. Authors called this anti-tumor strategy as the micro-environmental targeting. (T.I.)

  2. Intracellular CXCR4+ cell targeting with T22-empowered protein-only nanoparticles

    Directory of Open Access Journals (Sweden)

    Unzueta U

    2012-08-01

    Full Text Available Ugutz Unzueta,1–3 María Virtudes Céspedes,3,4 Neus Ferrer-Miralles,1–3 Isolda Casanova,3,4 Juan Cedano,5 José Luis Corchero,1–3 Joan Domingo-Espín,1–3 Antonio Villaverde,1–3 Ramón Mangues,3,4 Esther Vázquez1–31Institut de Biotecnologia i de Biomedicina, 2Departamento de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 3CIBER en Bioingeniería, Biomateriales y Nanomedicina, Bellaterra, Barcelona, 4Oncogenesis and Antitumor Drug Group, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; 5Laboratory of Immunology, Regional Norte, Universidad de la Republica, Salto, UruguayBackground: Cell-targeting peptides or proteins are appealing tools in nanomedicine and innovative medicines because they increase the local drug concentration and reduce potential side effects. CXC chemokine receptor 4 (CXCR4 is a cell surface marker associated with several severe human pathologies, including colorectal cancer, for which intracellular targeting agents are currently missing.Results: Four different peptides that bind CXCR4 were tested for their ability to internalize a green fluorescent protein-based reporter nanoparticle into CXCR4+ cells. Among them, only the 18 mer peptide T22, an engineered segment derivative of polyphemusin II from the horseshoe crab, efficiently penetrated target cells via a rapid, receptor-specific endosomal route. This resulted in accumulation of the reporter nanoparticle in a fully fluorescent and stable form in the perinuclear region of the target cells, without toxicity either in cell culture or in an in vivo model of metastatic colorectal cancer.Conclusion: Given the urgent demand for targeting agents in the research, diagnosis, and treatment of CXCR4-linked diseases, including colorectal cancer and human immunodeficiency virus infection, T22 appears to be a promising tag for the intracellular delivery of protein drugs, nanoparticles

  3. Odin (ANKS1A is a Src family kinase target in colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Feller Stephan M

    2008-10-01

    Full Text Available Abstract Background Src family kinases (SFK are implicated in the development of some colorectal cancers (CRC. One SFK member, Lck, is not detectable in normal colonic epithelium, but becomes aberrantly expressed in a subset of CRCs. Although SFK have been extensively studied in fibroblasts and different types of immune cells, their physical and functional targets in many epithelial cancers remain poorly characterised. Results 64 CRC cell lines were tested for expression of Lck. SW620 CRC cells, which express high levels of Lck and also contain high basal levels of tyrosine phosphorylated (pY proteins, were then analysed to identify novel SFK targets. Since SH2 domains of SFK are known to often bind substrates after phosphorylation by the kinase domain, the LckSH2 was compared with 14 other SH2s for suitability as affinity chromatography reagent. Mass spectrometric analyses of LckSH2-purified pY proteins subsequently identified several proteins readily known as SFK kinase substrates, including cortactin, Tom1L1 (SRCASM, GIT1, vimentin and AFAP1L2 (XB130. Additional proteins previously reported as substrates of other tyrosine kinase were also detected, including the EGF and PDGF receptor target Odin. Odin was further analysed and found to contain substantially less pY upon inhibition of SFK activity in SW620 cells, indicating that it is a formerly unknown SFK target in CRC cells. Conclusion Rapid identification of known and novel SFK targets in CRC cells is feasible with SH2 domain affinity chromatography. The elucidation of new SFK targets like Odin in epithelial cancer cells is expected to lead to novel insight into cancer cell signalling mechanisms and may also serve to indicate new biomarkers for monitoring tumor cell responses to drug treatments.

  4. MicroRNA-429 induces tumorigenesis of human non-small cell lung cancer cells and targets multiple tumor suppressor genes

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Yaoguo; Xu, Shidong; Ma, Jianqun; Wu, Jun [Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081 (China); Jin, Shi; Cao, Shoubo [Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081 (China); Yu, Yan, E-mail: yuyan@hrbmu.edu.cn [Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang 150081 (China)

    2014-07-18

    Highlights: • MiR-429 expression is upregulated in non-small cell lung cancer (NSCLC). • MiR-429 inhibits PTEN, RASSF8 and TIMP2 expression. • MiR-429 promotes metastasis and proliferation. • We report important regulatory mechanisms involved in NSCLC progression. • MiR-429 is a potential therapeutic target and diagnostic marker. - Abstract: Lung cancer is the major cause of cancer death globally. MicroRNAs are evolutionally conserved small noncoding RNAs that are critical for the regulation of gene expression. Aberrant expression of microRNA (miRNA) has been implicated in cancer initiation and progression. In this study, we demonstrated that the expression of miR-429 are often upregulated in non-small cell lung cancer (NSCLC) compared with normal lung tissues, and its expression level is also increased in NSCLC cell lines compared with normal lung cells. Overexpression of miR-429 in A549 NSCLC cells significantly promoted cell proliferation, migration and invasion, whereas inhibition of miR-429 inhibits these effects. Furthermore, we demonstrated that miR-429 down-regulates PTEN, RASSF8 and TIMP2 expression by directly targeting the 3′-untranslated region of these target genes. Taken together, our results suggest that miR-429 plays an important role in promoting the proliferation and metastasis of NSCLC cells and is a potential target for NSCLC therapy.

  5. Robotic Automation of In Vivo Two-Photon Targeted Whole-Cell Patch-Clamp Electrophysiology.

    Science.gov (United States)

    Annecchino, Luca A; Morris, Alexander R; Copeland, Caroline S; Agabi, Oshiorenoya E; Chadderton, Paul; Schultz, Simon R

    2017-08-30

    Whole-cell patch-clamp electrophysiological recording is a powerful technique for studying cellular function. While in vivo patch-clamp recording has recently benefited from automation, it is normally performed "blind," meaning that throughput for sampling some genetically or morphologically defined cell types is unacceptably low. One solution to this problem is to use two-photon microscopy to target fluorescently labeled neurons. Combining this with robotic automation is difficult, however, as micropipette penetration induces tissue deformation, moving target cells from their initial location. Here we describe a platform for automated two-photon targeted patch-clamp recording, which solves this problem by making use of a closed loop visual servo algorithm. Our system keeps the target cell in focus while iteratively adjusting the pipette approach trajectory to compensate for tissue motion. We demonstrate platform validation with patch-clamp recordings from a variety of cells in the mouse neocortex and cerebellum. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Intracellular Delivery of Nanobodies for Imaging of Target Proteins in Live Cells.

    Science.gov (United States)

    Röder, Ruth; Helma, Jonas; Preiß, Tobias; Rädler, Joachim O; Leonhardt, Heinrich; Wagner, Ernst

    2017-01-01

    Cytosolic delivery of nanobodies for molecular target binding and fluorescent labeling in living cells. Fluorescently labeled nanobodies were formulated with sixteen different sequence-defined oligoaminoamides. The delivery of formulated anti-GFP nanobodies into different target protein-containing HeLa cell lines was investigated by flow cytometry and fluorescence microscopy. Nanoparticle formation was analyzed by fluorescence correlation spectroscopy. The initial oligomer screen identified two cationizable four-arm structured oligomers (734, 735) which mediate intracellular nanobody delivery in a receptor-independent (734) or folate receptor facilitated (735) process. The presence of disulfide-forming cysteines in the oligomers was found critical for the formation of stable protein nanoparticles of around 20 nm diameter. Delivery of labeled GFP nanobodies or lamin nanobodies to their cellular targets was demonstrated by fluorescence microscopy including time lapse studies. Two sequence-defined oligoaminoamides with or without folate for receptor targeting were identified as effective carriers for intracellular nanobody delivery, as exemplified by GFP or lamin binding in living cells. Due to the conserved nanobody core structure, the methods should be applicable for a broad range of nanobodies directed to different intracellular targets.

  7. Targeting melanoma stem cells with the Vitamin E derivative δ-tocotrienol.

    Science.gov (United States)

    Marzagalli, Monica; Moretti, Roberta Manuela; Messi, Elio; Marelli, Marina Montagnani; Fontana, Fabrizio; Anastasia, Alessia; Bani, Maria Rosa; Beretta, Giangiacomo; Limonta, Patrizia

    2018-01-12

    The prognosis of metastatic melanoma is very poor, due to the development of drug resistance. Cancer stem cells (CSCs) may play a crucial role in this mechanism, contributing to disease relapse. We first characterized CSCs in melanoma cell lines. We observed that A375 (but not BLM) cells are able to form melanospheres and show CSCs traits: expression of the pluripotency markers SOX2 and KLF4, higher invasiveness and tumor formation capability in vivo with respect to parental adherent cells. We also showed that a subpopulation of autofluorescent cells expressing the ABCG2 stem cell marker is present in the A375 spheroid culture. Based on these data, we investigated whether δ-TT might target melanoma CSCs. We demonstrated that melanoma cells escaping the antitumor activity of δ-TT are completely devoid of the ability to form melanospheres. In contrast, cells that escaped vemurafenib treatment show a higher ability to form melanospheres than control cells. δ-TT also induced disaggregation of A375 melanospheres and reduced the spheroidogenic ability of sphere-derived cells, reducing the expression of the ABCG2 marker. These data demonstrate that δ-TT exerts its antitumor activity by targeting the CSC subpopulation of A375 melanoma cells and might represent a novel chemopreventive/therapeutic strategy against melanoma.

  8. Size and targeting to PECAM vs ICAM control endothelial delivery, internalization and protective effect of multimolecular SOD conjugates.

    Science.gov (United States)

    Shuvaev, Vladimir V; Muro, Silvia; Arguiri, Evguenia; Khoshnejad, Makan; Tliba, Samira; Christofidou-Solomidou, Melpo; Muzykantov, Vladimir R

    2016-07-28

    Controlled endothelial delivery of SOD may alleviate abnormal local surplus of superoxide involved in ischemia-reperfusion, inflammation and other disease conditions. Targeting SOD to endothelial surface vs. intracellular compartments is desirable to prevent pathological effects of external vs. endogenous superoxide, respectively. Thus, SOD conjugated with antibodies to cell adhesion molecule PECAM (Ab/SOD) inhibits pro-inflammatory signaling mediated by endogenous superoxide produced in the endothelial endosomes in response to cytokines. Here we defined control of surface vs. endosomal delivery and effect of Ab/SOD, focusing on conjugate size and targeting to PECAM vs. ICAM. Ab/SOD enlargement from about 100 to 300nm enhanced amount of cell-bound SOD and protection against extracellular superoxide. In contrast, enlargement inhibited endocytosis of Ab/SOD and diminished mitigation of inflammatory signaling of endothelial superoxide. In addition to size, shape is important: endocytosis of antibody-coated spheres was more effective than that of polymorphous antibody conjugates. Further, targeting to ICAM provides higher endocytic efficacy than targeting to PECAM. ICAM-targeted Ab/SOD more effectively mitigated inflammatory signaling by intracellular superoxide in vitro and in animal models, although total uptake was inferior to that of PECAM-targeted Ab/SOD. Therefore, both geometry and targeting features of Ab/SOD conjugates control delivery to cell surface vs. endosomes for optimal protection against extracellular vs. endosomal oxidative stress, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Hatada, Seigo; Subramanian, Aparna; Mandefro, Berhan; Ren, Songyang; Kim, Ho Won; Tang, Jie; Funari, Vincent; Baloh, Robert H; Sareen, Dhruv; Arumugaswami, Vaithilingaraja; Svendsen, Clive N

    2015-09-01

    Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells. ©AlphaMed Press.

  10. Mitochondrial targets of photodynamic therapy and their contribution to cell death

    Science.gov (United States)

    Oleinick, Nancy L.; Usuda, Jitsuo; Xue, Liang-yan; Azizuddin, Kashif; Chiu, Song-mao; Lam, Minh C.; Morris, Rachel L.; Nieminen, Anna-Liisa

    2002-06-01

    In response to photodynamic therapy (PDT), many cells in culture or within experimental tumors are eliminated by apoptosis. PDT with photosensitizers that localize in or target mitochondria, such as the phthalocyanine Pc 4, causes prompt release of cytochrome c into the cytoplasm and activation of caspases-9 and -3, among other caspases, that are responsible for initiating cell degradation. Some cells appear resistant to apoptosis after PDT; however, if they have sustained sufficient damage, they will die by a necrotic process or through a different apoptotic pathway. In the case of PDT, the distinction between apoptosis and necrosis may be less important than the mechanism that triggers both processes, since critical lethal damage appears to occur during treatment and does not require the major steps in apoptosis to be expressed. We earlier showed, for example, that human breast cancer MCF-7 cells that lack caspase-3 are resistant to the induction of apoptosis by PDT, but are just as sensitive to the loss of clonogenicity as MCF-7 cells stably expressing transfected procaspase-3. Many photosensitizers that target mitochondria specifically attack the anti-apoptotic protein Bcl-2, generating a variety of crosslinked and cleaved photoproducts. Recent evidence suggests that the closely related protein Bcl-xL is also a target of Pc 4-PDT. Transient transfection of an expression vector encoding deletion mutants of Bcl-2 have identified the critical sensitive site in the protein that is required for photodamage. This region contains two alpha helices that form a secondary membrane anchorage site and are thought to be responsible for pore formation by Bcl-2. As specific protein targets are identified, we are becoming better able to model the critical events in PDT-induced cell death.

  11. MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jian; Xiao, Gelei [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China); Peng, Gang [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Liu, Dingyang [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China); Wang, Zeyou [Cancer Research Institute, Central South University, Changsha, Hunan 410008 (China); Liao, Yiwei; Liu, Qing [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China); Wu, Minghua [The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China); Cancer Research Institute, Central South University, Changsha, Hunan 410008 (China); Yuan, Xianrui, E-mail: xry69@163.com [Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); The Institute of Skull Base Surgery & Neuro-oncology at Hunan, Changsha, Hunan 410008 (China)

    2015-02-06

    Highlights: • Expression of miR-125a-5p is inversely correlated with that of TAZ in glioma cells. • MiR-125a-5p represses TAZ expression in glioma cells. • MiR-125a-5p directly targets the 3′ UTR of TAZ mRNA and promotes its degradation. • MiR-125a-5p represses CTGF and survivin via TAZ, and inhibits glioma cell growth. • MiR-125a-5p inhibits the stem cell features of HFU-251 MG cells. - Abstract: Glioblastoma (GBM) is the most lethal brain tumor due to the resistance to conventional therapies, such as radiotherapy and chemotherapy. TAZ, an important mediator of the Hippo pathway, was found to be up-regulated in diverse cancers, including in GBM, and plays important roles in tumor initiation and progression. However, little is known about the regulation of TAZ expression in tumors. In this study, we found that miR-125a-5p is an important regulator of TAZ in glioma cells by directly targeting the TAZ 3′ UTR. MiR-125a-5p levels are inversely correlated with that of TAZ in normal astrocytes and a panel of glioma cell lines. MiR-125a-5p represses the expression of TAZ target genes, including CTGF and survivin, and inhibits cell proliferation and induces the differentiation of GBM cells; whereas over-expression of TAZ rescues the effects of miR-125a-5p. This study revealed a mechanism for TAZ deregulation in glioma cells, and also demonstrated a tumor suppressor role of miR-125a-5p in glioblastoma cells.

  12. MiRNA-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting TAZ

    International Nuclear Information System (INIS)

    Yuan, Jian; Xiao, Gelei; Peng, Gang; Liu, Dingyang; Wang, Zeyou; Liao, Yiwei; Liu, Qing; Wu, Minghua; Yuan, Xianrui

    2015-01-01

    Highlights: • Expression of miR-125a-5p is inversely correlated with that of TAZ in glioma cells. • MiR-125a-5p represses TAZ expression in glioma cells. • MiR-125a-5p directly targets the 3′ UTR of TAZ mRNA and promotes its degradation. • MiR-125a-5p represses CTGF and survivin via TAZ, and inhibits glioma cell growth. • MiR-125a-5p inhibits the stem cell features of HFU-251 MG cells. - Abstract: Glioblastoma (GBM) is the most lethal brain tumor due to the resistance to conventional therapies, such as radiotherapy and chemotherapy. TAZ, an important mediator of the Hippo pathway, was found to be up-regulated in diverse cancers, including in GBM, and plays important roles in tumor initiation and progression. However, little is known about the regulation of TAZ expression in tumors. In this study, we found that miR-125a-5p is an important regulator of TAZ in glioma cells by directly targeting the TAZ 3′ UTR. MiR-125a-5p levels are inversely correlated with that of TAZ in normal astrocytes and a panel of glioma cell lines. MiR-125a-5p represses the expression of TAZ target genes, including CTGF and survivin, and inhibits cell proliferation and induces the differentiation of GBM cells; whereas over-expression of TAZ rescues the effects of miR-125a-5p. This study revealed a mechanism for TAZ deregulation in glioma cells, and also demonstrated a tumor suppressor role of miR-125a-5p in glioblastoma cells

  13. Novel targets for sensitizing breast cancer cells to TRAIL-induced apoptosis with siRNA delivery.

    Science.gov (United States)

    Thapa, Bindu; Bahadur Kc, Remant; Uludağ, Hasan

    2018-02-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in variety of cancer cells without affecting most normal cells, which makes it a promising agent for cancer therapy. However, TRAIL therapy is clinically not effective due to resistance induction. To identify novel regulators of TRAIL that can aid in therapy, protein targets whose silencing sensitized breast cancer cells against TRAIL were screened with an siRNA library against 446 human apoptosis-related proteins in MDA-231 cells. Using a cationic lipopolymer (PEI-αLA) for delivery of library members, 16 siRNAs were identified that sensitized the TRAIL-induced death in MDA-231 cells. The siRNAs targeting BCL2L12 and SOD1 were further evaluated based on the novelty and their ability to sensitize TRAIL induced cell death. Silencing both targets sensitized TRAIL-mediated cell death in MDA-231 cells as well as TRAIL resistant breast cancer cells, MCF-7. Combination of TRAIL and siRNA silencing BCL2L12 had no effect in normal human umbilical vein cells and human bone marrow stromal cell. The silencing of BCL2L12 and SOD1 enhanced TRAIL-mediated apoptosis in MDA-231 cells via synergistically activating capsase-3 activity. Hence, here we report siRNAs targeting BCL2L12 and SOD1 as a novel regulator of TRAIL-induced cell death in breast cancer cells, providing a new approach for enhancing TRAIL therapy for breast cancer. The combination of siRNA targeting BCL2L12 and TRAIL can be a highly effective synergistic pair in breast cancer cells with minimal effect on the non-transformed cells. © 2017 UICC.

  14. Serotonin transporter evolution and impact of polymorphic transcriptional regulation

    DEFF Research Database (Denmark)

    Søeby, Karen; Larsen, Svend Ask; Olsen, Line

    2005-01-01

    The serotonin transporter (SERT) is the primary drug target in the current antidepressant therapy. A functional polymorphism in the 2nd intron of the 5HTT gene encoding the SERT has been identified and associated with susceptibility to affective disorders and treatment response to antidepressants...... in the VNTRs of all mammalian SERT genes. The number of these putative binding sites varies proportionally to the length of the VNTR. We propose that the intronic VNTR have been selectively targeted through mammalian evolution to finetune transcriptional regulation of the serotonin expression....

  15. Virulence properties and random amplification of polymorphic DNA ...

    African Journals Online (AJOL)

    Genotypic and phenotypic characterization as well as studies on the virulence factors of Candida albicans isolates obtained from oral cavity of patients was carried out using random amplified polymorphic DNA (RAPD) fingerprinting and epithelial cells adherence assay, respectively. RAPD patterns revealed the presence of ...

  16. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector.

    Directory of Open Access Journals (Sweden)

    Briana Jill Williams

    Full Text Available Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs with prostate specific membrane antigen (PSMA have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells. To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ. Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.

  17. Polymorphisms in promoter sequences of MDM2, p53, and p16INK4a genes in normal Japanese individuals

    Directory of Open Access Journals (Sweden)

    Yasuhito Ohsaka

    2010-01-01

    Full Text Available Research has been conducted to identify sequence polymorphisms of gene promoter regions in patients and control subjects, including normal individuals, and to determine the influence of these polymorphisms on transcriptional regulation in cells that express wild-type or mutant p53. In this study we isolated genomic DNA from whole blood of healthy Japanese individuals and sequenced the promoter regions of the MDM2, p53, and p16INK4a genes. We identified polymorphisms comprising 3 nucleotide substitutions at exon 1 and intron 1 regions of the MDM2 gene and 1 nucleotide insertion at a poly(C nucleotide position in the p53 gene. The Japanese individuals also exhibited p16INK4a polymorphisms at several positions, including position -191. Reporter gene analysis by using luciferase revealed that the polymorphisms of MDM2, p53, and p16INK4a differentially altered luciferase activities in several cell lines, including the Colo320DM, U251, and T98G cell lines expressing mutant p53. Our results indicate that the promoter sequences of these genes differ among normal Japanese individuals and that polymorphisms can alter gene transcription activity.

  18. A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab.

    Science.gov (United States)

    Fujii, Rika; Schlom, Jeffrey; Hodge, James W

    2018-05-01

    OBJECTIVE Chordoma is a rare bone tumor derived from the notochord and is resistant to conventional therapies such as chemotherapy, radiotherapy, and targeting therapeutics. Expression of epidermal growth factor receptor (EGFR) in a large proportion of chordoma specimens indicates a potential target for therapeutic intervention. In this study the authors investigated the potential role of the anti-EGFR antibody cetuximab in immunotherapy for chordoma. METHODS Since cetuximab is a monoclonal antibody of the IgG1 isotype, it has the potential to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) employing natural killer (NK) cells as effectors. Polymorphisms in the CD16 allele expressed on NK cells have been shown to influence the degree of ADCC of tumor cells, with the high-affinity valine (V)/V allele being responsible for more lysis than the V/phenylalanine (F) or FF allele. Unfortunately, however, only approximately 10% of the population expresses the VV allele on NK cells. An NK cell line, NK-92, has now been engineered to endogenously express IL-2 and the high-affinity CD16 allele. These irradiated high-affinity (ha)NK cells were analyzed for lysis of chordoma cells with and without cetuximab, and the levels of lysis observed in ADCC were compared with those of NK cells from donors expressing the VV, VF, and FF alleles. RESULTS Here the authors demonstrate for the first time 1) that cetuximab in combination with NK cells can mediate ADCC of chordoma cells; 2) the influence of the NK CD16 polymorphism in cetuximab-mediated ADCC for chordoma cell lysis; 3) that engineered haNK cells-that is, cells transduced to express the CD16 V158 FcγRIIIa receptor-bind cetuximab with similar affinity to normal NK cells expressing the high-affinity VV allele; and 4) that irradiated haNK cells induce ADCC with cetuximab in chordoma cells. CONCLUSIONS These studies provide rationale for the use of cetuximab in combination with irradiated haNK cells for therapy for

  19. Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA

    DEFF Research Database (Denmark)

    Ditlev, Sisse B; Florea, Raluca; Nielsen, Morten A

    2014-01-01

    adhesion. However, the development of a VAR2CSA adhesion-blocking vaccine remains challenging due to (i) the large size of VAR2CSA and (ii) the extensive immune selection for polymorphisms and thereby non-neutralizing B-cell epitopes. Camelid heavy-chain-only antibodies (HcAbs) are known to target epitopes...... that are less immunogenic to classical IgG and, due to their small size and protruding antigen-binding loop, able to reach and recognize cryptic, conformational epitopes which are inaccessible to conventional antibodies. The variable heavy chain (VHH) domain is the antigen-binding site of camelid HcAbs, the so...

  20. PSMA-targeted bispecific Fab conjugates that engage T cells.

    Science.gov (United States)

    Patterson, James T; Isaacson, Jason; Kerwin, Lisa; Atassi, Ghazi; Duggal, Rohit; Bresson, Damien; Zhu, Tong; Zhou, Heyue; Fu, Yanwen; Kaufmann, Gunnar F

    2017-12-15

    Bioconjugate formats provide alternative strategies for antigen targeting with bispecific antibodies. Here, PSMA-targeted Fab conjugates were generated using different bispecific formats. Interchain disulfide bridging of an αCD3 Fab enabled installation of either the PSMA-targeting small molecule DUPA (SynFab) or the attachment of an αPSMA Fab (BisFab) by covalent linkage. Optimization of the reducing conditions was critical for selective interchain disulfide reduction and good bioconjugate yield. Activity of αPSMA/CD3 Fab conjugates was tested by in vitro cytotoxicity assays using prostate cancer cell lines. Both bispecific formats demonstrated excellent potency and antigen selectivity. Copyright © 2017. Published by Elsevier Ltd.

  1. Pretargeting vs. direct targeting of human betalox5 islet cells subcutaneously implanted in mice using an anti-human islet cell antibody

    International Nuclear Information System (INIS)

    Liu Guozheng; Dou Shuping; Akalin, Ali; Rusckowski, Mary; Streeter, Philip R.; Shultz, Leonard D.; Greiner, Dale L.

    2012-01-01

    Introduction: We previously demonstrated MORF/cMORF pretargeting of human islets and betalox 5 cells (a human beta cell line) transplanted subcutaneously in mice with the anti-human islet antibody, HPi1. We now compare pretargeting with direct targeting in the beta cell transplant model to evaluate the degree to which target/non-target (T/NT) ratios may be improved by pretargeting. Methods: Specific binding of an anti-human islet antibody HPi1 to the beta cells transplanted subcutaneously in mice was examined against a negative control antibody. We then compared pretargeting by MORF-HPi1 plus 111 In-labeled cMORF to direct targeting by 111 In-labeled HPi1. Results: HPi1 binding to betalox5 human cells in the transplant was shown by immunofluorescence. Normal organ 111 In backgrounds by pretargeting were always lower, although target accumulations were similar. More importantly, the transplant to pancreas and liver ratios was, respectively, 26 and 10 by pretargeting as compared to 9 and 0.6 by direct targeting. Conclusions: Pretargeting greatly improves the T/NT ratios, and based on the estimated endocrine to exocrine ratio within a pancreas, pretargeting may be approaching the sensitivity required for successful imaging of human islets within this organ.

  2. CD19-Targeted CAR T Cells as Novel Cancer Immunotherapy for Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia

    OpenAIRE

    Davila, Marco L.; Brentjens, Renier J.

    2016-01-01

    Immunotherapy has demonstrated significant potential for the treatment of patients with chemotherapy-resistant hematologic malignancies and solid tumors. One type of immunotherapy involves the adoptive transfer of T cells that have been genetically modified with a chimeric antigen receptor (CAR) to target a tumor. These hybrid proteins are composed of the antigen-binding domains of an antibody fused to T-cell receptor signaling machinery. CAR T cells that target CD19 recently have made the ju...

  3. Adaptive Role of Inversion Polymorphism of Drosophila subobscura in Lead Stressed Environment.

    Science.gov (United States)

    Kenig, Bojan; Kurbalija Novičić, Zorana; Patenković, Aleksandra; Stamenković-Radak, Marina; Anđelković, Marko

    2015-01-01

    Local adaptation to environmental stress at different levels of genetic polymorphism in various plants and animals has been documented through evolution of heavy metal tolerance. We used samples of Drosophila subobscura populations from two differently polluted environments to analyze the change of chromosomal inversion polymorphism as genetic marker during laboratory exposure to lead. Exposure to environmental contamination can affect the genetic content within a particular inversion and produce targets for selection in populations from different environments. The aims were to discover whether the inversion polymorphism is shaped by the local natural environments, and if lead as a selection pressure would cause adaptive divergence of two populations during the multigenerational laboratory experiment. The results showed that populations retain signatures from past contamination events, and that heavy metal pollution can cause adaptive changes in population. Differences in inversion polymorphism between the two populations increased over generations under lead contamination in the laboratory. The inversion polymorphism of population originating from the more polluted natural environment was more stable during the experiment, both under conditions with and without lead. Therefore, results showed that inversion polymorphism as a genetic marker reflects a strong signature of adaptation to the local environment, and that historical demographic events and selection are important for both prediction of evolutionary potential and long-term viability of natural populations.

  4. The HDAC inhibitor SB939 overcomes resistance to BCR-ABL kinase Inhibitors conferred by the BIM deletion polymorphism in chronic myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Muhammad Rauzan

    Full Text Available Chronic myeloid leukemia (CML treatment has been improved by tyrosine kinase inhibitors (TKIs such as imatinib mesylate (IM but various factors can cause TKI resistance in patients with CML. One factor which contributes to TKI resistance is a germline intronic deletion polymorphism in the BCL2-like 11 (BIM gene which impairs the expression of pro-apoptotic splice isoforms of BIM. SB939 (pracinostat is a hydroxamic acid based HDAC inhibitor with favorable pharmacokinetic, physicochemical and pharmaceutical properties, and we investigated if this drug could overcome BIM deletion polymorphism-induced TKI resistance. We found that SB939 corrects BIM pre-mRNA splicing in CML cells with the BIM deletion polymorphism, and induces apoptotic cell death in CML cell lines and primary cells with the BIM deletion polymorphism. More importantly, SB939 both decreases the viability of CML cell lines and primary CML progenitors with the BIM deletion and restores TKI-sensitivity. Our results demonstrate that SB939 overcomes BIM deletion polymorphism-induced TKI resistance, and suggest that SB939 may be useful in treating CML patients with BIM deletion-associated TKI resistance.

  5. Engineered Proteins Program Mammalian Cells to Target Inflammatory Disease Sites.

    Science.gov (United States)

    Qudrat, Anam; Mosabbir, Abdullah Al; Truong, Kevin

    2017-06-22

    Disease sites in atherosclerosis and cancer feature cell masses (e.g., plaques/tumors), a low pH extracellular microenvironment, and various pro-inflammatory cytokines such as tumor necrosis factor α (TNFα). The ability to engineer a cell to seek TNFα sources allows for targeted therapeutic delivery. To accomplish this, here we introduced a system of proteins: an engineered TNFα chimeric receptor (named TNFR1chi), a previously engineered Ca 2+ -activated RhoA (named CaRQ), vesicular stomatitis virus glycoprotein G (VSVG), and thymidine kinase. Upon binding TNFα, TNFR1chi generates a Ca 2+ signal that in turn activates CaRQ-mediated non-apoptotic blebs that allow migration toward the TNFα source. Next, the addition of VSVG, upon low pH induction, causes membrane fusion of the engineered and TNFα source cells. Finally, after ganciclovir treatment cells undergo death via the thymidine kinase suicide mechanism. Hence, we assembled a system of proteins that forms the basis of engineering a cell to target inflammatory disease sites characterized by TNFα secretion and a low-pH microenvironment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Combination of Complement-Dependent Cytotoxicity and Relative Fluorescent Quantification of HLA Length Polymorphisms Facilitates the Detection of a Loss of Heterozygosity

    Directory of Open Access Journals (Sweden)

    Klaus Witter

    2014-01-01

    Full Text Available Loss of heterozygosity (LOH is a common event in malignant cells. In this work we introduce a new approach to identify patients with loss of heterozygosity in the HLA region either at first diagnosis or after HLA mismatched allogeneic HSCT. Diagnosis of LOH requires a high purity of recipient target cells. FACS is time consuming and also frequently prevented by rather nonspecific or unknown immune phenotype. The approach for recipient cell enrichment is based on HLA targeted complement-dependent cytotoxicity (CDC. Relative fluorescent quantification (RFQ analysis of HLA intron length polymorphisms then allows analysis of HLA heterozygosity. The approach is exemplified in recent clinical cases illustrating the detection of an acquired allele loss. As illustrated in one case with DPB1, distinct HLA loci in donor and patient were sufficient for both proof of donor cell removal and evaluation of allele loss in the patient's leukemic cells. Results were confirmed using HLA-B RFQ analysis and leukemia-associated aberrant immunophenotype (LAIP based cell sort. Both results confirmed suspected loss of HLA heterozygosity. Our approach complements or substitutes for FACS-based cell enrichment; hence it may be further developed as novel routine diagnostic tool. This allows rapid recipient cell purification and testing for loss of HLA heterozygosity before and after allogeneic HSCT in easily accessible peripheral blood samples.

  7. MicroRNA-424 suppresses estradiol-induced cell proliferation via targeting GPER in endometrial cancer cells.

    Science.gov (United States)

    Zhang, H; Wang, X; Chen, Z; Wang, W

    2015-11-30

    Endometrial carcinoma (EC) is the most common gynecologic malignancy with increasing morbidity in recent years. MicroRNAs (miRNAs), a type of non-coding RNA, have been proven to be critical in the process of tumorigenesis. miR-424 has been reported to play a protective role in various type of cancer including endometrial carcinoma. It has been reported that high levels of estrogen increase morbidity of EC by promoting cell growth ability. The current research was designed to delineate the mechanism of miR-424 in regulating E2 (17β-estradiol)-induced cell proliferation in endometrial cancer. In this study, we confirmed that cell proliferation is increased significantly in E2-treated endometrial cancer cell lines. Moreover, miR-424 overexpression dramatically decreased E2-induced cell proliferation, indicating a pivotal role in endometrial cancer cell growth. In addition, the results suggest that miR-424 up-regulation inactivated the PI3K/AKT signaling, which was mediated by G-protein-coupled estrogen receptor-1 (GPER) in endometrial cancer. Furthermore, the luciferase report confirmed the targeting reaction between miR-424 and GPER. After transfection with the GPER overexpression vector into E2-induced endometrial cancer cells, we found that GPER significantly attenuated the inhibition effect of miR-424 in E2-induced cell growth in EC. Taken together, our study suggests that increased miR-424 suppresses E2-induced cell growth, and providing a potential therapeutic target for estrogen-associated endometrial carcinoma.

  8. How immunoglobulin G antibodies kill target cells: revisiting an old paradigm.

    Science.gov (United States)

    Biburger, Markus; Lux, Anja; Nimmerjahn, Falk

    2014-01-01

    The capacity of immunoglobulin G (IgG) antibodies to eliminate virtually any target cell has resulted in the widespread introduction of cytotoxic antibodies into the clinic in settings of cancer therapy, autoimmunity, and transplantation, for example. More recently, it has become apparent that also the protection from viral infection via IgG antibodies may require cytotoxic effector functions, suggesting that antibody-dependent cellular cytotoxicity (ADCC) directed against malignant or virally infected cells is one of the most essential effector mechanisms triggered by IgG antibodies to protect the host. A detailed understanding of the underlying molecular and cellular pathways is critical, therefore, to make full use of this antibody effector function. Several studies over the last years have provided novel insights into the effector pathways and innate immune effector cells responsible for ADCC reactions. One of the most notable outcomes of many of these reports is that cells of the mononuclear phagocytic system rather than natural killer cells are critical for removal of IgG opsonized target cells in vivo. © 2014 Elsevier Inc. All rights reserved.

  9. Approach to analysis of single nucleotide polymorphisms by automated constant denaturant capillary electrophoresis

    International Nuclear Information System (INIS)

    Bjoerheim, Jens; Abrahamsen, Torveig Weum; Kristensen, Annette Torgunrud; Gaudernack, Gustav; Ekstroem, Per O.

    2003-01-01

    Melting gel techniques have proven to be amenable and powerful tools in point mutation and single nucleotide polymorphism (SNP) analysis. With the introduction of commercially available capillary electrophoresis instruments, a partly automated platform for denaturant capillary electrophoresis with potential for routine screening of selected target sequences has been established. The aim of this article is to demonstrate the use of automated constant denaturant capillary electrophoresis (ACDCE) in single nucleotide polymorphism analysis of various target sequences. Optimal analysis conditions for different single nucleotide polymorphisms on ACDCE are evaluated with the Poland algorithm. Laboratory procedures include only PCR and electrophoresis. For direct genotyping of individual SNPs, the samples are analyzed with an internal standard and the alleles are identified by co-migration of sample and standard peaks. In conclusion, SNPs suitable for melting gel analysis based on theoretical thermodynamics were separated by ACDCE under appropriate conditions. With this instrumentation (ABI 310 Genetic Analyzer), 48 samples could be analyzed without any intervention. Several institutions have capillary instrumentation in-house, thus making this SNP analysis method accessible to large groups of researchers without any need for instrument modification

  10. Fuel cell and hydrogen R and D targets and funding : a comparative analysis

    International Nuclear Information System (INIS)

    Adamson, K.A.; Jollie, D.; Baker, A.

    2005-01-01

    Substantial research and development is needed if fuel cells and hydrogen are to become a mass market reality. Setting research and development targets are central to the long term development of the market. An overview of fuel cell research in the United States, the European Union, and parts of Asia was presented. Research and development targets were analyzed, as well as funding levels for fuel cells and hydrogen. The time frames of targets were considered, as well as the levels of ambition and overall program goals of various countries. Funding barriers and challenges were also considered. It was noted that some governments, such as Japan and Korea, have set a number of very ambitious, highly focused long term targets with substantial funding. The European Union has taken a more integrated approach, wrapping fundamental research and development into large integrated projects which run in combination with a number of other market aspects, such as public acceptance and roadmapping. The United States has a number of long term programmes and targets, but levels of funding are set annually with the passing of each year's Fiscal Budget. The overall goal of the paper was to provide a clearer picture of regional fuel cell research in order to discover areas for potential international collaboration

  11. Targeting neuroblastoma stem cells with retinoic acid and proteasome inhibitor.

    Directory of Open Access Journals (Sweden)

    Barbara Hämmerle

    Full Text Available Neuroblastma cell lines contain a side-population of cells which express stemness markers. These stem-like cells may represent the potential underlying mechanism for resistance to conventional therapy and recurrence of neuroblastoma in patients.To develop novel strategies for targeting the side-population of neurobastomas, we analyzed the effects of 13-cis-retinoic acid (RA combined with the proteasome inhibitor MG132. The short-term action of the treatment was compared with effects after a 5-day recovery period during which both chemicals were withdrawn. RA induced growth arrest and differentiation of SH-SY5Y and SK-N-BE(2 neuroblastoma cell lines. Inhibition of the proteasome caused apoptosis in both cell lines, thus, revealing the critical role of this pathway in the regulated degradation of proteins involved in neuroblastoma proliferation and survival. The combination of RA with MG132 induced apoptosis in a dose-dependent manner, in addition to promoting G2/M arrest in treated cultures. Interestingly, expression of stem cell markers such as Nestin, Sox2, and Oct4 were reduced after the recovery period of combined treatment as compared with untreated cells or treated cells with either compound alone. Consistent with this, neurosphere formation was significantly impaired by the combined treatment of RA and MG132.Given that stem-like cells are associated with resistant to conventional therapy and are thought to be responsible for relapse, our results suggest that dual therapy of RA and proteasome inhibitor might be beneficial for targeting the side-population of cells associated residual disease in high-risk neuroblastoma.

  12. Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.

    Science.gov (United States)

    Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko

    2017-07-17

    Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.

  13. Human Retrotransposon Insertion Polymorphisms Are Associated with Health and Disease via Gene Regulatory Phenotypes

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2017-08-01

    Full Text Available The human genome hosts several active families of transposable elements (TEs, including the Alu, LINE-1, and SVA retrotransposons that are mobilized via reverse transcription of RNA intermediates. We evaluated how insertion polymorphisms generated by human retrotransposon activity may be related to common health and disease phenotypes that have been previously interrogated through genome-wide association studies (GWAS. To address this question, we performed a genome-wide screen for retrotransposon polymorphism disease associations that are linked to TE induced gene regulatory changes. Our screen first identified polymorphic retrotransposon insertions found in linkage disequilibrium (LD with single nucleotide polymorphisms that were previously associated with common complex diseases by GWAS. We further narrowed this set of candidate disease associated retrotransposon polymorphisms by identifying insertions that are located within tissue-specific enhancer elements. We then performed expression quantitative trait loci analysis on the remaining set of candidates in order to identify polymorphic retrotransposon insertions that are associated with gene expression changes in B-cells of the human immune system. This progressive and stringent screen yielded a list of six retrotransposon insertions as the strongest candidates for TE polymorphisms that lead to disease via enhancer-mediated changes in gene regulation. For example, we found an SVA insertion within a cell-type specific enhancer located in the second intron of the B4GALT1 gene. B4GALT1 encodes a glycosyltransferase that functions in the glycosylation of the Immunoglobulin G (IgG antibody in such a way as to convert its activity from pro- to anti-inflammatory. The disruption of the B4GALT1 enhancer by the SVA insertion is associated with down-regulation of the gene in B-cells, which would serve to keep the IgG molecule in a pro-inflammatory state. Consistent with this idea, the B4GALT1 enhancer

  14. Chlorin e6 Conjugated Interleukin-6 Receptor Aptamers Selectively Kill Target Cells Upon Irradiation

    Directory of Open Access Journals (Sweden)

    Sven Kruspe

    2014-01-01

    Full Text Available Photodynamic therapy (PDT uses the therapeutic properties of light in combination with certain chemicals, called photosensitizers, to successfully treat brain, breast, prostate, and skin cancers. To improve PDT, current research focuses on the development of photosensitizers to specifically target cancer cells. In the past few years, aptamers have been developed to directly deliver cargo molecules into target cells. We conjugated the photosensitizer chlorin e6 (ce6 with a human interleukin-6 receptor (IL-6R binding RNA aptamer, AIR-3A yielding AIR-3A-ce6 for application in high efficient PDT. AIR-3A-ce6 was rapidly and specifically internalized by IL-6R presenting (IL-6R+ cells. Upon light irradiation, targeted cells were selectively killed, while free ce6 did not show any toxic effect. Cells lacking the IL-6R were also not affected by AIR-3A-ce6. With this approach, we improved the target specificity of ce6-mediated PDT. In the future, other tumor-specific aptamers might be used to selectively localize photosensitizers into cells of interest and improve the efficacy and specificity of PDT in cancer and other diseases.

  15. Target cell cyclophilins facilitate human papillomavirus type 16 infection.

    Science.gov (United States)

    Bienkowska-Haba, Malgorzata; Patel, Hetalkumar D; Sapp, Martin

    2009-07-01

    Following attachment to primary receptor heparan sulfate proteoglycans (HSPG), human papillomavirus type 16 (HPV16) particles undergo conformational changes affecting the major and minor capsid proteins, L1 and L2, respectively. This results in exposure of the L2 N-terminus, transfer to uptake receptors, and infectious internalization. Here, we report that target cell cyclophilins, peptidyl-prolyl cis/trans isomerases, are required for efficient HPV16 infection. Cell surface cyclophilin B (CyPB) facilitates conformational changes in capsid proteins, resulting in exposure of the L2 N-terminus. Inhibition of CyPB blocked HPV16 infection by inducing noninfectious internalization. Mutation of a putative CyP binding site present in HPV16 L2 yielded exposed L2 N-terminus in the absence of active CyP and bypassed the need for cell surface CyPB. However, this mutant was still sensitive to CyP inhibition and required CyP for completion of infection, probably after internalization. Taken together, these data suggest that CyP is required during two distinct steps of HPV16 infection. Identification of cell surface CyPB will facilitate the study of the complex events preceding internalization and adds a putative drug target for prevention of HPV-induced diseases.

  16. Target cell cyclophilins facilitate human papillomavirus type 16 infection.

    Directory of Open Access Journals (Sweden)

    Malgorzata Bienkowska-Haba

    2009-07-01

    Full Text Available Following attachment to primary receptor heparan sulfate proteoglycans (HSPG, human papillomavirus type 16 (HPV16 particles undergo conformational changes affecting the major and minor capsid proteins, L1 and L2, respectively. This results in exposure of the L2 N-terminus, transfer to uptake receptors, and infectious internalization. Here, we report that target cell cyclophilins, peptidyl-prolyl cis/trans isomerases, are required for efficient HPV16 infection. Cell surface cyclophilin B (CyPB facilitates conformational changes in capsid proteins, resulting in exposure of the L2 N-terminus. Inhibition of CyPB blocked HPV16 infection by inducing noninfectious internalization. Mutation of a putative CyP binding site present in HPV16 L2 yielded exposed L2 N-terminus in the absence of active CyP and bypassed the need for cell surface CyPB. However, this mutant was still sensitive to CyP inhibition and required CyP for completion of infection, probably after internalization. Taken together, these data suggest that CyP is required during two distinct steps of HPV16 infection. Identification of cell surface CyPB will facilitate the study of the complex events preceding internalization and adds a putative drug target for prevention of HPV-induced diseases.

  17. Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells

    Science.gov (United States)

    Jain, Anupriya; Jain, Keerti; Mehra, Neelesh Kumar; Jain, N. K.

    2013-10-01

    In the present investigation, poly (propylene imine) dendrimers up to fifth generation (PPI G5.0) were synthesized using ethylene diamine and acrylonitrile. Lipoproteins (high-density lipoprotein; HDL and low-density lipoprotein; LDL) were isolated from human plasma by discontinuous density gradient ultracentrifugation, characterized and tethered to G5.0 PPI dendrimers to construct LDL- and HDL-conjugated dendrimeric nanoconstructs for tumor-specific delivery of docetaxel. Developed formulations showed sustained release characteristics in in vitro drug release and in vivo pharmacokinetic studies. The cancer targeting potential of lipoprotein coupled dendrimers was investigated by ex vivo cytotoxicity and cell uptake studies using human hepatocellular carcinoma cell lines (HepG2 cells) and biodistribution studies in albino rats of Sprague-Dawley strain. Lipoprotein anchored dendrimeric nanoconstructs showed significant uptake by cancer cells as well as higher biodistribution of docetaxel to liver and spleen. It is concluded that these precisely synthesized engineered dendrimeric nanoconstructs could serve as promising drug carrier for fighting with the fatal disease, i.e., cancer, attributed to their defined targeting and therapeutic potential.

  18. Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Anupriya; Jain, Keerti, E-mail: keertijain02@gmail.com; Mehra, Neelesh Kumar, E-mail: neelesh81mph@gmail.com; Jain, N. K., E-mail: dr.jnarendr@gmail.com [Dr. H. S. Gour University, Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences (India)

    2013-10-15

    In the present investigation, poly (propylene imine) dendrimers up to fifth generation (PPI G5.0) were synthesized using ethylene diamine and acrylonitrile. Lipoproteins (high-density lipoprotein; HDL and low-density lipoprotein; LDL) were isolated from human plasma by discontinuous density gradient ultracentrifugation, characterized and tethered to G5.0 PPI dendrimers to construct LDL- and HDL-conjugated dendrimeric nanoconstructs for tumor-specific delivery of docetaxel. Developed formulations showed sustained release characteristics in in vitro drug release and in vivo pharmacokinetic studies. The cancer targeting potential of lipoprotein coupled dendrimers was investigated by ex vivo cytotoxicity and cell uptake studies using human hepatocellular carcinoma cell lines (HepG2 cells) and biodistribution studies in albino rats of Sprague-Dawley strain. Lipoprotein anchored dendrimeric nanoconstructs showed significant uptake by cancer cells as well as higher biodistribution of docetaxel to liver and spleen. It is concluded that these precisely synthesized engineered dendrimeric nanoconstructs could serve as promising drug carrier for fighting with the fatal disease, i.e., cancer, attributed to their defined targeting and therapeutic potential.

  19. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    Science.gov (United States)

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  20. Engineering Multi-Walled Carbon Nanotube Therapeutic Bionanofluids to Selectively Target Papillary Thyroid Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Idit Dotan

    Full Text Available The incidence of papillary thyroid carcinoma (PTC has risen steadily over the past few decades as well as the recurrence rates. It has been proposed that targeted ablative physical therapy could be a therapeutic modality in thyroid cancer. Targeted bio-affinity functionalized multi-walled carbon nanotubes (BioNanofluid act locally, to efficiently convert external light energy to heat thereby specifically killing cancer cells. This may represent a promising new cancer therapeutic modality, advancing beyond conventional laser ablation and other nanoparticle approaches.Thyroid Stimulating Hormone Receptor (TSHR was selected as a target for PTC cells, due to its wide expression. Either TSHR antibodies or Thyrogen or purified TSH (Thyrotropin were chemically conjugated to our functionalized Bionanofluid. A diode laser system (532 nm was used to illuminate a PTC cell line for set exposure times. Cell death was assessed using Trypan Blue staining.TSHR-targeted BioNanofluids were capable of selectively ablating BCPAP, a TSHR-positive PTC cell line, while not TSHR-null NSC-34 cells. We determined that a 2:1 BCPAP cell:α-TSHR-BioNanofluid conjugate ratio and a 30 second laser exposure killed approximately 60% of the BCPAP cells, while 65% and >70% of cells were ablated using Thyrotropin- and Thyrogen-BioNanofluid conjugates, respectively. Furthermore, minimal non-targeted killing was observed using selective controls.A BioNanofluid platform offering a potential therapeutic path for papillary thyroid cancer has been investigated, with our in vitro results suggesting the development of a potent and rapid method of selective cancer cell killing. Therefore, BioNanofluid treatment emphasizes the need for new technology to treat patients with local recurrence and metastatic disease who are currently undergoing either re-operative neck explorations, repeated administration of radioactive iodine and as a last resort external beam radiation or chemotherapy, with

  1. Organelle targeting: third level of drug targeting

    Directory of Open Access Journals (Sweden)

    Sakhrani NM

    2013-07-01

    Full Text Available Niraj M Sakhrani, Harish PadhDepartment of Cell and Molecular Biology, BV Patel Pharmaceutical Education and Research Development (PERD Centre, Gujarat, IndiaAbstract: Drug discovery and drug delivery are two main aspects for treatment of a variety of disorders. However, the real bottleneck associated with systemic drug administration is the lack of target-specific affinity toward a pathological site, resulting in systemic toxicity and innumerable other side effects as well as higher dosage requirement for efficacy. An attractive strategy to increase the therapeutic index of a drug is to specifically deliver the therapeutic molecule in its active form, not only into target tissue, nor even to target cells, but more importantly, into the targeted organelle, ie, to its intracellular therapeutic active site. This would ensure improved efficacy and minimize toxicity. Cancer chemotherapy today faces the major challenge of delivering chemotherapeutic drugs exclusively to tumor cells, while sparing normal proliferating cells. Nanoparticles play a crucial role by acting as a vehicle for delivery of drugs to target sites inside tumor cells. In this review, we spotlight active and passive targeting, followed by discussion of the importance of targeting to specific cell organelles and the potential role of cell-penetrating peptides. Finally, the discussion will address the strategies for drug/DNA targeting to lysosomes, mitochondria, nuclei and Golgi/endoplasmic reticulum.Keywords: intracellular drug delivery, cancer chemotherapy, therapeutic index, cell penetrating peptides

  2. Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells.

    Science.gov (United States)

    Silva, Luisa H A; Cruz, Fernanda F; Morales, Marcelo M; Weiss, Daniel J; Rocco, Patricia R M

    2017-03-09

    Mesenchymal stromal cells (MSCs) have been extensively investigated in the field of regenerative medicine. It is known that the success of MSC-based therapies depends primarily on effective cell delivery to the target site where they will secrete vesicles and soluble factors with immunomodulatory and potentially reparative properties. However, some lesions are located in sites that are difficult to access, such as the heart, spinal cord, and joints. Additionally, low MSC retention at target sites makes cell therapy short-lasting and, therefore, less effective. In this context, the magnetic targeting technique has emerged as a new strategy to aid delivery, increase retention, and enhance the effects of MSCs. This approach uses magnetic nanoparticles to magnetize MSCs and static magnetic fields to guide them in vivo, thus promoting more focused, effective, and lasting retention of MSCs at the target site. In the present review, we discuss the magnetic targeting technique, its principles, and the materials most commonly used; we also discuss its potential for MSC enhancement, and safety concerns that should be addressed before it can be applied in clinical practice.

  3. Emerging Therapeutic Strategies for Targeting Chronic Myeloid Leukemia Stem Cells

    Directory of Open Access Journals (Sweden)

    Ahmad Hamad

    2013-01-01

    Full Text Available Chronic myeloid leukemia (CML is a clonal myeloproliferative disorder. Current targeted therapies designed to inhibit the tyrosine kinase activity of the BCR-ABL oncoprotein have made a significant breakthrough in the treatment of CML patients. However, CML remains a chronic disease that a patient must manage for life. Although tyrosine kinase inhibitors (TKI therapy has completely transformed the prognosis of CML, it has made the therapeutic management more complex. The interruption of TKI treatment results in early disease progression because it does not eliminate quiescent CML stem cells which remain a potential reservoir for disease relapse. This highlights the need to develop new therapeutic strategies for CML to achieve a permanent cure, and to allow TKI interruption. This review summarizes recent research done on alternative targeted therapies with a particular focus on some important signaling pathways (such as Alox5, Hedgehog, Wnt/b-catenin, autophagy, and PML that have the potential to target CML stem cells and potentially provide cure for CML.

  4. TP53 codon 72 polymorphism as a risk factor for cardiovascular disease in a Brazilian population

    Directory of Open Access Journals (Sweden)

    M.A.C. Smith

    2007-11-01

    Full Text Available TP53, a tumor suppressor gene, has a critical role in cell cycle, apoptosis and cell senescence and participates in many crucial physiological and pathological processes. Identification of TP53 polymorphism in older people and age-related diseases may provide an understanding of its physiology and pathophysiological role as well as risk factors for complex diseases. TP53 codon 72 (TP53:72 polymorphism was investigated in 383 individuals aged 66 to 97 years in a cohort from a Brazilian Elderly Longitudinal Study. We investigated allele frequency, genotype distribution and allele association with morbidities such as cardiovascular disease, type II diabetes, obesity, neoplasia, low cognitive level (dementia, and depression. We also determined the association of this polymorphism with serum lipid fractions and urea, creatinine, albumin, fasting glucose, and glycated hemoglobin levels. DNA was isolated from blood cells, amplified by PCR using sense 5'-TTGCCGTCCCAAGCAATGGATGA-3' and antisense 5'-TCTGGGAAGGGACAGAAGATGAC-3' primers and digested with the BstUI enzyme. This polymorphism is within exon 4 at nucleotide residue 347. Descriptive statistics, logistic regression analysis and Student t-test using the multiple comparison test were used. Allele frequencies, R (Arg = 0.69 and P (Pro = 0.31, were similar to other populations. Genotype distributions were within Hardy-Weinberg equilibrium. This polymorphism did not show significant association with any age-related disease or serum variables. However, R allele carriers showed lower HDL levels and a higher frequency of cardiovascular disease than P allele subjects. These findings may help to elucidate the physiopathological role of TP53:72 polymorphism in Brazilian elderly people.

  5. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination.

    Science.gov (United States)

    Fievez, Virginie; Plapied, Laurence; des Rieux, Anne; Pourcelle, Vincent; Freichels, Hélène; Wascotte, Valentine; Vanderhaeghen, Marie-Lyse; Jerôme, Christine; Vanderplasschen, Alain; Marchand-Brynaert, Jacqueline; Schneider, Yves-Jacques; Préat, Véronique

    2009-09-01

    The presence of RGD on nanoparticles allows the targeting of beta1 integrins at the apical surface of human M cells and the enhancement of an immune response after oral immunization. To check the hypothesis that non-peptidic ligands targeting intestinal M cells or APCs would be more efficient for oral immunization than RGD, novel non-peptidic and peptidic analogs (RGD peptidomimitic (RGDp), LDV derivative (LDVd) and LDV peptidomimetic (LDVp)) as well as mannose were grafted on the PEG chain of PCL-PEG and incorporated in PLGA-based nanoparticles. RGD and RGDp significantly increased the transport of nanoparticles across an in vitro model of human M cells as compared to enterocytes. RGD, LDVp, LDVd and mannose enhanced nanoparticle uptake by macrophages in vitro. The intraduodenal immunization with RGDp-, LDVd- or mannose-labeled nanoparticles elicited a higher production of IgG antibodies than the intramuscular injection of free ovalbumin or intraduodenal administration of either non-targeted or RGD-nanoparticles. Targeted formulations were also able to induce a cellular immune response. In conclusion, the in vitro transport of nanoparticles, uptake by macrophages and the immune response were positively influenced by the presence of ligands at the surface of nanoparticles. These targeted-nanoparticles could thus represent a promising delivery system for oral immunization.

  6. Targeted radiosensitization of cells expressing truncated DNA polymerase {beta}.

    NARCIS (Netherlands)

    Neijenhuis, S.; Verwijs-Janssen, M.; Broek, Bart van den; Begg, A.C.; Vens, C.

    2010-01-01

    Ionizing radiation (IR) is an effective anticancer treatment, although failures still occur. To improve radiotherapy, tumor-targeted strategies are needed to increase radiosensitivity of tumor cells, without influencing normal tissue radiosensitivity. Base excision repair (BER) and single-strand

  7. Metastasis Targeted Therapies in Renal Cell Cancer

    OpenAIRE

    K. Fehmi Narter; Bora Özveren

    2018-01-01

    Metastatic renal cell cancer is a malignant disease and its treatment has been not been described clearly yet. These patients are generally symptomatic and resistant to current treatment modalities. Radiotherapy, chemotherapy, and hormonal therapy are not curative in many of these patients. A multimodal approach consisting of cytoreductive nephrectomy, systemic therapy (immunotherapy or targeted molecules), and metastasectomy has been shown to be hopeful in prolonging the survival and improvi...

  8. CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Davila, Marco L; Brentjens, Renier J

    2016-10-01

    Immunotherapy has demonstrated significant potential for the treatment of patients with chemotherapy-resistant hematologic malignancies and solid tumors. One type of immunotherapy involves the adoptive transfer of T cells that have been genetically modified with a chimeric antigen receptor (CAR) to target a tumor. These hybrid proteins are composed of the antigen-binding domains of an antibody fused to T-cell receptor signaling machinery. CAR T cells that target CD19 recently have made the jump from the laboratory to the clinic, and the results have been remarkable. CD19-targeted CAR T cells have induced complete remissions of disease in up to 90% of patients with relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL), who have an expected complete response rate of 30% in response to chemotherapy. The high efficacy of CAR T cells in B-ALL suggests that regulatory approval of this therapy for this routinely fatal leukemia is on the horizon. We review the preclinical development of CAR T cells and their early clinical application for lymphoma. We also provide a comprehensive analysis of the use of CAR T cells in patients with B-ALL. In addition, we discuss the unique toxicities associated with this therapy and the management schemes that have been developed.

  9. Engineering tolerance using biomaterials to target and control antigen presenting cells.

    Science.gov (United States)

    Tostanoski, Lisa H; Gosselin, Emily A; Jewell, Christopher M

    2016-05-01

    Autoimmune diseases occur when cells of the adaptive immune system incorrectly recognize and attack "self" tissues. Importantly, the proliferation and differentiation of these cells is triggered and controlled by interactions with antigen presenting cells (APCs), such as dendritic cells. Thus, modulating the signals transduced by APCs (e.g., cytokines, costimulatory surface proteins) has emerged as a promising strategy to promote tolerance for diseases such as multiple sclerosis, type 1 diabetes, and lupus. However, many approaches have been hindered by non-specific activity of immunosuppressive or immunoregulatory cues, following systemic administration of soluble factors via traditional injections routes (e.g., subcutaneous, intravenous). Biomaterials offer a unique opportunity to control the delivery of tolerogenic signals in vivo via properties such as controlled particle size, tunable release kinetics, and co-delivery of multiple classes of cargo. In this review, we highlight recent reports that exploit these properties of biomaterials to target APCs and promote tolerance via three strategies, i) passive or active targeting of particulate carriers to APCs, ii) biomaterial-mediated control over antigen localization and processing, and iii) targeted delivery of encapsulated or adsorbed immunomodulatory signals. These reports represent exciting advances toward the goal of more effective therapies for autoimmune diseases, without the broad suppressive effects associated with current clinically-approved therapies.

  10. Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination.

    Directory of Open Access Journals (Sweden)

    Jill M Brooks

    2016-04-01

    Full Text Available Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three "first wave" proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501, as well as subdominant responses through common class I alleles (e.g. B7 and C*0304. Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that "first wave" antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design.

  11. Single-nucleotide polymorphisms in the SEPTIN12 gene may be a genetic risk factor for Japanese patients with Sertoli cell-only syndrome.

    Science.gov (United States)

    Miyakawa, Hiroe; Miyamoto, Toshinobu; Koh, Eitetsu; Tsujimura, Akira; Miyagawa, Yasushi; Saijo, Yasuaki; Namiki, Mikio; Sengoku, Kazuo

    2012-01-01

    Genetic mechanisms have been implicated as a cause of some cases of male infertility. Recently, 10 novel genes involved in human spermatogenesis, including human SEPTIN12, were identified by expression microarray analysis of human testicular tissue. Septin12 is a member of the septin family of conserved cytoskeletal GTPases that form heteropolymeric filamentous structures in interphase cells. It is expressed specifically in the testis. Therefore, we hypothesized that mutation or polymorphisms of SEPTIN12 participate in male infertility, especially Sertoli cell-only syndrome (SCOS). To investigate whether SEPTIN12 gene defects are associated with azoospermia caused by SCOS, mutational analysis was performed in 100 Japanese patients by direct sequencing of coding regions. Statistical analysis was performed in patients with SCOS and in 140 healthy control men. No mutations were found in SEPTIN12 ; however, 8 coding single-nucleotide polymorphisms (SNP1-SNP8) could be detected in the patients with SCOS. The genotype and allele frequencies in SNP3, SNP4, and SNP6 were notably higher in the SCOS group than in the control group (P < .001). These results suggest that SEPTIN12 might play a critical role in human spermatogenesis.

  12. Genomic targets of Brachyury (T in differentiating mouse embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Amanda L Evans

    Full Text Available The T-box transcription factor Brachyury (T is essential for formation of the posterior mesoderm and the notochord in vertebrate embryos. Work in the frog and the zebrafish has identified some direct genomic targets of Brachyury, but little is known about Brachyury targets in the mouse.Here we use chromatin immunoprecipitation and mouse promoter microarrays to identify targets of Brachyury in embryoid bodies formed from differentiating mouse ES cells. The targets we identify are enriched for sequence-specific DNA binding proteins and include components of signal transduction pathways that direct cell fate in the primitive streak and tailbud of the early embryo. Expression of some of these targets, such as Axin2, Fgf8 and Wnt3a, is down regulated in Brachyury mutant embryos and we demonstrate that they are also Brachyury targets in the human. Surprisingly, we do not observe enrichment of the canonical T-domain DNA binding sequence 5'-TCACACCT-3' in the vicinity of most Brachyury target genes. Rather, we have identified an (AC(n repeat sequence, which is conserved in the rat but not in human, zebrafish or Xenopus. We do not understand the significance of this sequence, but speculate that it enhances transcription factor binding in the regulatory regions of Brachyury target genes in rodents.Our work identifies the genomic targets of a key regulator of mesoderm formation in the early mouse embryo, thereby providing insights into the Brachyury-driven genetic regulatory network and allowing us to compare the function of Brachyury in different species.

  13. Preparation and evaluation of famotidine polymorphs.

    Science.gov (United States)

    Nagaraju, Ravouru; Prathusha, Ande Penchala; Subhash Chandra Bose, Penjury; Kaza, Rajesh; Bharathi, Koganti

    2010-06-01

    The main objective of this study was to compare the behaviour of drug release among the famotidine polymorphs prepared by using various additives and solvents, by solvent evaporation method. The famotidine polyvinyl pyrrolidone polymorphs with different concentrations (0.5, 1 and 1.5%) were prepared by using solvent evaporation method. In these polymorphs of different concentrations 1% w/v polymorphs showed better release. Similarly, famotidine polymorphs of Tween 80 with different concentrations, polyethylene glycol 1% w/v and methanol was prepared. Famotidine polymorphs prepared the PVP (1% w/v) showed better drug release and solubility. DSC, FTIR, SEM and XRD studies were carried out. DSC studies revealed that PVP polymorphs were found to stable compared to other polymorphs. FTIR studies of the polymorphs prepared indicated that there was an interaction found in all polymorphs except PVP polymorphs indicating the absence of drug-additive interaction. SEM studies of PVP and methanol polymorphs revealed that they are tabular and prismatic and columnar respectively. These changes in morphology were due to variations in face dimensions and also properties of additives and solvent used in the preparation. XRD studies revealed that there is an increase in crystallinity in methanol polymorphs when compared to PVP polymorphs and pure drug. The mechanism of drug release was determined using zero order, first order and Hixon-Crowel equations. From the drug release kinetics these polymorphs followed first order and Hixon-Crowel release kinetics, exhibited fair linearity in their dissolution data. Further, in vivo studies were carried out for the evaluation of antiulcer activity. Based upon the drug release pattern and its kinetics only two of the prepared polymorphs of famotidine i.e. famotidine PVP polymorphs and famotidine methanol polymorphs were selected for animal studies. Antiulcer studies were carried out using pylorus ligation model and estimation of antioxidant

  14. Simultaneous Vascular Targeting and Tumor Targeting of Cerebral Breast Cancer Metastases Using a T-Cell Receptor Mimic Antibody

    Science.gov (United States)

    2014-05-01

    in May 2013, the difference between nude mice (which lack T- cells , but still have a partially functional adaptive and innate immune system) and NSG...Mangada J, Greiner DL, Handgretinger R. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human...Targeting of Cerebral Breast Cancer Metastases Using a T- Cell Receptor Mimic Antibody PRINCIPAL INVESTIGATOR: Ulrich Bickel

  15. Polymorphisms of Interlukin-1β rs16944 confer susceptibility to myelodysplastic syndromes.

    Science.gov (United States)

    Yin, Congcong; He, Na; Li, Peng; Zhang, Chen; Yu, Jie; Hua, Mingqiang; Ji, Chunyan; Ma, Daoxin

    2016-11-15

    Genetic factors have been shown to be associated with Myelodysplastic syndromes (MDS) susceptibility. In recent years, the role of inflammation in the promotion of tumor growth is supported by a broad range of experimental and clinical evidence. But the relationship between polymorphisms in NOD-like receptor protein 3 (NLRP3) inflammasome and MDS is rarely reported. Thus, we conducted a case-control study, and genotyped five single nucleotide polymorphisms (SNPs) (NLRP3, IL-1β, IL-18, CARD8, and NF-κB) in MDS patients and healthy controls. The association of different genotypes with patient characteristics was analyzed. Comparing MDS patients with controls, GG genotype of IL-1β (rs16944) was observed to be associated with a significantly increased risk of MDS 78/166 (48.8%) vs 26/96 (27.0%), OR=2.1, CI (1.0-4.4). No significant association was identified regarding the rest of investigated polymorphisms and MDS susceptibility. Complex karyotypes were more frequent in patients with GG genotype of IL-1β (rs16944). Patients with IL-1β polymorphisms (rs16944) GG and GA had lower hemoglobin than those without. Patients with IL-1β polymorphisms (rs16944) GG had higher IPSS scores than those without IL-1β polymorphisms. In conclusion, our present data shows that the IL-1β polymorphisms (rs16944) GG were frequently occurred in MDS. IL-1β (rs16944) GG genotype might serve as a novel biomarker and potential targets for MDS. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Inhibition of mesothelin as a novel strategy for targeting cancer cells.

    Directory of Open Access Journals (Sweden)

    Kun Wang

    Full Text Available Mesothelin, a differentiation antigen present in a series of malignancies such as mesothelioma, ovarian, lung and pancreatic cancer, has been studied as a marker for diagnosis and a target for immunotherapy. We, however, were interested in evaluating the effects of direct targeting of Mesothelin on the viability of cancer cells as the first step towards developing a novel therapeutic strategy. We report here that gene specific silencing for Mesothelin by distinct methods (siRNA and microRNA decreased viability of cancer cells from different origins such as mesothelioma (H2373, ovarian cancer (Skov3 and Ovcar-5 and pancreatic cancer (Miapaca2 and Panc-1. Additionally, the invasiveness of cancer cells was also significantly decreased upon such treatment. We then investigated pro-oncogenic signaling characteristics of cells upon mesothelin-silencing which revealed a significant decrease in phospho-ERK1 and PI3K/AKT activity. The molecular mechanism of reduced invasiveness was connected to the reduced expression of β-Catenin, an important marker of EMT (epithelial-mesenchymal transition. Ero1, a protein involved in clearing unfolded proteins and a member of the ER-Stress (endoplasmic reticulum-stress pathway was also markedly reduced. Furthermore, Mesothelin silencing caused a significant increase in fraction of cancer cells in S-phase. In next step, treatment of ovarian cancer cells (OVca429 with a lentivirus expressing anti-mesothelin microRNA resulted in significant loss of viability, invasiveness, and morphological alterations. Therefore, we propose the inhibition of Mesothelin as a potential novel strategy for targeting human malignancies.

  17. Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells.

    Directory of Open Access Journals (Sweden)

    Gaëlle Gonzalez

    Full Text Available Cell microparticles (MPs released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5, and serotype 35 (HAdV35, respectively. We found that MPs derived from CHO cells (MP-donor cells constitutively expressing CAR (MP-CAR or CD46 (MP-CD46 were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins.

  18. Single agent- and combination treatment with two targeted suicide gene therapy systems is effective in chemoresistant small cell lung cancer cells

    DEFF Research Database (Denmark)

    Michaelsen, Signe R; Christensen, Camilla L; Sehested, Maxwell

    2012-01-01

    Transcriptional targeted suicide gene (SG) therapy driven by the insulinoma-associated 1 (INSM1) promoter makes it possible to target suicide toxin production and cytotoxicity exclusively to small cell lung cancer (SCLC) cells and tumors. It remains to be determined whether acquired chemoresistance......, as observed in the majority of SCLC patients, desensitizes SCLC cells to INSM1 promoter-driven SG therapy....

  19. Endothelial nitric oxide synthase gene polymorphisms and cardiovascular damage in hypertensive subjects: an Italian case-control study

    Directory of Open Access Journals (Sweden)

    Pizzo Federica

    2008-05-01

    Full Text Available Abstract Background Nitric oxide (NO synthesized by endothelial nitric oxide synthase (eNOS plays an important role in regulation of endothelial function and in the control of blood pressure. However, the results from some studies on the association between three clinically relevant eNOS gene polymorphisms (G894T, T786C and intron 4b/a and essential hypertension are unclear. We designed a case-control study to evaluate the influence of eNOS polymorphisms on target organ damage in 127 hypertensives and 67 normotensives. Clinical evaluation, biochemical parameters, Urinary Albumin Excretion (UAE and echocardiogram were performed to characterize target organ damage. eNOS polymorphism were recognized by PCR method. Results The distribution of eNOS genotypes was similar in hypertensives and normotensives but 4aa was present in the 2.5% of hypertensives and completely absent in normotensives. Subjects with 4bb, G894T, and T786C genotypes showed an increased prevalence of target organ damage. Moreover prevalence of G894T and introne 4 variants was significantly higher in hypertensives than in normotensives both with cardiovascular damage. Logistic regression analysis didn't show any association between eNOS polymorphisms, Body Mass Index (BMI, hypertension, gender and cardiovascular damage. Only the age (OR 1.11; IC 95% 1.06–1.18 was predictive of cardiovascular damage in our population. Conclusion Our results seem to indicate a lack of association with eNOS variants and cardiovascular damage onset.

  20. Regulatory B cells: an exciting target for future therapeutics in transplantation

    Directory of Open Access Journals (Sweden)

    Alexandre eNouël

    2014-01-01

    Full Text Available Transplantation is the preferred treatment for most end-stage solid organ diseases. Despite potent immunosuppressive agents, chronic rejection remains a real problem in transplantation. For many years, the predominant immunological focus of research into transplant rejection has been T cells. The pillar of immunotherapy in clinical practice is T cell-directed, which efficiently prevents acute T cell-mediated allograft rejection. However, the root of late allograft failure is chronic rejection and the humoral arm of the immune response now emerges as an important factor in transplantation. Thus, the potential effects of Abs and B cell infiltrates on transplants have cast B cells as major actors in late graft rejection. Consequently, a number of recent drugs target either B cells or plasma cells. However, immunotherapies, such as the anti-CD20 B cell-depleting Ab, can generate deleterious effects on the transplant, likely due to the deletion of beneficial population. The positive contribution of regulatory B (Breg cells -or B10 cells- has been reported in the case of transplantation, mainly in mice models and highlights the primordial role that some populations of B cells can play in graft tolerance. Yet, this regulatory aspect remains poorly characterized in clinical transplantation. Thus, total B cell depletion treatments should be avoided and novel approaches should be considered that manipulate the different B cell subsets. This article provides an overview of the current knowledge on the link between Breg cells and grafts, and reports a number of data advising Breg cells as a new target for future therapeutic approaches.

  1. WRN-targeted therapy using inhibitors NSC 19630 and NSC 617145 induce apoptosis in HTLV-1-transformed adult T-cell leukemia cells

    Directory of Open Access Journals (Sweden)

    R. Moles

    2016-11-01

    Full Text Available Abstract Background Human T-cell leukemia virus type 1 (HTLV-1 infection is associated with adult T-cell leukemia/lymphoma (ATLL, a lymphoproliferative malignancy with a dismal prognosis and limited therapeutic options. Recent evidence shows that HTLV-1-transformed cells present defects in both DNA replication and DNA repair, suggesting that these cells might be particularly sensitive to treatment with a small helicase inhibitor. Because the “Werner syndrome ATP-dependent helicase” encoded by the WRN gene plays important roles in both cellular proliferation and DNA repair, we hypothesized that inhibition of WRN activity could be used as a new strategy to target ATLL cells. Methods Our analysis demonstrates an apoptotic effect induced by the WRN helicase inhibitor in HTLV-1-transformed cells in vitro and ATL-derived cell lines. Inhibition of cellular proliferation and induction of apoptosis were demonstrated with cell cycle analysis, XTT proliferation assay, clonogenic assay, annexin V staining, and measurement of mitochondrial transmembrane potential. Results Targeted inhibition of the WRN helicase induced cell cycle arrest and apoptosis in HTLV-1-transformed leukemia cells. Treatment with NSC 19630 (WRN inhibitor induces S-phase cell cycle arrest, disruption of the mitochondrial membrane potential, and decreased expression of anti-apoptotic factor Bcl-2. These events were associated with activation of caspase-3-dependent apoptosis in ATL cells. We identified some ATL cells, ATL-55T and LMY1, less sensitive to NSC 19630 but sensitive to another WRN inhibitor, NSC 617145. Conclusions WRN is essential for survival of ATL cells. Our studies suggest that targeting the WRN helicase with small inhibitors is a novel promising strategy to target HTLV-1-transformed ATL cells.

  2. Different DNA methylation patterns detected by the Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR technique among various cell types of bulls

    Directory of Open Access Journals (Sweden)

    Carroll Bernie

    2010-03-01

    Full Text Available Abstract Background The purpose of this study was to apply an arbitrarily primed methylation sensitive polymerase chain reaction (PCR assay called Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR to investigate the methylation profiles of somatic and germ cells obtained from Holstein bulls. Methods Genomic DNA was extracted from sperm, leukocytes and fibroblasts obtained from three bulls and digested with a methylation sensitive endonuclease (HpaII. The native genomic and enzyme treated DNA samples were used as templates in an arbitrarily primed-PCR assay with 30 sets of single short oligonucleotide primer. The PCR products were separated on silver stained denaturing polyacrylamide gels. Three types of PCR markers; digestion resistant-, digestion sensitive-, and digestion dependent markers, were analyzed based on the presence/absence polymorphism of the markers between the two templates. Results Approximately 1,000 PCR markers per sample were produced from 27 sets of primer and most of them (>90% were digestion resistant markers. The highest percentage of digestion resistant markers was found in leukocytic DNA (94.8% and the lowest in fibroblastic DNA (92.3%, P ≤ 0.05. Spermatozoa contained a higher number of digestion sensitive markers when compared with the others (3.6% vs. 2.2% and 2.6% in leukocytes and fibroblasts respectively, P ≤ 0.05. Conclusions The powerfulness of the AMP PCR assay was the generation of methylation-associated markers without any prior knowledge of the genomic sequence. The data obtained from different primers provided an overview of genome wide DNA methylation content in different cell types. By using this technique, we found that DNA methylation profile is tissue-specific. Male germ cells were hypomethylated at the HpaII locations when compared with somatic cells, while the chromatin of the well-characterized somatic cells was heavily methylated when compared with that of the versatile somatic

  3. Polymorphic Embedding of DSLs

    DEFF Research Database (Denmark)

    Hofer, Christian; Ostermann, Klaus; Rendel, Tillmann

    2008-01-01

    propose polymorphic embedding of DSLs, where many different interpretations of a DSL can be provided as reusable components, and show how polymorphic embedding can be realized in the programming language Scala. With polymorphic embedding, the static type-safety, modularity, composability and rapid...

  4. Estrogen enhanced cell-cell signalling in breast cancer cells exposed to targeted irradiation

    International Nuclear Information System (INIS)

    Shao, Chunlin; Folkard, Melvyn; Held, Kathryn D; Prise, Kevin M

    2008-01-01

    Radiation-induced bystander responses, where cells respond to their neighbours being irradiated are being extensively studied. Although evidence shows that bystander responses can be induced in many types of cells, it is not known whether there is a radiation-induced bystander effect in breast cancer cells, where the radiosensitivity may be dependent on the role of the cellular estrogen receptor (ER). This study investigated radiation-induced bystander responses in estrogen receptor-positive MCF-7 and estrogen receptor-negative MDA-MB-231 breast cancer cells. The influence of estrogen and anti-estrogen treatments on the bystander response was determined by individually irradiating a fraction of cells within the population with a precise number of helium-3 using a charged particle microbeam. Damage was scored as chromosomal damage measured as micronucleus formation. A bystander response measured as increased yield of micronucleated cells was triggered in both MCF-7 and MDA-MB-231 cells. The contribution of the bystander response to total cell damage in MCF-7 cells was higher than that in MDA-MB-231 cells although the radiosensitivity of MDA-MB-231 was higher than MCF-7. Treatment of cells with 17β-estradiol (E2) increased the radiosensitivity and the bystander response in MCF-7 cells, and the effect was diminished by anti-estrogen tamoxifen (TAM). E2 also increased the level of intracellular reactive oxygen species (ROS) in MCF-7 cells in the absence of radiation. In contrast, E2 and TAM had no influence on the bystander response and ROS levels in MDA-MB-231 cells. Moreover, the treatment of MCF-7 cells with antioxidants eliminated both the E2-induced ROS increase and E2-enhanced bystander response triggered by the microbeam irradiation, which indicates that ROS are involved in the E2-enhanced bystander micronuclei formation after microbeam irradiation. The observation of bystander responses in breast tumour cells may offer new potential targets for radiation

  5. Photochemical Targeting Of Phagocytic Trabecular Meshwork Cells Using Chlorin E6 Coupled Microspheres

    Science.gov (United States)

    Latina, M. A.; Kobsa, P. H.; Rakestraw, S. L.; Crean, E. A.; Hasan, T.; Yarmush, M. L.

    1989-03-01

    We have investigated a novel and efficient delivery system utilizing photosensitizer-coupled-latex microspheres to photochemically target and kill phagocytic trabecular meshwork (TM) cells. TM cells are the most actively phagocytic cells within the anterior chamber of the eye and are located within an optically accessible discrete band. This delivery system, along with the property of cell photocytosis, will achieve double selectivity by combining preferential localization of the photosensitizer to the target cells with spatial localization of illumination on the target cells. All experiments were performed with preconfluent bovine TM cells, 3rd to 4th passage, plated in 15 mm wells. Chlorin e6 monoethylene diamine monoamide was conjugated to the surface of 1.0 Am MX Duke Scientific fluorescent latex microspheres. Spectroscopic analysis revealed an average of 1.3 x 10 -17 moles of chlorin e6 per microsphere. TM cells were incubated for 18 hours with 5 x 10 7 microspheres/ml in MEM with 10% FCS, washed with MEM, and irradiated through fresh media using an argon-pumped dye laser emitting .2 W at 660 nm. A dose-survival study indicated that energy doses of 10 J/cm2 or greater resulted in greater than 95% cell death as determined by ethidium bromide exclusion. Cell death could be demonstrated as early as 4 hours post-irradiation. TM cells incubated with a solution of chlorin e6 at a concentration equal to that conjugated to the microspheres showed no cell death. Unirradiated controls also showed no cell death.

  6. Reduced folate carrier polymorphism determines methotrexate uptake by B cells and CD4+ T cellsTumor necrosis factor-alpha binding capacity and anti-infliximab antibodies measured by fluid-phase radioimmunoassays as predictors of clinical efficacy of infliximab in Crohn's disease

    DEFF Research Database (Denmark)

    Baslund, B.; Gregers, J.; Nielsen, Claus Henrik

    2008-01-01

    OBJECTIVE: To examine if polymorphism 80G --> A in the Reduced Folate Carrier (RFC) affects uptake of MTX in B- and CD4+ T-cells. METHODS: Mononuclear cells were isolated from peripheral blood of healthy persons. Real-time PCR was used to detect the RFC80 variants. FITC-labelled MTX was added to ...

  7. miR-340 alleviates chemoresistance of osteosarcoma cells by targeting ZEB1.

    Science.gov (United States)

    Yan, Haibin; Zhang, Bingyun; Fang, Chongbin; Chen, Liqiu

    2018-06-01

    Chemoresistance during treatment of osteosarcoma (OS) is attracting more and more attention as the main clinical obstacle. The purpose of this study was to elucidate the role of miR-340 in chemoresistance of OS. Plasmid construction and transfection, miRNA arrays, PCR analyses, and western blot analysis, as well as MTT, apoptosis, and luciferase assays were carried out in MG-63 cells and MG-63/cisplatin (DDP)-resistant cells. The results showed that miR-340 was downregulated in OS tissues and drug-resistant OS cells. Moreover, a negative correlation was observed between miR-340 and ZEB1 expression in OS tissues. Forced expression of miR-340 in drug-resistant OS cells significantly reduced multidrug resistance-1 and P-gp expression. Overexpression of miR-340 enhanced sensitivity to DDP by inhibiting viability and promoting apoptosis. The luciferase assay and western blot analysis identified ZEB1 as a direct target of miR-340, and miR-340 negatively regulated ZEB1 expression. Ectopic expression of ZEB1 reversed the effects of miR-340 on P-gp expression, cell viability, and apoptosis. miR-340 alleviated chemoresistance of OS cells by targeting ZEB1. Our results indicate that targeting miR-340 may be a potential therapeutic approach to treat drug-resistant OS.

  8. Magnetic Nanoparticles for Targeting and Imaging of Stem Cells in Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Michelle R. Santoso

    2016-01-01

    Full Text Available Stem cell therapy has broad applications in regenerative medicine and increasingly within cardiovascular disease. Stem cells have emerged as a leading therapeutic option for many diseases and have broad applications in regenerative medicine. Injuries to the heart are often permanent due to the limited proliferation and self-healing capability of cardiomyocytes; as such, stem cell therapy has become increasingly important in the treatment of cardiovascular diseases. Despite extensive efforts to optimize cardiac stem cell therapy, challenges remain in the delivery and monitoring of cells injected into the myocardium. Other fields have successively used nanoscience and nanotechnology for a multitude of biomedical applications, including drug delivery, targeted imaging, hyperthermia, and tissue repair. In particular, superparamagnetic iron oxide nanoparticles (SPIONs have been widely employed for molecular and cellular imaging. In this mini-review, we focus on the application of superparamagnetic iron oxide nanoparticles in targeting and monitoring of stem cells for the treatment of myocardial infarctions.

  9. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination

    OpenAIRE

    Fievez, Virginie; Plapied, Laurence; des Rieux, Anne; Pourcelle, Vincent; Freichels, Hélène; Wascotte, Valentine; Vanderhaegen, Marie-Lyse; Jérôme, Christine; Vanderplasschen, Alain; Marchand-Brynaert, Jacqueline; Préat, Véronique

    2009-01-01

    The presence of RGD on nanoparticles allows the targeting of β1 integrins at the apical surface of human M cells and the enhancement of an immune response after oral immunization. To check the hypothesis that non-peptidic ligands targeting intestinal M cells or APCs would be more efficient for oral immunization than RGD, novel non-peptidic and peptidic analogs (RGD peptidomimitic (RGDp), LDV derivative (LDVd) and LDV peptidomimetic (LDVp)) as well as mannose were grafted on the PEG chain of P...

  10. Stem cell targets and dosimetry for radiation-induced leukaemia and bone cancer

    International Nuclear Information System (INIS)

    Richardson, R.B.

    2007-01-01

    The ICRP are proposing changes to the assumed targets for the induction of bone cancer and leukaemias as described by Harrison et al in an accompanying article. This study of radiation targets in the skeleton finds that the endosteum of the long bone medullary cavities is not an important target, especially in the adult, as it supports a very low stem cell population associated with high adiposity, whereas the periosteum has a strong mesenchymal stem cell population throughout lifetime. Quiescent stem cells are found to be preferentially located close to the trabecular bone surface in the osteoblastic niche, whereas progenitors of stem cells prefer to reside in perivascular niches. Evidence is given in support of the suggestion that the absence of excess bone-cancer in atomic bomb survivors may be related to the extremely low prevalence of Paget's disease in Japan. The hypoxic conditions of the endosteum adjacent to quiescent bone surfaces provide a radioprotective stem cell microenvironment by a factor of 2-3 fold, whereas greater radiosensitivity is prevalent in the young and individuals with benign diseases of bone. Increasing the volume of the bone cancer target from a 10 μm thick endosteum to a 50 μm peripheral marrow layer will result in an approximately three-fold decline in the mean dose from alpha-emitters in bone. These new observations are shown to go some way in explaining the low incidences for leukaemia and especially bone cancer in radium dial painters, Thorotrast patients and Mayak nuclear workers. (author)

  11. Targeted genome editing in human repopulating haematopoietic stem cells

    NARCIS (Netherlands)

    P. Genovese (Pietro); G. Schiroli (Giulia); G. Escobar (Giulia); T. Di Tomaso (Tiziano); C. Firrito (Claudia); A. Calabria (Andrea); D. Moi (Davide); R. Mazzieri (Roberta); C. Bonini (Chiara); M.V. Holmes (Michael); P.D. Gregory (Philip); M. van der Burg (Mirjam); B. Gentner (Bernhard); E. Montini (Eugenio); A. Lombardo (Angelo); L. Naldini (Luigi)

    2014-01-01

    textabstractTargeted genome editing by artificial nucleases has brought the goal of site-specific transgene integration and gene correction within the reach of gene therapy. However, its application to long-term repopulating haematopoietic stem cells (HSCs) has remained elusive. Here we show that

  12. Pancreatic cancer cell detection by targeted lipid microbubbles and multiphoton imaging

    Science.gov (United States)

    Cromey, Benjamin; McDaniel, Ashley; Matsunaga, Terry; Vagner, Josef; Kieu, Khanh Quoc; Banerjee, Bhaskar

    2018-04-01

    Surgical resection of pancreatic cancer represents the only chance of cure and long-term survival in this common disease. Unfortunately, determination of a cancer-free margin at surgery is based on one or two tiny frozen section biopsies, which is far from ideal. Not surprisingly, cancer is usually left behind and is responsible for metastatic disease. We demonstrate a method of receptor-targeted imaging using peptide ligands, lipid microbubbles, and multiphoton microscopy that could lead to a fast and accurate way of examining the entire cut surface during surgery. Using a plectin-targeted microbubble, we performed a blinded in-vitro study to demonstrate avid binding of targeted microbubbles to pancreatic cancer cells but not noncancerous cell lines. Further work should lead to a much-needed point-of-care diagnostic test for determining clean margins in oncologic surgery.

  13. Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction.

    Science.gov (United States)

    Chen, M; Zhang, Y; Yu, V C; Chong, Y-S; Yoshioka, T; Ge, R

    2014-05-01

    Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent.

  14. Isthmin targets cell-surface GRP78 and triggers apoptosis via induction of mitochondrial dysfunction

    Science.gov (United States)

    Chen, M; Zhang, Y; Yu, V C; Chong, Y-S; Yoshioka, T; Ge, R

    2014-01-01

    Isthmin (ISM) is a secreted 60-kDa protein that potently induces endothelial cell (EC) apoptosis. It suppresses tumor growth and angiogenesis in mice when stably overexpressed in cancer cells. Although αvβ5 integrin serves as a low-affinity receptor for ISM, the mechanism by which ISM mediates antiangiogenesis and apoptosis in ECs remain to be fully resolved. In this work, we report the identification of cell-surface glucose-regulated protein 78 kDa (GRP78) as a high-affinity receptor for ISM (Kd=8.6 nM). We demonstrated that ISM-GRP78 interaction triggers apoptosis not only in activated ECs but also in cancer cells expressing high level of cell-surface GRP78. Normal cells and benign tumor cells tend to express low level of cell-surface GRP78 and are resistant to ISM-induced apoptosis. Upon binding to GRP78, ISM is internalized into ECs through clathrin-dependent endocytosis that is essential for its proapoptotic activity. Once inside the cell, ISM co-targets with GRP78 to mitochondria where it interacts with ADP/ATP carriers on the inner membrane and blocks ATP transport from mitochondria to cytosol, thereby causing apoptosis. Hence, ISM is a novel proapoptotic ligand that targets cell-surface GRP78 to trigger apoptosis by inducing mitochondrial dysfunction. The restricted and high-level expression of cell-surface GRP78 on cancer cells and cancer ECs make them uniquely susceptible to ISM-targeted apoptosis. Indeed, systemic delivery of recombinant ISM potently suppressed subcutaneous 4T1 breast carcinoma and B16 melanoma growth in mice by eliciting apoptosis selectively in the cancer cells and cancer ECs. Together, this work reveals a novel ISM-GRP78 apoptosis pathway and demonstrates the potential of ISM as a cancer-specific and dual-targeting anticancer agent. PMID:24464222

  15. Clearance of red cells by monoclonal IgG3 anti-D in vivo is affected by the VF polymorphism of Fcgamma RIIIa (CD16)

    NARCIS (Netherlands)

    Kumpel, B. M.; de Haas, M.; Koene, H. R.; van de Winkel, J. G. J.; Goodrick, M. J.

    2003-01-01

    Human red cells (RBC) coated with IgG anti-D are cleared from the circulation to the spleen by macrophages which express IgG receptors (Fcgamma R). Polymorphisms of Fcgamma RIIa and Fcgamma RIIIa affect IgG binding in vitro, and may alter the efficiency of clearance of immune complexes in vivo. In a

  16. Plasmonic nanodiamonds: targeted core-shell type nanoparticles for cancer cell thermoablation.

    Science.gov (United States)

    Rehor, Ivan; Lee, Karin L; Chen, Kevin; Hajek, Miroslav; Havlik, Jan; Lokajova, Jana; Masat, Milan; Slegerova, Jitka; Shukla, Sourabh; Heidari, Hamed; Bals, Sara; Steinmetz, Nicole F; Cigler, Petr

    2015-02-18

    Targeted biocompatible nanostructures with controlled plasmonic and morphological parameters are promising materials for cancer treatment based on selective thermal ablation of cells. Here, core-shell plasmonic nanodiamonds consisting of a silica-encapsulated diamond nanocrystal coated in a gold shell are designed and synthesized. The architecture of particles is analyzed and confirmed in detail using electron tomography. The particles are biocompatibilized using a PEG polymer terminated with bioorthogonally reactive alkyne groups. Azide-modified transferrin is attached to these particles, and their high colloidal stability and successful targeting to cancer cells overexpressing the transferrin receptor are demonstrated. The particles are nontoxic to the cells and they are readily internalized upon binding to the transferrin receptor. The high plasmonic cross section of the particles in the near-infrared region is utilized to quantitatively ablate the cancer cells with a short, one-minute irradiation by a pulse 750-nm laser. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tracking targeted bimodal nanovaccines: immune responses and routing in cells, tissue, and whole organism.

    Science.gov (United States)

    Cruz, Luis J; Tacken, Paul J; Zeelenberg, Ingrid S; Srinivas, Mangala; Bonetto, Fernando; Weigelin, Bettina; Eich, Christina; de Vries, I Jolanda; Figdor, Carl G

    2014-12-01

    Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs), involved in the induction of immunity and currently exploited for antitumor immunotherapies. An optimized noninvasive imaging modality capable of determining and quantifying DC-targeted nanoparticle (NP) trajectories could provide valuable information regarding therapeutic vaccine outcome. Here, targeted poly(d,l-lactide-co-glycolide) nanoparticles (PLGA NPs) recognizing DC receptors were equipped with superparamagnetic iron oxide particles (SPIO) or gold nanoparticles with fluorescently labeled antigen. The fluorescent label allowed for rapid analysis and quantification of DC-specific uptake of targeted PLGA NPs in comparison to uptake by other cells. Transmission electron microscopy (TEM) showed that a fraction of the encapsulated antigen reached the lysosomal compartment of DCs, where SPIO and gold were already partially released. However, part of the PLGA NPs localized within the cytoplasm, as confirmed by confocal microscopy. DCs targeted with NPs carrying SPIO or fluorescent antigen were detected within lymph nodes as early as 1 h after injection by magnetic resonance imaging (MRI). Despite the fact that targeting did not markedly affect PLGA NP biodistribution on organism and tissue level, it increased delivery of NPs to DCs residing in peripheral lymph nodes and resulted in enhanced T cell proliferation. In conclusion, two imaging agents within a single carrier allows tracking of targeted PLGA NPs at the subcellular, cellular, and organismal levels, thereby facilitating the rational design of in vivo targeted vaccination strategies.

  18. Communicating the non-targeted effects of radiation from irradiated to non-irradiated cells

    International Nuclear Information System (INIS)

    Laiakis, E.C.; Morgan, W.F.

    2005-01-01

    For many years, the central dogma in radiobiology has been that energy deposited in the cell nucleus is responsible for the biological effects associated with radiation exposure. However, non-targeted and delayed effects of radiation have shifted this belief. The studies of radiation-induced genomic instability, the bystander and abscopal effects, clastogenic factors, and the Death Inducing Effect have dominated the interest of the radiobiology field of late. The passing of signals from irradiated to non-irradiated cells can be accomplished through cell-to-cell gap junction communication or secretion of molecules, which in turn can elicit a response through activation of signal transduction pathways. Proposed mediators of this phenotype include proteins involved with inflammation. Given their size and connection with oxidative stress, cytokines are an attractive candidate as mediators of the induction of the non-targeted effects of radiation. Here we review the evidence for a possible connection between these delayed non-targeted effects of radiation and the cytokine cascades associated with inflammation. (author)

  19. CD25 targeted therapy of chemotherapy resistant leukemic stem cells using DR5 specific TRAIL peptide

    Directory of Open Access Journals (Sweden)

    Jayaprakasam Madhumathi

    2017-03-01

    Full Text Available Chemotherapy resistant leukemic stem cells (LSCs are being targeted as a modern therapeutic approach to prevent disease relapse. LSCs isolated from methotrexate resistant side population (SP of leukemic cell lines HL60 and MOLT4 exhibited high levels of CD25 and TRAIL R2/DR5 which are potential targets. Recombinant immunotoxin conjugating IL2α with TRAIL peptide mimetic was constructed for DR5 receptor specific targeting of LSCs and were tested in total cell population and LSCs. IL2-TRAIL peptide induced apoptosis in drug resistant SP cells from cell lines and showed potent cytotoxicity in PBMCs derived from leukemic patients with an efficacy of 81.25% in AML and 100% in CML, ALL and CLL. IL2-TRAIL peptide showed cytotoxicity in relapsed patient samples and was more effective than TRAIL or IL2-TRAIL proteins. Additionally, DR5 specific IL2-TRAIL peptide was effective in targeting and killing LSCs purified from cell lines [IC50: 952 nM in HL60, 714 nM in MOLT4] and relapsed patient blood samples with higher efficacy (85% than IL2-TRAIL protein (46%. Hence, CD25 and DR5 specific targeting by IL2-TRAIL peptide may be an effective strategy for targeting drug resistant leukemic cells and LSCs.

  20. Nanobiotechnology meets plant cell biology: Carbon nanotubes as organelle targeting nanocarriers

    KAUST Repository

    Serag, Maged F.; Kaji, Noritada; Habuchi, Satoshi; Bianco, Alberto; Baba, Yoshinobu

    2013-01-01

    For years, nanotechnology has shown great promise in the fields of biomedical and biotechnological sciences and medical research. In this review, we demonstrate its versatility and applicability in plant cell biology studies. Specifically, we discuss the ability of functionalized carbon nanotubes to penetrate the plant cell wall, target specific organelles, probe protein-carrier activity and induce organelle recycling in plant cells. We also, shed light on prospective applications of carbon nanomaterials in cell biology and plant cell transformation. © 2013 The Royal Society of Chemistry.

  1. MicroRNA-1185 Induces Endothelial Cell Apoptosis by Targeting UVRAG and KRIT1

    Directory of Open Access Journals (Sweden)

    Haoyuan Deng

    2017-04-01

    Full Text Available Background/Aims: Atherosclerosis is a multifactorial chronic disease and is the main cause of death and impairment in the world. Endothelial injury and apoptosis play a crucial role in the onset and development of atherosclerosis. MicroRNAs (miRNAs have been proven to be involved in the pathogenesis of atherosclerosis. However, studies of the functional role of apoptosis-related miRNAs in the endothelium during atherogenesis are limited. Methods: Cell injury and apoptosis were measured in five types of cells transfected with miR-1185 or co-transfected with miR-1185 and its inhibitor. Bioinformatics analysis and a luciferase reporter assay were used to confirm the targets of miR-1185. The effects of the targets of miR-1185 on endothelial apoptosis were determined using small-interfering RNA. Results: In this study, we first report that miR-1185 significantly promoted apoptosis in endothelial cells but not in vascular smooth muscle cells and macrophages. A mechanistic analysis showed that ultraviolet irradiation resistance-associated gene (UVRAG and krev1 interaction trapped gene 1 (KRIT1, targets of miR-1185, mediated miR-1185-induced endothelial cell apoptosis. Conclusion: The results revealed the impact of miR-1185 on endothelial apoptosis, suggesting that miR-1185 may be a potential target for the prevention and treatment of atherosclerosis.

  2. Proteasomal targeting and minigene repetition improve cell-surface presentation of a transfected, modified melanoma tumour antigen

    DEFF Research Database (Denmark)

    Rasmussen, A B; Zocca, M-B; Bonefeld, C M

    2004-01-01

    Melanoma antigen recognized by T cell 1 (MART-1) is regarded as a candidate peptide for vaccination against malignant melanoma, and it is of importance to develop strategies to improve the vaccine-elicited T-cell activation towards MART-1. T-cell activation is, among other determinants, dependent...... on the density of specific major histocompatibility complex-peptide complexes on the surface of the antigen-presenting cell. In this study, we explored the cell-surface presentation of a substituted MART-1 peptide encoded by transfected minigenes. We investigated the potential of proteasomal targeting compared...... to non-proteasomal targeting of the epitope to increase its cell-surface presentation. Furthermore, we explored the potential of incorporating multiple minigenes instead of one to increase cell-surface presentation. We show that both proteasomal targeting and repetition of the minigene increase cell...

  3. Rationally engineered nanoparticles target multiple myeloma cells, overcome cell-adhesion-mediated drug resistance, and show enhanced efficacy in vivo

    International Nuclear Information System (INIS)

    Kiziltepe, T; Ashley, J D; Stefanick, J F; Qi, Y M; Alves, N J; Handlogten, M W; Suckow, M A; Navari, R M; Bilgicer, B

    2012-01-01

    In the continuing search for effective cancer treatments, we report the rational engineering of a multifunctional nanoparticle that combines traditional chemotherapy with cell targeting and anti-adhesion functionalities. Very late antigen-4 (VLA-4) mediated adhesion of multiple myeloma (MM) cells to bone marrow stroma confers MM cells with cell-adhesion-mediated drug resistance (CAM-DR). In our design, we used micellar nanoparticles as dynamic self-assembling scaffolds to present VLA-4-antagonist peptides and doxorubicin (Dox) conjugates, simultaneously, to selectively target MM cells and to overcome CAM-DR. Dox was conjugated to the nanoparticles through an acid-sensitive hydrazone bond. VLA-4-antagonist peptides were conjugated via a multifaceted synthetic procedure for generating precisely controlled number of targeting functionalities. The nanoparticles were efficiently internalized by MM cells and induced cytotoxicity. Mechanistic studies revealed that nanoparticles induced DNA double-strand breaks and apoptosis in MM cells. Importantly, multifunctional nanoparticles overcame CAM-DR, and were more efficacious than Dox when MM cells were cultured on fibronectin-coated plates. Finally, in a MM xenograft model, nanoparticles preferentially homed to MM tumors with ∼10 fold more drug accumulation and demonstrated dramatic tumor growth inhibition with a reduced overall systemic toxicity. Altogether, we demonstrate the disease driven engineering of a nanoparticle-based drug delivery system, enabling the model of an integrative approach in the treatment of MM

  4. Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia.

    Science.gov (United States)

    Kim, Dong-Hyun; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Lee, Yong-Keun

    2009-01-01

    The delivery of hyperthermic thermoseeds to a specific target site with minimal side effects is an important challenge in targeted hyperthermia, which employs magnetic method and functional polymers. An external magnetic field is used to control the site-specific targeting of the magnetic nanoparticles. Polymer-coated magnetic nanoparticles can confer a higher affinity to the biological cell membranes. In this study, uncoated, chitosan-coated, and starch-coated magnetic nanoparticles were synthesized for use as a hyperthermic thermoseed. Each sample was examined with respect to their applications to hyperthermia using XRD, VSM, and FTIR. In addition, the temperature changes under an alternating magnetic field were observed. As in vitro tests, the magnetic responsiveness of chitosan- and starch-coated magnetite was determined by a simple blood vessel model under various intensities of magnetic field. L929 normal cells and KB carcinoma cells were used to examine the cytotoxicity and affinity of each sample using the MTT method. The chitosan-coated magnetic nanoparticles generated a higher DeltaT of 23 degrees C under an AC magnetic field than the starch-coated magnetite, and the capturing rate of the particles was 96% under an external magnetic field of 0.4 T. The highest viability of L929 cells was 93.7%. Comparing the rate of KB cells capture with the rate of L929 cells capture, the rate of KB cells capture relatively increased with 10.8% in chitosan-coated magnetic nanoparticles. Hence, chitosan-coated magnetic nanoparticles are biocompatible and have a selective affinity to KB cells. The targeting of magnetic nanoparticles in hyperthermia was improved using a controlled magnetic field and a chitosan-coating. Therefore, chitosan-coated magnetic nanoparticles are expected to be promising materials for use in magnetic targeted hyperthermia. 2008 Wiley Periodicals, Inc.

  5. Epithelial cell adhesion molecule aptamer functionalized PLGA-lecithin-curcumin-PEG nanoparticles for targeted drug delivery to human colorectal adenocarcinoma cells

    Science.gov (United States)

    Li, Lei; Xiang, Dongxi; Shigdar, Sarah; Yang, Wenrong; Li, Qiong; Lin, Jia; Liu, Kexin; Duan, Wei

    2014-01-01

    To improve the efficacy of drug delivery, active targeted nanotechnology-based drug delivery systems are gaining considerable attention as they have the potential to reduce side effects, minimize toxicity, and improve efficacy of anticancer treatment. In this work CUR-NPs (curcumin-loaded lipid-polymer-lecithin hybrid nanoparticles) were synthesized and functionalized with ribonucleic acid (RNA) Aptamers (Apts) against epithelial cell adhesion molecule (EpCAM) for targeted delivery to colorectal adenocarcinoma cells. These CUR-encapsulated bioconjugates (Apt-CUR-NPs) were characterized for particle size, zeta potential, drug encapsulation, stability, and release. The in vitro specific cell binding, cellular uptake, and cytotoxicity of Apt-CUR-NPs were also studied. The Apt-CUR-NP bioconjugates exhibited increased binding to HT29 colon cancer cells and enhancement in cellular uptake when compared to CUR-NPs functionalized with a control Apt (P<0.01). Furthermore, a substantial improvement in cytotoxicity was achieved toward HT29 cells with Apt-CUR-NP bioconjugates. The encapsulation of CUR in Apt-CUR-NPs resulted in the increased bioavailability of delivered CUR over a period of 24 hours compared to that of free CUR in vivo. These results show that the EpCAM Apt-functionalized CUR-NPs enhance the targeting and drug delivery of CUR to colorectal cancer cells. Further development of CUR-encapsulated, nanosized carriers will lead to improved targeted delivery of novel chemotherapeutic agents to colorectal cancer cells. PMID:24591829

  6. A high content, high throughput cellular thermal stability assay for measuring drug-target engagement in living cells.

    Science.gov (United States)

    Massey, Andrew J

    2018-01-01

    Determining and understanding drug target engagement is critical for drug discovery. This can be challenging within living cells as selective readouts are often unavailable. Here we describe a novel method for measuring target engagement in living cells based on the principle of altered protein thermal stabilization / destabilization in response to ligand binding. This assay (HCIF-CETSA) utilizes high content, high throughput single cell immunofluorescent detection to determine target protein levels following heating of adherent cells in a 96 well plate format. We have used target engagement of Chk1 by potent small molecule inhibitors to validate the assay. Target engagement measured by this method was subsequently compared to target engagement measured by two alternative methods (autophosphorylation and CETSA). The HCIF-CETSA method appeared robust and a good correlation in target engagement measured by this method and CETSA for the selective Chk1 inhibitor V158411 was observed. However, these EC50 values were 23- and 12-fold greater than the autophosphorylation IC50. The described method is therefore a valuable advance in the CETSA method allowing the high throughput determination of target engagement in adherent cells.

  7. Relationship between genetic polymorphisms in MCP-1, CCR-2, and non-small-cell lung cancer in the Han nationality of Northern China.

    Science.gov (United States)

    Yang, L; Wang, J; Li, F-G; Han, M; Chang, X-J; Wang, Z-T

    2015-04-22

    Lung cancer is a common malignant tumor worldwide and is now the leading cause of cancer-related deaths. Monocyte chemoattractant protein 1 (MCP-1) and its receptor chemokine receptor 2 (CCR-2) are important chemokines. We examined the polymorphisms of 338 unrelated patients with non-small cell lung carcinoma (NSCLC) and 200 unrelated healthy controls of Han nationality in Northern China using polymerase chain reaction-restriction fragment length polymorphism. We found a significant increase in the frequency of the MCP-1 AA genotype [0.293 vs 0.195, odds ratio (OR) = 1.71, 95% confidence interval (CI) = 1.13-2.60] and a significant decrease in the frequency of the GG genotype (0.290 vs 0.41, OR = 0.64, 95%CI = 0.47-0.87) in NSCLC patients compared to controls. The frequencies of AA-ww (0.151 vs 0.090, P = 0.041, OR = 1.80, 95%CI = 1.33-2.43) and AA-wm (0.136 vs 0.080, P = 0.049, OR = 1.81, 95%CI = 1.01-3.27) were higher in lung cancer patients than in healthy controls; the frequency of GG-wm (0.121 vs 0.190, P = 0.030, OR = 0.60, 95%CI = 0.38-0.95) was lower in lung cancer patients than in healthy controls. Based on these results, the polymorphism in MCP-1 may be correlated with the development of NSCLC in the Han nationality of Northern China. However, the polymorphism in CCR-2 is not involved in NSCLC.

  8. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting

    Directory of Open Access Journals (Sweden)

    Sander A. A. Kooijmans

    2016-03-01

    Full Text Available Background: Extracellular vesicles (EVs are attractive candidate drug delivery systems due to their ability to functionally transport biological cargo to recipient cells. However, the apparent lack of target cell specificity of exogenously administered EVs limits their therapeutic applicability. In this study, we propose a novel method to equip EVs with targeting properties, in order to improve their interaction with tumour cells. Methods: EV producing cells were transfected with vectors encoding for anti-epidermal growth factor receptor (EGFR nanobodies, which served as targeting ligands for tumour cells, fused to glycosylphosphatidylinositol (GPI anchor signal peptides derived from decay-accelerating factor (DAF. EVs were isolated using ultrafiltration/size-exclusion liquid chromatography and characterized using western blotting, Nanoparticle Tracking Analysis, and electron microscopy. EV–tumour cell interactions were analyzed under static conditions using flow cytometry and under flow conditions using a live-cell fluorescence microscopy-coupled perfusion system. Results: V analysis showed that GPI-linked nanobodies were successfully displayed on EV surfaces and were highly enriched in EVs compared with parent cells. Display of GPI-linked nanobodies on EVs did not alter general EV characteristics (i.e. morphology, size distribution and protein marker expression, but greatly improved EV binding to tumour cells dependent on EGFR density under static conditions. Moreover, nanobody-displaying EVs showed a significantly improved cell association to EGFR-expressing tumour cells under flow conditions. Conclusions: We show that nanobodies can be anchored on the surface of EVs via GPI, which alters their cell targeting behaviour. Furthermore, this study highlights GPI-anchoring as a new tool in the EV toolbox, which may be applied for EV display of a variety of proteins, such as antibodies, reporter proteins and signaling molecules.

  9. Structural features facilitating tumor cell targeting and internalization by bleomycin and its disaccharide.

    Science.gov (United States)

    Yu, Zhiqiang; Paul, Rakesh; Bhattacharya, Chandrabali; Bozeman, Trevor C; Rishel, Michael J; Hecht, Sidney M

    2015-05-19

    We have shown previously that the bleomycin (BLM) carbohydrate moiety can recapitulate the tumor cell targeting effects of the entire BLM molecule, that BLM itself is modular in nature consisting of a DNA-cleaving aglycone which is delivered selectively to the interior of tumor cells by its carbohydrate moiety, and that there are disaccharides structurally related to the BLM disaccharide which are more efficient than the natural disaccharide at tumor cell targeting/uptake. Because BLM sugars can deliver molecular cargoes selectively to tumor cells, and thus potentially form the basis for a novel antitumor strategy, it seemed important to consider additional structural features capable of affecting the efficiency of tumor cell recognition and delivery. These included the effects of sugar polyvalency and net charge (at physiological pH) on tumor cell recognition, internalization, and trafficking. Since these parameters have been shown to affect cell surface recognition, internalization, and distribution in other contexts, this study has sought to define the effects of these structural features on tumor cell recognition by bleomycin and its disaccharide. We demonstrate that both can have a significant effect on tumor cell binding/internalization, and present data which suggests that the metal ions normally bound by bleomycin following clinical administration may significantly contribute to the efficiency of tumor cell uptake, in addition to their characterized function in DNA cleavage. A BLM disaccharide-Cy5** conjugate incorporating the positively charged dipeptide d-Lys-d-Lys was found to associate with both the mitochondria and the nuclear envelope of DU145 cells, suggesting possible cellular targets for BLM disaccharide-cytotoxin conjugates.

  10. Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongchao; Yin, Bingde; Zhang, Changcun; Zhou, Libin [Department of Urology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080 (China); Fan, Jie, E-mail: jief67@sina.com [Department of Urology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080 (China)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer This study is the first to test the let-7a/c-myc loop in renal cell carcinoma cell lines. Black-Right-Pointing-Pointer Let-7a down-regulated c-myc in three renal cell carcinoma cell lines. Black-Right-Pointing-Pointer c-myc target genes were down-regulated because of the let-7a-mediated down-regulation of c-myc. Black-Right-Pointing-Pointer The let-7a/c-myc loop has a significant function in renal cell carcinoma cell lines. -- Abstract: Widespread functions of the c-myc pathway play a crucial role in renal cell carcinoma (RCC) carcinogenesis. Thus, we evaluated the connection between proto-oncogenic c-myc and anti-neoplastic hsa-let-7a (let-7a) in RCC cell lines. The levels of c-myc and let-7a in 3 RCC cell lines (769P, Caki-1 and 786O) were measured after transfecting the cells with let-7a mimics or a negative control. The change in c-myc protein level was confirmed by Western blot. The anti-neoplastic function of let-7a was evaluated using cell counting kit-8 (CCK-8) for proliferation analysis and cell flow cytometry for cell cycle analysis. The changes of downstream targets of c-myc were measured using reverse transcription quantitative real-time PCR (qRT-PCR). Our results suggest for the first time that let-7a acts as a tumor suppressor in RCC cell lines by down-regulating c-myc and c-myc target genes such as proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1) and the miR17-92 cluster, which is accompanied by proliferation inhibition and cell cycle arrest.

  11. FADS1 rs174549 Polymorphism May Predict a Favorable Response to Chemoradiotherapy in Oral Cancer Patients.

    Science.gov (United States)

    Chen, Fa; He, Baochang; Yan, Lingjun; Qiu, Yu; Lin, Lisong; Cai, Lin

    2017-01-01

    The fatty acid desaturase 1 (FADS1) gene variant is a novel susceptibility marker for laryngeal squamous cell carcinoma identified by a recent genome-wide association study, but it is still unclear whether this genetic variant continues to influence oral cancer recurrence or death. The purpose of this study was to evaluate the role of FADS1 rs174549 polymorphism and its interaction with postoperative chemoradiotherapy in the prognosis of oral cancer. A prospective cohort study involving 304 oral cancer patients with surgical resection was conducted in Fujian, China. Demographic and clinical data (adjuvant therapy types, histologic types, clinical stage, etc.) were extracted from medical records, and follow-up data were obtained by telephone interviews. We collected 5 to 8 mL of venous blood from all patients for DNA extraction, and rs174549 genotypes were determined by TaqMan assays (Life Technologies, Carlsbad, CA). A Cox proportional hazards model and Kaplan-Meier curve were used to assess the association between FADS1 rs174549 polymorphism and progression-free survival (PFS), as well as overall survival, in oral cancer. Carrying the AA genotype was significantly associated with a decreased risk of PFS: The hazard ratio was 0.52 (95% confidence interval, 0.29 to 0.93) for the codominant model and 0.54 (95% confidence interval, 0.31 to 0.94) for the recessive model. Moreover, better PFS was particularly obvious in patients who had received chemoradiotherapy. A positive multiplicative interaction between FADS1 rs174549 polymorphism and chemoradiotherapy was observed for PFS (P = .036). No significant association was found between FADS1 rs174549 polymorphism and overall survival. Our study suggests, for the first time, that FADS1 rs174549 polymorphism is a potentially independent and favorable factor in predicting oral cancer PFS especially for patients who undergo chemoradiotherapy, and it may serve as a potential target for individualized treatment in the future

  12. A Functional Polymorphism (rs10817938 in the XPA Promoter Region Is Associated with Poor Prognosis of Oral Squamous Cell Carcinoma in a Chinese Han Population.

    Directory of Open Access Journals (Sweden)

    Chunhai Gao

    Full Text Available Single nucleotide polymorphisms of XPA gene have been studied in several cancers such as rs10817938, rs2808668. However, the role of XPA polymorphisms in patients with oral squamous cell carcinoma (OSCC remains unclear. Thus, we analyzed the association of XPA polymorphisms with OSCC risk, clinicopathological characteristics and prognosis in the present study. TaqMan genotyping was used to evaluate the frequency of rs10817938, rs2808668 polymorphisms in OSCC patients. The prognostic significance of these polymorphisms was evaluated using Kaplan-Meier curves, Log-Rank analyses, and the Cox proportional hazard model. Luciferase reporter assay, RT-PCR and western blot were used to determine whether rs10817938 could influence transcription activity and XPA expression. The results showed that individuals carrying TC and CC genotypes had significantly greater risk of developing OSCC (OR = 1.42, 95% CI 1.04-1.93; OR = 2.75, 95% CI 1.32-5.71, respectively when compared with wild-type TT genotype at rs10817938. OSCC patients with C allele at rs10817938 were more susceptible to lymph metastases, poor pathological differentiation and late TNM stage (OR = 1.67, 95% CI 1.17-2.37; OR = 1.64, 95% CI 1.18-2.28; OR = 1.54, 95% CI 1.11-2.14; respectively. A significant gene-environment interaction between smoking and CC genotype at rs10817938 was observed (COR = 3.60, 95% CI 1.20-10.9 and data also showed that OSCC patients with CC genotype and C allele had worse survival (p<0.001 for both. The T to C substitution at rs10817938 significantly decreased transcription activity of XPA gene, XPA mRNA and protein were also decreased in individuals with C allele at rs10817938. In addition, no significant association of rs2808668 polymorphism with OSCC risk, prognosis could be observed. In conclusion, the present study showed that XPA rs10817938 polymorphism is a functional SNP in vitro and in vivo and a biomarker for poor prognosis in OSCC patients.

  13. Light-controlled endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin by photochemical internalization - A minimally invasive cancer stem cell-targeting strategy.

    Science.gov (United States)

    Bostad, Monica; Olsen, Cathrine Elisabeth; Peng, Qian; Berg, Kristian; Høgset, Anders; Selbo, Pål Kristian

    2015-05-28

    The cancer stem cell (CSC) marker CD133 is an attractive target to improve antitumor therapy. We have used photochemical internalization (PCI) for the endosomal escape of the novel CD133-targeting immunotoxin AC133-saporin (PCIAC133-saporin). PCI employs an endocytic vesicle-localizing photosensitizer, which generates reactive oxygen species upon light-activation causing a rupture of the vesicle membranes and endosomal escape of entrapped drugs. Here we show that AC133-saporin co-localizes with the PCI-photosensitizer TPCS2a, which upon light exposure induces cytosolic release of AC133-saporin. PCI of picomolar levels of AC133-saporin in colorectal adenocarcinoma WiDr cells blocked cell proliferation and induced 100% inhibition of cell viability and colony forming ability at the highest light doses, whereas no cytotoxicity was obtained in the absence of light. Efficient PCI-based CD133-targeting was in addition demonstrated in the stem-cell-like, triple negative breast cancer cell line MDA-MB-231 and in the aggressive malignant melanoma cell line FEMX-1, whereas no enhanced targeting was obtained in the CD133-negative breast cancer cell line MCF-7. PCIAC133-saporin induced mainly necrosis and a minimal apoptotic response based on assessing cleavage of caspase-3 and PARP, and the TUNEL assay. PCIAC133-saporin resulted in S phase arrest and reduced LC3-II conversion compared to control treatments. Notably, co-treatment with Bafilomycin A1 and PCIAC133-saporin blocked LC3-II conversion, indicating a termination of the autophagic flux in WiDr cells. For the first time, we demonstrate laser-controlled targeting of CD133 in vivo. After only one systemic injection of AC133-saporin and TPCS2a, a strong anti-tumor response was observed after PCIAC133-saporin. The present PCI-based endosomal escape technology represents a minimally invasive strategy for spatio-temporal, light-controlled targeting of CD133+ cells in localized primary tumors or metastasis. Copyright © 2015

  14. Association of BIM Deletion Polymorphism and BIM-γ RNA Expression in NSCLC with EGFR Mutation.

    Science.gov (United States)

    Isobe, Kazutoshi; Kakimoto, Atsushi; Mikami, Tetsuo; Kaburaki, Kyohei; Kobayashi, Hiroshi; Yoshizawa, Takahiro; Makino, Takashi; Otsuka, Hajime; Sano, G O; Sugino, Keishi; Sakamoto, Susumu; Takai, Yujiro; Tochigi, Naobumi; Iyoda, Akira; Homma, Sakae

    This pilot study assessed the association of BIM deletion polymorphism and BIM RNA isoform in patients with EGFR-positive non-small cell lung cancer (NSCLC). The study included 33 patients with EGFR-positive NSCLC treated with gefitinib. BIM deletion polymorphism and BIM RNA isoform (EL/L/S/γ) were determined by polymerase chain reaction (PCR). BIM-γ expression was significantly higher in patients with BIM deletion polymorphism than among those without BIM deletion polymorphism inside tumors (p=0.038) and around tumors (p=0.0024). Relative BIM-γ expression was significantly higher in patients with BIM deletion polymorphism than among those without BIM deletion polymorphism (p=0.0017). Patients with BIM-γ had significantly shorter progression-free survival than those without BIM-γ (median: 304 vs. 732 days; p=0.023). Expression of BIM-γ mRNA and BIM deletion polymorphism were strongly associated. BIM-γ overexpression may have a role in apoptosis related to EGFR-tyrosine kinase inhibitor. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  15. MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation

    Directory of Open Access Journals (Sweden)

    Thomas J. Kean

    2013-01-01

    Full Text Available Mesenchymal stem cells (MSCs are currently being widely investigated both in the lab and in clinical trials for multiple disease states. The differentiation, trophic, and immunomodulatory characteristics of MSCs contribute to their therapeutic effects. Another often overlooked factor related to efficacy is the degree of engraftment. When reported, engraftment is generally low and transient in nature. MSC delivery methods should be tailored to the lesion being treated, which may be local or systemic, and customized to the mechanism of action of the MSCs, which can also be local or systemic. Engraftment efficiency is enhanced by using intra-arterial delivery instead of intravenous delivery, thus avoiding the “first-pass” accumulation of MSCs in the lung. Several methodologies to target MSCs to specific organs are being developed. These cell targeting methodologies focus on the modification of cell surface molecules through chemical, genetic, and coating techniques to promote selective adherence to particular organs or tissues. Future improvements in targeting and delivery methodologies to improve engraftment are expected to improve therapeutic results, extend the duration of efficacy, and reduce the effective (MSC therapeutic dose.

  16. Impact of MCP-1 and CCR-2 gene polymorphisms on coronary artery disease susceptibility.

    Science.gov (United States)

    Lin, Hsiu-Ling; Ueng, Kwo-Chang; Hsieh, Yih-Shou; Chiang, Whei-Ling; Yang, Shun-Fa; Chu, Shu-Chen

    2012-09-01

    Coronary artery disease (CAD) was the second leading cause of death during the last 3 years in Taiwan. Smooth muscle cells, monocytes/macrophages, and endothelial cells produce monocyte chemoattractant protein-1 (MCP-1) within atherosclerotic plaques following binding to the chemokine receptor-2 (CCR-2). Previous studies have well-documented the association between MCP-1 expression and susceptibility to, or clinicopathological features, of CAD. This study investigated the relationships between MCP-1-2518A/G and CCR-2-V64I genetic polymorphisms and CAD in the Taiwanese population. A total of 608 subjects, including 392 non-CAD controls and 216 patients with CAD, were recruited and subjected to polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to evaluate the effects of these two polymorphic variants on CAD. Results indicated a significant association between MCP-1 -2548 gene polymorphism and susceptibility to CAD. GG genotypes (OR = 1.629; 95 % CI = 1.003-2.644), or individuals with at least one G allele (OR = 1.511; 95 % CI = 1.006-2.270), had a higher risk of CAD as compared with AA genotypes. Results also revealed that subjects with at least one A allele of the V64I CCR2 gene polymorphism had significantly increased risk of CAD. G allele in MCP-1-2518 might contribute to higher prevalence of atrial fibrillation in CAD patients (OR = 4.254; p CCR-2 64I gene polymorphisms represent important factors in determining susceptibility to CAD, and the contribution of MCP-1-2518G could be through effects on atrial fibrillation in CAD patients.

  17. Pdgfrb-Cre targets lymphatic endothelial cells of both venous and non-venous origins.

    Science.gov (United States)

    Ulvmar, Maria H; Martinez-Corral, Ines; Stanczuk, Lukas; Mäkinen, Taija

    2016-06-01

    The Pdgfrb-Cre line has been used as a tool to specifically target pericytes and vascular smooth muscle cells. Recent studies showed additional targeting of cardiac and mesenteric lymphatic endothelial cells (LECs) by the Pdgfrb-Cre transgene. In the heart, this was suggested to provide evidence for a previously unknown nonvenous source of LECs originating from yolk sac (YS) hemogenic endothelium (HemEC). Here we show that Pdgfrb-Cre does not, however, target YS HemEC or YS-derived erythro-myeloid progenitors (EMPs). Instead, a high proportion of ECs in embryonic blood vessels of multiple organs, as well as venous-derived LECs were targeted. Assessment of temporal Cre activity using the R26-mTmG double reporter suggested recent occurrence of Pdgfrb-Cre recombination in both blood and lymphatic ECs. It thus cannot be excluded that Pdgfrb-Cre mediated targeting of LECs is due to de novo expression of the Pdgfrb-Cre transgene or their previously established venous endothelial origin. Importantly, Pdgfrb-Cre targeting of LECs does not provide evidence for YS HemEC origin of the lymphatic vasculature. Our results highlight the need for careful interpretation of lineage tracing using constitutive Cre lines that cannot discriminate active from historical expression. The early vascular targeting by the Pdgfrb-Cre also warrants consideration for its use in studies of mural cells. genesis 54:350-358, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.

  18. Mapping of HNF4alpha target genes in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Boyd, Mette; Bressendorff, Simon; Moller, Jette

    2009-01-01

    ABSTRACT: BACKGROUND: The role of HNF4alpha has been extensively studied in hepatocytes and pancreatic beta-cells, and HNF4alpha is also regarded as key regulator of intestinal epithelial cell differentiation as well. The aim of the present work is to identify novel HNF4alpha target genes....... The HNF4alpha ChIP-chip data was matched with gene expression and histone H3 acetylation status of the promoters in order to identify HNF4alpha binding to actively transcribed genes with an open chromatin structure. RESULTS: 1,541 genes were identified as potential HNF4alpha targets, many of which have...

  19. Cell Density Affects the Detection of Chk1 Target Engagement by the Selective Inhibitor V158411.

    Science.gov (United States)

    Geneste, Clara C; Massey, Andrew J

    2018-02-01

    Understanding drug target engagement and the relationship to downstream pharmacology is critical for drug discovery. Here we have evaluated target engagement of Chk1 by the small-molecule inhibitor V158411 using two different target engagement methods (autophosphorylation and cellular thermal shift assay [CETSA]). Target engagement measured by these methods was subsequently related to Chk1 inhibitor-dependent pharmacology. Inhibition of autophosphorylation was a robust method for measuring V158411 Chk1 target engagement. In comparison, while target engagement determined using CETSA appeared robust, the V158411 CETSA target engagement EC 50 values were 43- and 19-fold greater than the autophosphorylation IC 50 values. This difference was attributed to the higher cell density in the CETSA assay configuration. pChk1 (S296) IC 50 values determined using the CETSA assay conditions were 54- and 33-fold greater than those determined under standard conditions and were equivalent to the CETSA EC 50 values. Cellular conditions, especially cell density, influenced the target engagement of V158411 for Chk1. The effects of high cell density on apparent compound target engagement potency should be evaluated when using target engagement assays that necessitate high cell densities (such as the CETSA conditions used in this study). In such cases, the subsequent relation of these data to downstream pharmacological changes should therefore be interpreted with care.

  20. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    Directory of Open Access Journals (Sweden)

    Silvia Sterpone

    2010-01-01

    Full Text Available It is well known that ionizing radiation (IR can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER. In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  1. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair.

    Science.gov (United States)

    Sterpone, Silvia; Cozzi, Renata

    2010-07-25

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs) of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER). In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  2. Genetic Polymorphism at CCL5 Is Associated With Protection in Chagas’ Heart Disease: Antagonistic Participation of CCR1+ and CCR5+ Cells in Chronic Chagasic Cardiomyopathy

    OpenAIRE

    Angelica Martins Batista; Lucia Elena Alvarado-Arnez; Lucia Elena Alvarado-Arnez; Silvia Marinho Alves; Gloria Melo; Isabela Resende Pereira; Leonardo Alexandre de Souza Ruivo; Andrea Alice da Silva; Daniel Gibaldi; Thayse do E. S. Protásio da Silva; Virginia Maria Barros de Lorena; Adriene Siqueira de Melo; Ana Karine de Araújo Soares; Michelle da Silva Barros; Vláudia Maria Assis Costa

    2018-01-01

    Chronic cardiomyopathy is the main clinical manifestation of Chagas disease (CD), a disease caused by Trypanosoma cruzi infection. A hallmark of chronic chagasic cardiomyopathy (CCC) is a fibrogenic inflammation mainly composed of CD8+ and CD4+ T cells and macrophages. CC-chemokine ligands and receptors have been proposed to drive cell migration toward the heart tissue of CD patients. Single nucleotide polymorphisms (SNPs) in CC-chemokine ligand and receptor genes may determine protein expres...

  3. Minimally invasive and targeted therapeutic cell delivery to the skin using microneedle devices.

    Science.gov (United States)

    Gualeni, B; Coulman, S A; Shah, D; Eng, P F; Ashraf, H; Vescovo, P; Blayney, G J; Piveteau, L-D; Guy, O J; Birchall, J C

    2018-03-01

    Translation of cell therapies to the clinic is accompanied by numerous challenges, including controlled and targeted delivery of the cells to their site of action, without compromising cell viability and functionality. To explore the use of hollow microneedle devices (to date only used for the delivery of drugs and vaccines into the skin and for the extraction of biological fluids) to deliver cells into skin in a minimally invasive, user-friendly and targeted fashion. Melanocyte, keratinocyte and mixed epidermal cell suspensions were passed through various types of microneedles and subsequently delivered into the skin. Cell viability and functionality are maintained after injection through hollow microneedles with a bore size ≥ 75 μm. Healthy cells are delivered into the skin at clinically relevant depths. Hollow microneedles provide an innovative and minimally invasive method for delivering functional cells into the skin. Microneedle cell delivery represents a potential new treatment option for cell therapy approaches including skin repigmentation, wound repair, scar and burn remodelling, immune therapies and cancer vaccines. © 2017 British Association of Dermatologists.

  4. BDNF VAL66MET Polymorphism Elevates the Risk of Bladder Cancer via MiRNA-146b in Micro-Vehicles

    Directory of Open Access Journals (Sweden)

    Cong Li

    2018-01-01

    Full Text Available Background/Aims: Emerging studies on brain-derived neurotrophic factor (BDNF have shown that might be novel biomarkers and therapeutic targets for cancer. We explore the role of BDNF in the tumorigenesis of bladder cancer and the underlying molecular mechanism. Methods: 368 patients with diagnosed bladder cancer and 352 healthy controls were enrolled to evaluate the association of BDNF and the miR-146b. Bioinformatics algorithm analysis and luciferase assay were performed to identify the target genes of miR-146b. Real-time PCR and western-blot were carried out to validate the relationship between miR-146b and CRK. MTT assay and FACS were used to evaluated the proliferation and apoptosis of cancer cells. MVs were isolated and transfect into the culture cells to confirm the above observation. Results: The clinical study shows that BDNF Met/Met was significantly associated with the risk of bladder cancer. In addition, comparing with Val/Val and Val/Met, Met/Met has lower miR-146b level. Luciferase assay shows that BDNF Val/Val is apparently enhanced miR-146b promoter-luciferase, but not BDNF Met/Met. Based on luciferase assay, CRK is a direct target gene of miR-146b. MiR-146b mimics significantly inhibited the expression of CRK and activation of AKT level. The expression of CRK and the activation of AKT (p-AKT were significantly inhibited by MV-BDNF Val/Val-miR-146b or MV-BDNF Val/Met-miR-146b, but not MV-BDNF Met/Met-miR-146b. MV-BDNF Val/Val-miR-146b or Val/Met-miR-146b obviously inhibited cell proliferation, which eliminated by CRK. Meanwhile, with MV-BDNF Met/Met-miR-146b or Met/Met-miR-146b+CRK did not affect the proliferation. MV-BDNF Val/Val-miR-146b or Val/Met-miR-146b enhanced cell apoptosis, which could be eliminated by CRK. Meanwhile, MV-BDNF Met/Met-miR-146b or Met/Met-miR-146b+CRK did not promote apoptosis. Conclusion: BDNF VAL66MET polymorphism is associated with miR-146b and its target gene CRK. MiR-146b and CRK mediated BDNF VAL66

  5. Different DNA methylation patterns detected by the Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) technique among various cell types of bulls

    OpenAIRE

    Phutikanit, Nawapen; Suwimonteerabutr, Junpen; Harrison, Dion; D'Occhio, Michael; Carroll, Bernie; Techakumphu, Mongkol

    2010-01-01

    Abstract Background The purpose of this study was to apply an arbitrarily primed methylation sensitive polymerase chain reaction (PCR) assay called Amplified Methylation Polymorphism Polymerase Chain Reaction (AMP PCR) to investigate the methylation profiles of somatic and germ cells obtained from Holstein bulls. Methods Genomic DNA was extracted from sperm, leukocytes and fibroblasts obtained from three bulls and digested with a methylation sensitive endonuclease (HpaII). The native genomic ...

  6. Clearance of red cells by monoclonal IgG3 anti-D in vivo is affected by the VF polymorphism of Fc gamma RIIIa (CD16)

    NARCIS (Netherlands)

    Kumpel, BM; De Haas, M; Koene, HR; Van de Winkel, JGJ; Goodrick, MJ

    Human red cells (RBC) coated with IgG anti-D are cleared from the circulation to the spleen by macrophages which express IgG receptors (Fcgamma R). Polymorphisms of Fcgamma RIIa and Fcgamma RIIIa affect IgG binding in vitro , and may alter the efficiency of clearance of immune complexes in vivo. In

  7. A possible usage of a CDK4 inhibitor for breast cancer stem cell-targeted therapy

    International Nuclear Information System (INIS)

    Han, Yu Kyeong; Lee, Jae Ho; Park, Ga-Young; Chun, Sung Hak; Han, Jeong Yun; Kim, Sung Dae; Lee, Janet; Lee, Chang-Woo; Yang, Kwangmo; Lee, Chang Geun

    2013-01-01

    Highlights: ► A CDK4 inhibitor may be used for breast cancer stem cell-targeted therapy. ► The CDK4 inhibitor differentiated the cancer stem cell population (CD24 − /CD44 + ) of MDA-MB-231. ► The differentiation of the cancer stem cells by the CDK4 inhibitor radiosensitized MDA-MB-231. -- Abstract: Cancer stem cells (CSCs) are one of the main reasons behind cancer recurrence due to their resistance to conventional anti-cancer therapies. Thus, many efforts are being devoted to developing CSC-targeted therapies to overcome the resistance of CSCs to conventional anti-cancer therapies and decrease cancer recurrence. Differentiation therapy is one potential approach to achieve CSC-targeted therapies. This method involves inducing immature cancer cells with stem cell characteristics into more mature or differentiated cancer cells. In this study, we found that a CDK4 inhibitor sensitized MDA-MB-231 cells but not MCF7 cells to irradiation. This difference appeared to be associated with the relative percentage of CSC-population between the two breast cancer cells. The CDK4 inhibitor induced differentiation and reduced the cancer stem cell activity of MDA-MB-231 cells, which are shown by multiple marker or phenotypes of CSCs. Thus, these results suggest that radiosensitization effects may be caused by reducing the CSC-population of MDA-MB-231 through the use of the CDK4 inhibitor. Thus, further investigations into the possible application of the CDK4 inhibitor for CSC-targeted therapy should be performed to enhance the efficacy of radiotherapy for breast cancer

  8. Killing of targets by effector CD8 T cells in the mouse spleen follows the law of mass action

    Energy Technology Data Exchange (ETDEWEB)

    Ganusov, Vitaly V [Los Alamos National Laboratory

    2009-01-01

    In contrast with antibody-based vaccines, it has been difficult to measure the efficacy of T cell-based vaccines and to correlate the efficacy of CD8 T cell responses with protection again viral infections. In part, this difficulty is due to poor understanding of the in vivo efficacy of CD8 T cells produced by vaccination. Using a: recently developed experimental method of in vivo cytotoxicity we have investigated quantitative aspects of killing of peptide-pulsed targets by effector and memory CD8 T cells, specific to three epitopes of lymphocytic choriomeningitis virus (LCMV), in the mouse spleen. By analyzing data on killing of targets with varying number of epitope-specific effector and memory CD8 T cells, we find that killing of targets by effectors follows the law of mass-action, that is the death rate of peptide-pulsed targets is proportional to the frequency of CTLs in the spleen. In contrast, killing of targets by memory CD8 T cells does not follow the mass action law because the death rate of targets saturates at high frequencies of memory CD8 T cells. For both effector and memory cells, we also find little support for the killing term that includes the decrease of the death rate of targets with target cell density. Interestingly, our analysis suggests that at low CD8 T cell frequencies, memory CD8 T cells on the per capita basis are more efficient at killing peptide-pulsed targets than effectors, but at high frequencies, effectors are more efficient killers than memory T cells. Comparison of the estimated killing efficacy of effector T cells with the value that is predicted from theoretical physics and based on motility of T cells in lymphoid tissues, suggests that limiting step in the killing of peptide-pulsed targets is delivering the lethal hit and not finding the target. Our results thus form a basis for quantitative understanding of the process of killing of virus-infected cells by T cell responses in tissues and can be used to correlate the

  9. Are ovarian cancer stem cells the target for innovative immunotherapy?

    Directory of Open Access Journals (Sweden)

    Wang L

    2018-05-01

    Full Text Available Liang Wang, Tianmin Xu, Manhua Cui Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China Abstract: Cancer stem cells (CSCs, a subpopulation of cancer cells with the ability of self-renewal and differentiation, are believed to be responsible for tumor generation, progression, metastasis, and relapse. Ovarian cancer, the most malignant gynecological cancer, has consistent pathology behavior with CSC model, which suggests that therapies based on ovarian cancer stem cells (OCSCs can gain a more successful prognosis. Much evidence has proved that epigenetic mechanism played an important role in tumor formation and sustainment. Since CSCs are generally resistant to conventional therapies (chemotherapy and radiotherapy, immunotherapy is a more effective method that has been implemented in the clinic. Chimeric antigen receptor (CAR- T cell, an adoptive cellular immunotherapy, which results in apparent elimination of tumor in both hematologic and solid cancers, could be used for ovarian cancer. This review covers the basic conception of CSCs and OCSCs, the implication of epigenetic mechanism underlying cancer evolution considering CSC model, the immunotherapies reported for ovarian cancer targeting OCSCs currently, and the relationship between immune system and hierarchy cancer organized by CSCs. Particularly, the promising prospects and potential pitfalls of targeting OCSC surface markers to design CAR-T cellular immunotherapy are discussed here. Keywords: cancer stem cells, ovarian cancer, epigenetics, tumor cell surface marker, immunotherapy, CAR

  10. Development of a coordinated allo T cell and auto B cell response against autosomal PTK2B after allogeneic hematopoietic stem cell transplantation.

    Science.gov (United States)

    Kremer, Anita N; van der Griendt, Judith C; van der Meijden, Edith D; Honders, M Willy; Ayoglu, Burcu; Schwenk, Jochen M; Nilsson, Peter; Falkenburg, J H Frederik; Griffioen, Marieke

    2014-02-01

    It is well known that allo-reactive T cells play a crucial role in graft-versus-leukemia and graft-versus-host disease after allogeneic hematopoietic stem cell transplantation (alloSCT). Allo-reactive CD4(+) T cells can mediate direct cytolysis, but may also stimulate production of IgG antibodies as helper cells. Immune complexes may subsequently be processed and presented by professional antigen presenting cells and stimulate induction of specific CD8(+) T cells. As such, proteins targeted in coordinated T- and B-cell responses may represent a class of immunodominant antigens in clinical responses after alloSCT. We previously identified LB-PTK2B-1T as HLA class II restricted polymorphic antigen in a patient treated with donor lymphocyte infusion for relapsed chronic myeloid leukemia after HLA-matched alloSCT. Since PTK2B has also been described as antibody target, we here investigated whether a coordinated T- and B-cell response against PTK2B was induced. Patient serum before and after alloSCT and donor lymphocyte infusion (DLI) was screened for antibodies, and we indeed observed development of a humoral immune response against PTK2B. Antibodies against PTK2B were only found after DLI and, in contrast to the CD4(+) T cells, recognized a monomorphic region of the protein. To our knowledge, this is the first description of a coordinated allo-reactive CD4(+) T-cell and auto-reactive antibody response against an autosomal antigen.

  11. Anticancer effect of (S)-crizotinib on osteosarcoma cells by targeting MTH1 and activating reactive oxygen species.

    Science.gov (United States)

    Qing, Xiangcheng; Shao, Zengwu; Lv, Xiao; Pu, Feifei; Gao, Feng; Liu, Lei; Shi, Deyao

    2018-04-01

    MTH1 has become a new rising star in the field of 'cancer phenotypic lethality' and can be targeted in many kinds of tumors. This study aimed to explore the anticancer effect of MTH1-targeted drug (S)-crizotinib on osteosarcoma (OS) cells. We detected MTH1 expression in OS tissues and cells using immunohistochemistry and western blot. The effects of MTH1 on OS cell viability were explored using the siRNA technique and CCK8. The anticancer effects of the MTH1-targeted drug (S)-crizotinib on OS cells were explored by in-vitro assays. The intracellular 8-oxo-dGTP level and oxygen reactive species (ROS) of OS cells were detected by Cy3-conjugated avidin staining and dichlorofluorescein diacetate staining, respectively. The expression of MTH1 was significantly higher in OS tissues and cell lines than that in the corresponding adjacent tissues and osteoblastic cell line. The proliferation of OS cells was significantly inhibited through knockdown of MTH1 by siRNA technology. (S)-Crizotinib could inhibit the proliferation of OS cells with an increase in the apoptosis levels and causing G0/G1 arrest by targeting MTH1 and activating ROS. In addition, (S)-crizotinib could inhibit the migration of OS cells. (S)-Crizotinib could suppress the proliferation and migration, cause G0/G1 arrest, and increase the apoptosis level of OS cells by targeting MTH1 and activating ROS. This study will provide a promising therapeutic target and the theoretical basis for the clinical application of (S)-crizotinib in OS.

  12. Features of target cell lysis by class I and class II MHC restricted cytolytic T lymphocytes

    International Nuclear Information System (INIS)

    Maimone, M.M.; Morrison, L.A.; Braciale, V.L.; Braciale, T.J.

    1986-01-01

    The lytic activity of influenza virus-specific muvine cytolytic T lymphocyte (CTL) clones that are restricted by either H-2K/D (class I) or H-2I (class II) major histocompatibility (MHC) locus products was compared on an influenza virus-infected target cell expressing both K/D and I locus products. With the use of two in vitro measurements of cytotoxicity, conventional 51 Cr release, and detergent-releasable radiolabeled DNA (as a measure of nuclear disintegration in the early post-lethal hit period), the authors found no difference between class I and class II MHC-restricted CTL in the kinetics of target cell destruction. In addition, class II MHC-restricted antiviral CTL failed to show any lysis of radiolabeled bystander cells. Killing of labeled specific targets by these class II MHC-restricted CTL was also efficiently inhibited by unlabeled specific competitor cells in a cold target inhibition assay. In sum, these data suggest that class I and class II MHC-restricted CTL mediate target cell destruction by an essentially similar direct mechanism

  13. Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice.

    Science.gov (United States)

    Kourtis, Iraklis C; Hirosue, Sachiko; de Titta, Alexandre; Kontos, Stephan; Stegmann, Toon; Hubbell, Jeffrey A; Swartz, Melody A

    2013-01-01

    Nanoparticles have been extensively developed for therapeutic and diagnostic applications. While the focus of nanoparticle trafficking in vivo has traditionally been on drug delivery and organ-level biodistribution and clearance, recent work in cancer biology and infectious disease suggests that targeting different cells within a given organ can substantially affect the quality of the immunological response. Here, we examine the cell-level biodistribution kinetics after administering ultrasmall Pluronic-stabilized poly(propylene sulfide) nanoparticles in the mouse. These nanoparticles depend on lymphatic drainage to reach the lymph nodes and blood, and then enter the spleen rather than the liver, where they interact with monocytes, macrophages and myeloid dendritic cells. They were more readily taken up into lymphatics after intradermal (i.d.) compared to intramuscular administration, leading to ∼50% increased bioavailability in blood. When administered i.d., their distribution favored antigen-presenting cells, with especially strong targeting to myeloid cells. In tumor-bearing mice, the monocytic and the polymorphonuclear myeloid-derived suppressor cell compartments were efficiently and preferentially targeted, rendering this nanoparticulate formulation potentially useful for reversing the highly suppressive activity of these cells in the tumor stroma.

  14. Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice.

    Directory of Open Access Journals (Sweden)

    Iraklis C Kourtis

    Full Text Available Nanoparticles have been extensively developed for therapeutic and diagnostic applications. While the focus of nanoparticle trafficking in vivo has traditionally been on drug delivery and organ-level biodistribution and clearance, recent work in cancer biology and infectious disease suggests that targeting different cells within a given organ can substantially affect the quality of the immunological response. Here, we examine the cell-level biodistribution kinetics after administering ultrasmall Pluronic-stabilized poly(propylene sulfide nanoparticles in the mouse. These nanoparticles depend on lymphatic drainage to reach the lymph nodes and blood, and then enter the spleen rather than the liver, where they interact with monocytes, macrophages and myeloid dendritic cells. They were more readily taken up into lymphatics after intradermal (i.d. compared to intramuscular administration, leading to ∼50% increased bioavailability in blood. When administered i.d., their distribution favored antigen-presenting cells, with especially strong targeting to myeloid cells. In tumor-bearing mice, the monocytic and the polymorphonuclear myeloid-derived suppressor cell compartments were efficiently and preferentially targeted, rendering this nanoparticulate formulation potentially useful for reversing the highly suppressive activity of these cells in the tumor stroma.

  15. Radioresistant head and neck squamous cell carcinoma cells: Intracellular signaling, putative biomarkers for tumor recurrences and possible therapeutic targets

    International Nuclear Information System (INIS)

    Skvortsov, Sergej; Jimenez, Connie R.; Knol, Jaco C.; Eichberger, Paul; Schiestl, Bernhard; Debbage, Paul; Skvortsova, Ira; Lukas, Peter

    2011-01-01

    Purpose: Treatment of local and distant head and neck cancer recurrences after radiotherapy remains an unsolved problem. In order to identify potential targets for use in effective therapy of recurrent tumors, we have investigated protein patterns in radioresistant (FaDu-IRR and SCC25-IRR, “IRR cells”) as compared to parental (FaDu and SCC25) head and neck carcinoma cells. Methods and materials: Radiation resistant IRR cells were derived from parental cells after repeated exposure to ionizing radiation 10 times every two weeks at a single dose of 10 Gy, resulting in a total dose of 100 Gy. Protein profiling in parental and IRR cells was carried out using two-dimensional differential gel electrophoresis (2D-DIGE) followed by MALDI-TOF/TOF mass spectrometry. Cell viability, cell migration assays and Western blot analysis were used to confirm results obtained using the proteome approach. Results: Forty-five proteins that were similarly modulated in FaDu-IRR and SCC25-IRR cells compared to parental cells were selected to analyze their common targets. It was found that these either up- or down-regulated proteins are closely related to the enhancement of cell migration which is regulated by Rac1 protein. Further investigations confirmed that Rac1 is up-regulated in IRR cells, and inhibiting its action reduces the migratory abilities of these cells. Additionally, the Rac1 inhibitor exerts cytostatic effects in HNSCC cells, mostly in migratory cells. Conclusions: Based on these results, we conclude that radioresistant HNSCC cells possess enhanced metastatic abilities that are regulated by a network of migration-related proteins. Rac1 protein may be considered as a putative biomarker of HNSCC radiation resistance, and as a potential therapeutic target for treating local and distant HNSCC recurrences.

  16. ATM Polymorphisms Predict Severe Radiation Pneumonitis in Patients With Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy

    International Nuclear Information System (INIS)

    Xiong, Huihua; Liao, Zhongxing; Liu, Zhensheng; Xu, Ting; Wang, Qiming; Liu, Hongliang; Komaki, Ritsuko; Gomez, Daniel; Wang, Li-E; Wei, Qingyi

    2013-01-01

    Purpose: The ataxia telangiectasia mutated (ATM) gene mediates detection and repair of DNA damage. We investigated associations between ATM polymorphisms and severe radiation-induced pneumonitis (RP). Methods and Materials: We genotyped 3 potentially functional single nucleotide polymorphisms (SNPs) of ATM (rs1801516 [D1853N/5557G>A], rs189037 [-111G>A] and rs228590) in 362 patients with non-small cell lung cancer (NSCLC), who received definitive (chemo)radiation therapy. The cumulative severe RP probabilities by genotypes were evaluated using the Kaplan-Meier analysis. The associations between severe RP risk and genotypes were assessed by both logistic regression analysis and Cox proportional hazard model with time to event considered. Results: Of 362 patients (72.4% of non-Hispanic whites), 56 (15.5%) experienced grade ≥3 RP. Patients carrying ATM rs189037 AG/GG or rs228590 TT/CT genotypes or rs189037G/rs228590T/rs1801516G (G-T-G) haplotype had a lower risk of severe RP (rs189037: GG/AG vs AA, adjusted hazard ratio [HR] = 0.49, 95% confidence interval [CI], 0.29-0.83, P=.009; rs228590: TT/CT vs CC, HR=0.57, 95% CI, 0.33-0.97, P=.036; haplotype: G-T-G vs A-C-G, HR=0.52, 95% CI, 0.35-0.79, P=.002). Such positive findings remained in non-Hispanic whites. Conclusions: ATM polymorphisms may serve as biomarkers for susceptibility to severe RP in non-Hispanic whites. Large prospective studies are required to confirm our findings

  17. ONC201 kills breast cancer cells in vitro by targeting mitochondria.

    Science.gov (United States)

    Greer, Yoshimi Endo; Porat-Shliom, Natalie; Nagashima, Kunio; Stuelten, Christina; Crooks, Dan; Koparde, Vishal N; Gilbert, Samuel F; Islam, Celia; Ubaldini, Ashley; Ji, Yun; Gattinoni, Luca; Soheilian, Ferri; Wang, Xiantao; Hafner, Markus; Shetty, Jyoti; Tran, Bao; Jailwala, Parthav; Cam, Maggie; Lang, Martin; Voeller, Donna; Reinhold, William C; Rajapakse, Vinodh; Pommier, Yves; Weigert, Roberto; Linehan, W Marston; Lipkowitz, Stanley

    2018-04-06

    We report a novel mechanism of action of ONC201 as a mitochondria-targeting drug in cancer cells. ONC201 was originally identified as a small molecule that induces transcription of TNF-related apoptosis-inducing ligand (TRAIL) and subsequently kills cancer cells by activating TRAIL death receptors. In this study, we examined ONC201 toxicity on multiple human breast and endometrial cancer cell lines. ONC201 attenuated cell viability in all cancer cell lines tested. Unexpectedly, ONC201 toxicity was not dependent on either TRAIL receptors nor caspases. Time-lapse live cell imaging revealed that ONC201 induces cell membrane ballooning followed by rupture, distinct from the morphology of cells undergoing apoptosis. Further investigation found that ONC201 induces phosphorylation of AMP-dependent kinase and ATP loss. Cytotoxicity and ATP depletion were significantly enhanced in the absence of glucose, suggesting that ONC201 targets mitochondrial respiration. Further analysis indicated that ONC201 indirectly inhibits mitochondrial respiration. Confocal and electron microscopic analysis demonstrated that ONC201 triggers mitochondrial structural damage and functional impairment. Moreover, ONC201 decreased mitochondrial DNA (mtDNA). RNAseq analysis revealed that ONC201 suppresses expression of multiple mtDNA-encoded genes and nuclear-encoded mitochondrial genes involved in oxidative phosphorylation and other mitochondrial functions. Importantly, fumarate hydratase deficient cancer cells and multiple cancer cell lines with reduced amounts of mtDNA were resistant to ONC201. These results indicate that cells not dependent on mitochondrial respiration are ONC201-resistant. Our data demonstrate that ONC201 kills cancer cells by disrupting mitochondrial function and further suggests that cancer cells that are dependent on glycolysis will be resistant to ONC201.

  18. mTOR in squamous cell carcinoma of the oesophagus: a potential target for molecular therapy?

    NARCIS (Netherlands)

    Boone, J.; ten Kate, F. J. W.; Offerhaus, G. J. A.; van Diest, P. J.; Borel Rinkes, I. H. M.; van Hillegersberg, R.

    2008-01-01

    AIMS: The mammalian target of rapamycin (mTOR), an important regulator of protein translation and cell proliferation, is activated in various malignancies. In a randomised controlled trial of advanced renal cell carcinoma patients, targeted therapy to mTOR by means of rapamycin analogues has been

  19. Identification of Cell Surface Targets through Meta-analysis of Microarray Data

    Directory of Open Access Journals (Sweden)

    Henry Haeberle

    2012-07-01

    Full Text Available High-resolution image guidance for resection of residual tumor cells would enable more precise and complete excision for more effective treatment of cancers, such as medulloblastoma, the most common pediatric brain cancer. Numerous studies have shown that brain tumor patient outcomes correlate with the precision of resection. To enable guided resection with molecular specificity and cellular resolution, molecular probes that effectively delineate brain tumor boundaries are essential. Therefore, we developed a bioinformatics approach to analyze micro-array datasets for the identification of transcripts that encode candidate cell surface biomarkers that are highly enriched in medulloblastoma. The results identified 380 genes with greater than a two-fold increase in the expression in the medulloblastoma compared with that in the normal cerebellum. To enrich for targets with accessibility for extracellular molecular probes, we further refined this list by filtering it with gene ontology to identify genes with protein localization on, or within, the plasma membrane. To validate this meta-analysis, the top 10 candidates were evaluated with immunohistochemistry. We identified two targets, fibrillin 2 and EphA3, which specifically stain medulloblastoma. These results demonstrate a novel bioinformatics approach that successfully identified cell surface and extracellular candidate markers enriched in medulloblastoma versus adjacent cerebellum. These two proteins are high-value targets for the development of tumor-specific probes in medulloblastoma. This bioinformatics method has broad utility for the identification of accessible molecular targets in a variety of cancers and will enable probe development for guided resection.

  20. Targeted therapies for renal cell carcinoma: review of adverse event management strategies.

    NARCIS (Netherlands)

    Eisen, T.; Sternberg, C.N.; Robert, C.; Mulders, P.F.; Pyle, L.; Zbinden, S.; Izzedine, H.; Escudier, B.

    2012-01-01

    With the advent of targeted agents for the treatment of renal cell carcinoma (RCC), overall survival has improved, and patients are being treated continuously for increasingly long periods of time. This has raised challenges in the management of adverse events (AEs) associated with the six targeted

  1. Cell-type independent MYC target genes reveal a primordial signature involved in biomass accumulation.

    Directory of Open Access Journals (Sweden)

    Hongkai Ji

    Full Text Available The functions of key oncogenic transcription factors independent of context have not been fully delineated despite our richer understanding of the genetic alterations in human cancers. The MYC oncogene, which produces the Myc transcription factor, is frequently altered in human cancer and is a major regulatory hub for many cancers. In this regard, we sought to unravel the primordial signature of Myc function by using high-throughput genomic approaches to identify the cell-type independent core Myc target gene signature. Using a model of human B lymphoma cells bearing inducible MYC, we identified a stringent set of direct Myc target genes via chromatin immunoprecipitation (ChIP, global nuclear run-on assay, and changes in mRNA levels. We also identified direct Myc targets in human embryonic stem cells (ESCs. We further document that a Myc core signature (MCS set of target genes is shared in mouse and human ESCs as well as in four other human cancer cell types. Remarkably, the expression of the MCS correlates with MYC expression in a cell-type independent manner across 8,129 microarray samples, which include 312 cell and tissue types. Furthermore, the expression of the MCS is elevated in vivo in Eμ-Myc transgenic murine lymphoma cells as compared with premalignant or normal B lymphocytes. Expression of the MCS in human B cell lymphomas, acute leukemia, lung cancers or Ewing sarcomas has the highest correlation with MYC expression. Annotation of this gene signature reveals Myc's primordial function in RNA processing, ribosome biogenesis and biomass accumulation as its key roles in cancer and stem cells.

  2. Evaluation of Activity and Combination Strategies with the Microtubule-Targeting Drug Sagopilone in Breast Cancer Cell Lines

    International Nuclear Information System (INIS)

    Eschenbrenner, Julia; Winsel, Sebastian; Hammer, Stefanie; Sommer, Anette; Mittelstaedt, Kevin; Drosch, Michael; Klar, Ulrich; Sachse, Christoph; Hannus, Michael; Seidel, Monika; Weiss, Bertram; Merz, Claudia; Siemeister, Gerhard; Hoffmann, Jens

    2011-01-01

    Sagopilone, a fully synthetic epothilone, is a microtubule-stabilizing agent optimized for high in vitro and in vivo activity against a broad range of tumor models, including those resistant to paclitaxel and other systemic treatments. Sagopilone development is accompanied by translational research studies to evaluate the molecular mode of action, to recognize mechanisms leading to resistance, to identify predictive response biomarkers, and to establish a rationale for combination with different therapies. Here, we profiled sagopilone activity in breast cancer cell lines. To analyze the mechanisms of mitotic arrest and apoptosis and to identify additional targets and biomarkers, an siRNA-based RNAi drug modifier screen interrogating 300 genes was performed in four cancer cell lines. Defects of the spindle assembly checkpoint (SAC) were identified to cause resistance against sagopilone-induced mitotic arrest and apoptosis. Potential biomarkers for resistance could therefore be functional defects like polymorphisms or mutations in the SAC, particularly in the central SAC kinase BUB1B. Moreover, chromosomal heterogeneity and polyploidy are also potential biomarkers of sagopilone resistance since they imply an increased tolerance for aberrant mitosis. RNAi screening further demonstrated that the sagopilone-induced mitotic arrest can be enhanced by concomitant inhibition of mitotic kinesins, thus suggesting a potential combination therapy of sagopilone with a KIF2C (MCAK) kinesin inhibitor. However, the combination of sagopilone and inhibition of the prophase kinesin KIF11 (EG5) is antagonistic, indicating that the kinesin inhibitor has to be highly specific to bring about the required therapeutic benefit.

  3. Evaluation of Activity and Combination Strategies with the Microtubule-Targeting Drug Sagopilone in Breast Cancer Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Eschenbrenner, Julia [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Institute for Biotechnology, Technical University Berlin, Berlin (Germany); Winsel, Sebastian [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Institute for Chemistry and Biochemistry, Free University Berlin, Berlin (Germany); Medical Biotechnology, VTT Technical Research Centre of Finland, Turku (Finland); Hammer, Stefanie [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Sommer, Anette [Global Drug Discovery, Target Discovery, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Mittelstaedt, Kevin [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Institute for Chemistry and Biochemistry, Free University Berlin, Berlin (Germany); Department of Medicine, The University of Melbourne, Melbourne, VIC (Australia); Drosch, Michael [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Center of Human Genetics, University of Bremen, Bremen (Germany); Klar, Ulrich [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Sachse, Christoph; Hannus, Michael; Seidel, Monika [Cenix BioScience GmbH, Dresden (Germany); Weiss, Bertram; Merz, Claudia [Global Drug Discovery, Target Discovery, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Siemeister, Gerhard [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Hoffmann, Jens, E-mail: jens.hoffmann@epo-berlin.com [Global Drug Discovery, Therapeutic Research Group Oncology, Bayer Healthcare Pharmaceuticals, Berlin (Germany); Experimentelle Pharmakologie und Onkologie Berlin-Buch GmbH, Berlin (Germany)

    2011-11-16

    Sagopilone, a fully synthetic epothilone, is a microtubule-stabilizing agent optimized for high in vitro and in vivo activity against a broad range of tumor models, including those resistant to paclitaxel and other systemic treatments. Sagopilone development is accompanied by translational research studies to evaluate the molecular mode of action, to recognize mechanisms leading to resistance, to identify predictive response biomarkers, and to establish a rationale for combination with different therapies. Here, we profiled sagopilone activity in breast cancer cell lines. To analyze the mechanisms of mitotic arrest and apoptosis and to identify additional targets and biomarkers, an siRNA-based RNAi drug modifier screen interrogating 300 genes was performed in four cancer cell lines. Defects of the spindle assembly checkpoint (SAC) were identified to cause resistance against sagopilone-induced mitotic arrest and apoptosis. Potential biomarkers for resistance could therefore be functional defects like polymorphisms or mutations in the SAC, particularly in the central SAC kinase BUB1B. Moreover, chromosomal heterogeneity and polyploidy are also potential biomarkers of sagopilone resistance since they imply an increased tolerance for aberrant mitosis. RNAi screening further demonstrated that the sagopilone-induced mitotic arrest can be enhanced by concomitant inhibition of mitotic kinesins, thus suggesting a potential combination therapy of sagopilone with a KIF2C (MCAK) kinesin inhibitor. However, the combination of sagopilone and inhibition of the prophase kinesin KIF11 (EG5) is antagonistic, indicating that the kinesin inhibitor has to be highly specific to bring about the required therapeutic benefit.

  4. Ligand-targeted delivery of small interfering RNAs to malignant cells and tissues.

    Science.gov (United States)

    Thomas, Mini; Kularatne, Sumith A; Qi, Longwu; Kleindl, Paul; Leamon, Christopher P; Hansen, Michael J; Low, Philip S

    2009-09-01

    Potential clinical applications of small interfering RNA (siRNA) are hampered primarily by delivery issues. We have successfully addressed the delivery problems associated with off-site targeting of highly toxic chemotherapeutic agents by attaching the drugs to tumor-specific ligands that will carry the attached cargo into the desired cancer cell. Indeed, several such tumor-targeted drugs are currently undergoing human clinical trials. We now show that efficient targeting of siRNA to malignant cells and tissues can be achieved by covalent conjugation of small-molecular-weight, high-affinity ligands, such as folic acid and DUPA (2-[3-(1, 3-dicarboxy propyl)-ureido] pentanedioic acid), to siRNA. The former ligand binds a folate receptor that is overexpressed on a variety of cancers, whereas the latter ligand binds to prostate-specific membrane antigen that is overexpressed specifically on prostate cancers and the neovasculature of all solid tumors. Using these ligands, we show remarkable receptor-mediated targeting of siRNA to cancer tissues in vitro and in vivo.

  5. Lung cancer risk associated with Thr495Pro polymorphism of GHR in Chinese population.

    Science.gov (United States)

    Cao, Guochun; Lu, Hongna; Feng, Jifeng; Shu, Jian; Zheng, Datong; Hou, Yayi

    2008-04-01

    The incidence of lung cancer has been increasing over recent decades. Previous studies showed that polymorphisms of the genes involved in carcinogen-detoxication, DNA repair and cell cycle control comprise risk factors for lung cancer. Recent observations revealed that the growth hormone receptor (GHR) might play important roles in carcinogenesis and Rudd et al. found that the Thr495Pro polymorphism of GHR was strongly associated with lung cancer risk in Caucasians living in the UK (OR = 12.98, P = 0.0019, 95% CI: 1.77-infinity). To test whether this variant of GHR would modify the risk of lung cancer in Chinese population, we compared the polymorphism between 778 lung cancer patients and 781 healthy control subjects. Our results indicate that the frequency of 495Thr (2.8%) allele in cases was significantly higher than in controls (OR = 2.04, P = 0.006, 95% CI: 1.21-3.42) which indicated this allele might be a risk factor for lung cancer. Further analyses revealed Thr495Pro variant was associated with lung cancer in the subpopulation with higher risk for lung cancer: male subpopulation, still-smokers subpopulation and the subpopulation with familial history of cancer. In different histological types of lung cancer, Thr495Pro SNP was significantly associated with small cell and squamous cell lung cancer, but not with adenocarcinoma, which suggested a potential interaction between this polymorphism and metabolic pathways related to smoking. The potential gene-environment interaction on lung cancer risk was evaluated using MDR software. A significant redundant interaction between Thr495Pro polymorphism and smoking dose and familial history of cancer was identified and the combination of genetic factors and smoking status or familial history of cancer barely increased the cancer risk prediction accuracy. In conclusion, our results suggested that the Thr495Pro polymorphism of GHR was associated with the risk of lung cancer in a redundant interaction with smoking and

  6. Structural Features Facilitating Tumor Cell Targeting and Internalization by Bleomycin and Its Disaccharide

    Science.gov (United States)

    2016-01-01

    We have shown previously that the bleomycin (BLM) carbohydrate moiety can recapitulate the tumor cell targeting effects of the entire BLM molecule, that BLM itself is modular in nature consisting of a DNA-cleaving aglycone which is delivered selectively to the interior of tumor cells by its carbohydrate moiety, and that there are disaccharides structurally related to the BLM disaccharide which are more efficient than the natural disaccharide at tumor cell targeting/uptake. Because BLM sugars can deliver molecular cargoes selectively to tumor cells, and thus potentially form the basis for a novel antitumor strategy, it seemed important to consider additional structural features capable of affecting the efficiency of tumor cell recognition and delivery. These included the effects of sugar polyvalency and net charge (at physiological pH) on tumor cell recognition, internalization, and trafficking. Since these parameters have been shown to affect cell surface recognition, internalization, and distribution in other contexts, this study has sought to define the effects of these structural features on tumor cell recognition by bleomycin and its disaccharide. We demonstrate that both can have a significant effect on tumor cell binding/internalization, and present data which suggests that the metal ions normally bound by bleomycin following clinical administration may significantly contribute to the efficiency of tumor cell uptake, in addition to their characterized function in DNA cleavage. A BLM disaccharide-Cy5** conjugate incorporating the positively charged dipeptide d-Lys-d-Lys was found to associate with both the mitochondria and the nuclear envelope of DU145 cells, suggesting possible cellular targets for BLM disaccharide–cytotoxin conjugates. PMID:25905565

  7. The effect of nonuniform magnetic targeting of intracoronary-delivering mesenchymal stem cells on coronary embolisation.

    Science.gov (United States)

    Huang, Zheyong; Shen, Yunli; Pei, Ning; Sun, Aijun; Xu, Jianfeng; Song, Yanan; Huang, Gangyong; Sun, Xiaoning; Zhang, Shuning; Qin, Qing; Zhu, Hongming; Yang, Shan; Yang, Xiangdong; Zou, Yunzeng; Qian, Juying; Ge, Junbo

    2013-12-01

    Magnetic targeting has been recently introduced to enhance cell retention in animals with acute myocardial infarction. However, it is unclear whether the magnetic accumulation of intravascular cells increases the risk of coronary embolism. Upon finite element analysis, we found that the permanent magnetic field was nonuniform, manifestated as attenuation along the vertical axis and polarisation along the horizontal axis. In the in vitro experiments, iron-labelled mesenchymal stem cells (MSCs) were accumulated in layers predominantly at the edge of the magnet. In an ischaemic rat model subjected to intracavitary MSCs injection, magnetic targeting induced unfavourable vascular embolisation and an inhomogeneous distribution of the donor cells, which prevented the enhanced cell retention from translating into additional functional benefit. These potential complications of magnetic targeting should be thoroughly investigated and overcome before clinical application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Targeting dysfunctional beta-cell signaling for the potential treatment of type 1 diabetes mellitus.

    Science.gov (United States)

    Fenske, Rachel J; Kimple, Michelle E

    2018-03-01

    Since its discovery and purification by Frederick Banting in 1921, exogenous insulin has remained almost the sole therapy for type 1 diabetes mellitus. While insulin alleviates the primary dysfunction of the disease, many other aspects of the pathophysiology of type 1 diabetes mellitus are unaffected. Research aimed towards the discovery of novel type 1 diabetes mellitus therapeutics targeting different cell signaling pathways is gaining momentum. The focus of these efforts has been almost entirely on the impact of immunomodulatory drugs, particularly those that have already received FDA-approval for other autoimmune diseases. However, these drugs can often have severe side effects, while also putting already immunocompromised individuals at an increased risk for other infections. Potential therapeutic targets in the insulin-producing beta-cell have been largely ignored by the type 1 diabetes mellitus field, save the glucagon-like peptide 1 receptor. While there is preliminary evidence to support the clinical exploration of glucagon-like peptide 1 receptor-based drugs as type 1 diabetes mellitus adjuvant therapeutics, there is a vast space for other putative therapeutic targets to be explored. The alpha subunit of the heterotrimeric G z protein (Gα z ) has been shown to promote beta-cell inflammation, dysfunction, death, and failure to replicate in the context of diabetes in a number of mouse models. Genetic loss of Gα z or inhibition of the Gα z signaling pathway through dietary interventions is protective against the development of insulitis and hyperglycemia. The multifaceted effects of Gα z in regards to beta-cell health in the context of diabetes make it an ideal therapeutic target for further study. It is our belief that a low-risk, effective therapy for type 1 diabetes mellitus will involve a multidimensional approach targeting a number of regulatory systems, not the least of which is the insulin-producing beta-cell. Impact statement The expanding

  9. The frequency of CCR5 promoter polymorphisms and CCR5 32 mutation in Iranian populations

    Directory of Open Access Journals (Sweden)

    Mohammad Zare-Bidaki

    2015-04-01

    Full Text Available Evidence showed that chemokines serve as pro-migratory factors for immune cells. CCL3, CCL4 and CCL5, as the main CC  chemokines subfamily members, activate immune cells through binding to CC chemokine receptor 5 or CCR5. Macrophages, NK cells and T lymphocytes express CCR5 and thus, affected CCR5 expression or functions could be associated with altered immune responses. Deletion of 32 base pairs (D 32 in the exon 1 of the CCR5 gene, which is known as CCR5 D 32 mutation causes down regulation and malfunction of the molecule. Furthermore, it has been evidenced that three polymorphisms in the promoter region of CCR5 modulate its expression. Altered CCR5 expression in microbial infection and immune related diseases have been reported by several researchers but the role of CCR5 promoter polymorphisms and CCR5 D 32 mutation in Iranian patients suffering from these diseases are controversial. Due to the fact that Iranian people have different genetic backgrounds compared to other ethnics, hence, CCR5 promoter polymorphisms and CCR5 D 32 mutation association with the diseases may be different in Iranian patients. Therefore, this review addresses the most recent information regarding the prevalence as well as association of the mutation and polymorphisms in Iranian patients with microbial infection and immune related diseases as along with normal population.

  10. Identification of Cell Surface Proteins as Potential Immunotherapy Targets in 12 Pediatric Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Orentas, Rimas J. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Yang, James J. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States); Wen, Xinyu; Wei, Jun S. [Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States); Mackall, Crystal L. [Immunology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States); Khan, Javed, E-mail: rimas.orentas@nih.gov [Oncogenomics Section, Advanced Technology Center, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Gaithersburg, MD (United States)

    2012-12-17

    Technological advances now allow us to rapidly produce CARs and other antibody-derived therapeutics targeting cell surface receptors. To maximize the potential of these new technologies, relevant extracellular targets must be identified. The Pediatric Oncology Branch of the NCI curates a freely accessible database of gene expression data for both pediatric cancers and normal tissues, through which we have defined discrete sets of over-expressed transcripts in 12 pediatric cancer subtypes as compared to normal tissues. We coupled gene expression profiles to current annotation databases (i.e., Affymetrix, Gene Ontology, Entrez Gene), in order to categorize transcripts by their sub-cellular location. In this manner we generated a list of potential immune targets expressed on the cell surface, ranked by their difference from normal tissue. Global differences from normal between each of the pediatric tumor types studied varied, indicating that some malignancies expressed transcript sets that were more highly diverged from normal tissues than others. The validity of our approach is seen by our findings for pre-B cell ALL, where targets currently in clinical trials were top-ranked hits (CD19, CD22). For some cancers, reagents already in development could potentially be applied to a new disease class, as exemplified by CD30 expression on sarcomas. Moreover, several potential new targets shared among several pediatric solid tumors are herein identified, such as MCAM (MUC18), metadherin (MTDH), and glypican-2 (GPC2). These targets have been identified at the mRNA level and are yet to be validated at the protein level. The safety of targeting these antigens has yet to be demonstrated and therefore the identified transcripts should be considered preliminary candidates for new CAR and therapeutic antibody targets. Prospective candidate targets will be evaluated by proteomic analysis including Westerns and immunohistochemistry of normal and tumor tissues.

  11. Catching moving targets: cancer stem cell hierarchies, therapy-resistance & considerations for clinical intervention.

    LENUS (Irish Health Repository)

    Gasch, Claudia

    2017-01-01

    It is widely believed that targeting the tumour-initiating cancer stem cell (CSC) component of malignancy has great therapeutic potential, particularly in therapy-resistant disease. However, despite concerted efforts, CSC-targeting strategies have not been efficiently translated to the clinic. This is partly due to our incomplete understanding of the mechanisms underlying CSC therapy-resistance. In particular, the relationship between therapy-resistance and the organisation of CSCs as Stem-Progenitor-Differentiated cell hierarchies has not been widely studied. In this review we argue that modern clinical strategies should appreciate that the CSC hierarchy is a dynamic target that contains sensitive and resistant components and expresses a collection of therapy-resisting mechanisms. We propose that the CSC hierarchy at primary presentation changes in response to clinical intervention, resulting in a recurrent malignancy that should be targeted differently. As such, addressing the hierarchical organisation of CSCs into our bench-side theory should expedite translation of CSC-targeting to bed-side practice. In conclusion, we discuss strategies through which we can catch these moving clinical targets to specifically compromise therapy-resistant disease.

  12. Targeting the cell cycle and the PI3K pathway: a possible universal strategy to reactivate innate tumor suppressor programmes in cancer cells.

    Science.gov (United States)

    David-Pfeuty, Thérèse; Legraverend, Michel; Ludwig, Odile; Grierson, David S

    2010-04-01

    Corruption of the Rb and p53 pathways occurs in virtually all human cancers. This could be because it lends oncogene-bearing cells a surfeit of Cdk activity and growth, enabling them to elaborate strategies to evade tumor-suppressive mechanisms and divide inappropriately. Targeting both Cdk activities and the PI3K pathway might be therefore a potentially universal means to palliate their deficiency in cancer cells. We showed that the killing efficacy of roscovitine and 16 other purines and potentiation of roscovitine-induced apoptosis by the PI3K inhibitor, LY294002, decreased with increasing corruption of the Rb and p53 pathways. Further, we showed that purines differing by a single substitution, which exerted little lethal effect on distant cell types in rich medium, could display widely-differing cytotoxicity profiles toward the same cell types in poor medium. Thus, closely-related compounds targeting similar Cdks may interact with different targets that could compete for their interaction with therapeutically-relevant Cdk targets. In the perspective of clinical development in association with the PI3K pathway inhibitors, it might thus be advisable to select tumor cell type-specific Cdk inhibitors on the basis of their toxicity in cell-culture-based assays performed at a limiting serum concentration sufficient to suppress their interaction with undesirable crossreacting targets whose range and concentration would depend on the cell genotype.

  13. [miR-25 promotes cell proliferation by targeting RECK in human cervical carcinoma HeLa cells].

    Science.gov (United States)

    Qiu, Gang; Fang, Baoshuan; Xin, Guohong; Wei, Qiang; Yuan, Xiaoye; Wu, Dayong

    2015-01-01

    To investigate the effect of miR-25 on the proliferation of human cervical carcinoma HeLa cells and its association with reversion-inducing cysteine-rich protein with Kazal motifs (RECK). The recombinant plasmids of pcDNATM6.2-GW-pre-miR-25, pmirGLO-RECK-WT, pmirGLO-RECK-MT and anti-miR-25 were constructed, and their transfection efficiencies into HeLa cells were identified by real-time quantitative PCR (qRT-PCR). The potential proliferation-stimulating function of miR-25 was analyzed by MTT assay in HeLa cells. Furthermore, the target effect of miR-25 on the RECK was determined by dual-luciferase reporter assay system, qRT-PCR and Western blotting. Sequence analysis demonstrated that the recombinant plasmids of pcDNATM6.2-GW-pre-miR-25 and pmirGLO-RECK-WT, pmirGLO-RECK-MT were successfully constructed, and qRT-PCR revealed that the transfection efficiencies of pre-miR-25 and anti-miR-25 were desirable in HeLa cells. MTT assay showed that miR-25 over-expression promoted the proliferation of HeLa cells. In addition, the luciferase activity was significantly reduced in HeLa cells cotransfected with pre-miR-25 and RECK-WT. The qRT-PCR and Western blotting indicated that the expression level of RECK was up-regulated in HeLa cells transfected with anti-miR-25 at the transcriptional and posttranscriptional levels. miR-25 could promote cell proliferation by targeting RECK in HeLa cells.

  14. Adoptive T cell therapy targeting CD1 and MR1

    Directory of Open Access Journals (Sweden)

    Tingxi eGuo

    2015-05-01

    Full Text Available Adoptive T cell immunotherapy has demonstrated clinically relevant efficacy in treating malignant and infectious diseases. However, much of these therapies have been focused on enhancing, or generating de novo, effector functions of conventional T cells recognizing HLA molecules. Given the heterogeneity of HLA alleles, mismatched patients are ineligible for current HLA-restricted adoptive T cell therapies. CD1 and MR1 are class I-like monomorphic molecules and their restricted T cells possess unique T cell receptor specificity against entirely different classes of antigens. CD1 and MR1 molecules present lipid and vitamin B metabolite antigens, respectively, and offer a new front of targets for T cell therapies. This review will cover the recent progress in the basic research of CD1, MR1, and their restricted T cells that possess translational potential.

  15. [Polymorphisms of KITLG, SPRY4, and BAK1 genes in patients with testicular germ cell tumors and individuals with infertility associated with AZFc deletion of the Y chromosome].

    Science.gov (United States)

    Nemtsova, M V; Ivkin, E V; Simonova, O A; Rudenko, V V; Chernykh, V B; Mikhaylenko, D S; Loran, O B

    2016-01-01

    Testicular cancer is the most common form of solid cancer in young men. Testicular cancer is represented by testicular germ cell tumors (TGCTs) derived from embryonic stem cells with different degrees of differentiation in about 95% of cases. The development of these tumors is related to the formation of a pool of male germ cells and gametogenesis. Clinical factors that are predisposed to the development of germ-cell tumors include cryptorchidism and testicular microlithiasis, as well as infertility associated with the gr/gr deletion within the AZFс locus. KITLG, SPRY4, and BAK1 genes affect the development of the testes and gametogenesis; mutations and polymorphisms of these genes lead to a significant increase in the risk of the TGCT development. To determine the relationship between gene polymorphisms and the development of TGCTs, we developed a system for detection and studied the allele and genotype frequencies of the KITLG (rs995030, rs1508595), SPRY4 (rs4624820, rs6897876), and BAK1 (rs210138) genes in fertile men, patients with TGCTs, and patients with infertility that have the AZFс deletion. A significant association of rs995030 of the KITLG gene with the development of TGCTs (p = 0.029 for the allele G, p = 0.0124 for the genotype GG) was revealed. Significant differences in the frequencies of the studied polymorphisms in patients with the AZFc deletion and the control group of fertile men were not found. We showed significant differences in the frequencies for the combination of all high-risk polymorphisms in the control group, patients with the AZFc deletion and patients with TGCTs (p (TGCTs-AZF-control) = 0.0207). A fivefold increase in the frequency of the combination of all genotypes in the TGCT group (p = 0.0116; OR = 5.25 [1.44-19.15]) and 3.7-fold increase was identified in patients with the AZFc deletion (p = 0.045; OR = 3.69 [1.11-12.29]) were revealed. The genotyping of patients with infertility caused by the AZFc deletion can be used to

  16. ABCF2, an Nrf2 target gene, contributes to cisplatin resistance in ovarian cancer cells.

    Science.gov (United States)

    Bao, Lingjie; Wu, Jianfa; Dodson, Matthew; Rojo de la Vega, Elisa Montserrat; Ning, Yan; Zhang, Zhenbo; Yao, Ming; Zhang, Donna D; Xu, Congjian; Yi, Xiaofang

    2017-06-01

    Previously, we have demonstrated that NRF2 plays a key role in mediating cisplatin resistance in ovarian cancer. To further explore the mechanism underlying NRF2-dependent cisplatin resistance, we stably overexpressed or knocked down NRF2 in parental and cisplatin-resistant human ovarian cancer cells, respectively. These two pairs of stable cell lines were then subjected to microarray analysis, where we identified 18 putative NRF2 target genes. Among these genes, ABCF2, a cytosolic member of the ABC superfamily of transporters, has previously been reported to contribute to chemoresistance in clear cell ovarian cancer. A detailed analysis on ABCF2 revealed a functional antioxidant response element (ARE) in its promoter region, establishing ABCF2 as an NRF2 target gene. Next, we investigated the contribution of ABCF2 in NRF2-mediated cisplatin resistance using our stable ovarian cancer cell lines. The NRF2-overexpressing cell line, containing high levels of ABCF2, was more resistant to cisplatin-induced apoptosis compared to its control cell line; whereas the NRF2 knockdown cell line with low levels of ABCF2, was more sensitive to cisplatin treatment than its control cell line. Furthermore, transient overexpression of ABCF2 in the parental cells decreased apoptosis and increased cell viability following cisplatin treatment. Conversely, knockdown of ABCF2 using specific siRNA notably increased apoptosis and decreased cell viability in cisplatin-resistant cells treated with cisplatin. This data indicate that the novel NRF2 target gene, ABCF2, plays a critical role in cisplatin resistance in ovarian cancer, and that targeting ABCF2 may be a new strategy to improve chemotherapeutic efficiency. © 2017 Wiley Periodicals, Inc.

  17. Soil pretreatment and fast cell lysis for direct polymerase chain reaction from forest soils for terminal restriction fragment length polymorphism analysis of fungal communities

    Directory of Open Access Journals (Sweden)

    Fei Cheng

    Full Text Available Abstract Humic substances in soil DNA samples can influence the assessment of microbial diversity and community composition. Using multiple steps during or after cell lysis adds expenses, is time-consuming, and causes DNA loss. A pretreatment of soil samples and a single step DNA extraction may improve experimental results. In order to optimize a protocol for obtaining high purity DNA from soil microbiota, five prewashing agents were compared in terms of their efficiency and effectiveness in removing soil contaminants. Residual contaminants were precipitated by adding 0.6 mL of 0.5 M CaCl2. Four cell lysis methods were applied to test their compatibility with the pretreatment (prewashing + Ca2+ flocculation and to ultimately identify the optimal cell lysis method for analyzing fungal communities in forest soils. The results showed that pretreatment with TNP + Triton X-100 + skim milk (100 mM Tris, 100 mM Na4P2O7, 1% polyvinylpyrrolidone, 100 mM NaCl, 0.05% Triton X-100, 4% skim milk, pH 10.0 removed most soil humic contaminants. When the pretreatment was combined with Ca2+ flocculation, the purity of all soil DNA samples was further improved. DNA samples obtained by the fast glass bead-beating method (MethodFGB had the highest purity. The resulting DNA was successfully used, without further purification steps, as a template for polymerase chain reaction targeting fungal internal transcribed spacer regions. The results obtained by terminal restriction fragment length polymorphism analysis indicated that the MethodFGB revealed greater fungal diversity and more distinctive community structure compared with the other methods tested. Our study provides a protocol for fungal cell lysis in soil, which is fast, convenient, and effective for analyzing fungal communities in forest soils.

  18. Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles.

    Science.gov (United States)

    Pesarrodona, Mireia; Ferrer-Miralles, Neus; Unzueta, Ugutz; Gener, Petra; Tatkiewicz, Witold; Abasolo, Ibane; Ratera, Imma; Veciana, Jaume; Schwartz, Simó; Villaverde, Antonio; Vazquez, Esther

    2014-10-01

    CD44 is a multifunctional cell surface protein involved in proliferation and differentiation, angiogenesis and signaling. The expression of CD44 is up-regulated in several types of human tumors and particularly in cancer stem cells, representing an appealing target for drug delivery in the treatment of cancer. We have explored here several protein ligands of CD44 for the construction of self-assembling modular proteins designed to bind and internalize target cells. Among five tested ligands, two of them (A5G27 and FNI/II/V) drive the formation of protein-only, ring-shaped nanoparticles of about 14 nm that efficiently bind and penetrate CD44(+) cells by an endosomal route. The potential of these newly designed nanoparticles is evaluated regarding the need of biocompatible nanostructured materials for drug delivery in CD44-linked conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Ulex europaeus 1 lectin targets microspheres to mouse Peyer's patch M-cells in vivo.

    Science.gov (United States)

    Foster, N; Clark, M A; Jepson, M A; Hirst, B H

    1998-03-01

    The interaction of latex microspheres with mouse Peyer's patch membranous M-cells was studied in a mouse gut loop model after the microspheres were coated with a variety of agents. Carboxylated microspheres (diameter 0.5 micron) were covalently coated with lectins Ulex europaeus 1, Concanavalin A, Euonymus europaeus and Bandeiraea simplicifolia 1 isolectin-B4, human immunoglobulin A or bovine serum albumin. Of the treatments examined, only Ulex europaeus (UEA1) resulted in significant selective binding of microspheres to M-cells. UEA1-coated microspheres bound to M-cells at a level 100-fold greater than BSA-coated microspheres, but binding to enterocytes was unaffected. Incubation of UEA1-coated microspheres with alpha-L-fucose reduced M-cell binding to a level comparable with BSA-coated microspheres. This indicated that targeting by UEA1 was via a carbohydrate receptor on the M-cell surface. Adherence of UEA1-coated microspheres to M-cells occurred within 10 min of inoculation into mouse gut loops and UEA1-coated microspheres were transported to 10 microns below the apical surface of M-cells within 60 min of inoculation. UEA1-coated microspheres also targeted mouse Peyer's patch M-cells after intragastric administration. These results demonstrated that altering the surface chemistry of carboxylated polystyrene microspheres increased M-cell targeting, suggesting a strategy to enhance delivery of vaccine antigens to the mucosal immune system.

  20. Non-small cell lung cancer: the era of targeted therapy

    Directory of Open Access Journals (Sweden)

    Antonoff MB

    2012-07-01

    Full Text Available Mara B Antonoff, Jonathan D'CunhaDivision of Thoracic and Foregut Surgery, Department of Surgery, University of Minnesota, Minneapolis, MN, USAAbstract: In this review, the authors aim to provide an overview of current molecular targeted therapies for NSCLC, to propose an algorithm for clinical application of presently available treatment strategies, and to identify future directions for this important area of research. Historically, choice of treatment algorithm for the management of non-small cell lung cancer (NSCLC has relied heavily upon histology and clinical staging information, typically assigning patients to surgery, chemotherapy, radiation, or a combination thereof. However, previous treatment strategies have been fraught with disappointing response rates and significant systemic toxicities. The concept of personalized therapy for NSCLC involves characterization of each individual patient's tumor, in terms of genetic aberrations and expected biologic behavior, and using this information to tailor subsequent clinical management. Several driver mutations have been identified to date in subsets of patients with NSCLC, and, by focusing on specific molecular targets, new agents have been developed with the intent of treating the cancer cells while causing minimal toxicity to benign, healthy cells. In particular, current strategies exist to identify patients with epidermal growth factor receptor gene mutations and anaplastic lymphoma kinase rearrangements, with promising results upon clinical application of agents targeting these abnormalities. Moving forward, attempts are being made to determine comprehensive genetic and biologic characterization of individuals' NSCLC tumors and to incorporate these findings into everyday practice. The era of targeted therapy is upon us. As we seek to expand our knowledge of the specific molecular and cellular derangements leading to growth and proliferation of NSCLC tumors, our efforts bring us closer to

  1. A polymorphism (rs1042522) in TP53 gene is a risk factor for Down Syndrome in Sicilian mothers.

    Science.gov (United States)

    Salemi, Michele; Barone, Concetta; Salluzzo, Maria Grazia; Giambirtone, Mariaconcetta; Scillato, Francesco; Galati Rando, Rosanna; Romano, Carmelo; Morale, Maria Concetta; Ridolfo, Federico; Romano, Corrado

    2017-11-01

    Trisomy 21 is the most frequent genetic cause of intellectual disability. Tumor Protein 53 (TP53) gene down-regulation triggers chromosomal instability. A TP53 gene polymorphism c.215G > C (rs1042522) is associated with accumulation of aneuploid cells. We analyzed the TP53 c.215G > C (rs1042522) polymorphism in Sicilian mothers of subjects with Down Syndrome (DS) within a case-control study. Nucleotide polymorphism was detected by pyrosequencing technology. The distribution of TP53 c.215G > C polymorphism showed significant difference between mothers of subjects with DS and controls. Our data show that TP53 c.215G > C polymorphism is a risk factor for DS in Sicilian mothers.

  2. Large-scale identification of microRNA targets in murine Dgcr8-deficient embryonic stem cell lines.

    Directory of Open Access Journals (Sweden)

    Matthew P A Davis

    Full Text Available Small RNAs such as microRNAs play important roles in embryonic stem cell maintenance and differentiation. A broad range of microRNAs is expressed in embryonic stem cells while only a fraction of their targets have been identified. We have performed large-scale identification of embryonic stem cell microRNA targets using a murine embryonic stem cell line deficient in the expression of Dgcr8. These cells are heavily depleted for microRNAs, allowing us to reintroduce specific microRNA duplexes and identify refined target sets. We used deep sequencing of small RNAs, mRNA expression profiling and bioinformatics analysis of microRNA seed matches in 3' UTRs to identify target transcripts. Consequently, we have identified a network of microRNAs that converge on the regulation of several important cellular pathways. Additionally, our experiments have revealed a novel candidate for Dgcr8-independent microRNA genesis and highlighted the challenges currently facing miRNA annotation.

  3. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    International Nuclear Information System (INIS)

    Androic, Ilija; Krämer, Andrea; Yan, Ruilan; Rödel, Franz; Gätje, Regine; Kaufmann, Manfred; Strebhardt, Klaus; Yuan, Juping

    2008-01-01

    Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1), is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA) on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy

  4. Genetic association between polymorphism of mdm2 gene and symptoms and pathological types of NSCLC

    International Nuclear Information System (INIS)

    Liu Xiaolan; Wang Weili; Zhang Xueying; Hao Ming; Liu Linlin; Wu Zhenfeng; Jiang Hongwei

    2008-01-01

    Objective: To investigate the genetic association between polymorphism of mdm2 gene and symptoms and pathological types of non-small cell lung cancer (NSCLC). Methods: Polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) was used to identify mdm2 genotypes. The Pearson Chi square test and Woolf statistic method were used to analyze the relative risk and 95% confidence interval (CI) in order to find the genetic association between polymorphism of mdm2 gene and symptoms and pathological types of NSCLC. Results: In the SNP rs1196337 (a G to A base change) AA genotype showed association with cough of NSCLC (P<0.05). Conclusion: The polymorphism of mdm2 gene may be associated with symptom as cough of NSCLC. (authors)

  5. Polymorphisms in miRNA genes and their involvement in autoimmune diseases susceptibility.

    Science.gov (United States)

    Latini, Andrea; Ciccacci, Cinzia; Novelli, Giuseppe; Borgiani, Paola

    2017-08-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively regulate the expression of multiple protein-encoding genes at the post-transcriptional level. MicroRNAs are involved in different pathways, such as cellular proliferation and differentiation, signal transduction and inflammation, and play crucial roles in the development of several diseases, such as cancer, diabetes, and cardiovascular diseases. They have recently been recognized to play a role also in the pathogenesis of autoimmune diseases. Although the majority of studies are focused on miRNA expression profiles investigation, a growing number of studies have been investigating the role of polymorphisms in miRNA genes in the autoimmune diseases development. Indeed, polymorphisms affecting the miRNA genes can modify the set of targets they regulate or the maturation efficiency. This review is aimed to give an overview about the available studies that have investigated the association of miRNA gene polymorphisms with the susceptibility to various autoimmune diseases and to their clinical phenotypes.

  6. Novel drug targets in cell wall biosynthesis exploited by gene disruption in Pseudomonas aeruginosa.

    Science.gov (United States)

    Elamin, Ayssar A; Steinicke, Susanne; Oehlmann, Wulf; Braun, Yvonne; Wanas, Hanaa; Shuralev, Eduard A; Huck, Carmen; Maringer, Marko; Rohde, Manfred; Singh, Mahavir

    2017-01-01

    For clinicians, Pseudomonas aeruginosa is a nightmare pathogen that is one of the top three causes of opportunistic human infections. Therapy of P. aeruginosa infections is complicated due to its natural high intrinsic resistance to antibiotics. Active efflux and decreased uptake of drugs due to cell wall/membrane permeability appear to be important issues in the acquired antibiotic tolerance mechanisms. Bacterial cell wall biosynthesis enzymes have been shown to be essential for pathogenicity of Gram-negative bacteria. However, the role of these targets in virulence has not been identified in P. aeruginosa. Here, we report knockout (k.o) mutants of six cell wall biosynthesis targets (murA, PA4450; murD, PA4414; murF, PA4416; ppiB, PA1793; rmlA, PA5163; waaA, PA4988) in P. aeruginosa PAO1, and characterized these in order to find out whether these genes and their products contribute to pathogenicity and virulence of P. aeruginosa. Except waaA k.o, deletion of cell wall biosynthesis targets significantly reduced growth rate in minimal medium compared to the parent strain. The k.o mutants showed exciting changes in cell morphology and colonial architectures. Remarkably, ΔmurF cells became grossly enlarged. Moreover, the mutants were also attenuated in vivo in a mouse infection model except ΔmurF and ΔwaaA and proved to be more sensitive to macrophage-mediated killing than the wild-type strain. Interestingly, the deletion of the murA gene resulted in loss of virulence activity in mice, and the virulence was restored in a plant model by unknown mechanism. This study demonstrates that cell wall targets contribute significantly to intracellular survival, in vivo growth, and pathogenesis of P. aeruginosa. In conclusion, these findings establish a link between cell wall targets and virulence of P. aeruginosa and thus may lead to development of novel drugs for the treatment of P. aeruginosa infection.

  7. miR-543 promotes gastric cancer cell proliferation by targeting SIRT1

    International Nuclear Information System (INIS)

    Li, Juan; Dong, Guoying; Wang, Bo; Gao, Wei; Yang, Qing

    2016-01-01

    SIRT1, a class III histone deacetylase, exerts inhibitory effects on tumorigenesis and is downregulated in gastric cancer. However, the role of microRNAs in the regulation of SIRT1 in gastric cancer is still largely unknown. Here, we identified miR-543 as a predicted upstream regulator of SIRT1 using 3 different bioinformatics databases. Mimics of miR-543 significantly inhibited the expression of SIRT1, whereas an inhibitor of miR-543 increased SIRT1 expression. MiR-543 directly targeted the 3′-UTR of SIRT1, and both of the two binding sites contributed to the inhibitory effects. In gastric epithelium-derived cell lines, miR-543 promoted cell proliferation and cell cycle progression, and overexpression of SIRT1 rescued the above effects of miR-543. The inhibitory effects of miR-543 on SIRT1 were also validated using clinical gastric cancer samples. Moreover, we found that miR-543 expression was positively associated with tumor size, clinical grade, TNM stage and lymph node metastasis in gastric cancer patients. Our results identify a new regulatory mechanism of miR-543 on SIRT1 expression in gastric cancer, and raise the possibility that the miR-543/SIRT1 pathway may serve as a potential target for the treatment of gastric cancer. - Highlights: • SIRT1 is a novel target of miR-543. • miR-543 promotes gastric cancer cell proliferation and cell cycle progression by targeting SIRT1. • miR-543 is upregulated in GC and positively associated with tumor size, clinical grade, TNM stage and lymph node metastasis. • miR-543 is negatively correlated with SIRT1 expression in gastric cancer tissues.

  8. T Cells that Recognize HPV Protein Can Target Virus-Infected Cells | Center for Cancer Research

    Science.gov (United States)

    Adoptive T-cell transfer (ACT) is a promising form of cancer immunotherapy. Treating patients with T cells isolated from a tumor and subsequently expanded in the lab can cause the complete regression of some melanomas and cervical cancers, but the treatment is currently restricted to a few cancer types. An approach that may be applied to a wider array of cancers involves modifying peripheral blood T cells with chimeric antigen receptors or T-cell receptors (TCR) that target specific tumor antigens. Unfortunately, epithelial cancers, which are the vast majority of cancers diagnosed, have proven difficult to treat this way because most identified antigens are shared with healthy tissues and targeting them leads to toxic side effects. However, cancers caused by persistent human papillomavirus (HPV) infection, including cervical, head and neck, anal, vaginal, vulvar, and penile cancers, may be particularly amenable to the latter form of ACT since the E6 and E7 viral proteins are essential for cancer formation but are not produced in normal tissues. To test this idea, Christian Hinrichs, M.D., and his colleagues examined tumor infiltrating lymphocytes (TILs) from a patient who experienced a prolonged disease-free period after her second surgical removal of metastatic anal cancer in the hopes of identifying a TCR against one of the HPV oncoproteins.

  9. Polymer–lipid hybrid anti-HER2 nanoparticles for targeted salinomycin delivery to HER2-positive breast cancer stem cells and cancer cells

    Directory of Open Access Journals (Sweden)

    Li J

    2017-09-01

    Full Text Available Jun Li,1,* Wenqing Xu,2,* Xiaoli Yuan,3,* Huaiwen Chen,3 Hao Song,1,4 Bingquan Wang,5 Jun Han5 1College of Pharmacy, Liaocheng University, Liaocheng, Shandong, 2Railway Police College, Zhengzhou, 3Department of Cadre Health Care, Nanjing General Hospital of Nanjing Military Command, Nanjing, Jiangsu, 4Centre for Stem Cell & Regenerative Medicine, Liaocheng People’s Hospital, 5Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China *These authors contributed equally to this work Purpose: Breast cancer stem cells (CSCs are responsible for the initiation, recurrence, and metastasis of breast cancer. Sufficient evidence has established that breast cancer cells can spontaneously turn into breast CSCs. Thus, it is essential to simultaneously target breast CSCs and cancer cells to maximize the efficacy of breast cancer therapy. HER2 has been found to be overexpressed in both breast CSCs and cancer cells. We developed salinomycin-loaded polymer–lipid hybrid anti-HER2 nanoparticles (Sali-NP-HER2 to target both HER2-positive breast CSCs and cancer cells.Methods: The antitumor activity of Sali-NP-HER2 constructed by conjugating anti-HER2 antibodies to polymer–lipid salinomycin nanoparticles was evaluated in vitro and in vivo.Results: Sali-NP-HER2 efficiently bound to HER2-positive breast CSCs and cancer cells, resulting in enhanced cytotoxic effects compared with non-targeted nanoparticles or salinomycin. In mice bearing breast cancer xenografts, administration of Sali-NP-HER2 exhibited superior efficacy in inhibiting tumor growth. Sali-NP-HER2 reduced the breast tumorsphere formation rate and the proportion of breast CSCs more effectively than non-targeted nanoparticles or salinomycin alone.Conclusion: Sali-NP-HER2 represents a promising approach in treating HER2-positive breast cancer by targeting both breast CSCs and cancer cells. Keywords: nanoparticles, breast cancer, cancer stem cells, salinomycin, HER2

  10. COX-2 rs689466, rs5275, and rs20417 polymorphisms and risk of head and neck squamous cell carcinoma: a meta-analysis of adjusted and unadjusted data

    International Nuclear Information System (INIS)

    Leng, Wei-Dong; Wen, Xiu-Jie; Kwong, Joey S. W.; Huang, Wei; Chen, Jian-Gang; Zeng, Xian-Tao

    2016-01-01

    Numerous case–control studies have been performed to investigate the association between three cyclooxygenase-2 (COX-2) polymorphisms (rs20417 (−765G > C), rs689466 (−1195G > A), and rs5275 (8473 T > C)) and the risk of head and neck squamous cell carcinoma (HNSCC). However, the results were inconsistent. Therefore, we conducted this meta-analysis to investigate the association. We searched in PubMed, Embase, and Web of Science up to January 20, 2015 (last updated on May 12, 2016). Two independent reviewers extracted the data. Odds ratios (ORs) with their 95 % confidence intervals (CIs) were used to assess the association. All statistical analyses were performed using the Review Manager (RevMan) 5.2 software. Finally 8 case–control studies were included in this meta-analysis. For unadjusted data, an association with increased risk was observed in three genetic models in COX-2 rs689466 polymorphism; however, COX-2 rs5275 and rs20417 polymorphisms were not related to HNSCC risk in this study. The pooled results from adjusted data all revealed non-significant association between these three polymorphisms and risk of HNSCC. We also found a similar result in the subgroup analyses, based on both unadjusted data and adjusted data. Current results suggest that COX-2 rs689466, rs5275, and rs20417 polymorphisms are not associated with HNSCC. Further large and well-designed studies are necessary to validate this association

  11. A novel method for producing target cells and assessing cytotoxic T lymphocyte activity in outbred hosts

    Directory of Open Access Journals (Sweden)

    Bendinelli Mauro

    2009-03-01

    Full Text Available Abstract Background Cytotoxic T lymphocytes play a crucial role in the immunological control of microbial infections and in the design of vaccines and immunotherapies. Measurement of cytotoxic T lymphocyte activity requires that the test antigen is presented by target cells having the same or compatible class I major hystocompatibility complex antigens as the effector cells. Conventional assays use target cells labeled with 51chromium and infer cytotoxic T lymphocyte activity by measuring the isotope released by the target cells lysed following incubation with antigen-specific cytotoxic T lymphocytes. This assay is sensitive but needs manipulation and disposal of hazardous radioactive reagents and provides a bulk estimate of the reporter released, which may be influenced by spontaneous release of the label and other poorly controllable variables. Here we describe a novel method for producing target in outbred hosts and assessing cytotoxic T lymphocyte activity by flow cytometry. Results The method consists of culturing skin fibroblasts, immortalizing them with a replication defective clone of simian virus 40, and finally transducing them with a bicistronic vector encoding the target antigen and the reporter green fluorescent protein. When used in a flow cytometry-based assay, the target cells obtained with this method proved valuable for assessing the viral envelope protein specific cytotoxic T lymphocyte activity in domestic cats acutely or chronically infected with feline immunodeficiency virus, a lentivirus similar to human immunodeficiency virus and used as animal model for AIDS studies. Conclusion Given the versatility of the bicistronic vector used, its ability to deliver multiple and large transgenes in target cells, and its extremely wide cell specificity when pseudotyped with the vesicular stomatitis virus envelope protein, the method is potentially exploitable in many animal species.

  12. Fundamental studies on ADCC (antibody-dependent cell-mediated cytotoxicity) of human peripheral blood leukocytes using sheep red blood cells as target cells, and the effect of erythrophagocytosis

    International Nuclear Information System (INIS)

    Ichikawa, Yukinobu; Takaya, Masatoshi; Arimori, Shigeru

    1979-01-01

    We investigated antibody-dependent cell-mediated cytotoxicity (ADCC) of human peripheral blood leukocytes by using 51 Cr-labelled sheep red blood cells (SRBC) as target cells and anti-SRBC rabbit antibody. Lysis of SRBC was mediated by either human peripheral lymphoid cells or phagocytes (Monocytes and granulocytes). SRBC were useful as target cells in ADCC assay against human lymphoid cells, since decreased cytotoxic activity of phagocyte-contaminated crude lymphocyte fraction was recovered by elimination of contaminating phagocytes. The monocytes inhibited ADCC of lymphoid cells through phagocytosis of SRBC. This assay system may be useful for estimating not only Fc receptor-mediated cytotoxicity but also Fc receptor-mediated phagocytic activity of human peripheral blood leukocytes. (author)

  13. Polymorphism of growth hormone receptor (GHR gene in Holstein Friesian dairy cattle

    Directory of Open Access Journals (Sweden)

    Restu Misrianti

    2011-12-01

    Full Text Available Growth hormone gene have a critical role in the regulation of lactation, mammary gland development and growth process through its interaction with a specific receptor. Growth hormone (GH is an anabolic hormone which is synthesized and secreted by somatotrop cell in pituitary anterior lobe, and interacts with a specific receptor on the surface of the target cells. Growth hormone receptor (GHR has been suggested as candidate gene for traits related to milk production in Bovidae. The purpose of this study was to identify genetic polymorphism of the Growth Hormone Receptor (GHR genes in Holstein Friesian (HF cattle. Total of 353 blood samples were collected from five populations belonging to Cikole Dairy Cattle Breeding Station (BPPT-SP Cikole (88 samples, Pasir Kemis (95 samples, Cilumber (98 samples, Cipelang Livestock Embryo Center (BET Cipelang (40 samples, Singosari National Artificial Insemination Centre (BBIB Singosari (32 samples and 17 frozen semen samples from Lembang Artificial Insemination Center (BIB Lembang. Genomic DNAs were extracted by a standard phenol-chloroform protocol and amplified by a polymerase chain reaction (PCR techniques then PCR products were genotyped by the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP methods. There were two allele dan three genotypes were found namely: allele A and G, Genotype AA, AG and GG repectively. Allele A frequency (0.70-0.82 relatively higher than allele G frequency (0.18-0.30. Chi square test show that on group of BET Cipelang, BIB Lembang and BBIB Singosari population were not significantly different (0.00-0.93, while on group of BET Cipelang, BIB Lembang dan BBIB Singosari population were significantly different (6.02-11.13. Degree of observed heterozygosity (Ho ranged from 0.13-0.42 and expected heterozygosity (He ranged from 0.29-0.42.

  14. Smart Plasmonic Glucose Nanosensors as Generic Theranostic Agents for Targeting-Free Cancer Cell Screening and Killing.

    Science.gov (United States)

    Chen, Limei; Li, Haijuan; He, Haili; Wu, Haoxi; Jin, Yongdong

    2015-07-07

    Fast and accurate identification of cancer cells from healthy normal cells in a simple, generic way is very crucial for early cancer detection and treatment. Although functional nanoparticles, like fluorescent quantum dots and plasmonic Au nanoparticles (NPs), have been successfully applied for cancer cell imaging and photothermal therapy, they suffer from the main drawback of needing time-consuming targeting preparation for specific cancer cell detection and selective ablation. The lack of a generic and effective method therefore limits their potential high-throughput cancer cell preliminary screening and theranostic applications. We report herein a generic in vitro method for fast, targeting-free (avoiding time-consuming preparations of targeting moiety for specific cancer cells) visual screening and selective killing of cancer cells from normal cells, by using glucose-responsive/-sensitive glucose oxidase-modified Ag/Au nanoshells (Ag/Au-GOx NSs) as a smart plasmonic theranostic agent. The method is generic to some extent since it is based on the distinct localized surface plasmon resonance (LSPR) responses (and colors) of the smart nanoprobe with cancer cells (typically have a higher glucose uptake level) and normal cells.

  15. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    Science.gov (United States)

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  16. Discovery of a Novel Inhibitor of the Hedgehog Signaling Pathway through Cell-based Compound Discovery and Target Prediction.

    Science.gov (United States)

    Kremer, Lea; Schultz-Fademrecht, Carsten; Baumann, Matthias; Habenberger, Peter; Choidas, Axel; Klebl, Bert; Kordes, Susanne; Schöler, Hans R; Sterneckert, Jared; Ziegler, Slava; Schneider, Gisbert; Waldmann, Herbert

    2017-10-09

    Cell-based assays enable monitoring of small-molecule bioactivity in a target-agnostic manner and help uncover new biological mechanisms. Subsequent identification and validation of the small-molecule targets, typically employing proteomics techniques, is very challenging and limited, in particular if the targets are membrane proteins. Herein, we demonstrate that the combination of cell-based bioactive-compound discovery with cheminformatic target prediction may provide an efficient approach to accelerate the process and render target identification and validation more efficient. Using a cell-based assay, we identified the pyrazolo-imidazole smoothib as a new inhibitor of hedgehog (Hh) signaling and an antagonist of the protein smoothened (SMO) with a novel chemotype. Smoothib targets the heptahelical bundle of SMO, prevents its ciliary localization, reduces the expression of Hh target genes, and suppresses the growth of Ptch +/- medulloblastoma cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nrf2-peroxiredoxin I axis in polymorphous adenocarcinoma is associated with low matrix metalloproteinase 2 level.

    Science.gov (United States)

    Brod, J M; Demasi, Ana Paula Dias; Montalli, V A; Teixeira, L N; Furuse, C; Aguiar, M C; Soares, A B; Sperandio, M; Araujo, V C

    2017-12-01

    Polymorphous adenocarcinoma (PAC) is a malignant epithelial neoplasm that affects almost exclusively the minor salivary glands, generally described as having a relatively good prognosis. Aberrant nuclear factor erythroid 2 (NF-E2)-related factor (Nrf2) activation in tumor cells has been associated with induction of antioxidant enzymes, such as peroxiredoxin I (Prx I) and increased matrix metalloproteinase (MMP) expression. In this context, the aim of the present study was to evaluate the expression of Nrf2 and correlate it with Prx I and MMP-2 secretion in PAC. Thirty-one cases of PAC from oral biopsies were selected and immunohistochemically analyzed for Nrf2 and Prx I. MMP-2 quantification was performed on primary cell cultures derived from PAC. Oral squamous cell carcinoma (OSCC) cell cultures were used as control. A high immunoexpression of Nrf2 was observed in both the cytoplasm and the nucleus of neoplastic cells from PAC. Nuclear staining for Nrf2 suggested its activation in the majority of the PAC cells, which was confirmed by the high expression of its target gene, Prx I. Quantification of MMP-2 secretion showed lower levels in PAC cell cultures when compared to OSCC cell cultures (p high-grade malignancies, such relationship is not infallible and, in fact, the opposite may occur in low-grade tumors, such as PAC of minor salivary glands.

  18. ATM Polymorphisms Are Associated With Risk of Radiation-Induced Pneumonitis

    International Nuclear Information System (INIS)

    Zhang Li; Yang Ming; Bi Nan; Fang Mingjing; Sun Tong; Ji Wei; Tan Wen; Zhao Lujun; Yu Dianke; Lin Dongxin; Wang Luhua

    2010-01-01

    Purpose: Since the ataxia telangiectasia mutated (ATM) protein plays crucial roles in repair of double-stranded DNA breaks, control of cell cycle checkpoints, and radiosensitivity, we hypothesized that variations in this gene might be associated with radiation-induced pneumonitis (RP). Methods and Materials: A total of 253 lung cancer patients receiving thoracic irradiation between 2004 and 2006 were included in this study. Common Terminology Criteria for Adverse Events version 3.0 was used to grade RP. Five haplotype-tagging single nucleotide polymorphisms (SNPs) in the ATM gene were genotyped using DNA from blood lymphocytes. Hazard ratios (HRs) and 95% confidence intervals (CIs) of RP for genotypes were computed by the Cox model, adjusted for clinical factors. The function of the ATM SNP associated with RP was examined by biochemical assays. Results: During the median 22-month follow-up, 44 (17.4%) patients developed grade ≥ 2 RP. In multivariate Cox regression models adjusted for other clinical predictors, we found two ATM variants were independently associated with increased RP risk. They were an 111G > A) polymorphism (HR, 2.49; 95% CI, 1.07-5.80) and an ATM 126713G > A polymorphism (HR, 2.47; 95% CI, 1.16-5.28). Furthermore, genotype-dependent differences in ATM expression were demonstrated both in cell lines (p < 0.001) and in individual lung tissue samples (p = 0.003), which supported the results of the association study. Conclusions: Genetic polymorphisms of ATM are significantly associated with RP risk. These variants might exert their effect through regulation of ATM expression and serve as independent biomarkers for prediction of RP in patients treated with thoracic radiotherapy.

  19. [Cancer stem cells as the therapeutic target of tomorrow].

    Science.gov (United States)

    Hatina, Jiří

    2017-02-01

    The concept of hierarchical organization of tumour cell population, with cancer stem cells positioned at the apex of the cell hierarchy, can explain at least some crucial aspects of biological and clinical behaviour of cancer, like its propensity to relapse as well as the development of therapeutic resistance. The underlying biological properties of cancer stem cells are crucially dependent on various signals, inhibition of which provides an attractive opportunity to attack pharmacologically cancer stem cells. Currently, a lot of such stemness-inhibitors undergo various phases of clinical testing. Interestingly, numerous old drugs that are in routine use in human and veterinary medicine for non-oncological indications appear to be able to specifically target cancer stem cells as well. As cancer stem cells, at least for most tumours, represent usually only a minor tumour cell fraction, it is quite probable that the main focus of the clinical use of the stemness inhibitors would consist in their rational combinations with traditional anticancer treatment modalities. A highly important goal for the future research is to identify reliable and clinically applicable predictive markers that would allow to apply these novel anticancer drugs on the individual basis within the context of personalized medicine.

  20. p38β, A Novel Regulatory Target of Pokemon in Hepatic Cells

    Directory of Open Access Journals (Sweden)

    Ying Tan

    2013-06-01

    Full Text Available Pokemon is an important proto-oncogene involved in various biological processes and cancer development, such as cell differentiation, tumorigenesis and metastasis. Pokemon is recognized as a transcription factor localized upstream of several oncogenes, regulating their expression. p38MAPKs act as key regulatory factors in cellular signaling pathways associated with inflammatory responses, cell proliferation, differentiation and survival. p38β, a member of p38MAPK family, is closely correlated with tumorigenesis, but the mechanism of activation remains unclear. In this study, we found overexpression of Pokemon promoted the growth, migration and invasion of HepG2 cells. However, a p38 inhibitor SB202190 efficiently attenuated the promoting effect of Pokemon in the HepG2 cells. Targeted expression or silencing of Pokemon changed cellular p38β protein level and phosphorylation of downstream ATF2 in the p38 signaling pathway. Both dual luciferase report assay and ChIP assay suggested that p38β is a novel regulatory target of the transcription factor Pokemon and positively regulated by Pokemon in hepatic cells.

  1. p38β, A novel regulatory target of Pokemon in hepatic cells.

    Science.gov (United States)

    Chen, Zhe; Liu, Feng; Zhang, Nannan; Cao, Deliang; Liu, Min; Tan, Ying; Jiang, Yuyang

    2013-06-27

    Pokemon is an important proto-oncogene involved in various biological processes and cancer development, such as cell differentiation, tumorigenesis and metastasis. Pokemon is recognized as a transcription factor localized upstream of several oncogenes, regulating their expression. p38MAPKs act as key regulatory factors in cellular signaling pathways associated with inflammatory responses, cell proliferation, differentiation and survival. p38β, a member of p38MAPK family, is closely correlated with tumorigenesis, but the mechanism of activation remains unclear. In this study, we found overexpression of Pokemon promoted the growth, migration and invasion of HepG2 cells. However, a p38 inhibitor SB202190 efficiently attenuated the promoting effect of Pokemon in the HepG2 cells. Targeted expression or silencing of Pokemon changed cellular p38β protein level and phosphorylation of downstream ATF2 in the p38 signaling pathway. Both dual luciferase report assay and ChIP assay suggested that p38β is a novel regulatory target of the transcription factor Pokemon and positively regulated by Pokemon in hepatic cells.

  2. CCR2-64I polymorphism is not associated with altered CCR5 expression or coreceptor function.

    Science.gov (United States)

    Mariani, R; Wong, S; Mulder, L C; Wilkinson, D A; Reinhart, A L; LaRosa, G; Nibbs, R; O'Brien, T R; Michael, N L; Connor, R I; Macdonald, M; Busch, M; Koup, R A; Landau, N R

    1999-03-01

    A polymorphism in the gene encoding CCR2 is associated with a delay in progression to AIDS in human immunodeficiency virus (HIV)-infected individuals. The polymorphism, CCR2-64I, changes valine 64 of CCR2 to isoleucine. However, it is not clear whether the effect on AIDS progression results from the amino acid change or whether the polymorphism marks a genetically linked, yet unidentified mutation that mediates the effect. Because the gene encoding CCR5, the major coreceptor for HIV type 1 primary isolates, lies 15 kb 3' to CCR2, linked mutations in the CCR5 promoter or other regulatory sequences could explain the association of CCR2-64I with slowed AIDS pathogenesis. Here, we show that CCR2-64I is efficiently expressed on the cell surface but does not have dominant negative activity on CCR5 coreceptor function. A panel of peripheral blood mononuclear cells (PBMC) from uninfected donors representing the various CCR5/CCR2 genotypes was assembled. Activated primary CD4(+) T cells of CCR2 64I/64I donors expressed cell surface CCR5 at levels comparable to those of CCR2 +/+ donors. A slight reduction in CCR5 expression was noted, although this was not statistically significant. CCR5 and CCR2 mRNA levels were nearly identical for each of the donor PBMC, regardless of genotype. Cell surface CCR5 and CCR2 levels were more variable than mRNA transcript levels, suggesting that an alternative mechanism may influence CCR5 cell surface levels. CCR2-64I is linked to the CCR5 promoter polymorphisms 208G, 303A, 627C, and 676A; however, in transfected promoter reporter constructs, these did not affect transcriptional activity. Taken together, these findings suggest that CCR2-64I does not act by influencing CCR5 transcription or mRNA levels.

  3. Targeted, homology-driven gene insertion in stem cells by ZFN-loaded 'all-in-one' lentiviral vectors

    DEFF Research Database (Denmark)

    Cai, Yujia; Laustsen, Anders; Zhou, Yan

    2016-01-01

    -driven mechanism into safe loci. This insertion mechanism is driven by time-restricted exposure of treated cells to ZFNs. We show targeted gene integration in human stem cells, including CD34+ hematopoietic progenitors and induced pluripotent stem cells (iPSCs). Notably, targeted insertions are identified in 89......% of transduced iPSCs. Our findings demonstrate the applicability of nuclease-loaded 'all-in-one' IDLVs for site-directed gene insertion in stem cell based gene therapies....

  4. Magnetic catechin-dextran conjugate as targeted therapeutic for pancreatic tumour cells.

    Science.gov (United States)

    Vittorio, Orazio; Voliani, Valerio; Faraci, Paolo; Karmakar, Biswajit; Iemma, Francesca; Hampel, Silke; Kavallaris, Maria; Cirillo, Giuseppe

    2014-06-01

    Catechin-dextran conjugates have recently attracted a lot of attention due to their anticancer activity against a range of cancer cells. Magnetic nanoparticles have the ability to concentrate therapeutically important drugs due to their magnetic-spatial control and provide opportunities for targeted drug delivery. Enhancement of the anticancer efficiency of catechin-dextran conjugate by functionalisation with magnetic iron oxide nanoparticles. Modification of the coating shell of commercial magnetic nanoparticles (Endorem) composed of dextran with the catechin-dextran conjugate. Catechin-dextran conjugated with Endorem (Endo-Cat) increased the intracellular concentration of the drug and it induced apoptosis in 98% of pancreatic tumour cells placed under magnetic field. The conjugation of catechin-dextran with Endorem enhances the anticancer activity of this drug and provides a new strategy for targeted drug delivery on tumour cells driven by magnetic field. The ability to spatially control the delivery of the catechin-dextran by magnetic field makes it a promising agent for further application in cancer therapy.

  5. Molecular Targets for Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Mather, S.J.

    2009-01-01

    Molecular targeted radionuclide cancer therapy is becoming of increasing importance, especially for disseminated diseases. Systemic chemotherapies often lack selectivity while targeted radionuclide therapy has important advantages as the radioactive cytotoxic unit of the targeting vector is specifically directed to the cancer, sparing normal tissues. The principle strategy to improve cancer selectivity is to couple therapeutic agents to tumour-targeting vectors. In targeted radionuclide therapy (TRT), the cytotoxic portion of the conjugates normally contains a therapeutic radiometal immobilised by a bifunctional chelator. The aim is therefore to use as ligand-targeted therapeutics vectors coupled to Auger-, alpha- and/or beta-emitting radionuclides. An advantage of using radiation instead of chemotherapeutics as the cytotoxic agent is the so called 'crossfire effect'. This allows sterilisation of tumour cells that are not directly targeted due to heterogeneity in target molecule expression or inhomogeneous vector delivery. However, before the targeting ligands can be selected, the target molecule on the tumour has to be selected. It should be uniquely expressed, or at least highly overexpressed, on or in the target cells relative to normal tissues. The target should be easily accessible for ligand delivery and should not be shed or down- regulated after ligand binding. An important property of a receptor (or antigen) is its potential to be internalized upon binding of the ligand. This provides an active uptake mechanism and allows the therapeutic agent to be trapped within the tumour cells. Molecular targets of current interest include: Receptors: G-protein coupled receptors are overexpressed on many major human tumours. The prototype of these receptors are somatostatin receptors which show very high density in neuroendocrine tumours, but there are many other most interesting receptors to be applied for TRT. The targeting ligands for these receptors are

  6. Plasmonic Nanodiamonds – Targeted Core-shell Type Nanoparticles for Cancer Cell Thermoablation

    Science.gov (United States)

    Rehor, Ivan; Lee, Karin L.; Chen, Kevin; Hajek, Miroslav; Havlik, Jan; Lokajova, Jana; Masat, Milan; Slegerova, Jitka; Shukla, Sourabh; Heidari, Hamed; Bals, Sara

    2015-01-01

    Targeted biocompatible nanostructures with controlled plasmonic and morphological parameters are promising materials for cancer treatment based on selective thermal ablation of cells. Here, core-shell plasmonic nanodiamonds consisting of a silica-encapsulated diamond nanocrystal coated in a gold shell is designed and synthesized. The architecture of particles is analyzed and confirmed in detail using 3-dimensional transmission electron microscope tomography. The particles are biocompatibilized using a PEG polymer terminated with bioorthogonally reactive alkyne groups. Azide-modified transferrin is attached to these particles, and their high colloidal stability and successful targeting to cancer cells overexpressing the transferrin receptor is demonstrated. The particles are nontoxic to the cells and they are readily internalized upon binding to the transferrin receptor. The high plasmonic cross section of the particles in the near-infrared region is utilized to quantitatively ablate the cancer cells with a short, one-minute irradiation by a pulse 750-nm laser. PMID:25336437

  7. miR-198 Represses the Proliferation of HaCaT Cells by Targeting Cyclin D2

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2015-07-01

    Full Text Available Background: MiR-198 has been considered as an inhibitor of cell proliferation, invasion, migration and a promoter of apoptosis in most cancer cells, while its effect on non-cancer cells is poorly understood. Methods: The effect of miR-198 transfection on HaCaT cell proliferation was firstly detected using Cell Count Kit-8 and the cell cycle progression was analyzed by flow cytometry. Using bioinformatics analyses and luciferase assay, a new target of miR-198 was searched and identified. Then, the effect of the new target gene of miR-198 on cell proliferation and cell cycle was also detected. Results: Here we showed that miR-198 directly bound to the 3′-UTR of CCND2 mRNA, which was a key regulator in cell cycle progression. Overexpressed miR-198 repressed CCND2 expression at mRNA and protein levels and subsequently led to cell proliferation inhibition and cell cycle arrest in the G1 phase. Transfection ofSiCCND2 in HaCaT cells showed similar inhibitory effects on cell proliferation and cell cycle progression. Conclusion: In conclusion, we have identified that miR-198 inhibited HaCaT cell proliferation by directly targeting CCND2.

  8. MiR-422a targets MAPKK6 and regulates cell growth and apoptosis in colorectal cancer cells.

    Science.gov (United States)

    Li, Peng; Li, Qingmin; Zhang, Yanqiang; Sun, Shaojun; Liu, Shuntao; Lu, Zhaoxi

    2018-03-19

    The important role of miR-422a in tumor has been reported in several studies. Recent research discovered that the expression of miR-422a was significantly decreased in colorectal cancer tissues, providing miR-422a as a tumor suppressor in CRC. However, the concrete mechanism of miR-422a regulating CRC cell is still unclear. In this study, we demonstrated that miR-422a could inhibit CRC cell growth and promote cell apoptosis via in vitro analyses. Moreover, computational methods were adopted to identify the targets of miR-422a. We found MAPKK6 was the direct target of miR-422a. Consequently, we further elucidated that miR-422a inhibited CRC cell growth and induced cell apoptosis by inhibiting p38/MAPK pathway. Besides that, we established the tumor xenograft model using nude mice and the inhibitory effects on tumor volumes and weights by miR-422a mimic transfection were also detected. Taken together, these findings demonstrated miR-422a exerted anti-cancer activities on CRC, which could be potentially used for CRC prognosis prediction and treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Identification of a single nucleotide polymorphism of the pituitary ...

    African Journals Online (AJOL)

    Pit-1 is a pituitary-specific transcriptional factor that has been shown to play a critical role both in cell differentiation during organogenesis of the anterior pituitary and as a transcriptional activator for pituitary gene transcription. This study was designed to investigate the associations of Pit-1 gene polymorphism on chicken ...

  10. Polymorphisms of homologous recombination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radiotherapy.

    Directory of Open Access Journals (Sweden)

    Ming Yin

    Full Text Available The repair of DNA double-strand breaks (DSBs is the major mechanism to maintain genomic stability in response to irradiation. We hypothesized that genetic polymorphisms in DSB repair genes may affect clinical outcomes among non-small cell lung cancer (NSCLC patients treated with definitive radio(chemotherapy. We genotyped six potentially functional single nucleotide polymorphisms (SNPs (i.e., RAD51 -135G>C/rs1801320 and -172G>T/rs1801321, XRCC2 4234G>C/rs3218384 and R188H/rs3218536 G>A, XRCC3 T241M/rs861539 and NBN E185Q/rs1805794 and estimated their associations with overall survival (OS and radiation pneumonitis (RP in 228 NSCLC patients. We found a predictive role of RAD51 -135G>C SNP in RP development (adjusted hazard ratio [HR] = 0.52, 95% confidence interval [CI], 0.31-0.86, P = 0.010 for CG/CC vs. GG. We also found that RAD51 -135G>C and XRCC2 R188H SNPs were independent prognostic factors for overall survival (adjusted HR = 1.70, 95% CI, 1.14-2.62, P = 0.009 for CG/CC vs. GG; and adjusted HR = 1.70; 95% CI, 1.02-2.85, P = 0.043 for AG vs. GG, respectively and that the SNP-survival association was most pronounced in the presence of RP. Our study suggests that HR genetic polymorphisms, particularly RAD51 -135G>C, may influence overall survival and radiation pneumonitis in NSCLC patients treated with definitive radio(chemotherapy. Large studies are needed to confirm our findings.

  11. Cell signaling heterogeneity is modulated by both cell-intrinsic and -extrinsic mechanisms: An integrated approach to understanding targeted therapy.

    Science.gov (United States)

    Kim, Eunjung; Kim, Jae-Young; Smith, Matthew A; Haura, Eric B; Anderson, Alexander R A

    2018-03-01

    During the last decade, our understanding of cancer cell signaling networks has significantly improved, leading to the development of various targeted therapies that have elicited profound but, unfortunately, short-lived responses. This is, in part, due to the fact that these targeted therapies ignore context and average out heterogeneity. Here, we present a mathematical framework that addresses the impact of signaling heterogeneity on targeted therapy outcomes. We employ a simplified oncogenic rat sarcoma (RAS)-driven mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase-protein kinase B (PI3K-AKT) signaling pathway in lung cancer as an experimental model system and develop a network model of the pathway. We measure how inhibition of the pathway modulates protein phosphorylation as well as cell viability under different microenvironmental conditions. Training the model on this data using Monte Carlo simulation results in a suite of in silico cells whose relative protein activities and cell viability match experimental observation. The calibrated model predicts distributional responses to kinase inhibitors and suggests drug resistance mechanisms that can be exploited in drug combination strategies. The suggested combination strategies are validated using in vitro experimental data. The validated in silico cells are further interrogated through an unsupervised clustering analysis and then integrated into a mathematical model of tumor growth in a homogeneous and resource-limited microenvironment. We assess posttreatment heterogeneity and predict vast differences across treatments with similar efficacy, further emphasizing that heterogeneity should modulate treatment strategies. The signaling model is also integrated into a hybrid cellular automata (HCA) model of tumor growth in a spatially heterogeneous microenvironment. As a proof of concept, we simulate tumor responses to targeted therapies in a spatially segregated tissue structure containing tumor

  12. Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    Directory of Open Access Journals (Sweden)

    Strebhardt Klaus

    2008-12-01

    Full Text Available Abstract Background Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1, is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. Methods In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Results Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Conclusion Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy.

  13. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies.

    Directory of Open Access Journals (Sweden)

    M J Pont

    Full Text Available Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage-restricted expression as potential targets for immunotherapy of hematological cancers.

  14. Slp-76 is a critical determinant of NK cell-mediated recognition of missing-self targets

    OpenAIRE

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-01-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying “missing-self” recognition, including the involvement of activating receptors, remain poorly understood. Using ENU mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell-mediated recognition and elimination of “missing-self” targets. The causative mutation was linked to chromosome 11 and identified as a mi...

  15. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells.

    Science.gov (United States)

    He, Xuedan; Alves, Carla S; Oliveira, Nilsa; Rodrigues, João; Zhu, Jingyi; Bányai, István; Tomás, Helena; Shi, Xiangyang

    2015-01-01

    Development of multifunctional nanoscale drug-delivery systems for targeted cancer therapy still remains a great challenge. Here, we report the synthesis of cyclic arginine-glycine-aspartic acid (RGD) peptide-conjugated generation 5 (G5) poly(amidoamine) dendrimers for anticancer drug encapsulation and targeted therapy of cancer cells overexpressing αvβ3 integrins. In this study, amine-terminated G5 dendrimers were used as a platform to be sequentially modified with fluorescein isothiocyanate (FI) via a thiourea linkage and RGD peptide via a polyethylene glycol (PEG) spacer, followed by acetylation of the remaining dendrimer terminal amines. The developed multifunctional dendrimer platform (G5.NHAc-FI-PEG-RGD) was then used to encapsulate an anticancer drug doxorubicin (DOX). We show that approximately six DOX molecules are able to be encapsulated within each dendrimer platform. The formed complexes are water-soluble, stable, and able to release DOX in a sustained manner. One- and two-dimensional NMR techniques were applied to investigate the interaction between dendrimers and DOX, and the impact of the environmental pH on the release rate of DOX from the dendrimer/DOX complexes was also explored. Furthermore, cell biological studies demonstrate that the encapsulation of DOX within the G5.NHAc-FI-PEG-RGD dendrimers does not compromise the anticancer activity of DOX and that the therapeutic efficacy of the dendrimer/DOX complexes is solely related to the encapsulated DOX drug. Importantly, thanks to the role played by RGD-mediated targeting, the developed dendrimer/drug complexes are able to specifically target αvβ3 integrin-overexpressing cancer cells and display specific therapeutic efficacy to the target cells. The developed RGD peptide-targeted multifunctional dendrimers may thus be used as a versatile platform for targeted therapy of different types of αvβ3 integrin-overexpressing cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000 (China); Wu, Jincai [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (China); Fang, Jianguo, E-mail: fangjg@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000 (China); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2012-08-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells.

  17. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    International Nuclear Information System (INIS)

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu; Wu, Jincai; Fang, Jianguo

    2012-01-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the way by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells. ► Curcumin

  18. Plasmodium falciparum field isolates from South America use an atypical red blood cell invasion pathway associated with invasion ligand polymorphisms.

    Directory of Open Access Journals (Sweden)

    Mary Lopez-Perez

    Full Text Available Studies of Plasmodium falciparum invasion pathways in field isolates have been limited. Red blood cell (RBC invasion is a complex process involving two invasion protein families; Erythrocyte Binding-Like (EBL and the Reticulocyte Binding-Like (PfRh proteins, which are polymorphic and not fully characterized in field isolates. To determine the various P. falciparum invasion pathways used by parasite isolates from South America, we studied the invasion phenotypes in three regions: Colombia, Peru and Brazil. Additionally, polymorphisms in three members of the EBL (EBA-181, EBA-175 and EBL-1 and five members of the PfRh (PfRh1, PfRh2a, PfRh2b, PfRh4, PfRh5 families were determined. We found that most P. falciparum field isolates from Colombia and Peru invade RBCs through an atypical invasion pathway phenotypically characterized as resistant to all enzyme treatments (NrTrCr. Moreover, the invasion pathways and the ligand polymorphisms differed substantially among the Colombian and Brazilian isolates while the Peruvian isolates represent an amalgam of those present in the Colombian and Brazilian field isolates. The NrTrCr invasion profile was associated with the presence of the PfRh2a pepC variant, the PfRh5 variant 1 and EBA-181 RVNKN variant. The ebl and Pfrh expression levels in a field isolate displaying the NrTrCr profile also pointed to PfRh2a, PfRh5 and EBA-181 as being possibly the major players in this invasion pathway. Notably, our studies demonstrate the uniqueness of the Peruvian P. falciparum field isolates in terms of their invasion profiles and ligand polymorphisms, and present a unique opportunity for studying the ability of P. falciparum parasites to expand their invasion repertoire after being reintroduced to human populations. The present study is directly relevant to asexual blood stage vaccine design focused on invasion pathway proteins, suggesting that regional invasion variants and global geographical variation are likely to

  19. Identification of downstream metastasis-associated target genes regulated by LSD1 in colon cancer cells.

    Science.gov (United States)

    Chen, Jiang; Ding, Jie; Wang, Ziwei; Zhu, Jian; Wang, Xuejian; Du, Jiyi

    2017-03-21

    This study aims to identify downstream target genes regulated by lysine-specific demethylase 1 (LSD1) in colon cancer cells and investigate the molecular mechanisms of LSD1 influencing invasion and metastasis of colon cancer. We obtained the expression changes of downstream target genes regulated by small-interfering RNA-LSD1 and LSD1-overexpression via gene expression profiling in two human colon cancer cell lines. An Affymetrix Human Transcriptome Array 2.0 was used to identify differentially expressed genes (DEGs). We screened out LSD1-target gene associated with proliferation, metastasis, and invasion from DEGs via Gene Ontology and Pathway Studio. Subsequently, four key genes (CABYR, FOXF2, TLE4, and CDH1) were computationally predicted as metastasis-related LSD1-target genes. ChIp-PCR was applied after RT-PCR and Western blot validations to detect the occupancy of LSD1-target gene promoter-bound LSD1. A total of 3633 DEGs were significantly upregulated, and 4642 DEGs were downregulated in LSD1-silenced SW620 cells. A total of 4047 DEGs and 4240 DEGs were upregulated and downregulated in LSD1-overexpressed HT-29 cells, respectively. RT-PCR and Western blot validated the microarray analysis results. ChIP assay results demonstrated that LSD1 might be negative regulators for target genes CABYR and CDH1. The expression level of LSD1 is negatively correlated with mono- and dimethylation of histone H3 lysine4(H3K4) at LSD1- target gene promoter region. No significant mono-methylation and dimethylation of H3 lysine9 methylation was detected at the promoter region of CABYR and CDH1. LSD1- depletion contributed to the upregulation of CABYR and CDH1 through enhancing the dimethylation of H3K4 at the LSD1-target genes promoter. LSD1- overexpression mediated the downregulation of CABYR and CDH1expression through decreasing the mono- and dimethylation of H3K4 at LSD1-target gene promoter in colon cancer cells. CABYR and CDH1 might be potential LSD1-target genes in colon

  20. Intravenous delivery of HIV-based lentiviral vectors preferentially transduces F4/80+ and Ly-6C+ cells in spleen, important target cells in autoimmune arthritis.

    Directory of Open Access Journals (Sweden)

    Ben T van den Brand

    Full Text Available Antigen presenting cells (APCs play an important role in arthritis and APC specific gene therapeutic targeting will enable intracellular modulation of cell activity. Viral mediated overexpression is a potent approach to achieve adequate transgene expression levels and lentivirus (LV is useful for sustained expression in target cells. Therefore, we studied the feasibility of lentiviral mediated targeting of APCs in experimental arthritis. Third generation VSV-G pseudotyped self-inactivating (SIN-LV were injected intravenously and spleen cells were analyzed with flow cytometry for green fluorescent protein (GFP transgene expression and cell surface markers. Collagen-induced arthritis (CIA was induced by immunization with bovine collagen type II in complete Freund's adjuvant. Effect on inflammation was monitored macroscopically and T-cell subsets in spleen were analyzed by flow cytometry. Synovium from arthritic knee joints were analyzed for proinflammatory cytokine expression. Lentiviruses injected via the tail vein preferentially infected the spleen and transduction peaks at day 10. A dose escalating study showed that 8% of all spleen cells were targeted and further analysis showed that predominantly Ly6C+ and F4/80+ cells in spleen were targeted by the LV. To study the feasibility of blocking TAK1-dependent pathways by this approach, a catalytically inactive mutant of TAK1 (TAK1-K63W was overexpressed during CIA. LV-TAK1-K63W significantly reduced incidence and arthritis severity macroscopically. Further histological analysis showed a significant decrease in bone erosion in LV-TAK1-K63W treated animals. Moreover, systemic Th17 levels were decreased by LV-TAK1-K63W treatment in addition to diminished IL-6 and KC production in inflamed synovium. In conclusion, systemically delivered LV efficiently targets monocytes and macrophages in spleen that are involved in autoimmune arthritis. Moreover, this study confirms efficacy of TAK1 targeting in

  1. Mast Cell Targeted Chimeric Toxin Can Be Developed as an Adjunctive Therapy in Colon Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Shan Wang

    2016-03-01

    Full Text Available The association of colitis with colorectal cancer has become increasingly clear with mast cells being identified as important inflammatory cells in the process. In view of the relationship between mast cells and cancer, we studied the effect and mechanisms of mast cells in the development of colon cancer. Functional and mechanistic insights were gained from ex vivo and in vivo studies of cell interactions between mast cells and CT26 cells. Further evidence was reversely obtained in studies of mast cell targeted Fcε-PE40 chimeric toxin. Experiments revealed mast cells could induce colon tumor cell proliferation and invasion. Cancer progression was found to be related to the density of mast cells in colonic submucosa. The activation of MAPK, Rho-GTPase, and STAT pathways in colon cancer cells was triggered by mast cells during cell-to-cell interaction. Lastly, using an Fcε-PE40 chimeric toxin we constructed, we confirmed the promoting effect of mast cells in development of colon cancer. Mast cells are a promoting factor of colon cancer and thus also a potential therapeutic target. The Fcε-PE40 chimeric toxin targeting mast cells could effectively prevent colon cancer in vitro and in vivo. Consequently, these data may demonstrate a novel immunotherapeutic approach for the treatment of tumors.

  2. Concomitant targeting of multiple key transcription factors effectively disrupts cancer stem cells enriched in side population of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Xiyan Wang

    Full Text Available A major challenge in the treatment of pancreatic ductal adenocarcinoma is the failure of chemotherapy, which is likely due to the presence of the cancer stem cells (CSCs.To identify side population (SP cells and characterize s-like properties in human pancreatic cancer cell lines (h-PCCLs and to exploit the efficacy of concomitant targeting of multiple key transcription factors governing the stemness of pancreatic CSCs in suppressing CSC-like phenotypes.Flow cytometry and Hoechst 33342 DNA-binding dye efflux assay were used to sort SP and non-SP (NSP cells from three h-PCCLs: PANC-1, SW1990, and BxPc-3. The self-renewal ability, invasiveness, migration and drug resistance of SP cells were evaluated. Expression of CSC marker genes was analyzed. Tumorigenicity was assessed using a xenograft model in nude mice. Effects of a complex decoy oligonucleotide (cdODN-SCO designed to simultaneously targeting Sox2, Oct4 and c-Myc were assessed.CSCs were enriched in the side proportion (SP cells contained in the h-PCCLs and they possessed aggressive growth, invasion, migration and drug-resistance properties, compared with NSP cells. SP cells overexpressed stem cell markers CD133 and ALDH1, pluripotency maintaining factors Nanog, Sox2 and Oct4, oncogenic transcription factor c-Myc, signaling molecule Notch1, and drug resistant gene ABCG2. Moreover, SP cells consistently demonstrated significantly greater tumorigenicity than NSP cells in xenograft model of nude mice. CdODN-SOC efficiently suppressed all CSC properties and phenotypes, and minimized the tumorigenic capability of the SP cells and the resistance to chemotherapy. By comparison, the negative control failed to do so.The findings indicate that targeting the key genes conferring the stemness of CSCs can efficiently eliminate CSC-like phenotypes, and thus may be considered a new approach for cancer therapy. Specifically, the present study establishes the combination of Sox2/Oct4/c-Myc targeting as a

  3. Targeting of histamine producing cells by EGCG: a green dart against inflammation?

    Science.gov (United States)

    Melgarejo, Esther; Medina, Miguel Angel; Sánchez-Jiménez, Francisca; Urdiales, José Luis

    2010-09-01

    The human body is made of some 250 different cell types. From them, only a small subset of cell types is able to produce histamine. They include some neurons, enterochromaffin-like cells, gastrin-containing cells, mast cells, basophils, and monocytes/macrophages, among others. In spite of the reduced number of these histamine-producing cell types, they are involved in very different physiological processes. Their deregulation is related with many highly prevalent, as well as emergent and rare diseases, mainly those described as inflammation-dependent pathologies, including mastocytosis, basophilic leukemia, gastric ulcer, Crohn disease, and other inflammatory bowel diseases. Furthermore, oncogenic transformation switches some non-histamine-producing cells to a histamine producing phenotype. This is the case of melanoma, small cell lung carcinoma, and several types of neuroendocrine tumors. The bioactive compound epigallocatechin-3-gallate (EGCG), a major component of green tea, has been shown to target histamine-producing cells producing great alterations in their behavior, with relevant effects on their proliferative potential, as well as their adhesion, migration, and invasion potentials. In fact, EGCG has been shown to have potent anti-inflammatory, anti-tumoral, and anti-angiogenic effects and to be a potent inhibitor of the histamine-producing enzyme, histidine decarboxylase. Herein, we review the many specific effects of EGCG on concrete molecular targets of histamine-producing cells and discuss the relevance of these data to support the potential therapeutic interest of this compound to treat inflammation-dependent diseases.

  4. Inhibition of BRCA2 and Thymidylate Synthase Creates Multidrug Sensitive Tumor Cells via the Induction of Combined “Complementary Lethality”

    OpenAIRE

    Mateusz Rytelewski; Peter J Ferguson; Saman Maleki Vareki; Rene Figueredo; Mark Vincent; James Koropatnick

    2013-01-01

    A high mutation rate leading to tumor cell heterogeneity is a driver of malignancy in human cancers. Paradoxically, however, genomic instability can also render tumors vulnerable to therapeutic attack. Thus, targeting DNA repair may induce an intolerable level of DNA damage in tumor cells. BRCA2 mediates homologous recombination repair, and BRCA2 polymorphisms increase cancer risk. However, tumors with BRCA2 mutations respond better to chemotherapy and are associated with improved patient pro...

  5. Toll-like receptor activation enhances cell-mediated immunity induced by an antibody vaccine targeting human dendritic cells

    Directory of Open Access Journals (Sweden)

    Berger Marc A

    2007-01-01

    Full Text Available Abstract Previously, we have successfully targeted the mannose receptor (MR expressed on monocyte-derived dendritic cells (DCs using a fully human MR-specific antibody, B11, as a vehicle to deliver whole protein tumor antigens such as the human chorionic gonadotropin hormone (hCGβ. Since MRs play a role in bridging innate immunity with adaptive immunity we have explored several toll-like receptor (TLR-specific ligands that may synergize with MR targeting and be applicable as adjuvants in the clinic. We demonstrate that antigen-specific helper and cytolytic T cells from both healthy donors and cancer patients were effectively primed with B11-hCGβ-treated autologous DCs when a combination of one or several TLR ligands is used. Specifically, concomitant signaling of DCs via TLR3 with dsRNA (poly I:C and DC TLR 7/8 with Resiquimod (R-848, respectively, elicited efficient antigen presentation-mediated by MR-targeting. We demonstrate that MR and TLRs contribute towards maturation and activation of DCs by a mechanism that may be driven by a combination of adjuvant and antibody vaccines that specifically deliver antigenic targets to DCs.

  6. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neovascularization.

    Science.gov (United States)

    Dubrac, Alexandre; Genet, Gael; Ola, Roxana; Zhang, Feng; Pibouin-Fragner, Laurence; Han, Jinah; Zhang, Jiasheng; Thomas, Jean-Léon; Chedotal, Alain; Schwartz, Martin A; Eichmann, Anne

    2016-01-26

    Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here, we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2- and VEGF-induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, and pathological ocular neovascularization and wound healing, as well. These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2, and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis. © 2015 American Heart Association, Inc.

  7. Ibrutinib inhibits pre-BCR+ B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK.

    Science.gov (United States)

    Kim, Ekaterina; Hurtz, Christian; Koehrer, Stefan; Wang, Zhiqiang; Balasubramanian, Sriram; Chang, Betty Y; Müschen, Markus; Davis, R Eric; Burger, Jan A

    2017-03-02

    Targeting B-cell receptor (BCR) signaling is a successful therapeutic strategy in mature B-cell malignancies. Precursor BCR (pre-BCR) signaling, which is critical during normal B lymphopoiesis, also plays an important role in pre-BCR + B cell acute lymphoblastic leukemia (B-ALL). Here, we investigated the activity and mechanism of action of the BTK inhibitor ibrutinib in preclinical models of B-ALL. Pre-BCR + ALL cells were exquisitely sensitive to ibrutinib at therapeutically relevant drug concentrations. In pre-BCR + ALL, ibrutinib thwarted autonomous and induced pre-BCR signaling, resulting in deactivation of PI3K/Akt signaling. Ibrutinib modulated the expression of pre-BCR regulators (PTPN6, CD22, CD72, and PKCβ) and substantially reduced BCL6 levels. Ibrutinib inhibited ALL cell migration toward CXCL12 and beneath marrow stromal cells and reduced CD44 expression. CRISPR-Cas9 gene editing revealed that both BTK and B lymphocyte kinase (BLK) are relevant targets of ibrutinib in pre-BCR + ALL. Consequently, in mouse xenograft models of pre-BCR + ALL, ibrutinib treatment significantly prolonged survival. Combination treatment of ibrutinib with dexamethasone or vincristine demonstrated synergistic activity against pre-BCR + ALL. These data corroborate ibrutinib as a promising targeted agent for pre-BCR + ALL and highlight the importance of ibrutinib effects on alternative kinase targets. © 2017 by The American Society of Hematology.

  8. Distinguishing normal cells from cancer cells via lysosome-targetable pH biomarkers with benzo[a]phenoxazine skeleton

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Yan-Hua [College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, 199 Ren’Ai Road, Suzhou, 215123 (China); Li, Xiao-Jun [School of Radiation Medicine and Protection, Medicine College of Soochow University, Suzhou, 215123 (China); Sun, Ru, E-mail: sunru924@hotmail.com [College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, 199 Ren’Ai Road, Suzhou, 215123 (China); Xu, Yu-Jie [School of Radiation Medicine and Protection, Medicine College of Soochow University, Suzhou, 215123 (China); Ge, Jian-Feng, E-mail: ge_jianfeng@hotmail.com [College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, 199 Ren’Ai Road, Suzhou, 215123 (China); Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163 (China)

    2016-08-24

    In this paper, the design of a lysosome-targetable pH probe that has a fluorescent OFF (pH = 4) to ON (pH = 5–6) response is described to identify lysosomes in normal cells. The mechanism of photoinduced electron transfer with a fluorophore-based reaction (FBR-PET) was proposed. Benzo[a]phenoxazines with electro-donating aryl groups were selected, its (2,5-dimethoxyphenyl)imino-, (2-hydroxyphenyl)imino- and (2-hydroxy-5-methoxyphenyl)- imino-derivatives (probes 1a−c) were prepared and their optical responses towards pH were evaluated; their fluorescence pH titration experiments gave regularly changes with the increasing electro-donating abilities at the linked aryl groups, the (2-hydroxy-5-methoxyphenyl)iminobenzo[a]phenoxazine (probe 1c) exhibited a nearly OFF−ON response at 580–800 nm. All probes were reversible, and they showed excellent selectivity toward the proton over other competitive species. Fluorescence confocal images were performed with HeLa, KB cancer cells and V79 normal cells, probes 1a−c are all lysosome-targetable pH probes, and benzo[a]phenoxazine with (2-hydroxy-5-methoxyphenyl)imino-group (probe 1c) has potential applications in selective differentiation of normal cells from cancer cells. - Highlights: • pH probes for lysosome detection in normal cells. • Differentiation of normal cells from cancer cells by lysosome-biomarker. • The PET mechanism promoted by fluorophore based reactions (FBR-PET).

  9. Distinguishing normal cells from cancer cells via lysosome-targetable pH biomarkers with benzo[a]phenoxazine skeleton

    International Nuclear Information System (INIS)

    Zhan, Yan-Hua; Li, Xiao-Jun; Sun, Ru; Xu, Yu-Jie; Ge, Jian-Feng

    2016-01-01

    In this paper, the design of a lysosome-targetable pH probe that has a fluorescent OFF (pH = 4) to ON (pH = 5–6) response is described to identify lysosomes in normal cells. The mechanism of photoinduced electron transfer with a fluorophore-based reaction (FBR-PET) was proposed. Benzo[a]phenoxazines with electro-donating aryl groups were selected, its (2,5-dimethoxyphenyl)imino-, (2-hydroxyphenyl)imino- and (2-hydroxy-5-methoxyphenyl)- imino-derivatives (probes 1a−c) were prepared and their optical responses towards pH were evaluated; their fluorescence pH titration experiments gave regularly changes with the increasing electro-donating abilities at the linked aryl groups, the (2-hydroxy-5-methoxyphenyl)iminobenzo[a]phenoxazine (probe 1c) exhibited a nearly OFF−ON response at 580–800 nm. All probes were reversible, and they showed excellent selectivity toward the proton over other competitive species. Fluorescence confocal images were performed with HeLa, KB cancer cells and V79 normal cells, probes 1a−c are all lysosome-targetable pH probes, and benzo[a]phenoxazine with (2-hydroxy-5-methoxyphenyl)imino-group (probe 1c) has potential applications in selective differentiation of normal cells from cancer cells. - Highlights: • pH probes for lysosome detection in normal cells. • Differentiation of normal cells from cancer cells by lysosome-biomarker. • The PET mechanism promoted by fluorophore based reactions (FBR-PET).

  10. Unravelling ``off-target'' effects of redox-active polymers and polymer multilayered capsules in prostate cancer cells

    Science.gov (United States)

    Beretta, Giovanni L.; Folini, Marco; Cavalieri, Francesca; Yan, Yan; Fresch, Enrico; Kaliappan, Subramanian; Hasenöhrl, Christoph; Richardson, Joseph J.; Tinelli, Stella; Fery, Andreas; Caruso, Frank; Zaffaroni, Nadia

    2015-03-01

    Redox-active polymers and carriers are oxidizing nanoagents that can potentially trigger intracellular off-target effects. In the present study, we investigated the occurrence of off-target effects in prostate cancer cells following exposure to redox-active polymer and thin multilayer capsules with different chemical properties. We show that, depending on the intracellular antioxidant capacity, thiol-functionalized poly(methacrylic acid), PMASH triggers cell defense responses/perturbations that result in off-target effects (i.e., induction of autophagy and down-regulation of survivin). Importantly, the conversion of the carboxyl groups of PMASH into the neutral amides of poly(hydroxypropylmetacrylamide) (pHPMASH) nullified the off-target effects and cytotoxicity in tested cell lines. This suggests that the simultaneous action of carboxyl and disulfide groups in PMASH polymer or capsules may play a role in mediating the intracellular off-target effects. Our work provides evidence that the rational design of redox-active carriers for therapeutic-related application should be guided by a careful investigation on potential disturbance of the cellular machineries related to the carrier association.Redox-active polymers and carriers are oxidizing nanoagents that can potentially trigger intracellular off-target effects. In the present study, we investigated the occurrence of off-target effects in prostate cancer cells following exposure to redox-active polymer and thin multilayer capsules with different chemical properties. We show that, depending on the intracellular antioxidant capacity, thiol-functionalized poly(methacrylic acid), PMASH triggers cell defense responses/perturbations that result in off-target effects (i.e., induction of autophagy and down-regulation of survivin). Importantly, the conversion of the carboxyl groups of PMASH into the neutral amides of poly(hydroxypropylmetacrylamide) (pHPMASH) nullified the off-target effects and cytotoxicity in tested cell

  11. Targeted deletion of RANKL in M cell inducer cells by the Col6a1-Cre driver.

    Science.gov (United States)

    Nagashima, Kazuki; Sawa, Shinichiro; Nitta, Takeshi; Prados, Alejandro; Koliaraki, Vasiliki; Kollias, George; Nakashima, Tomoki; Takayanagi, Hiroshi

    2017-11-04

    The gut-associated lymphoid tissues (GALTs), including Peyer's patches (PPs), cryptopatches (CPs) and isolated lymphoid follicles (ILFs), establish a host-microbe symbiosis by the promotion of immune reactions against gut microbes. Microfold cell inducer (MCi) cells in GALTs are the recently identified mesenchymal cells that express the cytokine RANKL and initiate bacteria-specific immunoglobulin A (IgA) production via induction of microfold (M) cell differentiation. In the previous study, the Twist2-Cre driver was utilized for gene deletion in mesenchymal cells including MCi cells. In order to investigate MCi cells more extensively, it will be necessary to develop experimental tools in addition to the Twist2-Cre driver mice and characterize such drivers in specificity and efficiency. Here we show that M cell differentiation and IgA production are impaired in the targeted deletion of RANKL by the Col6a1-Cre driver. We compared Col6a1-Cre with Twist2-Cre in terms of the specificity for mesenchymal cells in GALTs. Col6a1-Cre CAG-CAT-EGFP mice exhibited EGFP expression in podoplanin + CD31 - cells including MCi cells, while Twist2-Cre mice were shown to target endothelial cells and podoplanin + CD31 - cells. Tnfsf11 fl/Δ Col6a1-Cre mice exhibited the absence of M cells and severe IgA reduction together with an alteration in gut microbial composition. Moreover, we analyzed germ free mice to test whether changes in the microbiota are the cause of M cell deficiency. M cell differentiation was normal in the CPs/ILFs of germ free mice, indicating that MCi cells induce M cells independently of microbial colonization. This study demonstrates that Col6a1-Cre driver mice are as useful as Twist2-Cre driver mice for functional analyses of GALT-resident mesenchymal cells, including MCi cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Identification of Splice Variants, Targeted MicroRNAs and Functional Single Nucleotide Polymorphisms of the BOLA-DQA2 Gene in Dairy Cattle

    Science.gov (United States)

    Hou, Qinlei; Huang, Jinming; Ju, Zhihua; Li, Qiuling; Li, Liming; Wang, Changfa; Sun, Tao; Wang, Lingling; Hou, Minghai

    2012-01-01

    Major histocompatibility complex, class II, DQ alpha 2, also named BOLA-DQA2, belongs to the Bovine Leukocyte Antigen (BOLA) class II genes which are involved in the immune response. To explore the variability of the BOLA-DQA2 gene and resistance to mastitis in cows, the splice variants (SV), targeted microRNAs (miRNAs), and single nucleotide polymorphisms (SNPs) were identified in this study. A new SV (BOLA-DQA2-SV1) lacking part of exon 3 (195 bp) and two 3′-untranslated regions (UTR) (52 bp+167 bp) of the BOLA-DQA2 gene was found in the healthy and mastitis-infected mammary gland tissues. Four of 13 new SNPs and multiple nucleotide polymorphisms resulted in amino acid changes in the protein and SNP (c. +1283 C>T) may affect the binding to the seed sequence of bta-miR-2318. Further, we detected the relative expressions of two BOLA-DQA2 transcripts and five candidated microRNAs binding to the 3′-UTR of two transcripts in the mammary gland tissues in dairy cattle by using the quantitative real-time polymerase chain reaction. The result showed that expression of the BOLA-DQA2-SV1 mRNA was significantly upregulated 2.67-fold (pmastitis-infected mammary tissues (n=5) compared with the healthy mammary gland mammary tissues (n=5). Except for bta-miR-1777a, miRNA expression (bta-miR-296, miR-2430, and miR-671) was upregulated 1.75 to 2.59-fold (pmastitis cows. Our findings reveal that BOLA-DQA2-SV1 may play an important role in the mastitis resistance in dairy cattle. Whether the SNPs affect the structure of the BOLA-DQA2 gene or association with mastitis resistance is unknown and warrants further investigation. PMID:22084936

  13. Lithium inhibits tumorigenic potential of PDA cells through targeting hedgehog-GLI signaling pathway.

    Directory of Open Access Journals (Sweden)

    Zhonglu Peng

    Full Text Available Hedgehog signaling pathway plays a critical role in the initiation and development of pancreatic ductal adenocarcinoma (PDA and represents an attractive target for PDA treatment. Lithium, a clinical mood stabilizer for mental disorders, potently inhibits the activity of glycogen synthase kinase 3β (GSK3β that promotes the ubiquitin-dependent proteasome degradation of GLI1, an important downstream component of hedgehog signaling. Herein, we report that lithium inhibits cell proliferation, blocks G1/S cell-cycle progression, induces cell apoptosis and suppresses tumorigenic potential of PDA cells through down-regulation of the expression and activity of GLI1. Moreover, lithium synergistically enhances the anti-cancer effect of gemcitabine. These findings further our knowledge of mechanisms of action for lithium and provide a potentially new therapeutic strategy for PDA through targeting GLI1.

  14. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting β-catenin

    International Nuclear Information System (INIS)

    Sun, Jian-Yong; Huang, Yi; Li, Ji-Peng; Zhang, Xiang; Wang, Lei; Meng, Yan-Ling; Yan, Bo; Bian, Yong-Qian; Zhao, Jing; Wang, Wei-Zhong

    2012-01-01

    Highlights: ► miR-320a is downregulated in human colorectal carcinoma. ► Overexpression of miR-320a inhibits colon cancer cell proliferation. ► β-Catenin is a direct target of miR-320a in colon cancer cells. ► miR-320a expression inversely correlates with mRNA expression of β-catenin’s target genes in human colon carcinoma. -- Abstract: Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colon cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and β-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and β-catenin’s downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting β-catenin, suggesting its application in prognosis prediction and cancer treatment.

  15. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jian-Yong [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Huang, Yi [Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, 710032 Xi' an (China); Li, Ji-Peng [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Zhang, Xiang; Wang, Lei [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Meng, Yan-Ling [Department of Immunology, Fourth Military Medical University, 710032 Xi' an (China); Yan, Bo [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Bian, Yong-Qian [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); Zhao, Jing [State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi' an (China); Wang, Wei-Zhong, E-mail: weichang@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi' an (China); and others

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer miR-320a is downregulated in human colorectal carcinoma. Black-Right-Pointing-Pointer Overexpression of miR-320a inhibits colon cancer cell proliferation. Black-Right-Pointing-Pointer {beta}-Catenin is a direct target of miR-320a in colon cancer cells. Black-Right-Pointing-Pointer miR-320a expression inversely correlates with mRNA expression of {beta}-catenin's target genes in human colon carcinoma. -- Abstract: Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colon cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and {beta}-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and {beta}-catenin's downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting {beta}-catenin, suggesting its application in prognosis prediction and cancer treatment.

  16. Species-specific markers for the differential diagnosis of Trypanosoma cruzi and Trypanosoma rangeli and polymorphisms detection in Trypanosoma rangeli.

    Science.gov (United States)

    Ferreira, Keila Adriana Magalhães; Fajardo, Emanuella Francisco; Baptista, Rodrigo P; Macedo, Andrea Mara; Lages-Silva, Eliane; Ramírez, Luis Eduardo; Pedrosa, André Luiz

    2014-06-01

    Trypanosoma cruzi and Trypanosoma rangeli are kinetoplastid parasites which are able to infect humans in Central and South America. Misdiagnosis between these trypanosomes can be avoided by targeting barcoding sequences or genes of each organism. This work aims to analyze the feasibility of using species-specific markers for identification of intraspecific polymorphisms and as target for diagnostic methods by PCR. Accordingly, primers which are able to specifically detect T. cruzi or T. rangeli genomic DNA were characterized. The use of intergenic regions, generally divergent in the trypanosomatids, and the serine carboxypeptidase gene were successful. Using T. rangeli genomic sequences for the identification of group-specific polymorphisms and a polymorphic AT(n) dinucleotide repeat permitted the classification of the strains into two groups, which are entirely coincident with T. rangeli main lineages, KP1 (+) and KP1 (-), previously determined by kinetoplast DNA (kDNA) characterization. The sequences analyzed totalize 622 bp (382 bp represent a hypothetical protein sequence, and 240 bp represent an anonymous sequence), and of these, 581 (93.3%) are conserved sites and 41 bp (6.7%) are polymorphic, with 9 transitions (21.9%), 2 transversions (4.9%), and 30 (73.2%) insertion/deletion events. Taken together, the species-specific markers analyzed may be useful for the development of new strategies for the accurate diagnosis of infections. Furthermore, the identification of T. rangeli polymorphisms has a direct impact in the understanding of the population structure of this parasite.

  17. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets.

    Directory of Open Access Journals (Sweden)

    Pooja Ghatalia

    Full Text Available Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR and mammalian target of rapamycin (mTOR improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC, but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T, matched normal kidney (N and metastatic tumor tissue (M may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79 compared to those that did not develop metastasis for at least 2 years (n = 187. Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001. The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation.

  18. Lysis of autologous human macrophages by lymphokine-activated killer cells: interaction of effector cell and target cell conjugates analyzed by scanning electron microscopy.

    Science.gov (United States)

    Streck, R J; Helinski, E H; Ovak, G M; Pauly, J L

    1990-09-01

    Lymphokine (i.e., interleukin 2; IL-2)-activated killer (LAK) cells derived from normal human blood are known to destroy human tumor target cells. Accordingly, immunotherapy modalities using IL-2, either alone or in combination with LAK cells, have been evaluated for eradicating metastatic cancer. In studies conducted to characterize receptors on LAK cell membrane ultrastructures, we observed that LAK cells kill autologous human monocyte-derived macrophages (M phi). In these experiments, peripheral blood mononuclear cells of a healthy adult donor were cultured to generate LAK cells and autologous non-adherent M phi. Thereafter, conjugates were prepared by incubating for 3 h autologous populations of LAK cells and M phi. Examination of the conjugates by scanning electron microscopy (SEM) identified LAK cell-mediated killing of M phi. Moreover, SEM analysis of the LAK cell membrane architecture identified microvilli-like ultrastructures that provided a physical bridge that joined together the LAK cell and M phi. The immunological mechanism(s) underling LAK cell killing of autologous M phi is not known; nevertheless, these conjugates will provide a useful model to study membrane receptors on ultrastructures that mediate the initial stages of cytolysis that include target cell recognition and cell-to-cell adhesion. The results of our observations and the findings of other investigators who have also demonstrated LAK cell killing of autologous normal human leukocytes are discussed in the context of the association of IL-2 and IL-2-activated killer cells with side effects observed in ongoing clinical trials and with autoimmune disorders.

  19. A terminal-labelling microcytotoxity assay with 125I-iododeoxyuridine as a label for target cells

    International Nuclear Information System (INIS)

    Stirrat, G.M.

    1976-01-01

    The development of a terminal-labelling microcytotoxicity assay is described in which target cells (fetal fibroblasts) were labelled with 125 I-iododeoxyuridine after effector (lymphoid) cells had been incubated with them for 24 h. The time-course for the development of cell-mediated cytotoxicity was assessed following allogeneic skin grafting. 'Non-specific' cytotoxicity detracts from the sensitivity of all microcytotoxicity assays and the terminal-labelling assay using 125 I is no exception. The non-specific effects can be reduced but not eliminated by the removal of adherent cells. The optimum target cell/effector cell ratio would seem to be between 1:100 and 1:250. Residual lymph node cells did not appear to incorporate enough label to affect the test results. In vivo correlates of in vitro findings are still not easy to determine

  20. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets.

    Science.gov (United States)

    Gleason, Michelle K; Ross, Julie A; Warlick, Erica D; Lund, Troy C; Verneris, Michael R; Wiernik, Andres; Spellman, Stephen; Haagenson, Michael D; Lenvik, Alexander J; Litzow, Mark R; Epling-Burnette, Pearlie K; Blazar, Bruce R; Weiner, Louis M; Weisdorf, Daniel J; Vallera, Daniel A; Miller, Jeffrey S

    2014-05-08

    Myelodysplastic syndromes (MDS) are stem cell disorders that can progress to acute myeloid leukemia. Although hematopoietic cell transplantation can be curative, additional therapies are needed for a disease that disproportionally afflicts the elderly. We tested the ability of a CD16xCD33 BiKE to induce natural killer (NK) cell function in 67 MDS patients. Compared with age-matched normal controls, CD7(+) lymphocytes, NK cells, and CD16 expression were markedly decreased in MDS patients. Despite this, reverse antibody-dependent cell-mediated cytotoxicity assays showed potent degranulation and cytokine production when resting MDS-NK cells were triggered with an agonistic CD16 monoclonal antibody. Blood and marrow MDS-NK cells treated with bispecific killer cell engager (BiKE) significantly enhanced degranulation and tumor necrosis factor-α and interferon-γ production against HL-60 and endogenous CD33(+) MDS targets. MDS patients had a significantly increased proportion of immunosuppressive CD33(+) myeloid-derived suppressor cells (MDSCs) that negatively correlated with MDS lymphocyte populations and CD16 loss on NK cells. Treatment with the CD16xCD33 BiKE successfully reversed MDSC immunosuppression of NK cells and induced MDSC target cell lysis. Lastly, the BiKE induced optimal MDS-NK cell function irrespective of disease stage. Our data suggest that the CD16xCD33 BiKE functions against both CD33(+) MDS and MDSC targets and may be therapeutically beneficial for MDS patients.